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Abstract

Hypericin, an extract from St John’s Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical
photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT
induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related
cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been
published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer
therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in
vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic
reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid,
extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the
endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-
related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT
resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation
levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the
melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However,
hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by
specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity.
In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT Mel-1) caspase-dependent apoptotic modes of cell
death, as well as a caspase-independent apoptotic mode that did not involve apoptosis-inducing factor (501 mel). Further
research is needed to shed more light on these mechanisms.
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Introduction

Dismally, metastatic melanoma remains a death sentence.

Despite numerous advances molecularly and therapeutically [1–

4], the death resistance displayed by these cancer cells remains an

aspect to be addressed. Clinically, the gold standard remains early

detection, surgical resection, followed by bouts of chemo-or

radiation therapy [5]. Unfortunately, traditional chemo- and

radiation therapy have also been reported to evoke resistance

[2,6]. Moreover, the incidences of melanoma skin cancer continue

to rise with the current status at 132,000 melanoma skin cancers

occurring globally each year (World Health Organization http://

www.who.int/uv/faq/skincancer/en/index1.html) [7]. A number

of factors have been implicated in contributing to the heteroge-

neity of this cancer including both nature and nurture effects [8].

Biologically, these factors seem to be related to specific mutations,

cell death evading mechanisms, cellular transporters and the

absence or presence of the ultraviolet (UV) light-absorbing

pigment, melanin which has been shown to chelate therapeutic

agents and produce an hypoxic environment due to increased

oxygen consumption [9,10]. Moreover, Slominski et al, (2009)

argue that these features could affect the efficacy of chemotherapy,

radiotherapy or photodynamic therapy [11]. Logically therefore a

therapeutic intervention should address these issues.

The use of photodynamic therapy (PDT) as an anti-cancer

therapy has gained momentum over the past decade with a

number of reports revealing its efficacy with respect to bladder,

oesophageal, glioblastoma and non-melanoma skin cancers [12].

Further evidence of its efficacy in solid lungadenocarcinoma A549

tumors in nude mice was highlighted by Jakubowska et al. (2013)

who showed that the level of nitrosylhemoglobin increases in the

course of PDT leading to decreased tumor size [13]. More
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recently, our group and others have shown its high potential as a

therapeutic option in the fight against melanoma skin cancer [14–

24]. PDT for cancer involves 2 stages. The photosensitizer is first

administered topically or intravenously, followed by irradiation of

the tumour site with light of a specific wavelength [12]. Following

cellular uptake of the photosensitizer, its activation by this light

produces reactive oxygen species (ROS) in the presence of

molecular oxygen. These ROS have short half-lives and small

radii of diffusion and thus exert their action in the vicinity of their

production [25,26]. Accordingly, the intracellular localization of a

photosensitizer directly impacts its cytotoxic action [27]. PDT-

induced cytotoxicity has been shown to elicit tumor cell death by

various mechanisms including apoptosis, necrosis and autophagy-

related cell death [27–29]. Interestingly, melanomas display a

basal level of autophagy that has been recognized by pathologists

for many years now. The presence of autophagy-associated

organelles (autophagosomes) and melanized melanosomes have

previously been reported on [30–32]. In addition, it has been

proposed that the presence of autophagy in malignant melanoma

is consistent with findings that these cells are under constant

endoplasmic reticulum (ER) stress, a known inducer of autophagy

[33,34] and effective treatment proposals have therefore included

anti-autophagic regimes [35].

As the photosensitizer used in PDT forms part of the

armamentarium, it is imperative that its characteristics determine

the efficacy within the tumorigenic site or metastatic cells.

Hypericin, an extract from St John’s Wort (Hypericum perforatum
L.), is a promising photosensitizer in the context of clinical PDT

due to its excellent photosensitizing properties and tumoritropic

characteristics [36–38]. Hypericin has been touted as one example

of a multi-targeting molecule which can inhibit angiogenesis [39]

and the development of further metastases [40] through its effect

on several key intracellular pathways [41]. An added advantage is

that mutations that result in chemo- and radioresistant tumours do

not overly affect the sensitivity to PDT due to its unique

cytotoxicity mechanisms, underlining the potential of this treat-

ment for melanoma [12].

With this in mind, this study investigated the response

mechanisms of pigmented and unpigmented melanoma cells to

hypericin-PDT in an in vitro human culture model. We present

data that shows hypericin uptake and its specific association with

intracellular organelles in melanoma cells. Moreover, melanoma

cell death mechanisms are elucidated in response to the killing-

dose of light-activated hypericin. Overall, this study demonstrates

the effectiveness of hypericin-PDT in killing both pigmented and

unpigmented melanoma cells by the induction of apoptosis.

Materials and Methods

Cell culture
A375 melanoma cells were purchased from the American Type

Culture Collection (ATCC, CRL-1619). The cells were originally

obtained from a malignant melanoma of the skin of a 54 year old

female patient and described as unpigmented, exhibiting an

epithelial morphology, adherent growth property, hypotriploid

with a modal number of 62 chromosomes, 9 marker chromosomes

that are commonly found in each cell and normal N2, N6 and

N22 are present at one copy per cell and growing in immuno-

compromised mice. The 501mel cells were a gift from Prof.

Sharon Prince, Dept Human Biology, University of Cape Town,

originally derived from lymph node metastases, the gender and

age of the patient is not known [42]. The UCT Mel-1 melanoma

cells were a gift from Dr EL Wilson, Dept of Haematology, Groote

Schuur Hospital, Cape Town. These cells originated from a 67

year old female patient with the primary tumour on the right ankle

and the secondary tumour resulting in the cell line from the right

inguinal lymph node. The cells were described as exhibiting an

epithelioid morphology, pigmented in biopsy, triangular dentritic

morphology, a modal chromosome number of 74 and growing in

soft agar and nude mice [43]. All cell lines were cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM, Highveld Biolog-

ical, No. P02, Johannesburg South Africa) supplemented with

10% (v/v) heat inactivated fetal bovine serum (Highveld Biolog-

ical, No. 306, Johannesburg South Africa) and 100 U/ml

penicillin/100 mg/ml streptomycin (Sigma, P3032/S91370, St.

Louis, MO, USA) and grown at 37uC, 5% CO2. All cells were

routinely checked for mycoplasma contamination with the

Hoechst 33342 nuclear stain or with a MycoAlert mycoplasma

detection kit (Lonza, LT07-318, Basel, Switzerland), according to

the manufacturer’s instructions. Cells were cultured to 90%

confluence for all experiments to obtain similar pigmentation

levels.

Hypericin-PDT
Hypericin, derived from Hypericum perforatum L. was obtained

from Sigma (56690, St. Louis, MO, USA). A 2 mM stock solution

in dimethyl sulfoxide (Merck, 8.02912.1000, Darmstadt, Ger-

many) was stored as aliquots at 280uC. Working solutions were

prepared fresh at a concentration of 50 mM in phosphate-buffered

saline (16 PBS) and then further diluted for experiments in

complete cell culture medium containing 10% (v/v) fetal bovine

serum. Hypericin was activated with 1 J/cm2 UVA, using a light

box with two F15T8 15W/UVA PUVA lamps (320–410 nm, peak

351 nm, Waldmann, 451415530, Villingen-Schwenningen, Ger-

many). The power output was measured using a portable UV

meter (Waldmann, Type 585100, Villingen-Schwenningen, Ger-

many). Time of irradiation was calculated with the following

equation: Time = Light dose (J/cm2)/Irradiance (W/cm2) and

equated to 6 minutes, 10 seconds. The cells were covered with lids

and irradiated from above in 16 PBS. Controls were sham-

irradiated by covering the dish with foil. Melanoma cells were

exposed to 4 hours of hypericin in complete media to maximize

uptake, followed by light activation. At different time points after

treatment, the cells were harvested for various analyses. For each

experiment cells were exposed to 4 different treatments:

– vehicle with sham-irradiation (control 2light),

– vehicle with light-activation (control +light),

– hypericin with sham-irradiation (hypericin 2light)

– hypericin with light-activation (hypericin +light).

All experiments were carried out under subdued light condi-

tions. The same tissue culture consumables were used for all

experiments (Greiner Bio-One, Frickenhausen, Germany), to

ensure no differences in light activation.

Tyrosinase assay
Melanin biosynthesis can be initiated from either the hydrox-

ylation of L-phenylalanine to L-tyrosine or directly from L-

tyrosine, which is then hydroxylated to L-dihydroxyphenylalanine

(L-DOPA), an obligatory step both in vitro and in vivo. L-DOPA

serves as a precursor to both melanins and catecholamines, acting

along separate pathways. The copper-containing enzyme, tyros-

inase [EC 1.14.18.1], catalyzes three distinct reactions in the

melanogenic pathway: hydroxylation of monophenol (L-tyrosine),

dehydrogenation of catechol (L-DOPA), and dehydrogenation of

DHI; L-DOPA serves as cofactor in the first and third reactions

[44]. These reactions involve oxygen uptake [45]. The next step of
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the pathway is the oxidation of L-DOPA to dopaquinone, a step

which is common to both the eu- and pheomelanogenic pathways.

Eumelanogenesis involves the further transformation of dopaqui-

none to leukodopachrome, followed by a series of oxidoreduction

reactions with production of the intermediates dihydroxyindole

(DHI) and DHI carboxylic acid (DHICA), that undergo polymer-

ization to form eumelanin [9]. Utilization of radiolabelled 14C

tyrosine with the addition of DOPA enables the assessment of the

enzymatic activity of tyrosinase from total cell extracts by detection

of the radiolabelled reaction products [46,47]. In brief, equal cell

numbers were cultured to confluency in 6 cm tissue culture dishes

for 3 days followed by trypsinisation with trypsin-EDTA (0.05%

T/0.02% E, Sigma, T4799/E9884, St. Louis, MO, USA). After

centrifugation the cell pellet was washed with 16 PBS and

transferred to a 1.5 ml microfuge tube on ice. The PBS wash

procedure was repeated to remove all traces of medium, after

which the pellet was re-suspended in 1 ml of 0.1 M sodium

phosphate buffer (pH 7.2). The samples and their appropriate

controls were repeatedly freeze-thawed in liquid nitrogen and then

centrifuged at 12000 rpm at 4uC for 20 min. The supernatant was

transferred to clean 1.5 ml microfuge tubes and stored at 280uC
till use.

The sample protein concentration was determined using the

BCA Protein Assay Kit according to the manufacturer’s instruc-

tions (Thermo Scientific Pierce, 23225, Waltham, Massachusetts,

USA) and 120 mg/ml was used for the assay. The cell extract was

combined with a solution of L-[U-14C]Tyrosine (Amersham,

20 mCi/ml, 1.85 MBq/ml, CFB74, Amersham, UK) and

0.25 mM DOPA (Sigma, D9628, St. Louis, MO, USA) at 37uC
for 1 hour. Samples were transferred to 25 mm diameter glass

microfiber filters (Whatman, 1822-025, GE Healthcare Life

Sciences, Little Chalfont, United Kingdom) and left to air-dry

followed by a series of washes in 0.1 N HCl (Merck,

SAAR3063054LCA, Darmstadt, Germany), 95% ethanol (Merck,

1.00983.2500, Darmstadt, Germany) and a final wash in acetone

(Merck, SAAR1022020LC, Darmstadt, Germany). The discs were

then placed in scintillation vials (Sigma, St. Louis, MO, USA) and

left to air-dry overnight. The following day, 5 ml scintillation fluid

(Zinsser Analytic, Quicksafe A scintillation cocktail, 1008000,

Frankfurt, Germany) was added per vial and the samples were

read on a Tri-Carb 2100 TR liquid scintillation analyser (Packard,

USA). Results were expressed as counts per minute (cpm) of

incorporated radioactive tyrosine.

Hypericin uptake assay
Similar to a previous protocol [48], 36104 cells were seeded in

35 mm tissue culture dishes overnight. Cells were then exposed to

4 hours of hypericin in complete cell culture medium containing

10% (v/v) fetal bovine serum. All the media was then removed

and cells washed with ice-cold 16 PBS. Complete extraction

buffer (40 ml, 100 mM Tris HCL, 1% Nonidet P-40, 0.01% SDS,

0.001 mg/ml Aprotinin and 0.1 mM PMSF, Sigma, St. Louis,

MO, USA) was added to the dish and cell lysates collected using a

rubber syringe stopper. Cell lysates were then centrifuged at

12000 rpm for 20 min at 4uC. The supernatants were divided for

the determination of protein content and for the quantification of

hypericin fluorescence on a fluorimeter (Cary Eclipse Fluorimeter,

Varian, Palo Alto, CA, USA). Hypericin was excited with 563 nm

and emission was recorded at 608 nm. Protein concentrations

were determined using the BCA assay according to the

manufacturer’s instructions (Thermo Scientific Pierce, BCA

protein assay kit, 23225, Waltham, Massachusetts, USA). Result-

ing data was normalized to total protein and presented as arbitrary

fluorescent units (AFU) per microgram of protein.

Table 1. Organelle-specific G/YFP-fusion plasmids and dyes used to visualize intracellular organelles.

Intracellular organelle Plasmid/Dye Experimental conditions Function Source

Endoplasmic reticulum pGFP-Bcl2CB5 200 ng of plasmid Anti-apoptotic ER targeted BCL2 family
member

Addgene plasmid 18000 [116]

Endoplasmic reticulum pEYFP-ER 200 ng of plasmid Calreticulin, multifunctional quality
control of protein folding

Dr G. Schafer, Dr C. Kaschula,
ICGEB, University of Cape
Town, Clontech 6906

Mitochondria pEGFP-pOTC 200 ng of plasmid Ornithine transcarbamylase (OTC),
mitochondrial matrix protein

Dr L.M. Davids, University of
Cape Town [117]

Lysosomes, late endosomes,
melanosomes

LysoTracker
Yellow-HCK-123

75 nM for 30 min in
medium, live

Acidotropic probe labeling acidic
organelles

Invitrogen Molecular Probes,
L12491

Lysosomes, endosomes and
melanosomes

pYFP-LAMP1 500 ng of plasmid Lysosomal-associated membrane protein 1
(LAMP1), membrane glycoprotein, provides
selectins with carbohydrate ligands

Prof. A.M. Cuervo, NY, Einstein
College, USA [118]

Early and late endosomes,
lysosomes, early and
intermediate stage
melanosomes

pEGFP-rab7WT 100 ng of plasmid Microtubule-based transport, facilitates
transport of tyrosinase and TYRP1
from trans-golgi to melanosomes

Addgene plasmid 12605 [119]

Mature melanosomes pGFP-Rab27a 200 ng of plasmid Localises to the mature melanosomal
membrane, acts as a receptor for
myosinVa in the actin-dependent
transport of mature melanosomes

Prof. J. Lambert, University of
Ghent [120]

Mature melanosomes pGFP-MyosinVa 200 ng of plasmid Actin-dependent motor protein, links
mature melanosomes to the actin network

Prof J. Lambert, University of
Ghent [121]

Nuclei Hoechst 33342 1 mg/ml for 20 min in
medium, live

Binds to DNA Invitrogen Molecular Probes,
H1399

A summary of the experimental conditions, functions and sources of the organelle-specific G/YFP-fusion plasmids and dyes used in this study.
doi:10.1371/journal.pone.0103762.t001
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Confocal fluorescent microscopy
Several organelle-specific green and yellow fluorescent protein

(G/YFP) plasmids or probes were used to label intracellular

organelles of melanoma cells (Table 1). All constructs used in this

study were prepared according to standard techniques [49].

Cells were seeded onto 35 mm2 microscope cover glasses at a

density of 26104 cells and allowed to adhere and grow over

48 hours. Cells were then transiently transfected with the plasmids

(Table 1). TransFectin (1 ml, Biorad, 170-3351, Hercules, CA,

USA) was used for transient transfection of A375 and 501mel and

GeneCellin (0.5 ml, BioCellChallenge,GC500, Toulon, France)

was used for UCT Mel-1; according to the specific manufacturer’s

instructions. Controls of the parental GFP/YFP plasmid were

included.

At 20 hours after transfection the cells were exposed to 3 mM

hypericin for 4 hours. Nuclei were visualized using Hoechst (1 mg/

ml, Table 1, Invitrogen Molecular Probes, Carlsbad, CA, USA).

To stain lysosomes, 7.5 ml of 10 mM lysotracker yellow (75 nM,

Table 1, Invitrogen Molecular Probes, Carlsbad, CA, USA) was

added 30 minutes before the end of the hypericin incubation. At

the end of the staining period the cells were viewed live, using a

confocal fluorescent microscope. Both the Carl Zeiss 510 LSM

meta with NLO confocal microscope (LSM and ZEN 2009

software, Oberkochen, Germany) and the Carl Zeiss LSM 780

confocal microscope (ZEN 2009, 2011 software, Oberkochen,

Germany) were used in this study, with the Plan-Apochromat

636/1.4 oil immersion DIC M27 lens.

Fluorophores were excited at the following excitation wave-

lengths: GFP 488 nm, YFP 514 nm, Lysotracker 458 nm,

Hoechst 405 nm, Hypericin 561 nm and emission were collected

using the following bandwidths: GFP 490–543 nm, YFP 516–

586 nm, Lysotracker 464–604 nm, Hoechst 410–516 nm, Hyper-

icin 585–734 nm. Profiles taken through different areas of the cell

displaying the fluorophores were created using free Zen 2011 (blue

edition, Oberkochen, Germany) software.

For time-lapse microscopy, 501mel cells were grown in glass

bottom dishes (Greiner Bio-One, CeLLview, 627870, Frickenhau-

sen, Germany) and transiently transfected with OTC-GFP as

outlined above (Table 1). The time series consisted of 50 cycles

with 2 second intervals. A cellular region was bleached with the

561 nm excitation wavelength (attenuation set to 10%), which was

simultaneously used to activate hypericin. Bleaching of the region

of interest was set after 25 of 50 scans, with 50 iterations. Only the

561 nm excitation was used, to minimize hypericin activation

from other wavelengths. Controls included vehicle-treated cells.

Super-resolution structured illumination microscopy (SR-
SIM)

The 501mel melanoma cells were seeded onto 35 mm2

microscope cover glasses, grown to 80% confluency and

transiently transfected with pEYFP-ER (calreticulin) and pYFP-

LAMP1, using TransFectin (1 ml, Biorad, 170-3351, Hercules,

CA, USA) according to the manufacturer’s instructions (Table 1).

Controls of the parental plasmids were included. At 20 hours after

transfection, the cells were exposed to 3 mM hypericin for 4 hours,

followed by light-activation. Complete media was added to the

cells after hypericin-PDT and cells were fixed at 30 and

60 minutes post PDT. A vehicle-treated, sham-irradiated control

(Hypericin 2Light) was included, which was fixed immediately

after light-activation. Cells were fixed with 4% paraformaldehyde

for 20 minutes, washed in 16PBS and mounted onto glass slides

in moviol mounting medium containing N-propylgalate.

Slides were prepared as described above and super-resolution

structured illumination (SR-SIM) was performed. Thin (0.1 mm) z-

stacks of high-resolution image frames were collected in 5 rotations

by utilizing an alpha Plan-Apochromat 1006/1.46 oil DIC M27

ELYRA objective, using an ELYRA S.1 (Carl Zeiss Microimaging

microscope equipped with a 488 nm laser (100 mW), 561 nm

laser (100 mW) and Andor EM-CCD camera (iXon DU 885,

Oberkochen, Germany). Images were reconstructed using ZEN

software (black edition, 2011, version 7.04.287, Oberkochen,

Germany) based on a structured illumination algorithm [50].

Analysis was performed on reconstructed super-resolution images

in ZEN. Experiments were conducted twice (n = 2).

Flow cytometry
Flow cytometry was employed to analyze phosphatidylserine

(PS) exposure using Annexin V-FITC staining and loss of cell

membrane integrity using violet amine reactive viability dye

(VIVID) staining [51,52]. Briefly, cells were seeded at a density of

56104 in 35 mm tissue culture dishes and allowed to adhere

overnight. Cells were then treated with hypericin-PDT and

analyzed at 30 min, 1, 4, 7 and 24 hours after treatment. For

the 24 hour time-point, cells were seeded and treated a day earlier.

Controls included unstained cells and untreated cells (i.e. not

sham-irradiated or vehicle-treated). All processing was done on

ice. At the respective time-points the culture medium was

collected, pooled with the suspended cells and centrifuged for

5 min at 1200 rpm to ensure that all the cellular material was

collected. Resulting cell pellets were re-suspended in ice-cold 16
PBS and centrifuged for 5 min at 1200 rpm. The pellet was re-

suspended in 500 ml ice-cold 16 PBS, to which 0.5 ml VIVID

(Invitrogen Molecular Probes, L34955, Carlsbad, CA, USA) was

added. Cells were stained on ice for 30 min, centrifuged for 5 min

at 1200 rpm, re-suspended in 1 ml of 1% BSA in 16PBS and re-

centrifuged for 5 min at 1200 rpm. Cells were then re-suspended

in 200 ml 16Annexin V binding buffer to which 1 ml Annexin V-

FITC (BD Biosciences, 556420, Franklin Lakes, New Jersey, USA)

was added. After 15 min at room temperature, samples were

transferred to 5 ml FACS tubes (BD Biosciences, REF352052,

Franklin Lakes, New Jersey, USA) and 10,000 events were

acquired on a LSRII flow cytometer (BD Biosciences, Franklin

Lakes, New Jersey, USA).

The following LSRII parameters were used: blue 488 nm laser

530/30 505LP (detection of FITC); violet 405 nm laser 440/40

(detection of VIVID); voltages: FITC 520, VIVID 370, forward

scatter (FS) 250 and side scatter (SS) 320. Unstained cells and

single-stained mouse k beads (BD Biosciences, 552844, Franklin

Lakes, New Jersey, USA) were used as controls and to calculate

compensation for every run. The beads were stained in 200 ml

PBS with 5 ml of the following antibodies: Anti-Human IL-2-FITC

(BD Biosciences, 340448, Franklin Lakes, New Jersey, USA) for

Annexin V and mouse anti-human CD3-Pacific Blue (BD

Biosciences, 558117, Franklin Lakes, New Jersey, USA) for

VIVID. Cells were gated on the vehicle-treated, sham-irradiated

control (Control 2light). Data was analyzed with FlowJo version

7.6.5 (TreeStar, Ashland, USA).

Western blotting
For preparation of whole cell lysates, cells were grown in 6 cm

tissue culture dishes to 90% confluency and treated with 3 mM

hypericin-PDT. At 1, 4, 7 and 24 hours after treatment,

suspended cells were collected and pooled with adherent cells

harvested by scraping in 70 ml complete extraction buffer (100 mM

Tris HCL, 1% Nonidet P-40, 0.01% SDS, 0.001 mg/ml

Aprotinin and 0.1 mM PMSF, Sigma, St. Louis, MO, USA)

using a rubber syringe stopper. Resulting cell lysates were added to

1.5 ml Eppendorf tubes, vortexed briefly and incubated overnight
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at 4uC. The following day, the cell lysates were centrifuged at 4uC
for 20 min at 12000 rpm, the supernatants frozen in aliquots at 2

80uC and protein concentrations determined using the BCA assay

according to manufacturer’s instructions (Thermo Scientific

Pierce, BCA protein assay kit, 23225, Waltham, Massachusetts,

USA).

To separate the various proteins in the cell extracts, equal

amounts of proteins (25 mg) were loaded onto a resolving SDS-

polyacrylamide gel and electrophoresed at 80 V for 30 minutes

followed by 120 V for approximately 2.5 hours in running buffer

(0.025 M Tris, 0.192 M Glycine, 0.01% SDS). The proteins were

then transferred onto a nitrocellulose membrane (Hybond ECL

Amersham, RPN203D, GE Healthcare, Fairfield, CT, USA) in

transfer buffer (0.031 M Tris, 0.192 M Glycine, 20% Methanol) at

50 V for 2 hours. The blotted membrane was then immersed in

sufficient PonceauS (0.1% Ponceau S, 1% acetic acid) and stained

for total protein for 5 minutes. After staining the membrane was

immersed in an aqueous solution containing 5% acetic acid for

5 minutes, the solution was then changed and the membrane

immersed for another 5 minutes. The membrane was then washed

in water (265 min). The membrane was scanned digitally and

washed twice in TBS-Tween (TBS-T, 0.05 M Tris, 0.15 M NaCl,

0.1% Tween, pH 7.5) for 5 minutes. It was then blocked in 5%

milk TBS-T for 1 hour at room temperature. After blocking, the

membrane was exposed to primary antibody (AIF 1:8000 (Sigma,

A7549, St. Louis, MO, USA), CASP3 1:1000 (Cell Signaling

Technology, 9661, Danvers, Massachusetts, USA), CASP8 1:1000

(Cell Signaling Technology, 9746, Danvers, Massachusetts, USA),

PARP1 1:2000 (Santa Cruz Biotechnology, sc-7150, Dallas,

Texas, USA) overnight at 4uC. The following day the membrane

was washed in TBS-T (365 min) and the appropriate secondary

antibody was added (GAM-HRP 1:3000 (AIF), 1:1500 (CASP8,

Bio-Rad, 170-6516, Hercules, CA, USA), GAR-HRP 1:1500

(CASP3, PARP1, Bio-Rad, 170-6515, Hercules, CA, USA) for

1 hour at room temperature. Visualization of the signal was

obtained using SuperSignal West Pico chemiluminescent ECL

detection reagent (Thermo Scientific Pierce, Waltham, Massa-

chusetts, USA) with resultant photographic development (AG-

FA,G150, Mortsel, Belgium) and fixation (AGFA, G354, Mortsel,

Belgium). Resulting films were scanned and analysed densitome-

trically. The total protein Ponceau S stained membrane was used

as the loading control [53,54]. The optical densities (OD) of the

exposed film bands of the protein of interest were quantified using

ImageJ (National Institutes of Health, USA) and normalized to the

OD of the total protein loading control. The resulting ratio was

furthermore normalized to the vehicle-treated, sham-irradiated

control (Control 2light) of the respective experiment. Cells treated

with 5 mM doxorubicin for 24 hours were included as a positive

control and subjected to identical protocols.

Data analyses
All data was presented and analyzed using Graphpad Prism

(Version 5, Graphpad Software Inc., La Jolla, CA, USA).

Statistical analyses were performed by One-Way Anova with

Bonferroni post-test (comparing all groups) or Dunnett post-test

(comparing all groups to a control group). Differences in values

were stated as significant if the p-value was less than 0.05 (p,0.05).

All experiments were conducted at least 3 times and presented as

mean6SEM, unless otherwise indicated.

Ethics Statement
The 501mel and the UCT Mel-1 melanoma cells were gifts

from Prof. Sharon Prince, Dept of Human Biology, University of

Cape Town and Dr EL Wilson, Dept of Haematology, Groote

Schuur Hospital, Cape Town, respectively. Both these cell lines

were obtained through written, informed consent approved by the

Institutional Research Ethics Committee (University of Cape

Town).

Results

Both pigmented (UCT Mel-1) and unpigmented (A375, 501mel)

melanoma cells revealed a dose-dependent susceptibility to

hypericin-PDT in our previous in vitro studies [21,22] with a

dose of 3 mM light-activated hypericin significantly reducing

melanoma cell viability to 50% or less than the control. We thus

settled on this dose as an effective killing-dose in all subsequent

investigations, including those reported in this study. Although this

sub-lethal killing-dose is below the desired 90–99% effective

clinical killing-dose, it was necessary to employ this dose to be able

to study the effects of hypericin-PDT on the surviving cells.

Phenotypic heterogeneity evident in melanoma cells
The three metastatic melanoma cell lines used in this study

displayed heterogenous phenotypes. The A375, 501mel and UCT

Mel-1 cells presented with epitheloid, multipolar stellate and

spindle-shaped morphologies, respectively (Fig. 1A). These cells

also exhibited similar growth rates to each other in vitro with a

higher average growth rate than their normal counterparts,

primary human melanocytes (data not shown). Correlating to

the difference in pigmentation observed from the color of the

pellets (Fig. 1B), quantification of intracellular tyrosinase activity

showed significant differences between the highly pigmented UCT

Mel-1 cells and both the A375 (,5-fold less) and 501mel (,4-fold

less) cells (Fig. 1C). Significant differences also existed between all

the melanoma cells and the non-melanoma breast cancer cell line,

MCF7, used as a negative control (Fig. 1C).

Hypericin was taken up by melanoma cells and localized
to several intracellular organelles

The photosenzitizer, light and oxygen constitute the ‘trinity’ of

photodynamic therapy (PDT). Effective cellular uptake and

intracellular localisation of the photosensitizer is thus crucial for

PDT. Hypericin is a naphtodianthrone with a wide absorbance

spectrum and characteristic red fluorescence (Ex: 548/593, Em:

594/642) [55]. This fluorescent characteristic was used to

relatively quantify hypericin inside the cell using relative fluores-

cent units (RFU) per microgram of total cellular protein as read on

a fluorimeter [48]. All treated cells (3 mM hypericin for 4 hours)

displayed intracellular hypericin fluorescence, with 0.3760.01

RFU/total protein for the A375 cells, significantly higher than

501mel (0.3060.01 RFU/total protein) and UCT Mel-1

(0.3060.01 RFU/total protein, Fig. 2A). Hypericin fluorescence

in 501mel and UCT Mel-1 was not significantly different from

each other (Fig. 2A). Control cells (not treated with hypericin)

showed no fluorescence (Fig. 2A). Hypericin was therefore

effectively taken up by melanoma cells after 4 hours of exposure.

The principle of PDT is the primary production of reactive

oxygen species (ROS) which have short half-lives and small radii of

diffusion, subsequently eliciting their action in the vicinity of their

production [25,26]. This calls for the investigation of the

intracellular localisation of a photosensitizer as it inevitably affects

its mechanism of action [27]. We transiently expressed organelle-

specific G and/or YFP-plasmids and stained the cells with probes

to fluorescently label different intracellular organelles in order to

visualize hypericin localisation. Cells were exposed to 3 mM

hypericin for 4 hours without light activation and fluorophores

were visualized with live confocal fluorescent microscopy. Controls
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including G/YFP parental plasmid transfection or probes by

themselves were included to test the experimental system

employed and revealed no cytotoxicity or aberrant targeting.

Hypericin partially co-localized with the endoplasmic reticulum

and mitochondria of melanoma cells (Fig. 2B, Fig. S1). Although

confocal microscopy profiles taken through the cells at different

locations did not show exact matching of these fluorophores, a

large overlap between the G/YFP fusion proteins and hypericin

signal was found, as visualized by the overlap of the two channels

(Fig. 2B, Fig. S1). To visualize lysosomes, melanoma cells were

exposed to Lysotracker yellow (Fig. 2B). This fluorescent acido-

tropic probe labels acidic organelles in live cells. This includes

lysosomes, late stage endosomes and possibly melanosomes, the

pigment producing, acidic organelles. Confocal profiles revealed

co-localization of hypericin with lysosomes/late stage endosomes

and melanosomes in all melanoma cells (Fig. 2B). To further

investigate melanosomal co-localization, mature melanosomes

were visualized in melanoma cells using specific GFP fusion

Figure 1. Phenotypic heterogeneity of melanoma cells. (A) Phase contrast images. A representative result is shown (n$3, scale bars: 20 mm,
inset: higher magnification). (B) Cell pellets. A representative result is shown (n$3). (C) Mean6SEM tyrosinase activity in counts per minute (cpm)/
120 mg protein (n = 3, ***p,0.0001, *p,0.05). MCF7 breast cancer cells were included as a negative control.
doi:10.1371/journal.pone.0103762.g001

St John’s Wort (Hypericum perforatum L.) Photomedicine for Melanoma

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e103762



proteins. Partial hypericin co-localization with mature melano-

somes was found in 501mel and UCT Mel-1 cells, whereas no co-

localization was evident in A375 cells (Fig. 2B). These results were

further confirmed using other early and mature melanosomal

markers (Fig. S1). Noteworthy, hypericin did not co-localize with

nuclei in any of the melanoma cells investigated.

Figure 2. Hypericin uptake and intracellular localization. Cells were exposed to 3 mM hypericin for 4 h without light activation. (A) Hypericin
uptake assay. Data is shown as mean6SEM relative fluorescent units per microgram of protein (RFU/mg of protein, n = 3, *p,0.05). (B) Live confocal
fluorescent microscopy images of melanoma cells indicate the intracellular localization of hypericin (red) in relation to the endoplasmic reticulum (ER-
YFP), mitochondria (OTC-GFP), lysosomes (Lysotracker yellow) and mature melanosomes (MyosinVa-GFP). Nuclei were counterstained with Hoechst
(blue). Profiles taken at different locations through the cell indicate co-localization of the fluorophores. A representative result is shown (n = 3, scale
bars: 10/20 mm).
doi:10.1371/journal.pone.0103762.g002
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Hypericin-PDT induced photodestruction of organellar
structure

Upon visualization of hypericin in GFP-labeled mitochondria

with live confocal fluorescent microscopy, we noticed distinct

changes in the mitochondrial structure of melanoma cells. To

investigate this in more detail we used the unpigmented 501mel

melanoma cells and activated hypericin in real time on the

confocal fluorescent microscope using time-lapse technology. The

501mel cells displayed a rapid and extensive modification from its

normal tubular mitochondrial network into a beaded appearance

upon light-activation of hypericin (Vid. S1). This was not observed

in the untreated control cells expressing the mitochondrial-specific

GFP fusion protein (Vid. S2). Despite hypericin partially co-

localizing with the endoplasmic reticulum and lysosomes in the

melanoma cells (Fig. 2A, Fig. S1), rapid photo-destruction was

only observed in mitochondria. Whether this is related to an

organelle-specific, concentration-dependent effect or simply an

energetic, metabolic effect remains to be determined. However, to

further investigate the light-activation effect on the structural

details of intracellular organelles, we transiently expressed

calreticulin and lysosomal-associated membrane protein (LAMP1)

in 501mel cells to visualize the endoplasmic reticulum and

lysosomes respectively, before and after PDT using super-

resolution structured illumination microscopy (SR-SIM). A partial

co-localization of hypericin with LAMP1 positive structures

(lysosomes, endosomes and melanosomes, Fig. 3A) and calreticu-

lin-positive structures (endoplasmic reticulum, Fig. 4A) was

observed before light-activation, confirming the confocal fluores-

cent microscopy data (Fig. 2, Fig. S1). Surprisingly, an increased

co-localization of hypericin with LAMP1 positive structures was

found at 30 and 60 minutes post-PDT, whilst the structure of these

organelles remained intact (Fig. 3B, C). In contrast, a loss in

structural detail for calreticulin-positive structures was found post-

PDT, suggestive of organelle disruption, which was associated with

a loss in co-localization of hypericin and calreticulin-positive

structures (Fig. 4B, C).

Hypericin-PDT induced phosphatidylserine exposure and
loss of melanoma cell membrane integrity

A change in cell membrane structure by surface exposure of

phosphatidylserine (PS) is observed in early apoptotic cells [52,56].

Using Annexin V in conjunction with cell permeability dye (e.g.

propidium iodide), enables the distinction between cells with

exposed PS and those with compromised cell membranes.

However, due to the red, fluorescent nature of propidium iodide,

it was not the most suitable assay to use in conjunction with the

red, autofluorescent hypericin. To prevent confounding results, we

thus used the violet amine reactive viability dye (VIVID), to

investigate loss of cell membrane integrity in our experimental

system [51].

Melanoma cells were treated with 3 mM hypericin and analysed

for PS exposure (Annexin V) and loss of cell membrane integrity

(VIVID), 30 minutes, 1, 4, 7 and 24 hours after treatment using

fluorescent activated cell sorting (FACS). Cells treated with vehicle

with sham-irradiation (Control –light) displayed intact cell

membranes with no evidence of PS externalization (Fig. 5A, left

panel). The Annexin V median fluorescent intensity (MFI)

analyses revealed a time-dependent increase in PS exposure after

light-activated hypericin treatment in all melanoma cells, signif-

icantly different to controls (Fig. 5A, left panel). The highest

Annexin V MFI was observed at 24 hours after treatment, most

pronounced in A375 (14.161.5 fold) and similar in 501mel

(7.261.0 fold) and UCT Mel-1 (7.561.3 fold), compared to that of

the vehicle-treated, sham-irradiated control (Control –light,

Fig. 5A, left panel).

The VIVID MFI analyses showed loss of 501mel cell membrane

integrity after light-activated hypericin treatment at all time-points

investigated, significantly different to the controls (Fig. 5A, right

panel). The A375 cells also lost membrane integrity at all time-

points except for the 4 hour time-point which showed a

maintenance of cell membrane integrity (Fig. 5A, right panel). In

contrast, UCT Mel-1 cell membrane integrity stayed intact up to

7 hours (Fig. 5A, right panel). These changes in cell membrane

permeability were most pronounced at 24 hours for all cells (A375:

81.569.4, 501mel: 69.2611 and UCT Mel-1: 25.366.1 fold

compared to control, Fig. 5A, right panel).

Flow fluorocytometric analyses of Annexin V versus VIVID

further enabled the identification of 4 different populations: live

(Annexin V2 VIVID2), early apoptotic (Annexin V+ VIVID2),

early necrotic (Annexin V2 VIVID+) and late apoptotic/necrotic

(Annexin V+ VIVID+) (Fig. 5B).

The live population for UCT Mel-1 cells was approximately 2-

fold higher than the A375 and 501mel cells at all time-points

investigated (Fig. 5B). The A375 and 501mel live populations were

similar to each other. These results clearly suggest that UCT Mel-

1 cells are more resistant to hypericin-PDT than A375 or 501mel

cells. Control treatments all resulted in a live population of

approximately 95% or more for all melanoma cells (Fig. S2).

Death population profiling (Fig. 5B) showed that the A375

melanoma cells displayed an initial early necrotic response at

30 minutes after treatment (6366%), followed by a time-

dependent decrease in the early necrotic population to 964% at

24 hours (Fig. 5B). Conversely, the late apoptotic/necrotic pop-

ulation increased with time after treatment from an initial 1367%

at 30 minutes to 75612% at 24 hours (Fig. 5B).

Treatment of 501mel cells with light-activated hypericin

resulted in a predominantly early necrotic population (Fig. 5B).

This population was highest at 30 minutes after treatment

(7766%) with comparable values up to 7 hours. At 24 hours,

501mel cells showed similar early necrotic (36614%) and late

apoptotic/necrotic populations (48614%, Fig. 5B). At time points

earlier than 24 hours the late apoptotic/necrotic population was

low (4 h: 765%, 7 h: 19614%, Fig. 5B).

UCT Mel-1 cells displayed an initial early necrotic response

(4166%) at 30 minutes after light-activated hypericin treatment

(Fig. 5B) which decreased with time (24 h: 1667%). The late

apoptotic/necrotic population was initially low (30 min: 1262%)

and only increased by 24 hours (4266%). At 24 hours UCT Mel-

1 cells showed an early apoptotic population of 1565% (Fig. 5B).

One common feature of the cell death response to hypericin-

PDT for all melanoma cell lines investigated was minimal early

apoptotic induction. UCT Mel-1 displayed the highest early

apoptotic population with 1565% at 24 hours, followed by 965%

for A375 at 7 hours and 261% for 501mel at 24 hours (Fig. 5B).

In summary, it was clear from this data that melanoma cells

died by specific mechanisms involving the externalization of PS

and loss of cell membrane integrity at specific times after

hypericin-PDT treatment and this death induction was melanoma

cell type and time-dependent.

Hypericin-PDT reduced cellular size and increased cellular
granularity/pigmentation

Morphological alterations of dying cells include shrinkage of

apoptotic cells and swelling of necrotic cells [57]. Both these

morphological alterations can be quantified as forward scatter (FS,

cell size) and side-scatter (SS, granularity) and has been used in

various experimental systems to identify cell populations with

St John’s Wort (Hypericum perforatum L.) Photomedicine for Melanoma

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e103762



Figure 3. Hypericin-PDT induced loss of structural details of LAMP1 positive structures (endosomes, lysosomes and melanosomes).
Cells expressing LAMP1-YFP were exposed to 3 mM hypericin (red) for 4 h, followed by light-activation and imaging using Super-resolution structured
illumination microscopy (SR-SIM). (A) Control (hypericin-treated, sham-irradiated). (B) 30 min post PDT. (C) 60 min post PDT. Images are shown at
lower magnification (top panel, scale bars: 5 mm) and higher magnification (zoom, lower panel, scale bars: 1/2 mm.) Co-localization plots indicate co-
localization of the fluorophores. A representative result is shown (n = 2).
doi:10.1371/journal.pone.0103762.g003
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Figure 4. Hypericin-PDT induced loss of structural details of calreticulin positive structures (endoplasmic reticulum). Cells expressing
calreticulin-YFP (ER-YFP) were exposed to 3 mM hypericin (red) for 4 h, followed by light-activation and imaging using Super-resolution structured
illumination microscopy (SR-SIM). (A) Control (hypericin-treated, sham-irradiated). (B) 30 min post PDT. (C) 60 min post PDT. Images are shown at
lower magnification (top panel, scale bars: 5 mm) and higher magnification (zoom, lower panel, scale bars: 1/2 mm.) Co-localization plots indicate co-
localization of the fluorophores. A representative result is shown (n = 2).
doi:10.1371/journal.pone.0103762.g004

St John’s Wort (Hypericum perforatum L.) Photomedicine for Melanoma

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e103762



St John’s Wort (Hypericum perforatum L.) Photomedicine for Melanoma

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e103762



different pigmentation patterns [58–60]. In addition, melanoma

cells have been shown to use their pigmentary system to sequester

chemotherapeutics into melanosomes and through melanogenesis

circumvent cell death [61–63].Furthermore, melanin and mela-

nogenesis, besides serving as markers of melanoma differentiation,

also indicate the production of resistance to therapy [3,64].

Moreover, melanin has also been shown to act as a radioprotector

[65]. It is thus pertinent to identify whether pigmentation plays a

protective or destructive role in hypericin-PDT.

Light-activated hypericin treatment reduced melanoma cell size

(FS) to approximately a third of that of the control cells, for all

melanoma cell lines investigated at all time-points after treatment

(Fig. 6A). At 24 hours after treatment cells were slightly larger

compared to the other time points but still significantly smaller

than controls (A375: 0.4060.02, 501mel: 0.4460.03 and UCT

Mel-1: 0.4860.01 fold, Fig. 6A).

A significant increase in granularity/pigmentation (SS) com-

pared to the control was observed at all time-points after light-

activated hypericin treatment of 501mel and UCT Mel-1 cells

(Fig. 6B). This was most pronounced at 24 hours for both 501mel

(1.6760.05 fold) and A375 cells but at 1 hour for UCT Mel-1

(1.6660.04 fold). The A375 granularity/pigmentation significantly

increased at 24 hours to 1.4260.03 fold of the control, with no

significant change at the other time-points investigated (Fig. 6B).

Figure 5. Hypericin-PDT induced phosphatidylserine exposure and loss of cell membrane integrity. (A) Annexin V (phosphatidyl serine
exposure) and VIVID (loss of cell membrane integrity) median fluorescent intensities (MFI) normalized to the vehicle-treated, sham-irradiated control
(Control 2Light) at 30 min, 1, 4, 7 and 24 h after treatment. Flow fluorocytometric data is shown as the median6SEM (n$3, ***p,0.0001, **p,0.01,
*p,0.05, L: light). (B) Percentage gated cells of 4 different populations labeled with Annexin V and VIVD: live (AV2 VIVD2), early apoptotic (AV+
VIVID2), necrotic (AV2 VIVID+) and late apoptotic/necrotic (AV+ VIVID+) at 30 min, 1, 4, 7 and 24 h after treatment. Data is shown as mean6SEM of
gated cells (n$3).
doi:10.1371/journal.pone.0103762.g005

Figure 6. Hypericin-PDT reduced cellular size and increased cellular granularity/pigmentation. (A) Melanoma cell forward scatter (FS) as
an indication of cell size/cell death mechanisms and (B) melanoma cell side scatter (SS) as an indication of cell granularity/pigmentation; normalized
to the vehicle-treated, sham-irradiated control (Control 2Light) at 30 min, 1, 4, 7 and 24 h after treatment. Flow cytometric data is shown as
median6SEM (n$3, ***p,0.0001, L: light).
doi:10.1371/journal.pone.0103762.g006

St John’s Wort (Hypericum perforatum L.) Photomedicine for Melanoma

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e103762



Hypericin-PDT induced the expression of apoptotic
proteins

To shed more light on hypericin-PDT induced cell death

mechanisms we further investigated the involvement of specific cell

death proteins. These included: caspase 3 (CASP3), caspase 8

(CASP8), apoptosis inducing factor (AIF) and poly(ADP-ribose)-

polymerase 1 (PARP1).

A vital step in both the intrinsic and extrinsic caspase-dependent

apoptotic cascade is the activation of the executioner CASP3 [66].

The initiator caspase of the extrinsic apoptotic pathway is CASP8,

which upon activation either activates CASP3 directly or indirectly

through activation of the mitochondrial apoptotic pathway [67].

The intracellular apoptotic pathway can however also be executed

in a caspase-independent manner, through factors such as AIF

[68]. Poly(ADP-ribose)polymerase 1 (PARP1) is involved in both

parthanatos with AIF [69] and apoptosis with caspases, as it

contains a caspase cleavage site [70].

Melanoma cells were treated with 3 mM light-activated hyper-

icin followed by Western blot analyses at 1, 4, 7 and 24 hours after

treatment. Resulting data was normalized to total protein used as a

loading control and ratios to the vehicle-treated and sham-

irradiated control (Control 2light) were densitometrically quan-

tified and presented (Fig. 7, representative results of x-ray films

can be found in Fig. S3).

Hypericin-PDT elicited a differential cell death response in

melanoma cells (Fig. 7). The A375 melanoma cells initiated

extrinsic apoptosis at 24 hours post hypericin-PDT, evident by the

activation of the initiator CASP8 (Fig. 7B) and executioner

CASP3 (Fig. 7A). The intrinsic apoptotic cascade was activated

in UCT Mel-1 melanoma cells at 4 hours after treatment with the

activation of CASP3 (Fig. 7A) and cleavage of PARP, inactivation

of PARP was also found at 7 hours (Fig. 7C). The 501mel cells

expressed cleaved PARP at 7 hours post PDT (Fig. 7C); however

neither CASP3 nor CASP8 (Fig. 7A/B) were cleaved at any of the

time-points investigated, suggesting a CASP3-independent PARP

cleavage mechanism. The 501mel cells presented cleaved CASP3

after doxorubicin treatment (used as a positive control), thus

indicating that these cells are able to elicit caspase-dependent

apoptotic cell death. The lethal form of AIF was not induced by

hypericin-PDT in the melanoma cell lines investigated (Fig. 7D).

These findings are summarized in Table 2.

Discussion

The ‘trinity’ of PDT comprises a photosensitizer, light and

molecular oxygen [12]. The choice of the light source in the clinic

depends on various factors such as photosensitizer absorption,

disease (size, location, accessibility and tissue characteristics) and

cost [12]. The penetration of light into tissue increases with its

wavelength, therefore photosensitizers with absorption peaks in

the red to deep red spectrum (600–800 nm) offer tumour control

in deeper tissues [12]. Hypericin absorbs light of both UVA and

visible wavelengths [55]. As one of the factors influencing choice of

light source for PDT is cost, sunlight-mediated PDT becomes an

interesting avenue to explore for the activation of hypericin. It has

been shown in 3 randomized controlled studies that daylight-

mediated PDT was an effective treatment for thin actinic keratosis

[71–73]. Daylight-mediated PDT is nearly pain-free, more

convenient for both patients and clinics and is especially suited

for patients with large field cancerized areas, which can easily be

exposed to daylight [74]. It poses a particularly interesting avenue

to explore for hospitals in developing countries, such as South

Africa, where space and budgets are limited. Overall, it

emphasizes that in both cutaneous and metastatic melanoma,

hypericin-PDT presents as a good candidate strategy.

On the basis of the above outlined factors, we chose to use UVA

to activate hypericin. A dose of 1 J/cm2 UVA was employed based

on its effective hypericin activation resulting in phototoxicity in

experimental systems, including our own [21,22,75]. This dose is

below the minimal erythemal dose (MED) baseline of 20 J/cm2

UVA observed in a study by Beattie et al., 2005 [76].

Hypericin-PDT induced cytotoxicity elicits tumor cell death by

various mechanisms including apoptosis, necrosis and autophagy-

related cell death [27–29]. Additionally, we and others have shown

that hypericin-PDT is a potentially effective therapy to reduce

melanoma cell viability, through the induction of specific cell

death mechanisms thus contributing to increased therapeutic

targeting strategies [14,15,17–19,21,22].

Hypericin-PDT induced the expression of apoptotic
proteins

In this study it is shown that hypericin-PDT is effective in killing

both unpigmented (A375 and 501mel) and pigmented (UCT Mel-

1) melanoma cells through the induction of apoptosis (Fig. 7/Fig.

S3). In addition, this treatment resulted in extrinsic (A375) and

intrinsic (UCT Mel-1) caspase-dependent as well as a caspase-

independent apoptotic mode of cell death, and an apoptotic mode

that did not involve AIF (501mel, Fig. 7/Fig. S3). Moreover, each

of these mechanisms seem melanoma cell-type specific, reinforcing

the heterogenous nature of malignant melanoma cells.

At 4 hours after treatment, CASP3 cleavage was found in UCT

Mel-1, whereas in A375 melanoma cells this event occurred at

24 hours (Fig. 7A/Fig. S3). This was not surprising as the

involvement of CASP3-mediated cell death in response to

hypericin-PDT has been documented in a number of experimen-

tal systems [77–87]. The positive control used in our experimental

system indicated that the 501mel melanoma cells were able to

cleave CASP3, but that this CASP3 activation was not induced by

hypericin-PDT (Fig. 7A/Fig. S3). Hypericin-PDT also resulted in

CASP8 cleavage in the A375 melanoma cells after 24 hours which

was not found at any other time points in these cells, or in any of

the other cell lines investigated (Fig. 7B/Fig. S3). This hypericin-

PDT mediated CASP8 activation has been reported in both Jurkat

T-lymphocytes [87] and nasopharyngeal carcinoma cells [81], but

not in a variety of murine and human cancer cell lines

[84,85,88,89]. To the best of our knowledge, this is the first study

to report on this hypericin-PDT mediated activation of CASP8 in

melanoma. Whether this is specific to different experimental

systems or different cancers is intriguing.

A study by Buytaert et al. (2006), using Bax2/2Bak2/2 double

knockout (DKO) cells suggested that other toxic mitochondrial

intermembrane space proteins, such as AIF and cytochrome c,

play a role in orchestrating caspase-independent apoptosis by

release and direct translocation of these factors from mitochondria

to nuclei [90]. This was corroborated in HT-29 adenocarcinoma

cells, resulting in AIF-mediated condensation and fragmentation

of nuclei in response to hypericin-PDT treatment [91]. In our

study, despite hypericin localizing to the mitochondrion and

potentially causing mitochondrial outer membrane permeability

(MOMP) upon light-activation, there was no evidence for the

induced expression of the cleaved, lethal AIF fragment (57 kDa) in

any of the melanoma cells (Fig. 7D, Fig. S3), suggesting that AIF-

mediated caspase-independent apoptosis are not induced in our

experimental system.

In response to DNA damage, PARP1 is activated to facilitate its

repair [69]. During apoptotis, PARP1 is cleaved to ensure

adequate ATP levels for apoptotic completion [70]. This cleavage
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is under the control of caspases and results in an 89 and 24 kDa

fragment. The 24 kDa fragment irreversibly binds to DNA strand

breaks, thereby inhibiting DNA repair enzymes (including PARP1)

with a consequent attenuation of DNA repair [92]. The cleavage

of PARP1 can furthermore take place by the action of various

other suicidal proteases including calpains, cathepsins, granzymes

and matrix metalloproteinases [92]. In contrast, overactivation of

PARP1 has been implicated in AIF activation, in a regulated

necrotic mode of cell death called parthanatos [69]. PARP

cleavage has been observed in response to hypericin-PDT

treatment [77,80,81,83,85,91]. In our system, hypericin-PDT

induced PARP cleavage was observed in the pigmented UCT

Mel-1 at 4 hours and both the UCT Mel-1 and unpigmented

501mel at 7 hours after treatment (Fig. 7C/Fig. S3). It is probable

in the UCT Mel-1 cells, that this cleavage could be mediated by

CASP3 as its expression correlated with its cleaved, active form at

4 hours (Fig. 7A/Fig. S3). However, CASP3 cleavage was not

evident in both UCT Mel-1 and 501mel cells at 7 hours which

Figure 7. Hypericin-PDT induced expression of apoptotic proteins. (A) Caspase 3 (CASP3), (B) caspase 8 (CASP8), (C) poly(ADP-
ribose)polymerase 1 (PARP1) and (D) apoptosis inducing factor (AIF) Western blot analyses of whole cell lysates detected at 1, 4, 7 and 24 h after
treatment. Data is shown as mean6SEM normalized OD ratio (n$3, ***p,0.0001, **p,0.01, *p,0.05, CTRL: vehicle-treated control, HYP: hypericin
and L: light).
doi:10.1371/journal.pone.0103762.g007
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suggests the involvement of other suicidal proteases able to cleave

PARP1. As we showed partial localization in the ER and

lysosomes, the involvement of calpains, cathepsins and apoptosis-

inducing proteases cannot be excluded. Significantly, no PARP

cleavage was found in the A375 melanoma cells but both CASP8

and CASP3 were cleaved at 24 hours suggesting that perhaps the

PARP cleavage occurs at a later, delayed time-point that fell

outside the scope of this study. Alternatively the A375 cells may

have other DNA protective mechanisms in place delaying the

onset of apoptosis. Work is currently underway to explore these

possibilities.

Hypericin-PDT induced phosphatidylserine exposure and
loss of cell membrane integrity

A common feature of apoptosis is the change in cell membrane

structure by surface exposure of phosphatidylserines (PS), whereas

necrosis exhibits a loss of cell membrane integrity [93]. In this

study, hypericin-PDT induced the externalization of PS and loss of

melanoma cell membrane integrity at specific times after

treatment (Fig. 5A). Minimal early apoptotic populations were

found in all cell lines (Fig. 5B). However, initial early necrotic

populations were also observed in all melanoma cell lines,

decreasing over time, followed by a concomitant increase in the

late apoptotic/necrotic populations (Fig. 5B). These early necrotic

populations of cells were positive for VIVID and negative for

Annexin V which is in contrast to Van den Berghe et al. (2013)

and others, who described PS exposure and permeabilization of

the plasma membrane coinciding with necrosis and an immediate

shift from live to late apoptotic/necrotic populations [94,95]. The

subsequent shift from an early necrotic population to a late

apoptotic/necrotic population positive for both markers suggests

that Annexin V binding in this double-labeled population might

be an artifact due to loss of cell membrane integrity. However this

was disputed through recent studies that early necrotic cells

exposed PS followed by macrophage clearance [96]. A suggestion

that the double-labeled population could represent AIF-mediated

necroptosis [97–100], is unlikely as no associated AIF activation

was observed in the melanoma cells (Fig. 7D, Fig. S3).

Hypericin-PDT reduced cellular size and increased cellular
granularity

Recently, the characteristics of melanoma cell size and

granularity as expressed by flow cytometric analyses have become

a potential measure of the induction of apoptosis. This is based on

the externalization of PS through the process of internalization of

the cell membrane as cells shrink during apoptosis, forming

intracellular vesicles [56]. This was supported by our results

(Figs. 6A/B) in which, besides the externalization of PS (Fig. 5A),

the melanoma cells decreased in size to less than half of the control

at all times after hypericin-PDT treatment for all cell lines

(Fig. 6A). Moreover, the reduction in melanoma cell size

correlated to an increase in granularity to approximately half of

the control (Fig. 6B). We suggest therefore that changes in cellular

granularity could indicate changes in pigmentation levels of

melanoma cells - a characteristic that has been used in various

pigmented experimental systems to identify cell populations with

different pigmentation patterns [58–60]. Pigmentation in melano-

ma is related to a melanin-containing, melanocyte-specific

organelle, the melanosome, which has recently been implicated

in drug trapping, resistance to chemotherapy [62] and hypericin-

PDT [17,18]. The presence or absence of melanin i.e. a melanotic

and amelanotic melanoma phenotype, has shown to offer a

difference in the sensitivity of melanomas to ionizing and
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ultraviolet radiation (UVR) suggesting that inhibiting melanogen-

esis could play a role in melanoma therapy [64,101].

Hypericin-PDT induced photodestruction of organellar
structure

As the co-localization of hypericin becomes important as a

potential contributor to the mode of cell death employed, we

analyzed the intracellular localization of hypericin using fluores-

cent confocal and super-resolution structured illumination micros-

copy. Hypericin was taken up by all melanoma cells used in this

study and partially co-localized to the endoplasmic reticulum (ER),

mitochondria, lysosomes and melanosomes, but not the nucleus

(Fig. 2, 3, 4, Fig. S1, Vid. S1 & S2). This was not surprising as

hypericin has been reported to co-localize with the ER [90,102–

106], mitochondria [103,107,108] and lysosomes [90,102,108–

110]; eliciting autophagy-related, apoptotic [90,111,112] and

necrotic [108] cellular responses.

Both lysosomes and melanosomes have been implicated in

resistance to cancer therapy. This is not surprising as both these

organelles have been shown to have the same ancestral origin

[62,113,114]. Interestingly, lysosomally targeted photosensitizers

have been shown to effectively circumvent multi-drug resistance

by lysosomal photodestruction upon light-activation, resulting in

the reversion to the parental drug sensitivity [113]. In this study,

hypericin only partially co-localized with melanosomal-specific

GFP fusion proteins and Lysotracker-positive structures (Fig. 2,

Fig. S1), suggesting that these melanoma cells may not be utilizing

their melanosomal/lysosomal system for hypericin trapping and

export. To shed more light on these phenomena we investigated

hypericin co-localization with endosomes, lysosomes and melano-

somes (LAMP1 positive structures), in one of the melanoma cell

lines (501mel) before and after PDT, using super-resolution

structural illumination microscopy (Fig. 3). These results show,

for the first time at high resolution in melanoma cells, that the

Figure 8. Melanoma response mechanisms to hypericin-PDT. Hypericin (HYP) was taken up by melanoma cells and localized to various
intracellular organelles, including the endoplasmic reticulum, mitochondria, lysosomes and melanosomes. Light activation (yellow arrow) of
hypericin, in the presence of oxygen (O2), resulted in loss of structural details of various intracellular organelles, phosphatidylserine (PS) exposure, loss
of melanoma cell membrane integrity, cell shrinkage and an increase in granularity/pigmentation. Hypericin-PDT furthermore initiated caspase-
dependent apoptotic modes of cell death of both extrinsic (caspase 8 (CASP8)) and intrinsic (caspase 3 (CASP3)) nature, as well as a caspase-
independent apoptotic mode that did not involve apoptosis inducing factor (AIF). Both caspase-dependent and caspase-independent apoptotic
modes of cell death resulted in the cleavage of poly(ADP-ribose)polymerase 1 (PARP1).
doi:10.1371/journal.pone.0103762.g008
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partial co-localization of hypericin and LAMP1 positive structures

observed pre-PDT, increased at 30 and 60 minutes post-PDT

(Fig. 3). Furthermore, LAMP1 positive structures stayed intact

post-PDT (Fig. 3). In contrast, a loss of structural details suggestive

of organelle disruption and a decrease in co-localization of

hypericin and the ER (calreticulin positive structures) was found

post-PDT in 501mel cells (Fig. 4). Moreover, the 501mel cells

displayed a rapid, extensive modification of the tubular mito-

chondrial network into a beaded appearance as shown through

live confocal fluorescent time-lapse microscopy (Vid. S1), suggest-

ing a change in mitochondrial function possibly through the

disruption of the mitochondrial outer membrane potential

(MOMP). The observed loss of structural details of both the ER

and mitochondria in response to hypericin-PDT suggests a

detrimental effect of ROS production in the vicinity of these

structures, leading to organelle disruption. Surprisingly the

opposite was found for lysosomal related organelles (LAMP1

positive structures), suggesting that the melanoma cells may be

using these LAMP1 positive intracellular organelles for hypericin-

PDT resistance. Noteworthy is that these results were obtained at

30 and 60 minutes post-PDT; it will be interesting to investigate

later time-points post-treatment in future studies. In line with this

speculation we found an increase in cellular granularity, up to

24 hours post-PDT, suggesting an increase in pigmentation levels

in these cells in response to hypericin-PDT (Fig. 6B). Moreover,

studies from our laboratory have shown that the pharmacological

inhibition of tyrosinase resulted in depigmentation of melanoma

cells and a concomitant increased susceptibility to hypericin-PDT

[17,18]. In addition, melanin-producing cells have been shown to

induce various PDT resistance mechanisms targeting the ‘trinity’

of PDT, the photosensitizer, light and molecular oxygen. These

include photosensitizer adsorption inside the polymer, light

screening by melanin and oxygen consumption by tyrosinase

and melanin itself [11,64]. Whether melanoma cells use melano-

somes/lysosomes to sequester and export hypericin from the cell to

counteract PDT, or any of the above mentioned resistance

mechanisms of melanin-producing cells, remains to be investigat-

ed. The use of hypericin hydroquinone is an interesting avenue to

explore in this context, as it could act as a melanogenesis-

inhibiting agent as well as a photosensitizer, with the additional

advantage of absorbance in the red spectrum offering deeper light

activation in the tumour [115]. Further research is needed to shed

more light on these mechanisms.

Conclusions

Overall, this study shows that hypericin was sufficiently taken up

by melanoma cells and localized to various intracellular organelles,

including the endoplasmic reticulum, mitochondria, lysosomes

and melanosomes. Light activation of 3 mM hypericin resulted in

photodestruction of mitochondria and the endoplasmic reticulum,

phosphatidylserine (PS) exposure, loss of melanoma cell mem-

brane integrity, cell shrinkage and apoptosis (Fig. 8). Mechanis-

tically, the mode of cell death in these cells suggests an initial

necrotic, followed by an apoptotic response. As these cellular

responses are not absolutely clear-cut, it may suggest an alternative

mechanism of necroptosis. Finally, the implications of the

increased melanoma cell granularity/pigmentation post hyperi-

cin-PDT and the possible use of lysosomal related organelles to

sequester and export hypericin from the cell to counteract PDT,

remains an interesting avenue to explore for increased therapeutic

efficiency against this retractable cancer.

Supporting Information

Figure S1 Intracellular localization of hypericin. Cells

were exposed to 3 mM hypericin for 4 h without light activation.

Live confocal fluorescent microscopy images of melanoma cells

indicate the intracellular localization of hypericin (red) in relation

to the endoplasmic reticulum (Bcl2-Cb5-GFP), endosomes, early

melanosomes (Rab7-GFP) and mature melanosomes (Rab27a-

GFP). Nuclei were counterstained with Hoechst (blue). Profiles

taken at different locations through the cell indicate co-localization

of the fluorophores. A representative result is shown (n = 3, scale

bars: 10/20 mm).

(TIF)

Figure S2 Phosphatidylserine exposure and loss of cell
membrane integrity is not observed in untreated
melanoma cells. Control treatments of hypericin-treated,

sham-irradiated (Hypericin 2Light), vehicle-treated, irradiated

(Vehicle +Light) and vehicle-treated, sham-irradiated (Vehicle 2

Light) melanoma cells at 30 min, 1, 4, 7 and 24 h after treatment.

Data is shown as percentage gated cells of 4 different populations

labeled with Annexin V (phosphatidyl serine exposure) and VIVD

(loss of cell membrane integrity): AV2 VIVD2 (live), AV+
VIVID2 (early apoptotic), AV2 VIVID+ (necrotic) and AV+
VIVID+ (late apoptotic/necrotic). Data is shown as mean6SEM

of gated cells (n$3).

(TIF)

Figure S3 Hypericin-PDT induced expression of apo-
ptotic proteins. Caspase 3 (CASP3), caspase 8 (CASP8),

poly(ADP-ribose)polymerase 1 (PARP1) and apoptosis inducing

factor (AIF) Western blot analyses of whole cell lysates detected at

1, 4, 7 and 24 h after treatment. A representative result of X-ray

films of the same exposure is shown (n = 3, CTRL: vehicle-treated

control, HYP: hypericin, +C: positive control (doxorubicin-

treated), U: untreated, non-irradiated, L: light (- = sham-

irradiated)).

(TIF)

Video S1 Hypericin-PDT induced loss of structural
details of OTC-GFP positive structures (mitochondria).
Cells expressing OTC-GFP (green) were exposed to 3 mM

hypericin (red) for 4 h followed by light-activation with live

confocal fluorescent time-lapse microscopy. A cellular region (red

box) was bleached with the 561 nm excitation wavelength to

activate hypericin. Nuclei were counterstained with Hoechst

(blue). A representative time-lapse result is shown (n = 3, scale

bars: 20 mm).

(AVI)

Video S2 Structural details of OTC-GFP positive struc-
tures (mitochondria) are not lost in untreated cells.
Control cells expressing OTC-GFP (green) were exposed to

vehicle for 4 h followed by light-activation with live confocal

fluorescent time-lapse microscopy. A cellular region (red box) was

bleached with the 561 nm excitation wavelength to activate

hypericin. Nuclei were counterstained with Hoechst (blue). A

representative time-lapse result is shown (n = 3, scale bars: 20 mm).

(AVI)
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