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A B S T R A C T

Biomarkers for TB treatment response and outcome are needed. This study characterize changes in immune
profiles during TB treatment, define biosignatures associated with treatment outcomes, and explore the fea-
sibility of predictive models for relapse. Seventy-two markers were measured by multiplex cytokine array in
serum samples from 78 cured, 12 relapsed and 15 failed treatment patients from South Africa before and
during therapy for pulmonary TB. Promising biosignatures were evaluated in a second cohort from Uganda/
Brazil consisting of 17 relapse and 23 cured patients. Thirty markers changed significantly with different
response patterns during TB treatment in cured patients. The serum biosignature distinguished cured from
relapse patients and a combination of two clinical (time to positivity in liquid culture and BMI) and four
immunological parameters (TNF-β, sIL-6R, IL-12p40 and IP-10) at diagnosis predicted relapse with a 75%
sensitivity (95%CI 0.38–1) and 85% specificity (95%CI 0.75–0.93). This biosignature was validated in an
independent Uganda/Brazil cohort correctly classifying relapse patients with 83% (95%CI 0.58–1) sensitivity
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and 61% (95%CI 0.39–0.83) specificity. A characteristic biosignature with value as predictor of TB relapse was
identified. The repeatability and robustness of these biomarkers require further validation in well-char-
acterized cohorts.

1. Introduction

Shortening of tuberculosis (TB) treatment would save health care
resources, improve adherence and is a main aim of TB drug research.
There is evidence that a shortened course of antibiotics is sufficient to
cure a large percentage of patients, who respond early to chemotherapy
[1] and who has low smear grades or the absence of cavitation at
baseline, whereas others require six-month or longer treatment regimens
[2]. At this time, it is not possible to implement resource-saving stratified
care, as this would require reliable identification of patients with dif-
ferent treatment outcomes and treatment duration requirements.

Currently the best studied biomarker for successful TB treatment is
conversion to negative sputum culture at month two of treatment [3–5].
This marker, however, has poor individual predictive ability with a
sensitivity of only 40% [6]. High bacterial load at diagnosis as measured
by a short time to positivity (TTP) in bacterial culture is associated with
risk for relapse [7,8]. The decision to shorten TB treatment based on
month two culture conversion and on the absence of cavitary disease on
chest radiology alone is not sufficient and results in an increased risk of
relapse [9]. Novel biomarkers for TB treatment response and outcome
are, therefore, urgently needed. Several studies have investigated in-
dividual host immune markers to evaluate treatment response, mostly in
small numbers of patients [reviewed in Ref. [10]], but show little pro-
mise. Therefore, combinations of immunological, microbiological and
clinical predictive markers need to be evaluated.

The current study investigates a large number of host molecules in
serum from patients with cured, relapsed or failed TB treatment out-
comes. We demonstrate that concentrations of multiple cytokines
change significantly during TB treatment, that biological pathways

respond with different kinetics and that relapse can be predicted prior
to initiation of TB treatment based on a combination of clinical, mi-
crobiological and serum immunological markers. These important
proof-of-concept findings will lead to new approaches to discover bio-
markers of poor TB treatment outcomes and may enable stratification of
patients who require shorter or longer treatment regimens.

2. Materials and methods

2.1. Study participants and sample collection

The study was approved by the Stellenbosch University Human
Research Ethics Committee and was conducted according to the Helsinki
Declaration and International Conference of Harmonisation guidelines.
The present work is a sub-study of the Action TB study, which in-
vestigated treatment outcomes in a standard TB treatment trial in Cape
Town, South Africa [7]. Seventy-eight cured TB patients, 15 patients with
failed month six treatment outcomes and 12 patients who relapsed within
two years after initial cure were selected from the 263 trial participants
(discovery cohort). All patients were HIV negative, had sputum culture
confirmed drug-sensitive TB and adhered to treatment (>80% of dosages
observed to be taken). Treatment adherence was monitored by study-
specific research nurses who reviewed the pill doses taken. Nurses
counted the number of prescribed pills taken and participants were re-
called, on the same day, if a dose was missed. The presence of Myco-
bacterium tuberculosis was confirmed in positive cultures with ZN staining
and IS6110 DNA fingerprinting and contamination ruled out with blood
agar plating. Exclusion criteria were history of previous TB, diabetes,
malignancy, pregnancy, chronic bronchitis, sarcoidosis and systemic

Fig. 1. Overall study design and numbers of pa-
tients included in the South African discovery
cohort and TBRU cohort. Patients were selected
from the discovery cohort in three phases (subcohort
I − III) as funding became available. Of the 263 TB
patients recruited in South Africa 12 had docu-
mented relapse. Initially these 12 relapse patients
were selected and matched according to sex, age and
extent of disease on chest X-ray (CXR) at diagnosis
(subcohort I). As those patients all had extensive
disease, 26 cured patients with moderate extent of
disease on CXR were added in phase 2 (subcohort II).
Finally, 15 treatment failure patients were added as
well as 22 randomly selected cured patients (sub-
cohort III). The prediction models using combined
clinical, microbiological and immunological para-
meters were then applied to the TBRU cohort (vali-
dation cohort), which consisted of 17 relapse pa-
tients and 23 matched cured patients from Uganda
and Brazil.
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steroid use. Cure was defined as negative sputum cultures (BACTEC 460
radiometric mycobacterial broth culture system) at month five and six of
treatment without recurrent disease during two year follow up, relapse as
initial cure at month six but culture proven relapse (with the same strain
according to IS6110 DNA fingerprinting when compared to baseline
cultures) between three and twenty-four months after end of initial
treatment, and failed treatment as positive month six sputum culture with
drug sensitive organisms. Clinical information, including body mass index
(BMI), was recorded and chest X-rays (CXRs) were obtained at diagnosis.

This study was carried out in three phases. We initially selected 12
relapse patients and 30 cured patients who were matched according to
sex, age and extent of disease on CXR (discovery subcohort I, Fig. 1). Two
or three matched cured patients were included for each relapse or failure
patient. As most of these patients had severe extent of disease, we sub-
sequently added 26 cured patients with moderate extent of disease to
have a wider spread across disease severity (discovery subcohort II).
Finally, we added the 15 treatment failures and 22 cured patients with
both severe and moderate disease (discovery subcohort III). An overview
of the participant selection strategy is shown in Fig. 1. Matching of
participants into moderate or severe extent of disease on posterior-
anterior plain chest radiograph films was performed by two clinicians
who were blinded to the final treatment outcome classification. Mod-
erate extent of disease was defined as total area of involvement less than
the size of the right upper lobe and two or less cavities, whereas severe
extent included all radiographs with more advanced disease. Two clin-
icians also calculated an extent of disease score for each radiograph ac-
cording to a standardized revision [11] of a method first published by
Ralph et al. [12] that includes a numerical value between 0 and 100 for
the percent of abnormal lung parenchyma plus a score of 40 for any
visible cavity. Blood and sputum samples were collected at diagnosis
(before initiation of TB treatment) as well as at weeks 1, 2, 4, 6 and week
26 (month 6). Serum was obtained by centrifugation of whole blood and
stored in aliquots at −80 °C until further analysis. Sputum culture was
done using the BACTEC 460 radiometric mycobacterial broth culture
system (Becton Dickinson, NJ, USA) and TTP recorded. Mycobacterial
drug susceptibility testing for resistance to both first- and second-line
drugs was carried out on samples taken prior to treatment initiation as
well as at the end of treatment if cultures remained positive. Myco-
bacterium tuberculosis strains were identified by standardized restriction
fragment length polymorphism (RFLP) banding patterns after Southern
Blot hybridization with an IS6110 probe in all patients with recurrent TB.
If the strain pattern was identical between the first and second episodes
of TB, the patient was classified as “relapse” patient, whereas different
strains resulted in classification of “re-infection”.

The Tuberculosis Research Unit (TBRU) cohort from Uganda and
Brazil has been previously described [9] (DMID 01–009; Clinical Trials.
gov Identifier NCT00130247) and included two different TB treatment
arms: standard six month or shortened four-month treatment. Adults
with pulmonary TB were randomized into one of the treatment arms if
they had no cavitation on CXR and if their sputum culture converted to
negative on solid media after 8 weeks of treatment. The study was
halted early due to increased relapse rates in the shorter treatment arm.
A subgroup of 17 relapse cases (13 from the shortened and 4 from the
standard treatment arm) as well as 23 cured patients, who were mat-
ched according to treatment arm, sex, age and extent of disease, were
used for the current study (validation cohort). The parent study was
approved by the local and national Institutional Review Boards (IRBs)
in Uganda and Brazil. All patients gave written informed consent for
study participation and the use of their stored samples for future TB
research. Serum samples of these patients were collected at diagnosis,
at month two and month six, irrespective of treatment arm.

2.2. ELISA assays and Luminex analysis

Commercially available ELISA kits were used to measure soluble
urokinase plasminogen activator receptor (suPAR; Virogates, Denmark)

and neopterin [Immuno-Biological Laboratories (IBL-America), MN,
USA] in serum, according to the manufacturers’ instruction. Standards,
samples and controls were assayed in duplicate and read on a BioTek
microplate reader (BioTek, VT, USA) at a wavelength of 450 nm and a
wavelength correction at 650 nm.

We measured concentrations of up to 72 host immune markers in
serum using different Linco-plex kits (Millipore, MA, USA) on the Bio-Plex
platform (Bio-Rad Laboratories, CA, USA). The Luminex kits comprised:
1) a cytokine/chemokine kit for detection of EGF, eotaxin, FGF-2, FIt-3L,
fractalkine, G-CSF, GM-CSF, GRO, IFN-α2, IL-1α, IL-1ra, IL-3, IL-9, IL-
12p40, IL-15, IL-17, IP-10, MCP-1, MCP-3/CCL7, MDC/CCL22, MIP-1α,
MIP-1β, sCD40L, TGFα, TNF-α, TNF-β, VEGF; 2) a high sensitivity cyto-
kine kit for IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13,
IFN-γ, GM-CSF, TNF-α; 3) a soluble receptor panel for sCD30, sEGFR,
sgp130, sIL-1RI, sIL-1RII, sIL-2Rα, sIL-4R, sIL-6R, sRAGE, sTNFRI,
sTNFRII, sVEGFR1, sVEGFR2, sVEGFR3; 4) an acute phase protein panel
for CRP, Serum Amyloid A (SAP A), Serum Amyloid P (SAP P); 5) matrix
metalloproteinase kits for MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,
MMP-12 and MMP-13 and 6) a CD8+ T cell kit for detection of granzyme
A, granzyme B, perforin, sFas/CD95 and sFasL/CD178. GM-CSF and TNF-
α were present in both high and low sensitivity kits. However, we report
in this manuscript only the GM-CSF and TNF-α concentrations detected
with the regular cytokine/chemokine kit. After optimization experiments,
samples were diluted (1:8000) with serum matrix (provided by the kit)
prior to evaluation with the acute phase protein. For all other kits, the
samples were not diluted. All samples were evaluated in duplicate and the
quality control values for the different host markers were consistently
within the range provided by the manufacturer.

We measured all 72 markers in sera from 30 successfully cured
patients, as well as 12 relapse patients (subcohort I in Fig. 1). Subse-
quently we selected a subset of the most significant markers with re-
spect to changes over the treatment period for the analysis of an ad-
ditional 48 cured patients as well as 15 failed patients (subcohort II and
III in Fig. 1) and 23 cured and 17 relapse patients from the TBRU co-
hort. Ex vivo whole blood of patients from subcohort I has also been
used for transcriptomic analysis as published elsewhere [13].

2.3. Statistical and pathway analyses

Immune marker values that were too low to be extrapolated by the
Bio-Plex Manager Software, version 4.1.1, were imputed to the lowest
value that could be extrapolated by the software. Immune marker data
were collected incrementally for the subcohorts with fewer markers
assayed on successive subcohorts. The immune marker data are typi-
cally highly skewed and leptokurtic. We therefore Winsorized values
greater than three robust standard deviations (SD) from the robust
mean, where the robust statistics were based on 10% trimmed values.
The Winsorization procedure retained the order of the extremes instead
of censoring to a single fixed value, i.e., values were spread over a
narrow range near three SD.

We performed univariate analysis using methods robust to im-
balanced design. Predictive modeling required that we trimmed miss-
ingness by removing immune markers, and where necessary partici-
pants, until the data no longer showed systematic missingness. We
imputed missing data using a random forest approach implemented in
the missForest [14,15] package in the R language and environment for
statistical computing software, version 3.4.3 [16]. Data for 18 cured
and four relapse participants from the discovery cohort and three cured
and five relapse participants from the validation cohort could not be
imputed and were excluded from the analysis (Fig. 1).

We compared demographic variables between the groups using one-
way analysis of variance (ANOVA) for continuous variables and the Chi-
square test for categorical variables. We performed univariate analyses
for repeated measures using a mixed-effects linear model as im-
plemented in lmer from the lme4 package [17] with a Tukey HSD post
hoc test as implemented in glht in the multcomp package [18]. We used a
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5% significance level (p < 0.05) to determine statistical significance.
The pathway analysis were generated through the use of IPA

(Qiagen Inc., https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis) to determine the canonical pathways in
which the clusters of markers play a role.

Prior to predictive modeling, we performed a PCA, which revealed
separation of cohorts (batches). We therefore scaled the values by co-
hort (batch) to diminish batch effects and verified by PCA that the
batches were no longer separated. This was necessary since relapse
cases were separated in batches and although the separation of batches
could have reflected real differences, batch separation could also con-
tribute to inflated performance estimates. We generated predictive
models using glmnet [19], which is a weighted average of lasso and
ridge regression models, each with coefficients for the variables, which
are used numerically. A weighting parameter (alpha) determines how
to combine the predictions of the two regression models. In class pre-
diction, regression is logistic and the coefficients and weighting para-
meter can be used to generate a weighted probability of class mem-
bership. The training set comprised subcohorts I, II and III and a test set
that was the TBRU cohort.

Due to the small size of the training set, we built an ensemble of
leave-one-out models and we then applied the ensemble to the test set
with the predictive score calculated as the mean of the ensemble pre-
dictions. The aim was to predict relapse early during treatment; to
compensate for the small number of relapses, we weighted the relapse
cases three times the controls, forcing the models to predict cases cor-
rectly most of the time. Models were built using leave-one-out cross-
validation (LOOCV) on the training set. We estimated modeling per-
formance by Harrell's optimism (PMID 7069920), which is a metric
used to determine how likely it is that the modeling process tends to
overfit to the training sample and is based on bootstrap resampling
from the training set. In this context, use of glmnet resulted in a median
optimism of 0.079 (using 500 bootstrap iterations; Supplementary
Figs. 1 and 2). We used the LOOCV results to rank the most informative
variable (BMI, TTP, IL-12p40, IP-10, sIL-6R and TNF-β) and built a final
model using these variables and all of the training set. We then vali-
dated the final model using the TBRU cohort.

3. Results

3.1. Patient selection (discovery cohort)

A total of 263 TB patients were recruited in South Africa of whom
211 were cured at month six (week 26). Twelve of the 211 relapsed
with the same mycobacterial strain within two years after completion of
treatment (5.7% relapse rate). Here, we investigated samples from 78
cured, 12 relapse and 15 treatment failure patients (Discovery cohort;
Fig. 1).

3.2. Clinical characteristics

BMI was significantly lower in patients with subsequent relapse
(16.3 ± 1.2, p < 0.01) compared to cured (18.6 ± 2.3) and failed
(18.7 ± 1.7) treatment patients at diagnosis and during TB treatment
and increased only towards week 26 (Table 1; Supplemental Fig. 3a).
TTP at diagnosis was significantly shorter for relapse patients
(1.7 ± 0.8 days) compared to the cured (4.5 ± 2.9) and failed
(6.3 ± 3.6) treatment outcome groups (Table 1), but statistical sig-
nificance was lost for TTP over all time points due increased variance
(Supplemental Fig. 3b). In addition, TTP was significantly shorter in the
failed group at week 26. No association was found between strain
genotypes and treatment outcome groups. Extent of disease on CXR at
diagnosis was greater in patients with poor outcomes (74.1 ± 31.6 for
failed patients and 87.2 ± 25.0 for relapse patients, p < 0.01) com-
pared to cured patients (53.7 ± 32.8; Table 1). Sputum culture con-
version at month two occurred in almost half of the participants in the

cured (48%) and failed (46%) groups, whereas only 27% of the relapse
group converted at month two (Table 1). These findings in the current
subset of patients correspond to those reported for the entire Action TB
study (6). White blood counts (WBC) and absolute numbers of neu-
trophils decreased significantly from diagnosis to week two in the cured
and failed groups, but not in the relapse group (Supplemental Figs. 4a
and b). Monocyte numbers significantly decreased from diagnosis to
week two in the cured group only (Supplemental Fig. 4c). WBC, neu-
trophil and monocyte numbers were significantly lower at the end of
treatment in all groups and lymphocyte numbers significantly higher in
the cured and relapse groups at the end of treatment (Supplemental
Figs. 4a–d).

3.3. Serum immune markers display distinct response patterns during
successful TB treatment

We determined the concentrations of 72 immune markers in the
serum of a subset of 30 cured and 12 relapse TB patients from subcohort
I at initial diagnosis and at weeks 1, 2, 4 and week 26 using Luminex
technology. Of the 72 markers evaluated in this study, the concentra-
tions of 30 markers changed during successful TB treatment (data not
shown). Subsequently, we assayed the levels of these 30 markers in the
remaining patient samples of subcohorts II and III. We performed un-
supervised hierarchical clustering of 30 serum analytes from the total of
78 cured patients, which identified four clusters of markers (Fig. 2).
Cytokines in cluster A were highest at diagnosis and included in-
flammatory markers MMP-9, IL-5, IL-12p70, IL-13, SAP A, CRP, SAP P,
IP-10 and IFN-γ. Cluster B cytokines were lowest at week 1 and include
IL-1β, IL-10 and IL-8. MMP-2, TNF-α, MIP-1β and eotaxin (cluster C)
were high at week 1 or week 2 of treatment. Cytokines in cluster D were
high at week 2, but low at week 26 and include GRO, MIP-1α, sIL 2-Rα,
IFN-α2, IL-12p40, G-CSF, GM-CSF, sIL-4R, VEGF, IL-1α, IL-9, TNF-β,
sIL-6R and sVEFGR1. Ingenuity pathway analysis revealed that the
unique canonical pathways most strongly associated with the in-
flammatory markers in each of the clusters are: cluster A, “T helper cell
differentiation”; cluster B, “TREM1 signaling and hepatic fibrosis/he-
patic stellate cell activation”; cluster C, “granulocyte and agranulocyte
adhesion and diapedesis and airway pathology in chronic obstructive
pulmonary disease”; and cluster D, “the role of hypercytokinemia/hy-
perchemokinemia in the pathogenesis of influenza and hematopoiesis
from pluripotent stem cells”. Overall, these results indicate that during
the 26 weeks of TB treatment, immune modifications occur with dif-
ferent kinetics for different components of the host response.

Patients who fail treatment or who relapse display different serum
marker patterns before and during treatment compared to cured

Table 1
Baseline characteristics and month two culture conversion of subsequently
cured, failed or relapse TB patients.

Characteristic Cure (n= 78)
n (%) or
mean ± SD

Failure (n= 15)
n (%) or
mean ± SD

Relapse
(n= 12) n (%)
or mean ± SD

p-value

Sex (Male) 46 (59%) 9 (60%) 9 (75%) 0.57
Age 35.9 ± 10.2a 36.7 ± 11.3a 41.2 ± 14.0a 0.35
BMI (Dx) 18.6 ± 2.3a 18.7 ± 1.7a 16.3 ± 1.2b < 0.01
TTP (Dx)a 4.5 ± 2.9a 6.3 ± 3.6a 1.7 ± 0.8b < 0.01
CXR score (Dx)a 53.7 ± 32.8a 74.1 ± 31.6ab 87.2 ± 25.0b < 0.01
Month 2

convertersa
33 (48%) 6 (46%) 3 (27%) 0.44

Different letters in superscript (a,b,c) indicate significant differences between
the groups. Letters shared in common between or among the groups indicate no
significant difference.

a TTP data at diagnosis (Dx) was not available for 7 cured and 3 failed pa-
tients; Chest X-ray (CXR) data was not available for 2 cured, 2 failed and 3
relapse patients; month two (M2) culture data was not available for 9 cured, 2
failed and 1 relapse patient.
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patients.
Patterns of immune marker expression in the three treatment out-

come groups were distinct between cured, failed and relapse patients at
the different time points (Fig. 3). Since heatmaps are generated with
respect to the mean of the protein expression of the three patient
groups, the heatmaps in Figs. 2 and 3 differ subtly in the color shade for
the same data. The overall pattern of expression, however, is consistent.
Fig. 3 only shows immune markers measured in the serum of each of the
three treatment outcomes. Failed treatment patients had lower con-
centrations of IL-12p40, IL-13, IL-5 and IL-12p70 at diagnosis but ele-
vated concentrations of IL-9, IFN-α, G-CSF and sIL-4R. Relapse patients
conversely had multiple cytokines up-regulated at diagnosis, including
GRO, VEGF, sVEGFR and CRP as well as during treatment compared to
cured or failed patients.

3.4. Failed treatment patients have distinct serum cytokine signatures

A mixed-effects repeated-measures ANOVA showed that the con-
centrations of several markers were statistically different in failed
treatment patients. The three outcome groups had comparable IFN-γ
concentrations at the time of diagnosis, and although cured and relapse
cases both had a rapid decline in IFN-γ concentrations within one week,
this decline was less pronounced in failed treatment cases (Fig. 4a). A
similar pattern was observed for IL-1β (Fig. 4b). Soluble IL-4R con-
centrations were highest in failed treatment at diagnosis and changed
little during treatment (Fig. 4c). Pre-treatment IL-13 (Fig. 4d) and IL-5
concentrations (Supplemental Fig. 5a) were significantly lower in the
patients with treatment failure and MMP-2 concentrations remained
lowest in these patients at the end of treatment (Supplemental Fig. 5b).
Whereas the divergence from treatment responsive cytokine kinetics
may reflect ongoing bacterial replication and inflammation in poor
outcome groups, the pre-treatment sIL-4R, IL-13, IL-5 and MMP-2 dif-
ferences suggest that there may be an underlying increased risk of
treatment failure in some individuals.

3.5. Relapse patients have distinct serum cytokine signatures

Interestingly, sIL-2Rα was highly elevated in relapse patients

compared to cured and failed patients at diagnosis and declined only
towards the end of treatment (Fig. 5a). Similarly baseline and early
treatment concentrations of the acute phase protein CRP were higher in
relapse patients but reached similar concentrations to cured and failed
patients by the end of treatment (Fig. 5b). The elevated concentrations
of acute phase protein in the relapse patients might point towards
greater extent of disease, and is consistent with the lower TTP and in-
creased CXR score in this group. Relapse patients also had the highest
IL-5 and MMP-2 concentrations at diagnosis (Supplemental Figs. 5a and
b). MMP-2 concentrations remained highest at the end of treatment in
patients who relapsed (Supplemental Fig. 5b).

3.6. A combination of clinical, microbiological and immune markers
predicts relapse

Clinical and microbiological parameters alone are insufficient to
predict treatment outcome. Therefore, we hypothesized that a combi-
nation of clinical markers together with serum immune markers would
increase the accuracy of prediction models. We chose a subset of
markers that performed consistently in LOOCV model generation using
glmnet and found that TTP and BMI with the host markers, TNF-β, sIL-
6R, IL-12p40 and IP-10, all measured at diagnosis, could classify relapse
patients with a sensitivity of 75% (95% CI: 0.38–1) and specificity of
85% (95% CI: 0.75–0.93) and an AUC of 0.819 (95% CI: 0.677–0.931;
p-value=0.0037) in the training set (Fig. 6a). Since host markers
tended toward normal during treatment, models that included host
markers not at baseline performed less well. We did not develop a
predictive model for failed treatment patients, since we did not have an
independent validation set for this group.

3.7. Evaluation of the relapse prediction model in an independent cohort

We then assessed whether the models that correctly classified the
relapse and cured patients in the South African cohorts would be of
value in an independent cohort of patients from different geographical
origins. These samples were collected from the participants in a

Fig. 2. Cytokine expression patterns during TB treatment in South African
cured patients. Heatmap of serum cytokine levels in 78 cured patients at di-
agnosis, weeks 1, 2, 4 and 26 of TB treatment. We performed unsupervised
hierarchical clustering of 30 markers with Euclidean distance as the metric and
the Ward D method of agglomeration, which resulted in four distinct cytokine
clusters (A–D). We first log2 transformed and centered the data by protein.
Bright yellow (+2) indicates 4-fold upregulation from the mean (black) and
bright blue (−2) indicates a 4-fold downregulation from the mean. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 3. Cytokine expression patterns during TB treatment in cured, failed
and relapsed TB patients in South Africa. Heatmap of serum cytokine con-
centrations in 78 cured, 15 failed and 12 relapse patients at diagnosis, weeks 2,
4 and 26 of TB treatment. The heatmap was generated as in Fig. 2. Only cy-
tokines detected in serum of all three patient groups are shown. Bright yellow
(+2) indicates 4-fold upregulation from the mean (black) and bright blue (−3)
indicates an 8-fold downregulation from the mean. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)
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treatment shortening study previously reported by Johnson et al. [9].
The TBRU cohort consists of 17 relapse cases (five from Brazil, of which
four were in the shortened four month treatment arm and 12 from
Uganda, of which nine were in the shortened treatment arm) as well as
23 cured patients (seven from Brazil, of which six were in the shortened
treatment arm and 16 from Uganda, of which 13 were in the shortened
treatment arm), which were matched to the relapse cases according to
sex and age (Fig. 1). The patients from this TBRU cohort had no cavi-
tation on chest radiograph at diagnosis and all converted their sputum
cultures to negative after two months of TB treatment and thus had a
lesser radiographic extent of disease compared to the South African
cohort. The model described above, consisting of TTP, BMI, TNF-β, sIL-
6R, IL-12p40 and IP-10, correctly classified relapse patients from the
TBRU cohort with a sensitivity of 83% (95% CI: 0.58–1) and specificity
of 61% (95% CI: 0.39–0.83) and an AUC of 0.718 (95% CI:
0.509–0.903; p-value= 0.0479) in this test set (Fig. 6b). The clinical
variables (TTP and BMI) alone classified relapse patients from the TBRU
cohort with a sensitivity of 33% (95% CI: 0.08–0.58) and a specificity of
100% (95% CI: 1–1) and an AUC of 0.62 (95%CI: 0.39–0.82; p-
value=0.29). The improved performance gained by the addition of
immune markers, to clinical parameters, could provide additional
prognostic information in treatment outcome studies.

4. Discussion

The current study takes advantage of the largest collection of sam-
ples from relapse and treatment failure pulmonary TB patients available
at present. We describe changes in the serum concentrations of a large
number of immune markers during treatment, suggesting that different

components of the immune system respond to TB treatment in distinct
stages. The study provides promising data that serum immune markers
can enhance clinical and bacteriological parameters to improve iden-
tification of patients at risk for relapse, enabling stratification of
treatment approaches.

Previous studies aiming at prediction of relapse have mainly focused
on bacteriological and clinical data. Baseline TTP [8] and month 2
culture status [5] have been associated with risk for relapse but neither
test alone is able to reliably predict outcome. Other clinical parameters
predisposing TB patients to relapse are low BMI [7] and more extensive
disease on chest radiographs at diagnosis, including cavitation and bi-
lateral pulmonary involvement [9,20]. We sought to investigate whe-
ther a combination of clinical, microbiological and immunological
parameters can increase the prediction of relapse early during treat-
ment. Our study used an integrative approach to identify a six-marker
model consisting of TTP, BMI, TNF-β, sIL-6R, IL-12p40 and IP-10
measured at baseline, which predicted relapse with a 75% sensitivity
and 85% specificity in the discovery cohort and 83% sensitivity and
61% specificity in the validation cohort. These findings provide im-
portant evidence that a combination of clinical, microbiological and
immunological markers is superior in predicting poor treatment out-
come than clinical parameters alone. Even so, the modest performance
of the relapse predicting model in the TBRU samples might illustrate the
importance of similar inclusion criteria, such as extent of disease
measures and comparable treatment duration in future investigations
across different studies, unlike the two studies in the present report.

The results of this study are consistent with the previously reported
changes in blood gene expression profiles during TB therapy [21–23].
The rapid down-regulation of 13 inflammatory as well as anti-

Fig. 4. Patients with failed therapy have
different serum cytokine profiles from
those with microbiological cure at 6
months (cure and relapse patients) in
South Africa. Serum IFN-γ (a), IL-1β (b),
sIL-4R (c) and IL-13 (d) were determined in
cured, failed and relapse patients at diag-
nosis, weeks 2, 4, and 26 of treatment and
analyzed by a mixed model repeated mea-
sures ANOVA. Each data point represents
the mean and the error bars denote the 95%
confidence intervals. Cytokine data are
shown in pg/ml. The letters a – f indicate
statistical significance where values with
the same letter are not significantly dif-
ferent from each other. The number of pa-
tients in each group at each time-point (n) is
indicated above the x-axis. A p-value
of< 0.05 was regarded as significantly dif-
ferent.
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inflammatory cytokines coincides with the rapid killing of actively di-
viding bacteria during the early phase of TB treatment. Future research
will evaluate whether these rapid cytokine changes could add value to
the measurement of early bactericidal activity in clinical trials of novel
TB drugs. The ability of host markers that change towards the end of
treatment to indicate persistence or clearance of mycobacteria will also
have to be evaluated further. Together with the transcriptomic studies
on a subset of the same patient cohort [13,23] our results suggest that a
comprehensive transformation of the immune response occurs during
TB treatment. Furthermore, we show that the characteristic im-
munologic marker response patterns of curative treatment are different
from that of patients with failed TB treatment or relapse. The different
kinetics of cytokine changes of patients in the different treatment out-
come arms suggests hitherto undiscovered divergent biological me-
chanisms in each of the outcome types and raises hopes for early pre-
diction of subsequent responses.

Interestingly, some cytokine signatures in the three groups already
differ prior to initiation of treatment. The higher concentrations of
markers at diagnosis in relapse patients may, at least in part, be at-
tributed to more severe disease as characterized by lower TTP as well as
higher chest radiograph score in this cohort. Although the TBRU cohort

included only non-cavitary disease, increased total lung radiologic in-
volvement was also noted in relapse patients in that study. The higher
concentrations of acute phase markers and matrix metalloproteinases
are also in keeping with more extensive disease [24].

The biosignature for failed treatment patients, who did not have
greater extent of disease in this study, suggests that their distinct im-
munological features are due to different mechanisms, which could
include host or bacterial genetic as well as environmental factors. The
different response patterns of IFN-γ and IL-1β are promising as early
markers of treatment failure. Unabated secretion of IFN-γ and IL-1β
might be mirroring the continuous presence of Mycobacterium tubercu-
losis antigen.

Despite access to one of the largest available cohorts of relapse and
failed patients with samples suitable for biomarker discovery, this study
is limited by the low numbers of subjects in the poor outcome groups.
Current efforts are under way to establish large sample banks from well-
characterized patients on TB treatment and the data presented here will
be useful to guide future treatment response biomarker discovery pro-
grams. Sample size calculations for future treatment failure biomarker
studies with a target of 83% correct classification, indicate that 50
failed treatment patients in both the training and test cohorts would
result in a 95% confidence interval of approximately 0.73–0.93%. At a
10% failure rate, this would require 1000 patients. For relapse, as-
suming that it occurs in in 5% of TB patients, it would be necessary to
follow 2000 TB patients for two years post treatment completion to
achieve a similar target prediction. Such large studies can only be
carried out as multi-site international efforts. In addition, whole
genome sequencing of Mycobacterium tuberculosis strains would provide
a more accurate characterization of relapse cases. The present study,
however, provides evidence that combinations of markers hold suffi-
cient promise to justify such an approach.

5. Conclusion

This study shows for the first time the breadth of immune system
changes as measured through serum markers that occur during TB
treatment. Furthermore, different TB treatment outcomes are asso-
ciated with distinct biosignatures and promising multi-marker sig-
natures that combine clinical, microbiological and immunological
markers allow early prediction of treatment failure and relapse.
Additional studies with larger sample sizes are required to optimize the
combination of host markers for risk stratification and treatment
monitoring.
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Fig. 6. Receiver operating characteristic
(ROC) curve for discriminating relapse
patients from cured patients at the start
of TB treatment in the discovery/
training and validation/test cohorts. A
predictive model was generated using
glmnet and patients who were recruited in
South Africa (discovery cohort) in three
phases (subcohort I − III). The predictive
model was built using the leave-one-out
cross-validation (LOOCV) consisting of 68
individual models (a). The predictive model
(average of 68 individual predictions) based
on combined clinical, microbiological and
immunological parameters was then ap-
plied to the TBRU cohort (validation co-
hort) from Uganda and Brazil (b). Relapse
patients can be distinguished from cured
patients using six markers measured at di-
agnosis: BMI, TTP, TNF-β, sIL-6R, IL-12p40
and IP-10 with an area under the curve of
0.819 [95% CI 0.679–0.942] for the
training set (a) and 0.718 [95% CI
0.509–0.903] for the validation set (b).
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