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Abstract

Background: Overcoming boundaries is crucial for incursion of alien plant species and their successful naturalization and
invasion within protected areas. Previous work showed that in Kruger National Park, South Africa, this process can be
quantified and that factors determining the incursion of invasive species can be identified and predicted confidently. Here
we explore the similarity between determinants of incursions identified by the general model based on a multispecies
assemblage, and those identified by species-specific models. We analyzed the presence and absence of six invasive plant
species in 1.061.5 km segments along the border of the park as a function of environmental characteristics from outside
and inside the KNP boundary, using two data-mining techniques: classification trees and random forests.

Principal Findings: The occurrence of Ageratum houstonianum, Chromolaena odorata, Xanthium strumarium, Argemone
ochroleuca, Opuntia stricta and Lantana camara can be reliably predicted based on landscape characteristics identified by
the general multispecies model, namely water runoff from surrounding watersheds and road density in a 10 km radius. The
presence of main rivers and species-specific combinations of vegetation types are reliable predictors from inside the park.

Conclusions: The predictors from the outside and inside of the park are complementary, and are approximately equally
reliable for explaining the presence/absence of current invaders; those from the inside are, however, more reliable for
predicting future invasions. Landscape characteristics determined as crucial predictors from outside the KNP serve as
guidelines for management to enact proactive interventions to manipulate landscape features near the KNP to prevent
further incursions. Predictors from the inside the KNP can be used reliably to identify high-risk areas to improve the cost-
effectiveness of management, to locate invasive plants and target them for eradication.
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Introduction

Biological invasions impact all ecosystems [1–4] and although the

type of habitat plays an important role in shaping invasion patterns

in modern landscapes [5–12], very few habitats are free from alien

plants [8,13]. This also holds for protected areas at both regional

[14] and global scales where the protection of biodiversity and

ecosystem function is a fundamental goal. There is no up-to-date

global synthesis of invasions in protected areas, but more than two

decades ago an assessment showed that many nature reserves

around the world harbored large numbers and densities of invasive

species [15]. Although formal protection of ecosystems reduces

some drivers of global environmental change, such as extensive

transformation of land cover, many anthropogenic threats to

biological diversity are not removed by establishing formal

protected areas. Invasions by alien species are one such threat,

and biological invasions are increasing in importance as threats to

biodiversity in most protected areas. This is because human

activities and land use in areas surrounding protected areas are

key drivers of invasions within the protected areas, by providing

sources of propagules of alien species and in other ways. Measures

adopted to meet conservation goals such as establishing networks of

protected areas and improving connectivity through the creation of

corridors [16–17] do little to protect such areas from increasing

threats from invasive species [18–20]. Indeed, some types of linkages

may even exacerbate problems, e.g. river networks acting as

conduits of plant invasion by supplying propagules and providing

pathways for long-distance dispersal of alien species [21–22].
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For protected areas with systematic management strategies for

dealing with biological invasions, initiatives should generally focus

on early detection and eradication, and focused action is usually

only applied to the species that are likely to have greatest negative

impacts on ecosystem functioning. Although notions of maintain-

ing buffer zones around protected areas are often included and

some work has addressed invasions at the interface between

protected areas and human-dominated systems [23–25], penetra-

tion of alien species into protected areas, or what would constitute

an effective and sustainable buffer to reduce incursions of alien

plants only started to be addressed recently [26]. A generalized

framework for synthesizing theories of ecological boundaries [27],

suggests that three processes must considered: type of flow (e.g.

organism movement through the landscape and thus across

boundaries), patch contrasts (e.g. the difference in juxtaposed land

use types), and boundary structure (the nature of the boundary

which influences the movement of organisms). Therefore, in

assessing the permeability of protected area boundaries to

incursions by invasive species, we must consider factors reflecting

both characteristics of the surrounding landscapes outside the park

and those from within the protected area limits, adjacent to the

park boundary.

Overcoming boundaries is crucial for incursion of an alien

species and its successful naturalization and invasion within the

protected area, a process that requires overcoming dispersal,

reproductive and spread barriers [28–29]. There are surprisingly

few studies of such incursions in the plant invasion literature. Two

previous papers from widely separated geographical locations in

Central Europe [23] and South Africa [26] have however shown

that protected areas’ boundaries act as an effective barrier against

incursion of invasive species. Most invasive species reached

protected areas from surrounding landscapes after the establish-

ment of the protected area [23], and the rate of incursion and its

determinants can be predicted based on landscape characteristics.

This was shown for the Kruger National Park, South Africa,

where the risk of incursion of invasive plants was accurately

quantified. The density of invasive plants was found to decline

rapidly beyond 1500 m inside the park, and the park boundary

served to limit the spread of alien plant species. The degree of

boundary permeability could be explained by a few characteristics

of the landscape outside the park: water run-off, density of major

roads, and the presence of natural vegetation. Of the metrics

characterizing human impacts and disturbance, only the density of

major roads outside the park played a significant role [26].

However, in searching for the role of generally valid drivers of

invasions at various scales, studies rely on whole alien floras and

faunas (e.g. [19,30–33], or multispecies assemblages, and pay less

attention to factors determining the success of individual species

(but see [34]). This is because studies based on large data sets, in

terms of species numbers, provide a more reliable basis for

inferring generic patterns. Yet, it is important to investigate the

extent to which results from multi-species studies apply to

individual species, for which results can be interpreted in terms

of autecology, habitat affinity, response to resources, species traits

and other factors that are known to mediate invasiveness. Effective

management interventions are often best formulated with

particular species in mind [35].

The present paper therefore uses the general drivers of

incursion of invasive plant species through the boundary of

Kruger National Park that were identified in the previous paper

[26] as a standard, and seeks to determine whether (and if so, then

how) models for individual species deviate from this general

pattern. The main aims are (i) to quantify, for individual species,

the correspondence between determinants of incursion identified

by the model based on the multispecies assemblage, and those

identified by species-specific models; (ii) investigate whether the

predictive power of models for those individual species that fit the

multispecies general model can be improved by using additional

factors; (iii) to assess for individual species the relative importance

of predictors of incursions outside the park where landscape

characteristics can be manipulated to some extent, and inside the

park where this is not possible.

Materials and Methods

Study area
The study was carried out in Kruger National Park, South

Africa (KNP), a large protected area that provides unique

opportunities for gaining insights on incursions of invasive alien

plants at a large spatial scale. The area is appropriate for such an

exercise because of the unique detailed data that are available on

alien plant species distribution [36] and features known to mediate

plant invasions in and around the park [26]. Kruger National

Park, located in the north-eastern region of South Africa, was

founded in 1898 and covers an area of ,20,000 km2. More than

370 non-native species have been recorded to date [37]. In

response to the escalating importance of plant invasions, KNP has

initiated a number of programs aimed at preventing and

mitigating incursions of non-native species [38–39], and detailed

data on the distribution of these species have been collected as part

of long-term monitoring since 2004 [36]. The ecology of plant

invasions has been intensively studied for more than a decade (e.g.,

[26,34,36,40–41] and references cited in these papers).

Our study on the role of boundaries in filtering alien plant

invasions focuses on the western and southern boundaries of KNP.

The northern (Limpopo River) and eastern (border with

Mozambique) boundaries were excluded from this analysis. This

delimitation was based on the assumption that propagules of non-

native species arrive mainly from the western side of the KNP

because (i) all rivers flowing through the park flow from west to

east [40], and (ii) tourism linkages, such as entrance gates, were

developed primarily along the western and southern boundaries.

Data from areas outside South Africa (Mozambique in the east

and Zimbabwe in the north) does not match those from South

Africa in terms of coverage and thoroughness. Also, the Limpopo

River is an extensive drainage basin of which the KNP only has a

minor portion (4%); including this edge would thus distort the

effects explored in our study.

Alien species data
Data on the occurrence of alien species and various other

features are collected in KNP by approximately 120 field rangers

during their daily patrols using a hand held personal computer

(PDA) device, with customized software (CyberTracker;

[26,36,42–43]. Records are taken randomly as rangers move

through the field, stopping to record features of interest as they are

encountered. Apart from the presence of alien plants, rangers also

record animal sightings, water availability, carcasses, tracks, etc

[36,42]. We distinguished (i) presence points, which were records

with the occurrence of a non-native plant indicated by a ranger,

and (ii) absence points, where a record has been made but for a

feature other than a non-native plant. This is based on assumption

that had an alien plant been present at the same point as the other

sightings, it would have been recorded by the ranger [36]. This

assumption is justified, because the data set included the most

abundant and conspicuous alien species that are reliably

recognized by trained rangers: Opuntia stricta, Lantana camara,

Chromolaena odorata and Parthenium hysterophorus [36]. These species

Plant Invaders into Kruger National Park
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together account for 82% of all alien plant records in KNP and

represent thus a highly representative sample.

The large spatially-explicit dataset gathered by the rangers

covers the entire KNP [36] and includes .27,000 presence points

and .2 million absence points. For our analyses we divided the

western and southern park boundary into 1-km-wide segments

perpendicular to the boundary, running towards the park interior

to a distance of 1.5 km (hereafter referred to as segments, each of

1.061.5 km in size); in total, 637 boundary segments were created

(see [26]: their Fig. 1). The occurrence (presence or absence) of

individual alien species in these segments was used for further

evaluations, separately for the following six species with sufficient

numbers of presences to allow for statistical analysis: Ageratum

houstonianum, Chromolaena odorata, Xanthium strumarium, Argemone

ochroleuca, Opuntia stricta and Lantana camara (Table S1).

Environmental data
To explain the incursions of alien plants into KNP, we used

explanatory variables characterizing environmental conditions

inside and outside the park. The variables represent either

environmental (e.g. water run-off) or anthropogenic factors (e.g.

roads); most of them assumed to be surrogates of propagule

pressure. The variables used inside the park were expressed for the

161.5 km segments along the boundary (see [26], their Fig. 1).

Environmental conditions outside the park were summarized for

sections starting opposite to the boundary segments and running

into the landscape surrounding the park, and were expressed for 1,

5, 10 and 50 km radius outside the park boundary.

The variables outside KNP included those related to (i) Traffic:

density of major roads (defined as the main tourist tar roads) and

of all roads within 1, 5, 10, 50 km of boundary [km/km2]; (ii)

Land use: % of natural areas (untransformed landscapes, although

probably grazed by livestock), cultivated areas (agricultural land),

urban areas (including towns and informal/rural settlements) and

degraded areas (transformed by erosion, i.e. gullies and bare soil,

loss of plant cover and other disturbances) in 1, 5, 10 and 50 km

radius from the boundary, and % of plantations (commercial

plantation forests) in 10 and 50 km radius. (iii) Presence of

protected areas adjacent KNP; (iv) Run-off from quaternary

watershed [43], given only for those segments for which a main

river (Limpopo, Luvuvhu, Shingwedzi, Letaba, Olifants, Sabie,

Crocodile River) intersected it and the measures included: mean

annual runoff [million m3/quaternary watershed/annum], and

river runoff category [none, low, medium, high]. (v) Vegetation

productivity expressed as NDVI (Normalized Difference Vegeta-

tion Index) mean value, which is a measure of the amount of green

vegetation i.e. photosynthetically active material, and is used as a

proxy for above-ground net primary production.

The variables inside KNP included (i) presence of major roads,

all roads, camps and gates; (ii) presence of main river and all rivers;

and (iii) vegetation type, expressed as landscape units which are

defined as areas with a specific geomorphology, macroclimate, soil

and vegetation pattern, and associated fauna [44,45]. The

following landscape units were present in the segments analysed:

Lowveld Sour Bushveld of Pretoriuskop (unit ID = 1); Malelane

Mountain Bushveld (2); Thickets of the Sabie & Crocodile Rivers

(4); Mixed Combretum/Terminalia sericea woodland (5); Combretum/

Colophospermum mopane woodland of Timbavati (6); Olifants River

Rugged Veld (7); Phalaborwa Sandveld (8); Colophospermum mopane

woodland/savanna on basic soil (9); Letaba River Rugged Veld

(10); Tsende Sandveld (11); Colophospermum mopane/Acacia nigrescens

savanna (12); Acacia welwitschii thickets on Karoo sediments (13);

Punda Maria Sandveld on Cave Sandstone (16); Sclerocarya birrea

subsp. caffra/Acacia nigrescens savanna (17); Thornveld on gabbro

(19); Colophospermum mopane shrubveld on gabbro (24); Adansonia

digitata/Colophospermum mopane Rugged Veld (25); Colophospermum

mopane shrubveld on calcrete (26); Limpopo/Luvuvhu Floodplains

(28); Lebombo South (29); Pterocarpus rotundifolius/Combretum collinum

woodland (33); Punda Maria Sandveld on Waterberg sandstone

(34).

Statistical analysis
Response and predictor variables. To ensure the

comparability of results yielded by the multispecies model based

on all species from a previous study (further referred to as ‘‘the

general model’’) with the individual species models addressed here,

we used exactly the same data set as in [26]. The presence and

absence of alien species in the 637 contiguous, 1 km wide

Figure 1. Prediction success for presences (%) of the individual species. Ageratum houstonianum, Argemone ochroleuca, Chromolaena
odorata, Opuntia stricta, Xanthium strumarium and Lantana camara are evaluated based on scoring, i.e. dropping the data separately for each of the
six species down the previously established optimal multi-species tree (see Foxcroft et al. 2011, their Fig. 3), further termed ‘‘the general model’’. In
the general model, probability of presence was determined by mean annual runoff from the surrounding watershed and density of major roads
within a 10 km radius outside the KNP boundary. Prediction success for all species presences, describing percentage of successful predictions, was
92.9% (vertical line at zero point of x-axis). Sensitivity, describing proportional ability of the general model to predict that the species is present when
the actual dataset applied to new data, was 0.92. Optimal models for the individual species use the same building rules, the same segments for
presence and absence of the species and the same environmental characteristics as the general model.
doi:10.1371/journal.pone.0028711.g001
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segments was used as the response variable and 36 environmental

characteristics measured within and outside KNP were included as

predictor variables.

Predictive mining. To analyze the presence and absence of

the alien species studied in the segments as a function of the

environmental characteristics, we applied classification and

regression trees [46–48] and random forests [49–50] using

CARTH v.6.0 and Random ForestsH v. 2 in the statistical

software Salford Predictive Mining Suite. In these methods, data

are successively split along coordinate axes of the predictors,

represented by the environmental characteristics, so that at any

node the split that maximally distinguishes the response variable is

selected (presence or absence per segment), in the left and the right

branches. This was done using binary recursive partitioning, with

a best split made based on default Gini impurity measure [51–52].

The data-mining techniques enable one to make predictions

from the data and to identify the most important predictors by

screening a large number of candidate variables, without requiring

any assumptions about the form of the relationships between

predictors and the response variable, and without a priori

formulated hypotheses [53]. These methods are also more flexible

than traditional statistical analyses because they can reveal more

than only linear structures in the dataset, and can resolve complex

interactions. Importantly, these techniques are nonparametric and

thus not affected by spatial autocorrelations and by collinearity of

the predictor variables [52,54]. The ranking of predictors’ variable

importance thus guards against the elimination of variables which

are good predictors of the response, and may be ecologically

important, but are correlated with other predictors.

Classification trees. Classification trees provide intuitive

insight into the kinds of interactions between the predictors. They

are represented graphically, with the root standing for undivided

data at the top, and the terminal nodes, describing the most

homogeneous groups of data, at the bottom of the hierarchy. The

quality of each split was expressed by its improvement value,

corresponding to the overall misclassification rate at each node,

with high scores of improvement values corresponding to splits of

high quality. Surrogates of each split, describing splitting rules that

closely mimicked the action of the primary split, were assessed and

ranked according to their association values, with the highest

possible value 1.0 corresponding to the surrogate producing

exactly the same split as the primary split. Because high categorical

predictors have higher splitting power than continuous predictors,

to prevent the high categorical predictor type of dominant

vegetation inside the park (22 categories) to have inherent

advantage over continuous variables, penalization rules for high

category variables [51] were applied.

Making a decision on when a tree is complete was achieved by

growing the largest tree and then examining smaller trees obtained

by gradually decreasing the size of the maximal tree [46]. A single

optimal tree was then determined by testing for misclassification

error rates for the largest tree and for every smaller tree. Cross-

validation was used to obtain estimates of relative errors of these

trees. These estimates were then plotted against tree size, and the

optimal tree chosen both based on the minimum cost tree rule,

which minimizes the cross validated error (the default setting in

CART v 6.0; [51], and based on the one-SE rule, which minimizes

cross-validated error within one standard error of the minimum

[46]. A series of 50 cross-validations were run, and the modal

(most likely) single optimal tree chosen for description [55].

Species selection and cross-validation procedure. Because

our data set comprised 637 records for each species (presence/

absence in the individual segment), with fewer records for presence

than absence, it was too small for reliable testing by the use of a

learning (i.e. training) and a test sample. Consequently, for reliable

testing of optimal trees only cross validation could be used [48].

Cross-validation involves splitting the data into a number of smaller

samples with similar distributions of the response variable. Trees are

then generated, excluding the data from each subsample in turn.

For each tree, the error rate is estimated from the subsample

excluded in generating it and the cross-validated error for the

overall tree is then calculated.

The use of cross-validation restricted the number of tested

species because cross-validation results become less reliable when

the number of cross-validated folds is reduced below 10 [46], and

because balanced classes should be used for each cross-validation

fold with the rare records ([48], p. 93). We therefore included only

those invasive alien species with 18 or more recorded presences in

the segments in our analyses, which enabled to use 9-fold cross-

validation with at least two presence records in each fold for each

species: Ageratum houstonianum (18 presences in segments), Chromo-

laena odorata (19), Xanthium strumarium (23), Argemone ochroleuca (33),

Opuntia stricta (88) and Lantana camara (156).

Scoring and species-specific classification trees. For the

six most abundant invasive alien species chosen, we tested the

predictive power of the previously established general model for all

alien species treated together [26]. In this general model, the

default minimum size of the splitting node was 10 cases, and the

optimal tree was determined based on 10-fold cross-validation.

The model was determined for records in the same segments and

with probability of occurrence assessed using the same

environmental characteristics as in this study. In this previously

established model, the mean annual water runoff .6 million m3/

annum from the watershed outside the park explained the greatest

proportion of variance in alien records. Segments with less than 6

million m3/annum runoff were more likely to have alien species

present only in areas with .0.1 km/km2 major road density

within 10 km outside the park boundary (Fig. 1).

The testing of predictive power of this previously established

general model was done by scoring, i.e. by dropping the data

separately for each of the six invasive species addressed in this

study from the previously established optimal tree. Each

observation was processed case by case, beginning at the root

node. The splitting criteria for the general optimal tree were

applied, and in response to each yes/no question, the case for each

species moved left or right down the tree until it reached the

terminal node.

We then used the binary classification trees separately for each

of the six species, applying exactly the same procedures as for the

general model, except that 9-fold instead of 10-fold cross-

validations were used. These analyses aimed to show to what

extent species-specific classification trees are able to improve

predictions yielded by the general model.

Measures of predictions. Because, unlike in the general

model with 253 presences and 384 absences in the segments, for

the individual species the presence/absence classes were highly

unbalanced (i.e. very few presences records), all analyses were

conducted with balanced class weights [48], assuring that presence

and absence classes were treated as equally important for the

purpose of achieving classification accuracy. All the data for

individual species could then be evaluated based on comparisons

of species presences. We evaluated the misclassification rate [55]

and prediction success, expressed as 100 – percent of

misclassification rate, for presences of the individual species in

the segments. These values were expressed based on learning

samples, i.e. the samples not used to build the trees for assessment

of cross-validation errors [55]. Following [56], we also evaluated

sensitivity, i.e. the ability of the models to predict that the species is
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present when it is. The values of sensitivity were based on cross-

validated samples, i.e. the best estimates of the misclassification

that would occur if the classification tree were to be applied to new

data, assuming that the new data were drawn from the same

distribution as the learning data [51].

For the general classification model with relatively balanced

presence/absence classes, we also evaluated variable importance

based on improvement values at each split. The values were

summed over each node and totaled, and scaled relative to the best

performing variable. The variable with the highest sum of

improvements was scored 100, and all other variables had lower

scores ranking downwards towards zero. The scoring was done

both based on standard variable importance ranking, i.e. including

effects of surrogates, and using ranking based only on the primary

splitters. In the standard ranking, a predictor variable can be

considered highly important even if it never appears as a primary

splitter because the method keeps track of surrogate splits in the

tree growing process, and the contribution a variable can make in

prediction is thus not determined only by primary splits.

Comparing the standard variable importance rankings with

considering only primary splitters thus can be very informative

because variables that appear to be important but rarely split

nodes are probably highly correlated with the primary splitters and

contain very similar information [48].

Random forests and classification trees based on random

forests ranking. The standard importance score of

classification tree measures a variable’s ability to mimic the

chosen tree, but says nothing about the value of any variable in the

construction of other trees. Thus, the rankings are strictly relative

to a particular tree and changing that tree by removing a variable

can result in substantial reshuffling of the rankings [51]. The

ranking can be also quite sensitive to random fluctuation in the

data [46]. To obtain a more reliable ranking of the variable

importance values than is possible in the classification trees, we

applied random forests [50,52]. As in the case of classification

trees, random forests were first applied for all invasive species

treated together, and the predictive power of this general model

was then tested separately for each species by scoring.

Random forests can be seen as an extension of classification

trees by fitting many sub-trees to parts of the dataset and then

combining the predictions from all trees. They are fitted on boot-

strapped subsamples of the entire dataset, and observations that

did not occur in a particular sample are left as out-of-bag

observations. At a root node, a random sample of six predictors

(equal to a square root of the number of predictors; [50]) was

selected. At each subsequent node, another small random sample

of six predictors was chosen, and the best split made. The tree

continued to be grown in this fashion until it reached the largest

possible size and then was used to predict the out-of-bag

observations. The whole process, starting with a new bootstrap

sample, was repeated 500 times, with all observations having equal

probability of entering each bootstrap sample. The predicted

presence/absence class for each observation was then calculated

by majority vote of the out-of-bag predictions for that observation

from the 500 simulated trees, with ties split randomly.

To assess the importance of the individual predictors in random

trees, scaled relative to the best performing variable as in the

classification trees, a novel out-of-bag method for determining

variable importance, having very high classification accuracy, was

applied. In this method, the values of each explanatory variable

were randomly permuted for the out-of-bag observations, and the

modified out-of-bag data were passed down the tree to get new

predictions. The difference between the misclassification rate for

the modified and original out-of-bag data, divided by the standard

error, was a measure of the importance of the variable [50,52].

The importance ranking of the individual predictors based on

random forest was then used for predicting probability of

presences of the individual species in alternative classification

trees, examining the role of crucial factors from inside the KNP.

Results

Role of landscape structures outside KNP
Predicting presences of the six individual species (Fig. 1) by

dropping the data for each species separately down the previously

built optimal general tree based on all species ([26], their Fig. 3)

yielded worse results than those based on the optimal general

model for Ageratum, Argemone and Chromolaena analyzed separately,

and better results for Opuntia, Xanthium and Lantana. Overall, the

prediction success for presences yielded by the optimal general tree

was very high, equal to 92.9% from the actual dataset, and

similarly its sensitivity was also high , describing the proportional

ability of the general model to predict that the species is present

when the actual dataset is applied to new data, reaching the value

of 0.92 (Fig. 1). The prediction success for the individual species

ranged from 77.8% for Ageratum to 98.1% for Lantana (Fig. 1). All

individual species were thus reliably predicted by the linear

environmental landscape elements outside the KNP, both natural

(rivers) and artificial (roads), that were identified by the optimal

general tree built for all invasive species [26].

When the same procedure as for building the optimal general

tree was used for single-species optimal classification trees, but not

limited to the set of predictors defined by the general model,

prediction success for presences substantially increased by 16.6%

and 9.1% for Ageratum and Argemone, respectively. As in the general

tree, the presences of Ageratum and Argemone were best predicted by

environmental factors outside KNP. However, Ageratum was not

best predicted by linear landscape components, i.e. rivers and

roads, and Argemone only partially. Single-species optimal tree for

Ageratum indicated that this species is supported by the presence of

cultivated land in larger distances from the KNP boundary and

that of degraded areas close to it (Fig. 2A). The presence of

Argemone was supported by high water runoff as for all the

remaining species, but instead of density of major roads within

10 km radius outside KNP, it was supported by low urbanization

within this radius (Fig. 2B). Except for Opuntia, the prediction of

the remaining species (that were all already well predicted by the

optimal general tree) was not improved by species-specific optimal

trees. A small improvement of 2.7% for O. stricta, compared to the

optimal general tree, was attributed to fine-tuning splits below the

main splitters common for all species (Fig. 2C). In segments with

low water runoff in the park, the presence of Opuntia was supported

by a high density of all roads within 10 km radius outside the KNP

boundary and by a low proportion of cultivated landscape within

this radius; in segments with such properties, the incidence of

Opuntia reached the highest value, being present in 73% of

segments (terminal node 2). In segments with a high water runoff,

Opuntia was present in as many as 56% of them, if they were

surrounded by more than 68% of natural areas within 50 km

radius outside the boundary (terminal node 5). In segments with a

lower proportion of natural vegetation in the surrounding area,

Opuntia was much less often present, and supported by a low level

of land degradation in a 5 km radius outside the boundary and low

urbanization (Fig. 2C).

Overall, the landscape features outside KNP – water runoff

from surrounding watershed and road density within the 10 km

radius, and to some extent also cultivated, degraded, urban and

natural areas adjacent to the park – reliably predicted the presence

Plant Invaders into Kruger National Park
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of species in segments, and also enabled reliable predictions for

new data.

Role of main rivers and vegetation types inside KNP
Considering only primary splitters, the ranking of importance

values of the optimal tree for all invasive species scored the mean

water run-off from the watershed surrounding KNP 100%, and

major road density in a 10 km radius outside the park 16%.

However, a ranking which takes into account surrogates of

primary splitters scored the dominant type of vegetation inside the

park as the most important variable, suggesting that the vegetation

type is strongly correlated with the primary splitters from the

outside of the park. Indeed, ranking of the variable importance

values based on random forests (Fig. 3) scored the vegetation type

inside the park as the second most important predictor. This was

followed by another variable from inside the park, the presence of

a main river, which was the closest surrogate of the most important

predictor, mean annual water runoff from the surrounding

watershed. Moreover, the random forests built for all species

perfectly matched random forests for the individual species, as

revealed by 100% prediction success for presences of the

individual species when dropping them individually down the

random forests built for all species. The only exception was Opuntia

for which this scoring recorded one misclassification case. The

results thus show that instead of predicting the probability of

presences of the individual species based on predictors from

outside the park, an alternative prediction can be done using two

predictors from inside the park: dominant vegetation type and the

presence of a main river.

The optimal classification trees for the probability of presences

of the individual species, built by using dominant vegetation types

and presence of main rivers inside KNP, i.e. based on the two best

predictors chosen by random forests, had on average by 9.3%

higher sensitivity and only by 2.8% worse prediction success than

for optimal trees built using all predictors, i.e. without their pre-

selection by random forests. Relying on predictors describing

landscape structures outside KNP, which were chosen by optimal

trees from all 36 environmental variables, thus appeared

approximately equally reliable as pre-selection of the two

predictors from inside KNP by the random forest. However, the

approach based on pre-selection of predictors by random forests

appeared more reliable for predicting potential future invasions.

Predictions of individual species based on pre-selected
predictors from inside KNP

Using optimal trees based on pre-selection of the two most

important predictors inside KNP, Ageratum occurred in all cases in

segments with a main river (prediction success 100%) and should

always occur in these segments when this prediction is also applied

to a new data set (sensitivity 1). Alternatively to this prediction,

Ageratum also occurred with 100% prediction success in seven

vegetation types: Melale Mountain Bushveld, Thickets of the Sabie

& Crocodile Rivers, Mixed Combretum/Terminalia sericea woodland,

Acacia welwitschii thickets on Karoo sediments, Sclerocarya birrea

subspecies caffra/Acacia nigrescens savanna, Adansonia digitata/Colo-

phospermum mopane Rugged Veld, and Punda Maria Sandveld on

Waterberg sandstone. However, this alternative prediction ap-

peared less reliable when applied to new data (sensitivity 0.83).

Similarly, Xanthium was predicted reliably both by the presence

of main rivers (prediction success 95.6% corresponding to one

misclassification case; sensitivity 0.95) and by the vegetation types

Lowveld Sour Bushveld of Pretoriuskop, Letaba River Rugged

Figure 2. Single-species optimum classification trees for Ageratum houstonianum (A), Argemone ochroleuca (B) and Opuntia stricta (C).
%, percentage of cases for each class; bars, representation of percentage of absent (grey) and present (black). Except for the root node (undivided
data) at the top, the splitting variable name and split criterion is given above each node. Vertical depth of each node is proportional to its
improvement value. (A) Prediction success for species presence 94.4%, sensitivity 0.78. (B) Prediction success 93.9%, sensitivity 0.82; the categorical
splitter Water run-off can be equally well expressed by continuous splitter Water run-off (as in optimal multi-species tree), or a binary splitter from the
inside of KNP Main river present/absent - both these surrogates have association value equal one and the same improvement value as the primary
splitter RUNOFF. (C) Prediction success 97.7%, sensitivity 0.81.
doi:10.1371/journal.pone.0028711.g002
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Veld, Tsende Sandveld, Acacia welwitschii thickets on Karoo

sediments, Malelane Mountain Bushveld, Pterocarpus rotundifolius/

Combretum collinum woodland, Thickets of the Sabie & Crocodile

Rivers, Mixed Combretum/Terminalia sericea woodland, Olifants

River Rugged Veld and Phalaborwa Sandveld (prediction success

100%). However, as for Ageratum, the vegetation types were less

reliable when predicting future invasions (sensitivity 0.74).

Chromolaena was predicted reliably by the presence of main river

(prediction success 94.7% corresponding to one misclassification

case; sensitivity 0.94,), but its prediction appeared unreliable (no

optimal tree built) using the predominant vegetation types.

Lantana was reliably predicted (prediction success 94.2%;

sensitivity 0.92) by splitting the prediction first based on

occurrence of the main river, and then following vegetation types

shown in Fig. 4A. This species occurred in as many as 63% of the

segments with suitable vegetation types and the river present, but

even if there was no river, presence of vegetation types suitable for

invasion resulted in 40% probability of occurrence.

The model for Opuntia (prediction success 88.6%, sensitivity

0.89) had the same structure as that for Lantana and the negative

effect of main river’s absence could be compensated by the

occurrence of a vegetation type suitable for invasion, as indicated

by similar probability of this species presence, 37.5% and 39.7%,

in terminal nodes without and with a main river, respectively

(Fig. 4B).

Argemone (prediction success 81.8%, sensitivity 0.79) was virtually

absent from some vegetation types, while in some others it

occurred with 20.3% probability provided that a main river flows

through segments with these vegetation types (Fig. 4C).

Predictions of species absences
Measures of species presences were independent of species

frequencies in the individual segments (Fig. 5), and species

presences were therefore reliably predicted even for infrequent

species. However, it was not true for prediction success of species

absences, and consequently, also not for the overall prediction

success of presences and absences (Fig. 6). Thus, due to the

increasing uncertainty of species predictions with decreasing

species frequency, the true knowledge of segments which are

unsuitable for the presence of the individual species remains

largely unknown.

Discussion

How informative is the general model for predictions of
individual species?

A previous study showed that for a large protected area,

exemplified by South Africa’s Kruger National Park, the risk of

incursion of invasive plants can be successfully quantified and

predicted to a high degree [26]. Overall, the general model

Figure 3. Ranking of importance values (%) for all invasive species. Ranking is scaled relative to the best performing variable based on out-
of-bag method of random forests. White bars are predictors from the outside of Kruger National Park and grey bars from the inside.
doi:10.1371/journal.pone.0028711.g003
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Figure 4. Optimal regression trees based on pre-selection of two most important predictors. The pre-selection of the two most
important predictors, the dominant vegetation type and the presence of main river from inside KNP, is based on random forests. (A) Lantana camara,
(B) Opuntia stricta, (C) Argemone ochroleuca. Identification numbers of vegetation types are: 1 Lowveld Sour Bushveld of Pretoriuskop, 2 Malelane
Mountain Bushveld, 4 Thickets of the Sabie & Crocodile Rivers, 5 Mixed Combretum/Terminalia sericea woodland, 6 Combretum/Colophospermum
mopane woodland of Timbavati, 7 Olifants River Rugged Veld, 8 Phalaborwa Sandveld, 9 Colophospermum mopane woodland/savanna on basic soil,
10 Letaba River Rugged Veld, 11 Tsende Sandveld, 12 Colophospermum mopane/Acacia nigrescens savanna, 13 Acacia welwitschii thickets on Karoo
sediments, 16 Punda Maria Sandveld on Cave Sandstone, 17 Sclerocarya birrea subspecies caffra/Acacia nigrescens savanna, 19 Thornveld on gabbro,
24 Colophospermum mopane shrubveld on gabbro, 25 Adansonia digitata/Colophospermum mopane Rugged Veld, 26 Colophospermum mopane
shrubveld on calcrete, 28 Limpopo/Luvuvhu Floodplains, 29 Lebombo South, 33 Pterocarpus rotundifolius/Combretum collinum woodland, 34 Punda
Maria Sandveld on Waterberg sandstone. Values of prediction success and sensitivity are given in the text. Otherwise as in Fig. 2.
doi:10.1371/journal.pone.0028711.g004

Plant Invaders into Kruger National Park

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e28711



established by using a multi-species data set in that study worked

well for predicting the occurrence of the individual species

analyzed in the present study. The results thus show that using a

general model for predicting the likelihood of invasion by

individual species seems to be generally useful, and can be applied

also to other conservation areas. As boundaries are becoming

increasingly important for buffering human impacts in protected

area, further surveys and surveillance is likely to increase in these

areas. Also, as gathering detailed data through monitoring is

difficult and expensive, even collecting simple GPS localities of

species can provide data on which powerful analyses can be done.

These analyses can serve as a basis for important management

recommendations, such as manipulating factors that determine the

invasions of particular species or describing focal points for control

of specific species.

It could be argued that the good fit between the models for

individual species and the general one was partly due to the small

number of species used to build the general model. Nevertheless,

the general model was based on 26% of all alien species records in

the park and included all the problem species in KNP, which makes

it highly representative of incursion of alien species into KNP.

Moreover, the ability of the previously established general

multispecies model [26] to predict the occurrence of individual

species did not depend on whether or not the given species was part

of the original model. Although Opuntia and Lantana (both used to

build the general model), performed better in terms of prediction

than did Argemone and Ageratum (not used for the general model), the

occurrence of Chromolaena odorata, which was included in the general

model, was more poorly predicted than average, while that of

Xanthium which not included, performed better. Testing the general

model’s validity for species which are not yet invasive but that may

invade KNP in the future therefore seems plausible.

It is useful to evaluate the results for two groups of species

separately, to obtain better insights into the value of our predictive

models. (i) For those invasive species that already have a high

number of records (Opuntia, Lantana) the high correspondence with

the general model is not surprising because data on those species

dominated the contribution to the general model. Yet, our current

Figure 5. Prediction success (A) and sensitivity (B) of species presences in individual segments. The segments are from around the
western and southern boundary of Kruger National Park and are calculated from general (based on all species) and species-specific optimal
classification trees, plotted against actual number of species presences in the segments. Plots show that prediction success (A) and sensitivity (B) are
independent of the species frequency: (A) Spearman’s rank correlation rs = 0.25; z = 0.57; P = 0.57; (B) rs = 0.57; z = 1.36; P = 0.17.
doi:10.1371/journal.pone.0028711.g005
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analysis shows that predictions for even such species can be further

improved (although this applied only for Opuntia and the

improvement was very small) by employing information on

additional landscape features outside the park. (ii) For three

species (Ageratum, Argemone, Xanthium), testing the performance of

the general model was completely independent as these species

were not involved in its construction. Nevertheless, even for the

two less well performing species of this group (Ageratum, Argemone),

the models using the same structure worked reasonably well, but

could be substantially improved by employing landscape features

outside the park.

When using predictors from inside the park, pre-selected by the

random forest analysis, habitat type played an important role for

all the species. We suggest that this is because habitats and

associated vegetation types are important determinants of the

success of establishment and invasion of species [13]. The affinity

to habitat types is species-specific, can change following introduc-

tion to new environment [57], and reflects population processes,

ecological requirements of the species and competitive interactions

with species forming recipient communities. The response of the

invading species to habitat structure and mosaic of vegetation

types present in the target landscape therefore fine-tunes the effect

of general drivers recruiting from mostly human-induced distur-

bances that create pathways and generate propagule pressure [58].

Incursions of alien species into KNP are an ongoing
process

Presences of even infrequent species can be predicted with

reasonably high certainty but attempts to predict unsuitable

habitats appear unreliable because uncertainty of the prediction of

Figure 6. Prediction success of absences (A) and overall prediction success for presences and absences (B). Data presented as in Fig. 5.
Both plots show that these predictions are strongly dependent on species frequency: Spearman’s rank correlations for (A) and (B): rs = 1; z = 2.41;
P = 0.02.
doi:10.1371/journal.pone.0028711.g006
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absences increases with species rarity. This can be attributed to the

fact that alien species are still spreading across the park boundary

and not all suitable segments are thus occupied (cf. [59–60]).

Consequently, the more abundant the species, the more it

saturates individual segments in which it occurs, making the

assessment of its absence in segments more reliable. Also, in the

general multispecies model with absences and presences nearly

balanced in the segments, the prediction success of species

presences was more than twice as good (misclassification rate

7.1%) as that for absences (18.5%). This suggests that the segments

are saturated neither by individual invading species penetrating

into KNP nor in terms of the entire alien flora, which makes future

invasions of more alien species very likely.

Past and future invasions: manipulate the former, watch
the latter

From the above it follows that the model based on several of the

most abundant invasive species in KNP [26] is generally

sufficiently robust to be used for individual species with reasonable

precision. This suggests that despite the differences in species traits

and particular features of invasion dynamics that are unique to

certain species, the major drivers of invasion act in a similar way

and with comparable efficiency for most of the invasive species.

Yet, individual species deviate from the general pattern to different

degrees. Using information on vegetation types invaded can

improve not only the prediction of the overall species occurrence

but also paves the way for more precise prediction of future

invasions. While the predictions based on factors from the outside

and inside of KNP are complementary, and are approximately

equally reliable for the prediction of current invasions, those from

the inside are more reliable for predicting future invasions.

The specific information conveyed by each of the two sets of

predictors could prove useful for management. Factors describing

landscape structures outside KNP provide the basis for managing

the surrounding countryside to minimize future invasions (see

discussion in [26]), while inside-park predictions based on main

rivers and dominant vegetation types can be used to prioritize

localities and target them for more intensive monitoring, rapid-

response efforts for emerging invaders, and other management

actions for well-established alien species. This has potentially

important economic consequences – by focusing only on a subset

of vegetation types identified as high-risk for invasion along the

park boundary, and fine-tuning the target areas by using

information on the presence of rivers, management can be made

more cost effective. Combining complementary predictors from

the outside and inside of a conservation area thus appears a

promising general management strategy.
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23. Pyšek P, Jarošı́k V, Kučera T (2003) Inclusion of native and alien species in
temperate nature reserves: An historical study from Central Europe. Conserv

Biol 17: 1414–1424.
24. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance,

and distance from putative source populations in structuring alien plant
invasions at the urban/wildland interface on the Cape Peninsula, South Africa.

Biol Conserv 132: 83–198.

25. Meek C, Richardson DM, Mucina L (2010) A river runs through it: Land use
and the composition of vegetation along a riparian corridor in the Cape Floristic

Region, South Africa. Biol Conserv 143: 156–164.
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