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A novel computational approach known as pseudospectral quasilinearization (SQLM) is employed to tackle the two-point
boundary value problem describing the reactivity behaviour of porous catalyst particles subject to both internal mass concentration
gradients and temperature gradients, in endothermic or exothermic catalytic reactions. A comparison with the numerical results
generated using the inbuilt MATLAB boundary value solver, bvp4c, for different values of the governing physical parameters is
performed and an excellent agreement is achieved. A systematic way of improving the convergence of the SQLM is also presented.

1. Introduction

In many engineering and industrial applications, catalytic
processes in chemical reactors are often considered to be
very useful. This induces particular attention to the study of
catalytic reactions at the single-particle level [1]. Moreover,
the problem of how the intraparticle diffusion of molecules
would modify the overall reaction behaviour of porous
catalyst particles had been studied over nearly a quarter of
a century [2–4]. Majority of chemical reactions are accom-
panied by heat transfer effects; they either release or absorb
heat. This can lead to appreciable increase (or decrease) of
temperature toward the particle centre [5–7]. Since chemical
reaction rates vary rapidly (exponentially) with temperature,
this effect could radically change the behaviour of the catalyst
particles from that which we would otherwise expect. Anal-
ysis of chemical kinetics with diffusion effects usually leads
to solving highly nonlinear differential equations. Detailed
reviews of mathematical models describing reactions in a
porous catalyst particle can be found in [8]. Assuming
a flat geometry for the particle and that conductive heat
transfer is negligible compared to convective heat transfer,

Hlavácek et al. [9] derived a dimensionless nonlinear two-
point boundary value problem for catalytic reaction in a flat
particle as

𝑑
2
𝑐

𝑑𝑦2
− 𝜆𝑐 exp [

𝛾𝛽 (1 − 𝑐)

1 + 𝛽 (1 − 𝑐)
] = 0, (1)

with boundary condition

𝑑𝑐

𝑑𝑦
(0) = 0, 𝑐 (1) = 1, (2)

where 𝑐 is the reactant concentration, 𝑦 is a coordinate
measured along the particle, 𝜆 is the Thiele modulus or
the reaction rate parameter, 𝛿 is the activation energy
parameter that expresses the sensitivity of the reaction rate
to temperature, and 𝛽 is the heat evolution parameter that
shows themaximum temperature variation which could exist
within the particle relative to the boundary temperature.
The main objective of the current research is to solve the
nonlinear problem described in (1)-(2) using the pseu-
dospectral quasilinearization method (SQLM). This method
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is formed by blending the pseudospectral methods [10–
12] with the quadratically convergent Bellman and Kallaba
quasilinearization method, [13]. We also present, for the first
time, hybrid schemes which converge much faster than the
quasilinearization method. We demonstrate the capability of
the SQLM in tackling highly nonlinear two-point boundary
value problems. Numerical and graphical results obtained
using the SQLM approach are validated through comparison
with numerical results generated using the inbuilt MATLAB
boundary value solver, bvp4c, for different values of the
governing physical parameters.

2. Solution Methods

To develop the iteration schemes, we begin by rewriting (1) as

𝑐
󸀠󸀠
+ 𝑓 (𝑐) = 0, (3)

where𝑓(𝑐) is the nonlinear component of (1). Given that 𝑐
𝛿
is

the initial approximation of the solution of (3), we introduce
the following coupled system:

𝑐
󸀠󸀠
+ 𝑓 (𝑐

𝛿
) + (𝑐 − 𝑐

𝛿
)
𝜕𝑓

𝜕𝑐
(𝑐
𝛿
) + 𝑔 (𝑐, 𝑐

𝛿
) = 0, (4)

𝑔 (𝑐, 𝑐
𝛿
) = 𝑓 (𝑐) − 𝑓 (𝑐

𝛿
) − (𝑐 − 𝑐

𝛿
)
𝜕𝑓

𝜕𝑐
(𝑐
𝛿
) . (5)

We write (4) as

𝑐
󸀠󸀠
+ 𝑐
𝜕𝑓

𝜕𝑐
(𝑐
𝛿
) + 𝑔 (𝑐, 𝑐

𝛿
) = Φ (𝑐

𝛿
) , (6)

where

Φ(𝑐
𝛿
) = 𝑐
𝛿

𝜕𝑓

𝜕𝑐
(𝑐
𝛿
) − 𝑓 (𝑐

𝛿
) . (7)

We use the quasilinearization method (QLM) of Bellman
andKalaba [13] to solve (6).TheQLMdetermines the (𝑖+1)th
iterative approximation 𝑐

𝑖+1
as the solution of the differential

equation
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(8)

which can be written as
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(9)

subject to

𝑐
󸀠

𝑖+1
= 0, 𝑐

𝑖+1
(1) = 1. (10)

We assume that 𝑐
0
is obtained as a solution of the linear part

of (6) given by

𝑐
󸀠󸀠

0
+ 𝑐
0

𝜕𝑓
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(𝑐
𝛿
) = Φ (𝑐

𝛿
) , (11)

which yields the iteration scheme
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+ 𝑐
𝑟+1

𝜕𝑓
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which is the standard QLM iteration scheme for solving (1).
When 𝑖 = 0 in (9), we can approximate 𝑐 as

𝑐 ≈ 𝑐
1
. (13)

Thus, setting 𝑖 = 0 in (9), we obtain
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(14)

which yields the iteration scheme
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(15)

where 𝑐(0)
𝑟+1

is the solution of

𝑐
󸀠󸀠(0)

𝑟+1
+
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(𝑐
𝑟
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𝑟
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The general iteration scheme obtained by setting 𝑖 = 𝑚
(𝑚 ≥ 2) in (9), hereinafter referred to as scheme-𝑚, is
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where 𝑐(𝑚−1)
𝑟+1

is obtained as a solution of
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(18)

The iterative schemes (12) and (17) can easily be solved
using numerical methods such as finite differences, finite ele-
ments, Runge-Kutta based shooting methods, or collocation
methods. In this work, we employ the Chebyshev spectral
collocation method. This method is based on approximating
the unknown functions by the Chebyshev interpolating
polynomials in such a way that they are collocated at the
Gauss-Lobatto points defined as

𝑧
𝑗
= cos
𝜋𝑗

𝑁
, 𝑗 = 0, 1, . . . , 𝑁, (19)

where 𝑁 is the number of collocation points used (see, e.g.,
[10, 12]). In order to implement the method, the physical
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region [0, 1] is transformed into the region [−1, 1] using the
mapping

𝑦 =
𝑧 + 1

2
, −1 ≤ 𝑧 ≤ 1. (20)

The second derivative of 𝑐
𝑖
at the collocation points is

represented as

𝑑
2
𝑐
𝑖

𝑑𝑦2
= 4

𝑁

∑

𝑘=0

D2
𝑘𝑗
𝑐
𝑖
(𝑧
𝑘
) , 𝑗 = 0, 1, . . . , 𝑁, (21)

where D is the Chebyshev spectral differentiation matrix
(see, e.g., [10, 12]). Substituting (19)–(21) in (12), for example,
results in the matrix equation

A
𝑟
C
𝑟+1
= Φ
𝑟
, (22)

in which A
𝑟
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Φ
𝑟
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𝑁
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𝑟
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𝑟
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(23)

In the above definitions, a
𝑟
is a diagonal matrix of size (𝑁 +

1) × (𝑁 + 1) which is defined as

a
𝑟
=
𝜕𝑓

𝜕𝑐
(𝑐
𝑟
) (24)

and is evaluated at the collocation points. Aftermodifying the
matrix system (21) to incorporate boundary conditions, the
solution is obtained by solving (22) iteratively, starting from
a suitable initial approximation.

3. Results and Discussion

In this section, we present the results for the solution of
the reactant concentration 𝑐(𝑦) which is the solution of the
governing nonlinear boundary value problem (1). In order
to assess the accuracy of the proposed iteration methods,
the present numerical results were compared against results
generated using the MATLAB routine bvp4c. The MATLAB
routine bvp4c is based on an adaptive Lobatto quadrature
scheme [14, 15]. The present results were also compared
against other results from the literature that were generated
using other methods. Unless otherwise specified, the number
of collocation points used in computing the results presented
here is𝑁 = 50. For illustration purposes, results are presented
for the first three iteration schemes obtained by setting 𝑚 =
0, 1, 2.

We begin by presenting results for scheme-0 which
corresponds to the pseudospectral quasilinearizationmethod
(SQLM).

Table 1 gives a comparison between the SQLM results
and the results of Lin et al. [16], who used interval analysis
and the validated solver for parametric ordinary differential
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Figure 1: Bifurcation diagrams for concentration at 𝑦 = 0 against 𝜆
when 𝛽 = 0.3 at various values of 𝛾.

equations (VSPODE) to produce guaranteed bounds of the
solution to (1) for different values of the reactive rate param-
eter 𝜆, when the activation energy parameter is 𝛾 = 20
and the heat evolution parameter is 𝛽 = 0.4. Depending
on the value of 𝜆, there exist different solutions to (1) as
indicated in Table 1. The results are also compared with the
bvp4c numerical results. It can be seen from Table 1 that the
SQLM results lie within the interval where the true solution
for 𝑐(𝑦) is expected to be found. We also observe that the
SQLM results converge very rapidly to the bvp4c results.
It takes only four iterations to achieve an exact match that
is accurate to order 10−8 for the selected parameters. This
proves the accuracy and efficiency of the proposed SQLM
approach.

Table 2 gives a comparison of the present SQLM results
for 𝑐(0) for 𝛽 = 0.4, 𝛾 = 12 against the bvp4c
numerical results for various values of 𝜆. Table 2 indicates
that the concentration at 𝑦 = 0 gradually decreases
with an increase in 𝜆. It can also be seen from the table
that there is good agreement between the SQLM and the
bvp4c numerical results. The SQLM results converge fully
to the numerical results only at 3rd order of approximation.
Again, this shows the efficiency of the proposed SQLM
approach.

In Table 3, we show the comparison of the present
SQLM results for 𝑐(0) for 𝛾 = 12, 𝜆 = 0.3 against the
bvp4c numerical results for various values of 𝛽. Table 3
indicates that the concentration at 𝑦 = 0 gradually decreases
with an increase in 𝛽. It can also be seen from the table
that there is good agreement between the SQLM and the
bvp4c numerical results. The SQLM results converge fully
to the numerical results only at 3rd order of approximation.
Again, this shows the efficiency of the proposed SQLM
approach. Table 4 gives a comparison between the current
SQLM results and the bvp4c results for fixed values of
𝛽 and 𝜆 and various values of 𝛾. It must be pointed out
here that a possible advantage of the proposed approach
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Table 1: Comparison of the present SQLM results for 𝑐(0) for𝛽 = 0.4, 𝛾 = 20 against the bvp4c numerical results and theVSPODE enclosures
of the true solution reported in [16] for various values of 𝜆.

𝜆 VSPODE enclosure [16] 2nd order QLM 4th order QLM bvp4c

0.05 [0.970345, 0.970346] 0.97034564 0.97034556 0.97034556

0.1
[0.922680, 0.922681] 0.92275692 0.92268041 0.92268041
[0.505872, 0.505873] 0.50586098 0.50587258 0.50587258
[0.064468, 0.064469] 0.06379374 0.06446821 0.06446821

Table 2: Comparison of the present SQLM results for 𝑐(0) for 𝛽 =
0.4, 𝛾 = 12 against the bvp4c numerical results for various values of
𝜆.

𝜆 2nd order 3rd order 4th order bvp4c

0.04 0.97861570 0.97861566 0.97861566 0.97861566
0.08 0.95387927 0.95387919 0.95387919 0.95387919
0.12 0.92454876 0.92454710 0.92454710 0.92454710
0.16 0.88854336 0.88852609 0.88852609 0.88852609
0.20 0.84197392 0.84188249 0.84188249 0.84188249
0.24 0.77617737 0.77590844 0.77590839 0.77590839
0.28 0.66647431 0.66638660 0.66638660 0.66638660
0.32 0.47282464 0.47282850 0.47282850 0.47282850

Table 3: Comparison of the present SQLM results for 𝑐(0) for 𝜆 =
0.3, 𝛾 = 12 against the bvp4c numerical results for various values of
𝛽.

𝛽 2nd order 3rd order 4th order bvp4c

0.10 0.84786938 0.84788701 0.84788701 0.84788701
0.15 0.83525321 0.83529531 0.83529531 0.83529531
0.20 0.81920551 0.81926631 0.81926631 0.81926631
0.25 0.79771484 0.79776696 0.79776696 0.79776696
0.30 0.76640940 0.76641380 0.76641380 0.76641380
0.35 0.71295057 0.71291150 0.71291150 0.71291150
0.40 0.57807777 0.57812876 0.57812877 0.57812877

Table 4: Comparison of the present SQLM results for 𝑐(0) for 𝛽 =
0.4, 𝜆 = 0.05 against the bvp4c numerical results for various values
of 𝛾.

𝛾 2nd order 3rd order 4th order bvp4c

2 0.97511266 0.97511280 0.97511280 0.97511280
4 0.97469451 0.97469524 0.97469524 0.97469524
6 0.97425504 0.97425591 0.97425591 0.97425591
8 0.97379354 0.97379273 0.97379273 0.97379273
10 0.97330579 0.97330326 0.97330326 0.97330326
12 0.97278478 0.97278473 0.97278473 0.97278473
14 0.97230716 0.97223388 0.97223388 0.97223388
16 0.97281606 0.97164723 0.97164690 0.97164690

over the bvp4c approach is that it yields accurate results
using fewer grid points, iterations, and function evaluations.
The higher order scheme further improves the efficiency
of the QLM by requiring fewer iterations to achieve better
accuracy.
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Figure 2: Comparison of the 8th order SQLM approximate solution
for the concentration profile against the bvp4c numerical results
when 𝜆 = 0.4, 𝛾 = 12 with different values of 𝛽.
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Figure 3: Comparison of the 8th order SQLM approximate solution
for the concentration profile against the bvp4c numerical results
when 𝛽 = 0.1, 𝜆 = 0.4 with different values of 𝛾.

Figure 1 depicts a slice of bifurcation diagram in the
(𝜆, 𝑐(0))-plane for a given value of 𝛽 > 0. It demonstrates
the variation in the reacting species concentration along the
flat particle centreline with increasing intensity of destructive
reaction rate (𝜆). This result is in perfect agreement with
the one reported by Hlavácek et al. [9]. Meanwhile, it is
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Table 5: Comparison between the iteration schemes for the computed values of 𝑐(0).

Iter. Scheme-0 Scheme-1 Scheme-2
1 0.862901516195264896 0.973668118653808797 0.973303269931342285
2 0.973668118653808797 0.973303264463730095 0.973303264463730094
3 0.973303269931342285 0.973303264463730094 0.973303264463730094
4 0.973303264463730095 0.973303264463730094 0.973303264463730094
5 0.973303264463730094 0.973303264463730094 0.973303264463730094
6 0.973303264463730094 0.973303264463730094 0.973303264463730094
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Figure 4: Comparison of the 8th order SQLM approximate solution
for the concentration profile against the bvp4c numerical results
when 𝛽 = 0.1, 𝛾 = 10 with different values of 𝜆.

observed that the species concentration along the particle
centreline generally decreases with an increase in the reac-
tion rate parameter, since the reactant is consumed. It is
worth mentioning that a further decrease in the species
concentration is observed with an increase in the reacting
species activation energy (𝛾). Figures 2, 3, and 4 illustrate
the transverse variation in the reacting species concentration
across the flat particle. It is seen that the concentration is
highest at the flat particle surface and decreases transversely
with minimum value along the flat particle centreline. More-
over, it is noteworthy that the reaction species concentration
decreases with a combined increase in the heat evolution
parameter (𝛽), reaction rate parameter (𝜆), and the activation
energy parameter (𝛾).

Table 5 gives the values of 𝑐(0) computed using the
proposed higher order hybrid schemes: scheme-0, scheme-
1, and scheme-2. It can be seen from Table 5 that there is
an improvement in the convergence speed in moving from
scheme-0 to scheme-1 then to scheme-2. It takes 4 iterations
to obtain a result that converges fully to 18 decimal digits for
scheme-0 compared to just 1 iteration when using scheme-2.
This demonstrates the benefit in using the proposed higher
order schemes.

4. Conclusion

In this study, a highly accurate hybrid method that blends
the pseudospectral methods of differentiation and quasilin-
earization techniques was presented. The method of solu-
tion, named as the pseudospectral quasilinearizationmethod
(SQLM), was employed to tackle the two-point boundary
value problem describing the reactivity behaviour of porous
catalyst particles subject to both internal mass concentration
gradients and temperature gradients, in endothermic or
exothermic catalytic reactions. The validity of the SQLM
was established by a comparison with the numerical results
generated using the inbuilt MATLAB boundary value solver,
bvp4c, for different values of the governing physical param-
eters. A systematic way of improving the convergence of the
SQLMbasedwas also presented. From this preliminary inves-
tigation, more numerical experimentation will be conducted
on other examples of nonlinear BVPs from other applications
in science and engineering.
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