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SUMMARY

Phenolic compounds are considered important quality contributors of red wines. However, lot of 

unknowns exist in terms of their role in wine due to their complexity and continuous evolution which 

starts in fresh grapes, during alcoholic fermentation and wine ageing. In this study, we have 

evaluated different parameters which could affect the colour and phenolic composition of Shiraz 

wines. All the work has been carried out within the same vineyard during three harvest seasons. 

This study has interconnected topics in order to reach a broader understanding on how certain 

factors influencing the phenolic composition in fresh grapes can affect phenolic extractability and 

subsequent wine ageing. 

In the first part of the study, the colour and phenolic composition of wines was changed by harvesting 

the grapes at different ripening levels. Differences observed in the phenolic composition in young 

red wines were also followed during prolonged wine ageing. The initial phenolic composition of young 

wines influenced the wines’ colour and phenolic evolution during bottle storage. The sensory profiles 

of the wines were also influenced by the grape ripening and ageing. 

This work also evaluated the impact of vintage, grape ripeness and alcoholic fermentation on the 

transformation of the grape berry cell wall. All these factors have been shown to affect the final colour 

and phenolic composition of young red wines. Grape ripeness was relevant for the study, but the 

vintage effect was shown to have the major impact on the phenolic content and the cell wall 

composition in fresh grapes. Nonetheless, compositional changes in the grape berry cell wall, partly 

influenced by the de-pectination during grape ripening and fermentation, also affected the release of 

grape phenolics into the wines. In addition, the extraction of grape proanthocyanidins with a longer 

polymer length was also partly influenced by the cell wall breakdown during fermentation, enhanced 

in riper berries.    

The last part of the study has shown the influence of different anthocyanin/tannin ratios and oxidation 

on the evolution of colour, phenolics and the precipitate formed over time in a wine-like system (WL). 

The use of advanced chromatographic and untargeted techniques has allowed us to measure the 

impact of different seed additions on the phenolic composition and development of the WL. A larger 

amount of tannins, extracted from higher additions of grape seeds, influenced the initial phenolic 

concentration and also the polymerisation reactions over time, which were enhanced in the presence 

of oxygen. Differences in the precipitate formed over time were also influenced by the initial amount 

of seeds used. This work highlights the importance of a better understanding of the grape cell wall 

composition and its evolution. This can lead to better control of the extraction of grape phenolic 

compounds and their ratios during the winemaking process, which can also influence the ageing of 

the wines. 
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OPSOMMING 

Fenoliese verbindings word beskou as belangrike bydraers tot die gehalte van rooiwyne. Daar is 

egter nog baie onduidelikheid oor hul rol in wyn as gevolg van hul kompleksiteit en voortdurende 

evolusie wat begin in vars druiwe, tydens alkoholiese fermentasie en tydens veroudering. In hierdie 

studie het ons verskillende faktore geëvalueer wat die kleur en fenoliese samestelling van Shiraz-

wyne kan beïnvloed. Al die werk is gedoen op dieselfde wingerd oor ŉ periode van drie oesseisoene. 

Hierdie studie omvat onderlinge verwante onderwerpe om 'n breër begrip te verkry van hoe sekere 

faktore wat die fenoliese samestelling in vars druiwe beïnvloed, fenoliese ekstraksie kan beïnvloed 

en die daaropvolgende wynveroudering.  

In die eerste deel van die studie is die kleur en fenoliese samestelling van wyne verander deur die 

druiwe op verskillende rypheidsvlakke te oes. Verskille wat waargeneem is in die fenoliese 

samestelling van jong rooiwyne is ook waargeneem tydens langdurige wynveroudering. Die 

aanvanklike fenoliese samestelling van jong wyne het die kleur- en fenoliese evolusie van die wyne 

tydens bottel veroudering beïnvloed. Die sensoriese profiele van die wyne is ook deur druif 

rypwording en veroudering beïnvloed. 

Hierdie werk het ook die impak van oesjaar, druifrypheid en alkoholiese fermentasie op die 

transformasie van die druifkorrel-selwandsamestelling geëvalueer. Al hierdie faktore het  die finale 

kleur en fenoliese samestelling van jong rooiwyne beïnvloed. Druif rypheid was relevant vir die 

studie, maar daar is aangetoon dat die seisoenale effek die grootste impak op die fenoliese inhoud 

en die selwandsamestelling van vars druiwe het. Tog het komposisionele veranderinge in die 

druifkorrel selwand, deels beïnvloed deur depektienase tydens druif rypwording en fermentasie, ook 

die vrystelling van druif fenole in die wyne beïnvloed. Daarbenewens was die ekstraksie van druif 

proantosianidiene met 'n langer polimeerlengte ook deels beïnvloed deur die afbraak van die 

selwand tydens fermentasie, hierdie verskynsel is verhoog in ryper druiwe.  

Die laaste deel van die studie het die invloed van verskillende antosianien/tannienverhoudings en 

oksidasie op die evolusie van die kleur, fenoliese samestelling en die presipitaat wat oor tyd in 'n 

wynagtige medium gevorm het, getoon. Die gebruik van gevorderde chromatografie en 

ongeteikende tegnieke het ons toegelaat om die impak van verskillende druiwepit toevoegings op 

die fenoliese samestelling en ontwikkeling van die wynagtige medium te meet. Die groter 

hoeveelheid tanniene, verkry uit die hoër toevoegings van druiwepitte, het die aanvanklike fenoliese 

konsentrasie sowel as die polimerisasie-reaksies oor tyd beïnvloed. Hierdie reaksies was ook 

verhoog in die teenwoordigheid van suurstof. Die verskille in die presipitaat wat oor tyd gevorm het, 

is beïnvloed deur die aanvanklike hoeveelhede sade wat gebruik is. Hierdie werk beklemtoon die 

belangrikheid van 'n beter begrip van die selwand se samestelling en evolusie, met die doel om die 
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ekstraksie van druif fenoliese verbindings en hul verhoudings beter te beheer tydens die wynmaak 

proses, wat ook wynveroudering ook kan beïnvloed. 
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Preface 
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be regarded as an individual entity and therefore some repetition between chapters may occur. 
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Investigating the relationship between the cell wall polysaccharide structure 

and grape phenolic compounds in Shiraz. Part I: vintage and ripening. 

Chapter 5 Research results 

Investigating the relationship between the cell wall polysaccharide structure 

and grape phenolic compounds in Shiraz. Part II: extractability during 

fermentation in wines made from different grape ripening levels. 

Chapter 6 Research results 

Impact of oxygen and anthocyanin/tannin ratios on the colour, phenolic and 

precipitate composition in a model wine solution. 

Chapter 7 General discussions and conclusions 
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1.1 INTRODUCTION 

 

“A bottle of wine contains more philosophy than all the books in the world” Louis Pasteur 

mentioned. All these secrets make wine the ideal metaphor of life. Any cultivar, white or red, in 

any wine world region, shows a distinctive and special character as the diversity of humanity. A 

wine’s life starts in the vineyard, growing new grapes every season, under different environmental 

and climatic circumstances just as parents raises their children based on their different life styles. 

Once mature, children tend to leave their homes to explore the world or pursue their education 

comparable to the moment when the harvested grapes get into the cellars. And from then 

onwards, a large number of chemical reactions and interactions take place during wine 

maceration and ageing, leading to the evolution of the product profile, as with social interactions 

and apprenticeships enriching a person’s life, before getting, for both cases, into the final market.  

Currently, South Africa is the 8th largest wine producer and as the rest of the global wine industry, 

is seeking to increase its offering of high-quality wines. After Cabernet Sauvignon, Shiraz is the 

second most planted red cultivar in South Africa. In the recent times, its importance in the South 

African wine industry has increased, being the most planted cultivar from 2000 to 2010 and now 

accounts for 10.4% of the total vineyard surface area in the country. In a worldwide context, South 

Africa is the 4th largest Shiraz grower (ShirazSA; Wines of South Africa).  

Grape and wine phenolic compounds are very important contributors to wine quality, especially 

in Shiraz wines. It is for this reason that a deeper understanding of the phenolic content and 

evolution during the entire winemaking process is essential. These molecules are a group of 

secondary metabolites, with a large diversity of structures commonly found in plants, plants 

derivatives and beverages (Monagas, et al., 2005; Cheynier, et al., 2006). Wine phenolics 

contribute not only to the colour, but also to the main sensorial and organoleptic properties of the 

wine throughout the winemaking process (Somers & Evans, 1974; Singleton, 1987; Brossaud, et 

al., 2000; Cheynier, et al., 2006; Ribéreau-Gayon, et al., 2006). The high reactivity of these 

phenolic compounds leads to a continuous evolution, with the formation of new compounds over 

time (Singleton & Trousdale, 1992; He, et al., 2012; Arapitsas, et al., 2014). 

The phenolic profile can differ between the fresh grapes and their corresponding wines, but 

certain positive correlations between grapes and wines have been found (Du Toit & Visagie, 

2012). A red wine’s chemical composition cannot be understood or predicted without a good 

knowledge of the grape’s phenolic composition, potential and factors affecting their extraction 

during alcoholic fermentation. Several studies have reported different phenolic profiles in grape 

cultivars (Ryan & Revilla, 2003; Pérez-Magariño & González-SanJosé, 2004; Jensen, et al., 2008; 

Río Segade, et al., 2009) and how changes in their concentrations are affected by berry 

development, grape ripening (Adams, 2006; Fournand, et al., 2006; Cagnasso, et al., 2011; 
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Bautista-Ortín, et al., 2012), different harvesting seasons (Boido, et al., 2006; Lorrain, et al., 2011) 

and different vineyard management practices (Zoecklein, et al., 2008; Gil-Muñoz, et al., 2009; 

Mota, et al., 2011). Additionally, different winemaking decisions and techniques, such as the time 

of harvest, cold soaking (Álvarez, et al., 2006; González-Neves, et al., 2015) or the use of specific 

enzymes (Ortega-Heras et al., 2012; Río-Segade et al., 2015; Gao, et al., 2016), can also play 

an important role in the extractability of these compounds into the wines (Sacchi, et al., 2005; 

Smith, et al., 2015). The final concentration and nature of these phenolic compounds extracted 

into the wines will influence their ageing potential (Pascual, et al., 2016; Picariello, et al., 2017).  

Complementary to this, understanding of the grape cell wall architecture is crucial in order to 

control the phenolic extractability during alcoholic fermentation. The biosynthesis and 

accumulation of phenolic compounds occurring in the cells of different grape berry tissue layers 

(Amrani Joutei, et al., 1994; Fournand, et al., 2006) is accompanied by a series of conformational 

changes in the grape’s cell walls. Thus, the release of phenolic compounds during alcoholic 

fermentation is related to the structural breakdown occurring in the grape cell walls (Gao et al., 

2016). However, there is a lack of information concerning the relationship between the grape 

phenolics and cell wall proteins and polysaccharides. To date, most research groups have 

approached studies on the grape berry cell walls from its monosaccharide composition as a 

fractionation product of the cell wall polysaccharides. However, the use of new techniques (Moller, 

et al., 2007) allows for the investigation of the cell wall composition and its evolution during grape 

ripeness and fermentation at a polymer level. It is a relevant topic for the wine industry as 

interactions between cell wall polymers and phenolics can take place not only in fresh grapes, but 

also in wines,  thereby affecting the phenolic stability (Riou, et al., 2002; Bindon, et al., 2016) and 

mouth-feel properties of the wines (Vidal, et al., 2004). The structural diversity and complexity of 

phenolic compounds and their continuous evolution in wine make research on this topic a difficult 

undertaking. For this reason, most work on wine phenolics has been carried out in young or 

shortly aged red wines. Little is known on how different phenolic proportions/compositions in 

young red wines evolve during wine ageing, and due to the complexity of the wine matrix, most 

of these studies were done in wine-like solutions (Timberlake & Bridle, 1977; Es-Safi, et al., 1999; 

He, et al., 2008). The role of oxygen during the ageing of red wine has also not been elucidated 

completely. A better understanding of factors affecting the phenolic extractability during alcoholic 

fermentation is therefore essential, not only for the young wines composition, but also to interpret 

their ageing potential, as the proportion of phenolic compounds can affect a wine’s colour and 

phenolic stability over time (Picariello, et al., 2017).  
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1.2 PROJECT AIMS 

 

The broad aims of this work were to obtain a better understanding of factors affecting the 

extraction and evolution of phenolics in Shiraz wine. The link between changes in the berry cell 

wall and the final phenolic composition in red wines will be explored. The present work also aims 

to investigate the colour and phenolic evolution during ageing as a consequence of naturally 

altered phenolic ratios in model wine and real Shiraz wines. The entire study was done using 

grapes from an experimental, well characterised, Vitis vinifera cv. L. Shiraz vineyard situated on 

the Welgevallen experimental farm of Stellenbosch University. All wines produced, during three 

harvesting seasons (2014, 2015 and 2016) were made from this vineyard. 

 

The specific aims of this project were:  

I. Evaluate the changes occurring over time in the phenolic and sensorial properties of 

Shiraz wines with different initial phenolic profiles made from grapes from different 

vineyard treatments.  

 

II. Explore the association between the structural and compositional changes in grape skin 

cell walls and the phenolic content during ripening. 

 

III. Explore the association between the structural and compositional changes in fermented 

grape pomace and the phenolic extractability occurring during alcoholic fermentation. 

 

IV. Determine the impact of oxygen and of three altered anthocyanin/tannin ratios on the 

colour and phenolic evolution and precipitate in a model wine system. 
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Chapter 2: Factors influencing the colour and phenolic 

composition in red wines. 

 

2. 1 INTRODUCTION 

 

Wine phenolics are considered important quality indicators, especially in red wine. A greater number 

of variables in the red winemaking process influences the wine’s matrix in red wines compared to 

that of white wines. Part of this complexity is due to a larger polyphenol content found in red wine. 

These non-odorant compounds play an essential role in the colour stabilization, the sensory 

properties and the ageing potential of red wines (Sáenz-Navajas et al., 2012; Casassa, 2017).  

Grape phenolics, with sugars, acids and aroma compounds will determine the berry quality and are 

determining factors in the final chemical profile of red wines. These groups are further subdivided 

according to their structure. This literature review aims to give an overview of the importance of the 

phenolic compounds from the grapes to the final wine product. It also shows the relevance of the 

grape phenolic potential to the wine phenolic composition and its ageing potential.    

 

2.2 PHENOLICS IN GRAPE AND WINE 

 

As illustrated in Figure 2.1, the berry structure consists mainly of the skin, pulp, and seeds. In a 

grape berry, phenolic compounds are found these three areas. The colour pigments, anthocyanins, 

are in most red cultivars exclusively found in the grape skin. This layer also contains other phenolic 

compounds, such as flavonols and tannins. The main phenolic compounds found in the pulp are 

phenolic acids. Lastly, the seeds are characterized by the presence of tannins (Prieur, et al., 1994; 

Harbertson, et al., 2002; Ribéreau-Gayon, et al., 2006). Phenolic compounds can be divided in two 

main groups: non-flavonoids and flavonoids. The former group are generally found in lower 

concentrations in grape and wines compared to flavonoids (Ribéreau-Gayon, et al., 2006). Non-

flavonoids are mainly represented by benzoic acids derivatives, cinnamic acids derivatives, and 

stilbenes. Some of these compounds, such as hydroxycinnamic acids, can contribute to the wine 

colour as copigments (Aleixandre-Tudó, et al., 2013; Bimpilas, et al., 2016). 
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Flavonoids are the major constituents of a red wine’s phenolic composition, contributing to a greater 

extend to the wine’s colour and flavour than non-flavonoids. This group of molecules is characterised 

by a C6-C3-C6 skeleton, two benzene rings (A and B) bound by a heterocyclic pyran ring (Cheynier, 

et al., 2006). Flavonoids can be subdivided in different subgroups according to the unsaturation of 

their pyran ring. The main classes are flavonols (Figure 2.1A), anthocyanins (Figure 2.1B), flavan-3-

ols (Figure 2.1C) and condensed tannins (also known as proanthocyanidins). The different 

compounds within the same group will be determined by the substitutions in their B ring. The rest of 

this chapter will only deal with flavonoids, due to their relevance to the present study.  

 

 

Figure 2.1. Schematic design of the berry structure and the main groups of phenolic compounds in red 

grapes adapted from literature (Monagas, et al., 2005; Adams, 2006; Castellarin, et al., 2012). 

 

2.2.1 Flavonols 

Flavonols are considered important contributors to the colour of red wines, enhancing anthocyanin 

extraction during the vinification process, as well as playing an important role in the copigmentation 

phenomenon (Boulton, 2001; Schwarz, et al., 2005). This group of compounds can also influence 

the bitterness and astringency of red wines (Sáenz-Navajas, et al., 2010; Gonzalo-Diago, et al., 

2014). 

The most common flavonols found in grapes and wines are kaempferol, quercetin, and myricetin 

(Figure 2.1A). In grapes berries, these compounds can only be found as their 3-glycosides or 

glucuronides derivatives, but they are also present in their aglycone form in red wines (Makris, et al., 

2006; Monagas, et al., 2006). Several studies have shown a clear relationship between flavonol 
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biosynthesis in grape berries and sunlight exposure, and thereby the UV radiation, of the grape 

bunches (Downey, et al., 2003a; Ristic, et al., 2006). Differences in the grape flavonol profile can be 

found between different grape cultivars (Makris, et al., 2006; Mattivi, et al., 2006; Río Segade, et al., 

2008, 2009). 

 

2.2.2 Anthocyanins 

Anthocyanins are considered to be one of the most important quality indicators in red wines, as they 

are the main source of the red colour observed in red grapes and wines (Bridle & Timberlake, 1997; 

Kennedy, et al., 2006; Barbagallo, et al., 2011). These pigments are accumulated in the grape skins, 

where they can be found as monomers or free anthocyanins, the exception being the few “teinturier” 

grape varieties, where anthocyanins are also present in the grape pulp (Adams, 2006). 

Chemically, the differences between the individual anthocyanin structures rely on the substitutions 

and the number of hydroxyl and groups methoxyl attached in the B ring. These different substitutions 

influence the colour and polarity of the anthocyanins. Thus, the polarity and the blue tones of the 

molecule increase with the number of hydroxyl groups. Contrary, an increase in methylation in the B 

ring leads to greater molecular stability and an increase in the red colour (He, et al., 2012a; Casassa, 

2017). The most common free anthocyanidins found in red wines are delphinidin, cyanidin, petunidin, 

peonidin and malvidin (Figure 2.1B) (Ribéreau-Gayon, et al., 2006; Bueno, et al., 2012; He, et al., 

2012a). These compounds are generally found in their glycoside forms, mainly as 3-O-

monoglucoside, with malvidin-3-O-glucoside often being the most abundant anthocyanin in red 

grape varieties (Castañeda-Ovando et al., 2009). Acylated monoglucoside anthocyanins can also 

be found in grapes and wines. This acylation can influence the anthocyanin colour and increase their 

stability in the wine matrix (Bakowska-Barczak, 2005). Acylated monoglucose anthocyanins are 

formed from esterification of the sugar moiety of the anthocyanin with different acids (acetic, p-

coumaric or caffeic acid) (Monagas, et al., 2005).   

The colour of these anthocyanins depends on several factors and wine conditions, such as pH, 

temperature and oxygen and sulphur dioxide levels (Torskangerpoll & Andersen, 2005). Changes in 

pH can alter the equilibrium between the different anthocyanin chemical forms. Thus, the 

anthocyanins can be found in four chemical states (Figure 2.2): flavylium cation (red colour), 

quinoidal base (blue to purple), carbinol pseudobase (colourless) and chalcone (pale yellow). The 

addition of bisulphite bleaches the flavylium cation to a colourless compound (Ribéreau-Gayon, et 

al., 2006). The colour in young red wines is mainly due to monomeric anthocyanins, as the polymeric 

forms only contribute to a small percentage of it (Somers & Evans, 1974, 1977). These monomeric 

pigments are chemically unstable and susceptible to degradation. Several studies have shown how 

the anthocyanin monomeric fraction, especially acylated forms, decreases as wine ages (Somers, 

1971; Mateus et al., 2001; Pérez-Magariño & González-San José, 2004; Versari, et al., 2007; 
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Versari, et al., 2007; He et al., 2012b; Zeng et al., 2016). In essence, the characteristic red-purple 

colour in young wines is mainly due to monomeric anthocyanins and the presence of different 

copigments (Davies & Mazza, 1993; Boulton, 2001).  

Copigmentation can be described as the association between anthocyanins with non-coloured 

compounds. These short-term intra and intermolecular interactions, between anthocyanin and 

copigments, enhance the wine’s colour intensity. Therefore, this phenomenon represents up to 50% 

of the wine colour after the alcoholic fermentation (Boulton, 2001). These interactions are disrupted 

over time, increasing the red tones (Somers & Evans, 1979). 

 

 

Figure 2.2. Different anthocyanins chemical forms in aqueous solution. Adapted from literature (Ribéreau-

Gayon, et al., 2006).   

 

As wine ages, the changes in colour are also influenced by the formation of more complex and stable 

anthocyanin-derivatives or pigments. As a consequence of this pigment evolution, the most 

important pigments in aged red wines are pyroanthocyanins and polymeric pigments (Brouillard & 

Dangles, 1994; Alcalde-Eon, et al., 2006; Boido, et al., 2006; Ribéreau-Gayon, et al., 2006; He, et 

al., 2012b). The former group can be the result of reactions between free anthocyanins or with yeast 

by-products and are responsible for the tawny colour in aged red wines (De Freitas & Mateus, 2011). 

Vitisins were the first pyroanthocyanins identified in wines and are biomarkers associated with the 

ageing process. Polymeric pigments are the result of the combination between anthocyanins with 

tannins by direct condensation or mediated by acetaldehyde (Monagas, et al., 2005). The 

polymerisation reactions between anthocyanins, flavan-3-ols and proanthocyanidins occur at 
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different rates in the presence of acetaldehyde (Dallas, et al., 1996). Polymeric pigments are more 

relevant to the mouth-feel of red wines as they are more soluble than proanthocyanidins (He, et al., 

2012b). 

The aforementioned pigments play an important role in the colour stabilization of red wine, as they 

are more resistant to the bleaching effects of SO2 and less sensitive to pH changes (García-Puente 

Rivas, et al., 2006; Avizcuri, et al., 2016). These pigments also contribute to shift the wine’s colour 

from the red-purple, characteristic of young red wines, to the red-orange nuances appreciated in 

aged wines (Somers, 1971; Mateus, et al., 2001; Cheynier, et al., 2006).  

During maturation of red wine, phenolic molecules continuously evolve to a greater degree of 

condensation. Several studies have investigated the synthesis and the formation of these new 

compounds over time, in both model wine solutions and wine. The recent development of new 

analytical tools has helped to reach a better understanding of these anthocyanin-derivatives 

compounds found in wines (Harbertson, et al., 2003; Willemse, et al., 2013, 2014). 

 

2.2.3 Flavan-3-ols and condensed tannins 

The term tannin includes a wide range of polyphenolic structures. These molecules play an essential 

role in the winemaking process as they influence the taste and mouth-feel of red wines to a large 

extent (Gawel, 1998; Santos-Buelga & Scalbert, 2000; Ma, et al., 2014), as well as colour 

stabilization and wine ageing potential (Versari, et al., 2007). Wine tannins can be classified into two 

groups: hydrolysable tannins and condensed tannins. The former group is not naturally found in 

grapes. These phenolic compounds, such as gallotannins and ellagitannins, are extracted into wines 

from the oak barrels (Cheynier, et al., 2006; Ribéreau-Gayon, et al., 2006; Chira, et al., 2015; Michel, 

et al., 2016). These hydrolysable tannins can easily be hydrolysed, thereby releasing gallic or ellagic 

acid in the wine during ageing (Ribéreau-Gayon, et al., 2006). These wood compounds and their 

derivatives can combine with tannin and anthocyanins, contributing to the colour stability. Vescalagin 

and castalagin are the two main ellagitannins found in oak (Ribéreau-Gayon, et al., 2006). 

Grape-derived flavan-3-ol and condensed tannins are the main source of phenolics contributing to 

the final wine tannin concentration. Numerous studies have investigated the differences in tannin 

content and extractability in several grape cultivars and their corresponding wines (Kovac, et al., 

1995; Harbertson, et al., 2008; Mattivi, et al., 2009). Grape and wine condensed tannins can be 

classified according to their mean degree of polymerisation (mDP): oligomers (2<mDP<10) and 

polymers (>10mDP). Proanthocyanidins (PAs) or condensed tannins (CTs) are the reaction product 

of polymerisation of different flavan-3-ol elementary units linked by interflavanic bonds (C-C) and 

occasionally C-O-C bonds (Santos-Buelga & Scalbert, 2000; Monagas, et al., 2005). The most 

common bonds, also known as B-type, are found between C4-C8 followed by C4-C6 (Monagas, et 

al., 2005). The flavan-3-ols can also be connected with a second bond (A-type), between the C-2 
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from the upper subunit and the hydroxyl groups from the C5 or C7 of the lower subunit (Figure 2.3). 

It was shown that the different links between the monomer units affect the bitterness and astringency 

perception of these compounds in model wine (Peleg, et al., 1999).  

 

Figure 2.3. Chemical structure of the different type of interflavanic bonds between flavan-3-ols and 

proanthocyanidin molecules.  

 

Grape skins are the major contributor to the wine phenolic compounds, but unlike anthocyanins, 

tannins are also extracted from the grape seeds (Meyer & Hernandez, 1970). Grape 

proanthocyanidins can be subdivided in two groups:  procyanidins and prodelphinidins (Cheynier, et 

al., 2006; Kennedy, et al., 2006; Mattivi, et al., 2009). Procyanidins are found in grape skins and 

seeds and consists of (+)-catechin and its diasteroisomer, (-)-epicatechin units (Souquet, et al., 

1996; Adams, 2006) (Figure 2.1C). Prodelphinidins are exclusively extracted from the berry skins 

and are composed of (-)-epigallocatechin and (-)-gallocatechin units (Prieur, et al., 1994; Santos-

Buelga & Scalbert, 2000; Aron & Kennedy, 2008; Kalili, et al., 2013). The major difference between 

skin and seed tannins are thus epigallocatechin subunits that have been reported to only occur in 

grape skins (Souquet, et al., 1996; Mattivi, et al., 2009). Furthermore, seed derived tannins are less 

polymerised than those extracted from the skins (Prieur, et al., 1994; Kennedy, et al., 2001). Thus, 

seed tannins are characterised by a higher amount of monomer flavan-3-ols, especially epicatechin-

gallate (Downey, et al., 2003a).  

Once extracted from the grapes, flavan-3-ol and low molecular weight polymeric tannins, similar to 

monomeric anthocyanins, are highly reactive. Tannin molecules start a chemical modification from 

grape crushing leading to the formation of more stable molecules throughout the entire winemaking 

process (Smith, et al., 2015). Oxygen plays an important role in tannin polymerisation, with other 

phenolic compounds such as anthocyanin, or between CT creating a larger polymer. CT are more 
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stable molecules, but become less soluble as their mDP increases, leading to possible precipitation 

of these phenolic compounds. The mDP and the nature of these compounds, i.e. higher amount 

galloylation units, can influence the taste and mouth-feel properties of a wine (Chira, et al., 2009). 

Accurate phenolic measurements are essential during the winemaking process. Current routine 

analyses can give an estimation of the total amount of proanthocyanidins in solution. However, the 

complexity and wide range of phenolics, especially regarding different tannin structures, makes the 

analyses and further studies of these compounds complex, especially in wine media. The phenolic 

profile from grape to young and aged wines might differ dramatically, due to the reactivity of phenolic 

compounds. Current analytical techniques do not allow for the differentiation of polymeric phenolic 

compounds to a large extend, or the interactions with other wine components, such as the soluble 

cell wall components extracted into red wines during alcoholic fermentation. Recent developments 

in analytical chemistry can lead to a deeper understanding of the proanthocyanidin fraction of red 

wines (Willemse, et al., 2013; Terblanche, 2017). However, less advanced, more accessible 

techniques are required for the general wine industry (Aleixandre-Tudó, et al., 2017).  

 

2.3 FACTORS AFFECTING GRAPE BERRY PHENOLIC COMPOSITION 

 

2.3.1 Grape composition during ripening 

Numerous structural and compositional changes occur during grape berry development. The 

biosynthesis and accumulation of different phenolic compounds as well as the reactions between 

these, will determine the grape phenolic profile and influence that of the corresponding wines. 

Numerous studies have been carried out investigating the impact that grape ripening has on this 

grape phenolic accumulation and extractability, but results are contradictory. Some of these studies 

have shown how the accumulation of phenolic compounds starts a few weeks pre-véraison, 

generally reaching maximum concentrations at véraison, followed by a decrease towards 

commercial harvest (Kennedy et al., 2000; Downey et al., 2003b; Bautista-Ortín et al., 2012). 

Contrary to these results, some other authors have also reported a constant amount of grape 

polyphenols or even an increase in their concentration during ripening (Harbertson, et al., 2002; 

Canals, et al., 2005; Bordiga, et al., 2011; Bindon, et al., 2014a). As an example, anthocyanin and 

anthocyanin-derivatives accumulate in grape skins as the sugar levels increase in the fruit, showing 

a slight decrease in some cases before harvest (Ryan & Revilla, 2003; Fournand, et al., 2006; Río 

Segade, et al., 2008). These differences might be explained by the effects that the grape cultivar, 

and the vintage, have on the grape phenolic composition and concentration (Ricardo-Da-Silva, et 

al., 1992; Obreque-Slier, et al., 2010; Gil-Muñoz, et al., 2011).  
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Since the nature of phenolic compounds differs among the grape berry structure, the ripeness has 

a different effect on grape skins and seeds composition and extractability. These changes and 

interactions between phenolic compounds and other berry components might modulate their 

extractability (Bindon & Kennedy, 2011; Bindon, et al., 2014b). For example, at lower ripening 

stages, skin tannin extractability has been shown to be low, increasing during grape maturation 

(Llaudy, et al., 2008). Hanlin (2009) reported that skin tannin concentration was the highest at fruit 

set, then followed by a gradual decrease until véraison, remaining relatively constant for a few weeks 

post-véraison (Adams, 2006; Bordiga, et al., 2011). However, the increase in the cell wall porosity, 

occurring during ripening, can also create a more encapsulation, enhancing retention of the tannin 

fraction by the cell wall material (Bindon, et al., 2014b). Conversely, grape seed tannin extractability 

decreases towards harvest (Kennedy, et al., 2000; Peyrot Des Gachons & Kennedy, 2003; Llaudy, 

et al., 2008). Grape seeds show structural modifications induced by an intensive lignification of the 

seeds as the berry ripens, making the inner integument of the seed less accessible (Bautista-Ortín, 

et al., 2012). Thus, the seed tannin extractability declines over time. Kennedy, et al., (2000) 

suggested that the browning observed on the seed coat might represent the oxidation of tannin 

structures during ripening.  

Published results are unclear regarding the tannin complexity, concentrations of monomers such as 

catechin decrease, contrary to the epicatechin or epigallocatechin concentrations (Bindon & 

Kennedy, 2011; Bordiga, et al., 2011), but no clear trend has been established for larger polymer 

structures. Results on the grape mDP at different ripening levels have also been contradictory, 

remaining relatively constant during grape ripening or fluctuating from pre-véraison towards harvest 

(Downey et al., 2003b; Chira et al., 2009; Obreque-Slier et al., 2010; Bindon & Kennedy, 2011; 

Bautista-Ortín et al., 2012). 

 

2.3.2 Impact of different vineyard management practices 

The fruit composition is influenced by climate and geographical conditions, as well as the vineyard 

management and viticultural practices. Thus, these factors may influence the phenolic composition 

of the fruit and ultimately the wine’s colour, phenolic composition and sensory attributes (Downey, 

et al., 2006; Pérez-Lamela, et al., 2007). Different studies have shown the manner in which vineyard 

factors, e.g. sunlight exposure, temperature or plant water status, can modify the vine’s microclimate 

thereby affecting berry growth and composition (Downey, et al., 2006; Ristic, et al., 2006; Teixeira, 

et al., 2013). In the last few decades new canopy management practices have permitted the 

manipulation of vine microclimate, modifying the yield and the leaf area exposed to sunlight (Gregan, 

et al., 2012). These training systems are an alternative to older, conventional training systems and 

based on the modification from the initial canopy. The leaves and bunch shade exposure will be 

different, due to the different grapevine canopy architecture and sun exposure, which will in turn 

influence grape composition (Haselgrove, et al., 2000). Several studies have compared the influence 
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of different training systems on the vine growth and yield (Reynolds & Heuvel, 2009), as well as the 

grape and wine phenolic composition, and sensory attributes for both white and red wines (Wolf, et 

al., 2003; Pérez-Lamela, et al., 2007; Zoecklein, et al., 2008; Mota, et al., 2011; Kyraleou, et al., 

2015). For instance, prior to a canopy management strategy, a study of the climate parameters and 

soil characteristics of the vineyard should be done to determine how efficiently the training system 

will be to address the producer’s requirements. Reduced vigour areas will lead to a more open 

canopy with a higher sunlight exposure, while a greater vigour will produce a more dense and closed 

canopy. Thus, vine vigour will also have an important impact on the berry development and on 

numerous of its phenolic compounds. Cortell et al., (2007) showed how the amount of pigmented 

polymers increases in berries from low vigour zones. Higher levels of colour, anthocyanins, and 

bisulphite-resistant pigments were found in wines made from grapes harvested from low vigour areas 

(Schneider, et al., 1990; Cortell, et al., 2007a,b; Song, et al., 2014). In addition, the interactive effects 

of some of these vineyard variables and ripening have also been evaluated in terms of grape and 

wine phenolic composition (Van Noordwyk, 2012; De Beer, 2015). Differences in the colour and 

phenolic composition of Shiraz wines induced by the above-mentioned factors seem to remain over 

time during wine ageing (De Beer et al., 2017). These investigations have been conducted in the 

same vineyard as the present study.  

 

2.4 FACTORS AFFECTING THE CELL WALL STRUCTURE AND COMPOSITION AND 
ITS ROLE IN PHENOLIC EXTRACTABILITY  

 

As previously described, many different vineyard management practices and ripening affects the 

vineyard nutritional status and thus the berry development and consequently the grape chemical 

composition. In addition, phenolic extractability is directly linked to the structure and composition of 

the grape cell walls. Therefore, all the conformational and compositional changes occurring in the 

grape pomace, from the vineyard through the fermentation, affect the final colour and phenolic 

concentration in the wines. Thus, the following section will discuss the changes occurred in the grape 

cell wall structure and composition during the winemaking process.  

 

2.4.1 Grape skin cell wall structure 

Grape berry skin cell walls consist of a framework of proteins and polysaccharides, with the latter 

consisting of cellulose, hemicellulose, and a pectin-rich fraction (Lecas & Brillouet, 1994). The 

general plant cell wall structure is divided into three different layers: the middle lamella, the primary, 

and the secondary cell wall (Raven, et al., 1992). The middle lamella is mainly composed of pectic 

compounds and structural proteins, connecting the different cells, whereas the primary and the 

secondary cell walls are mostly formed by groups of polysaccharides and small proteins. Differences 
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in the cell wall components between the layers, aside from the cell size and distribution, will be 

crucial to understand phenolic extractability (Vidal, et al., 2001; Doco, et al., 2003). The grape cell 

wall architecture differs in different tissue levels, with larger cells having thinner cell walls occurring 

in the grape pulp compared to the cell walls from the grape skin, which are thicker and more compact 

(refer to the illustration of the cell size in the berry skin and pulp in Figure 2.1) (Ortega-Regules, et 

al., 2008). In addition, the amount of cell wall material (CWM) is higher in the skin cells. This cell wall 

morphology and amount of CWM vary between different grape cultivars (Ortega-Regules, et al., 

2008).  

Grape phenolic compounds can be found in the vacuolar soup, as free forms, but also bound to 

proteins and polysaccharides (Amrani Joutei, et al., 1994). Different studies have shown the binding 

capacity between phenolic compounds, especially tannins, and the CWM (Geny, et al., 2003; Le 

Bourvellec, et al., 2004; Bindon, et al., 2010). Therefore, the CWM is a complex framework whose 

consequent modifications during ripening and the winemaking process will affect the porosity and 

the firmness of the grape berry structure (Vicens, et al., 2009; Hanlin, et al., 2010; Bindon, et al., 

2012; Bindon, et al., 2014b).  

To date, due to their complexity, limited information is available regarding the grape cell wall 

polysaccharide structure and composition. However, the recent use of new techniques has improved 

the understanding of the grape berry cell wall structure and their implications on the winemaking 

process (Gao, et al., 2015, 2016; Zietsman, et al., 2015). Therefore, Gao et al. (2016) proposed a 

new model for the grape berry cell walls (Figure 2.4), as well as different tissue and cell wall polymer 

interactions. 

 

 

Figure 2.4. Hypothetical model describing the grape berry cell wall structure based on their polysaccharide 

fraction (Gao, 2016). 
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2.4.2 Cell wall evolution during ripening 

As mentioned before, grapes undergo several reactions which modify the phenolic composition 

during berry development. Moreover, as the berry ripens, cell wall components evolve as a 

consequence of several hydrolytic and enzymatic reactions, leading to a de-esterification and 

depolymerisation of the polysaccharides (Nunan, et al., 1998; Huang, et al., 2005; Vicens, et al., 

2009; Zietsman, et al., 2015). 

In the past decades, several studies have focused on understanding this process known as berry 

softening. From véraison, fruit softening is linked to a degradation and solubilisation of the cell wall 

polysaccharides and an increase in the protein content (Nunan et al., 1998; Huang et al., 2005; 

Ortega-Regules, et al., 2008; Goulao et al., 2012). The loss of polysaccharides such as xyloglucan 

affects the berry integrity. These structural changes lead to a breakdown of the cell wall framework 

increasing the skin porosity and its selectivity and thus leading to greater exposure of the cell wall 

surface and its active binding sites (Bindon, et al., 2012; Bindon, et al., 2014b; Castro-López, et al., 

2016). The high affinity of proanthocyanidins for the CWM is well known, specifically the pectin-rich 

fraction, by the formation of new cross-linked bridges and hydrophobic interactions that might reduce 

phenolic extractability during ripening (Cadot et al., 2006; Fournand et al., 2006; Bindon et al., 2010, 

2016; Hernández-Hierro et al., 2014; Ruiz-Garcia et al., 2014; Springer et al., 2016). The post-

véraison protein increase is possibly not only related to a loss of the cell wall extensibility, but also 

to a proanthocyanidin retention. However, some studies have found an increase in proanthocyanidin 

content close to commercial harvest (Bindon, et al., 2013; Bindon, et al., 2014a; Quijada-Morín, et 

al., 2015). Anthocyanin extractability has also been shown to increase during ripening, also being 

influenced by the changes occurring  in the cell walls (Hernández-Hierro, et al., 2012, 2014).  

The conformational changes occurring in the grape seed during ripening are not less important. As 

the berry ripens, the seed turns browner and its coat becomes more impermeable, thereby becoming 

less extractable. This browning might be related to the oxidation and polymerisation of phenolics, 

which can react with other phenolics, as well as proteins or amino acids (Downey, et al., 2003a; 

Cadot, et al., 2006). 

In short, grape phenolic extractability during wine making can be influenced by the grape phenolic 

concentration and by their interactions with the insoluble CWM, with other phenolics or self-

interactions (Castro-López, et al., 2016). However, the cell wall porosity can also restrict the 

extraction of phenolics (Le Bourvellec, et al., 2012; Bindon, et al., 2014b). Nevertheless, the phenolic 

retention by the CWM, such as the grape tannins, is influenced by the proanthocyanidin 

concentration, molecular mass (Renard, et al., 2001; Le Bourvellec, et al., 2004; Bindon, et al., 2013; 

Bindon, et al., 2014b; Bautista-Ortín, et al., 2016a) and nature (Quijada-Morín et al., 2015). 

Furthermore, the pore size can therefore restrict the penetration of larger polymers, limiting their 

encapsulation and hydrophobic interactions with the CWM, thereby facilitating their extraction into 

the wine (Hanlin, et al., 2010). A recent study has described a possible competition between 
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anthocyanins and proanthocyanidins for the active binding in the CWM (Bautista-Ortín, et al., 2016b), 

confirming the speculative role of grape anthocyanins in the tannin extraction (Kilmister, et al., 2014). 

In this study (Bautista-Ortín et al., 2016b), a lower tannin adsorption was seen when anthocyanins 

were added into a solution containing CWM and tannins. The increase in the amount of 

proanthocyanidins remaining in solution might be due to competition between the different phenolics 

for adsorption with CWM, but could also be due to certain reactions between polyphenols, such as 

direct condensation. Due to their relevance in the winemaking process, further investigations into 

the biological and chemical interactions between grape phenolics and the CWM is necessary. 

 

 2.4.3 Relevance to winemaking 

The grape skin acts not only as a barrier, to protect berry integrity throughout its development, but 

also influence the phenolic extraction through grape cell walls, affecting the compounds’ extraction 

from the berry to the wine during maceration (Hanlin, et al., 2010). The understanding of the cell wall 

composition and structural changes during ripening, at harvest and during the winemaking process 

is very important, especially in red wines, as these conformational changes ensure the extraction of 

desirable compounds in the wines. Several studies have shown how the phenolic content of red 

wines is affected by temperature and different winemaking techniques such as cold maceration, skin 

contact time or the addition of commercial preparations (Zimman, et al., 2002; Sacchi, et al., 2005; 

Favre, et al., 2014; Lerno, et al., 2015; Smith, et al., 2015). In the past few years various research 

groups have focused on how various winemaking procedures and particularly the addition of different 

maceration enzymes, influence the cell wall degradation and the subsequent wine chemical 

composition (Ducasse, et al., 2010; Apolinar-Valiente, et al., 2015; Gao, et al., 2015; Río Segade, et 

al., 2015; Zietsman, et al., 2015). 

The addition of commercial enzymes helps to accomplish further cell wall de-pectination and 

enhances the release of compounds such as sugars, organic acids or phenolic compounds into the 

wine (Romero-Cascales, et al., 2005; Sacchi, et al., 2005; Gao, et al., 2015). Zietsman et al. (2015) 

assessed the impact of commercial enzymes on grape polysaccharides at two ripening levels of 

Pinotage grapes: ripe (23ºBrix) and overripe grapes (27ºBrix). The authors describe a greater effect 

of the commercial enzymes on the ripe berries, as their skins were naturally less depolymerised. 

However, little is known about the interactions between the CWM and specific phenolic compounds 

and therefore the way the enzymes preparations facilitate their release into wine. Albeit influenced 

by the CWM, the tissue location might also be a determinant factor in extracting different polyphenols 

(Quijada-Morín, et al., 2015). 

After crushing, soluble cell wall polysaccharides stay in suspension in the grape must and the grape 

tannins might get bound to the polysaccharides from different tissues or to the yeast cell walls (Gil 

Cortiella & Peña-Neira, 2017; Watrelot, et al., 2017). Moreover, this soluble pectin content will 
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increase as the cell wall deconstruction occurs during the alcoholic fermentation (Guadalupe & 

Ayestarán, 2007; Gao, et al., 2015). The high affinity between certain phenolic compounds and CWM 

can lead to a retention phenomenon known as adsorption (Ruiz-Garcia et al., 2014; Bindon et al., 

2016; Castro-López et al., 2016). Therefore, the presence of certain polysaccharides in wine can 

enhance or inhibit tannin aggregation (Poncet-Legrand, et al., 2007). This adsorption is favoured by 

the molecular mass, as well as the galloylation units, of the wine proanthocyanidins (Bautista-Ortín, 

et al., 2016a). Recent studies have been published regarding the adsorption-desorption phenomena. 

The additions of commercial enzymes might not only affect the phenolics extraction from grape to 

wine, but also lowers the adsorption of the extracted proanthocyanidins with the suspended CWM 

(Bautista-Ortín, et al., 2016a; Castro-López, et al., 2016). However, the type of interactions occurring 

at different stages of the alcoholic fermentations remain uncertain. 

All things considered, the wine proteins, polysaccharides, and polyphenol content play an essential 

role in red winemaking. They are important not only because of their impact on the sensory properties 

of the wine, by reducing astringency (Vidal,  et al., 2004a,b; McRae & Kennedy, 2011; Quijada-Morín 

et al., 2014), but also on the colour stability and the subsequent ageing potential. Likewise, these 

factors must to be taken into account when decisions like fining or clarification are taken in a cellar.  

 

2.5 EVOLUTION OF PHENOLICS COMPOUNDS DURING RED WINE VINIFICATION 
AND AGEING 

 

2.5.1 Reactions involving anthocyanins and effect on colour  

As previously mentioned, elucidating the mechanisms driving anthocyanins degradation and the 

formation of colour pigments during the winemaking process is essential. The contribution of these 

compounds to the colour of the wines is highly important, as the primary wine colour perception plays 

an important role in the quality of a red wine.  

Grape and wine anthocyanin levels can vary depending on the cultivar (Romero-Cascales, et al., 

2005; Río Segade, et al., 2009), the grape growing conditions, and the winemaking practices 

(Sacchi, et al., 2005). Grape pigments become more extractable during ripening. Ethanol content 

leads to a higher anthocyanin and proanthocyanidin extraction, contrary to its negative impact on 

copigmentation (Hermosín-Gutiérrez, 2003), and thus a greater alcohol potential in wines made from 

riper berries might explain the increase in colour extraction (Canals, et al., 2005; Casassa, et al., 

2009). 

Anthocyanin concentrations reach a maximum relatively early during alcoholic fermentation, but 

decrease towards the end of it (Ribéreau-Gayon, et al., 2006). After this, a decrease of the 

monomeric forms occurs over time, especially the acylated forms. By the end of the alcoholic 
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fermentation around 25% of the monomeric forms have already been polymerised, and this 

increases to around 40% after a year (Monagas et al. 2005; He et al. 2012a; He et al. 2012 b).  This 

decrease in monomeric anthocyanin concentrations is due to the formation of new and more stable 

pigments by chemical interactions other phenolic compounds, by direct condensation or with the 

formation of “bridges” mediated by acetaldehyde (Cheynier, et al., 2006; He, et al., 2012b). These 

compounds show a better resistance to changes in pH and the bleaching effects of SO2 and thus, a 

greater colour stability is achieved (García-Puente Rivas, et al., 2006).    

Some studies show how around the 50-70% of colour components in an aged wine is due to 

anthocyanins derived pigments (Somers, 1971; Dipalmo, et al., 2016). Oxygen plays an important 

role in the reactions involved in the formation of these new polymers as chemical oxidative processes 

take place in the wines over time. The role of oxygen will be furtherly discussed at a later stage. 

Additionally, other anthocyanin derived pigments can be formed by condensation reactions between 

anthocyanins and substrates in the wines such as vinylphenols (pinotin), vinylflavonols or pyruvic 

acid (vitisins). Thus, the formation of some of these polymer forms, such as the polymeric pigments, 

is influenced by the wine proanthocyanidin concentration and composition (Timberlake & Bridle, 

1977; Bindon, et al., 2014c). However, wine pyroanthocyanins also include pigments such as vitisins 

A or B, formed by reactions occurring between free anthocyanins or with other yeast by-products at 

different stages during ageing (Alcalde-Eon, et al., 2006; He, et al., 2012b). The acidic conditions, 

oxygen and temperature can influence the occurrence of these reactions. Thus, wine pH and the 

presence of oxygen can favour the reactions mediated by the acetaldehyde. However, cooler 

temperatures can retard these reactions, as well as limit the formation of excessively larger polymers 

(He, et al., 2012b).  

With the aim of extracting a higher anthocyanin content , a large number of studies have focused on 

wine colour during winemaking, using either pre-fermentative, fermentative, or post-fermentative 

extraction techniques (González-Neves, et al., 2015). The most common practices investigated 

include the use of different maceration times (Zimman, et al., 2002; Marais, 2003a; Casassa & 

Harbertson, 2014), temperature regimes, increasing the pomace/juice ratio (Marais, 2003b; Bautista-

Ortín et al., 2007) or addition of specific products to improve the phenolic extraction such as 

pectolytic enzymes or oenological tannins (Sacchi, et al., 2005; Soto-Vazquez, et al., 2010; Casassa 

& Harbertson, 2014). Some of these techniques also target a greater tannin extraction as the 

proanthocyanidin:anthocyanin ratio also contribute to the formation rate of polymeric pigments over 

time (Timberlake & Bridle, 1977; Bindon, et al., 2014c; Picariello, et al., 2017). 

Cold soaking or cold maceration is a pre-fermentation technique widely used in the wine industry to 

increase anthocyanin concentration when applied to red must. Nevertheless, cold maceration does 

not favour the extraction of proanthocyanidins and thus, does not improve the formation of polymeric 

pigments (Sacchi, et al., 2005; Soto-Vazquez, et al., 2010; Mihnea, et al., 2016). Some studies have 

found little impact of the cold maceration on the final anthocyanin concentration in the wine (Parenti, 
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et al., 2004). However, the addition of pectolytic enzymes during cold soaking seems to positively 

correlate with anthocyanin, copigments and polymeric pigments extraction (Ortega-Heras et al., 

2012).  

In the same way, yeast selection can also be a determining factor in the wine colour (Morata, et al., 

2016). It is well known that anthocyanins can react with certain yeast cell wall components and 

precipitate, while some yeast might increase acetaldehyde production and thus polymer formation 

(Hayasaka, et al., 2007). 

In general, longer skin contact times during fermentation lead to increased anthocyanin and 

polymeric pigments concentrations after a year (Auw, et al., 1996; Gómez-Plaza & Cano-López, 

2011). Contrary to this, other studies have shown a loss of anthocyanin content during extended 

maceration, but an increase on the solubility and extractability of tannins (Scudamore-Smith, et al., 

1990; Casassa, et al., 2009) , as the seed tannins are extracted even after fermentation (Llaudy, et 

al., 2008). However, the affinity between certain phenolic compounds and the CWM might also lead 

to a rebinding effect during extended skin contact (Bindon, et al., 2010; Hanlin, et al., 2010). 

Colour changes can also occur during malolactic fermentation (Burns & Osborne, 2013), while 

certain ageing conditions such as temperature, SO2, and O2 levels or closure can also have an 

influence on the formation of these polymeric forms and colour stability (Alcalde-Eon, et al., 2006; 

García-Puente Rivas, et al., 2006; Hopfer, et al., 2013; Arapitsas, et al., 2014). The general trend 

found during ageing involves a decrease in the free and SO2-bound pigments with an increase in the 

polymeric forms, especially large polymeric pigments (LPP) (Avizcuri, et al., 2016). Maturation at 

cooler temperatures can retard the formation of new polymeric pigments (He et al. 2012b). Araptisas 

et al. (2014) compared the colour evolution of different commercial wines in cellar and “house” 

conditions, taking into account differences between room temperature and humidity. The change 

from purple to brick colour as the wine age is directly linked with the formation of pigments over time. 

After 2 years, the pyroanthocyanins pigments represent around 50% of the colour in red wines 

(Dipalmo, et al., 2016). However, the concentration of polymeric pigments has been found to 

decrease over time in wines aged for a long time (McRae, et al., 2012), which is probably due to 

precipitation.   

 

2.5.2 Reactions involving tannins 

As described above (section 2.2.3), wine tannins with different structures, as well as mean degree 

of polymerisation (mDP), can be extracted from the grape skin and grape seeds. Studies have shown 

the different extraction of these compounds in different solvent mixtures leading to a better 

understanding of their extraction and contribution of skin and seed tannins to the final wine 

(González-Manzano, et al., 2004; Mattivi, et al., 2009; Downey & Hanlin, 2010; Bindon, et al., 2014b; 
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Bosso, et al., 2016). Apart from the grape tannins, hydrolysable tannins can be extracted from the 

oak barrels during maturation, further influencing the chemical and sensory properties of the wine. 

Contrary to anthocyanins that are extracted during the early stages of the fermentation, tannin levels 

increase linearly during the course of fermentation (Ribéreau-Gayon, et al., 2006; Kennedy, 2008). 

However, skin tannins follow a sigmoidal extraction reaching a plateau (Peyrot Des Gachons & 

Kennedy, 2003; Cerpa-Calderón & Kennedy, 2008), while the seed tannins show a linear extraction 

(Hernández-Jiménez, et al., 2012) as the seed coat needs hydration to become extractable (Cadot, 

et al., 2006). A recent study by Yacco et al., (2016) shows an increase in the tannin size during 

maceration, reaching a plateau and decreasing towards the end of the fermentation. An increase in 

(-)-epicatechin-3-O-gallate concentrations, with a decrease in (-)-epigallocatechin concentrations 

with the maceration time show the importance of seed phenolics as the fermentation progresses. As 

a result, the authors hypothesised not only about the type or concentration of the tannins being 

extracted during fermentation, but also their reactivity. The interactions and precipitation of these 

compounds with certain yeast cell walls or other grape compounds might explain the smaller wine 

tannin size at the end of fermentation (Mekoue Nguela, et al., 2016). 

From crushing, grape tannins are chemically modified and undergo continual evolution over time 

leading to the formation of new and more stable molecules (Smith, et al., 2015). Reactions such as 

polymerisation, condensation with anthocyanins, or the formation of complexes between tannins and 

proteins or polysaccharides depends on the type of tannins and their concentration in the wine. The 

ageing potential of a wine seems to be influenced by the anthocyanin/tannin ratio (Singleton & 

Trousdale, 1992; Ribéreau-Gayon, et al., 2006; Pascual, et al., 2016; Picariello, et al., 2017), but 

this needs further clarification. 

Several winemaking techniques aim to control the final wine tannin concentration (Kovac, et al., 

1990; Canals, et al., 2005; Sacchi, et al., 2005; Smith, et al., 2015). An increase in wine tannin 

content may favour the formation of pigmented tannins and therefore increase wine colour stability. 

However, due to their role in bitter taste and astringent mouth-feel, the winemaker might be 

interested in limiting tannin extraction to avoid an excessive bitterness or astringency in the final 

wines. As in the case of anthocyanins, the use of different maceration times, temperature, the yeast 

selection (Bautista-Ortín, et al., 2007) or the additions of enzymes (Fernández, et al., 2015) or 

exogenous tannins (Harbertson, et al., 2012; Versari, et al., 2013) may play an important role in the 

tannin extractability (Favre, et al., 2014). As an example, increasing the maceration time has 

increased the final wine tannin content, as the seed derived tannins are known to become more 

extractable (Busse-Valverde, et al., 2011; Hernández-Jiménez, et al., 2012; Casassa, 2017). 

However, some studies have shown a limited effect (Álvarez, et al., 2006) and even a decline in the 

tannin levels with longer maceration, probably due to adsorption or precipitation (Yacco, et al., 2016). 
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On the other hand, different techniques are applied to reduce the amount of tannins, especially grape 

seed tannins, by adsorption, precipitation, or sedimentation. The use of fining agents that will bind 

the solubilised tannins (Maury, et al., 2001; Poncet-Legrand, et al., 2007; Oberholster, et al., 2013) 

or specific yeast strains or yeast lees with a high affinity for the tannins (Rodrigues, et al., 2013) has 

been reported. Early seed removal during fermentation has also been shown to reduce the bitterness 

in the final wine (Canals, et al., 2008; Lee, et al., 2008; Guaita, et al., 2017).  

Different wine ageing conditions such as temperature, humidity, and type of barrel will also influence 

the wine composition (Hopfer, et al., 2013; Arapitsas, et al., 2014, 2016; Bimpilas, et al., 2015). Short 

term  storage leads to the formation of larger polymers and to an increase in the proanthocyanidins 

concentrations (García-Falcón, et al., 2007). However, Chira et al., (2012) analysed the tannin 

content and mDP of several vintages of Bordeaux wine. The authors concluded that the oldest wines, 

from the late 1970s, had a lower amount of tannins and a mDP of 1.8 while the youngest, (2002 to 

2005) showed values of mDP between 5.5 and 7.6. Changes occurring in the tannin structure during 

ageing might also change their solubility, leading to precipitation (Smith, et al., 2015; Casassa, 

2017). 

The formation of new tannins structures by reactions such as condensation, mediated by 

acetaldehydes, polymerisation, or oxidation can thus take place during wine ageing (Monagas, et 

al., 2005; Cheynier, et al., 2006). A number of these reactions depends on the presence of oxygen 

during barrel and bottle ageing, which will be discussed in the following section.  

 

2.6 WINE OXIDATION: EFFECT ON PHENOLICS 

 

The entire winemaking process, and especially wine maturation, is influenced by a large number of 

chemical reactions mediated by oxygen. Both, enzymatic and chemical reactions are mediated by 

the presence of oxygen in the juice and wine respectively. At lower doses, the impact of oxygen can 

be beneficial, increasing colour stability and improving wine taste and structure (Waterhouse & 

Laurie, 2006; Gambuti, et al., 2013). Thus, in the last decade, the controlled addition of oxygen and 

its impact on the colour and phenolic composition of red wines has been under investigation.   

When dissolved in wine, oxygen can react with wine polyphenols, but also with other substrates such 

as ascorbic acid, ethanol, or tartaric acid (Danilewicz, 2003; Du Toit, et al., 2006a). As a 

consequence, a series of oxidation secondary products such as quinones, acetaldehyde, and 

ketoacids are formed (Waterhouse & Laurie, 2006). Primarily, the oxidation of polyphenols results in 

the formation of quinones and H2O2 catalysed by metals such as iron and copper in wine (Figure 

2.5).  Subsequently, these quinones react with other molecules, especially with electron-rich A-ring 

flavonols forming new bonds between two phenolic compounds (Danilewicz, 2003, 2007). The 
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formation of a larger tannin polymer occurs when both nucleophiles reacting with each other are 

already part of condensed tannins (Atanasova, et al., 2002; Waterhouse & Laurie, 2006; Gómez-

Plaza & Cano-López, 2011). Recent studies have reported the identification of new oxidation 

biomarkers (Arapitsas, et al., 2012). For the first time the hypothetical reaction of a gallic acid quinone 

with the A-ring of a flavonol has been recently shown (Mouls & Fulcrand, 2015). The addition of SO2 

acts by removing the H2O2 and recycling the quinones back to its phenol form (Du Toit, 2006). The 

sulphur dioxide concentration and its forms found in wine, free or bound, are also important for the 

efficiency of inhibiting wine oxidation (Tao, et al., 2007; Carrascon, et al., 2015; Ferreira, et al., 2015; 

Danilewicz, 2016; Waterhouse, et al., 2016). 

 

 

Figure 2.5. Oxidation of (+)-catechin in wine (Danilewicz, 2003). 

 

Equally important is the role played by acetaldehyde in the formation of new oxidation derived 

pigments as described by Timberlake & Bridle (1976) and later on shown in red wine by Fulcrand et 

al., (1996). Formed as an oxidation by-product from ethanol, the acetaldehyde reacts first with the 

flavanol at position C6 or C8, and can combine with other flavan-3-ols, anthocyanins or procyanidins 

at position C8, thereby creating ethyl-linked products (Figure 2.6) (Timberlake & Bridle, 1976). 

Additionally, it can participate in the formation of vitisins by direct reactions with malvidin-3-glucoside 

(Bakker, et al., 1997) or new ethyl-bridges between anthocyanins (Atanasova, et al., 2002; 

Waterhouse & Laurie, 2006). The high alcohol content in wines allows for the formation of 

acetaldehyde as an oxidation by-product, even in the presence of SO2 (Dallas, et al., 1996) and thus, 

the formation of these new compounds lead to greater colour stability. The use of sulphur dioxide as 

an antioxidant will also be relevant to the final wine composition over time (Danilewicz, 2007, 2016; 

Waterhouse, et al., 2016). Theoretically 4 mg/L of SO2 react with 1 mg/L of O2 (Du Toit, et al., 2006a) 

in wine. However, an excessive concentration of SO2 has a suppressive effect on the formation of 

polymeric pigments (Tao, et al., 2007). Some of these derived pigments are known to be more 

resistant to the bleaching effect of SO2. Ketoacids, especially pyruvic acid, are also involved in the 

formation of vitisins and pyroanthocyanins (Waterhouse & Laurie, 2006).  
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Figure 2.6. Condensation products mediated by the presence of acetaldehyde. Tannin-ethyl-tannin and 

tannin-ethyl-anthocyanin molecules.  

 

Barrel ageing comes at a high cost to the winemaking industry. As a consequence of this, a lot of 

research has been done on the impact of cheaper alternatives to barrel ageing. Methods such as 

wine ageing on yeast lees or the use of microoxygenation (Gómez-Plaza & Cano-López, 2011) at 

different stages of the winemaking have evaluated the impact on these methods on wine phenolics 

(Durner, et al., 2010; McRae, et al., 2015; Waterhouse, et al., 2016). However, oxygen intake should 

be controlled to avoid an excessive production of acetaldehyde and a subsequent over-

polymerisation and precipitation (Castellari, et al., 2000; Du Toit, et al., 2006a; Ribéreau-Gayon, et 

al., 2006), as well as the production of characteristic off-flavours and aromas related to oxidation. 

Microoxygenation has thus been widely studied by different authors trying to mimic the effect of 

barrel ageing (Atanasova, et al., 2002; Castellari, et al., 2004; Sánchez-Iglesias, et al., 2009; 

Geldenhuys, et al., 2012), but Cano-López et al., (2010) was the first group to simultaneously 

compare both processes, microoxygenation and barrel ageing. The authors observed similar results 

after 3 months but dissimilarities after 6 months, proving the role of the wood phenolics extracted 

into the wine. Oxygen dosages used in microoxygenation were also often based on the amount of 

oxygen previously thought to diffuse into wine, which has been shown to be  different with recent 

research (Del Alamo-Sanza & Nevares, 2014). Different studies have shown a clear impact of 

microoxygenation on the wine colour and phenolic composition (Quaglieri, et al., 2017). Thus, 

microoxygenation modifies the wine chromatic profile by a decrease in the wine monomeric 

anthocyanin, favouring the formation of polymeric pigments and ethyl-bridged compounds (Tao, et 

al., 2007; Cano-López, et al., 2008; Cejudo-Bastante, et al., 2011; Gambuti, et al., 2017). These 

polymers, more resistant to the bleaching effect from the SO2, contribute to the colour stability. 

Additionally, this technique also promotes the formation of larger proanthocyanidin polymers (Du 
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Toit, et al., 2006b; Anli & Cavuldak, 2012). In a similar way the hydrolysable tannins extracted from 

the oak are also affected by oxidative processes and they should be considered as an active part of 

the final wine chemical and sensory properties (Perez-Prieto, et al., 2003; Michel, et al., 2016).  

The effect of oxygen depends on the wine phenolic concentration and composition, thereby 

influencing the evolution of the wine’s colour and phenolic composition (Jorgensen, et al., 2004; Du 

Toit, et al., 2006a; Jordão, et al., 2006). In essence, skin procyanidins seem to degrade faster than 

the phenolics extracted from the seeds (Jorgensen, et al., 2004; McRae, et al., 2015) in the presence 

of oxygen. Furthermore, the ratio between wine anthocyanins and tannins also influence oxidative 

polymerisation reactions over time (Picariello, et al., 2017; Carrascón, et al., 2018).  

In addition, oxygen transfer rate and timing are also determining factors in the wine oxidative 

process. Singleton (1987) proposed that a slower oxidation was better as it permits a better 

polymerisation whereas a faster oxidation lead to the conversion of all the phenols into quinones, 

leading to an oxidised wine. Similarly, the loss of free SO2, flavan-3-ol monomers and the conversion 

rate of anthocyanins in new derived pigments was highly influenced by the oxygen levels (Wirth, et 

al., 2010). Similar results were found by other research groups (Castellari, et al., 2000; Arapitsas, et 

al., 2012; Geldenhuys, et al., 2012; Gambuti, et al., 2013, 2017). Moreover, an early oxygen addition 

to the wine might lead to lower tannin levels in the final wine (McRae, et al., 2015). This could be 

due to the premature formation of new tannin derived pigments, thereby limiting the tannin 

polymerisation (Arapitsas, et al., 2012). Another possibility might be that more oxidised tannins are 

less susceptible to depolymerisation, becoming less soluble and thus precipitating. Stronger 

interaction can be formed between oxidised tannins in the grape solids (McRae, et al., 2015). A lower 

oxygen effect of microoxygenation was observed when applied after malolactic fermentation 

(Durner, et al., 2010; Gómez-Plaza & Cano-López, 2011; Arapitsas, et al., 2012).  

 

2.7 SENSORY ROLE OF PHENOLICS IN WINE 

 

All the variables and conditions (the vineyard management, winemaking practices and oxygen 

exposure or storage conditions) previously described can affect the evolution of a wine and its 

corresponding sensorial perception (Pérez-Magariño & González-San José, 2006; Chira et al., 2009; 

Gambuti et al., 2013; Arapitsas et al., 2014; Sáenz-Navajas et al., 2014; Smith et al., 2015).  

Wine quality is a complex term to define as it is equally influenced by several intrinsic (Verdú Jover 

et al., 2004; Sáenz-Navajas, et al., 2013) and extrinsic factors (Sáenz-Navajas, et al., 2013; Lick, et 

al., 2017). Phenolic compounds together with other wine compounds greatly contribute to the 

formation of a specific wine matrix which can be linked to wine quality with it ultimately being 
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accepted or rejected by the consumer (Sáenz-Navajas,  et al., 2012; Baker & Ross, 2014; Sáenz-

Navajas et al., 2015; Watrelot et al., 2016).  

As previously described, the formation of new polymeric phenolic structures in red wine leads to 

better colour stability, important to the limpidity and the primary visual perception of a wine (Sarni-

Manchado et al., 1996; He et al., 2012b; Alcalde-Eon et al., 2014). Additionally, a wide range of 

polyphenols contribute to the taste and mouth-feel of red wines, with bitterness and astringency 

being two of the main attributes. Differences in phenolics concentration, as well as in their chemical 

structure, mDP and galloylation have an impact on the intensity of astringency/bitterness (Peleg, et 

al., 1999; Cliff, et al., 2007; Ma, et al., 2014). 

Bitterness is a gustatory sense strongly associated with the interaction between lower molecular 

weight polyphenols and the specific bitter taste receptors located at the back of the tongue (Gawel, 

1998; Peleg et al., 1999; Hufnagel & Hofmann, 2008; Gonzalo-Diago et al., 2014; Ma et al., 2014). 

The bitter sensation seems to be negatively correlated with the mDP (Arnold & Noble, 1978; Pascual, 

et al., 2016). Flavan-3-ols are major contributors to the bitterness in red wines, especially (-)-

epicatechin, which is more bitter and has a longer duration than (+)-catechin (Rossi & Singleton, 

1966; Kallithraka & Bakker, 1997; Peleg, et al., 1999). In essence, phenolic compounds extracted 

from the grape seeds, characterised by a lower mDP and higher percentage of galloylation units, 

are perceived as more bitter compared to skin or stem procyanidins. 

On the other hand, astringency is a mouthfeel sensation based on the interaction between the 

different wine proanthocyanidins with the salivary proteins (Cala, et al., 2010; Dinnella, et al., 2010; 

McRae & Kennedy, 2011; Ferrer-Gallego, et al., 2015). It is generally described with terms such as 

“puckering” or “dryness” but it also contributes to the “fullness” and texture of the wine. Contrarily to 

bitterness, astringency is positively correlated with the mDP and molecular weight (Peleg, et al., 

1999; Hufnagel & Hofmann, 2008; Chira, et al., 2009) and thus primarily driven by the presence of 

polymeric proanthocyanidins in the wine (Gawel, 1998; Sáenz-Navajas, et al., 2012). 

The perception of astringency can change over time as it is generally accepted that wines become 

softer during ageing (McRae, et al., 2012). The decrease in astringency perception of a wine can be 

associated with a decline in tannin concentration over time, due to the fining effect some soluble 

proteins or polysaccharides have on phenolics in wine, polymerisation reactions and the subsequent 

precipitation, or by depolymerisation (Cheynier, et al., 2006; McRae & Kennedy, 2011). The 

association with anthocyanins or newly derived pigments can also be associated with a “softening” 

of the wine (Brossaud, et al., 2000; Ribéreau-Gayon, et al., 2006; Oberholster, et al., 2009).  

In recent years, some research groups have focused their work on analysing the contribution of 

specific phenolic compounds to bitterness and astringency in wine (Ferrer-Gallego et al., 2010, 2014; 

Sáenz-Navajas et al., 2010; Sáenz-Navajas, et al., 2012; Gonzalo-Diago et al., 2014; Sáenz-Navajas 

et al., 2017) and possible synergistic effects (Sáenz-Navajas, et al., 2012). In the latest chemo-
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sensory study by Sáenz-Navajas et al., (2017) wines were fractionated and subsequently sensorialy 

evaluated. The results show the surprising impact of oligomeric anthocyanins to the bitterness, 

dryness and persistency of the wine. Additionally, the authors showed different reactivity with the 

salivary proteins from flavonoid fractions with similar mDP, agreeing with the hypotheses of 

intramolecular bonding changes that reduce the structural flexibility of the polymer to interact with 

the salivary proteins (McRae & Kennedy, 2011). 

Furthermore the temperature, pH, and ethanol content of a wine also play a significant role in the 

wine taste and mouth-feel perception (Villamor, et al., 2013). A decrease in pH is generally 

associated with an increase between the tannin-protein interactions (Kallithraka et al., 1997; Vidal, 

et al., 2004; Fontoin et al., 2008), thereby increasing the astringency. The ethanol content is 

negatively correlated with astringency, as it can modify phenolic solubility leading to tannin 

precipitation, and also contributing to an increase in  the bitter taste (Fontoin, et al., 2008; McRae & 

Kennedy, 2011). The perception of astringency is thought to decrease over the course of time, partly 

due to loss of the insoluble polymers forming during ageing (Gambuti, et al., 2013). However, 

according to our knowledge, there is only one published study describing the evolution of wine’s 

bitterness and astringency perception during storage (Sun, et al., 2011).   

2.8. CONCLUSION 

 

The importance of grape phenolics in the colour and phenolic composition of their corresponding 

wines is well known. The relevance of the grape berry cell wall structure and composition in the 

extractability of these compounds from the grapes into the wines is also beginning to be understood. 

However, limited information is available about the interactions between phenolic compounds and 

grape polysaccharides and structural proteins. A better understanding on these interactions, in fresh 

grapes and fermented pomace, can generate valuable information for the wine industry with regards 

to the release of specific phenolic compounds. The initial phenolic composition, in young wines, will 

probably also influence subsequent reactions and the phenolic stability over time. The role that 

oxygen plays in this development also needs further attention. However, due to the complexity of 

polymeric tannin and anthocyanin derived moieties, the development of novel analytical techniques 

is needed to carry out further studies.  
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South Africa. 

 

ABSTRACT 

 

The aim of the research was to evaluate the colour and phenolic evolution of Shiraz red wines made 

from the same vineyard, but with different initial phenolic profiles. Several variables were initially 

evaluated in the first vintage, but grape ripeness was shown to be the most determining factor on 

the taste and mouth-feel of the wines. In the second vintage wines made from four different ripening 

levels were aged up to 18 months and periodically analysed (every six months) during this time. The 

results showed how the nature and concentration of phenolic compounds in young wines can 

influence the wine evolution during ageing. The colour and phenolic composition between wines 

made from grapes from the highest sugar level and the rest of the treatments were similar after 

completing the alcoholic fermentation (AF). However, the differences between the wines, especially 

in the polymeric fraction, became more noticeable in the course of time. From the results, a larger 

amount of polymeric forms was found in the wines made from the ripest berries, and subsequently 

a larger formation of polymeric pigments. These differences in the wines’ chemistry also influenced 

in the taste and mouth-feel evaluation of the wines. 

 

3.1. INTRODUCTION 

 

The use of different winemaking procedures (Marais, 2003; Smith, et al., 2015), as well as the 

environmental factors and different vineyard management techniques (Wolf, et al., 2003), are well 

known parameters that can directly or indirectly influence the colour, taste and mouth-feel of a red 

wine.  

The colour in young red wine is mainly due to free anthocyanins, extracted from the grape skins. 

However, as the wine ages, the monomeric forms decrease as a consequence of the formation of 

new pigmented polymeric compounds (He, et al., 2012a,b). Subsequently, the increase in these 

polymeric forms leads to greater wine colour stability. Initially, the formation of these new compounds 

can be explained by different reactions involving self-association or by the interaction between 
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anthocyanins and tannins (Somers, 1971; Singleton & Trousdale, 1992; Remy, et al., 2000; 

Monagas, et al., 2005). Hence, tannins also contribute to the wine colour and are extracted not only 

from the grape skins as is the case with anthocyanins, but also from the grape seeds (Prieur, et al., 

1994; Hernández-Jiménez, et al., 2012). Wine tannins will be directly influenced by the amount of 

grape skin and seed tannins, as these differ in nature and polymer length, affecting their taste and 

mouth-feel properties (Brossaud, et al., 2000). The initial grape phenolic composition is therefore of 

great importance to the wine producer. Different grape phenolic profiles and content between 

cultivars has been extensively reported by several research groups (Ryan & Revilla, 2003; Pérez-

Magariño & González-SanJosé, 2004; Pérez-Lamela, et al., 2007; Obreque-Slier, et al., 2013). In 

addition to this varietal effect, the soil characteristics and different growing conditions, such as 

irrigation techniques or canopy management, can influence the vine nutrient status, thereby affecting 

the vine development and thus, the grape and its wine phenolic composition. As a relevant example 

to the present study, altering the canopy has been shown to change the yield and the bunch light 

exposure, thereby affecting berry development and the subsequent phenolic accumulation (García-

Falcón, et al., 2007; Reynolds & Heuvel, 2009; Río Segade, et al., 2009). Similarly, the vine vigour 

has been shown to influence the pigment content in grapes and its corresponding wines (Cortell, et 

al., 2007a,b).  

Moreover, the harvest date and the sugar level are both crucial factors as the different groups of 

phenolic compounds are synthetized and accumulated at different rates during the berry ripening 

(Kennedy, et al., 2000, 2001; Adams, 2006; Fournand, et al., 2006). Likewise, the compositional and 

structural changes occurring in the grape cell walls will modulate the phenolic extractability (Nunan, 

et al., 1998; Bindon & Kennedy, 2011; Cagnasso, et al., 2011). Hence, many studies have analysed 

the impact of ripening on the phenolic composition of grapes, skins and seeds (Kennedy, et al., 2000; 

Harbertson, et al., 2002; Canals, et al., 2005; Obreque-Slier, et al., 2010; Bordiga, et al., 2011; Gil-

Muñoz, et al., 2011; Asproudi, et al., 2015; Quijada-Morín, et al., 2016), and in young wines (Cadot, 

et al., 2012; Bindon, et al., 2014a; Pace, et al., 2014). Similarly, it has been broadly discussed how 

the affinity of certain phenolic compounds with the cell wall material (CWM) can affect the phenolic 

extractability, the concentration of phenolic compounds extracted into the wine can therefore 

decrease during ripening (Fournand, et al., 2006; Bindon, et al., 2010, 2016; Hernández-Hierro, et 

al., 2014). However, some other studies have found an increase in proanthocyanidins and other 

phenolics close to commercial harvest (Bindon, et al., 2013; Quijada-Morín, et al., 2015). These 

changes, altogether, will influence the initial phenolic profile and the subsequent chemistry and 

sensorial evolution of the wines. 

From crushing, a large number of biological interactions and chemical reactions leads to a 

completely different phenolic profile from grapes to wines. From a chemical perspective, several 

direct or mediated condensation reactions between the different groups of phenolics are occurring 

over time (Timberlake & Bridle, 1976; Wang, et al., 2003; Monagas, et al., 2005). Wines experience 
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a general decrease in colour mainly as a consequence of the decrease in monomeric anthocyanins 

levels and the formation of new polymeric anthocyanin derivatives (Monagas, et al., 2006). In the 

course of time, a decrease in flavan-3-ol is also observed (Gómez-Gallego, et al., 2013) as new and 

larger proanthocyanidins are formed (He, et al., 2008). However, this polymer length of the 

proanthocyanidin concentration in wines can also experience a decrease over time (McRae, et al., 

2012). Whether differences in colour and phenolic composition observed between different young 

red wines are decreasing (Pérez-Magariño & González-SanJosé, 2004) or persisting over time (De 

Beer, et al., 2017) requires attention. Duration and storage conditions also have a very important 

impact on the colour and phenolic evolution of wine (Arapitsas, et al., 2014).  

There are different studies evaluating the impact of different vineyard treatments (Mota, et al., 2011; 

Van Noordwyk, 2012; Song, et al., 2014; De Beer, et al., 2017) and ripening (Cadot, et al., 2012; 

Bindon, et al., 2014a) on the colour and phenolic composition, as well as their influence on the 

sensory properties, of grapes and young red wines. However, limited information is available 

regarding the phenolic and sensorial evolution of red wines over time made from different training 

systems, especially from various ripeness degrees, but from the same vineyard (Pérez-Magariño & 

González-SanJosé, 2004; Llaudy, et al., 2006, 2008).  

In the present study, the main goal was to assess the colour, phenolic and sensorial evolution of 

small-scale red wines made from the same vineyard, but with different initial grape phenolic levels. 

Our target was to highlight the importance of different phenolic profiles in young wines and how these 

evolve during wine aging. For that, a sensorial descriptive analysis was also carried during two 

consecutive seasons, 2014 and 2015, as well as phenolic profiles followed over time. The first 

harvest season, 2014, was used as an exploratory study to evaluate the effect of certain vineyard 

related factors on these. From the results obtained in 2014, the following harvest season (2015) 

focused on the impact of grape ripeness on the grape and wine phenolic content and their 

subsequent evolution over time. These results generate new data to supplement the little information 

available in literature on the phenolic and senorial evolution of red wines made from different initial 

phenolic levels.  

 

3.2. MATERIALS AND METHODS 

 

3.2.1. Vineyard characteristics 

The present study was conducted during two consecutive harvest seasons (2014 and 2015) at 

Welgevallen experimental farm of the Department of Viticulture and Oenology of Stellenbosch 

University (GPS coordinates: 33°56'25.0"S 18°51'56.4"E), a well-characterised vineyard with a 

North-South row direction. 
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As mentioned, the first season was an exploratory study, thus, in 2014, Shiraz grapes (SH9C clone) 

on a 101-14Mgt rootstock were harvested from two different training systems, Vertical Shoot 

Positioning (VPS) and Smart-Dyson (SD). Additionally, the study included two other vineyard 

parameters, vine vigour and grape ripening, which might affect the grape phenolic composition at 

harvest and therefore the wine chemistry. In 2014, as described in Table 3.1, two different training 

systems were thus studied, (VSP Figure 3.1A) and SD (Figure 3.1B), in two different vigour areas. 

The vine vigour was visually assesed dividing the vineyard block in two zones: high vigour (HV) and 

low vigour (LV). Part of the VSP training system Shiraz had previously been converted (during the 

2011/2012 growing season) into SD training system. Each of the four treatments were harvested at 

two different grape maturity stages (ripe -R- and overripe -OR). A similar amount of vines were 

randomly harvested per row within the vineyard block for each training system, vigour and ripening.  

In 2015 we decided to focuss on more ripening levels and due to logitical limitations decided to only 

use grapes harvested at four grape ripening levels from the VSP training system (low vigour area) 

(Table 3.1).  

 

Table 3.1. Experimental layout. In 2014, grapes were harvested from two different training system, vigour 

zones and grape ripening levels. The following season (2015), grapes were harvested at four ripening levels. 

R= Ripe, OR= over ripe. 

Treatments 2014 2015 

Training system VSP , SD VSP 

Vigour HV , LV LV 

Ripening R, OR  21°Brix, 23°Brix, 24°Brix & 25°Brix 

 

 

Figure 3.1. Training systems used for the study in 2014 season. A) Vertical Shoot Positioning (VSP). B) Smart-

Dyson (SD). 
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3.2.2. Winemaking procedures 

All the small-scale wines were made in triplicate following the standard winemaking procedure at the 

experimental cellar of the Department of Viticulture and Oenology at Stellenbosch University. In 

order to reduce vineyard variability, grape bunches from the same vineyard treatment were mixed in 

the cellar and subsequently separated into 40 kg triplicates used per fermentation. Prior to yeast 

incoculation, 30 mg/L SO2 were added to the destemmed grapes and the total acidity was adjusted 

to 6.0 g/L using tartaric acid (natural L-(+)-tartaric). All musts were co-inoculated with 0.3 g/L of 

Saccharomyces cerevisiae D21 (Lallemand) and 24 hours later, once alcoholic fermentation (AF) 

had started, with 0.01 g/L Oenococcus oeni VP41 (Lallemand). All the alcoholic fermentations were 

carried out in plastic buckets at 25ºC. Punch-downs were manually performed three times per day 

and 0.3 g/L of DAP (diammonium phosphate) was only added two days after the beginning of the 

fermentation. The progression of fermentation was monitored by using a Ballingmeter and fermented 

until dryness (residual sugar <4 g/L). All grape skins were pressed in a basket press after 

fermentation, the press and free run wine combined and the wines stored in steel canisters at 20ºC 

until completion of the malolactic fermentation, monitored with the use of WineScan FT 120 (FOSS 

Analytical, Hillerød, Denmark). Once MLF was completed, the wines were racked off and 60 mg/L 

of SO2 added. All the wines underwent subsequent cold stabilization for three weeks at -4ºC before 

the total SO2 was adjusted to 60 mg/L and bottled in green 750 mL bottles under screw tops. The 

bottled wines were stored at 15ºC until chemical analysis and sensory evaluation were performed.  

 

3.2.3. Colour and phenolic measurements 

3.2.3.1. Spectrophotometric analysis 

Grape phenolics were extracted following the method described by Bindon, et al., (2014b). Briefly, 

50 g of fresh berries were softly crushed by hand in order to simulate the phenolic extraction 

occurring during alcoholic fermentation better than the traditional hard extractions methods (Bindon 

et al. 2014b). After 40 hours shaking in a hydroalcoholic solution (15% ethanol, 10g/L of tartaric acid 

and a pH of 3.4) at 30ºC, the extract was used to measure the grape phenolic composition. This 

same extraction procedure was applied to every treatment during both seasons, 2014 and 2015. 

Grape tannin content was then detemined from the grape extracts by the methyl cellulose 

precipitation (MCP) method (Sarneckis, et al., 2006) and the results were expressed (in catechin 

equivalents) in mg/g of berry. Grape anthocyanin and total phenolics (TP) levels were also measured 

from the grape extracts (Somers & Evans, 1974).  

Different colour and phenolic parameters - colour density (CD), modified colour density (MCD), 

copigment content, SO2 resistant pigments, total red pigments (TRP) and total phenolics (TP) - were 

measured by spectrophotometric analysis using Boulton indexes on the wines (Somers & Evans, 

1974; Boulton, 2001).  
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Wine samples were initially analysed right before bottling, once the malolactic fermentation and cold 

stabilisation were completed and this was considered the time 0 (T0) of bottling storage. Afterwards 

the wines were analysed once every 6 months. A new bottle was opened for every set of analysis. 

In 2014, wines samples were analysed up to 24 months in bottle for the colour and phenolic content. 

Sensorial evaluation of the wines was performed after 6 and 12 months of storage.In  2015, the wine 

samples were analysed up to 18 months of storage and a a new sampling stage was added, after 

the completion of alcoholic fermentation (AF). In 2015, the sensory evaluation of the wines was also 

performed after 6 and 12 months of storage.  

 

3.2.3.2. HPLC analysis 

Monomeric and polymeric phenolic compounds were individually quantified from time 0 every 6 

months (from T0 up to 24 months in 2014, and from AF to 18 months in 2015) using HPLC based 

on the methods by (Peng, et al., 2001, 2002). Grape phenolic extraction was performed in 70 % 

methanol solution using 50 homogenised berries (for each fermentation repeat) using an IKA Ultra-

Turrax T 18b (IKA Labortechnik, Staufen, Germany) homogeniser. The grape homogenates were 

extracted for 45 minutes. Once centrifuged (5 min at 8000rpm), the grape extract was injected into 

the HPLC.  

The separation was carried out on a polystyrene/divinylbenzene reverse-phase chromatographic 

column (PLRP-S. 150 cm x 4.6 mm, Agilent). The mobile phases used were a 1.5% v/v 

orthophosphoric acid solution in de-ionised water (mobile phase A) and an acetonitrile solution 

(mobile phase B). The injection volume was 20µL.  The linear gradient used for the two phases was 

the following: from 0 min to 73 min (solution A: 95% and B: 5%), from 73 min to 78 min (A: 75.2% 

and B: 24.8%); and staying constant at A: 50% and B: 50%for the remainder of the run. The flow 

rate was 1mL/min at a constant temperature of 35°C. The methods allows for the quantification at 

four different wavelengths, 280 nm for flavan-3-ol and polymeric phenols, 320 nm for 

hydroxycinnamic acids, at 360 nm for flavonols and 520 nm for the anthocyanins and pigments. To 

simplify the large set of data, certain individual compounds were grouped namely the sum of total 

hydroxycinnamic acids, total flavonols and the total glucosylated-anthocyanins, total acetylated-

anthocyanins and total coumaroylated-anthocyanins. Wine samples were centrifuged for 5 min at 

8000 rpm and the supernatant was injected. 

 

3.2.4. Sensory analysis 

All wines from both seasons, 2014 and 2015, were evaluated over time in order to assess the aging 

effect from a sensory perspective. The wines were subjected to a Descriptive Analysis (DA) after 6 

and 12 months storage in bottles. For every sensory evaluation, all wines were previously screened 
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by wine experts from the Department of Viticulture and Oenology at Stellenbosch University. To 

reduce the number of samples, experts selected two out of the biological triplicates to be evaluated 

by a sensory panel. The DA method is used to describe quantitatively the perceived sensory 

differences between different samples (Lawless & Heymann, 2010). Sensory evaluations were 

performed by a group of panellists (9 to 12) who were trained on red wine sensory aroma attributes, 

as well as taste and mouth-feel attributes. We tried to keep most members of the panel in all four 

tastings to keep consistency assessing the sensory changes over time. A wide list of aroma 

descriptors was generated by the panellists during the first training session. A second and third 

session were meant to standardise the panellists using fresh products, as well as standards from Le 

nez du vin (Jean Lenoir, Provence, France), to reach a consensus for the final descriptors list. The 

list of the different attributes and standards used (for 2014 and 2015 wines) is shown in the Appendix 

Table 3.1 and 3.2. From the third session, the panellist were trained and familiarised with the actual 

wines. Training of the panel required periods between four to five weeks in a 2 hour session three 

times a week. 

Wine samples were served in standard ISO dark wine tasting glasses, with each glass containing 

25 mL of wine. The panellist rated the most relevant aroma attributes on a line scale from 0 to 100. 

All taste and mouth-feel attributes were rated in a 0 to 100 line scale. Each sample was coded with 

a 3-digit random code and served in a complete randomised order (Lawless & Heymann, 2010). 

Panellists performed the analysis in individual booths, with each booth being fitted with a data 

collecting system (Compusense® five, Version 5.2, Compusense Inc., Guelph, Ontario, Canada). 

The testing area was light- and temperature-controlled (21°C). 

 

3.2.5. Statistical analysis 

All analyses were carried out using Statistica 13.2 (TIBCO Statistica software, Palo Alto, CA, USA). 

Mixed model repeated measures ANOVAs were used and Fisher's least significant difference (LSD) 

corrections were used for post-hoc analyses. Significant differences were judged on a 5% 

significance level (p≤0.05). PanelCheck software (V.1.4.0, Nofima Mat, Norway) was used to weigh 

the panellists’ performance for the wine sensory evaluation and to generate STATIS biplots based 

on covariance. The distribution of certain chemical and sensory datasets were analysed with 

Principal Component Analysis (PCA) using SIMCA 14.1 software (Sartorium Stedim Biotech - 

Malmö, Sweden). 

3.3. RESULTS AND DISCUSSION 

 

The main purpose of the present study was to evaluate the colour and phenolic changes occurring 

during ageing in red wines made from grapes with different initial phenolic profiles harvested from 
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the same vineyard. We will thus not endeavour to explain differences in grape phenolic content from 

viticulture observations/data. As previously mentioned, 2014 was an exploratory study to investigate 

the evolution of different red wines with a different initial phenolic content. Firstly, the results from 

the exploratory study will be described, followed by a more detailed and descriptive analysis of the 

work performed during 2015, where more ripening levels were investigated.  

 

3.3.1. Phenolic and sensorial evolution of 2014 wines 

3.3.1.1. Grape chemical composition 2014 

The grape chemical composition was clearly affected by the different vineyard treatments and 

ripening, as shown in Tables 3.2 and 3.3. When looking individually at the different grape phenolic 

parameters, the training system did not have a major effect on the grape extracts’ total phenolic 

content (TP), whereas it significantly influenced the tannin and anthocyanin concentration (Appendix 

Table 3.3). Thus, the grape tannin concentration was significantly higher in VSP-HV treatments when 

compared to the equivalent SD treatments. On the other hand, the grape anthocyanin concentration 

was highly influenced by the grape ripening and the training system, but not the vigour (Appendix 

Table 3.3). Therefore, at the earliest ripening stage (R), VSP grapes showed a higher anthocyanin 

concentration (for both HV and LV) when compared to the SD grapes (Table 3.2). However, whilst 

this concentration remained constant during ripening for SD grapes, it significantly decreased in VSP 

grapes, reducing the training system differences found at R (Table 3.2). The vigour thus seemed to 

play a greater role in the TP content. However, the differences in TP in terms of the vigour were only 

significant for VSP at R, and in the case of SD grapes at the OR stage (Table 3.2). Contrary to the 

findings described by Cortell et al., (2007a), the vigour did not influence the anthocyanin 

concentration in the grape extracts. Regarding the impact of the grape ripening on the grape tannins, 

significant variation was only seen in the case of VSP-HV (tannin concentration decreased). These 

findings agree with several authors who suggested that grape tannins remained constant 

(Harbertson, et al., 2002) or either decrease during ripening (Downey, et al., 2003; Adams, 2006; 

Hanlin & Downey, 2009). However, literature is currently contradictory, not only on the grape tannins 

accumulation patterns, but also their extractability during ripening. The grape softening occurring in 

the grape skins during ripening seems to be a determining factor affecting the phenolic extractability 

(Bindon & Kennedy, 2011; Bindon, et al., 2014c). Nevertheless, in the interest of our exploratory 

study, the different vineyard treatments led to grapes with differences in their phenolic profiles. 

Additionally, in Table 3.3, no significant differences were found in the amount of polymeric phenols 

between the ripening stages in most of the treatments (only increased significantly in VSP-LV). As 

seen in the spectrophotometric results, the vigour played a role in the anthocyanin and polymeric 

pigment concentration. Firstly, the concentration of total acetylated anthocyanins was significantly 

higher in VSP-LV treatments when compared to VSP-HV treatments. These differences were not 
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found for SD treatments. Regarding the total glucosylated and coumaroylated anthocyanins, the 

VSP-LV treatment only showed a greater concentration compared to the VSP-HV treatment at the 

OR stage (Table 3.3). Here again, no significant differences were found for SD treatments for these 

compounds. On the other hand, the polymeric pigments content showed an increasing trend during 

grape ripeness (only significant in VSP-LV treatment). The polymeric phenol concentration was 

higher in the grapes from LV vines (for both training systems) compared to those from HV (although 

only significant for the last stage of ripening). 

 

3.3.1.2. Colour and phenolic evolution of 2014 wines  

All the wine treatments were firstly analysed before bottling (T0). Thus, once bottled, the wines were 

analysed every 6 months up to 24 months of storage. Firstly, the wine phenolics (tannins, total red 

pigments -TRP- and total phenolics –TP) were analysed at T0. We evaluated the impact of the 

different treatments on the amount of tannins, TRP and TP, as these were also analysed in the grape 

extract. Therefore, the results displayed in Table 3.4 and 3.5 show an impact from the vineyard 

treatments and ripeness on most of the phenolic analyses performed at bottling. However, from 

univariate test of significance the role of the different variables was different in grapes and wines, 

especially for the tannin concentration (Appendix Table 3.3 and 3.4). Contrary to fresh grapes, the 

wine tannins were strongly influenced by the ripening level, increasing in concentration as the wines 

were made from riper berries, except for SD-HV treatment (Table 3.4). Additionally, training system 

and vigour also influenced the tannin content. Whereas no significant differences were found 

between VSP and SD for the wines made from grapes harvested from the HV area, SD wines 

showed a greater tannin content in LV when compared to VSP wines. Regarding the wines’ TRP, 

and similar to the results in grape extracts, training system and ripening played a relevant role in 

their amount. As in fresh grapes, VSP wines showed a greater amount of TRP (not significant for LV 

wines at R stage). Furthermore, the TRP decreased in concentration during ripening with the 

exception of VSP-LV wines. Nevertheless, the impact of the vine vigour was perceived in young 

wines, with a greater TRP content in wines made from LV vines (except for VSP-R) in agreement 

with the findings from Cortell et al.(2007b). In general, LV wines had a significantly higher amount of 

TP when compared to HV wines, except for VSP (HV and LV) at the earlier ripening stage (R).  
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Table 3.2. Grape soluble solids (ºBrix), pH and TA and phenolic composition (tannin, anthocyanins and total phenolics) at harvest in 2014. R= Ripe, OR= over 

ripe, LV= low vigour, HV= high vigour. The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 SD VSP 

  R OR R OR 

 HV LV HV LV HV LV HV LV 

ºBrix 23.67 ± 0.09 d  23.17 ± 0.07 de 26.53 ± 0.09 ab 26.86 ± 0.12 a 22.46 ± 0.56 e  23.80 ± 0.11 d 25.93 ± 0.28 b 24.83 ± 0.09 c 

pH 3.80 ± 0.02 e 4.09 ± 0.10 a 3.94 ± 0.02 d 4.26 ± 0.02 b 3.59 ± 0.05 c 3.85 ± 0.05 de 4.08 ± 0.03 a 4.05 ± 0.01 a 

TA (g/L) 3.85 ± 0.10 ab 3.39 ± 0.06 b 4.11 ± 0.08 a 3.54 ± 0.04 ab 4.14 ± 0.58 a 4.11 ± 0.16 a 4.02 ± 0.06 a 3,31 ± 0.03 b 

Tannins (mg/g berry) 0.40 ± 0.19 cd 0.51 ± 0.02 bcd 0.31 ± 0.10 d 0.60 ± 0.15 bc 0.88 ± 0.21 a 0.67 ± 0.12 ab 0.65 ± 0.08 b 0.68 ± 0.01 ab 

Anthocyanin (mg/g berry) 0.40 ± 0.07 bc 0.40 ± 0.02 bc 0.27 ± 0.06 c 0.43 ± 0.05 b 0.78 ± 0.14 a 0.89 ± 0.04 a 0.32 ± 0.04 bc 0.30 ± 0.11 bc 

TP  (AU) 36.53 ± 4.73 b  41.20 ± 2.35 b 28.83 ± 3.22 c 51.93 ± 2.34 a 37.28 ± 5.35 b 56.26 ± 3.14 a 35.81 ± 3.77 b 37.82 ± 0.89 b 

 

Table 3.3. Grape phenolic composition in 2014. Individual and group of phenolic compounds (mg/g of berry). R= Ripe, OR= over ripe, LV= low vigour, HV= high 

vigour. The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 SD VSP 

  R OR R OR 

 HV LV HV LV HV LV HV LV 

Gallic acid 0.001 ± 0.00 ab 0.001 ± 0.00 b 0.002 ± 0.00 ac 0.001 ± 0.00 ab 0.002 ± 0.00 cd 0.002 ± 0.00 ac 0.002 ± 0.00 d 0.002 ± 0.00 cd 

Catechin 0.007 ± 0.00 a 0.008 ± 0.00 abc 0.009 ± 0.00 bc 0.008 ± 0.00 ab 0.010 ± 0.00 c 0.009 ± 0.00 abc 0.009 ± 0.00 abc 0.008 ± 0.00 abc  

Polymeric phenols 1.968 ± 0.10 ac  2.104 ± 0.23 ac 2.243 ± 0.03 ab 2.450 ± 0.13 abc 2.006 ± 0.09 ac 1.714 ± 0.403 c 2.312 ± 0. 12 ab 2.703 ± 0.03 b  

∑ Hydroxycinnamic. acids 0.007 ± 0.00 a 0.010 ± 0.00 b 0.007 ± 0.00 a 0.007 ± 0.00 a 0.010 ± 0.00 b 0.010 ± 0.00 b 0.007 ± 0.00 a 0.011 ± 0.00 b 

∑ Flavonols 0.062 ± 0.00 ab 0.077 ± 0.01 bc 0.048 ± 0.00 a 0.077 ± 0.00 bc 0.083 ± 0.01 c 0.083 ± 0.00 c  0.075 ± 0.01 ab 0.075 ± 0.01 bc 

∑ Glucosylated anth. 0.466 ± 0.05 ab  0.530 ± 0.04 abc 0.420 ± 0.03 a 0.439 ± 0.01 ab 0.504 ± 0.06 abc 0.549 ± 0.04 bc 0.452 ± 0.03 ab 0.590 ± 0.03 c 

∑ Acetylated anth. 0.235 ± 0.03 ab 0.272 ± 0.02 bc 0.203 ± 0.01 a 0.236 ± 0.00 ab 0.216 ± 0.03 a 0.270 ± 0.01 bc 0.209 ± 0.01a 0.303 ± 0.02 c 

∑ Coumaroylated anth. 0.505 ± 0.05 ab 0.516 ± 0.06 ab 0.468 ± 0.03 ab 0.490 ± 0.02 ab 0.471 ± 0.05 ab 0.580 ± 0.02 b 0.445 ± 0.03 a 0.570 ± 0.03 b 

Polymeric pigments 0.083 ± 0.00 ac 0.101 ± 0.01ab 0.093 ± 0.00 a 0.124 ± 0.01b 0.069 ± 0.01 c 0.078 ± 0.01 c 0.081 ± 0.01 ac 0.113 ± 0.01b 
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Table 3.4. Tannin concentration (mg/L), Total Red Pigments (TRP) and Total Phenolics (TP) for all 2014 wines at bottling (T0). R= Ripe, OR= over ripe, LV= 

low vigour, HV= high vigour. The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 SD VSP 

  R OR R OR 

 HV LV HV LV HV LV HV LV 

Tannins (mg/L) 456.60 ± 113.16cd 745.12 ± 106.22 bc 653.25 ± 106.24 bc 1182.95 ± 95.31 a 260.28 ± 46.12 d 316.69 ± 69.80 d 807.27 ± 163.76 b 645.18 ± 92.49 bc 

TRP (AU) 23.05 ± 1.23 b 32.02 ± 1.12 a 14.46 ± 3.48 c 21.37 ± 1.39 b 33.76 ± 1.18 a 36.18 ± 0.63 a 25.33 ± 0.25 b 34.19 ± 0.43 a 

TP (AU) 39.58 ± 1.09 d 49.99 ± 1.51 ab 35.43 ± 2.74 d 49.18 ± 1.84 ab 44.68 ± 0.98 c 47.51 ± 0.44 abc 46.58 ± 0.27 bc 51.49 ± 0.91 a 

 

Table 3.5. Individual and groups of phenolic compounds (mg/L) in 2014 wines at bottling (T0). R= Ripe, OR= over ripe, LV= low vigour, HV= high vigour. The 

different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 SD VSP 

  R OR R OR 

 HV LV HV LV HV LV HV LV 

Gallic acid 4.62 ± 0.49 d  8.35 ± 1.64 bc 7.43 ± 0.29 c 8.95 ± 1.51 bc 4.82 ± 0.11 d 4.71 ± 0.29 d 11.67 ± 0.47 a 10.59 ± 0.50 ab 

Catechin 30.63 ± 4.19 ab 29.99 ± 0.85 ab 26.31 ± 0.73 b 31.05 ± 3.28 ab 34.13 ± 4.01 b 30.58 ± 0.55 ab 36.73 ± 1.49 a 33.56 ± 0.86 ab 

B1 75.21 ± 7.10 a 35.78 ± 0.73 bc 36.12 ± 1.33 bc 33.93 ± 1.24 bc 41.72 ± 4.74 bc 55.72 ± 18.78 ab 36.65 ± 1.94 bc 33.35 ± 1.13 c 

Polymeric phenols  245.00 ± 36.22 c 401.81 ± 71.57 b 648.01 ± 46.24 a 673.29 ± 18.30 a 437.30 ± 1.77 b 302.08 ± 17.29 bc 706.59 ± 41.87 a 724.52 ± 84.19 a 

∑ Hydroxycinnamic. acids 38.16 ± 3.14 b 24.55 ± 7.20 cd 29.39 ± 1.85 bc 29.30 ± 2.94 bc 50.38 ± 1.88 a 38,31 ± 2.46 b  24.32 ± 2.49 cd 18.37 ± 1.98 d 

∑ Flavonols 31.43 ± 7.57 abc 15.50 ± 7.20 d 28.25 ± 1.39 bc 22.03 ± 4.65 bcd 42.59 ± 1.94 a 34.18 ± 0.92 ab 20.31 ± 1.98 cd 14.81 ± 1.52 d 

∑ Glucosylated anth. 171.16 ± 18.60 bc 108.87 ± 30.63 d  137.22 ± 4.37 cd 133.58 ± 7.48 cd 216.21 ± 6.65 a 194.97 ± 12.10 ab 121.51 ± 5.57 d 102.57 ± 9.41 d 

∑ Acetylated anth. 85.12 ± 9.06 bc 48.19 ± 17.11 d 64.42 ± 1.34 cd 61.45 ± 6.85 d 111.18 ± 2.45 a 92.59 ± 4.40 ab  49.47 ± 2.74 d  42.18 ± 3.52 d 

∑ Coumaroylated anth. 33.92 ± 3.86 a 20.68 ± 7.71 b 22.58 ± 0.92 b 22.85 ± 0.57 b 42.62 ± 0.49 a 35.70 ± 1.70 a  23.47 ± 1.65 b  16.86 ± 2.07 b 

Polymeric pigments 
16.51 ± 1.04 d 23.18 ± 2.25 cd 40.39 ± 3.43 a 35.94 ± 4.57 ab 30.46 ± 2.57 abc  27.02 ± 1.10 bc 37.28 ± 3.24 a 39.49 ± 5.58 a 
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The analysis of the individual phenolic compounds confirmed the differences between 

the wines before bottling (Table 3.5). Training system and vigour played a role, but the 

influence of the grape ripeness was especially prevalent (Appendix Table 3.5). Thus, as 

shown in Table 3.5, a lower amount of total hydroxycinnamic acids, total flavonols and 

total monomeric anthocyanins (glucosylated, acetylated and coumaroylated 

anthocyanins) was observed in VSP-OR wines when compared to the wines from less 

ripe berries (R). These differences were however in most cases not found in SD wines. 

On the other hand, a significantly greater amount of polymeric phenols was found in 

wines made from OR berries (Table 3.5). Similar patterns were observed for the 

concentration of polymeric pigments. A greater amount of polymeric pigments was found 

in wines made from OR grapes however, these differences, between R and OR, were 

not significant in the case of VSP-HV wines (Table 3.5).  

These dissimilarities between grape and wine phenolics can be explained by different 

factors, such as the influence of the grape seeds during fermentation or the role of the 

cell wall composition on the phenolic extractability. From there, wines were periodically 

analysed to assess if these initial differences were maintained over time (Figure 3.2 and 

3.3). Although ANOVA analysis were performed to assess the statistical impact of the 

different variables on the overall and the individual wine colour and phenolic composition, 

PCA plots were also generated to ascertain the cumulative effect from all the different 

variables on the overall wine composition. Therefore, the PCA loading plot displayed in 

Figure 3.2E shows the sample distribution according to their colour and phenolic 

parameters analysed. A clear impact from vigour and grape ripeness was observed in 

Figure 3.2B and C. LV wines were mainly distributed on the right side of PC1 axis 

(42.4%), characterised by a greater colour, TRP and TP content and SO2 resistant 

pigments. Additionally, in Figure 3.2C, the wines made from riper berries were distributed 

along the PC2 (18.3%), mainly characterised by a higher amount of tannins but also hue, 

TP and SO2 resistant pigments. However, these differences between treatments were 

found to be reduced over time (Figure 3.2D), contrary to the results found by De Beer et 

al. (2017). In the course of time, as displayed in Figure 3.2D and Figure 3.2E, a lower 

colour, TRP and copigment values were found in older wines, compared to young wines, 

whereas the hue and tannin levels increased. 

These separations between treatments were also observed when individual phenolics 

were analysed (Figure 3.3). However, training system and vigour did not seem to 

influence the distribution of the wine samples according to their different groups of 

individual phenolic compounds to the same extend than ripening (Appendix Table 3.5). 

On the other hand, grape ripeness, together with the time of sampling, played a larger 
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role in affecting the individual phenolic profile of the wines over time (Appendix Table 

3.5). Thus, as displayed in Figure 3.3C, the wines from riper berries (OR) were 

characterised by a higher amount of polymeric forms (Figure 3.3E), both as polymeric 

phenols and polymeric pigments, and lower values of total hydroxycinnamic acids. 

During ageing, all the wines distributed to the side of the PC1 (Figure 3.3D & E) 

characterised by a lower concentration of glucosylated, acetylated and coumaroylated 

anthocyanins, which are in agreement with literature (Somers & Evans, 1979; Pérez-

Magariño & González-SanJosé, 2004; Boido, et al., 2006). Additionally, as displayed in 

Figure 2D, differences between treatments, found in grapes and young wines, became 

smaller over time as the wine samples were more closely distributed along the PC1 axis 

after ageing.  

 

Figure 3.2. Wine sample distribution according to their phenolic content analysed by 

spectrophotometric methods. A) PCA scores scatter plot coloured according to the training 

system. B) PCA scores scatter coloured according to the vine vigour. C) PCA scores scatter plot 

coloured according to grape ripening. D) PCA scores scatter plot coloured according to the 

sampling stages. E) Loading plot with the colour and phenolic parameters. 
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Figure 3.3. Wine sample distribution according to the group of individual phenolic compounds 

analysed with HPLC. A) PCA scores scatter plot coloured according to the training system. B) 

PCA scores scatter plot coloured according to the vine vigour. C) PCA scores scatter plot coloured 

according to grape ripening. D) PCA scores scatter plot coloured according to the sampling 

stages. E) Loading plot displaying the phenolic composition.  

 

3.3.1.3. Sensory evaluation of 2014 wines 

Sensory analysis were performed on the different wine treatments after 6 and 12 months 

of storage. Due to their link to with the phenolic composition, the assessment of taste 

and mouth-feel was the main focus of the study. However, the impact of the training 

system, vigour and grape ripeness on the aroma profile of the wines was also checked. 

Therefore, based on the significant aroma attributes (Appendix Figure 3.1), VSP wines 
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tended to be described by vegetative descriptors whereas SD wines were characterised 

as more floral and raisin character after 6 months (Appendix Figure 3.2A). These general 

trends remained  six months later when VSP and SD wines, distributed along the PC1 

axis (83.1%), were frequently characterised by vegetables, pencil shavings or meaty 

attributes for VSP wines and muscat, dark berries or raisins for SD wines (Appendix 

Figure 3.2B). 

On the other hand, the grape ripeness seemed to play the biggest role in the taste and 

mouth-feel perception. Thus, as illustrated in Figure 3.4A, after 6 months, the wine 

samples were separated along the PC1 axis (72%), mainly based on the differences 

between acidity and the rest of attributes. Thus, most of the 23 ºBrix (R) wines (including 

all four treatments) were described as being higher in acidity. On the other hand, the 

wines made from riper berries were often described as more bitter and “fuller” (Appendix 

Table 3.6 and 3.7. Astringency did not show an increase with the ripening, except for 

VSP HV wines (Appendix Table 3.6).  

 

Figure 3.4. Wine sample distribution according to the taste and mouth-feel. A) Wine evaluation 

after 6 months of bottle storage B) Wine evaluation after 12 months of bottle storage. Wine codes 

according to training system (VSP, SD), vigour (HV, LV) and ripening (R and OR). 

 

Unfortunately, a considerable number of panellist changed from the first to the second 

session due to unforeseen circumstances in 2104. We are therefore not able to compare 

6 and 12 months with each other statistically. However, the trends remained relatively 

stable over time. In Figure 3.4B, the grape ripeness level continued being the main driver 

along the PC1 axis (85%). These findings agree with a previous study on the impact of 

different training systems on the astringency and bitterness of the wines performed in 

the same vineyard (Van Noordwyk, 2012; De Beer, 2015). The chemistry results, 

together with the sensory evaluation led to a further investigation in 2015 of the influence 
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of grape ripeness on the colour and phenolic composition in young wines and their 

subsequent evolution over time. 

3.3.2. Phenolic and sensorial evolution of 2015 wines 

3.3.2.1. Grape chemical composition 2015 

In 2015, grapes were harvested at four different ripening levels (21ºBrix, 23ºBrix, 24ºBrix 

and 25ºBrix) from the VSP training system from the low vigour zone of the vineyard. A 

higher pH in the grapes at 25 ºBrix, with a decrease in TA levels was observed during 

the grape ripeness (Table 3.5). Looking at the phenolic composition of the grape extracts, 

as shown in Table 3.6, no significant differences were found for the grape tannin content 

between the different ripening stages. These results were similar to what was found in 

section 3.3.2, for 2014 for the grapes samples collected from the same training system 

and vigour (VSP-LV) at two ripening levels. However, a significant increase was found 

from 21ºBrix to 23ºBrix (remaining constant in 24ºBrix and 25ºBrix) in the concentration 

of anthocyanins, while TP increased significantly from 23 ºBrix  to 24 ºBrix (Table 3.6).  

Table 3.5. Grape parameters (Brix, pH and TA) at harvest in 2015. The different letters indicate 

significant differences (ANOVA, p < 0.05) between the ripening levels. 

 21ºBrix 23ºBrix 24ºBrix 25ºBrix 

ºBrix 21.23 ± 0.22 d 22.89± 0.12 c  24.30 ± 0.29 b 25.17 ± 0.15 a 

pH 3.36 ± 0.02 a 3.39 ± 0.02 a 3.41 ± 0.01 a 3.81 ± 0.03 b 

TA (g/L) 6.10 ± 0.22 a 5.65 ± 0.03 b 5.06 ± 0.07 c 4.11 ± 0.09 d 

 

Table 3.6. Phenolic composition of 2015 fresh grapes from four ripening levels. The different 

letters indicate significant differences (ANOVA, p < 0.05) between the ripening levels. 

 21ºBrix 23ºBrix 24ºBrix 25ºBrix 

Tannins (mg/g berry) 0.50±0.01 a 0.45±0.06 a 0.47±0.04 a 0.54±0.05 a 

Anthocyanins (mg/g berry) 0.35±0.01 a 0.42±0.04 b 0.47±0.02 b 0.45±0.02 b 

Total phenolics (AU) 37.43±1.27 b 30.62±5.25 b 46.01±1.04 a 49.61±1.82 a 

 

From the individual phenolics results (Table 3.7), no significant differences were found 

in the concentration of gallic acid, B1, total flavonols or monomeric anthocyanins (total 

glucosylated anthocyanins, total acetylated anthocyanins and total coumaroylated). 

However, an increase was observed in the polymeric compounds analysed. A gradual 

increase in the polymeric phenol concentration was found during ripening, but only 

significant when comparing 21ºBrix grapes to 25ºBrix grapes. On the other hand, this 

increase was only significant from 24ºBrix to 25ºBrix for polymeric pigments. Additionally, 
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the total amount of hydroxycinnamic acids showed a decrease during ripening 

(significant from 21ºBrix to 23ºBrix) (Table 3.7).  

 

Table 3.7. Grape phenolic composition in 2015. Individual and groups of phenolic compounds 

(mg/g of berry) for grapes at four different harvest stages (21ºB, 23ºB, 24ºB and 25ºB). The 

different letters indicate significant differences (ANOVA, p < 0.05) between the ripening levels. 

 21ºBrix 23ºBrix 24ºBrix 25ºBrix 

Gallic acid 0.003 ± 0.00 a 0.003 ± 0.00 a 0.002 ± 0.00 a 0.003 ± 0.00 a 

Catechin 0.010 ± 0.00 a 0.006 ± 0.00 a 0.019 ± 0.00 b 0.004 ± 0.00 a 

B1 0.020 ± 0.00 a 0.018 ± 0.00 a 0.014 ± 0.00 a  0.015 ± 0.00 a 

Polymeric phenols 1.504 ± 0.06 a 1.828 ± 0.13 ab 1.796 ± 0.08 ab 1.971 ± 0.14 b 

∑ Hydroxycinnamic. acids 0.007 ± 0.00 a 0.006 ± 0.00 b  0.007 ± 0.00 b 0.006 ± 0.00 b 

∑ Flavonols 0.125 ± 0.08 a 0.112 ± 0.01 a 0.122 ± 0.01 a 0.120 ± 0.01 a 

∑ Glucosylated anth. 0.457 ± 0.01 a 0.442 ± 0.04 a 0.459 ± 0.02 a 0.416 ± 0.03 a 

∑ Acetylated anth. 0.179 ± 0.00 a 0.160 ± 0.01 a 0.183 ± 0.01 a 0.164 ± 0.01 a 

∑ Coumaroylated anth. 0.290 ± 0.02 a 0.269 ± 0.02 a 0.297 ± 0.02 a 0.274 ± 0.03 a 

Polymeric pigments 0.032 ± 0.00 a 0.038 ± 0.01 a 0.039 ± 0.01 a 0.055 ± 0.00 b 

 

3.3.2.2. Colour and phenolic evolution of 2015 wines  

In 2015, with the objective of assessing the ripening effect in young wines, the analysis 

of the colour and phenolic compounds was also done after the alcoholic fermentation 

(AF). At this stage, only the hue and the MCP tannin concentration were not significantly 

affected by the grape ripeness (Appendix Table 3.8). Analysing the groups of individual 

phenolic compounds measured by HPLC, only gallic acid, catechin and B1 were not 

significantly influenced by the ripening after AF (Appendix Table 3.9). From this stage, 

storage time also played a significant role in the colour and phenolic evolution.  

The evolution, up to 18 months of storage, of the different colour and phenolic 

parameters measured by spectrophotometric methods is described in Table 3.8. Time 

and grape ripeness played a role in the wines’ colour and phenolic composition 

(Appendix Table 3.10). Total red pigments (TRP), SO2 resistant pigments and 

copigments were highly influenced by time. On the other hand, although time was also 

significant, the TP content and, especially, the MCP tannin levels, were strongly 

influenced by the different ripeness degrees (Appendix Table 3.11). Thus comparing AF 

with after 18 months, a significant decrease was found in the CD, TRP and copigments, 

with the exception of the copigments in wines made from 21ºBrix grapes (Table 3.8). In 
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this time, the amount of SO2 resistant pigment remained relative constant for wines made 

from 21 and 23ºBrix grapes. Contrary, these pigments decreased in wines made from 

24ºBrix grapes, whereas they increased in the wines made from 25ºBrix grapes. These 

colour and phenolic evolution is also shown in Figure 3.5, where the sample distribution 

followed a clear pattern over time. Firstly, in Figure 3.5A, the samples were clearly 

distributed along the PC1 axis (47.9%) according to the grape ripeness. Wines made 

from 21ºBrix, 23ºBrix and 24ºBrix grapes were found on the negative side of the axis 1, 

whereas wines made from 25ºBrix grapes were mostly found on the positive axis of PC1. 

In young wines (AF), wines made from 25ºBrix grapes were found more closely 

distributed with the wines made from the other grape ripeness levels. Nonetheless, 

differences were observed from T0 between different wines, especially between the 

wines made from 25ºBrix grapes and the rest of the treatments. Additionally, along PC2 

(27.4%) the wine samples were separated according to the sampling stage. From the 

loading plot, one can observe a generally decrease in colour and phenolic compounds 

over time as illustrated by the distribution of the wine samples by a lower amount of TRP, 

TP, CD copigments and SO2 resistant pigments.  

As occurred in 2014 data, some of the differences found in young wines made from 

different grape ripeness became smaller over time. As an example, no significant 

differences were found in the TRP levels between all the wines after the decreases that 

occurred during the 18 months of storage. Similarly, the copigments concentration 

appeared to decrease over time, except for the wines made 21ºBrix grapes where the 

decrease was not significant. Boulton, 2001 also states that the co-pigmentation effect 

decreases over time. The differences in the concentration of copigments, especially 

higher in wines made from 24º and 25ºBrix grapes when compared to 21º and 23ºBrix, 

became statistically insignificant after 12M.  

The different wines reached their maximum copigment levels at different stages over 

time. This may be related to a higher availability of copigment factors in the wine media 

as the berry ripens. From there, the decrease observed may be related to the 

dissociation of the copigmentation complexes. This decrease in concentration of 

copigment, as a results of cofactor availability, may also be linked to the formation of SO2 

resistant pigments over time (Somers, 1971; Bindon, et al., 2014d). In all the wines, the 

concentration of the SO2 resistant pigments reached their peak after 6 months of bottle 

storage, but drastically reduced after this presumably as consequence of precipitation 

(Table 3.8). Therefore, the lack of compounds available to form more stable pigmented 

polymers in the wines made from less ripe grapes could lead to the association between 

free anthocyanins and colourless cofactors to stabilise the colour in young wines.   
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Table 3.8. Colour and phenolic measurements up to 18 months in bottle for 2015 wines made from four different ripening stages (21ºBrix, 23ºBrix, 24ºBrix and 

25ºBrix). The different letters indicate significant differences (ANOVA, p < 0.05) between the ripening levels.  

           AF             T0            6 M            12 M 18 M 

CD (AU) 

21ºBrix 15.75 ± 1.80 cde 8.89 ± 0.86 jk 12.79 ± 0.68 fghi 8.96 ± 0.85 jk 7.88 ± 0.65 k 

23ºBrix 17.53 ± 2.85 bc 11.46 ± 0.78 hij 14.66 ± 1.16 defg 11.34 ± 0.31 hij 10.07 ± 0.24 ijk 

24ºBrix 19.17 ± 1.29 b 13.83 ± 3.26 efgh 16.46 ± 1.94 cd 13.79 ± 0.32 efgh 12.30 ± 0.60 ghi 

25ºBrix 24.77 ± 2.71 a 17.44 ± 1.76 bcd 23.02 ± 3.91 a 15.70 ± 2.02 cdef 17.20 ± 1.00 bcd 

Hue 

21ºBrix 0.42 ± 0.02 h 0.52 ± 0.03 defg 0.49 ± 0.02 g 0.54 ± 0.05  def 0.61 ± 0.02  bc 

23ºBrix 0.42 ± 0.02 h 0.50 ± 0.01 e 0.50 ± 0.02 e 0.54 ± 0.02 dfg 0.60 ± 0.03  bc 

24ºBrix 0.44 ± 0.02 h 0.50 ± 0.03 f 0.51 ± 0.02 defg 0.53 ± 0.04 deg 0.60 ± 0.01 bc 

25ºBrix 0.39 ± 0.01 h 0.64 ± 0.08 ab 0.60 ± 0.03  c 0.62 ± 0.01 bc 0.66 ± 0.03 a 

MCD (AU) 

21ºBrix 13.65 ± 0.80 defg  14.30 ± 0.78 def 13.73 ± 1.04 def 8.63 ± 0.24 I 7.88 ± 0.38 I  

23ºBrix 14.78 ± 1.40 de 15.53 ± 0.69 cd 14.39 ± 0.25 def  11.43 ± 0.62 gh  10.07 ± 0.14hi  

24ºBrix 17.65 ± 0.60 bc  17.96 ± 0.59 b 13.27 ± 0.36 efg  13.31 ± 0.28 defg  12.31 ± 0.34 fgh  

25ºBrix 19.18 ± 0.03 b  21.54 ± 1.80 a 14.99 ± 0.99 de 15.46 ± 1.13 cde  17.20 ± 0.58 bc  

TRP (AU) 

21ºBrix 31.67 ± 2.87 cd 28.71 ± 1.59  de 28.77 ± 2.68 de 18.64 ± 0.91 g 16.82 ± 1.72 g 

23ºBrix 35.45 ± 7.03 bc 31.96 ± 0.99 cd 29.26 ± 2.16 de 21.09 ± 1.26 fg 18.72 ± 0.33 g 

24ºBrix 43.68 ± 2.24 a 40.24 ± 4.38 ab 36.42  ± 3.56bc 24.68 ± 1.70 ef 22.01 ± 0.25 fg 

25ºBrix 39.77 ± 2.28 ab 26.15 ± 4.81 ef 25.16 ± 3.85 ef 17.70 ± 5.35 g 18.49 ± 4.44 g 

TP (AU) 

21ºBrix 41.27 ± 3.83 ghij 40.44 ± 2.21 ghij 44.97 ± 3.92 defgh 36.36 ± 3.65 ghij 35.34 ± 3.04 j 

23ºBrix 46.69 ± 7.94 cdefg 44.40 ± 1.72 efghi 46.29 ± 8.67 cdefg 39.36 ± 2.78 ghij 37.10 ± 0.30hij 
24ºBrix 64.80 ± 3.72 a 56.96 ± 10.32 ab 54.03 ± 7.18 bc 45.54 ± 3.38 defgh 43.31 ± 0.72 fghij 
25ºBrix 52.85 ± 2.24 bcde 51.46 ± 8.03 bcdef 53.15 ± 1.27 bcd 44.22 ± 3.77 fghi 45.47 ± 7.51 cdefgh 

SO2 resistant pigments (AU) 

21ºBrix 2.64 ± 0.09 i 4.57 ± 0.41 ef 6.14 ± 1.04 cd 2.02 ± 0.23 i 2.38 ± 0.11 i 
23ºBrix 2.84 ± 0.61 ghi 5.87 ± 0.41 d 7.26 ± 1.33 c 2.5 ±0.02 i 3.06 ± 1.84 ghi 
24ºBrix 8.83 ± 0.27 b 7.26 ± 0.91 c 10.86 ± 0.57 a 2.76 ± 0.53 hi 3.87 ± 0.41 fg 
25ºBrix 3.92 ± 0.60 fgh 8.43 ± 1.03 b 11.20 ± 0.94 a 5.50 ± 0.71 de 6.14 ± 1.27 cd 

Copigments (AU) 

21ºBrix 14.57 ± 4.22 defg 18.70 ± 1.72 bcd 24.14 ± 9.02 abc 15.29 ± 3.63 defg 10.13 ± 0.54 g 
23ºBrix 18.68 ± 4.84 bcd 24.73 ± 5.16 ab 17.85 ± 0.38 cde 14.97 ± 3.11 defg 12.01 ± 0.68 efg 
24ºBrix 27.64 ± 2.18 a 23.16 ± 0.62 abc 18.30 ± 1.03 cde 10.20 ± 3.28 g 13.53 ± 0.38 defg 
25ºBrix 28.14 ± 9.10 a 16.77 ± 1.24 def 14.94 ± 2.65 defg 8.99 ± 1.46 g 11.46 ± 1.63 fg 

Tannins (mg/L) 

21ºBrix 699.26 ± 100.94 def 713.46 ± 129.51 de 332.13 ± 30.35 h 478.87 ± 112.61 gh 485.00 ± 9.99 gh 
23ºBrix 609.28 ± 122.88 efg 521.23 ± 92.75 fg 601.93 ± 93.80 efg 617.34 ± 62.41 efg 532.90 ± 57.30 fg 
24ºBrix 715.21 ± 168.68 de 582.22 ± 75.81 efg 592.60 ± 83.97 efg 811.19 ± 44.34 cd 716.14 ± 62.85 de 
25ºBrix 860.56 ± 117.23 bcd 1133.56 ± 231.00 a 835.69 ± 150.20 cd 908.29 ± 115.38 bc 1023.85 ± 42.78 ab 

Colour density (CD), total red pigments (TRP),total phenolics (TP).   
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However, these decreases in pigment concentration did not always affect the amount of 

TP. The amount of TP remained relatively constant in the wines made from 21ºBrix 

berries. On the other hand, the rest of the wines (made from 23ºBrix, 24ºBrix and 25ºBrix 

grapes) showed a decrease over time, being not significant in the case of the wines 

made from 25ºBrix grapes.  

Regarding the tannin levels, the trend was found that that levels were higher in wines 

made from riper grapes (Appendix Table 3.11) as suggested by Bindon et al. (2013), but 

this was only significant when wines AF made from 23ºBrix and  25ºBrix grapes were 

compared. The ANOVA and LSD test showed constant MCP tannins levels, from AF to 

after 18M, in all the wines, except for the wines made from 21ºBrix grapes (Table 3.8). 

Nonetheless, and contrary to what we found for the TRP, the smaller differences found 

in MCP tannin levels at AF became larger over time. Thus, a greater concentration was 

found in wines made from 24ºBrix and especially 25ºBrix grapes after 18 months (Table 

3.8). These differences may be related to the formation of larger polymers. However, 

although it remains uncertain, the tannin size and polymer conformation may affect the 

tannin precipitation with MCP, as it was shown to occur with the BSA tannin precipitation 

method (Harbertson, et al., 2014).  

These results disagree with the study by Bindon et al. (2013) as the tannins levels found 

in wines made from the last harvest were not always significantly higher. On the other 

hand, the study suggested a higher tannin value as the harvest advanced, which 

manifest especially after prolonged ageing.  
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Figure 3.5. Sample distribution according to the colour phenolic content analysed by 
spectrophotometric methods. A) PCA scores scatter plot coloured according grape ripeness. B) 
PCA scores scatter plot coloured according to time. C) Loading plot with the colour and phenolic 
parameters. 

 

Stellenbosch University  https://scholar.sun.ac.za



66 

 

3.3.2.3. Individual phenolic compounds of 2015 wines 

The HPLC results of the individual phenolic compounds (Table 3.9) shows the effect of 

grape ripeness and aging on the evolution of the individual phenolic compounds 

(Appendix Table 3.12). A similar wine sample distribution according to the evolution of 

the colour and phenolics as determined spectrophotometrically was also found for 

individual phenolic compounds (Figure 3.5 and 3.6). In Figure 3.6B, the wine samples 

distributed along the PC1 (52.7%) according to the time of sampling. As expected, as 

the wines aged, they were characterised by a lower free anthocyanin content, with an 

increase in polymer fractions. These results agree with the findings of Pérez-Magariño 

& González-San José (2004). However, and similarly to the spectrophotometric results , 

wines made from 25ºB grapes showed a different evolution when compared to the other 

three ripening stages, especially from MLF and onwards.  

These differences were mainly explained by the concentration of polymeric phenols and 

polymeric pigments in the wines. Both parameters were especially influenced by the 

grape ripeness (Appendix Table 3.13). In short, a larger concentration of polymeric 

phenols and polymeric pigments was found in the wines made from 25ºBrix grapes, 

already significant at AF. Thereby, these results show a greater levels of larger 

molecules during grape ripening, contrary to the findings from some authors (Obreque-

Slier, et al., 2010; Bautista-Ortín, et al., 2012). The decrease observed in 25ºB wines, 

after 12 months of storage, is probably due to over polymerization reactions and the 

subsequent precipitation of insoluble compounds.  

On the other hand, the amount of polymeric pigments in young wines (AF) was not 

significantly higher than wines made from 25 ºBrix compared to those made of 23ºBrix 

and 24ºBrix grapes (Table 3.9). Only with the course of time, the wines made from 

25ºBrix grapes experienced a significant increase in polymeric pigments during bottle 

storage. This greater formation of polymeric pigments is probably linked to the quicker 

degradation of free anthocyanins (glucosylated, acetylated and coumaroylated 

anthocyanins) occurring in the wines made from 25ºBrix grapes (Table 3.9 and Appendix 

Figure 3.3). These trends may be explained by a greater proanthocyanidins 

concentration and therefore higher availability to react with the monomeric anthocyanins 

and form these polymeric pigments (Singleton & Trousdale, 1992; He, et al., 2012a), in 

the wines made from the ripest grapes.  
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Table 3.9. Evolution of the individual and groups of phenolic compounds (mg/L) up to 18 months of storage for 2015 wines made from four different ripening 

stages (21ºBrix, 23ºBrix, 24ºBrix and 25ºBrix). The different letters indicate significant differences (ANOVA, p < 0.05) between the ripening levels. 

  AF MLF 6 M 12 M 18 M 

Gallic acid 

21ºBrix 6.74 ± 0.50fg 5.65 ± 0.36 h   7.48 ± 0.50 ef 8.89 ± 0.39 d 9.74 ± 0.50 cd 
23ºBrix 6.74 ± 0.61 fg 6.03 ± 0.31 gh 7.74 ± 0.33 e 9.42 ± 0.33 cd 10.11 ± 0.26 bc 
24ºBrix 7.02 ± 0.52 ef 5.95 ± 0.47 gh 7.39 ± 0.65 ef 9.88 ± 0.09 bcd 10.31 ± 0.78 abc 
25ºBrix 7.46 ± 0.32 ef 9.15 ± 0.14 d 9.80 ± 0.63 cd 10.88 ± 0.71 ab 11.05 ± 0.85 a 

Catechin 

21ºBrix 7.15 ± 1.57 ef 5.38 ± 0.88 f 17.76 ± 0.89 abc 13.37 ± 0.42 abcde 8.38 ± 0.96 def 
23ºBrix 9.09 ± 4.04 def 6.92 ± 2.47 ef 11.47 ± 6.37 cdef 12.45 ± 0.29 abcdef 7.63 ± 0.09 ef 
24ºBrix 18.37 ± 11.74 ab 9.11 ± 2.66 def 9.55 ± 3.44 def 15.03 ± 0.03 abcd 8.48 ± 0.63 def 
25ºBrix 8.3 ± 2.13 def 19.18 ± 0.77 a 12.30 ± 5.60 bcde 4.68 ± 2.46 f 9.15 ± 0.49 def 

B1 

21ºBrix 10.19 ± 1.54 ef  11.04 ± 1.23 def 19.05 ± 2.47 b 18.46 ± 0.70 bcd 17.49 ± 0.58 bcd 
23ºBrix 14.83 ± 3.06 bcdef 10.40 ± 3.48 ef 17.14 ± 2.21 bcde 15.28 ± 1.24 bcdef 14.72 ± 0.60 bcde 
24ºBrix 14.72 ± 10.19 bcdef 12.06 ± 5.27 cdef 19.31 ± 3.68 b 19.99 ± 0.01 ab 19.01 ± 1.06 bc 
25ºBrix 16.85 ± 2.99 bcde 27.42 ± 4.23 a 17.7 ± 8.19 bcd 8.23 ± 0.07 f 15.5 ± 4.36 bcdef 

Polymeric phenols 

21ºBrix 401.52 ± 31.99 fghi 280.67 ± 16.91 k 311.19 ± 23.65 jk 331.05 ± 4.80 ijk 311.78 ± 23.83 jk 
23ºBrix 445.58 ± 83.09 ef 349.21 ± 17.75 hijk 362.47 ± 34.56 ghij 367.91 ± 20.97 fghij 387.72 ± 18.68 fghij 
24ºBrix 481.06 ± 34.07 e 402.26 ± 22.20 fghi 436.78 ± 18.01 efg 430.05 ± 37.86 efgh 443.91 ± 7.60 ef 
25ºBrix 587.63 ± 45.80 d 738.32 ± 88.32 ab 812.88 ± 115.76 a 649.19 ± 1.08 cd 704.44 ± 43.23 bc 

∑ Hydroxycinnamic acid 

21ºBrix 32.71 ± 0.66kl 41.51 ± 3.74 ghi 47.64 ± 1.03 cdef 47.68 ± 0.59 bcdef 51.27 ± 0.91 bc 
23ºBrix 31.55 ± 0.96 l 36.51 ± 2.32 jk 37.87 ± 0.81 ij 39.70 ± 2.02 hij 43.95 ± 0.87 efgh 
24ºBrix 43.34 ± 1.60 fgh 47.14 ± 1.68 cdef 49.45 ± 0.90 bcd 52.98 ± 0.93 ab 56.77 ± 1.50 a 
25ºBrix 32.98 ± 0.35 kl 45.14 ± 1.80 defg 46.30 ± 1.91 def 49.09 ± 1.25 bcde 51.55 ± 2.44 bc 

∑ Flavonols 

21ºBrix 82.55 ± 1.69 e 84.99 ± 6.94 cde 83.46 ± 9.80 de 48.10 ± 10.62 g 51.49 ± 5.02 g 
23ºBrix 82.32 ± 7.96 e 89.47 ± 1.55 bcde 87.95 ± 4.66 cde 51.78 ± 0.54 g 57.04 ± 0.49 fg 
24ºBrix 96.52 ± 1.28 abc 102.21 ± 1.27 ab 96.29 ± 3.38 abcd 56.96 ± 0.42 fg 67.82 ± 1.99 f 
25ºBrix 104.74 ± 3.18 a 86.42 ± 5.74 cde 82.12 ± 1.48 e 49.56 ± 4.42 g 48.96 ± 2.00 g 

∑ Glucosylated anthocyanins 

21ºBrix 199.87 ± 11.97 e 257.14 ± 6.25 bcd 212.32 ± 10.59 e 126.26 ± 2.33 fg 109.21 ± 2.63 fgh 
23ºBrix 207.94 ± 15.92 e 272.96 ± 1.84 bc 226.52 ± 2.92 de 132.35 ± 8.83 fg 122.43 ± 1.73 fg 
24ºBrix 289.75 ± 7.38 ab 321.26 ± 3.46 a 247.78 ± 5.97 cd 146.25 ±  10.77 f 134.78 ± 3.23 f 
25ºBrix 250.77 ± 9.20 cd 137.06 ± 24.97 f 96.03 ± 28.02 gh 77.56 ± 15.85 hi 51.39 ± 17.94 i 

∑ Acetylated anthocyanins 

21ºBrix 87.15 ± 4.61 e 105.37 ± 2.62 c 83.20 ± 4.49 e 48.18 ± 0.87 fgh 38.46 ± 1.94 ghi 

23ºBrix 88.79 ± 7.90 de 111.00 ± 0.49 bc 90.47 ± 0.87 de 52.97 ± 1.62 fg 42.94 ± 0.89 fghi 

24ºBrix 124.61 ± 3.43 ab 131.65 ± 0.33 a 102.00 ± 3.11 cd 57.37 ± 2.14 f 48.67 ± 1.65 fgh 

25ºBrix 111.55 ± 3.64 bc 50.56 ± 10.45 fgh 37.15 ± 10.40 hi 30.01 ± 5.84 ij 17.97 ± 4.64 j 

∑ Coumaroylated anthocyanins 

21ºBrix 28.80 ± 1.53 e 39.34 ± 0.83 bc 29.74 ± 2.26 de 16.43 ± 0.49 fgh 12.95 ± 1.19 fghi 

23ºBrix 29.35 ± 1.84 de 38.23 ± 0.62 bc 29.23 ± 1.20 de 15.15 ± 1.24 fghi 12.74 ± 0.67 ghi 
24ºBrix 50.24 ± 1.89 a 48.80 ± 1.70 a 34.34 ± 1.54 cd 18.70 ± 2.15 fg 14.40 ± 0.70 fghi 
25ºBrix 41.65 ± 2.25 b 18.27 ± 3.82 f 12.31 ± 3.65 hi 8.91 ± 1.48 ij 5.65 ± 1.66 j 

Polymeric pigments 

21ºBrix 21.91 ± 0.30 efg 12.99 ± 2.39 g 14.43 ± 1.60 g 16.17 ± 1.72 efg 14.85 ± 1.11 g 
23ºBrix 24.21 ± 4.48 def 15.44 ± 1.31 fg 17.79 ± 2.00 efg 20.56 ± 2.11 efg 19.56 ± 0.87 efg 
24ºBrix 24.90 ± 2.47 def 18.98 ± 0.65 efg 21.42 ± 1.89 efg 26.24 ± 0.24 def 25.53 ± 0.59 de 
25ºBrix 33.02 ± 6.02 cd 45.74 ± 2.76 ab 53.38 ± 18.89 a 39.23 ± 4.28 bc 50.77 ± 12.51 a 
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Additionally, an increase in gallic acid was observed over time (Table 3.9). Although the 

difference between wine treatments in young wines (AF) were not significant, after MLF, 

a greater concentration of gallic acid was found in the wines made from 25ºBrix grapes. 

With the course of time (after 12 months), this difference became insignificant when 

compared to 24ºBrix. Gallic acid is indirectly related to the wine colour and polymeric 

pigment formation (Liu, et al., 2016). This increase, observed in all our wines, may come 

as a result of the dissociation of certain compounds. It is known that gallic acid can be 

found as the galloyl unit from galloylated proanthocyanidins, but it can also act as a 

cofactor in the wine (Boulton, 2001; Liu, et al., 2016). Firstly, the liberation of gallic acid 

could come from the breakdown or hydrolysis of galloylated proanthocyanidins. 

However, this release have not been proved in wine (Prieur, et al., 1994). Secondly, the 

gallic acid could be released by the hydrolysis of wine copigments. Thus, the drop in 

wine copigments from AF to MLF, and especially prevalent in 25ºB wines (Table 3.8), 

may be linked to the increase in gallic acid concentrations and the increase in polymeric 

pigments levels during the same period (Table 3.9).  

Other phenolic compounds, such as hydroxycinnamic acids and flavonols, were greatly 

influenced by the time as well as the grape ripeness (Appendix Table 3.13). Similarly to 

gallic acid, the increase in the total concentration of hydroxycinnamic acids may be 

explained by the hydrolysis of these copigments, thereby liberating the acids into the 

wine. As described in literature, these molecules play an essential role not only in the 

concentration of copigmentation complexes, but also in the formation of 

pyroanthocyanins over time (Darias-Martín, et al., 2002; Gómez-Gallego, et al., 2013) 

during the aging of the red wines (Hermosín-Gutiérrez, et al., 2005). After 18 months, 

the greatest total hydroxycinnamic acid concentration was found in the wines made from 

24ºBrix grapes, followed by those from 21º and 25ºBrix grapes. Thus, these results show 

no clear trend between the increase of grape ripening and the higher hydroxycinnamic 

acid concentrations over time.  

Conversely, the concentration in total flavonols declined over time (Table 3.9). The 

concentration of these compounds was initially higher in wines made from 24º Brix and 

25º Brix grapes. However, their loss with the course of time was quicker in wines made 

25ºBrix grapes. By the end of MLF, the flavonol content had significantly dropped in 

wines made from 25º Brix grapes. On the other side, wines made from the other three 

grape ripening levels (21ºBrix, 23ºBrix and 24ºBrix) only experienced a significant loss 

after 12 months of storage.  
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Figure 3.6. Sample distribution according to the groups of individual phenolic compounds 
measured with the HPLC. A) PCA scores scatter plot coloured according grape ripeness. B) PCA 
scores scatter plot coloured according to time. C) Loading plot with the group of individual 
phenolic compounds. 
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Altogether, the HPLC results described the influence of grape ripeness on the release of 

specific phenolic compounds which may be more difficult to extract at lower commercial 

harvest stages. The changes occurring on the grape skin cell walls during grape ripeness 

may be linked to the release of these molecules. In short, the grape maturity leads to the 

liberation of larger molecules which may be involved on the formation, of more stable 

compounds. From there, the colour and phenolic composition in young wines will 

influence the evolution of the corresponding wines during aging. A general loss of 

phenolics was observed in all the wines. The loss of wine colour is linked to the 

degradation of monomeric free anthocyanins and the formation of polymeric pigments. 

This loss in colour has been extensively reported in literature (Somers & Evans, 1979; 

He, et al., 2012a). This decrease was already found after 6M of storage (Table 3.9) and 

remained relatively stable from 12M to 18M. The increase in polymeric phenol levels is 

also linked to the reactions occurring during wine ageing, as new compounds can be 

formed from condensation reactions between anthocyanins and tannins (Timberlake & 

Bridle, 1976; Rivas-Gonzalo, et al., 1995). These compounds only showed a significant 

increased with time in the wines made from 25ºBrix grapes. Then, the phenolic 

compounds extracted from riper grapes into wines were more probably susceptible to 

react and form larger polymers, thereby creating a different ageing trend when compared 

to the wines made from 21ºBrix, 23ºBrix and 24ºBrix grapes. 

 

3.3.2.4. Sensory evolution of 2015 wines 

As in 2014, the aroma and taste and mouth-feel was evaluated for all 2015 wines after 

6 and 12 months of storage. Firstly, the wines made from the riper berries (25ºBrix) 

showed a different aromatic profile, associated with spicy (black pepper, coriander 

seeds, meaty) descriptors compared to the rest of the wines, described by more green 

(herbaceous and cooked vegetables) and fruity (cherry, red berries) attributes (Appendix 

Table 3.5A). This trend remained over time (Appendix Figure 3.5B).  

Concerning the taste and mouth-feel, as previously seen in 2014 sensory results, the 

grape ripening played a significant role. All attributes evaluated by the panellists were 

significantly different and highly influenced (except the acidity) by the grape ripeness 

(Appendix Table 3.14). Figure 3.7 illustrates the differences in the intensity for the taste 

and mouth-feel attributes evaluated after 6 months (Figure 3.7A) and 12 months (Figure 

3.7B). Firstly, a clear trend is observed from the wines made from less ripe grapes (made 

from 21º Brix grapes), described as being more sour, less astringent  or bitter and with a 

lower body (significant when compared to wines made from 25ºBrix grapes), compared 
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to wines made from riper grapes. The ANOVA and LSD test analysis did not show 

significant changes in the alcohol burn, astringency, bitterness and body (except for 

wines made from 21ºBrix grapes where the body of the wines significantly increased) of 

all the wines from 6 to 12 months (Figure 3.7). On the other hand, the acidity showed a 

significant decrease in in the case of wines made 21º Brix grapes, but it increased in 

wines made from 25ºBrix grapes. The opposite trend was observed for the sweetness 

taste of the wines. Whilst its perception decreased in the wines made from the riper 

berries (25ºBrix), it significantly increased in the wines made from 21 and 23ºBrix grapes. 

(Figure 3.7B).  

Overall, similar results were reported in literature with higher astringency and bitterness 

perception (Cadot, et al., 2012; Bindon, et al., 2014a), but also with a greater body 

structure (Van Noordwyk, 2012) in wines made from riper grapes. Some authors have 

found a decrease in the astringency as the berry ripens, due to a more harder extraction 

of compounds from the seeds (Llaudy, et al., 2008). Astringency is mainly driven by the 

tannin concentration, and especially due to their polymeric forms (McRae & Kennedy, 

2011) whereas bitterness is related to the presence of galloylated compounds (mainly 

extracted from the seeds) and with flavan-3-ols and flavonols (Peleg, et al., 1999; 

Hufnagel & Hofmann, 2008; Sáenz-Navajas, et al., 2010) but recently has also been 

linked  to the presence of anthocyanin-derived pigments (Sáenz-Navajas, et al., 2017). 

The larger concentrations of tannins, gallic acid, polymeric phenols or polymeric 

pigments in the wines made from 25ºBrix grapes, played a role in the greater astringent 

perception and bitter taste of these wines. The intensity of astringency in our wines 

correlated with the amount of MCP tannins (R2=0.69) and the concentration of polymeric 

phenols (R2=0.92), which correlates with that of Mihnea, 2016. However, after 6 and 12 

months, the concentration of MCP tannins was not significantly higher (ANOVA and LSD 

test) in wines made from 25ºBrix grapes when compared with the ones made from 

24ºBrix grapes (Table 3.8). This may be linked to the degree of polymerization and 

complexity of the tannins. Unfortunately, none of the current methods used for this 

project allowed us to further investigate the proanthocyanidins in terms of their 

complexity.  

Stellenbosch University  https://scholar.sun.ac.za



72 

 

 

Figure 3.7. Evolution of the taste and mouth-feel attributes intensity (0-100) over time. A) Acidity, 
B) sweetness C) body, D) alcohol burn E) astringency F) bitterness. The different letters represent 
significant differences (ANOVA, p < 0.05) between the different wines (made from four grape 
ripeness) and their own evolution over time. 
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3.4. CONCLUSION 

 

These results confirmed the influence of different stages of grape ripeness on the wine 

chemical composition, especially on larger molecules. However, slight differences in 

ºBrix content between VSP and SD in 2014 might have affected the phenolic composition 

and sensory properties of the wines. In both seasons, a general loss of colour and 

monomeric anthocyanins was found over time. This loss in phenolic content served to 

reduce the differences observed in the young wines’ treatments in 2014. In parallel, the 

formation of polymeric phenols and polymeric pigments was also found in all wine 

treatments and vintages. In 2015, the wines made from 25ºBrix grapes showed a 

different ageing trend when compared to the rest. The concentration of polymeric 

phenols and polymeric pigments in these wines was especially higher after ageing. In 

short, we have shown how different phenolic profiles in young wines, as a result of the 

natural changes occur during grape ripeness, will also influence the evolution from young 

to aged wines. Thus, a greater availability of tannins in solution (represented by 

polymeric phenols) in wines made from 25ºBrix grapes at AF, led to a larger formation 

of polymeric pigments over time. These results could vary with the use of different 

vineyard blocks. However, the variability shown within the same vines brings a clear link 

between extractability of phenolic compounds and ageing potential. The extractability of 

specific phenolic compounds can therefore be influenced by different factors, such as 

climatic conditions or vineyard management, affecting the wine ageing potential of the 

wines. In conclusion, this study supplements the little information available in literature 

linked to the evolution of colour and phenolic compounds in aged wines (Pérez-Magariño 

& González-SanJosé, 2004, 2006).  

The differences observed during grape ripening, especially between 24ºBrix and 25ºBrix, 

may be directly related to the structural modification occurring in the grape cell wall 

architecture. A deeper study on the cell wall structure can help to reach a better 

understanding of the diffusion of these compounds into the wines. This study could be 

relevant for the wine industry targeting to unravel the extraction of specific phenolic 

compounds with a positive impact on the colour stability, as well as in the taste and 

mouth-feel properties of the wines. The following Chapters will discuss the impact of 

grape ripening and fermentation on the grape berry phenolic and cell wall polysaccharide 

composition.  
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ABSTRACT 

 

Phenolics compounds evolve during the entire winemaking process and play an important role in 

colour stability and sensory properties of red wine. In young wines, the phenolic composition is often 

related to the degree of extractability of the grape phenolic compounds. This study evaluated the 

skin berry cell wall composition and how these influences grape and wine phenolics at three ripeness 

levels (21ºBrix, 23ºBrix, and 25ºBrix) and over two consecutive vintages (2015 and 2016). The 

vintage effect was highly significant, especially in the pectin fraction of the grape cell walls, and the 

concentration of certain phenolics. The climatic differences between seasons might have influenced 

the structural differences in their cell wall composition. Firstly, a higher grape and wine phenolic 

content, especially in polymeric phenols, was found in 2015. Additionally, grape berry cell walls, 

especially at earliest stages of ripening, were found to be more intact in 2015 compared to 2016 

which were more degraded. Thus, a possible relationship was found between berry intactness, 

especially pectin-rich components, and the corresponding phenolic extractability during the 

winemaking.  

 

4.1. INTRODUCTION 

 

It is widely accepted that wine phenolic compounds are quality indicators, especially in red wines. 

Anthocyanins are the main compounds responsible for the colour in grapes and young red wines. 

On the other hand, proanthocyanidins play a role in the colour stabilisation over time and the taste 

and mouth-feel properties of red wines (Ribéreau-Gayon, et al., 2006). The composition of the 
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grapes is the main variable influencing the amount of wine phenolics, however, their high reactivity 

leads to a continuous evolution, characterised by different chemical and biological interactions and 

the subsequent formation of new compounds over time (Monagas, et al., 2005; Garrido & Borges, 

2013). Several research studies have evaluated the impact of ripeness (Pérez-Magariño & 

González-SanJosé, 2004; Hanlin & Downey, 2009; Bindon & Kennedy, 2011; Bindon, et al., 2014a; 

Bindon, et al., 2014b; Hernández-Hierro, et al., 2014; Zietsman, et al., 2015) and different grape 

phenolic extractability techniques, such as different skin contact times or the addition of enzymes, 

on the release of phenolic compounds  (Sacchi et al., 2005; Gao et al., 2015; Smith et al., 2015; 

Gao, et al., 2016). Anthocyanins are extracted from the grape skins (Ribéreau-Gayon, et al., 2006; 

He, et al., 2012). These compounds generally accumulate in the grape skins, becoming more 

extractable during the course of ripening (Hernández-Hierro, et al., 2012, 2014). However, a possible 

decrease in concentration has been reported in the later stages of ripening and in over-ripe grapes 

(Ryan & Revilla, 2003; Fournand, et al., 2006; Pérez-Magariño & González-SanJosé, 2006). On the 

other hand, the accumulation and extractability of grape proanthocyanidins show different trends 

during grape maturation. Tannins can be found as free molecules in the vacuoles or bound to cell 

wall proteins or polysaccharides (Amrani Joutei, et al., 1994). Furthermore, the differences in the 

nature of skin-derived and seed-derived tannins influence their affinity for cell wall material (CWM) 

and their extractability (Geny et al., 2003; Hanlin et al., 2010; Bindon & Kennedy, 2011; Bindon, et 

al., 2014b; Quijada-Morín et al., 2015). Recent studies have shown that the skin proanthocyanidins 

are likely to become more extractable as the grapes are harvested later (Bindon, et al., 2013), 

whereas the seed tannin extractability appears to decrease during ripening (Kennedy, et al., 2000; 

Peyrot Des Gachons & Kennedy, 2003; Bautista-Ortín, et al., 2012). Additionally, it has been 

demonstrated that the proanthocyanidin extraction is also influenced by the anthocyanin content 

(Kilmister, et al., 2014; Bautista-Ortín, et al., 2016a). 

The loss of berry firmness is characteristic of the fruit softening process occurring  during the ripening 

process (Brummell, 2006). This fruit softening is linked to the degradation and solubilisation of berry 

skin and pulp tissue cell wall polysaccharide, by the action of pectolytic enzymes, together with an 

increase in its protein content (Nunan, et al., 1998; Huang, et al., 2005; Ortega-Regules, et al., 2008; 

Goulao, et al., 2012). The polysaccharides in the CWM can be divided into those that are either 

water or hydroalcoholic soluble (Vicens, et al., 2009). All these molecules are distributed in two main 

tissues, a pectin-rich fraction and a hemicellulose-rich fraction. The former is characterized by a 

pectin layer rich in galacturonic acid (GalA) content, consisting mostly of homogalacturonan (HG) 

and rhamnogalacturonan-I (RG-I) (Gao, et al., 2015). The principal changes occurring during fruit 

ripening are associated with a general decrease in GalA, linked to the de-pectination process and 

changes in the methyl esterification of the HG (Ortega-Regules, et al., 2008). These structural 

changes in the cell wall framework, such as the progressive loss of arabinan and galactan side 

chains of RG-I may increase the skin porosity and affect pectin solubilisation (Brummell, 2006; 

Bindon, et al., 2010). Additionally, the loss in xyloglucan content during ripening also affects the 
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firmness and subsequently the berry integrity, although in some studies these were found to be not 

significant (Ortega-Regules, et al., 2008; Vicens, et al., 2009; Bindon, et al., 2013). All these 

compositional changes can play a role in the phenolic extractability. 

From crushing, the grape berry cell walls firstly experience a physical breakdown, followed by a de-

pectination linked to the release of phenolic compounds during the alcoholic fermentation. These 

phenolic compounds can interact with other phenolics or with the polymers of the cell walls. During 

this skin maceration, some cell wall polysaccharides and proteins are released into the wines 

(Guadalupe & Ayestarán, 2007; Gao, et al., 2015). Therefore, a strong association between different 

groups of phenolics and berry cell wall components can potentially influence their extractability 

during alcoholic fermentation and final concentration in the wine (Bindon, et al., 2014b). This 

association occurs by hydrophobic interactions and hydrogen bonds. The strong affinity between 

tannins and the cell wall pectin layer, especially to HG and RG-I (Watrelot, et al., 2013, 2014) has 

been reported in apples and grapes (Renard et al., 2001; Ruiz-García et al., 2014). Additionally, 

some studies have described this greater exposure of the cell wall surface as an increase in the 

number of active binding sites (Bindon, et al., 2010, 2012; Castro-López, et al., 2016), potentially 

leading to the retention of the proanthocyanidins, which is highly influenced by the tannin molecular 

weight (Renard, et al., 2001; Le Bourvellec, et al., 2004; Bindon, et al., 2012) and nature (Quijada-

Morín, et al., 2015). The higher the degree of polymerisation (DP) in grape proanthocyanidins, the 

greater the number of reactive sites allowing for increased interaction between pectins and 

proanthocyanidins (Le Bourvellec, et al., 2004; Watrelot, et al., 2017). In the same manner, the 

degree of methyl-esterification in HG also increases the affinity of the CWM for the proanthocyanidin 

molecules (Watrelot, et al., 2013).  

Different winemaking practices, such the use of commercial enzymes, can increase the cell wall de-

pectination, thereby enhancing the release of phenolics compounds into the wine during alcoholic 

fermentation (Guadalupe & Ayestarán, 2007; Zietsman, et al., 2015; Gao, et al., 2016). Parameters, 

such as the presence of chelating agents or pH, can influence the concentration of these 

polysaccharides released into the wines (Gil Cortiella & Peña-Neira, 2017). In short, the final 

concentration of cell wall proteins and polysaccharide diffused are important to the wine colloidal 

stability as these can enhance or inhibit tannin self-aggregation and bind to other components in 

solution (Riou, et al., 2002; Poncet-Legrand, et al., 2007; Watrelot, et al., 2017). Additionally, recent 

studies have been showing the adsorption-desorption phenomena between phenolic compounds 

and CWM. The higher molecular mass proanthocyanidins, as well as molecules with a higher 

percentage of galloylation, show a higher preference to be retained by the CWM (Bindon, et al., 

2010; Bautista-Ortín, et al., 2016b).  

Given the importance of the grape skin polysaccharides, the present work aims to establish a link 

between the grape berry cell wall structure and the grape phenolic composition during ripeness and 

how the relationship between both factors will influence the phenolic extractability. To date, limited 
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information is available regarding the polysaccharide composition of the grape berry during ripening 

and especially its relationship with the grape phenolics (Quijada-Morín, et al., 2015). The use of new 

techniques, such as Comprehensive Microarray Polymer Profiling (CoMPP) have been recently 

reported in grape and wines to indirectly evaluate their polysaccharide profile (Gao et al., 2015; 

Zietsman et al., 2015, 2017; Gao, et al., 2016). The work form Zietsman and co-workers (2015) in 

Pinotage grapes showed a clear difference in the composition of the grape cell walls components 

due to different ripeness levels. The author found that the cell wall structure in riper berries was less 

affected by the addition of commercial enzymes, as they were naturally more depectinated. In 

addition, Gao et al., (2015) used the same technique in Cabernet Sauvignon to describe the impact 

of the use of different commercial enzymes on the cell wall deconstruction and the subsequent 

release of phenolic compounds during the winemaking process. From there, the present work 

focused in Shiraz with the aim of investigating the link between grape berry cell wall composition and 

the release of phenolic compounds into the wine. The study included the vintage effect, as it was 

performed during two consecutive seasons (2015 and 2016), and the impact of the progress of 

ripening, using ºBrix as the ripeness indicator in the same vineyard. For this purpose, we analysed 

the changes occurring in the cell walls of fresh skins and pomace (at a monosaccharide and 

polysaccharide level) and the phenolic composition of fresh grapes and their corresponding wines 

made from Shiraz grapes harvested at three different ripeness levels.  

 

4.2. MATERIALS AND METHODS 

 

4.2.1. Grapes and winemaking procedures 

Shiraz grapes (SH9C clone) were harvested at three ripeness levels (21ºBrix, 23ºBrix, and 25ºBrix) 

during two consecutive harvest seasons (2015 and 2016) from the Welgevallen experimental farm 

(GPS coordinates: 33°56'25.0"S 18°51'56.4"E), vineyard of the Department of Viticulture and 

Oenology of Stellenbosch University. The same vines, with a Smart-Dyson trellising system on a 

101-14Mgt rootstock, were used during both vintages. Vines from the same rows were alternatively 

harvested for the three ripeness levels. With the objective to reduce the vineyard variability, 

approximately 120 kg of grapes (per ripeness level) were randomly harvested from six different rows, 

mixed in the cellar and finally split into three repeats. The winemaking process followed is described 

in Chapter 3.   
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4.2.2. Skin cell wall preparation 

Fresh berries were collected from three ripeness levels during both seasons. The skins were 

manually separated from the flesh and seeds. The same procedure was applied to fermented 

pomace. Afterwards, the skins were ground to a fine powder under liquid nitrogen using a Retsch 

Mixer Mill (30 round/minute, 30 second, Retsch, Haan, Germany). The ground material was then 

boiled in 100 % ethanol for 20 minutes to ensure the deactivation of any possible endogenous 

enzymatic activity. After  centrifugation (3 min, 3000 rpm), the pellet was then washed with the 

following solvent mixtures: 100 % ethanol, methanol:chloroform (1:1), methanol:acetone (1:1), and 

acetone, to generate an alcohol-insoluble residue (AIR) (Gao, et al., 2015). The dry AIR powder was 

then re-suspended in water, frozen, and freeze-dried. The samples were stored at room temperature 

prior to the subsequent analysis. Between four to five AIR samples were prepared per biological 

triplicate.   

 

4.2.3. Monosaccharide analysis of cell wall samples 

The degradation occurring in the cell wall was analysed by the measurement of the following nine 

major cell wall monosaccharides: arabinose (Ara), fucose (Fuc), rhamnose (Rha), xylose (Xyl), 

mannose (Man), galacturonic acid (GalA), galactose (Gal), glucose (Glu), and glucuronic acid (GlcA). 

Thus, AIR samples from fresh grapes and fermented pomace of each fermentation were analysed 

as described in  Gao et al. (2015), following a modified method based on that of York et al.,(1986), 

using gas chromatography coupled with mass spectrometry (GC–MS) to determine cell wall 

monosaccharides. The AIR samples were hydrolysed into monosaccharides using 2 M trifluoroacetic 

acid (TFA) for 2 h, at 110ºC and then converted to their methoxy derivatives using 

methanol/methanol HCl (16 h, 80ºC), followed by silylation with hexamethyldisilazane and 

trimethylchlorosilane in anhydrous pyridine (HMDS/TMCS/pyridine) (3:1:9, Sylon HTP kit, Sigma-

Aldrich, MO, USA). The separation and analysis of each of these derivatives were performed using 

a gas chromatograph (Agilent 6890 N, Agilent Technologies, CA, USA) coupled to an Agilent 5975 

MS mass spectrometry fitted with a polar (95% dimethylpolysiloxane) ZB-Semivolatiles Guardian 

GC column (30 m, 0.25 mm ID, 0.25 µm film thickness). The analysis were performed under the 

following conditions: the oven temperature was maintained at 70 °C for 2 min, followed by an 

increase to 76 °C at a rate of 1 °C/min and then increased to 300 °C at 8 °C/min. The final oven 

temperature was held for 5 min (Zietsman, et al., 2015). 

 

4.2.4. Comprehensive Microarray Polymer Profiling (CoMPP) analysis of cell wall fractions 

A semi-quantitative approach was used to analyse the polysaccharide fraction of the grape berry cell 

walls. For this purpose, comprehensive microarray polymer profiling (CoMPP) was performed on the 
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AIR samples, thereby profiling the polysaccharide composition in the pectin- and hemicellulose-rich 

fractions of the grape pomace. Following the procedure described in Moller et al. (2007), 

approximately 10 mg of AIR samples were sequentially extracted using the solvents CDTA (diamino-

cyclo-hexane-tetra-acetic acid) for the pectin fraction and NaOH to extract a hemicellulose-rich 

fraction. The nitrocellulose arrays printed (in triplicate) with the different fractions were probed 

individually with different antibodies (mAbs) and carbohydrate-binding module (CBMs) that 

recognise cell walls polymers. A mean spot signal was calculated and the highest mean signal in the 

dataset was set to 100 and the rest of the dataset was normalised accordingly. 

 

4.2.5. Colour and phenolic measurements 

4.2.5.1. Spectrophotometric analysis 

Grape phenolic analyses were performed following the soft “wine-like” extraction method described 

in Chapter 3. The same extraction procedure was applied to every treatment analysed during both 

vintages, 2015 and 2016. The same colour and phenolic analysis reported in Chapter 3 were also 

performed in this work. Three grape “soft extractions” were performed for each biological ferment of 

each ripeness level.  

 

4.2.5.2. HPLC analysis 

Monomeric and polymeric forms were individually quantified for fresh grapes and wines after 

completing the alcoholic fermentation (AF). The grape extraction procedure for HPLC analysis 

described in Chapter 3 was also used in this case. The individual quantification of phenolic 

compounds was performed with the HPLC method also described in Chapter 3. Data processing 

was performed with Agilent ChemStation software (Agilent Technologies) using the following 

phenolic standards: gallic acid, (+)-catechin, caffeic acid, p-coumaric acid, quercetin-3-glucoside, 

quercetin from Sigma-Aldrich Chemie,(Steinheim, Germany), and malvidin-3-glucoside from 

Extrasynthese (Lyon, France). 

 

4.2.6. Statistical analysis 

Most statistical analyses were carried out using Statistica 13.2 (TIBCO Statistica software, Palo Alto, 

CA, USA). Mixed model repeated measures ANOVAs were used and Fisher's least significant 

difference (LSD) corrections were used for post-hoc analyses. Significant differences were judged 

on a 5% significance level (p≤0.05). The distribution of certain chemical and sensory datasets were 
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analysed with Principal Component Analysis (PCA) using SIMCA 14.1 software (Sartorium Stedim 

Biotech - Malmö, Sweden). 

 

4.3. RESULTS 

 

4.3.1. General grape parameters at harvest 

Table 4.1 summarises the main grape parameters (ºBrix, pH, TA, and berry weight) at the three 

ripeness levels investigated during 2015 and 2016. These parameters showed typical grape 

maturation trends, i.e. a decrease in acidity and an increase in the pH, with an increase in the total 

soluble solids (ºBrix) of the grapes. A similar weight loss during ripening was found for both seasons. 

However, in 2016, a longer period was required to reach 25 ºBrix compared with 2015 grapes.  

The harvest season in 2016 in Stellenbosch area was characterised by a drier season than in 2015, 

preceded by a warm summer with a lower than usual rainfall (VinPro, 2015, 2016). The mean 

maximum temperatures, as well as the mean of the minimum temperatures, between December and 

March were higher in 2015/2016 when compared to the same period in the previous season, 

2014/2015. Additionally, during this period the maximum monthly temperatures registered 39.4, 41.8 

and 41.1ºC in the vineyard for December 2014, January 2015 and February 2015 respectively. 

However, in the following vintage during the corresponding months these temperatures were 46.6, 

43.4 and 43.2ºC respectively. The high temperatures in December 2015 might have affected not 

only the phenolic biosynthesis, affecting their accumulation during ripening, but also the cell wall 

integrity. However, the temperatures warmed up in the end of February and March 2015, leading to 

an earlier last of harvest compared to 2016, as it is shown in Table 4.1 (from 23ºBrix to 25ºBrix).   

Table 4.1. Grape parameters analysed at harvest of fresh Shiraz grapes at three different ripeness stages 

(21ºBrix, 23ºBrix and 25ºBrix) during two different vintages (2015 and 2016). 

 2015 2016 

 21ºBrix 23ºBrix 25ºBrix 21ºBrix 23ºBrix 25ºBrix 

Harvest date 16-Feb 27-Feb 04-Mar 16-Feb 29-Feb 14-Mar 

ºBrix 
21.70 c 23.33 b 25.37 a 20.80 d 23.03 b 25.00 a 

0.10  0.22  0.18  0.15  0.26  0.15  

pH 
3.44 a 3.63 b 3.92 c 3.40 a 3.55 b 3.91 c 

0.01  0.02  0.02  0.03  0.02  0.09  

TA (g/L) 
 

5.51 a 4.70 b 4.78 b 5.59 a 5.56 a 4.73 b 

0.11  0.04  0.09  0.13  0.07  0.29  

Berry weight 
(g) 

1.24 a 1.16 ab 1.04 b 1.21 a 1.09 ab 1.05 b 

0.05  0.09  0.06  0.03  0.03  0.03  
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4.3.2. Influence of the vintage and ripeness on the monosaccharide composition of the 

grape skin cell walls  

Figure 4.1 illustrates the content in mol % of the nine major monosaccharides in the skins of the 

fresh grapes harvested at three different ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) during two 

consecutive vintages. From our results no clear relationship was observed between grape ripeness 

(from 21ºBrix to 25ºBrix) and the overall monosaccharide composition (Appendix Table 4.1). Other 

studies have focused on the evolution of the grape berry cell walls from véraison (Nunan, et al., 

1998; Vicens, et al., 2009). In this study, the three ripeness levels were during the commercial 

harvest, when the berry is developed. However, the combination between ripeness and vintage was 

found to be significant (Appendix Table 4.1). Arabinose (Ara), xylose (Xyl), galacturonic acid (GalA) 

and glucose (Glu) were affected by the grape ripeness and vintage, especially Ara and GalA. In 

2015, GalA decreased from 47% to 38% (from 23ºBrix to 25ºBrix), as a part of this de-pectination 

process occurring during ripening. On the other hand, in 2016, the proportion of GalA remained 

constant. Therefore, these results suggest a vintage effect according to the GalA data. This higher 

amount in GalA levels in 2015 can be linked to a firmer berry, with a more intact pectin layer. Thus, 

the grape pomace in 2015 was more intact, especially when comparing the earliest ripeness levels 

(21 ºBrix grapes).    

 

Figure 4.1. Monosaccharide composition (mol %) of fresh Shiraz grapes at three different ripeness stages 
(21ºBrix, 23ºBrix and 25ºBrix) during two different vintages (2015 and 2016). Different letters illustrate the 
significant differences (ANOVA, LSD test) between the three ripeness and two vintages within the individual 
monosaccharides. The nine major monosaccharides are displayed: Ara (arabinose), Rha (rhamnose), Fuc 
(fucose), Xyl (xylose) GalA (galacturonic acid), Man (mannose), Gal (galactose), Glu (glucose), GlucA 
(glucuronic acid). 
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Ara was found to be the second major monosaccharide for both seasons. It can be generally found 

as side chain residues part of rhamnogalacturonan I (RG-I) in the pulp and skin tissue or as part of 

the arabinogalactan-proteins (AGPs) (Vidal, et al., 2001; Gao, et al., 2015). Moreover, a greater % 

of Ara is related to a higher proportion of hairy region (RG-I) and a higher exposure of the 

hemicellulose fraction, due to a more depectinated pectin layer (Gao et al., 2016). The % of Ara was 

significantly higher in 2016 compared to 2015. A higher arabinose and galactose content in coffee 

leaves has been reported due to these plants being under heat stress (Lima, et al., 2013). However, 

the trends during ripening were different between the two vintages. In 2015, the mol % of Ara 

increased during ripening, being only significant from 23ºBrix to 25ºBrix (18% to 24 mol %) as 

illustrated in Figure 4.1. Since the results are expressed in relative mol %, this can be explained by 

the decrease in GalA in the de-pectination process. The opposite trend was observed from 23ºBrix 

to 25ºBrix in 2016. Ripeness had a greater impact in 2015 than 2016 (Appendix Table 4.2 and 4.3) 

which might be related with the differences in the climatic conditions at an early stages of berry 

development. This lower GalA content and the higher proportion in Ara also led to a greater degree 

of de-pectination, and thus softer and more degraded grape berries, in 2016.  

 

4.3.3. Influence of the vintage and ripeness on the polysaccharide composition and 

structure of grape skin cell walls 

The polysaccharide composition of the fresh grape skins and the pomace’s skins were analysed 

after extracting the cell wall material with CDTA, yielding a pectin rich extract, and with NaOH, that 

extracts mostly hemicelluloses. Different polysaccharide polymers were measured by using sets of 

monoclonal antibodies (mAbs) and carbohydrate binding molecules (CBMs) which reacted towards 

certain cell wall polysaccharides and proteins (epitopes) in these extracts. Therefore, CoMPP 

provides different, additional information to complement the monosaccharide results and interpret 

the cell wall structure by the relative abundance of the cell wall polysaccharides and proteins due to 

a greater exposure to their specific antibodies or solubilisation within the extraction medium. As 

described in section 4.3.2, the differences in the skin polysaccharides were overall greater between 

vintages than the ripeness. The overall CoMPP results supported the monosaccharide data 

indicating more intact grape berry cell walls in 2015. From the CoMPP results, ripeness has an 

impact on the polymers of the grape berry cell walls (Appendix 4.4 and 4.5).  

Firstly, as expected, homogalacturonan (HG) and rhamnogalacturonans (RG-I) were the main group 

of polysaccharides found in the pectin fraction (CDTA extraction). The higher levels of GalA in 2015 

grapes were confirmed by the slightly higher signal intensity of some of the HG epitopes (LM18, 

LM19, LM20, 2F4) in riper berries. In Figure 4.2 one can see the separation of their three ripeness 

levels along the PC1 in Figure 4.2A1/B1 (47%), and Figure 4.2A2/B2 (50%) is shown. The 

distribution of some HG epitopes (LM18, LM19, 2F4), was associated with the progression of de-
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pectination during ripening for both seasons. However, HG showed variable trends for the ripening 

within and between the seasons (2015 and 2016).  

These small variations, as is the case occurred with JIM7, are better explained when looking at their 

relative abundance in the heatmap displayed in Figure 4.3. The antibody JIM7 (which react with 

highly esterified HG) progressively decreased (in the CDTA fraction) from 21ºBrix to 25ºBrix in 2015 

whereas it increased in 2016. The degree of esterification influences the affinity and binding between 

polysaccharides and to proanthocyanidins, and it affects the skin porosity (Hanlin, et al., 2010; 

Watrelot, et al., 2013). These results in 2016 could be interpreted as an easier extraction with the 

CDTA due to a greater solubility of the specific epitopes/polysaccharides while the grape skins of 

2015 seemed to have a more intact HG layer. This is also illustrated by the relative higher abundance 

of Ca2+ cross-linked HG (mAb 2F4) indicating a firmer middle lamella in the grape cell walls in 2015. 

The increase in exposure in these Ca2+ cross-linked HG in the 2016 grapes is the most obvious 

pattern correlating with the ripeness. The cell walls of riper grapes is more porous (Bindon, et al., 

2012; Bindon, et al., 2014b) probably due to pectin degradation by the plant endogenous enzymes. 

 

 

Figure 4.2. PCA plot and Loading plot of the CDTA extract (pectin-rich fraction) in three different ripeness 
levels (21ºBrix, 23ºBrix and 25ºBrix) of Shiraz grapes during two consecutive vintages (2015 and 2016). In the 
PCA, the samples are coloured according to the ripeness levels. In the loading score plots, the different 
polysaccharides and proteins epitopes are coloured by groups.  
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Figure 4.3. Heat map of the epitope abundance (0-100) in CDTA and NaOH extracts (CoMPP results) of fresh 
Shiraz grapes at three different ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) during two consecutive seasons 
(2015 and 2016). Values lower than 5 are indicated as 0. 

 

Furthermore, the NaOH extract also indicated a more intact cell wall in 2015.  As expected, the 

rhamnogalacturonans (RG-I) were the second major constituent of the pectin layer. However, the 

RG-I epitopes were extracted not only with the CDTA but also with the NaOH (Figure 4.3). The 

signals associated with RG-I (INRA-RU1, INRA-RU2, LM5, LM6) in the NaOH extract showed a RG-

I coating layer strongly associated with xyloglucans and cellulose microfibrils. Moreover, a higher 

proportion of xyloglucans (LM15 & LM25) and cellulose (CBM3a) was found in the NaOH extract in 

2016. The greater abundance of these epitopes presumably comes as a consequence of less intact 

RG-I coating layer, confirming a de-pectination level in the grape pomace from 2016 (Figure 4.3). 

Looking at the evolution during ripeness, as illustrated in Figure 4.4, the PCA plots of the NaOH 

extract show a clear trend between the three ripeness levels, especially for 25ºBrix, separated along 

their respective PC1. The separation along the PC1 is driven by an increase in the exposure of the 

inner layers during grape ripeness.  

The protein results supported the polysaccharide data (Figure 4.3). We found a similar abundance 

in the structural proteins epitopes, represented by extensins (LM1, JIM11 and JIM20) and 

arabinogalactan-proteins (AGPs) (JIM8, JIM13, LM14 and LM2) in the CDTA extract. The AGP’s 

recognized by JIM13 shows a small ripeness effect in the 2016 data.  The amount of AGPs epitopes 

in the NaOH was similar between the two vintages and there was a small increase with ripeness in 

the epitope for extensins (mAbLM1 and JIM20) in 2016.  
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Figure 4.4. PCA plot and loading plots for the NaOH extract (hemicellulose-rich fraction) in three different 
ripeness (21ºBrix, 23ºBrix and 25ºBrix) of Shiraz grapes during two consecutive vintages (2015 and 2016). In 
the PCA plots, the samples were coloured according to the ripeness levels. In the loading score plots, the 
different polysaccharides and proteins epitopes are coloured by groups.  

 

4.3.4. Influence of the vintage and ripeness on the phenolic composition of fresh grapes 

The grapes were the main source of phenolics in the wines, as no commercial tannin or oak additions 

were made to the wines. The chemical profiling of the fresh grapes was therefore correlate grape 

cell wall structural changes with the wine phenolics. Grape phenolic concentrations normally 

increase during grape ripening, but can decrease in concentration in over ripe grapes (Adams, 2006). 

The climatic conditions can also affect their biosynthesis and accumulation patterns (Ristic, et al., 

2006; Sun, et al., 2017). From our results, a strong and significant vintage effect was also found for 

the grape phenolic composition (Appendix Table 4.6 and Appendix Table 4.7). Therefore, the 

phenolic accumulation patterns during ripening were different between 2015 and 2016.  

Overall, from the “soft” wine-like extraction (Table 4.2), the vintage was found to be a determining 

factor (Appendix Table 4.6). However, similar results were found, between the vintages, regarding 

the amount of total phenolics (TP). The content in grape TP increased from 21ºBrix to 23ºBrix and 

afterwards did not change significantly. However, the concentration of anthocyanins and tannins 

during ripening was different between 2015 and 2016. The levels of anthocyanins were similar 

between the both seasons at 21ºBrix and 23ºBrix. In contrast, in 2015, the concentration of free 

anthocyanins decreased in the final ripening phase (25ºBrix) whereas it increased in 2016 (Table 

4.2). The increase in anthocyanin extractability has been widely reported in literature (Gil-Muñoz, et 
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al., 2011). However, similar to what was found in our 2015 results, the levels of anthocyanins can 

also experience a decrease in overripe grapes (Ryan & Revilla, 2003). Regarding the grape tannin, 

no significant variation was found in their concentration during ripening in 2016, This is contrary to 

the results found in 2015 where an increase in the grape tannin concentration was observed from 

23ºBrix to 25ºBrix. These results in 2016 agree with findings previously reported by some authors 

(Harbertson, et al., 2002; Canals, et al., 2005). Nevertheless, the conditions of the “soft extraction” 

do not favour the extraction of phenolics from seeds. The tannin concentration might thus be 

underestimated as it has been shown that the seed coat requires a hydration period to become more 

easily extractable (Cadot, et al., 2006).  

 

Table 4.2. Grape phenolics extracted from the “soft berry extraction” for the three ripeness levels (21ºBrix, 
23ºBrix and 25ºBrix) in fresh Shiraz grapes 2015 and 2016. The concentrations of tannin and anthocyanin are 
expressed in mg/g of berry.  

 2015 2016 

 21ºBrix 23ºBrix 25ºBrix 21ºBrix 23ºBrix 25ºBrix 

Tannins 
mg/g of berry 

0.37 a 0.41 a 0.65 b 0.51 ab 0.59 b 0.47 ab 

0.04  0.01  0.09  0.04  0.12  0.07  

Anthocyanins 
mg/g of berry 

0.37 a 0.37 a 0.26 b 0.31 ab 0.37 a 0.49 c 

0.02  0.01  0.01  0.02  0.04  0.03  

TP (AU) 
21.84 d 40.45 bc 36.64 c 35.24 c 45.41 ab 50.61 a 

0.77  1.81  2.91  2.45  1.64  4.03  

TP: total phenolics (AU) 

 

Nevertheless, the overall individual phenolics results (Table 4.3) also showed a strong vintage effect 

(Appendix Table 4.7), affecting the concentration of the individual phenolic compounds, but also 

confirmed some patterns, such as the decrease in anthocyanins in 2015, observed with the “soft 

extraction” (Table 4.2). The vintage effect was clearly observed when comparing the grapes at 

21ºBrix from both seasons. At that stage, the concentration of the individual phenolic compounds 

(except catechin) was significantly lower in 2016 than in 2015. From then, different trends were 

observed during ripening with a general lower variation in 2016. This was clearly observed in the 

concentration of B1 (Table 4.3). In 2015, B1 showed a significant decrease during grape ripening 

(from 21ºBrix to 25ºBrix). However, in 2016, levels did not change significantly during ripening.  
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Table 4.3. Individual and groups of phenolic compounds µg/g for the three ripeness levels (21ºBrix, 23ºBrix 

and 25ºBrix) in fresh Shiraz grapes 2015 and 2016. 

 

Similar results were found in the concentration of gallic acid and polymeric phenols during ripening. 

The gallic acid content decreased with the course of ripening in 2015 whereas in 2016, although a 

decreasing trend was also observed, did not change significantly from 21ºBrix to 25ºBrix. Regarding 

the amount of polymeric phenols, their concentration in fresh grapes reached its peak at 23ºBrix (in 

both seasons) decreasing towards 25ºBrix, but these changes were also not always significant. 

However, the variation in the grape polymeric phenol concentration was not significant in 2016.  

The levels of the total hydroxycinnamic acids was also significantly higher in 2015 when compared 

to 2016 at the earliest ripeness stage (21ºBrix) (Table 4.3). However, with the course of time, a 

decrease was observed in 2015 and the differences between the two vintages got reduced. 

Regarding the flavonol concentration, a lower amount was also found in 2016. Once again, the 

changes occurring in flavonol concentration during ripening were not significant in 2016 (Table 4.3), 

whereas a decrease was observed for the previous vintage (2015). 

Lower concentrations of anthocyanin and polymeric pigments were also observed in the 21ºBrix 

fresh grapes of 2016 (Table 4.3). However, a decreasing tendency was observed in 2015 for the 

 2015 2016 

 21ºBrix 23ºBrix 25ºBrix 21ºBrix 23ºBrix 25ºBrix 

Gallic acid 
2.41 a 2.03 b 1.49 c 1.45 c 0.98 d 1.29 cd 

0.24   0.07   0.05   0.11   0.02   0.06   

Catechin 
7.81 b 6.94 b 16.97 a 16.86 a 8.96 ab 7.90 b 

0.34   0.88   5.15   3.97   1.31   0.97   

B1 
23.94 a 17.19 ab 13.45 b 13.01 b 9.03 b 10.21 b 

1.29   0.40   1.48   3.60   2.70   4.39   

Polymeric phenols 
1521.39 ab 1766.92 a 1410.14 bc 1022.51 d 1160.52 cd 923.75 d 

113.86   173.70   4.68   23.75   141.38   20.34   

∑ Hydroxycinnamic 
acids 

14.24 a 15.25 a 7.69 ab 5.61 b 9.34 ab 10.02 ab 

4.46   4.05   0.05   0.29   0,00   0.82   

∑ Flavonols 
213.97 a 187.56 ab 158.85 bc 120.87 cd 127.85 cd 107.80 d 

10.90   22.09   12.48   8.52   5.84   15.49   

∑ Glucosylated 
anthocyanins 

508.48 a 430.14 abc 325.03 cd 257.75 d 443.41 ab 395.83 bc 

17.62   62.66   
32.13 

 
  21.66   19.21   39.50   

∑ Acetylated 
anthocyanins. 

205.49 a 197.33 a 155.98 ab 103.80 b 176.48 a 166.26 a 

7.99   32.45   11.86   10.63   8.72   18.29   

∑ Coumaroylated 
anthocyanins 

361.81 a 349.94 a 250.28 ab 172.49 b 249.77 ab 271.56 ab 

43.78   76.52   4.88   23.27   8.04   14.91   

Polymeric pigments 
36.18 bc 47.96 ab 50.13 a 18.80 d 31.65 c 23.72 cd 

2.71   6.64   1.34   1.39   5.60   3.93   
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concentration of glucosylated-anthocyanins, acetylated-anthocyanins and coumaroylated-

anthocyanins during ripening (Table 4.3). This decrease was only found to be significant in the 

amount of glucosylated anthocyanins and it could explain the decrease in anthocyanins 

concentrations found with the “soft extraction” (Table 4.2). In contrast, the concentration of 

anthocyanins in 2016 showed an increase during ripening (not significant in the case of 

coumaroylated anthocyanins). This decrease found, from 23ºBrix to 25ºBrix in 2015 grapes, could 

partly be explained by the formation of polymeric pigments during ripening (Table 4.3). The 

concentration of polymeric pigments was also significantly lower in 2016.  

4.3.5. Influence of vintage and ripeness on the phenolic composition of the wines 

Different colour and phenolic parameters were measured in the young wines. The phenolic 

composition in red young wines can be potentially related to the grape phenolics (Du Toit & Visagie, 

2012). The differences in the wine phenolic composition can also be influenced by different alcohol 

levels (increasing with the grape ripeness), as previously reported by Canals et al. (2005). In 

combination, grape ripeness and vintage, had a significant impact on the phenolic profile of the wines 

(Cagnasso, et al., 2011).  

Table 4.4. Colour and phenolic measurements in wines after alcoholic fermentations in 2015 and 2016 made 

from for the three ripeness levels (21ºBrix, 23ºBrix and 25ºBrix). 

 2015 2016 

 21ºBrix 23ºBrix 25ºBrix 21ºBrix 23ºBrix 25ºBrix 

CD (AU) 
16.10 b 27.33 a 24.70 a 11.35 c 17.84 b 17.64 b 

1.15  0.38  1.08  0.36  0.76  1.64  

Hue 
0.41 a 0.41 a 0.46 c 0.41 a 0.44 b 0.44 b 

0.00  0.00  0.01  0.00  0.01  0.01  

MCD (AU) 
13.94 b 21.38 a 21.51 a 8.28 c 15.12 b 16.73 b 

0.54  1.48  1.34  0.50  0.58  0.83  

TRP (AU) 
29.26 c 42.32 a 39.47 ab 24.17 d 37.50 b 37.82 b 

0.90  1.84  1.66  0.35  0.98  0.18  

TP (AU) 
38.95 b 55.14 a 55.80 a 39.40 b 51.62 a 53.37 a 

1.22  2.69  2.61  1.33  1.28  0.06  

Copigments 
(AU) 

16.05 bc 23.18 ab 30.98 a 11.38 c 18.13 bc 13.99 c 

0.49  1.22  6.60  0.24  0.52  1.47  

SO2 resistant 
pigments (AU) 

2.45 b 4.29 a 4.83 a 1.52 c 2.45 b 2.33 b 

0.08  0.19  0.26  0.20  0.17  0.14  

Tannins 
(mg/L) 

543.25 b 816.91 a 1021.35 a 311.57 c 584.99 b 842.03 a 

24.03  54.01  139.01  39.62  11.86  55.53  

CD: Colour Density (AU), MCD: Modified Colour Density (AU). TRP: Total Red Pigments (AU). TP: Total Phenolics (AU).  

 

In terms of grape ripeness, colour and other phenolic characteristics determined 

spectrophotometrically were often significantly lower in wines made from 21ºBrix grapes (Table 4.4). 
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However, no significant differences were found between wines made from 23ºBrix and 25ºBrix 

grapes within the same vintage, except for hue in 2015 and tannins in 2016, which increased.  

The vintage effect was not reflected in the amount of TP of the wines (Table 4.4). However, the 

overall results often showed higher colour density, copigments (only significant when the wines made 

from 25ºBrix were compared), SO2 resistant pigments, and tannins values (except for 25ºBrix) in 

2015 wines (Table 4.4). In both seasons, the concentration of SO2 resistant pigments content in 

wines was higher in the wine made from riper berries (Table 4.4). Their concentration in wines can 

partly be explained by the polymeric pigments levels found in grapes with the HPLC (R2=0.68). 

Additionally, the amount of TRP was significantly higher in 2015 compared to 2016, except at 

25ºBrix. Also, the concentration of wine copigments was higher as the wines were made from riper 

berries in 2015, whereas their levels were constant in 2016. The higher content of copigments, SO2 

resistant pigments and TRP contributed to the greater colour density (CD) and modified colour 

density (MCD) (where the pH effect is negated) in 2015.  

The results of the individual wine phenolic compounds determined with HPLC supported the 

abovementioned spectrophotometric data. The vintage effect clearly influenced the concentration of 

gallic acid and hydroxycinnamic acids (significantly higher in 2015). A greater amount of B1 (Table 

4.5) was found in wines from 2016 compared to 2015, which was not observed in fresh grapes. On 

the other hand, as found in fresh grapes, the amount of polymeric phenols was significantly higher 

in 2015 (Table 4.5). The HPLC results also showed the impact of ripeness on the increase of the 

polymeric phenol extractability with the increase in ºBrix in 2015. The concentration of these 

compounds in fresh grapes declined from 23ºBrix to 25ºBrix.  However, their concentration in wines 

made from 25ºBrix grapes was higher than those made from 23ºBrix.  

Moreover, although a positive correlation was also found between wine MCP tannins and wine 

polymeric phenols (R2=0.61), differences in wine MCP tannin content between vintages in wines 

made from 25ºBrix grapes were not significant different (Table 4.4). The possibility of a greater 

amount of wine tannins bound to polysaccharides in solution which may react with methylcellulose 

may explain these differences. An increase in the tannin concentration measured by the BSA method 

(Bovine Serum Albumin) has been reported when polysaccharides were added to the wine (Watrelot 

et al., 2017). A cleavage of the hydrogen bonds between phenolics and polysaccharides could occur 

with the acidic conditions of the HPLC method. Thus, we can’t exclude the possibility that the tannins 

precipitating with MCP in 2016 are bound to other components.  

The concentration of hydroxycinnamic acids was also significantly higher in wines of 2015 (Table 

4.5), in all ripeness stages, compared to the wines of 2016. In contrast to this and despite the 

differences in fresh grapes, similar concentrations of wine flavonols were found between the two 

vintages (except in wines made from 25ºBrix). In 2015, the flavonols seemed to become more 

extractable during ripening.  
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Concerning the anthocyanin and polymeric pigment content, from the results in wine (Table 4.5) and 

as previously discussed in fresh grapes, the vintage effect seems to have a lower impact on the wine 

monomeric anthocyanins (glucosylated, acetylated, and coumaroylated anthocyanin), compared to 

the ºBrix accumulation during grape ripening. The anthocyanin levels were fairly similar between the 

two vintages. In both seasons, the wines made from 21ºBrix grapes, had the lowest concentration in 

any of the three anthocyanin forms (Table 4.5). From there, in 2015, these compounds reached their 

peak in concentration in the wines made from 23ºBrix grapes, but decreasing again in terms of 

glucosylated anthocyanin and acetylated anthocyanins in wines made from 25ºBrix grapes. 

However, in 2016, the concentration in wine anthocyanins was did not change significantly between 

wines made from 23ºBrix and 25ºBrix grapes. On the other hand, the polymeric pigments were 

strongly influenced by the vintage. As for polymeric phenols, a greater amount of wine polymeric 

pigments was found in 2015.  

 

Table 4.5. Individual and groups of phenolic compounds (mg/L) in finished wines (after alcoholic fermentation 

- AF) in wines made from three ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) in 2015 and 2016. 

 2015 2016 

 21ºBrix 23ºBrix 25ºBrix 21ºBrix 23ºBrix 25ºBrix 

Gallic acid 
5.96 d 8.09 ab 7.28 c 6.13 d 7.42 bc 8.61 c 

0.17  0.33  0.18  0.10  0.40  0.21  

Catechin 
6.11 c 8.78 b 11.24 a 10.14 ab 10.07 ab 9.70 ab 

1.01  0.60  1.17  0.13  0.26  0.10  

B1 
14.24 d 17.56 cd 25.18 c 47.51 b 62.19 a 64.47 a 

1.24  2.10  1.08  1.61  5.04  2.96  

Polymeric phenols 
375.69 c 643.24 b 711.43 a 182.76 d 329.84 c 372.98 c 

16.35  27.22  18.52  9.88  19.91  20.45  

∑ Hydroxycinnamic 
acids 

34.28 c 48.26 a 42.69 b 17.95 e 17.95 e 23.64 d 

0.56  2.62  2.77  0.30  1.26  0.56  

∑ Flavonols 
83.95 b 99.63 a 102.64 a 83.49 b 93.82 ab 82.57 b 

4.48  0.96  4.85  1.70  7.23  3.62  

∑ Glucosylated 
anthocyanins 

188.81 b 261.52 a 205.30 b 153.18 c 238.14 a 237.87 a 

7.22  9.33  10.31  0.79  12.09  7.83  

∑ Acetylated 
anthocyanins. 

83.85 c 114.21 a 96.64 b 65.93 d 101.54 b 104.27 ab 

2.74  3.43  4.42  0.53  4.75  3.64  

∑ Coumaroylated 
anthocyanins 

29.77 cd 43.69 a 37.98 ab 22.26 d 35.05 bc 42.46 ab 

2.32  2.93  3.01  1.04  2.49  2.60  

Polymeric pigments 
21.07 c 34.78 a 38.14 a 10.11 d 25.11 b 20.72 c 

0.89  0.73  1.16  0.32  1.38  1.63  
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4.3.6. Impact of vintage and ripeness on the cell wall structure and phenolic extractability 

As previously discussed (section 4.3.4 and 4.3.5), differences found in the grape phenolics during 

ripening were often reflected in young wines. Additionally, large differences were found in the 

monosaccharide composition of the grape skin. From the previous results (section 4.3.2 and 4.3.3), 

the vintage had an important effect on the grape berry cell wall structure and composition. Likewise, 

differences in GalA and Ara were considerable. These differences may be explained by the climatic 

differences between the two vintages (2015 and 2016). The 2016 harvest season was characterised 

as being a particularly dry one, preceded by a warm summer with lower amount of rain compared to 

the previous season (VinPro, 2016).   

It is thus clear that 2015 grape berry skins were more intact compared to 2016. Since the grape 

maturity (in ºBrix) was the same between the two vintages, changes that occurred during ripening 

and the subsequent extractability was influenced by the initial structure of the grape pomace. 

Climatic differences, such as the impact of the higher temperatures in the early maturation stages, 

may have affected the intactness of the grape berry. From there, a mild de-pectination process 

occurred during grape maturation for both vintages. However, the impact of ripeness was more 

clearly shown after the completion of the alcoholic fermentation. The results from cell wall analysis 

in the fermented grape pomace will be described later on (Chapter 5). Therefore, the pectin layer in 

2015 seemed to be not only more intact, but it could also have had a lower porosity structure 

compared to 2016, with a lower degree of procyanidin retention. 

The largest modifications during grape ripening for both vintages seemed to occur mainly in the cell 

wall’s pectin layer. Overall the monosaccharide and polysaccharide results suggest a more intact 

berry structure in 2015 compared to 2016 (more de-pectinated from an early ripeness stages). The 

“initial” grape cell wall structure, can potentially be relevant for the winemaking, as it will influence 

the cell wall de-pectination, the phenolic biosynthesis and therefore the subsequent phenolic 

extractability during wine maceration. Studies in apple tissue showed how the interactions between 

pectin and proanthocyanidins were stronger with a higher degree of methyl-esterification of the HG 

(Le Bourvellec, et al., 2009; Watrelot, et al., 2013). From our results, a greater amount of highly 

methyl-esterified HG (JIM7) was exposed in 2016. In less intact and more de-pectinated pomace, 

the increase in highly-methyl esterified HG extractable with the CDTA could be related to greater 

exposure of this epitope due to an increase in the skin porosity. From our results we cannot obtain 

specific information about the grape porosity. Additionally, a higher amount of RG-I (mAbs INRA-

RU1, INRA-RU2) or “hairy region” was also found in 2016. These polysaccharides have also been 

reported to be associated with a lower proanthocyanidin extractability (Quijada-Morín, et al., 2015). 

These results confirmed the better exposure of the RG-I in the hemicellulose layer of 2016 grapes, 

due to a more degraded skin layer.  
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The lower phenolic content found in the 2016 wines, especially in polymeric phenols concentrations, 

could possibly explained by a lower phenolic synthesis in 2016 grapes. Climatic conditions can 

influence the plant photosynthesis and physiology, therefore affecting the biosynthesis and 

accumulation patterns of certain phenolic compounds (Teixeira et al., 2013; Sun et al., 2017). These 

differences may be influenced by differences in the plant physiology and berry metabolism between 

the two vintages (such as the higher temperatures in 2016). Temperature has been shown to 

influence the concentration of flavonols and anthocyanins concentrations, however, this effect on 

flavon-3-ol or proanthocyanidin concentration are not that clear (Cohen, et al., 2012). Skin 

proanthocyanidin accumulation and their mean degree of polymerisation (mDP) seem to increase at 

véraison with higher temperature, but it seems to have little impact post-véraison (Cohen, et al., 

2008). However, higher temperatures have been shown to alter the cell wall polysaccharide structure 

in other plants, especially due to a decrease in pectin polysaccharides and a greater arabinose and 

galactose content (Lima, et al., 2013). A second hypothesis could explain the lower phenolic content 

in 2016 wines due to a greater diffusion of certain cell wall components (as a consequence of more 

degraded cell walls) into the wines, interacting with the wine phenolics. Partial Least Square (PLS) 

analysis were used to assess the relationship between the HG and RG epitopes with the levels of 

catechin, B1-dimer and polymeric phenols in the grapes for all the grape treatments. The loading 

plot in Figure 4.5 shows a negative correlation between the polymeric phenols and the HG epitope 

JIM7 and with the RG-I backbones (INRA-RU1, INRA-RU2). 

 

 

Figure 4.5. PLS loading plot. Relationship between the different HG (JIM5, JIM7, LM18, LM19, LM20, 2F4, 
LM8) and RG (INRA-RU1, INRA-RU2, LM5, LM6, LM13) epitopes composition and the catechin, B1 and 
polymeric phenol concentration in fresh grapes for all three ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) and 
vintages (2015 and 2016). 
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Further cell wall modifications occurred during the grape maceration. Results from the 

monosaccharide composition in fermented pomace supports the idea of a more intact grape berry 

in 2015. Both, Ara and GalA showed lower mol % in the fermented pomace (Figure 4.6), compared 

to the fresh grapes, reducing their differences between the two vintages. This decreasing trend in 

GalA and Ara % was already reported by Zietsman et al. (2015). A greater de-pectination was found 

in 2015, shown by the % of Gal. The more depectinated or degraded the fresh grapes are, the 

smaller the changes in mol% GalA that will take place during fermentation (as in 2016). A relative 

increase in Man % and Glu % was also observed, associated with the co-precipitation of 

polysaccharides from the yeast cell walls was also observed (Figure 4.6).  

 

 

Figure 4.6. Monosaccharide composition (mol %) in the fermented pomace (PO) in three different ripeness 
levels (21ºBrix, 23ºBrix and 25ºBrix) during two consecutive vintages (2015 and 2016). Different letters 
illustrate the significant differences (ANOVA, LSD test) between the three ripeness and vintage within the 
individual monosaccharides. The nine major monosaccharides are displayed: Ara (arabinose), Rha 
(rhamnose), Fuc (fucose), Xyl (xylose) GalA (galacturonic acid), Man (mannose), Gal (galactose), Glu 
(glucose), GlucA (glucuronic acid). 

 

The polysaccharides results (Figure 4.7) in fermented grape pomace confirmed the idea of a more 

intact grape berry in 2015. The impact of ripeness in the cell wall polysaccharide and protein 

composition was more clearly shown after the completion of alcoholic fermentation. Firstly, an 

increase in the extractability of some of the HG epitopes (LM18, 2F4) with the CDTA was more 

obvious in 2016 than in 2015. Also, the increase during ripening in AGPs (JIM13). These differences 

between vintages were more obvious in the NaOH extract. Similar as in fresh grapes, the xyloglucan 

(LM15 and LM25) and cellulose (CBM3a) layer was more exposed in 2016 than in that of 2015. 

Furthermore, in 2016, an increased was observed with the course of grape ripeness in the RG-I 
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epitopes (mAbs INRA-RU1 and INRA-RU2) and arabinan side chains (mAb LM6). Also, a greater 

extractability in xyloglucan (mAbs LM15), extensins (LM1) and AGPs (JIM13) during ripening. A 

more depectinated berry structure, such as in 2016, enhanced the extractability of cell wall 

polysaccharides and proteins in the NaOH extract after the alcoholic fermentation. The increase in 

BS-400-2 signals was related to the formation of callose during the wine fermentation (Zietsman et 

al., 2015). 

 

Figure 4.7. Heat map of the epitope abundance (0-100) in the CDTA and NaOH of fermented pomace for the 
three ripening levels (21ºBrix, 23ºBrix and 25ºBrix) during two consecutive seasons (2015 and 2016). Values 
lower than 5 are indicated as 0. 

 

4.4. CONCLUSION 

 

Climatic conditions affect vine growth, berry metabolism and physiology and therefore the grape 

evolution during harvest. A clear vintage effect was observed, possibly influenced by the drought 

and differences in temperature between the two harvest seasons. The study aimed to establish a 

link between changes in the berry cell wall composition, influenced by the effect of ripeness 

(Zietsman et al., 2015) and the diverse climatic conditions per vintage, and the extractability of the 

phenolic compounds from grapes to wines (Gao et al., 2015; Gao, et al., 2016). Furthermore, it also 

brings out the possibility of a relationship between the berry intactness and the phenolic 

extractability, with a higher proanthocyanidin retention in more degraded grape pomaces. 

Additionally a possible relationship between heat stress and de-pectination in grape berries might 

exist. To date, contradictory trends have been reported on tannin extractability during ripening. 

These differences may not only depend on the phenolic synthesis/accumulation, but also on 
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differences in the cell wall composition and structure, influenced by the climatic conditions and the 

vine growth and berry physiology. In short, this is the first study performed in Shiraz using the 

combination of these methods allowing us to reach a better understanding of the relationship 

between the cell wall components and the phenolic compounds. This can potentially contribute to a 

better understanding of this field, which is necessary for wine producers to have better control of 

phenolic extractability and therefore the subsequent wine phenolic composition. Changes in the 

phenolic profiles and cell wall composition during fermentation will be presented in the following 

chapter. 
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ABSTRACT 

 

The extent of phenolic compounds released during alcoholic fermentation is dependent on several 

structural and conformational changes occurring in the grape skins during ripening and during 

alcoholic fermentation. The present study evaluated the relationship between the cell wall breakdown 

and the colour and phenolic extractability during alcoholic fermentation in Shiraz wines made from 

grapes harvested at different ripeness levels (21ºBrix, 23ºBrix and 25ºBrix). The phenolic differences 

between the ripeness treatments were minimal after ¼ of the fermentation was completed. However, 

colour and phenolic content were significantly higher in completed wine made from 25ºBrix grapes 

compared to those made from harvested at 23ºBrix and especially 21ºBrix. In brief, the level of grape 

cell wall polysaccharide deconstruction during fermentation was a determining factor in the phenolic 

extractability. In this context, the de-pectination during ripening was found to enhance this 

deconstruction or “opening-up” of the grape pomace produced during the alcoholic fermentation, 

thus increasing the differential extraction of specific polyphenols into the wines. Additionally, this cell 

wall deconstruction also played a role in the possible retention and extraction of specific 

proanthocyanidins, depending on their nature and polymer length.  

  

Stellenbosch University  https://scholar.sun.ac.za



107 

 

5.1. INTRODUCTION 

 

The composition of the grapes is the main variable influencing the initial amount and nature of wine 

phenolics; however, due to their reactivity, phenolic compounds continuously evolve over time 

(Pérez-Magariño & González-SanJosé, 2004; Monagas, et al., 2005; Garrido & Borges, 2013). 

These molecules are gradually extracted during the alcoholic fermentation due to grape tissue 

breakdown and the degradation of the grape berry cell wall structure during maceration. Different 

winemaking techniques will thus also influence the final phenolic concentration in the wines (Marais, 

2003; Canals, et al., 2005; Sacchi, et al., 2005; Yacco, et al., 2016). However, there is a lack of 

information on the relationship between the different groups of grape phenolics extracted into the 

wine and the berry cell wall polysaccharides, in fresh grapes and during fermentation.  

Grape phenolics are represented by a large range of chemical structures, essentially divided in non-

flavonoid and flavonoid compounds. Hydroxycinnamic acids (such as caftaric acid and coutaric acid) 

are normally the most abundant non-flavonoid compounds in wines. The hydroxycinnamic acids are 

extracted from the cellular vacuoles not only from the grape skin, but also from the cells in the pulp 

(Monagas, et al., 2005; Adams, 2006; Garrido & Borges, 2013). On the other hand, flavonoids are 

subdivided into several groups and classes according to the unsaturation of on the pyran ring and 

the substitutions in the B ring. Anthocyanins are extracted from the hypodermal layers of grape skins 

(Ribéreau-Gayon, et al., 2006). These compounds generally accumulate during ripening, becoming 

more extractable at commercial harvest (Hernández-Hierro, et al., 2012, 2014). Flavonols are a 

group of compounds also found in the grape skin whose biosynthesis is highly influenced by sunlight 

exposure of the grapes (Makris, et al., 2006). On the other hand, flavan-3-ols and proanthocyanidins 

(or condensed tannins) can be extracted not only from the grape skins, where they can specifically 

be found as free compounds in the tissue cell vacuoles or bound to cell wall components, notably 

proteins or  polysaccharides (Amrani Joutei, et al., 1994); but also from the grape seeds (Geny, et 

al., 2003; Ribéreau-Gayon, et al., 2006). Differences in the proanthocyanidins polymer length and 

molecular structure can affect its reactivity with other phenolic compounds or with cell wall material, 

affecting the extractability of these compounds from grapes into wine (Hanlin, et al., 2010; Bindon & 

Kennedy, 2011; Bindon, et al., 2014a; Quijada-Morín, et al., 2015). Additionally, skin 

proanthocyanidins can be divided into procyanidins and prodelphinidins. Seed proanthocyanidins 

consist of procyanidins. Recent studies have shown that skin-derived proanthocyanidin 

concentrations in wine increase during grape ripening, partly as a consequence of a more extractable 

grape pomace (Ribéreau-Gayon, et al., 2006; Bindon, et al., 2013), whereas the seed tannins 

extractability seems to decrease during ripening (Kennedy, et al., 2000; Peyrot Des Gachons & 

Kennedy, 2003; Bautista-Ortín, et al., 2012). However, changes in tannin extractability remains a 

controversial topic as some other authors have showed a decrease in the tannin extractability during 

ripening (Adams, 2006; Hanlin & Downey, 2009).  
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The release of these grape phenolic compounds is accompanied by the diffusion of certain cell wall 

components as a consequence of the grape pomace cell wall breakdown occurring during the 

alcoholic fermentation (Guadalupe & Ayestarán, 2007; Gil Cortiella & Peña-Neira, 2017). Grape 

berry cell walls thus experience a progressive degradation of their pectin layer (i.e. de-pectination). 

The addition of commercial enzymes enhanced the de-pectination process and consequently the 

extraction of phenolic compounds in Cabernet Sauvignon (Gao, et al., 2016). However, this cell wall 

de-pectination begins during the grape ripening process in the vineyard. A recent study in Pinotage 

showed the lower impact of commercial enzymes in the de-pectination of riper berries, which are 

naturally more degraded than those of than those harvested at a lower sugar level (Zietsman, et al., 

2015). However, the different ripeness levels were obtained from two different harvesting seasons. 

These changes entail the softening of the fruit, which is linked to pectin degradation, induced by 

pectolytic enzymes, and the solubilisation of the cell wall polysaccharides together with an increase 

in its protein content (Nunan, et al., 1998; Huang, et al., 2005; Ortega-Regules, et al., 2008; Goulao, 

et al., 2012).  

As a consequence of the cell wall breakdown occurring during the alcoholic fermentation, a fraction 

of these cell wall components is also extracted into the wine. The concentration of these cell wall 

derived proteins and polysaccharides can thus influence the wine’s sensory properties and phenolic 

stability (Revilla & González-SanJosé, 2003; Vidal, et al., 2003, 2004; Guadalupe & Ayestarán, 

2007). Wine polysaccharides, mainly extracted from grapes and yeasts, can enhance or inhibit 

tannin aggregation (Riou, et al., 2002; Poncet-Legrand, et al., 2007) affecting the colloidal stability. 

Several studies have analysed the impact of different winemaking techniques, such as the addition 

of commercial enzymes, on the enhanced extraction of grape phenolics (Ducasse et al., 2010; 

Apolinar-Valiente et al., 2015; Río-Segade et al., 2015; Zietsman et al., 2015; Castro-López et al., 

2016; Gao et al., 2016).  

Different studies on fruits have demonstrated how all these changes can influence the fruit cell wall 

composition as well as the skin’s porosity consequently increasing the amount of active binding sites 

(Bindon, et al., 2010, 2012; Castro-López, et al., 2016) and thereby increasing the phenolic retention 

by the fruit matrix (Renard, et al., 2001; Le Bourvellec, et al., 2004; Bindon, et al., 2012; Watrelot, et 

al., 2013, 2017). The high affinity between certain phenolic compounds and cell wall material (CWM), 

especially homogalacturonans (HG) and rhamnogalacturonan-I (RG-I), leads to a retention 

phenomenon known as adsorption.  

The main aim of this study was to investigate the link between the cell wall disassembly, on a 

polysaccharide level, and the release of the grape phenolic compounds during wine fermentation. 

Most studies have approached both variables individually (Gao, et al., 2015; Zietsman, et al., 2015; 

Yacco et al., 2016), but there is little information available about the relationship between cell wall 

material, especially polysaccharides, and the extraction of phenolic compounds during fermentation 

(Guadalupe & Ayestarán, 2007; Springer, et al., 2016). The use of grapes harvested at three different 

Stellenbosch University  https://scholar.sun.ac.za



109 

 

ripeness levels from the same vineyard, could help to better understand the influence of the natural 

de-pectination of the grape tissues occurs during ripening on the subsequent phenolic extractability 

during fermentation. The information obtained from this work could shed more light on the role of 

specific cell wall polysaccharides in the phenolic extraction during alcoholic fermentation. 

 

5.2. MATERIALS AND METHODS 

 

5.2.1. Grapes and winemaking procedures 

How the grapes and wines were made can be found in Chapter 4, but a brief summary will be 

presented again. Grapes were harvested from the same Shiraz vines as in Chapter 3, Smart-Dyson 

training  system on a 101-14Mgt rootstock, at three ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) in 

2016 from the Welgevallen experimental farm (GPS coordinates: 33°56'25.0"S 18°51'56.4"E) of the 

Department of Viticulture and Oenology of Stellenbosch University. A variable number of vines (up 

to approximately 120 kg) from the same rows were alternatively harvested for the three ripeness 

stages. Once in the cellar, grapes from the same ripeness treatment were pooled and divided into 

three fermentation buckets (40 kg), to reduced the intra-vineyard variability. The winemaking is 

described in Chapter 3. Fresh grapes from the three ripeness levels were sampled. Fermenting 

pomace and must samples were taken at several stages of the alcoholic fermentation (¼F, ½F, ¾F), 

while maintaining the skin to liquid ratio during fermentation. The fermentation sampling stages were 

assessed by the proportional decrease in ºBrix which was monitored with the use of a Ballingmeter. 

Grape skins were pressed after alcoholic fermentation (AF) in a basket press and the pressed wine 

added to the free run wine. 

 

5.2.2. Skin cell wall preparation 

Fresh berries (GR) and fermenting grape pomace from the three ripeness levels were collected 

during the same fermentation stages (¼F, ½F, ¾F) and in pressed pomace (PO). The alcohol-

insoluble residue (AIR) was prepared from grape skins as described in Chapter 4. Between four to 

five AIR extractions were performed for each biological ferment of each ripeness level.  

 

5.2.3. Monosaccharide analysis of cell wall samples 

The de-pectinaction occurring in the cell wall during ripening and fermentation was analysed with 

gas chromatography coupled with mass spectrometry (GC–MS) by  measuring the nine major cell 

wall monosaccharides: arabinose (Ara), fucose (Fuc), rhamnose (Rha), xylose (Xyl), mannose 
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(Man), galacturonic acid (GalA), galactose (Gal), glucose (Glu) and glucuronic acid (GlcA). The 

chromatography conditions of the GC-MS are described in Chapter 4. The hydrolysis of AIR samples 

was carried out as described in Chapter 4.  

 

5.2.4. Comprehensive Microarray Polymer Profiling (CoMPP) analysis of cell wall fractions 

The polysaccharide composition in the pectin- and hemicellulose-rich fractions of the grape pomace 

was profiled with the use of CoMPP. Approximately 10 mg of AIR samples were analysed as 

described in Chapter 4.  

 

5.2.5. Colour and phenolic measurements 

5.2.5.1. Spectrophotometric analysis 

To assess the phenolic extraction during fermentation, colour and phenolic analysis were performed 

for all three grape ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) at different stages during alcoholic 

fermentation (¼F, ½F, ¾F) in the fermenting must and in the pressed fermented samples (AF). 

Different colour and phenolic parameters were performed as described in Chapter 3. All 

measurements were performed in triplicate.  

The wine colour of all samples was also assessed with the CIELab colour space. This colorimetric 

approach was initially proposed by the Commission International de l’eclairage (CIE) (CIE, 1978). 

The CIELab method, recognised by the OIV (OIV, 2006), is used in wine as a more realistic approach 

to evaluate the wine’s colour in a multidimensional space (Ayala, et al., 1997). The wine colour was 

measured in a three dimensional colour space, defined by the following chromatic characteristics: 

L* as the clarity of the sample (L*=0 is black whereas L*=100 is colourless), a* as the red/green 

colour component (a* > 0 red, a* < 0 green), and b* as the blue/yellow component (b* > 0 yellow, b* 

< 0 blue) and its derivatives magnitudes Cab* (chroma, i.e. saturation ) and Hab* (hue angle). The 

minimal colour differences that can be detected by the human eye have been established as ΔE* = 

2.7 (Pérez-Caballero, et al., 2003). All wine samples were centrifuged at 8000 rpm during 5 minutes 

prior to analyses. The spectra between 380 and 770 nm was recorded with the use of a Multiskan 

GO Microplate Spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA).  

 

5.2.5.2. HPLC analysis 

Monomeric and polymeric phenolics were individually quantified in the different sampling stages of 

the wines at three ripeness levels (21ºBrix, 23ºBrix, 25ºBrix). The HPLC method and conditions are 

described in Chapter 3. Data processing was performed with Agilent ChemStation software (Agilent 
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Technologies – Santa Clara, California, USA) using the following phenolic standards: gallic acid, (+)-

catechin, caffeic acid, p-coumaric acid, quercetin-3-glucoside, quercetin from Sigma-Aldrich Chemie 

(Steinheim, Germany), and malvidin-3-glucoside from Extrasynthese (Lyon, France).  

 

5.2.5.3. Phloroglucinolysis 

The proanthocyanidin fraction from the grape pomace was analysed by acid-cleavage in the 

presence of phloroglucinol using the conditions from Oberholster et al., (2013). The grape skins were 

peeled from fresh berries and the grape pomace at different stages during the alcoholic fermentation 

(¼F, ½F, ¾F and end of fermentation - AF) and then blended in an extraction solvent (70% acetone) 

using an IKA Ultra-Turrax T 18b (IKA Labortechnik, Staufen, Germany) homogeniser. All extractions 

were carried stirring at 4ºC during 24 hours. The extracts were centrifuged (5 min at 800 rpm), 

evaporated and lyophilised. The final extract was then dissolved in methanol. Cleavage reactions 

were performed by the addition of 100 µL of phloroglucinol solution (100 g/L phloroglucinol and 2g/L 

ascorbic acid in a methanol solution containing 0.2N HCl) to 100 µL of grape sample. Samples were 

heated up to 50ºC during 20 min. The cleavage reaction was then stopped by the addition of 1 mL 

of 40 mM sodium acetate. The samples were centrifuged before the injection. Each of the three 

biological replicates were analysed in duplicate. Phloroglucinol, ascorbic acid and sodium acetate 

reagents were obtained from Sigma-Aldrich (Johannesburg, South Africa). 

The chromatographic separation was carried out by RP-HPLC, using two Chromolith Performance 

RP-18e columns in series (100 mm x 4.6 mm, 3μm) provided with a pre-column (Merck (Pty) Ltd, 

Johannesburg, South Africa) on a Agilent 1260 operated with Chemstation software. Mobile phases 

were 1% (v/v) aqueous acetic acid (A) and acetonitrile containing 1% (v/v) acetic acid (B). The 

column temperature was 30°C and the flow rate was 2 mL/min. The method conditions were as 

follows: 0 min to 6 min (B: 3%), followed by a linear gradient in 15 min (from 3 to 18% of B) and 80% 

B for 3 min. The column was washed with 3% B. The instrument conditions were re-equilibrated for 

3 min prior to the next injection. The proanthocyanidin cleavage products were determined by means 

of their response factor relative to (+)-catechin, which was used as the quantitative standard. The 

molar absorptivity determined by Kennedy & Jones (2001a) was used. The mean degree of 

polymerisation (mDP) was calculated as the sum (in moles) of all the terminal and extension subunits 

divided by the terminal units. 

These extracts were also used to assess the remaining individual phenolics in the skins during 

fermentation with HPLC as described in section 5.2.5.2 in the 21ºBrix fermentations. 
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5.2.6. Statistical analysis 

All analyses were carried out using Statistica 13.2 (TIBCO Statistica software, Palo Alto, CA, USA). 

Mixed model repeated measures ANOVAs were used and Fisher's least significant difference (LSD) 

corrections were used for post-hoc analyses. Significant differences were judged on a 5% 

significance level (p≤0.05). The distribution of certain chemical and sensory datasets were analysed 

with Principal Component Analysis (PCA) using SIMCA 14.1 software (Sartorium Stedim Biotech - 

Malmö, Sweden). 

 

5.3. RESULTS AND DISCUSSION 

 

All wines completed fermentation to dryness. The changes in pH and the increase in the ethanol 

content during the alcoholic fermentation were also monitored during the same sampling stages. 

The pH in the wines made from 21ºBrix grapes was significantly lower than the wines from 23ºBrix 

and 25ºBrix grapes (Table 5.1). No significant differences were found between 23ºBrix and 25ºBrix 

in terms of pH. The differences in pH, together with the alcohol levels can influence the phenolic 

extractability. The alcohol levels did not differ between the different wines at ¼ F and ½ F. 

Nonetheless, as the fermentation progressed, from ¾ F to AF, these differences became significant 

(Table 5.1). In AF wines, the alcohol level was significantly higher in the wines made from 25ºBrix 

grapes compared to wines made from 21ºBrix and 23ºBrix (Table 5.1).  

 

Table 5.1. Changes during fermentation in the wine alcohol content and pH of wines made from Shiraz grapes 
from three different ripeness levels. The different letters indicate significant differences (ANOVA, p < 0.05) 
between the treatments. 

  21ºBrix           23ºBrix          25ºBrix 

Alcohol (%v/v) 

¼ F 2.74 ± 0.52 g  3.06 ± 0.15 g 3.03 ± 0.04 g 

½ F 5.86 ± 0.86 f 6.02 ± 0.43 f  5.74 ± 0.14 f 

¾ F 7.35 ± 0.25 e 8.75 ± 0.30d 8.80 ± 0.27 d 

AF 12.02 ± 0.14 c 13.70 ± 0.32 b 15.08 ± 0.19a 

pH 

¼ F 3.29 ±  0.04cd 3.37 ± 0.04 b 3.37 ± 0.04 b 

½ F 3.30 ± 0.04d 3.37 ± 0.03 b 3.38 ± 0.02 b 

¾ F 3.26 ±  0.02d 3.37 ± 0.04 b 3.37 ± 0.02 b 

AF 3.36 ± 0.02b 3.47 ± 0.05 a 3.52 ± 0.02 a 
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5.3.1. Cell wall deconstruction during alcoholic fermentation 

5.3.1.1. Changes in the grape skin monosaccharides during fermentation 

Apart from the grape berry cell wall modifications occurring during ripening, further structural 

changes take place during the alcoholic fermentation. A progressive disruption of the grape cell wall 

network leads to the diffusion of aroma and phenolics compounds into the wine. This process is 

partly due to natural grape enzymatic activity, the pH and also the ethanol formed. Therefore, some 

of these cell wall components are probably also extracted into the wines as a consequence of this  

pomace breakdown (Vidal, et al., 2003; Guadalupe & Ayestarán, 2007). We therefore analysed the 

evolution in the relative monosaccharide composition (mol %) in the fresh berries (GR), the 

fermenting skins (¼ F, ½ F and ¾ F) and the fermented pomace (PO). These monosaccharides are 

the constituents of the grape cell wall polysaccharides. Thus, fluctuations in monosaccharides can 

suggest changes occurring in the grape cell wall polysaccharides. When all the samples were 

compared, the alcoholic fermentation caused the main changes in the monosaccharide composition 

(Appendix Table 5.1) whereas the grape ripeness did not show a significant impact (Figure 5.1). 

Firstly, the increase in the alcohol content of the wines led to a possible solubilisation of the soluble 

polysaccharides into the fermenting must. From the monosaccharide data, no clear evidence of de-

pectination were found from the evolution of GalA (Figure 5.1). However, a loss of arabinose (Ara) 

levels was found as the fermentation progressed in the 21 ºBrix and 23ºBrix treatments (Figure 5.1). 

Likewise a similar tendency was observed for rhamnose (Rha). Both parameters represent the loss 

in arabinogalactan-proteins (AGPs) and rhamnogalacturonans-I (RG-I), a consequence which is due 

to the de-pectination process. This decrease, in Ara and Rha, was not significant in the 25ºBrix 

treatments, which were probably naturally more depectinated. Other studies have also reported this 

loss in Ara, as a consequence of the release of AGPs and RG-I into the wine (Pellerin et al., 1995; 

Vidal et al., 2003; Guadalupe & Ayestarán, 2007; Zietsman, et al., 2015).  
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Figure 5.1. Monosaccharide composition (mol %) of AIR source from different stages of the fermenting 
pomace of Shiraz grape from three different grape ripeness levels. The different letters illustrate significant 
differences (ANOVA, LSD test p < 0.05) within the individual monosaccharides. Samples were coloured 
according to the grape ripeness, becoming lighter with the progression of the alcoholic fermentation. The 
sampling stages are represented by GR (fresh grapes), SK (fermenting skin) during different stages of the F 
(fermentation) and PO (fermented pomace). The nine major monosaccharides are displayed: Ara (arabinose), 
Rha (rhamnose), Fuc (fucose), Xyl (xylose) GalA (galacturonic acid), Man (mannose), Gal (galactose), Glu 
(glucose), GlucA (glucuronic acid). 

 

With regards to the rest of the monosaccharides, xylose (Xyl) also showed a decreasing trend, but 

the variation in levels of some of these neutral sugars, such as fucose (Fuc) and galactose (Gal) was 

not significant. Nevertheless, an increase in Man levels, and especially Glu was observed. Since the 

results are expressed in relative mol %, this increase is associated with the progressive disruption 

and loss of the pectin polymers (e.g. Ara and Rha), but could also due to a possible co-precipitation 

and adsorption of certain yeast cell wall polymers, rich in mannoproteins, onto the grape pomace. 

Although similar trends were observed in all three treatments, a greater % of Glu was found in 23ºBrix 

and 25ºBrix fermented pomace compared to 21ºBrix (Figure 5.1).  

 

5.3.1.2. Changes in the skin polysaccharide and protein fraction 

CoMPP results shows the relative abundance of cell wall polymers and proteins that could be 

extracted with CDTA (primarily extracting pectins) (Figure 5.2 and 5.3) and NaOH (primarily 

extracting hemicelluloses) (Figure 5.4 and 5.5) from the fresh grapes and the pomace at the different 

stages throughout the fermentation (¼ F, ½ F, ¾ F and AF). Cell wall breakdown was observed in 

all three ripeness levels (21ºBrix, 23ºBrix and 25ºBrix) with the course of fermentation. The CoMPP 

results show a mild de-pectination and de-esterification, expected in the absence of macerating 

enzymes. Nonetheless, the grape ripeness also influenced the changes in the cell wall 

polysaccharides, enhancing the impact of the fermentative effect (Appendix Table 5.2 and Appendix 

Table 5.3). Firstly, a higher extraction of total homogalacturonan (HG) epitopes (JIM5, JIM7, LM18, 
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LM19, LM20 and 2F4) proved the greater de-pectination in 25ºBrix fresh grapes (Appendix Figure 

5.1). The CoMPP data in fresh grapes suggest a greater de-pectination in riper berries (25ºBrix) due 

to a greater signal of the highly methyl-esterified HG labelled as JIM7 (Appendix Figure 5.1).  

 

 

Figure 5.2. Heatmap of the epitope abundance (0-100) in the CDTA extract (CoMPP results) of  Shiraz fresh 
grapes and fermenting pomace at different stages of the fermentation made from grapes at three ripeness 
levels (21ºBrix, 23ºBrix and 25ºBrix).The values are average of three biological repeats. The sampling stages 
are represented by GRAPES (fresh grapes), different stages of the alcoholic fermentation (¼ F, ½ F and ¾ F) 
and POMACE (fermented pomace). Values lower than 5 are indicated as 0.  

 

Afterwards, a decrease in the JIM7 signal was observed during the alcoholic fermentation (Appendix 

Figure 5.2) which might indirectly indicate a release of these HG polymers into the fermenting must 

(Gao, et al., 2015). In short, the more depectinated the greater the exposure of the hemicellulose 

polymers, as found in riper berries. Thus, as illustrated in Figure 5.3, the separation between fresh 

grapes and skin pomace ¼ F, along the corresponding PC1 axis for the CDTA extract, was larger 

than in PCA-23ºBrix (Appendix Figure 5.3) and PCA-25ºBrix (Appendix Figure 5.4). These results 

suggest a more intact pectin layer in 21ºBrix, more compact and less accessible. There was an 

increase in the amount of Ca 2+ crosslinked HG (2F4) extracted in fresh grapes during ripening that 

was significantly higher when 25ºBrix grapes were compared to 21ºBrix and 23ºBrix grapes. The 

significantly higher response of the 2F4 epitope represents a greater extraction of the Ca2+ cross-

linked HG gel. 3 As a consequence, more degraded cell wall tissue layers may thereby favour the 

extraction of the specific phenolic compounds in the wines made from 25ºBrix grapes.  
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Figure 5.3. PCA score and loading plot for the CDTA extract (pectin-rich fraction) of Shiraz 21⁰Brix treatment. 
The samples are coloured according to the alcoholic fermentation stage (GRAPE, ¼ F, ½ F, ¾ F and PO – 
fermented pomace) and the epitope category (loading plot). Degree of Esterification (DE). 

 

From the NaOH extract (Figure 5.4), the exposure of the xyloglucans and cellulose is another factor 

driving the separation during fermentation of 21ºBrix along PC1 (37.2%) (Figure 5.5). The distribution 

of the samples according to the mAbs extracted with NaOH suggest a more intact hemicellulose rich 

fraction in 21ºBrix when compared to 23ºBrix (Appendix Figure 5.5) and 25ºBrix (Appendix Figure 

5.6). The degradation of the hemicellulose rich fraction during fermentation is thereby enhanced by 

the grape ripeness as suggested Figure 5.5 when results from the 21 ºBrix treatment are compared 

with that of 23ºBrix (Appendix 5.5) and 25ºBrix (Appendix Figure 5.6).  
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Figure 5.4. Heatmap of the epitope abundance (0-100) in the NaOH extract (CoMPP results) of  Shiraz fresh 
grapes and fermenting pomace at different stages of the fermentation made from grapes at three ripeness 
levels (21ºBrix, 23ºBrix and 25ºBrix).The values are average of three biological repeats. The sampling stages 
are represented by GRAPES (fresh grapes), different stages of the alcoholic fermentation (¼ F, ½ F and ¾ F) 
and POMACE (fermented pomace). Values lower than 5 are indicated as 0. 

 

Therefore, the ripeness effect thus firstly enhanced the pectin layer’s disruption during fermentation. 

The “opening-up” of the grape pomace was confirmed by a greater extraction of the cellulose 

(CBM3a) and xyloglucans epitopes (LM15 and LM25) in the NaOH extract (Figure 5.4) during the 

progression of fermentation, as these  are found in the inner layer of the pomace (hemicellulose 

fraction) (Zietsman, et al., 2017). The BS-400-2 epitope which recognises glucan polymers was also 

found to increase, especially in 21ºBrix. In this case, it is related to the formation of callose during 

the fermentative process (Zietsman, et al., 2015).  

The above-mentioned decrease in Ara (section 4.5.1.1) was not explained by the relative abundance 

of the RG-I epitopes (INRA-RU1, INRA-RU2). The results in fresh grapes showed a greater 

abundance of RG-I in the pectin layer. However, as a consequence of the “opening-up” of the grape 

pomace during the fermentation, a higher abundance in mAbs INRA-RU1, INRA-RU2, LM5, LM13 

and especially in LM6 was found not only in the pectin layer, but also in the hemicellulose fraction 

(Figure 5.4) A higher exposure of the RG-I coating layer was generally found in riper berries 

(25ºBrix), supporting the idea of a greater “opening-up” of the grape pomace enhanced by the grape 

ripeness. From these results, a higher presence of RG-I with D-galactan side chains (mAb LM5) was 

also determined in the hemicellulose layers of the grape berry cell walls.   
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Figure 5.5. PCA score and loading plot for the NaOH extract (hemicellulose-rich fraction) of Shiraz 21⁰Brix 
treatment. The samples are coloured according to the alcoholic fermentation stage (GRAPE, ¼ F, ½ F, ¾ F 
and PO – fermented pomace) and the epitope category (loading plot). 

 

Although the AGPs epitopes were present in both the CDTA and NaOH extracts, the decrease in 

the relative abundance of Ara (Figure 5.4) might partly be explained by a decrease in the AGPs of 

the pectin fraction. On the other hand, clear signals for AGPs (mAbs JIM8, JIM13, LM14 and LM2) 

was found during fermentation in the NaOH extract. This increase in mAbs JIM8 and JIM13 was 

higher in 23ºBrix and 25ºBrix than in 21ºBrix.  

 

5.3.2. Evolution of proanthocyanidins during fermentation determined by phloroglucinolysis 

in the grape skin  

The phloroglucinolysis method allowed for the evaluation of the nature and complexity of the non-

extractable tannins in the grape skins and pomace during alcoholic fermentation. As expected, from 
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the results in Table 5.2, the greatest changes in the tannin composition of the skins were mainly 

brought about by the alcoholic fermentation (Appendix Table 5.4). However, when the fresh grapes 

data was analysed separately, a few parameters, such as the amount of terminal units or the % of 

gallo units (prodelphinidins), were already significantly different at different ripeness levels (21ºBrix, 

23ºBrix and 25ºBrix). In brief, a higher % of prodelphinidins was found in 23ºBrix and 25ºBrix grapes 

(Appendix Figure 5.7). In contrast, no significant differences were found for the mean degree of 

polymerisation (mDP) or average molecular weight (avMW) in fresh grapes (Table 5.2). Results 

reported in literature are not in agreement on the evolution of the proanthocyanidin polymer length 

during ripening, as some authors have reported an increase in the mDP (Kennedy, et al., 2001; 

Bindon, et al., 2013) whereas the tannin polymer length remained constant  (Llaudy, et al., 2008) or 

decreased, especially from véraison (Downey, et al., 2003; Bordiga, et al., 2011). Nevertheless, 

these trends could also differ between different cultivars as described by Obreque-Slier et al., 

(2010,2013). The range of mDP (11,3 – 14,7) found in our results were somewhat higher than those 

of some authors (Obreque-Slier, et al., 2010, 2013; Bindon, et al., 2013), but notably lower compared 

to the results of skin tannins reported by Bordiga et al.,(2011). Values found in other studies with 

Shiraz grapes (Downey et al. 2003) at similar ripeness levels were higher (mDP 24-28; ºBrix: 23-25) 

than those found in our work.  

To our knowledge, the only study investigating the influence of the maceration time on the mDP of 

the proanthocyanidins from the grapes at different ripeness levels, focused on the release  of these 

compounds into a model solution (Llaudy, et al., 2008). However, according to our knowledge, no 

information is available on the polymer length of proanthocyanidins found in fermenting skins. Our 

results showed a release of the larger phenolics as the mDP decreased in the grape pomace during 

the fermentative process (Table 5.2). From our results, the extraction trends during fermentation 

were similar between the three ripeness levels, however, the grape ripeness may have enhanced 

the extraction kinetics of the different proanthocyanidins. As shown in Table 5.2, the largest 

phenolics (i.e. higher mDP) were more rapidly released from 25ºBrix berries, as reflected by the 

earlier decrease in the mDP of the compounds remaining in the fermenting skins. This decrease in 

the mDP was already significant mDP after ¼ of the fermentation was completed in the wines made 

from 25ºBrix grapes, whereas in the wines made from 21ºBrix grapes it was only after ¾ F (Table 

5.2). This earlier release in the 25ºBrix treatment could be related with an easier extraction from 

grape cells into the fermenting must due to the cell wall de-pectination that occurred during ripening.   
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Table 5.2. Phloroglucinolysis analysis in the fermenting skin pomace of three different ripeness levels (21ºBrix, 
23ºBrix and 25ºBrix) during different stages of the alcoholic fermentation. The different letters indicate 
significant differences (ANOVA p<0.05) between the treatments (ripeness and fermentation stage).  

  21ºBrix 23ºBrix 25ºBrix 

mDP 
 

GR 12.86 ± 1.24 ab 11.34 ± 0.15 abcd 14.72 ± 2.52 a 

¼ F 11.87 ± 0.13 abc 8.90 ± 0.40 efc 10.83 ± 1.06 eb 

½ F 12.05 ± 5.06 abc 7.67 ± 0.24 efd 10.10 ± 0.76 efb 

¾ F 6.87 ± 0.29 f 9.20 ± 1.20 efc 7.25 ± 0.55 ef 

AF 7.84 ± 0.51 ef 9.15 ± 1.15 efc 8.05 ± 1.02 efc  

%Gallo units 

GR 49.59 ± 0.47 ab 53.59 ± 1.28 a 53.53 ± 1.01 a 

¼ F 50.29 ± 1.52 ab 47.11 ± 0.25 cbd 48.27 ± 0.27 cb 

½ F 42.72 ± 4.94 hdg 42.67 ± 0.95 fdg 44.74 ± 0.81 cde 

¾ F 38.27 ± 3.64 hg 42.31 ± 1.33 feg 40.10 ± 1.33 fh 

AF 42.60 ± 0.98 fe 38.58 ± 1.82 fh 35.84 ± 0.95 h 

% Galloyl units 
 

GR 5.95 ± 0.41 cd 6.68 ± 0.17 cb 5.23 ± 0.33 d 

¼ F 6.47 ± 0.08 cdb 7.40 ± 0.42 ab 6.42 ± 0.50 cdb 

½ F 5.71 ± 0.71 cd 7.25 ± 0.15 ab 6.78 ± 0.49 cb 

¾ F 6.67 ± 0.53 cb 5.84 ± 0.71 cd 7.32 ± 0.29 ab 

AF 6.30 ± 0.37 cdb 6.43 ± 0.02 cb 8.28 ± 0.14 a 

av MW 
 

GR 3929.3 ± 376.0 ab 3471.0 ± 46.8 abcde 4523.6 ± 796.5 a 

¼ F 3696.9 ± 58.1 abc 2951.9 ± 232.0 fb 3460.9 ± 352.0 abcde 

½ F 3652.1 ± 1535.8 abcd 2369.3 ± 86.0 fe 3133.4 ± 255.9 fb 

¾ F 2103.1 ± 86.6 f 2785.0 ± 355.3 fc 2279.0 ± 159.1 f 

AF 2443.0 ± 158.4 fd 2922.8 ± 315.4 fb 2468.2 ± 314.5 fc 

mDP: mean degree of polymerisation 
av MW: average molecular weight 

 

Additionally, comparing all the fermentation stages for the three ripeness levels, the % of 

prodelphinidins and the average avMW showed a significant decreased during the fermentation for 

all the ripeness levels (except for MW in 23ºBrix). The decrease in % prodelphinidins was higher in 

23ºBrix and 25ºBrix when compared to 21ºBrix (Table 5.2). Interestingly, for 25ºBrix, the % of galloyl 

units showed an increase in the grape pomace as the fermentation progressed, whereas in 21 ºBrix 

and 23ºBrix it remained relatively constant. Seed phenolics are especially rich in these galloylated 

compounds. A high affinity of the cell wall material for galloylated units have been described in 

literature (Renard, et al., 2001; Hanlin, et al., 2010). Therefore, as a consequence of the higher levels 

of alcohol produced from the riper berries (25ºBrix), the ripeness level seemed to have influenced 

the seeds’ extractability (Canals, et al., 2005; Hernández-Jiménez, et al., 2012), thereby releasing a 

higher amount of galloylated units into the wines.  

From the results in Appendix Table 5.5, in fresh grapes, catechin (C) was the most representative 

compound in the terminal units of the skin proanthocyanidins (for all ripeness levels) whereas 

epigallocatechin (EGC), followed by the epicatechin (EC) were the major monomers part of the 

extension units (measured as EGC-P and EC-P respectively). EC was found to be the most 

abundant extension unit in the majority of grape cultivars investigated in a study conducted by Mattivi 
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et al., (2009), however, a higher proportion of EGC was also found for some of the grape cultivars 

(Mattivi, et al., 2009). A similar evolution was found, between the three ripeness levels, in the % of 

the skin proanthocyanidin extension units during fermentation. Whilst the EGC-P % decreased, the 

% of EC-P increased. This may indicate a greater release of prodelphinidins (rich in epigallocatechin 

subunits) compared to procyanidins. Higher levels of prodelphinidins were found in riper berries 

(Appendix Table 5.5). 

 

5.3.3. Colour and phenolic extraction during fermentation from three different grape 

ripeness levels 

The extractability of certain phenolic compounds can be associated to the conformational and 

structural changes of the cell wall occurring during grape ripeness (Bindon, et al., 2014b). In this 

study, the release of these phenolic compounds into the wines was followed by spectrophotometric 

(Table 5.3) and HPLC (Table 5.4) analysis at several stages of the alcoholic fermentation (¼F, ½F, 

¾F and AF) for the three ripeness stages. From the results, a strong ripeness impact was observed, 

especially between 21ºBrix and 23º-25ºBrix, as the extraction kinetics differed between them. Firstly, 

as described in Table 5.3, the colour and phenolics parameters (CD, MCD, TRP, TP, SO2 resistant 

pigments and tannins) measured in wines after pressing (AF), were significantly lower in the wines 

made from the least ripe berries (21ºBrix) compared to wines made from 23ºBrix and 25ºBrix grapes. 

The concentration of copigments was similar in wines made from 21ºBrix and 25ºBrix grapes. A 

higher extraction was expected in the wines made from the 25ºBrix harvest, however, only the 

copigments and MCP tannins levels (Appendix Figure 5.8) were significantly different in the wines 

made from 23 ºBrix and 25ºBrix grapes compared with those of 21ºBrix. 

As expected, the overall results showed a general increase in phenolics with the progression of 

fermentation. Nevertheless, the extraction trends of specific classes of phenolic compounds during 

fermentation differed between the different grape ripeness levels. The impact of the ethanol content 

on grapes from different ripeness levels had previously been reported (Canals, et al., 2005). In 

agreement with Canals et al. (2005), the ripeness seemed to enhance the extractability during 

fermentation in our case, too. Regarding colour extraction, the CD only reached its maximum peak 

at ¾F for musts from 21ºBrix grapes, followed by a decrease towards the end of the fermentation. 

For wines made from 21ºBrix grapes, copigments and TRP content also reached their peak at ¾F, 

but then remained stable. The highest amount of MCP tannins extracted were found half way through 

the alcoholic fermentation. In brief, from these findings it seemed that, in the 21ºBrix treatment, the 

phenolic compounds reached a plateau during the alcoholic fermentation. On the other hand, the 

23ºBrix and 25ºBrix wines showed a gradual increase in most of these parameters, except for the 

concentration of copigments in the wines made from 25ºBrix grapes (they reached their peak 

concentration halfway through the fermentation), reaching maximum values at the end of the 
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fermentation (Table 5.3). The concentration of SO2 resistant pigments significantly increased during 

the fermentation for all three grape ripeness levels. The amount of SO2 resistant pigments was 

significantly higher in wines made from 23º and 25ºBrix grapes, compared to those made from 

21ºBrix grapes (Table 5.3).  

 

Table 5.3. Colour and phenolic analysis during fermentation from grapes harvested at three different grape 
ripeness levels (21ºBrix, 23ºBrix and 25ºBrix). The different letters indicate significant differences (ANOVA 
p<0.05) between the treatments (ripeness and fermentation stage).  

  21ºBrix 23ºBrix 25ºBrix 

CD (AU) 

¼ F 8.90 ± 0.67 g 9.35 ± 1.34 gf 10.32 ± 1.10 eg 

½ F 12.32 ± 0.96 ed 14.03 ± 1.34 cd 15.38 ± 1.78 cb 

¾ F 13.68 ± 0.60 cd 16.91 ± 0.24 ab 14.30 ± 2.01 cd 

AF 11.35 ± 1.34 f 17.84 ± 1.32 a 17.64 ± 2.84 a 

Hue 

¼ F 0.38 ± 0.01 eg 0.44 ± 0.01 bc 0.41 ± 0.02 ab 

½ F 0.37 ± 0.01 gf 0.40 ± 0.02 ecd 0.40 ± 0.02 ecd 

¾ F 0.36 ± 0.01 g 0.39 ± 0.02 egc 0.39 ± 0.02 egc 

AF 0.41 ± 0.01 abc 0.44 ± 0.22 a 0.44 ± 0.02 a 

MCD (AU) 

¼ F 6.86 ± 0.87 f 9.61 ± 0.78 de 10.61 ± 0.92 d 

½ F 8.97 ± 0.64 de 12.76 ± 1.05 c 14.79 ± 1.49 b 

¾ F 9.17 ± 0.23 de 14.11 ± 1.56 b 14.53 ± 0.64 b 

AF 8.28 ± 0.87 e 15.12 ± 1.00 ab 16.73 ± 1.44 a 

TRP (AU) 

¼ F 16.39 ± 1.04 e 20.02 ± 1.76 d 19.45 ± 0.92 d 

½ F 19.93 ± 1.17 d 25.31 ± 2.48 c 28.92 ± 3.12 b 

¾ F 23.35 ± 0.51  c 30.79 ± 2.63 b 29.86 ± 0.49 

AF 24.17 ± 0.60 c 37.50 ± 1.70 a 37.82 ± 0.30 a 

TP (AU) 

¼ F 27.08 ± 1.17 e 29.35 ± 1.86 ed 28.54 ± 0.64 e 

½ F 31.97 ± 1.53 cd 32.01 ± 1.70 cd 39.21 ± 3.18 b 

¾ F 34.29 ± 2.39 c 38.81 ± 2.48 b 40.29 ± 1.14 b 

AF 39.40 ± 2.30 b 51.62 ± 2.21 a 53.37 ± 0.11 a 

Copigments (AU) 

¼ F 9.69 ± 0.73 f 11.68 ± 0.55 efd 11.33 ± 0.30 ef 

½ F 11.85 ± 0.90 ed 15.89 ± 0.38 cb 16.31 ± 3.98 ab 

¾ F 13.18 ± 0.59 ce 16.91 ± 0.86 ab 15.18 ± 2.14 cb 

AF 11.38 ± 0.42 efd 18.13 ± 0.89 a 13.99 ± 2.55 cd 

SO2 resistant pigments (AU) 

¼ F 0.63 ± 0.08 j 1.18 ± 0.12 gf 1.31 ± 0.38 eg 

½ F 0.72 ± 0.06 jh 1.67 ± 0.11 ed 1.71 ± 0.20 cd 

¾ F 1.00 ± 0.35 gh 2.06 ± 0.21 cb 1.93 ± 0.23 cd 

AF 1.52 ± 0.35 edf 2.45 ± 0.29 a 2.33 ± 0.25 ab 

Tannins (mg/L) 

¼ F 244.66 ± 14.73 e 282.97 ± 59.87 de 380.00 ± 27.28 d 

½ F 399.57 ± 84.01 d 376.14 ± 83.91 d 676.85 ± 88.04 cb 

¾ F 344.25 ± 77.83 de 382.49 ± 91.62 d 729.49 ± 66.96 ab 

AF 311.57 ± 68.82 de 584.99 ± 20.54 c 842.03 ± 96.17 a 

CD: colour density (AU). MCD: modified colour density (AU). TRP: total red pigments (AU). TP: total phenolics (AU).   

 

Interestingly, although the wines made from 21ºBrix grapes had in general a lower phenolic profile 

at AF, differences between the 21ºBrix, 23ºBrix and 25ºBrix treatments at ¼F were smaller for some 

of these colour and phenolic parameters compared to AF. For example, the CD or TP were similar 

after ¼ F (Table 5.3). At the same fermentation stage (¼F), the tannin concentration was already 

higher in the must from 25ºBrix compared to those from 21ºBrix grapes (Appendix Figure 5.8), but 
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with the progress of fermentation, these differences in between the different treatment became 

larger.  

These differences were confirmed by the phenolic results analysed by HPLC (Table 5.4). A very low 

concentration of these individual phenolics was obtained from the HPLC analysis in 23ºBrix 

treatments after ¼ of the alcoholic fermentation (23B ¼F). At the same fermentation stage (¼ F), no 

significant differences were found between 23º and 25ºBrix treatments from the spectrophotometric 

results. We can therefore consider the possibility of a sampling or instrumental error. Nevertheless, 

from the overall HPLC results, a significantly lower anthocyanin (total glucosylated anthocyanins, 

total acetylated anthocyanins and total coumaroylated anthocyanins) and polymeric pigment content 

was found in 21ºBrix at the end of fermentation (AF) compared to wines made from 23ºBrix and 

25ºBrix grapes (Table 5.4). However, ANOVA analysis did not show significant differences for the 

concentration of catechins, the total amount of hydroxycinnamic acids or total amount of flavonols 

between the final wines (AF).   

A greater tannin content was found in wines made from 23ºBrix and 25ºBrix grapes. The 

concentration of B1-dimer and polymeric phenols was also significantly higher in 23ºBrix (not for B1) 

and 25ºBrix finished wines compared to wines of the 21º Brix treatment (Table 5.4). In all wines, B-

1 reached its maximum at ¾ of the alcoholic fermentation, decreasing towards the end in the 21ºBrix 

wine treatment. The amount of polymeric phenolics gradually increased, reaching its peak at AF. 

These polymeric phenols were positively correlated with the increase of the wine alcohol content 

(R2=0.74). However, the differences in concentration for the final wines made from 23ºBrix and 

25ºBrix grapes were not significant. Thus, differences found in wine MCP tannin concentrations, 

especially between 23 and 25ºBrix treatments, were not reflected by the HPLC results (R2=0.47 

between MCP tannins and polymeric phenols). These could be explained by a higher amount of 

tannins possibly binding to cell wall polysaccharides (possibly as the result of a greater cell wall 

deconstruction).  

In contrast, a lower CD observed in 21ºBrix wines towards the end of alcoholic fermentation (Table 

5.3) can be linked to the decrease in the total free anthocyanins (not significant for glucoside and 

acetylated anthocyanins, but significant for coumaroylated anthocyanins) levels from ¾F onwards. 

This loss in CD and anthocyanin concentration was not observed in the wines of the 23ºBrix and 

25ºBrix treatments, as they remained constant during the latter stages of the fermentation, except 

for the coumaroylated anthocyanins in the 23ºBrix treatment. Additionally, as in the case of the 

concentration of SO2 resistant pigments, the concentration of polymeric pigments in the wines 

generally increased during fermentation (R2=0.65 between SO2 resistant pigments and polymeric 

pigments), explained by the formation of these anthocyanin-derivatives after crushing. However, in 

wines made from 21ºBrix grapes, the amount of polymeric pigments reached its peak half way 

through the fermentation (½F) whereas in wines from made from 23ºBrix and 25ºBrix grapes it 

increased until ¾F and AF respectively. These differences can be explained by a greater 
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concentration of polymeric pigments in riper grapes or a greater extraction. Also, this increase could 

be due to a greater extraction of phenolic compounds susceptible to form these polymeric pigments 

during fermentation.  

 

Table 5.4. Groups of individual phenolic compounds (mg/L) during fermentation from grapes harvested at 
three different grape ripeness levels (21ºBrix, 23ºBrix and 25ºBrix). The different letters indicate significant 
differences (ANOVA p<0.05) between the treatments (ripeness and fermentation stage). 

  21ºBrix 23ºBrix 25ºBrix 

Gallic acid 

¼ F 2.63 ± 0.06 i 0.63 ± 0.26 j 3.91 ± 0.25 fgh 

½ F 3.07 ± 0.05 hi 4.19 ± 0.14 efg 4.51 ± 0.25 def 

¾ F 3.56 ± 0.03 gh 4.87 ± 0.45 de 5.10 ± 0.11 d 

AF 6.13 ± 0.17 c 7.42 ± 0.69 b 8.61 ± 0.37 a 

Catechin 

¼ F 6.00 ± 1.14 cd 0.72 ± 0.22 d 3.92 ± 0.39 cd 

½ F 6.17 ± 1.78 cd 7.74 ± 0.51 ab 5.05 ± 0.31 cd 

¾ F 7.80 ± 0.77 bcd 15.49 ± 9.16 a 5.80 ± 0.50 cd 

AF 10.14 ± 0.22 abc 10.07 ± 0.46 abc 9.70 ± 0.18 abc 

B1 

¼ F 51.22 ± 4.36 cd 4.86 ± 3.46 e 52.74 ± 3.98 bcd 

½ F 61.52 ± 3.58 abcd 67.09 ± 3.75 ab 63.92 ± 4.58 abc 

¾ F 66.47 ± 3.10 ab 70.49 ± 11.92 a 65.88 ± 4.41 abc 

AF 47.51 ± 2.78 d 62.19 ± 8.73 abcd 64.47 ± 5.14 abc 

Polymeric phenols 

¼ F 90.07 ± 4.86 fg 31.49 ± 12.52 g 125.59 ± 6.07 ef 

½ F 134.87 ± 8.12 e 204.69 ± 13.90 cd 190.11 ± 14.18 d 

¾ F 136.48 ± 9.16 e 245.75 ± 28.71 b 228.90 ± 16.32 bc 

AF 182.76 ± 17.11 cd 329.84 ± 34.48 a 372.98 ± 35.41 a 

∑ Hydroxycinnamic 
acids 

¼ F 35.83 ± 0.72 a 12..00 ± 7.87 g 33.10 ± 0.71  abc 

½ F 35.16 ± 0.91 ab 28.15 ± 1.12 bcd 30.92 ± 0.72 abcd 

¾ F 30.58 ± 0.55 abcde 24.69 ± 1.12 def 26.75 ± 0.31 cde 

AF 17.95 ± 0.30 fg 17.95 ± 1.26 fg 23.64 ± 0.56 ef 

∑ Flavonol 

¼ F 61.83 ± 3.09 d 19.68 ± 12.85 f 41.81 ± 2.40 e 

½ F 78.64 ± 2.91 bc 73.93 ± 3.29 bcd 59.15 ± 3.58 d 

¾ F 87.16 ± 1.03 ab 86.56 ± 5.32 ab 69.31 ± 2.61 cd 

AF 83.49 ± 1.70 abc 93.82 ± 7.23 a 82.57 ± 3.62 abc 

∑ Glucosylated anthocyanins 

¼ F 124.01 ± 4..73 e 54.34 ± 36..81 f 156.59 ± 5.63 de 

½ F 152.21 ± 6..04 de 199.30 ± 4..12 bc 200.60 ± 8.71 bc 

¾ F 173.03 ± 2..09 cd 233.49 ± 10..50 ab 211.48 ± 7.41 ab 

AF 153.18 ± 0.79 de 238.14 ± 12.09 a 237.87 ± 7.83 a 

∑ Acetylated anthocyanins 

¼ F 51.04 ± 2.12 f 22.88 ± 15.49 g 61.25 ± 2.09 ef 

½ F 64.49 ± 3.03 ef 82.56 ± 0.99 cd 86.48 ± 3.69 bcd 

¾ F 73.39 ± 1.08 de 98.90 ± 5.20 ab 92.02 ± 3.09 abc 

AF 65.93 ± 0.53 ef 101.54 ± 4.75 ab 104.27 ± 3.64 a 

∑ Coumaroylated 
anthocyanins 

¼ F 26.00 ± 1.20 ef 11.34 ± 6.92 g 32.12 ± 1.69 de 

½ F 33.74 ± 2.36 de 38.90 ± 1.14 bcd 47.15 ± 3.19 ab 

¾ F 35.33 ± 1.15 cd 44.06 ± 2.61 ab 48.20 ± 3.71 a 

AF 22.26 ± 1.04 f 35.05 ± 2.49 cd 42.46 ± 2.60 abc 

Polymeric pigment 

¼ F 5.06 ± 1.83 hi 2.19 ± 0.92 j 7.24 ± 2.14 ghi 

½ F 9.25 ± 2.48 fg 18.26 ± 1.17 cd 12.18 ± 0.16 ef 

¾ F 8.99 ± 0.55 fgh 23.17 ± 3.89 ab 14.51 ± 3.03 de 

AF 10.11 ± 0.56 fg 25.11 ± 2.39 a 20.72 ± 2.82 bc 
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5.3.4. CIELab 

The colour extraction kinetics was also analysed using the CIELab parameters. A negative 

correlation between monomeric anthocyanins and L*, b* or Hab* has been found, whereas a positive 

correlation with Cab*, has previously been reported in young red wines (Han, et al., 2008). Also, a 

significant correlation was found between the concentration of gallic acid in wines and the Cab* and 

b* values (Caivano & del Pilar, 2012). 

 

 

Figure 5.6. Wine sample distribution according to the CIELab parameters in the wine. The ellipses are 
coloured according to the grape ripeness levels (21ºBrix, 23ºBrix and 25ºBrix), becoming thicker as the 
fermentation progresses (¼ F, ½ F, ¾ F and AF).  

 

As illustrated in Figure 5.6, the samples were mainly separated along PC1 (73%) by ripeness and 

fermentation stage in terms of the CIELab results. The biplot shows the sample distribution according 

to the different CIELab colour parameters. The ellipses, which become thicker with over the course 

of the fermentative process, represent the variability in the measurements. Thus, on the left axis on 

PC1, characterised by higher values of L*, a*, and Cab*, are the wines made from 21ºBrix grapes 

(Appendix Table 5.6). These parameters described 21ºBrix as clearer wines with a higher red 

component, possibly explained by a lower content of polymeric pigments. Ethanol content and pH 

also influence these chromatic differences (Hermosín-Gutiérrez, 2003; Canals, et al., 2005; 

Torskangerpoll & Andersen, 2005). The lower pH of 21ºB wines compared with 23-25ºBrix wines 

(Table 5.1) could help to explain the higher a* values, as the red components decrease with a higher 

pH (Sarni-Manchado, et al., 1996). Additionally, 23ºBrix and 25ºBrix wines were also found in the 
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left axis of PC1 for their first sampling stage of the alcoholic fermentation (¼ F). Therefore, the grape 

pigments extracted at the early stages of the alcoholic fermentation were probably more water 

soluble and therefore easily extractable into the wines, independent of ripeness or alcohol potential 

of the wines. As the wines fermented, the 23ºBrix and 25ºBrix treatments showed a greater colour, 

with a lower red but a higher yellow component, associated with the contribution of polymeric 

pigments to the wine colour (Appendix Table 5.6). Colour differences between the different 

treatments wines were more marked as the fermentation progressed.  

 

5.3.5. Unravelling the relationship between extractable and non-extractable phenolic 

compounds and the cell wall deconstruction 

Several polymerisation reactions between phenolics, as well as possible interactions between CWM 

and phenolic compounds, are involved during the fermentation process. Therefore, it is difficult to 

establish a specific relationship between the changes in specific grape cell wall polysaccharides and 

the release of grape phenolics into the wines. In brief, a progressive phenolic extraction was found 

during fermentation (Table 5.3 and 5.4), enhanced by the prior disassembly induced in the skin cell 

walls by the grape ripeness. The grape berry cell wall model proposed by Gao et al (2015) describe 

two main layers in the grape pomace of Cabernet Sauvignon: a pectin-rich fraction, with a large 

amount of highly-esterified HG and Ca2+ crosslinked HG, and an internal hemicellulose-rich fraction, 

associated with RG-I (RG-I coating layer). The authors describe the possible start of the de-

pectination process (occurring during the fermentation) from the pulp cells, characterised by a thinner 

cell walls. Thus, based on the cell wall model proposed by Gao et al., (2015) and the CoMPP results, 

Figure 5.7 illustrates the disassembly and phenolic release occurring during fermentation and 

enhanced by grape ripeness. A more de-pectinated berry, partly explained by a higher signal of Ca2+ 

crossed-linked HG to the mAbs 2F4, was found in grapes harvested at 25ºBrix, compared to 21ºBrix 

and 23ºBrix. This signal increased during the fermentation (Appendix Figure 5.2), especially in 

25ºBrix, due to the de-pectination process. The greater de-esterification in the pectin layer of 25ºBrix 

fresh grapes probably led to better access to the inner layers of the pomace and subsequent easier 

release of phenolic compounds. The mDP in the grape skins for 21ºBrix was constant up to ¾F, 

whereas it significantly decreased after ¼F in the 23ºBrix and 25ºBrix treatments. The 

proanthocyanidin extraction may have been influenced by their polymer size and their retention, 

which are influenced by the degree of cell wall de-pectination. The greater loss in the % of gallo units 

found in the fermenting grape pomace of the riper berries (23º and 25ºBrix) may also be explained 

by a different retention on the cell wall polymers or a lower accessibility due to more rigid cell wall 

layers in the 21ºBrix grapes.  

Additionally, the individual phenolic compounds remaining in the fermenting grape pomace were 

also quantified with HPLC, but only for 21ºBrix grapes (Table 5.5). The analysis were performed on 
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the same acetone grape homogenate used for the phloroglucinol reaction. Surprisingly, not all the 

compounds decreased in concentration as the fermentation progressed. Notably the polymeric forms 

(polymeric phenols and polymeric pigments) remained relative stable during the fermentation. A 

retention by the CWM or low accessibility to a part of the phenolic polymeric fraction, due to their 

molecular size, probably explains this occurrence. The formation of cavities or pores can be formed 

via grape loosening, as a consequence of cell wall de-pectination. This increase in the grape skin 

porosity can lead to the encapsulation of grape phenolics, creating a more difficult extraction into the 

must or wine and therefore affecting the extractability of grape tannins (Bindon, et al., 2012; Bindon, 

et al., 2014a). The affinity and the strong interactions formed between the highly methylated HG and 

the procyanidins is well known in apples (Watrelot, et al., 2013). Furthermore, with the fermentative 

process, certain cell wall components, such as the HG labelled with mAb JIM7 (Appendix Figure 

5.2), can also be extracted into the wines as demonstrated by (Gao, et al., 2015). These HG 

molecules released into the wines might be either be free or bound to wine phenolics, influencing 

the tannin self-aggregation and therefore potentially influencing the wine’s phenolic stability. In this 

matter, as mentioned before, the MCP tannin concentration in finished wines (AF) was significantly 

higher in the wines made from 25ºBrix grapes compared to those of 23ºBrix, whereas no significant 

differences were found for the polymeric phenols.  

When the individual phenolics that remained in the skins of the 21 ºBrix treatments were assessed 

during fermentation a decreasing trend was observed for anthocyanins and flavonols according to 

the concentration of these compounds remained in the fermenting skins (Table 5.5). The release of 

free-anthocyanins (all glucosylated, acetylated and coumaroylated anthocyanins forms) was evident 

as their concentration in the grape skins decreased significantly during fermentation. Anthocyanins 

are water soluble compounds and consequently more easily extractable (Castañeda-Ovando, et al., 

2009). In a similar way, most of the flavonols were also extracted into the wines (Table 5.5). In both 

cases, the greatest decrease occurred from crushing until the midway through the alcoholic 

fermentation.  
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Table 5.5. Group of non-extracted individual phenolic compounds (mg/L) in the fermenting grape skins and 
pomace of 21⁰Brix grapes at different stages during the alcoholic fermentation (GR: fresh grapes, F as the 
fermentation progress and PO: fermented pomace). The different letters indicate significant differences 
(ANOVA p<0.05) between the fermentation stages. 

 GR ¼ F ½ F ¾ F PO 

Gallic acid 1.69 ± 0.07 c 4.21 ± 1.16 bc 6.20 ± 1.18 ab 8.24 ± 0.94 a 6.09 ± 0.21 ab 

Catechin 38.2 ± 7.1 b 70.5 ± 17.3 ab 73.3 ± 13.1 a 80.8 ± 5.9 a 86.7 ± 4.1 a 

B1 156.3 ± 38.4 a 115.4 ± 22.2 ab 101.9 ± 27.3 ab 77.5 ± 2.9 b 106.5 ± 1.2 ab 

Polymeric phenols 4762.9 ± 411.7 abc 5522.7 ± 260.7 ab 4345.8 ± 350.6 c 4555.7 ± 387.5 bc 5827.8 ± 326.5 a 

∑ hydroxycinnamic  2.61 ± 0.49 b 3.85 ± 1.38 ab 5.35 ± 1.58 ab 7.04 ± 0.64 a 6.96 ± 0.41 a 

∑ flavonols 370.88 ± 26.95 a 294.32 ± 4.82 ab 253.12 ± 49.52 b 243.72 ± 16.94 b 268.10 ± 30.08 b 

∑ Glucosylated 
anthocyanins 

391.6 ± 141.2 a 174.9 ± 56.9 ab 117.4 ± 104.5 b 36.4 ± 12.0 b 26.0 ± 1.8 b 

∑ Acetylated anthocyanins 185.0 ± 64.8 a 81.1 ± 22.7 ab 49.6 ± 40.4 b 18.3 ± 7.2 b 17.4 ± 1.0 b 

∑ Coumaroylated 
anthocyanins 

319.1 ± 104.0 a 164.5 ± 52.1 ab 79.5 ± 60.8 b 33.5 ± 9.8 b 28.8 ± 1.5 b 

Polymeric pigments 47.4 ± 6.4 ab 63.2 ± 1.0 a 42.6 ± 7.9 b 47.0 ± 5.0 ab 42.4 ± 3.1 b 

 

An interesting increase was observed for gallic acid content and total hydroxycinnamic acids. Firstly, 

the increase in gallic acid in 21ºBrix grape pomace during fermentation was corroborated by the 

increase in the % galloylated units with phloroglucinolysis analysis (Table 5.2), although it was not 

significant when compared to the other ripeness levels. Additionally, the wine’s gallic acid 

concentrations also increased (Table 5.5). Grape seed phenolics may have a role in the phenolic 

extractability explained by the possible adsorption of gallic acid, hydroxycinnamic acids and their 

derivatives onto the skin cell walls.  

Stellenbosch University  https://scholar.sun.ac.za



129 

 

 

Figure 5.7. Proposed model of the cell wall disassembly and the subsequent phenolic extractability occurring during fermentation of grape from three different 
grape ripeness levels (21ºBrix, 23ºBrix and 25ºBrix). 
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5.4. CONCLUSION 

 

In conclusion, cell wall modification occurring during ripening was instrumental in 

understanding the enhanced de-pectination observed in the grape berry cell walls and 

thereby in the release of the grape phenolic compounds during alcoholic fermentation. 

The greater extraction observed in riper berries was clearly associated with a greater de-

pectination of the grape berry cell walls. During the fermentative process, grape 

phenolics were gradually extracted into the wines, probably with cell wall derived 

polysaccharides, enhanced by the degradation that occurred during grape ripening, 

which influenced the wine composition. These results has improved the understanding 

of the relationship between grape polysaccharide deconstruction and differential 

extraction of grape phenolics during fermentation. Additionally, this research, although 

preliminary, indicates a possible retention of skin tannins as a function of their nature 

and polymer complexity. In general, this work is a first step to obtain a better 

understanding of the relationship between the changes in the occurring in the grape cell 

wall, especially in the pectin-rich fraction, and phenolics compounds extracted during 

alcoholic fermentation.   
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ABSTRACT 

 

Wine colour and phenolic stability over time is influenced by the amount of phenolics in young wines. 

The ratio between different phenolic compounds can also be determinant in the colour and phenolic 

development of red wines. Three anthocyanin/tannin ratios (A/T) extracted in a wine-like system 

were saturated with oxygen several times during sample storage. The impact of a forced oxidation 

and different A/T on the colour and phenolic composition was evaluated over time. The precipitate 

formed over time was also studied. From our results, a greater amount of seed tannins can enhance 

phenolic polymer formation, especially in the presence of oxygen. In this matter, the oxygen seemed 

to favour certain polymerisation reactions between tannins, leading to higher concentration of 

monomeric anthocyanins in solution. This excess of phenolics also led to a greater precipitation 

formed over time.  

 

6.1. INTRODUCTION 

 

The production of red wines with good ageing potential is important to the global wine industry. A 

large number of biological interactions and chemical reactions during the winemaking process and 

storage and can lead to changes in the composition and stability of red wines (Pérez-Magariño & 

González-SanJosé, 2004; Arapitsas, et al., 2016). Red wine’s colour and phenolic stability are 

essential parameters which are directly related to consumer acceptance of the product. The wine’s 

matrix composition is also playing a role in influencing the wine’s stability. As an important part of 

the wine matrix, phenolic compounds are involved not only in affecting a red wine’s colour, but also 

certain sensory properties. Wine phenolics are highly reactive molecules, partaking in different 

reactions from crushing throughout the entire winemaking process, which may lead to the formation 

of more complex and stable molecules over time (Pérez-Magariño & González-SanJosé, 2004; 
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Monagas, et al., 2006; Arapitsas, et al., 2014; Bimpilas, et al., 2015). Different winemaking 

techniques can thus have an indirect impact on a wine’s stability as these may also influence 

phenolic extractability and evolution (Sacchi, et al., 2005; Smith, et al., 2015). 

Anthocyanins, mainly responsible for the colour in young red wines (Ribéreau-Gayon, et al., 2006; 

He, et al., 2012), are extracted from the grape skins, whereas grape tannins are extracted from both 

skins and seeds. Skin and seed tannins differ in nature, structure and extractability (Mattivi, et al., 

2009). Whilst anthocyanin concentrations normally reach a maximum during the early stages of the 

alcoholic fermentation, tannins are progressively extracted as the ethanol concentration increases 

(Peyrot Des Gachons & Kennedy, 2003; González-Manzano, et al., 2004; Ribéreau-Gayon, et al., 

2006; Garrido & Borges, 2013). Moreover, as is the case with anthocyanins, skin tannin levels  reach 

a plateau during fermentation, whereas seed tannins follow a linear extraction partly due to the 

hydration of the seed coat (Cerpa-Calderón & Kennedy, 2008; Hernández-Jiménez, et al., 2012; 

Yacco, et al., 2016). The initial A/T ratio will affect the subsequent wine polymerisation reactions 

(Singleton & Trousdale, 1992; Sparrow, et al., 2015) and the interaction of phenolic compounds with 

other wine components (Bindon, et al., 2010; Springer, et al., 2016). The ratio of anthocyanins to 

tannins may therefore not only affect the wine’s stability, but also its sensory properties (Canals, et 

al., 2008). Techniques such as early seed removal or the addition of mannoproteins (Poncet-

Legrand, et al., 2007) are used as winemaking practices to alter the skin/seed tannin ratio, thereby 

trying to reduce the bitterness (associated with seed tannins) in the final red wines (Meyer & 

Hernandez, 1970; Lee, et al., 2008; Guaita, et al., 2017).  

Apart from the initial phenolic content, several other factors like the presence of oxygen, will influence 

the evolution of red wine over time. Indeed, oxygen is thought to play a crucial role in red wine’s 

colour and phenolic stabilization during the entire winemaking process (Du Toit, et al., 2006). It is 

involved in several reactions, such as phenolic polymerization, which leads to the formation of new 

and more stable phenolic compounds over time (Fulcrand, et al., 1996; Atanasova, et al., 2002). 

Oxidation of ethanol produces acetaldehyde, which enhances the formation of ethyl-bridges between 

phenolics (Timberlake & Bridle, 1977; Dallas, et al., 1996; Saucier, et al., 1997; Es-Safi, et al., 1999). 

Additionally, the oxidative degradation rate differs between the different groups of phenolics. For 

example, as shown in a study by Jorgensen et al., (2004), skin procyanidins degrade faster than 

those extracted from the seeds in the presence of oxygen. The impact of oxygen on altered A/T 

ratios in wine has been shown to improve the colour density (CD) and the polymeric pigment 

concentration as the tannin content increases (Picariello, et al., 2017). Thus, the impact of oxygen 

will probably vary as a function of the nature and relative ratios of the wine phenolics.  

There are still lot of unknowns regarding the complexity and the different structures of phenolic 

compounds, especially tannins, in grapes and wine. In this regard, the continuous development of 

more powerful analytical methods and techniques is leading to the generation of larger datasets with 

valuable information for wine science. The impact of oxygen on wine phenolics has been examined 
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extensively (Castellari, et al., 2000; Atanasova, et al., 2002; Wirth, et al., 2010; Arapitsas, et al., 

2012; McRae, et al., 2015; Quaglieri, et al., 2017). However, only two recent publications have 

evaluated the effect of oxygen on different anthocyanin/tannin ratios (Picariello, et al., 2017; 

Carrascón, et al., 2018). Nonetheless, in the study from Picariello et al. (2017) the commercial 

tannins used in this study may contain some other compounds, thereby not only altering the tannin 

concentration (Versari, et al., 2013).  

The present study was divided into two parts. Firstly, a descriptive study was performed that aimed 

to provide more valuable information on how oxygen affects the polymerisation reactions of phenolic 

compounds obtained through different anthocyanin/tannin ratios (A/T) in a wine-like system (WL). 

Different amounts of grape seeds were used to alter the tannin levels of in the A/T ratios. The second 

part of the study, based on an untargeted approach, evaluated and tentatively identified the 

composition of the precipitate that was formed over time as a consequence of the different phenolic 

ratios. To our knowledge, only two previous study analysed the composition of the phenolic derived 

precipitate formed in real wines (Waters, et al., 1994; Prakash, et al., 2016), but this is the first time 

that the precipitation phenomena as a consequence of different phenolic ratios is studied. In short, 

the aim of the present work was to assess, with the help of targeted and untargeted analyses, the 

evolution over time of an initially different phenolic composition in a WL (obtained with three A/T 

ratios) in the presence or absence of oxygen.  

 

6.2. MATERIAL AND METHODS 

 

6.2.1. Wine-like A/T ratios 

Shiraz grapes (27ºBrix) were obtained in 2015 from the Welgevallen experimental vineyard of the 

Department of Viticulture and Oenology at Stellenbosch University. The amount of grape seeds, 

chosen from preliminary trials, was the main variable in the treatments as indicated in Table 6.1. 

Grape skins (240 g) were peeled off and manually separated from the flesh and seeds, rinsed with 

deionised water and extracted with or without seeds according to the seed to skin ratios (no seeds, 

SK normal seed to skin ratio, SKSD and four times the normal seed to skin ratio, SK4SD) as indicated 

in Table 6.1 for 9 days in 1L hydroalcoholic solution (15% ethanol), at pH 3.4 and containing 6.0 g/L 

tartaric acid. A single extraction was performed per A/T ratio. The extractions were carried at 25ºC 

and manually shaken three times per day. To avoid the possibility of any spontaneous fermentations, 

20 mg/L NaN3 were added to the extracts. After nine days, the skins and seeds were and separated 

from their WL extracts and softly pressed by hand (in the presence of CO2). The three final WL ratios 

(SK, SKSD, and SK4SD) were then centrifuged at 8000 rpm (5 min), to remove any residual grape 

skin. The iron and copper concentrations were then adjusted to 5 mg/L and 0.3 mg/L respectively 

with the use of FeSO4.7H2O and CuSO4.5H2O (Sigma-Aldrich, St. Louis, MO, USA) according to 

Danilewicz (2007). Finally, the wine extracts were divided into Control (C) and Oxygen treatments 
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(Ox) and transferred to vials (20 mL vials for C and 100 mL vials for Ox) and sealed hermetically. C 

vials were previously sparged with nitrogen. Then, the C treatments were transferred into the vials 

using CO2 gas. Before being transferred to the vials, Ox samples were vigorously shaken by hand 

in a 500 mL volumetric flask for 2 minutes allowing air to enter every 10 seconds to reach oxygen 

saturation. The oxygen consumption was monitored, in C and Ox samples. All vials were stored in 

the dark at 15ºC until the required analysis after 3 (3M), 6 (6M) and 9 months (9M) of storage. Once 

opened and analysed, C treatments vials were discarded whereas in the case of Ox samples, 20 mL 

were drawn from the vials and the remainder again saturated with oxygen before further storage. 

Glass beads were used to fill the headspace in the Ox vials at each of the sampling stages. In total, 

Ox samples were saturated with oxygen three times (at time 0 - 0M, after 3M and 6M) during the 

study. After 6 months, Ox samples were transferred to new vials, with new oxygen spots (see below), 

allowing for the recovery of the precipitate formed in the WL at this specific sample stage.  

 

Table 6.1. Treatments induced to obtain different Anthocyanin/tannin (A/T) ratios. 

Treatments  

SK Skins with no seeds 

SKSD Skin: seeds = 1:1 (natural seed to skin ratio) 

SK4SD Skins: seeds = 1:4 (four times the natural seed to skin ratio ) 

 

6.2.2. Oxygen measurement 

Oxygen spots (Pst3, PreSens, Regensburg, Germany) were placed in several vials (control and 

oxygen vials) to avoid invasive measurements and used to monitor the oxygen uptake rate (Coetzee, 

et al., 2016) for the first 3 days after oxygen addition. Vials were stored in the dark to avoid possible 

damage to the spots. 

 

6.2.3. Colour and phenolic measurements 

6.2.3.1. Spectrophotometric analysis 

Colour and phenolic parameters (CD, TRP, TP, copigments and tannins) for all treatments were 

determined at 0M and after 3M, 6M and 9M in the same manner as described in Chapter 3. At each 

time point three vials of each treatment were opened and analysed. Additionally, the colour and 

phenolic composition was also analysed at time 0M in each of the three extracts. The CIELab 

parameters were determined for all the treatments only after 3M, 6M and 9M (not at 0M). 
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6.2.3.2. HPLC analysis 

The analysis of individual phenolics were performed for all ratios and C/Ox samples at 0M and after 

3M, 6M and 9M of storage, using the HPLC method used to analyse for individual phenolics 

previously described in Chapter 3.  

 

6.2.3.3. Hydrophilic Interaction Liquid Chromatography (HILIC)-FLD. 

To assess the changes in the flavan-3-ols and proanthocyanidins oligomers, the WL at 0M and after 

3M, 6M and 9M of storage, were also analysed using a novel HILIC method (Terblanche, 2017). 

Sample preparation was performed by solid phase extraction (SPE) of the WL systems using 6 

mL/500 mg Oasis HLB cartridges (Waters - Milford, MA, USA). The HLB cartridges were conditioned 

with 2 mL methanol followed by 2 mL deionised water. Then, 12 mL of wine extract were diluted with 

38 mL deionised water prior to loading the sample onto the cartridge. The cartridge was then washed 

with 2 mL distilled water, followed by elution with 10 mL methanol. The final eluent was evaporated 

to dryness with the use of a Rotavapor R-134 (Büchi, Flawil, Switzerland) and reconstituted in 2 mL 

methanol. The sample was then diluted (1:1) with acetonitrile for HILIC analyses. 

HILIC separations were performed following the procedure described by Terblanche (2017). A 

volume of 15 µL was injected in an XBridge Amide column (150 mm × 4.6 mm, 2.5 µm particles, 

Waters), with a Phenomenex KrudKatcher pre-column filter. The mobile phases used consisted of 

0.1% formic acid in acetonitrile (A) and 0.1% formic acid in de-ionised water (B). The oven 

temperature was set at 40ºC. The separations were performed with the use of the following gradient: 

5 – 40% B (0 – 60 min), 40 – 70% B (60 – 62 min), 70% for 2 min, followed by a re-equilibration 

period of 8 min. The flavan-3-ol and oligomer detection was carried out with a fluorescence detector 

(FLD).  The chemical standards used were: (-)-Epicatechin, (-)-epigallocatechin, (-)-epigallocatechin 

gallate and (-)-epicatechin gallate (Sigma Aldrich, Steinheim, Germany). Proanthocyanidin 

oligomeric standards were obtained from semi-preparative HPLC separations from cocoa beans. 

 

6.2.4. Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) 

For the second part of the study, the precipitates formed over time in all the treatments were 

recovered after 6M and 9M. This was done by removing the liquid part from the vial and placing it in 

a fume hood. Once the precipitate were dry it was dissolved in 5 mL methanol. A sample volume of 

2 μL was injected into a Synapt G2 quadrupole-time-of-flight (Q-TOF-MS) mass spectrometer 

(Waters Corporation). The separation was performed on an Acquity UPLC HSS T3 column (1.8 μm 

internal diameter, 2.1 mm x 100 mm, Waters Corporation) using 0.1% formic acid (mobile phase A) 

and acetonitrile (mobile phase B) and a scouting gradient, with a flow rate of 0.3 mL/min. The column 

temperature was 55 ºC. The instrument was operated with an electrospray ionization probe in both 

positive and negative mode. Data acquisition was performed in MSe mode which consisted of a low 
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collision scan (from m/z 150 to 600) and a high collision energy scan (from m/z 40 to 600), using a 

ramp of 30-60 V. The MS parameters were optimized for best sensitivity as follows: cone voltage 15 

V, nitrogen desolvation gas at 650 L/hr and desolvation temperature 275ºC. The data was obtained 

as RT m/z, intensity, using MassLynx (v. 4.1) software (Waters, Milford, MA, USA). The WL ratios 

and their corresponding precipitate (P) samples were injected from the same vials (for C/Ox 

samples).  

 

6.2.5. Statistical analysis 

All analyses were carried out using Statistica 13.2 (TIBCO Statistica software, Palo Alto, CA, USA). 

Significant differences were judged on a 5% significance level (p≤0.05) with LSD Post Hoc tests. 

Additionally, Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant 

Analysis (OPLS-DA) and their corresponding S-plots were performed with SIMCA 14.1 software 

(Sartorium Stedim Biotech - Malmö, Sweden).  

 

6.3. RESULTS AND DISCUSSION 

 

6.3.1. Colour and phenolic extraction in the different A/T ratios 

The extraction kinetics for all three A/T ratios (SK, SKSD and SK4SD) were daily monitored by 

spectrophotometric and HPLC analyses (data not shown). From previous trials and in order to allow 

for a better extraction from the grape seeds, all extractions were performed for nine days. At 0M, 

(after nine days of extraction) the colour density (CD) and the amount of total red pigments (TRP) 

were similar between the three ratios (Table 6.2). However, a higher amount of tannins and total 

phenolics (TP) were found with an increase of grape seeds at this stage (Table 6.2). Considering 

the individual phenolic compounds, gallic acid and catechin levels were especially different between 

the different A/T ratios at 0M (Table 6.2). In addition, differences in the flavan-3-ols monomer, dimer 

and trimer composition were also observed between the A/T ratios. At 0M, a larger concentration of 

dimers and trimers was found in WL SK4SD (Table 6.2). 
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Table 6.2. Colour and phenolic composition of the A/T ratios at 0M.  

 SK SKSD SK4SD 

Spectrophotometric    

420 nm (AU) 3.04 3.45 3.30 

520 nm (AU) 6.75 7.48 6.76 

620 nm (AU) 1.18 1.39 1.34 

CD (AU) 10.96 12.31 11.40 

TRP (AU) 24.02 26.23 24.01 

TP (AU) 32.37 39.86 48.99 

Tannins (mg/L) 450.99 587.86 1092.77 

HPLC (mg/L)    

Gallic acid 2.67 31.92 86.13 

catechin 8.60 59.76 154.14 

B1 16.35 47.50 88.28 

Polymeric phenols 245.66 403.40 392.75 

Total hydrox 4.82 7.07 7.78 

Total flavonols 67.24 85.09 75.15 

Total glucosylated 230.42 284.08 245.09 

Total acetylated 116.79 144.60 121.15 

Total coumaroylated 65.38 90.96 90.94 

Polymeric pigments 14.24 25.50 32.02 

Total anthocyanins 426.83 545.14 489.20 

HILIC (mg/L)    

Monomers 0.85 53.38 85.68 

Dimers n.d. 1.72 8.94 

Trimers n.d. n.d. 4.00 

Total  0.85 55.10 98.62 

 

6.3.2. Influence of a different A/T ratios on the oxygen consumption 

The oxygen consumption (mg/L) was firstly monitored for the C and Ox samples at 0M, and only for 

Ox samples in the following oxygenations after 3M and 6M of storage. From the quick oxygen 

depletion observed at 0M, the oxygen consumption of the following oxidations was only monitored 

during the first three day (70-75 hours). As previously mentioned, the Pst3 oxygen spots were 

replaced after 6M, transferring the Ox samples to new vials for the last measurement and recovering 

the precipitate prior to the last oxygenation. The A/T composition, in concentration and probably 

nature, clearly played a role as the oxygen consumption rates differed between the storage times 

and treatments. These differences in the oxygen depletion rates could possibly be explained by 

changes occurring in the phenolic profile and concentration of the different A/T ratios over time. 

Firstly, as shown in Figure 6.1A, there was a quick depletion of the low amounts of oxygen present 
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in C samples (probably due to residual oxygen levels). From Figure 6.1B, which illustrates the 

oxygen consumption in Ox vials at 0M, minimal differences were found between the A/T ratios. The 

larger concentration and possibly different nature of phenolics at 0M did not seem to have an 

influence on the oxygen consumption. In both cases, the dissolved oxygen in the different A/T ratios 

was depleted after a few hours. Nevertheless, this oxygen consumption rate varied over time, as the 

phenolic profile of the WL ratios evolved. The oxygen consumption measured after 3M, was 

generally slower compared to 0M (Figure 6.2). Interestingly, the oxygen consumption took longer in 

the vials from SK4SD samples. The excess of seed phenolics may have had an influence on the 

formation rate of new polymeric forms, involving oxidative reactions, during the vial storage. This 

may have led to a WL media composition with a lower level of compounds susceptible to oxidation. 

Furthermore, as illustrated, the oxygen consumption observed in Figure 6.3, was even slower after 

6M, probably also as a consequence of a lower substrate availability to react with oxygen in the WL 

media.  

 

Figure 6.1. Oxygen consumption in the different A/T ratios (SK, SKSD and SK4SD) in C (A1) and Ox (A2) 

treatments at 0M. The oxygen consumption was monitored in triplicate. 
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Figure 6.2. Oxygen consumption after 3M for the A/T Ox ratios (SK, SKSD and SK4SD). The oxygen 
consumption was monitored in triplicate.  

 

 

Figure 6.3. Oxygen consumption after 6M for the A/T Ox ratios (SK, SKSD and SK4SD). The oxygen 

consumption was monitored in triplicate.  

 

6.3.3. Colour and phenolic evolution of the A/T ratios  

Differences were observed over time in terms of the colour and phenolics as determined 

spectrophotometrically, of which some were already observed at 0M. After nine days of extraction, 

the three A/T ratios had similar CD and TRP values that represented the desired similar anthocyanin 

content between the A/T ratios (Table 6.2). As expected, higher TP and tannin levels were found in 

SKSD and especially SK4SD, with a greater amount of seeds (Table 6.2), when compared to SK 

(with only skin tannins). However, time played a significant role (Appendix Table 6.1 and 6.2) and 

after the subsequent storage, significant differences were also found in colour and the phenolic 

composition between the different A/T ratios over time (Appendix Table 6.3). Whilst the anthocyanin 

to tannin ratios was the most important factor for the TP levels and, obviously, the tannin 

Stellenbosch University  https://scholar.sun.ac.za



145 
 

concentration, the oxygen had a large influence on  the colour components, such as the TRP and 

CD, especially the absorbance at 420 nm (Appendix Table 6.3). Furthermore, time was also a 

determining factor, especially for the TRP and copigment concentrations.   

The evolution of the different spectrophotometric parameters over time, for the three A/T ratios and 

C and Ox samples, are shown in Figure 6.4. The cumulative effect of all the parameters drives a 

clear separation between the samples. In Figure 6.4-A1, it can be seen that the different ratios were 

separated along the PC1 axis (54.4%). As previously mentioned, the TP and tannin levels were 

mainly influenced by the A/T ratio (Appendix Table 6.3). The loadings plot (Figure 6.4-B) showed a 

general larger phenolic content in SK4SD treatments, especially compared to SK treatments. Over 

the course of time, these differences between the A/T ratios became smaller, especially after 9M, 

probably as a consequence of phenolic degradation, but also as a result of over polymerisation 

reactions and subsequent precipitation of insoluble phenolic compounds. Figure 6.4-A2, the samples 

are coloured according to the sampling stages (0M, 3M, 6M and 9M) and after 9M, the A/T ratios 

samples were more closely distributed along the PC1 axis (54.4%). When the samples were 

coloured according to the C/Ox treatment, the samples distributed along the PC2 axis (21.3%), with 

Ox samples being characterised by a generally higher phenolic content and especially tannin 

concentration over time. Contrary to the results of Geldenhuys et al. (2012), oxygen may have also 

played an important role in the tannin concentration (Figure 6.4-A3). However, Geldenhuys et al. 

(2012) applied a progressive micro-oxygenation, whereas in this study a large amount of oxygen 

was added at a time. 

A general loss of colour and reduction in phenolics levels was found over time, especially from 0M 

(Table 6.2) to 3M (Appendix Table 6.3), except in the tannin concentration (Figure 6.5). As an 

example, the amount of TRP decreased in all the samples during the first 3M, especially in most of 

the C treatments (Appendix Table 6.3). The oxygen seemed to have enhanced the polymerisation 

between certain compounds and limiting therefore the degradation of certain red pigments. The TRP 

content was significantly higher in the SKSD and SK4SD Ox treatments at 3M (Appendix Table 6.3). 

From then onwards, the differences between C and Ox treatments and between A/T ratios were 

reduced over time.  

Conversely, the tannin content showed different patterns from 0 to 3M within the different treatments. 

As illustrated in Figure 6.5 (values at 0M are specified on the Y axes), clear differences were found 

between C and Ox samples. Whilst the MCP tannin levels were relatively constant from 0M to 3M in 

C samples (except for a slight increase in SKSD), an increase in the tannin levels was observed in 

Ox (SKSD and SK4SD) samples during the same period. However, after 3M, the tannin levels were 

only significantly higher in SK4SD-Ox when compared to the corresponding C samples (Figure 6.5). 

During the following three months, the C treatments showed a progressive decrease in tannin levels, 

except for the SK treatment (constant from 3M to 9M), while not changing significantly up to 9M.  

(Figure 6.5). On the other hand, the Ox treatments’ tannin levels increased (SK and SKSD) or 
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remained stable (SK4SD) up to 6M of storage, which might also explain the different oxygen 

consumption rates of the second oxidation after 3M of storage. From then, all the Ox A/T ratios 

experienced a general decrease in tannin levels towards the last sampling stage (9M). This decrease 

can possibly be explained by the formation of larger and/or unstable polymers, no longer soluble in 

the hydroalcoholic solution. Thus, the oxygen had an impact on the tannin polymerisation and the 

reactivity of the polymerisation reaction products towards methylcellulose.  

 

Figure 6.4. PCA and loading plot A/T samples distribution based on the spectrophotometric methods. A1 
shows the samples according to the three different A/T ratios. A2 shows the samples according to the sampling 
stage. In A3 the samples were coloured according to the C/Ox treatments. B corresponds to the loading plot.  
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Figure 6.5. Evolution of the MCP tannin levels (mg/L) of all A/T treatments over time. Values at time 0 are 
placed on the Y axis. The different letters indicate significant differences (ANOVA, p < 0.05) between the 
treatments. 

 

The impact of the different A/T ratios and their relevance on the A/T colour and phenolic composition 

as assessed spectrophotometrically is shown Figure 6.4. Furthermore, oxygen not only played a 

significant role in tannin polymerisation, as widely documented in literature (Singleton, 1987; 

Castellari, et al., 2000; Atanasova, et al., 2002; Waterhouse & Laurie, 2006; Gambuti, et al., 2013; 

Quaglieri, et al., 2017), but indirectly also influenced the protection of the total red pigments. In the 

presence of oxygen, a higher phenolics level might create a competitive effect for the reaction with 

oxygen, favouring specific polymerisation reactions. Thus, the higher pigment content can be 

explained by the depletion of oxygen as a consequence of the reaction of other phenolic compounds 

with oxygen, instead of the anthocyanins/pigments.  

 

6.3.4. CIELab parameters 

The storage time played an important role, together with the different A/T ratios in some cases, on 

the different CIELab parameters of the samples (Appendix 6.4). However, these differences between 

the A/T ratios seemed to be reduced by the impact of oxygen, especially notable in L*, b* and Cab* 

(Appendix Table 6.5). In general, C treatments were clearer (higher L*) than Ox treatments (Figure 

6.6). This clarity might be related to lower amounts of TRP in C samples.  

Overall, the samples were characterised by an increase in the sample clarity (L*) accompanied by a 

loss in the a* component (red/green colour dimension: a* > 0 red, a* < 0 green) over time. At the 

same time, b* (yellow/blue component: b* > 0 yellow, b* < 0 blue) showed a general increase 
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(Appendix Table 8). The CIELab results in general agreed with the results 420 nm and 520 nm colour 

measurements and the TRP content previously reported (section 6.3.3).  

 

 

Figure 6.6. Evolution of the clarity (L*) of the sample for all A/T treatments over time. The different letters 

indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 

6.3.5. HPLC data for individual phenolics 

Results of individual phenolics are shown in (Table 6.2 and 6.3). The different A/T ratios, the 

presence/absence of oxygen and the time played a role in the phenolic composition of the 

treatments. A large difference between gallic acid concentrations were found between the three A/T 

ratios. A higher amount of seeds led to an obvious greater extraction of gallic acid (Table 6.2). At 

0M, large differences were found in the gallic acid content between the treatments (Table 6.2). From 

time 0M to 3M, a decrease in the gallic acid concentration was observed and it was possibly linked 

to the formation of new polymeric forms (especially in SK4SD), precipitation or its degradation. The 

hypothetical interaction between gallic acid quinones and flavonol units have been recently reported 

(Mouls & Fulcrand, 2015). Thus, the concentration of polymeric phenols was also significantly higher 

in SKSD and SK4SD compared to SK (Table 6.3). These differences between the A/T ratios 

remained over time. Over the course of time (especially from 6 M), the polymeric phenols content 

was generally higher in Ox treatments. Therefore, the presence and reactivity of seed derived 

compounds may influence the polymerisation and the colour and phenolic stability.  

Additionally, a higher total flavonol content was found in Ox samples; however, the total 

hydroxycinnamic acids concentration was higher in C samples. Unexpectedly, although in very small 

concentrations (not always significant), the total hydroxycinnamic acid content seemed to increase 

over time (Table 6.3). Literature had reported a general decrease of hydroxycinnamic acids 
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concentration during storage (García-Falcón, et al., 2007). However, an increase of certain 

hydroxycinnamic acids has also been observed (García-Falcón, et al., 2007; Arapitsas, et al., 2014), 

possibly as a result of copigment degradation, expected to occur over time (Bimpilas, et al., 2016). 

 

Table 6.3. Levels of the individual and groups of phenolic compounds (mg/L) for all A/T treatments over time. 

The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

Treatment  CONTROL OXYGEN 

Ratio Months SK SKSD SK4SD SK SKSD SK4SD 

Gallic acid 

3M 1.14 ± 0.04  j 8.73 ± 0.02 gh 28.78 ± 0.11 c 1.28 ± 0.01 ij 9.04 ± 0.09 fg 30.24 ± 0.13 b 

6M 1.51 ± 0.04 ij 8.55 ± 0.15 h 27.69 ± 0.54 d 1.17 ± 0.01 ij 9.21 ± 0.25 f 30.40 ± 0.04 b 

9M 1.53 ± 0.05 i 8.78 ± 0.03 gh 28.57 ± 0.32c 1.27 ± 0.01 ij 9.58 ± 0.22 e 30.78 ± ± 0.41 a 

Catechin 

3M 8.28 ± 3.03 de 8.57 ± 1.30 de 20.47 ± 1.07 b 6.73 ± 0.19 efg 15.38 ± 3.43 c 35.70 ± 2.80 a 

6M 5.88 ± 2.41 efg 6.60 ± 1.61 efg 12.49 ± 0.50 cd 3.94 ± 0.85 fg 3.12 ± 0.18 g 13.37 ± 6.03 c 

9M 20.73 ± 3.01 b 6.91 ± 0.35 efg 8.93 ± 1.68 de 6.46 ± 1.50 efg 11.78 ± 1.66 cd  8.95 ± 2.52 de 

B1 

3M 14.02 ± 4.15 ij 19.97 ± 1.32 gh 66.58 ± 0.48 a 11.55 ± 2.00 jk 33.07 ± 4.73 e 69.49 ± 4.90 a 

6M 7.38 ± 0.63 k 22.68 ± 0.88 fg 44.62 ± 2.28 d 11.30 ± 1.99 jk 25.91 ± 0.39 f 46.59 ± 4.65 d 

9M 8.61 ± 0.33 k 25.88 ± 4.25 f 52.26 ± 3.70 c 16.38 ± 2.26 hi 35.17 ± 1.89 e 61.40 ± 2.14 b 

Polymeric 
 phenols 

3M 513.75±1.55 k 707.86±5.50 ef  1002.65±20.15 a 525.20±0.54 k 731.42±20.87 de 1010.29±22.25 a 

6M 442.05±32.68 l 586.18±48.70 i 689.75±7.32 fg 529.33±23.93 jk 656.95±27.41gh 832.36±31.70 c 

9M 490.99±16.63 k 645.19±3.77 h 758.85±28.89 d 568.59±6.63 ij 712.80±15.34 ef 903.30±16.05 b 

∑ 
Hydroxycinnamic 

acids 

3M 3.59 ± 0.04 hij 4.43 ± 0.06 de 3.92 ± 0.10 gh 2.97 ± 0.09 k 3.26 ± 0.42 ijk 3.61 ± 0.46 hi 

6M 4.06 ± 0.12 efg 4.52 ± 0.07 cd 4.86 ± 0.15 bc 3.19 ± 0.09 jk 3.36 ± 0.18 ij 3.58 ± 0.16 hi 

9M 4.37 ± 0.09 def 5.10 ± 0.10 b 5.54 ± 0.09 a 3.51 ± 0.14 hij  4.01 ± 0.41 fg 4.24 ± 0.07 defg 

∑ 
 Flavonols 

3M 16.37 ± 0.61 d 18.12 ± 0.36 c 16.44 ± 0.48 d 20.15 ± 0.62 b 22.79 ± 0.76 a 20.78 ± 0.48 b 

6M 12.10 ± 0.65 fg 13.01 ± 1.01 ef 10.23 ± 0.56 hi 15.88 ± 0.44 d 16.08 ± 0.73 d 13.30 ± 0.64 ef 

9M 11.06 ± 0.52 gh 11.62 ± 0.20 g 9.58 ± 0.35 i 13.93 ± 0.77 e 14.07 ± 1.24 e 11.75 ± 0.60 g 

∑ 
 Glucosylated 
anthocyanins 

 

3M 3.98 ± 0.37 f 4.46 ± 0.09 e 4.88 ± 0.12 d 7.53 ± 0.12 c 12.39 ± 0.42 b 18.81 ± 0.39 a 

6M 1.25 ± 0.19 ij 1.17 ± 0.04 ijk 1.07 ± 0.06 ijk 1.94 ± 0.20 h 2.46 ± 0.20 g 2.66 ± 0.10 g 

9M 0.87 ± 0.03 k 0.92 ± 0.02 jk 0.87 ± 0.02 k 1.05 ± 0.02 ijk 1.35 ± 0.15 i 1.33 ± 0.07 i 

∑  
Acetylated 

anthocyanins 

3M 2.72 ± 0.88 ef 2.21 ± 0.11 efg 4.18 ± 1.53 d 6.24 ± 2.55 c 11.84 ± 0.54 b 16.88 ± 0.49 a 

6M 1.74 ± 0.06 fg 1.61 ± 0.06 fg 1.44 ± 0.03 fg 2.55 ± 0.13 efg 3.20 ± 0.27 de 3.39 ± 0.15 de 

9M 1.41 ± 0.11 fg 1.33 ± 0.02 g 1.28 ± 0.07 g 1.59 ± 0.04 fg 1.88 ± 0.19 fg 1.70 ± 0.10 fg 

∑ 
 Coumaroylated 

anthocyanins 

3M 2.92 ± 0.41 d 2.95 ± 0.10 d 3.04 ± 0.08 d 4.95 ± 0.44 c 7.58 ± 0.45 b 9.46 ± 0.50 a 

6M 1.44 ± 0.07 efg 1.31 ± 0.06 fg 1.18 ± 0.03 g 1.74 ± 0.14 e 1.79 ± 0.03 e 1.63 ± 0.04 ef 

9M 1.24 ± 0.07 g 1.19 ± 0.06 g 1.14 ± 0.02 g 1.27 ± 0.06 fg 1.44 ± 0.08 efg 1.29 ± 0.05 fg 

Polymeric 
pigments 

3M 14.01± 0.35 ijk 16.75 ± 0.18 def 19.78 ± 0.86 b  14.83 ± 0.30 ghij 18.70 ± 0.34 bc 21.66 ± 0.41 a 

6M 12.57 ± 1.20 l 14.52 ± 1.51 hijk 13.50 ± 0.80 kl  14.56 ± 0.94 hijk 15.15 ± 1.01 ghi 15.51 ± 0.73 fgh 

9M 13.73 ± 0.51 jkl 16.08 ± 0.18 efgj 14.81 ± 0.49 ghij 15.66 ± 0.13 efgh 16.76 ± 0.52 de 17.62 ± 0.28 cd 

 

Likewise, a large decrease was observed in the anthocyanin concentration of all treatments from 0M 

(Table 6.2) to 3M (Table 6.3). The larger decrease in anthocyanin levels observed in the C treatments 

was not associated with higher polymeric pigments formation (Table 6.3). Nevertheless, the HPLC 

results confirmed the idea of certain oxidative reactions between phenolics being favoured in the 

presence of oxygen. The oxidation of ethanol and tartaric acid could possibly have led to the 

formation of ethyl bridged structures between tannins moieties, thereby leading to a lower reactivity 

involving anthocyanins. This may explain the higher levels of monomeric anthocyanin, especially 
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during the first 3M (Figure 6.7), in the treatments where higher levels of seeds were present and 

oxygen added. Therefore, a higher amount of monomeric anthocyanins would remain as free forms 

in the solution. Supporting this, after 3M of storage, SK and SKSD samples showed a greater 

decrease in glucosylated, acetylated and coumaroylated anthocyanins in the absence of oxygen. On 

the other hand, SK4SD initially had a higher concentration of polymeric pigments, thereby influencing 

the polymerisation reactions. These differences between A/T ratios in the concentration of polymeric 

pigments, for both C and Ox, were also found at 3M, but disappeared after 6M of storage. Despite 

these results, we cannot discard the possibility that certain of these polymeric pigments are not 

detected by the current HPLC method. Nevertheless, after 6M, all treatments experienced 

anthocyanin degradation and differences between treatments became smaller. This anthocyanin 

degradation over time  has  been widely reported in red wines, partly as a consequence of the 

pigmented polymer formation (Somers, 1971; Somers & Evans, 1979; Pérez-Magariño & González-

SanJosé, 2004; Arapitsas, et al., 2014; Quaglieri, et al., 2017). 

 

 

Figure 6.7. Evolution of the total glucosylated anthocyanin (mg/L) for all wine extract treatments over time. 

The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 

6.3.6. HILIC-FLD data for tannins 

All samples were analysed with a HILIC method capable of separating proanthocyanidins of degree 

of polymerisation (DP) up to eight (octamers) (Terblanche, 2017). However, in our samples we only 

detected up to trimers. From the results, large differences were observed between the three A/T 

ratios. Firstly, as discussed in the spectrophotometric and HPLC analysis (section 6.4.4 and 6.4.5), 

the SK4SD treatments had a significantly higher phenolic concentration. These differences were 

further corroborated by the HILIC results that showed that at 0M the SK4SD treatment had the largest 
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concentration of monomers and dimers (not detected in SK) and was the only treatment where 

trimers were detected (Table 6.2). The WL SK4SD’s treatments (C and Ox) also seemed to have 

more complex tannin based structures, as trimer molecules were exclusively found in them. After 

time 0M the oxygen and the time effect were also relevant to the WL composition. In short, the 

excess of phenolics, extracted from the grape seeds, had a major effect influencing the initial 

phenolic composition of the A/T, but also affecting the subsequent polymerisation reactions. 

However, the changes occurring over time (within the same compounds) were only significant in 

SK4SD.  

 

Table 6.4. Evolution of flavan-3-ol monomers, dimers and trimers (mg/L) for all the A/T treatments over time. 

The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments. 

Treatment  CONTROL OXYGEN 

Ratio Months SK SKSD SK4SD SK SKSD SK4SD 

Monomers 

3M 0.11 ± 0.20 d 1.08 ± 0.10 d 28.17 ± 16.04 b 0.31 ± 0.03 d 7.78 ± 1.66cd 53.65 ± 8.40 a 

6M n.d. d n.d. d 15.47 ± 1.61 c n.d. d 4.76 ± 0.88 cd 30.28 ± 15.04  b 

9M n.d. d n.d. d 6.47 ± 0.87 cd n.d. d 1.74 ± 0.96  d   3.85 ±0.34 cd 

Dimers 

3M 0.41 ± 0.38 e 0.55 ± 0.95 e 15.21 ± 2.55 d 0.54 ± 0.08 e 4.35 ± 2.02 e 37.19 ± 6.98 b 

6M 0.92 ± 1.30 e 3.01 ± 0.35e 26.86 ± 4.16 c n.d. e 5.42 ± 1.54 e 48.85 ± 1.97a 

9M n.d. e 1.52 ± .38 e 11.68 ± 6.50d n.d. e 3.07 ± 0.16 e 29.68± 0.96 c 

Trimers 

3M n.d. d n.d. d 0.42 ± 0.74 d n.d. d n.d. d 8.64 ± 2.11 a 

6M n.d. d n.d. d 7.04 ± 1.25 b n.d. d n.d. d 5.36 ± 0.18 c 

9M n.d. d n.d. d  n.d. d n.d. d n.d. d n.d. d 

Total 

3M 0.52 ± 0.55 e 1.63 ± 0.97 e 43.81 ± 19.19 b 0.85 ± 0.07 e 12.13 ± 3.68 de 99.49 ± 16.74 a 

6M 0.92 ± 1.30 e 3.01 ± 0.35 de 49.37 ± 7.02 b n.d. e 10.18 ± 2.42 de 84.48 ± 13.25 a 

9M n.d. e 1.52 ± 0.38 de 18.16 ± 5.62 cd n.d. e 4.81 ± 0.80 de 33.53 ± 1.30 bc 

 

The analysis over time showed how polymerisation reactions took place regardless of the presence 

or absence of oxygen, as during the first 3M, the dimer concentration increased in most treatments 

(Table 6.4) from time 0 (0M) (Table 6.2). Furthermore, differences were also found between C and 

Ox and from our results, the oxygen had some influence, enhancing the polymerisation reactions at 

early stages in the SK4SD treatments. Dimers (Figure 6.8 - values at 0M are specified on axis Y) 

and trimers concentration in SK4SD samples kept being significantly higher in Ox treatments when 

compared to their respective C treatments over time. Apart from the concentration, the impact of 

oxygen was also linked to the speed in which these compounds were formed. The trimer 

concentration reached its peak after 3M in SK4SD Ox treatments, whereas in C samples the highest 

concentration in C samples was found only after 6M of storage (Table 6.4). This tannin 

polymerisation could possibly be explained by the formation of ethyl-bridges between tannin 

molecules, mediated by the acetaldehyde formed by the oxidation of the ethanol contained in the 

model solution (Timberlake & Bridle, 1976). The formation of ethyl-bridge dimers and trimers from 

grape seed phenolics was already reported (Rockenbach, et al., 2012). The condensation mediated 

by acetaldehyde occurs at a higher rate than the direct condensation (Es-Safi, et al., 1999). As 
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expected, monomer concentrations decreased over time as more complex molecules were formed. 

In addition, from 6 to 9M, a decrease in dimers and trimers was also observed (Table 6.4). This drop 

might be related to a possible breakdown or precipitation due instability in the WL media of certain 

phenolic derived polymers.  

 

Figure 6.8. Evolution of the total dimers concentration (mg/L) for all A/T treatments over time. Values at time 
0 are placed on the Y axis. The different letters indicate significant differences (ANOVA, p < 0.05) between the 
treatments. 

 

The absence of condensed tannins in the WL SK (only grape skins) samples after 6M might be 

related to certain limitations of the sample preparation method for the HILIC method. MCP tannins 

were detected in all SK treatments (Figure 6.5). Thus, this discrepancy in the tannin values may be 

explained by a possible retention of certain pigmented tannins during the HILIC sample preparation 

which could react with the methylcellulose in the spectrophotometric tannin determination. However, 

Spearman coefficient correlations showed very good correlations between the monomer and dimer 

concentration measured with the HILIC-FLD and the catechin and B1 dimer concentrations 

determined by HPLC (R=0.83 and R=0.81 respectively). Moreover, the present method allowed us 

to evaluate the evolution of the seed derived flavan-3-ols over time.  

 

6.3.7. Wine stability 

Finally, for the second part of the study, untargeted MS analysis was used to evaluate the impact of 

oxygen on the colour and phenolic stability of the three A/T ratio samples. For this purpose, the WL 

media and its corresponding precipitates (P) were collected after 6M and 9M of storage, for all three 

ratios and C/Ox treatments. A large dataset was generated from the WL and P samples analysed 

with LC-HRMS. PCA was used to explore the sample distribution according to the MS dataset 
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generated. The PCA plot illustrated in Figure 6.9 shows a clear separation along PC2 (7.45%) 

between the two different matrices, WL and P, according to their chemical composition. The low 

explained variance found in the PCA plot is due to a consequence of the large number of ions 

detected in both matrices. Discriminant analyses were performed using this data to find which 

compounds were influenced by the various parameters (anthocyanin/tannin ratio, oxygen and time). 

 

  

Figure 6.9. PCA plot showing the distribution of the two different matrix, WL and P, analysed by LC-HRMS. 

 

6.3.8. Identification of the compounds  

With the aim to further identify the compounds driving the differences between samples, discriminant 

analyses were performed on WL and P data independently. With this in mind, Orthogonal Partial 

Least Square Discriminant Analysis (OPLS-DA) is a more powerful technique as it concentrates the 

variance, and was therefore used for this purpose. To evaluate the impact of the three A/T ratios, 

the corresponding S-Plots (scaled to Pareto variance), were constructed based on pair-wise 

comparisons (i.e. WL SK vs. WL SKSD; WL SK vs. WL SK4SD or WL SKSD vs. WL SK4SD). The 

S-plots are a screening tool frequently used to target/identify the possible markers contributing 

specifically to each treatment. These potentially distinctive markers are generally distributed on the 

“S”-wings of the plot (upper-right and lower-left edge of the plot). From then, a list of possible markers 

which may influence the phenolic stability and precipitation was generated. All models were built and 

statistically validated using SIMCA 14.1 software. The CV-ANOVAs for the different pair-wise 

comparisons were performed to assess model reliability (Worley & Powers, 2016) (Table 6.5).  
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Table 6.5. CV-ANOVAs evaluating the model reliability for the different pair-wise comparison between 

treatments. 

 
F p 

Wine vs. precipitate 103.021 0.000 

Wine 
  

SK / SK4SD 18.151 0.000 

SK / SKSD 8.069 0.001 

SKSD / SK4SD 2.724 0.045 

C / Ox 2.125 0.082 

6M vs. 9M 1.940 0.130 

Precipitate 
  

SK / SK4SD 12.185 0.000 

SK / SKSD 1.871 0.148 

SKSD / SK4SD 1.427 0.264 

C / Ox 2.270 0.120 

6M / 9M 12.284 0.000 

 

Some of the ions/compounds were found in both matrices, WL and P. Their presence in the 

precipitate may be explained by the possible saturation of the specific compound in solution, or as 

result of the degradation of a larger compound during the precipitation or analysis. Nevertheless, an 

OPLSA and the corresponding S-Plot was generated to visualise which ions might be driving the 

main differences between the two matrices (Figure 6.10). From the S-plot, the ions considered as 

the main contributors, but not the only ones, driving the differences between the matrices were m/z 

477, 507, 637 and 655 m/z for the P (lower side of the S) and 177, 191 and 605 for the WL (upper 

side of the S). Tentative assignment of these influential ions to specific compounds was based on 

accurate mass data, low and high collision energy MS spectra and on-line UV spectra and relative 

RP-LC elution order in comparison with reported literature. 

 

 

Figure 6.10. OPLS-DA (A1) and corresponding S-Plot (A2) comparing the two different matrices (WL and P) 

according to the different ions analysed by LC-HRMS. 
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As shown in Table 6.6, the ions found in the WL matrix and distinguishing WL from P, were identified 

as gluconolactone (m/z 177), citric acid (m/z 191) and a hemicellulose derivative (m/z 605). The 

presence of some cell wall polysaccharide derivatives in solution could be relevant to obtain a better 

understanding on how the polysaccharides influence wine stability. On the other hand, m/z 477 

(petunidin glucoside), m/z 507 (syringetin-hexoside), m/z 637 (malvidin-coumaroyl-glucoside) and 

m/z 655 (its carbinol form) were identified in the precipitate, indicating that loss of colour over time 

is at least partially due to precipitation of anthocyanins (Table 6.6).  

 

Table 6.6. Identification of the wine stability markers found with the untargeted analysis. 

RT Ions Matrix Identity M-H Formula ppm MSE fragments 

2.61 605.1965 WL Hemicellulose derivative 605.1929 C22H37O19 5.9 n.a. 

2.67 191.0199 WL Citric acid 191.0192 C6H8O7 0 155,136,111 

5.53 169.0143 Both Gallic acid 169.0138 C7H5O5 0.6 125.0242 [M-CO2] 
6.15 177.0403 Both Gluconolactone 177.0393 C6H10O6 -3.4 159,139.103 

7.77 331.0668 Both Gallic acid glucoside 331.0665 C13H15O10 0.9 169,125 
8.51 315.1082 P Hydroxytyrosol glucoside 315.108 C14H19O8 0.6 153,123 
9.3 183.0295 WL Methylgallate 183.0286 C8H8O5 -3.8 - 

10.48 341.0879 WL Caffeic acid-3/4-O-glucoside  341.0873 C15H17O9 1.8 289,281,179,161,135 

11.08 443.1923 P Unknown   
 

    

11.2 341.0868 P Caffeic acid-3/4-O-glucoside  341.0873 C15H17O9 -1.5 289,281,179,161,135 
11.99 229.0979 Both Unknown   

 
    

12.3 325.0927 WL Coumaric acid glucoside 325.0927 C15H17O8 -2.2 289,265,295,163,145
,119 

13.08 325.0926 Both Coumaric acid glucoside 325.0923 C15H17O8 1.2 289,265,295,163,145
,119 

13.17 289.067 P Epicatechin 289.071 C15H13O6 -0.7 245.0822, 125.0243 

14.46 347.0763 P Dihydrosyringetin 347.0767 C17H15O8 -1.2 347,329,151 

14.72 197.0449 Both Ethylgallate 197.0458 C9H10O5 4.1 169,125 
16.36 369.1193 Both Unknown 369.1186 C17H22O9 1.9 161,133,125 

17.56 477.067 WL Quercetin-glucoronide 477.0669 C21H17O13 0.2 301.0342. 271.0253, 
151.0034, 179 

17.63 463.0869 Both Quercetin-hexoside 463.0877 C21H19O12 -1.7 301.0342. 271.0253, 
151.0034, 179 

17.94 493.0976 Both Laricitrin-hexoside 493.0982 C22H21O13 -1.2 331,315, 301 

18.59 353.1249 P Unknown   
 

    

19.83 477.1038 Both Petunidin-glucoside 477.1033 C22H21O12 0.4 314,299,285 
19.98 507.1144 Both Syringetin-hexoside 507.1139 C23H23O13 1 345,344, 329.316 
21,42 637.1564 P Malvidin-coum-gluc 637.1557 C32H29O14 1.1 \ 

 

With regards to the specific differences between the different WL composition, the CV-ANOVA 

analysis showed that only the models built between the different A/T ratios in the WL were statistically 

significant (p<0.05) (Table 6.5). The models built for C/Ox and time were not statistically significant 

although these treatments played a role in the WL chemical composition, as previously described.  

The graphs in Figure 6.11 show the cross-validated OPLS-DA plots and their corresponding S-plots 

for the different pair comparisons between the WL A/T ratios (R1 as SK, R2 as SKSD and R3 as 

SK4SD). The ions selected can be considered as the major contributors driving the differences 

between the A/T ratios. A maximum of five ions were selected when a large amount of ions were 

found on the edge of the S plot (like in Figure 6.11 C2). Firstly, from SK vs. SK4SD (Figure 6.11 A2) 

and SK vs. SKSD (Figure 6.11 B2), the m/z 177 and 341 were only present in WL from the SK 
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treatments. On the other side, the following ions: m/z 169, 197, 229 and 331 were found to appear 

on the upper-right edge of the S plot as the number of seeds increased during the extraction (Figure 

6.11 A2 and B2). Furthermore, a few other ions were selected from the pair-wise comparisons 

performed between SKSD and SK4SD. As represented in Figure 6.11 C2, the ion 177 m/z was found 

on SKSD (lower-left side) whereas m/z 169, 229, 331 were found again in the SK4SD side, together 

with other ions such as m/z 347 and 443. Thus, the nature and the amount of the compounds 

extracted from the grape seeds played an important role in the phenolic stability. The formation of 

gluconolactone (m/z 177), naturally found in some food products and as an additive in cosmetics, 

had previously been reported in studies wine-like system (Bertrand & Barbe, 2002). Its formation is 

related to the presence of gluconic acid in solution, an oxidised byproduct of glucose. Additionally, 

caffeic acid-3/4-O-glucoside (m/z 341) was also found in solution when comparing SK vs. SKSD. On 

the other hand, some of the ions selected from the treatments with the presence of seeds were 

related to seed derived compounds such as gallic acid (m/z 169), ethyl gallate (m/z 197) and a gallic 

acid-glucoside (m/z 331). Additionally, when comparing SK4SD versus SKSD, a gallic acid derivative 

(m/z 331) was also identified. However, the ions m/z 229 and 443 remains unknown.  

 

Figure 6.11. OPLS-DA and S-Plot pair-wise comparisons between the different A/T ratios on the WL. R1, R2 
and R3 represent the SK, SKSD and SK4SD respectively. A1 and A2 represents the OPLS-DA plot and S-plot 
between SK and SK4SD. B1 and B2 compared SK vs. SKSD. C1 and C2 compared SKSD vs. SK4SD. 
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Although not significant, the cross-validated OPLS-DA models and the corresponding S-Plots 

evaluating the impact of oxygen and time were also performed in WL (data not shown). Interesting 

results were also obtained, such as the occurrence of methylgallate (m/z 183) in WL-C samples, 

compared to the presence of quercetin-glucoside (m/z 369) in the WL-Ox samples (Table 6.6).  

 

Figure 6.12. OPLS-DA and S-Plot pair-wise comparisons between the different A/T ratios on the P. R1, R2 
and R3 represent the SK, SKSD and SK4SD respectively. A1 and A2 represents the OPLS-DA plot and S-plot 
between SK and SK4SD. B1 and B2 compared SK vs. SKSD. C1 and C2 compared SKSD vs. SK4SD. 

 

On the other hand, interesting results were obtained from the discriminant analysis performed on the 

P data (Figure 6.12). To our knowledge, this is the first study that evaluated the composition of a 

wine precipitate influenced by specific A/T ratios. However, the impact of the different A/T ratios was 

found to be significant only for pair-wise comparisons between SK and SK4SD (Figure 6.12A2). 

These results indicated a role of the grape seed derived compounds not only in the concentration, 
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but also on the stability of certain compounds in a wine like system. Firstly, 369 m/z was found on 

the lower-left side of the S-plot (SK) from Figure 6.12 A2 and B2. The excess of seeds (SK4SD) led 

to the precipitation of the molecules with the following m/z: 169, 197, 229, 331 and 493. The ion m/z 

369 remains unknown. On the other side of the S-plot, the excess of seed (SK4SD) led to the 

precipitation of specific compounds which were also identify in the WL such as gallic acid (m/z 169), 

ethyl gallate (m/z 197) and a gallic acid derivative (m/z 331). As mentioned, their presence in the P 

samples may be due to a possible saturation in the wine solution or as a result of the fragmentation 

of a larger molecule. The ion m/z 493 (Table 6.6) was identified as laricitrin-hexoside.  

Moreover, contrary to the results in WL, the cross-validated OPLS-DA and S-Plot defined time as a 

significant factor in the compound precipitation. The oxygen as a factor was not significant. From the 

S-plot 6M vs. 9M (Figure 6.13), a few selected ions (m/z 315, 507, 637, and 655) originating from 

compounds that precipitated after 6M whilst 177, 325 and 341 m/z seemed to precipitate after 9M. 

Then, over the course of time, malvidin-coumaryl-glucoside and its carbinol form precipitated after 

6M, as well as hydroxytyrosol-glucoside (m/z 315) (glucosylated of the bioactive compound 

hydroxytyrosol found in wine) and syringetin (m/z 507). Interestingly, some hydroxycinnamic acids 

derivatives only precipitated after 9M, such as the caffeic acid-3/4-O-glucoside (m/z 341) or coumaric 

acid glucoside (m/z 325). 

 

 

Figure 6.13. OPLS-DA (A1) and S-Plot (A2) pair-wise comparisons according to the precipitation time (6M 
vs.9M) on the P. 

 

A few ions were also selected from the C/Ox S-plot (although the model was not significant) as they 

were clearly located on the S wings. As illustrated in Figure 6.14, malvidin-coumaryl-glucoside (637 

m/z) was found in C samples. On the side the ions 463, 477 and 507 m/z were selected originating 

from compounds that were precipitated in the presence of oxygen. Quercetin-hexoside (m/z 463), 

petunidin glucoside (m/z 477, RT 19.83) and syringetin (m/z 507) were found in the Ox precipitate. 

The presence of m/z 637 in C samples confirms the results from Table 3 and the indirect protective 
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effect of oxygen towards certain monomeric anthocyanins during the first months of storage under 

our conditions.  

 

Figure 6.14. OPLS-DA (A1) and S-Plot (A2) pair-wise comparisons according to the C and Ox samples on the 
P. 

 

6.4. CONCLUSION 

 

The first goal was to assess the impact of the oxygen on three A/T ratios in a WL system. In this 

sense, the present study has proved the influence of these A/T ratios in phenolic polymerisation, and 

the colour and phenolic evolution over time. Firstly, our results showed a relevant role of the 

phenolics derived from grape seeds in the phenolic polymerisation, in absence or presence of 

oxygen, over time. Also, the study demonstrated how the polymerisation between certain 

compounds was favoured in the presence of oxygen. This might explain the larger TRP levels and 

the concentration of total glucosylated, acetylated and coumaroylated forms of the monomeric 

anthocyanins in WL-Ox samples at 3M (Table 6.3) found in Ox samples. Thus, the higher levels of 

seed derived compounds could have favoured these polymerisation reactions during the oxidative 

processes or reacted with the oxygen, leaving part of the monomeric anthocyanins free in the 

solution. 

The impact of seed addition or removal on the colour of the wines had been previously reported 

(Canals, et al., 2008). From our results, in agreement with Canals et al. (2008), a higher amount of 

seeds (SK4SD) showed a higher amount of TRP (especially oxidized samples at 3M), but it did not 

affect the final CD contrary to what Picarello et al (2017) described. The HILIC method permitted us 

to measure the specific concentration of oligomeric tannins. To date, a large number of studies had 

focused on the impact of seed addition or removal on the colour, phenolic profile and sensory 

properties of the wines (Meyer & Hernandez, 1970; Canals, et al., 2008; Lee, et al., 2008; Guaita, et 

al., 2017), but there is a lack of information on their evolution and how oxygen influences this. This 

work has been carried in a model wine solutions. Nonetheless, in a red winemaking process, the 

presence of other grape derived compounds, such as skin proteins or polysaccharides, may alter 
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this self-aggregation, polymerisation and precipitation reactions (Poncet-Legrand, et al., 2007; 

Watrelot, et al., 2017).  

Moreover, the present study also showed the influence of oxygen and a greater tannin content on 

the stability of certain compounds in a WL. The A/T ratios with an excess of seeds were characterised 

by a larger number of gallic acid derivatives in solution, but also these formed in the precipitate. Here 

again it was shown how the presence of seed derived compounds in the WL solution might have 

favoured the remaining of certain anthocyanins in solution. In absence of oxygen, malvidin-3-

coumaroylglucoside was found to precipitate more than in the presence of oxygen. To our 

knowledge, this is the first time that the precipitation of phenolic compounds, as a consequence of 

altered A/T ratio and forced oxidation, was examined. Grape seeds are a very rich source of 

phenolics. Some of these compounds, such as dyhydroxytyrosol (from grape and olive seeds), are 

used as a bioactive compounds part of dietary supplements. A recent study has evaluated the impact 

of hydroxytyrosol addition in Syrah wines, as alternative to SO2, with the result of an improvement in 

the wine colour at bottling (Raposo, et al., 2016). Nevertheless, the negative impact of seed derived 

phenolic compounds on the sensory perception of certain wines is well known, especially related 

with the bitter taste (Arnold & Noble, 1978; Peleg, et al., 1999; Pascual, et al., 2016). Further studies 

need to be done that investigates not only the impact of the grape seeds on the wine stability, but 

also on their role on the phenolic extractability during wine red fermentation.  
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Chapter 7: General discussions and conclusions 

 

7.1. GENERAL DISCUSSIONS  

 

The quality of a red wine is undoubtedly associated with its colour and other organoleptic properties. 

Understanding wine chemistry, and more specifically grape and wine phenolic compounds, is very 

important to comprehend the evolution in colour, taste and mouth-feel of red wines. Extensive 

worldwide research has investigated the diversity of factors affecting phenolic synthesis and 

accumulation (Adams, 2006; Fournand, et al., 2006; Cohen, et al., 2008; Mattivi, et al., 2009), 

phenolic extractability (Canals, et al., 2005; Sacchi, et al., 2005; Bindon, et al., 2014; Hernández-

Hierro, et al., 2014; Smith, et al., 2015), reactions involving phenolics over time (Gambuti, et al., 

2013; Arapitsas, et al., 2014), as well as the final sensorial profiles of the wines (Wollmann & 

Hofmann, 2013; Ma, et al., 2014; Sáenz-Navajas, et al., 2017). All the work published in recent years 

has  shown a large increase in interest in this topic as was shown by Aleixandre-Tudo et al. (2017). 

Fundamental research in this field is essential in order to obtain a better understanding on the wide 

range of chemical interactions involving phenolic compounds as well as to develop more advanced 

analytical methods which may be applicable to the wine industry.  

This study has tried to highlight the importance of the phenolic composition of young Shiraz wines 

to better understand their colour and phenolic evolution during ageing. As part of this, we have also 

studied two very relevant fields such as the grape and wine phenolic composition and the berry cell 

wall associated polysaccharides and proteins and how these evolve during ripening and 

fermentation. For all three seasons studied, Vitis vinifera grapes were obtained from the same Shiraz 

vineyard from the Department of Viticulture and Oenology from Stellenbosch University. Therefore, 

the present results, although interconnect able, could obviously differ from findings with other red 

cultivars and different growing regions.   

The first objective of this study (Chapter 3) was to monitor the colour and phenolic evolution, as well 

as the sensorial changes, occurring in Shiraz wines made from grapes from the same vineyard, but 

with different initial phenolic profiles. This took place over two different vintages (2014 and 2015) 

where differences in the young wines’ phenolic concentrations/profiles came from grapes from 

different training systems, vigour zones and ripeness levels. However, for the second vintage (2015), 

the work focussed exclusively on the evolution of the wines made from different grape ripeness 

levels, as this  was the only parameter which we could investigate in a more detailed manner. In the 

2014 wines the colour and phenolic differences became smaller during wine ageing. However, in 

2015 wines,   differences in colour and phenolic composition between the wines made from the ripest 

berries (25ºBrix) and the rest (21ºBrix, 23ºBrix and 24ºBrix), became larger from the end of 
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fermentation to the bottling and remained over time. These results highlights the idea that only the 

grape sugar level is not always a good indicator to estimate the phenolic composition of the resulting 

wines. The greater concentration in polymeric phenols and polymeric pigments in certain wines could 

therefore be due to them being present at higher levels in the grapes or being more extractable.  

However, the formation from their monomeric moieties with a higher reactivity to form these polymers 

over time, could also be possible. Changes in phenolic concentrations and composition and the 

structural conformation of the grape skin cell walls during ripening can be a major factor determining 

the wine’s final phenolic concentration.  

From this idea, in the second part of this study we investigated the possible relationship between the 

cell wall polymer composition and the extraction of colour and phenolics into the wines. Chapters 4 

contribute to a better understanding of the relationship between ripening levels, grape and wine 

phenolics and cell wall components. Firstly, a clear vintage effect, probably as a consequence of the 

different climatic conditions between 2015 and 2016, was found to influence the grape composition. 

Seasons with extremely high temperatures close to véraison may alter the pectin fraction in the 

grape skins and the synthesis of different phenolics compounds, leading to wines with lower phenolic 

levels. In Chapter 5 we highlighted the influence of grape ripening level on depectination during the 

course of fermentation. In theory the greater the cell wall deconstruction and “opening-up” of the skin 

pomace, the greater the amount of certain phenolics extracted into the wines. However, this level of 

depectination can also lead to wine with lower levels of phenolics in certain cases due to two reasons. 

As described by Bindon et al. (2014), the cell wall porosity which is strongly related to the 

conformation of the pectin layer, can lead to the encapsulation and the subsequent retention of 

phenolic compounds, especially condensed tannins. Secondly we can hypothesise that  making wine 

from berries  with a greater depectination level could lead to an increase in cell wall polysaccharides 

leaching into the wines and reacting with phenolic compounds, thereby lowering phenolic 

concentrations in the wine due possible precipitation. Future research could be directed to not only 

better elucidate the relationship between phenolics and cell wall components, but also to the 

development of  techniques to evaluate “in situ” the cell wall composition of the grapes while still on 

the vine. More knowledge of the berry skin cell wall composition could help the winemaker towards 

a better phenolic management during the winemaking process. 

The objective for the last part of this work (Chapter 6) was to assess the impact of oxygen in a Wine 

Like system (WL) containing three different anthocyanin/tannin ratios over time obtained by adding 

different amounts of seeds. As expected, these different seed levels had a clear impact on the total 

amount of phenolics, especially tannins and their development over time. . In addition, our results 

have showed that subsequent polymerisation reactions are influenced by the phenolic proportions, 

irrespective of the presence or absence of oxygen. However, polymer formation was enhanced by 

the oxygen addition, probably due to the formation of ethyl-bridged compounds as a consequence 

of the oxidative process (Timberlake & Bridle, 1976; Dallas, et al., 1996; Picariello, et al., 2017). It 
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seems that under our conditions the oxygen favoured the polymerisation between tannins, especially 

in the presence of seed phenolics, leading to more free anthocyanins in the solution. Additionally, it 

also increased the formation of polymeric pigments in some cases as also recently reported by 

Picariello et al. (2017). Thus, keeping in mind the potential negative taste and mouth-feel attributes 

such as excessive bitterness resulting from the presence of seeds, they could have a positive indirect 

role on the presence of anthocyanins in the wines. Winemaking decisions such as the déléstage 

may thus also affect the colour of the wines. Different results may have probably been observed with 

a gradual oxidation, which was not employed in our study.  

The second objective of this last chapter was to investigate the precipitate formed over time in the 

WL system. The use of untargeted analysis permitted us to evaluate the precipitate formed and 

identify the main compounds driving the main differences between treatments and WL and 

precipitate.  The excess of seeds influenced the phenolic stability. Oxygen (although the OPLSA 

model was not significant) also influenced the precipitation of certain compounds, especially in their 

glucoside form. In relation with the previous chapters, the addition of grape polysaccharides could 

be interesting to evaluate their reactions with phenolics and if these influences the specific 

composition of the precipitate formed. This could help to predict colour and phenolic stability made 

from more depectinated berries or as a consequence of techniques like extended maceration. 

Further investigations regarding the formation of precipitate is necessary to understand the formation 

of phenolic derived precipitates in red wines. 

 

7.2. CONCLUDING REMARKS 

 

The present work, through all four research chapters, have shown the importance of understanding 

phenolic extractability as the colour and phenolic composition of young wines seems to influence the 

ageing potential of the wines. Factors such as grape ripeness, can influence the grape phenolic 

extractability altering not only the phenolic proportions in young wines but also its evolution over 

time. The study in a wine-like system therefore further helped to obtain a better understanding of the 

impact of specific anthocyanin/tannin ratios during ageing. Determining the specific impact of 

different vineyard management practices and grape ripening on the wine composition is a difficult 

task as numerous factors can influence this. Due to the large variability existing between different 

vineyards, the use of the same vineyard during the entire study has helped to exclude most of these 

other external variables.  

For the first part of the project (Chapter 3), a better sampling to strategy would have been more ideal 

in 2014, as the ºBrix differences between certain grapes treatments may have influenced the 

phenolic profile of the wines to a certain extent. Due to unforeseen circumstances, a change in some 
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of the sensorial panel members during the two sensory evaluations in 2014 also did not allow us to 

establish a real evolution of the wines.  

The impact of vintage, ripening and alcoholic fermentation on the phenolic and cell wall associated 

polysaccharides was successfully assessed in Chapter 4 and 5. However, the additional information 

which we could have obtained from the quantification of non-extracted individual and groups of 

phenolic compounds in the fermenting skins from 23ºBrix and 25ºBrix grapes would have been very 

valuable. In addition, although it was not part of the present project, the analysis of the 

polysaccharide composition in the wines would have helped to reach a better understanding of the 

relationship between the cell wall breakdown and the release of phenolic compounds.   

Nonetheless, the current study makes a valuable contribution to research in grape and wine and to 

the South African wine industry. The colour and phenolic composition of young wines seems to 

influence the ageing potential of the wines. From this study, a relationship between berry intactness 

and final phenolic content in wines was also seen. In future work, a better assessment of the impact 

of the different climatic conditions on the cell wall composition can be very relevant for the 

winemaker. There are currently still a lot of unknowns regarding the specific relationship between 

cell wall polysaccharides and phenolic compounds, but with the use of more advanced and powerful 

analytical techniques a better understanding of phenolic and polysaccharide derived compounds will 

be reached in future.  

In addition, the results in Chapter 6 have highlighted the influence of seed phenolics and oxygen on 

the wine polymerisation over time. A more progressive oxidation under the same conditions will be 

ideal to confirm the impact of the seed tannins in a wine evolution. Assessing the phenolic evolution 

within the first three months of our study would probably have also been more ideal, as large changes 

occurred between T0 and 3M months ageing. However, the evolution of phenolic compounds 

present at different ratios under different storage conditions can also be an interesting factor to 

investigate in future. The large volumes of grape seeds required for such a study could be a limitation 

which can influence the number of variables to study.    

The use of other red cultivars or vineyards could have yielded different results from those obtained 

in our study, but the general aims set out in Chapter 1 has been achieved to a large degree. However, 

we consider that the overall findings from the present work will contribute to knowledge on colour 

and phenolic compounds and factors affecting their evolution in Shiraz grapes and wines.  
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APPENDIX CHAPTER 3 

Appendix Table 3.1. List of aroma, taste and mouth-feel attributes and their corresponding standards for the 

sensory evaluation of 2014 wines (6M and 12M).  

 Descriptors Standards 6M 2014 12M 2014 

Aroma Dark berries Fresh/frozen mix of dark berries  
(Hillcrest Berry Orchads) 

x x 

 Red berries Fresh/frozen mix of red berries 
(Hillcrest Berry Orchads) 

x  

 Cherries Cherry syrup  x 
 Prunes Prunes(Safari) x x 
 Raisins Raisins (Safari) x x 
 Dry peaches Dried peaches (Safari) x  
 Vanilla/Caramel Vanilla essence x x 
 Tobacco Tobacco (Domingo) x x 
 Black pepper (Robertson) black pepper x x 
 Liquorice Liquorice candy (Allsorts) x x 
 Pencil shavings Pencil shavings (Staedtler) x x 
 Toasted wood Medium toasted French oak 

chips 
x  

 Elderflower Elderflower syrup 
(Blütensirup, Holunderblüte) 

x x 

 Floral Le nez du vin   
 Soy sauce Soy sauce (Vital) x x 
 Bovryl/Meaty Beefy bovryl x x 
 Leather New leather stripe  x 
 Roasted coffee Roasted coffee beans x  

 Herbaceous Mint x  
 Fresh vegetative Cut grass  x 
 Eucalyptus Fresh eucalyptus  x 
 Dry herbs Mixed herbs (Robertson)  x 
 Cooke veg. Asparagus/cauliflower x x 
 Musk/Animal Le nez du vin x  
Taste and mouth-feel     

 Sweetness Different concentrations of 
sucrose  

(Sigma-Aldrich) 

x x 

 Acidity Different concentrations of 
tartaric acid  

(Sigma-Aldrich) 

x x 

 Bitterness Different concentrations of  
caffeine (caffeine tablet) 

x x 

 Astringency Alum Crystals B.P. 
 (Alpha Pharm) 

(0, 0.25, 0.5, 1 g/L) 

x x 

 Body Carboxymethyl cellulose (CMC) 
solution (0.5/1/2 g/L) 

x x 

 Alcohol burn 96% Ethanol 
(13%, 15%) 

x x 
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Appendix Table 3.2. List of aroma, taste and mouth-feel attributes and their corresponding standards for the 

sensory evaluation of 2015 wines (6M and 12M).  

 Descriptors Standards 6M 2015 12M 2015 

Aroma Dark berries Fresh/frozen mix of dark berries  
(Hillcrest Berry Orchads) 

x x 

 Red berries Fresh/frozen mix of red berries 
(Hillcrest Berry Orchads) 

x x 

 Plum Fresh plums x  

 Cherries Cherry syrup  x 

 Prune/Raisins Prunes/raisins (Safari) x x 

 Vanilla/Caramel Vanilla essence x x 

 Sweet spices Cinnamon (Robertson) 
Cloves (Robertson) 

x  

 Aniseed Star aniseed (Robertson) x  

 Liquorice Liquorice candy (Allsorts) x x 

 Floral Le nez du vin x x 

 Elderflower Elderflower syrup (Blütensirup, 
Holunderblüte) 

 x 

 Muscat Le nez du vin  x 

 Cooked veg Asparagus/cauliflower x x 

 Herbaceous/Mint Fresh mint leaves x  

 Fresh vegetative Cut grass  x 

 Soy sauce Soy sauce (Vital) x x 

 Meaty Beefy bovryl x x 

 Coriander seeds Crushed coriander seeds x x 

 Black pepper Black pepper (Robertson) x x 

 Pencil shavings Pencil shavings 
(Staedtler) 

x x 

 Leather New leather stripe x  

 Tobacco Tobacco (Domingo) x x 
 Roasted coffee Roasted coffee beans  x 
 Humus/Earthy Wet earth x  

Taste and mouth-feel     

 Sweetness Different concentrations of 
sucrose  

(Sigma-Aldrich) 

x x 

 Acidity Different concentrations of 
tartaric acid  

(Sigma-Aldrich) 

x x 

 Bitterness Different concentrations of  
caffeine (caffeine tablet) 

x x 

 Astringency Alum Crystals B.P. (Alpha 
Pharm) 

(0, 0.25, 0.5, 1 g/L) 

x x 

 Body Carboxymethyl cellulose (CMC) 
solution (0.5/1/2 g/L) 

x x 

 Alcohol burn 96% Ethanol 
(13%, 15% ) 

x x 
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Appendix Table 3.3. Univariate test of significance for grape tannins, anthocyanins and TP in 2014. 

 Tannins Anthocyanins TP 

 F 
 

p 
 

 
F 

 
 

p 
 

F 
 

p 
 

Training system  
 

25.050 0.000 39.028 0.000 2.319 0.147 

Vigour 
 

1.129 0.304 3.875 0.067 73.354 0.000 

Brix 
 

1.096 0.311 81.765 0.000 8.773 0.009 

Training system *vigour 
 

7.206 0.016 0.232 0.636 1.413 0.252 

Training system *brix 
 

1.218 0.286 55.279 0.000 16.228 0.001 

Vigour*brix 
 

3.904 0.066 0.121 0.732 0.066 0.800 

Training system *vigour*brix 
 

0.098 0.758 4.896 0.042 38.643 0.000 

 

Appendix Table 3.4. Univariate test of significance for tannins. TRP and TP in 2014 wines at bottling (T0). 

 Tannins TRP TP 

 

 

F 

 

p 
 

F 
 

p 
 

F 
 

p 
 

Training system  
 

11.714 0.003 79.066 0.000 15.737 0.001 

Vigour 
 

5.847 0.028 39.189 0.000 62.009 0.000 

Brix 
 

26.259 0.000 46.717 0.000 0.051 0.824 

Training system *vigour 
 

9.831 0.006 1.121 0.305 16.422 0.001 

Training system *brix 
 

0.669 0.425 4.130 0.059 7.143 0.017 

Vigour*brix 
 

0.006 0.940 1.017 0.328 1.791 0.200 

Training system *vigour*brix 
 

2.434 0.138 3.836 0.068 0.098 0.758 

 

Appendix Table 3.5. Multivariate test of significance (Wilks test) for the impact of the different variables in 
the individual phenolic composition of all 2014 wines over time. 

 
F 

 

p 
 

Training system 
 

13.183 0.000 

Vigour 
 

5.962 0.000 

Ripening 
 

53.010 0.000 

Time 
 

28.321 0.000 

Training system*Vigour 
 

3.748 0.001 

Training system*Ripening 
 

13.053 0.000 

Vigour*Ripening 
 

2.204 0.031 

Training system*Time 
 

4.114 0.000 

Vigour*Time 
 

2.491 0.000 

Ripening*Time 
 

4.732 0.000 

Training system*Vigour*Ripening 
 

5.032 0.000 

Training system*Vigour*Time 
 

1.242 0.169 

Training system*Ripening*Time 
 

2.455 0.000 

Vigour*Ripening*Time 
 

1.263 0.151 

Training system*Vigour*Ripening*Time  
 

2.175 0.000 
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Appendix Figure 3.1. Significant aroma attributes for 2014 wines after 6 months (A) and 12 months in 

bottle. 

 

 

Appendix Figure 3.2. Bi-plots illustrating the distribution of the different wine samples after 6 (A) and 12 

months (B) in bottle according to the significant aroma attributes.  
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Appendix Table 3.6. Intensity values (0-100) for the taste and mouth-feel attributes of 2014 wines evaluated after 6 months of storage. The different letters 
indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 

Wine 6M SD HV R SD LV R SD HV OR SD LV OR VSP HV R VSP LV R VSP HV OR VSP LV OR 

Acidity 55.33 ± 14.64 ab 56.55 ± 14.11 a 50.79 ± 15.10 bc 48.29 ± 14.01 b 53.77 ± 14.17 ab 50.65 ± 15.82 bc 47.14 ± 14.55 c 46.59 ± 14.20 c 

Sweetness 28.27 ± 11.64 bc 25.83 ± 11.44 c 31.42 ± 14.03 ab 33.61 ± 14.27 a 29.17 ± 13.32 bc 29.62 ± 13.87 b 30.20 ± 13.23 ab 28.79 ± 13.25 bc 

Body 38.02 ± 10.96 c 37.38 ± 11.80 c 42.91 ± 11.62 a 43.70 ± 11.31 a 39.41 ± 11.98 bc 42.06 ± 11.91 ab 43.58 ± 12.62 a 43.20 ± 11.15 a 

Alcohol burn 44.95 ± 14.86 b 45.64 ± 15.66 b 47.82 ± 14.94 ab 50.80 ± 14.25 a 46.33 ± 13.96 ab 45.98 ± 16.55 b 50.59 ± 12.90 a 48.20 ± 15.37 ab 

Astringency 42.77 ± 15.96 c 
46.47 ± 14.90 

abc 
45.88 ± 14.64 bc 44.17 ± 15.39 bc 43.92 ± 15.73 bc 45.32 ± 15.61 bc 50.47 ± 15.41 a 47.35 ± 14.84 ab 

Bitterness 44.06 ± 17.32 c 43.26 ± 16.21 c 49.38 ± 15.84 b 51.95 ± 19.49 ab 43.88 ± 16.73 c 50.23 ± 16.96 ab 54.82 ± 15.59 a 54.17 ± 16.58 ab 

 

 

Appendix Table 3.7. Intensity values (0-100) for the taste and mouth-feel attributes of 2014 wines evaluated after 12 months of storage. The different letters 

indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 

Wine 12M SD HV R SD LV R SD HV OR SD LV OR VSP HV R VSP LV R VSP HV OR VSP LV OR 

Acidity 47.79 ± 1.62c 52.93 ± 1.32 ab 47.83 ± 1.32 c 49.31 ± 1.47 bc 55.68 ± 1.35 a   49.71 ± 1.53 bc 46.55 ± 1.44 c 51.95 ± 1.19 ab 

Sweetness 45.99 ± 1.61 b 39.54 ± 1.40 c 51.13 ± 1.67 a 47.65 ± 1.53 ab 37.04 ± 1.31 c 37.64 ± 1.61 c 46.06 ± 1.59 b 39.06 ± 1.53 c 

Body 47.50 ± 1.55 bc 44.41 ± 1.63 cde 56.84 ± 1.43 a 56.14 ± 1.33 a 40.89 ± 1.66 e 42.45 ± 1.52 de 51.73 ± 1.54 b 46.20 ± 1.64 cd 

Alcohol burn 45.29 ± 1.88 cd 45.13 ± 1.66 cd 51.38 ± 1.34 ab 55.54 ± 1.51 a 40.10 ± 1.58 e 41.26 ± 1.58 de 51.24 ± 1.70 ab 48.15 ± 1.72 bc 

Astringency 45.08 ± 2.02 ab 47.84 ± 2.00 a 46.48 ± 1.62 a 46.88 ± 1.63 a 43.64 ± 2.13 ab 40.25 ± 1.92 b 48.75 ± 2.09 a 47.35 ± 1.74 a 

Bitterness 34.96 ± 1.89 d 37.98 ± 1.86 d 46.73 ± 1.87 ab 51.74 ± 2.38 a 35.14 ± 2.04 d 39.40 ± 2.05 cd 44.76 ± 2.50 bc 43.93 ± 1.92 bc 
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Appendix Table 3.8.Test of significance (Test of SS Whole model vs SS residual) for the colour 

and phenolics (spectrophotometric results) of 2015 wines at AF. 

 
F 

 

p 
 

Colour Density 
 

8.976 0.006 

Hue 
 

3.712 0.061 

MCD 
 

8.761 0.007 

TP 
 

12.697 0.002 

TRP 
 

4.798 0.034 

% TRP 
 

5.075 0.029 

TANNINS 
 

1.924 0.204 

SO2 RESISTANT 
 

123.970 0.000 

Copigments 
 

4.207 0.046 

 

Appendix Table 3.9.Test of significance (Test of SS Whole model vs SS residual) for the 

individual phenolic compounds of 2015 wines at AF. 

 
F 

 

p 
 

Gallic acid 
 

1.373 0.319 

Catechin 
 

1.979 0.196 

B1 
 

0.735 0.560 

Polymeric phenols 
 

6.768 0.014 

Total hydroxycinnamic acids 
 

29.804 0.000 

Total flavonols 
 

6.237 0.017 

Total glucosylated anthocyanins 
 

12.925 0.002 

Total acetylated 
 

12.183 0.002 

Total coumaroylated 
 

29.854 0.000 

Polymeric pigments 
 

4.506 0.039 

 

Appendix Table 3.10. Multivariate test of Significance (Wilks test) for colour and phenolics 
(measured by spectrophotometric methods) in all  2015 wines made from different grape ripeness 
levels (21ºBrix. 23ºBrix. 24ºBrix and 25ºBrix) during 18 months of bottle ageing. 

 
F 

 

p 
 

Ripening 
 

17.710 0.000 

Time 
 

30.940 0.000 

Ripening*Time 
 

3.510 0.000 
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Appendix Table 3.11. Univariate test of Significance for colour and phenolics (measured by 
spectrophotometric methods) in all 2015 wines made from different grape ripeness (21ºBrix. 
23ºBrix. 24ºBrix and 25ºBrix) during 18 months of bottle ageing. 

 
CD 

F 
 

CD 

p 
 

Hue 

F 
 

Hue 

p 
 

MCD 

F 
 

MCD 

p 
 

TP 

F 
 

TP 

p 
 

Ripening 
 

66.522 0.000 18.89 0.000 53.909 0.000 20.682 0.000 

Time 
 

39.558 0.000 69.19 0.000 38.296 0.000 11.401 0.000 

Ripening*Time 
 

0.630 0.804 3.63 0.001 3.380 0.002 1.016 0.453 

 TRP 

 
F 

 

TRP 

 
p 

 

Tannins 

 
F 

 

Tannins 

 
p 

 

SO2 
 resistant 

F 
 

SO2  
resistant 

p 
 

Copigments 

 
F 

 

Copigments 

 
p 

 

Ripening 
 

21.661 0.000 44.623 0.000 92.068 0.000 1.305 0.285 

Time 
 

70.650 0.000 3.434 0.016 130.053 0.000 19.528 0.000 

Ripening*Time 
 

1.829 0.076 3.429 0.002 11.921 0.000 4.151 0.000 

 

Appendix Table 3.12. Multivariate test of Significance (Wilks test) for individual phenolic 
compounds in all 2015 wines made from different grape ripeness (21ºBrix. 23ºBrix. 24ºBrix and 
25ºBrix) during 18 months of bottle ageing. 

 
F 

 

p 
 

Ripening 
 

29.544 0.000 

Time 
 

15.418 0.000 

Ripening*Time 
 

2.592 0.000 

 

Appendix Table 3.13. Univariate test of significance for the individual and group of phenolic 
compounds in 2015 wines made from grapes at different ripening levels (21ºBrix. 23ºBrix. 
24ºBrix and 25ºBrix) during 18 months of bottle ageing. 

 
 

Gallic 
acid 

F 

Gallic 
acid 

p 

Catechin 
 

F 

Catechin 
 

p 

B1 
 

F 

B1 
 

p 

Pol. 
phenols 

F 

Pol. 
phenols 

p 

Hydroxy. 
Ac. 
F 

Hydroxy. 
Ac. 
p 

Ripening 40.640 0.000 1.071 0.374 1.345 0.275 167.903 0.000 41.740 0.000 

Time  112.610 0.000 2.061 0.106 1.689 0.174 1.665 0.180 51.730 0.000 

Ripening * 
Time 

3.540 0.002 4.383 0.000 3.655 0.001 4.648 0.000 1.430 0.198 

 
Flavonols 

 
F 

Flavonols 
p 

Gluc.  
anth. 

F 

Gluc.  
anth. 

p 

Acyl.  
anth. 

F 

Acyl.  
anth. 

p 

Coum.  
anth. 

F 

Coum.  
anth. 

p 

Pol. 
pigment 

F 

Pol. 
Pigment 

p 

Ripening 7.693 0.000 58.245 0.000 64.849 0.000 54.959 0.000 64.590 0.000 

Time  66.120 0.000 106.509 0.000 148.839 0.000 151.668 0.000 0.945 0.449 

Ripening * 
Time 

1.596 0.137 8.461 0.000 11.426 0.000 13.101 0.000 2.568 0.014 
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Appendix Figure 3.3. Changes occurred over time in the concentration of malvidine-3-glucoside 
(mg/L) and polymer pigments (mg/L) in all 2015 wines made from different grape ripening levels 
(21ºBrix. 23ºBrix. 24ºBrix and 25ºBrix) during 18 months of bottle ageing. The different letters 
indicate significant differences (ANOVA, p < 0.05) between the treatments. 

 

 

Appendix Figure 3.4. Significant aroma attributes for 2015 wines made from different ripening 
levels (21ºBrix. 23ºBrix. 24ºBrix and 25ºBrix) after 6 months (A) and 12 months (B) of bottle 
ageing. 
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Appendix Figure 3.5.  Bi-plots with the sample distribution of 2015 wine made from different 
ripening levels (21ºBrix. 23ºBrix. 24ºBrix and 25ºBrix) after 6 (A) and 12 months (B) of bottle 
ageing. Sample distribution is shown according to the corresponding significant aroma attributes. 

 

Appendix Table 3.14. Test of significance (Test of SS Whole model vs SS residual) for the taste 

and mouth-feel attributes in 2015 wines after 6 months of storage. 

 Acidity Sweetness Body Alcohol burn Astringency Bitterness 

 F  
 

p 
 

F 
 

p 
 

F 
 

p 
 

F 
 

p 
 

F 
 

p 
 

F 
 

p 
 

Ripening 
 

2.976 0.059 3.726 0.030 20.379 0.000 47.244 0.000 14.592 0.000 29.788 0.000 

Time 
 

1.424 0.278 9.352 0.022 2.644 0.155 0.011 0.918 0.000 0.988 0.000 0.987 

Ripening*Time 
 

14.400 0.000 9.919 0.000 2.212 0.122 2.599 0.084 3.664 0.032 2.671 0.078 
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APPENDIX CHAPTER 4 

Appendix Table 4.1. Multivariate test of significance (Wilk test) for the monosaccharide 
composition of fresh grapes from three ripening levels (21ºBrix. 23ºBrix and 25ºBrix) during two 
consecutive seasons (2015 and 2016). 

 F 
 

p 
 

Ripening 
 

6.28 0.146 

Year 
 

92.42 0.080 

Ripening*Year 
 

19.70 0.049 

 
 

Appendix Table 4.2. Multivariate test of significance (Wilk test) for the overall monosaccharide 
composition of fresh grapes from three ripening levels (21ºBrix. 23ºBrix and 25ºBrix) in 2015. 

2015 F 
 

p 
 

Ripening 
 

31.238 0.031 
 

 

Appendix Table 4.3. Multivariate test of significance (Wilk test) for the overall monosaccharide 

composition of fresh grapes from three ripening levels (21ºBrix. 23ºBrix and 25ºBrix) in 2016. 

2016 F 
 

p 
 

Ripening 
 

6.891 0.133 
 

 

Appendix Table 4.4. Multivariate test of significance (Wilks test) for the CoMPP epitopes 
extracted in CDTA. Data comprising the analysis in fresh grapes from three ripening levels 
(21ºBrix. 23ºBrix and 25ºBrix) during two consecutive seasons (2015 and 2016). 

 F 
 

p 
 

Ripening 
 

3.905E+13 0.000 

Year 
 

4.829E+26 0.000 

Ripening*Year 
 

4.611E+13 0.000 

 

 

Appendix Table 4.5. Multivariate test of significance (Wilks test) for the CoMPP epitopes 
extracted in NaOH. Data comprising the analysis in fresh grapes from three ripening levels 
(21ºBrix. 23ºBrix and 25ºBrix) during two consecutive seasons (2015 and 2016). 

 F 
 

p 
 

Ripening 
 

61.350 0.000 

Year 
 

242.012 0.000 

Ripening*Year 
 

68.786 0.000 
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Appendix Table 4.6. Multivariate test of significance (Wilks test) for the phenolic parameters 
measured in the "soft extraction" in fresh grapes from three ripening levels (21ºBrix. 23ºBrix and 
25ºBrix) during two consecutive seasons (2015 and 2016). 

 F 
 

p 
 

Ripening 
 

7.477 0.000 

Year 
 

12.030 0.001 

Ripening*Fermentation stage 
 

9.367 0.000 

 

 

Appendix Table 4.7. Multivariate test of significance (Wilks test) for individual phenolic 
compounds measured with HPLC in fresh grapes from three ripening levels (21ºBrix. 23ºBrix and 
25ºBrix) during two consecutive seasons (2015 and 2016). 

 F 
 

p 
 

Ripening 
 

4.633 0.033 

Year 
 

14.875 0.024 

Ripening*Year 
 

5.075 0.026 
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APPENDIX CHAPTER 5 

Appendix Table 5.1. Multivariate test of significance (Wilk test) for the monosaccharide 
composition of fermenting pomace of Shiraz grapes from three different ripening levels. 

 F 
 

p 
 

Ripening 
 

1.7 0.080 

Fermentation stage 
 

5.3 0.000 

Ripening*Fermentation stage 
 

1.5 0.025 

 

 

 

Appendix Figure 5.1.  Heatmap of the epitope abundance (CDTA and NaOH extract) of fresh 
grapes from three grape ripening levels (21. 23 and 25Brix). The values are average of three 
biological repeats. Values lower than 5 are indicated as 0. 

 

Appendix Table 5.2. Multivariate test of significance (Wilks test) for the CoMPP epitopes 
extracted in CDTA. Data comprising the analysis in fresh grapes from three different ripening 
levels (21ºBrix. 23ºBrix and 25ºBrix) and the evolution of their fermented skins at different stages 
of the alcoholic fermentation (¼F. (½ F. ¾ F and AF). 

 F 
 

p 
 

Ripening 
 

100.493 0.000 

Fermentation stage 
 

7.570 0.000 

Ripening*Fermentation stage 
 

3.764 0.000 
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Appendix Table 5.38. Multivariate test of significance (Wilks test) for the CoMPP epitopes 
extracted in NaOH. Data consists of analysis in fresh grapes from three different ripening levels 
(21ºBrix. 23ºBrix and 25ºBrix) and the evolution of their fermented skins at different stages of the 
alcoholic fermentation (¼F. (½ F. ¾ F and AF). 

 F 
 

p 
 

Ripening 
 

457.879 0.000 

Fermentation stage 
 

11.199 0.000 

Ripening*Fermentation stage 
 

4.819 0.000 

 

 

 

Appendix Figure 5.2. Evolution of the extraction of JIM7 and 2F4 epitopes in CDTA extract in 
the grape pomace during alcoholic fermentation of Shiraz grape from three ripening levels during 
fermentation.  Values are displayed in absorbance units (AU). The different letters indicate 
significant differences (ANOVA, p < 0.05) between the treatments (ripening and fermentation 
stage). 
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Appendix Figure 5.3. PCA score and loading score with the CoMPP results of the CDTA extract 
(pectin rich) of 23ºBrix treatment. The samples are coloured according to the alcoholic 
fermentation stage (GR. ¼ F. ½ F. ¾ F and PO – fermented pomace) and the epitope category 
(loading plot). The following abbreviation represents: Homogalacturonans (HG). 
rhamnogalacturonan-I (RG) and arabinogalactoproteins (AGPs). 
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Appendix Figure 5.4. PCA score and loading score with the CoMPP results of the CDTA extract 
(pectin rich) of the 25ºBrix treatment. The samples are coloured according to the alcoholic 
fermentation stage (GR. ¼ F. ½ F. ¾ F and PO – fermented pomace) and the epitope category 
(loading plot).  
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Appendix Figure 5.5. PCA score and loading score with the CoMPP results of the NaOH extract 
(hemicellulose rich) of the 23ºBrix treatment. The samples are coloured according to the alcoholic 
fermentation stage (GR. ¼ F. ½ F. ¾ F and PO – fermented pomace) and the epitope category 
(loading plot). 
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Appendix Figure 5.6. PCA score and loading score with the CoMPP results of the NaOH extract 
(hemicellulose rich) of the 25ºBrix treatment. The samples are coloured according to the alcoholic 
fermentation stage (GR. ¼ F. ½ F. ¾ F and PO – fermented pomace) and the epitope category 
(loading plot). 

 

Appendix Table 5.49. Multivariate test of significance (Wilks test) for the phloroglucinolysis 

analysis performed on the fermenting pomace of Shiraz grape from three different ripening levels.  

 F 
 

p 
 

Ripening 
 

2.923 0.001 

Fermentation stage 
 

4.658 0.000 

Ripening*Fermentation stage 
 

2.071 0.000 
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Appendix Figure 5.7. % Gallo units in fresh Shiraz grapes from three different ripening levels 
(21ºBrix. 23ºBrix and 25ºBrix). The different letters indicate significant differences (ANOVA, p < 
0.05) between the ripening levels. 
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Appendix Table 5.5. Evolution of the extension and terminal subunits during fermentation of Shiraz grapes for three ripening levels (21ºBrix. 23ºBrix and 25ºBrix). 

The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments (ripening and fermentation stage). 

 

  21ºBrix 23ºBrix 25ºBrix 

  GR ¼ F ½ F ¾ F PO GR ¼ F ½ F ¾ F PO GR ¼ F ½ F ¾ F PO 

Extension 
units 

Average 3.8 ab 3.0 cb 2.3 ced 1.3 e 1.8 ef 4.2 a 3.4 abd 2.1 ce 2.7 cdf 2.0 ce 3.9 ab 3.0 cb 2.5 cdfg 2.0 ce 1.5 eg 

St. dv 0.6 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.3 0.3 0.5 0.1 0.3 0.1 0.1 

EGC-P% 
Average 49.6 ab 50.3 ab 42.7fdg 38.3 hg 42.6 fe 53.6 a 47.1 cbd 42.7 fdg 42.3 feg 38.6 fh 53.5 a 48.3 cb 44.7 cde 40.1 fh 35.8 h 

St. dv 0.5 1.5 4.9 3.6 1.0 1.3 0.3 1.0 1.3 1.8 1.0 0.3 0.8 1.3 1.0 

C-P% 
Average 4.4 cdb 1.8 cd 4.1 cdb 10.2 a 7.0 ab 1.8 d 2.4 cd 3.5 cd 3.2 cd 4.1 cdb 1.8 d 2.6 cd 3.1 cd 4.4 cdb 5.6 cb 

St. dv 2.0 0.2 1.7 1.0 2.5 0.1 0.0 0.2 0.2 0.4 0.1 0.2 0.3 0.5 0.3 

EC-P% 
Average 42.0 e 43.5 ed 48.1 ad 46.6 db 46.1 dc 41.2 e 45.8 dc 48.8 abc 49.4 abc 51.6 a 41.0 e 44.7 de 47.6 db 50.1 ab 52.2 a 

St. dv 1.4 1.3 2.8 2.2 1.5 1.2 0.4 0.6 1.0 2.2 0.7 0.1 0.3 0.6 0.8 

ECG-P% 
Average 4.0 ef 4.4 edg 5.1 bcd 5.0 bcd 4.2 eg 3.4 f 4.7 be 5.0 bcd 5.1 bcd 5.7 ac 3.7 fg 4.5 ed 4.6 ed 5.4 bc 6.4 a 

St. dv 0.2 0.5 0.4 0.6 0.3 0.0 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.2 

Terminal 
units 

Average 0.3 ab 0.3 acb 0.2 c 0.2 cd 0.3 ac 0.4 e 0.4 e 0.3 ab 0.3 b 0.2 cdf 0.3 abd 0.3 abf 0.3 abd 0.3 ab 0.2 cd 

St. dv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

C % 
Average 28.9 bd 30.7 bd 49.8 a 37.5 b 27.9 bd 26.2 dc 22.3 d 26.4 dc 28.3 bd 36.3 bc 32.8 bd 25.5 dc 30.4 bd 33.3 bc 37.8 ab 

St. dv 2.5 1.9 2.7 7.4 1.7 4.2 1.1 1.1 1.3 2.9 3.5 2.0 2.6 5.7 6.9 

EC % 
Average 3.5 e 3.4 ecd 3.8 eb 6.8 a 6.7 a 2.9 e 5.5 abc 6.7 a 6.8 a 5.9 abd 3.0 ec 4.6 ae 4.4 ae 6.5 ab 5.5 abc 

St. dv 0.5 0.3 1.3 1.4 0.8 0.5 0.7 0.6 0.6 1.2 0.7 0.5 0.7 0.1 1.7 

ECG % 
Average 0.7 bc 0.7 bdc 0.2 d 0.5 bde 0.7 bcf 1.5 a 1.4 a 0.9 c 0.5 bd 0.3 df 0.5 bdc 0.8 bc 0.8 bc 0.8 ce 0.6 bdc 

St. dv 0.1 0.2 0.1 0.0 0.0 0.1 0.2 0.0 0.2 0.0 0.1 0.2 0.2 0.1 0.2 
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Appendix Table 5.10. Evolution of the CIELab parameters (L*. a*. b*. Cab* and hab*) during the alcoholic fermentation of Shiraz grapes with three ripening levels 

(21ºBrix. 23ºBrix and 25ºBrix).  The different letters indicate significant differences (ANOVA, p < 0.05) between the treatments (ripening and fermentation stage). 

 

  21ºBrix 23ºBrix 25ºBrix 

.L* 

¼ F 19.38±1.13 a 15.83 ±3.40 bc 15.32 ±1.65 bc 

½ F 14.09±0.57 bcd 9.90 ±0.58 ef 9.48 ±0.26 efg 

¾ F 12.51±2.67 cde 6.18 ±2.03 gh 11.93 ±1.96 de 

 AF 16.25 ±1.38 ab 5.34 ±2.24 h 7.31 ±2.67 fgh 

a* 

¼ F 51.67±0.98 a 47.65 ±3.55 abc 47.39 ±1.88 abc 

½ F 46.00±0.38 bc 40.71 ±0.61 de 40.20 ±0.18 de 

¾ F 43.92±4.27 cd 35.65 ±3.16 f 43.93 ±2.41 cd 

 AF 48.66 ±1.52 ab 34.54 ±3.57 f 37.45 ±4.08 ef 

b* 

¼ F 35.86±2.47 bcd 34.19 ±1.46 d 34.76 ±4.53 cd 

½ F 39.11±1.73 abc 36.79 ±1.27 bcd 36.81 ±2.11 bcd 

¾ F 38.58±3.36 abcd 34.18 ±3.03 d 39.73 ±0.87 ab 

 AF 42.16 ± 1.76 a 34.57 ±3.55 cd 37.01 ±3.54 bcd 

Cab* 

¼ F 62.92±1.60 ab 58.69 ±2.65 bcd 58.86 ±2.82 abcd 

½ F 60.39±1.31 abc 54.88 ±0.39 cde 54.52 ±1.30 de 

¾ F 58.46±5.31 bcd 49.39 ±4.38 ef 59.26 ±1.34 abcd 

 AF 64.38±2.22 a 48.87 ±5.03 f 52.65 ±5.35 ef 

Hab* 

¼ F 34.74±1.94 f 35.72 ±2.68 f 36.17 ±3.96 f 

½ F 40.35±1.12 e 42.10 ±1.42 cde 42.45 ±1.77 abcde 

¾ F 41.32±1.15 de 43.79 ±0.26 abcd 42.15 ±2.10 bde 

 AF 40.90 ±0.63 de 45.03 ±0.19 ab 44.69 ±0.79 ac 
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Appendix Figure 5.8. MCP tannins (mg/L) extracted during the alcoholic fermentation of Shiraz 
grapes with three different grape ripening levels. The different letters indicate significant 
differences (ANOVA, p < 0.05) between the treatments (ripening and fermentation stage). 
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APPENDIX CHAPTER 6 

Appendix Table 6.1. Fixed effect test for significance analysis of the wine extracts phenolic 

parameters (TP. tannin concentration. TRP and copigments). 

 
F 

 

p 
 

TP (AU)   

Treatment 
 

121.552 0.000 

Ratio 
 

400.067 0.000 

TIME 
 

15.088 0.001 

Treatment*Ratio 
 

6.334 0.005 

Treatment*TIME 
 

0.974 0.410 

Ratio*TIME 
 

19.434 0.000 

Treatment*Ratio*TIME 
 

1.029 0.438 

Tannins (mg/L)   

Treatment 
 

68.951 0.000 

Ratio 
 

318.603 0.000 

TIME 
 

20.512 0.000 

Treatment*Ratio 
 

11.091 0.000 

Treatment*TIME 
 

17.671 0.000 

Ratio*TIME 
 

7.797 0.004 

Treatment*Ratio*TIME 
 

4.322 0.027 

TRP (AU)   

Treatment 
 

63.072 0.000 

Ratio 
 

21.536 0.000 

TIME 
 

317.065 0.000 

Treatment*Ratio 
 

8.447 0.001 

Treatment*TIME 
 

9.487 0.005 

Ratio*TIME 
 

23.234 0.000 

Treatment*Ratio*TIME 
 

6.595 0.007 

Copigments   

Treatment 
 

10.682 0.002 

Ratio 
 

23.567 0.000 

TIME 
 

25.337 0.000 

Treatment*Ratio 
 

3.006 0.063 

Treatment*TIME 
 

42.085 0.000 

Ratio*TIME 
 

2.703 0.092 

Treatment*Ratio*TIME 
 

5.820 0.011 
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Appendix Table 6.2. Fixed effect test for significance analysis of the wine extracts colour 

components (CD. 420nm. 520nm. 620nm and Hue). 

 
F 

 

p 
 

CD (AU)   

Treatment 
 

46.141 0.000 

Ratio 
 

12.868 0.000 

TIME 
 

19.074 0.000 

Treatment*Ratio 
 

2.743 0.079 

Treatment*TIME 
 

36.288 0.000 

Ratio*TIME 
 

2.953 0.075 

Treatment*Ratio*TIME 
 

3.173 0.063 

420 nm   

Treatment 
 

170.411 0.000 

Ratio 
 

8.266 0.001 

TIME 
 

9.893 0.004 

Treatment*Ratio 
 

3.967 0.028 

Treatment*TIME 
 

28.493 0.000 

Ratio*TIME 
 

1.130 0.395 

Treatment*Ratio*TIME 
 

2.563 0.103 

520 nm   

Treatment 
 

0.011 0.913 

Ratio 
 

32.782 0.000 

TIME 
 

32.815 0.000 

Treatment*Ratio 
 

3.045 0.061 

Treatment*TIME 
 

55.152 0.000 

Ratio*TIME 
 

5.589 0.012 

Treatment*Ratio*TIME 
 

4.371 0.026 

620 nm   

Treatment 
 

0.166 0.686 

Ratio 
 

6.769 0.003 

TIME 
 

25.030 0.000 

Treatment*Ratio 
 

1.218 0.308 

Treatment*TIME 
 

31.764 0.000 

Ratio*TIME 
 

6.069 0.009 

Treatment*Ratio*TIME 
 

3.044 0.069 

Hue   

Treatment 
 

3033.660 0.000 

Ratio 
 

397.872 0.000 

TIME 
 

58.687 0.000 

Treatment*Ratio 
 

90.326 0.000 

Treatment*TIME 
 

132.019 0.000 

Ratio*TIME 
 

21.279 0.000 

Treatment*Ratio*TIME 
 

4.644 0.022 
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Appendix Table 6.3. Colour and phenolic results over time of the three different 
anthocyanin/tannin ratios in the presence or absence of oxygen. The different letters indicate 
significant differences (ANOVA, p < 0.05) between the treatments. 

 

  CONTROL OXYGEN 

  SK SKSD SK4SD SK SKSD SK4SD 

.420 nm 
(AU) 

3M 3.02 ± 0.27ef 4.07 ± 0.33abcd 3.78 ± 0.43cd 4.02 ± 0.22bcd 3.98 ± 0.19bcd 3.80 ± 0.28cd 

6M 2.58 ± 0.13f 2.84 ± 0.06ef 2.81 ± 0.11ef 4.12 ± 0.17abc 4.51 ± 0.42a 4.26 ± 0.41ab 

9M 2.89 ± 0.26ef 3.19 ± 0.12e 2.92 ± 0.05ef 3.90 ± 0.09bcd 4.01 ± 0.26bcd 3.65 ± 0.23d  

520 nm 
(AU) 

3M 2.07 ± 0.20cdef 3.00 ± 0.25a 3.12 ± 0.37a 1.90 ± 0.14efg 2.06 ± 0.09cde 2.28 ± 0.18cd 

6M 1.70 ± 0.09g 1.91 ± 0.04efg 2.00 ± 0.07defg 1.99 ± 0.05defg 2.32 ± 0.20c 2.61 ± 0.25b 

9M 1.77 ± 0.15fg 2.03 ± 0.11def 1.86 ± 0.05efg 2.00 ± 0.05defg 2.11 ± 0.17cde 2.13 ± 0.13cde 

620 nm 
(AU)  

3M 0.56 ± 0.10cdef 0.97 ± 0.16a 0.96 ± 0.27a 0.52 ± 0.06cdef 0.58 ± 0.03bcdef 0.71 ± 0.08b 

6M 0.48 ± 0.03def 0.52 ± 0.01cdef 0.52 ± 0.02cdef 0.56 ± 0.03cdef 0.66 ± 0.07bc 0.73 ± 0.08b 

9M 0.46 ± 0.07ef 0.55 ± 0.10cdef 0.43 ± 0.04f 0.58 ± 0.03bcdef 0.63 ± 0.06bcd 0.59 ± 0.07cde 

CD (AU) 

3M 5.65 ± 0.56efg 8.04 ± 0.73a 7.86 ± 1.06a 6.45 ± 0.41cde 6.63 ± 0.30c 6.79 ± 0.53bc 

6M 4.76 ± 0.24g 5.26 ± 0.11fg 5.33 ± 0.20fg 6.67 ± 0.25bcd 7.48 ± 0.68ab 7.60 ± 0.74a 

9M 5.13 ± 0.48fg 5.76 ± 0.33def 5.21 ± 0.14fg 6.49 ± 0.16cde 6.76 ± 0.48bc 6.36 ± 0.43cde 

Hue 

3M 1.46 ± 0.03g 1.36 ± 0.00h 1.21 ± 0.01i 2.11 ± 0.04a 1.93 ± 0.02bc 1.67 ± 0.02de 

6M 1.52 ± 0.00g 1.48 ± 0.01g 1.41 ± 0.01h 2.07 ± 0.03a 1.94 ± 0.06bc 1.63 ± 0.02e 

9M 1.63 ± 0.02e 1.57 ± 0.03f 1.57 ± 0.02f 1.95 ± 0.00b 1.90 ± 0.06c 1.71 ± 0.01d 

TRP (AU) 

3M 4.66 ± 0.23de 5.78 ± 0.34c 5.65 ± 0.24c 4.91 ± 0.27d 6.46 ± 0.23b 8.10 ± 0.80a 

6M 3.47 ± 0.28hij 3.70 ± 0.32ghi 3.78 ± 0.19fghi 3.38 ± 0.27hij 4.29 ± 0.28ef 3.89 ± 0.42fgh 

9M 3.30 ± 0.12ij 2.98 ± 0.01jk 2.66 ± 0.47k 3.85 ± 0.27fghi 4.08 ± 0.27fg 3.61 ± 0.18ghu 

TP (AU) 

3M 19.99 ± 0.43k 27.03 ± 1.36gh 37.15 ± 1.66bc 23.16 ± 1.04ij 31.31 ± 1.08ef 44.45 ± 1.87a 

6M 21.12 ± 1.46jk 25.10 ± 2.72hi 32.78 ± 0.71de 22.90 ± 2.42ij 31.44 ± 1.56ef 38.92 ± 1.47b 

9M 22.69 ± 1.57ijk 24.97 ± 1.26hi 30.66 ± 2.16ef 25.06 ± 0.92hi 29.38 ± 1.31fg 34.91 ± 0.70cd 

Tannins 
(mg/L) 

3M 475.48 ± 26.52ijk 792.58 ± 40.32ef 1079.68 ± 30.71b 345.23 ± 62.78k 818.72±19.28def 1408.07± 166.20a 

6M 498.51 ± 44.79hij 623.94 ± 100.19gh 923.53 ± 142.67cde 706.17 ± 63.79fg 951.26 ± 48.09bc 1424.69 ± 87.92a 

9M 402.36 ± 118.30jk 616.26 ± 33.00ghi 938.42 ± 27.98bcd 519.34 ± 65.81hij 711.19 ± 44.63fg 1012.46 ± 75.25bc 
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Appendix Table 6.4. Univariate test of significance for the CIELab parameters of the different 

A/T treatments. 

 
F 

 

p 
 

L*   

Ratio 
 

0.96 0.392 

Treatment 
 

52.12 0.000 

Time 
 

62.33 0.000 

Ratio*Treatment 
 

0.37 0.691 

Ratio*Time 
 

2.97 0.033 

Treatment*Time 
 

3.11 0.057 

Ratio*Treatment*Time 
 

2.40 0.068 

a*   

Ratio 
 

5.25 0.010 

Treatment 
 

3.39 0.074 

Time 
 

4.37 0.020 

Ratio*Treatment 
 

0.82 0.448 

Ratio*Time 
 

1.81 0.149 

Treatment*Time 
 

2.88 0.069 

Ratio*Treatment*Time 
 

0.52 0.720 

b*   

Ratio 
 

17.82 0.000 

Treatment 
 

10.88 0.002 

Time 
 

70.17 0.000 

Ratio*Treatment 
 

13.79 0.000 

Ratio*Time 
 

4.14 0.007 

Treatment*Time 
 

2.88 0.069 

Ratio*Treatment*Time 
 

1.03 0.404 

Cab*   

Ratio 
 

14.62 0.000 

Treatment 
 

1.49 0.230 

Time 
 

23.63 0.000 

Ratio*Treatment 
 

8.84 0.001 

Ratio*Time 
 

1.41 0.249 

Treatment*Time 
 

0.16 0.852 

Ratio*Treatment*Time 
 

0.73 0.579 

Hab*   

Ratio 
 

8.55 0.001 

Treatment 
 

27.81 0.000 

Time 
 

98.64 0.000 

Ratio*Treatment 
 

8.62 0.001 

Ratio*Time 
 

6.53 0.000 

Treatment*Time 
 

10.57 0.000 

Ratio*Treatment*Time 
 

1.22 0.320 
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Appendix Table 6.5. Evolution of the CIELab parameters (L*. a*. b* Cab* and Hab*) of the different A/T treatments over time. The different letters indicate 

significant differences (ANOVA, p < 0.05) between the treatments. 

  CONTROL OXYGEN 

  SK SKSD SK4SD SK SKSD SK4SD 

.L* 

3M 34.46 ± 2.71de 33.54 ± 0.82e 29.24 ± 0.34f 28.72 ± 3.73f 27.17 ± 0.83f 28.76 ± 0.79f 

6M 41.24 ± 2.04ab 37.87 ± 0.75bcd 37.85 ± 0.56bcd 37.08 ± 1.26bcde 34.68 ± 0. 21de 36.43 ± 0.87cde 

9M 39.51 ± 1.08bc 40.30 ± 0.18b 44.74 ± 0.53a 34.14 ± 0.46de 35.02 ± 0.32de 35.06 ± 1.30de  

a* 

3M 47.44 ± 1.48abcde 50.33 ± 0.65a 49.73 ± 0.78ab 43.95 ± 2.83e 48.14 ± 0.98abcd 45.99 ± 2.04cde 

6M 43.76 ± 3.20e 48.75 ± 1.36abc 48.33 ± 0.80abc 45.32 ± 1.24cde 46.46 ± 0.83bcde 47.36 ± 0.70abcde 

9M 44.61 ± 0.58de 46.57 ± 1.08bcde 44.56 ± 0.44de 46.53 ± 0.48bcde 46.11 ± 1.33bcde 44.03 ± 0.67e 

b* 

3M 40.34 ± 2.65i 46.77 ± 2.15gh 46.08 ± 0.72h 48.65 ± 4.30fgh 51.23 ± 0.91efg 48.46 ± 0.82fgh 

6M 49.16 ± 2.27efgh 51.96 ± 1.01def 58.50 ± 0.76bc 56.12 ± 0.56bcd 56.60 ± 0.65bcd 54.46 ± 1.41cde 

9M 48.98 ± 1.40fgh 58.22 ± 1.36bc 66.93 ± 0.47a 56.49 ± 0.58bcd 58.51 ± 0.99bc 60.29 ± 2.46b 

Cab* 

3M 62.30 ± 2.79h 68.76 ± 1.09defg 67.80 ± 1.02efg 65.58 ± 5.08gh 70.30 ± 1.25cdefg 66.82 ± 1.98fgh 

6M 65.93 ± 0.43fgh 71.25 ± 1.66bcdef 75.88 ± 1.06ab 72.16 ± 0.45bcde 73.22 ± 1.01bcd 72.19 ± 0.94bcde 

9M 66.27 ± 1.00fgh 74.58 ± 1.26bc 80.41 ± 0.50a 73.20 ± 0.37bcd 74.52 ± 1.07bc 74.67 ± 2.38bc 

Hab* 

3M 40.29 ± 1.12e 42.85 ± 1.63e 42.82 ± 0.23e 47.79 ± 0.75d 46.78 ± 0.40d 46.54 ± 0.84d 

6M 48.35 ± 3.39cd 46.84 ± 0.25d 50.44 ± 0.23bc 51.09 ± 1.02bc 50.63 ± 0.24bc 48.97 ± 1.00cd 

9M 47.65 ± 0.99d 51.34 ± 0.92b 56.34 ± 0.29a 50.52 ± 0.51bc 51.77 ± 0.97b 53.82 ± 0.69a 
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