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SYNOPSIS 

Since the advent of modern process industries engineers engaged in the 

modelling and s1mulat1on of chemical and metallurgical processes have had to 

contend with two important dilemmas. The first concerns the ill-defined nature 

of the processes they have to describe, while the second relates to the 

limitations of prevailing -:omputational resources. 

Current process simulation procedures are based on explicit process models in 

ne !c. rm er another Many chemical and metallurgical processes are not 

am:Jnablr to this kind of modelling however, and can riot be inco1 porated 

effectively into current commercial process simulators. As a esult many 

process operations do not benefit from the use of pred1ct1ve models and 

simulation routines and plants are often poorly designed and run, •Jltimately 

leading to considerable losses in revenue . 

In addition to this dilemrna, process simulation is in a very real way constrained 

by available computing resr !rces. The construction of adequate r>rocess models 

is essentially meaningless 1f these models can not be solved efficiently - a 

situation occurring all too often. 

In the light of these problems, 1t 1s thus not surprizing that -:onnectionist 

systems or neural network metnods are singularly attractive tc.- process 

engineers, since they provide a powerful mt:ans of addressin1J both these 

dilemmas. These nets can form 1mpllc1t process models thro· 19h learning by 

example, and also serve as a vehicle for parallel supercomputing dev1~es . In this 

dissertation the use of artificial neural networks for the steady ctate modelling 

and opt1m1zation of chemical and metallurgical process c.:1rcuits 1s consequently 

investigated . 

The first chapter 1s devoted to a brief overview of the simulation of chemical 

and metallurgical plants by conventional methods, as well as the evolution and 

1mpacc of computer technology and artificial intelligence on the process 

indust:ies. 

Knowledge of the variance covariance matrict::s of process data is of paramount 

importance to data reconciliation and gross error detection problems, and 

althougt• various methods can be employed to estimate these often unknown 
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variances, 1t is shown in the second chapter that the use of feedforward neural 

nets can be more efficient than conventional strategies. 

In the following chapter the important problem of gross error detection in 

process data is addressed. Existing procedures are statistical and work well for 

systems subject to linear constrrir 1l~. Non-linear constraints are not handled 

well by these methods and it is shown that back propagation neural nets can be 

trained to detect errors in proc,.,c;s systems, regardless of the nature of the 
constraints. 

In the fourth chapter the exploit':ition of the massively parallel information 

processing structures of feedback neural nets in the optimization of process 

data reconciliation problems is investigated . Although effective and 

sophisticated alyorithms are available for these procedures, there 1s an ever 

present demand for computational devices or routines • • at can accommodate 

progressively larger or more complex problems. Simulations indicate that neural 

nets can be efficient instruments for the implementation of parallel strategies 
for the optimization of such problems. 

In the penultimate chapter a gold reduction plant and a leach plant are modelled 

with neural nets and the models shown to be considerably better than the linear 

regression f'Ylodels used rn practice. The same technique is also demonstrated 

with the modelling of an apatite flotation plant. Neural nets can also be used in 

conjunction with other methods and in the same chapter the steady state 

simulation and opt1m1zat1on of a gravity separation circuit with the use of two 

linear progr amming models and a neural net are described . 

- . ~ . 
. , ., - ·. 
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OORSIG 

Sedert die ontstaan van prosesingenieurswese. het ingenieurs gemoeid met die 

modellering en simulasie van chem1ese en metallurgiese prosesse met twee 

belangrike dilemmas te kampe gehad. Die eerste het te make met die swak­

gede~inieerde aard van chemiese prosesse, wat die beskrywing en dus ook die 

beheer daarvan kompliseer, terwyl die tweede verband hou met die beperkinge 

van huidige berekeningsmiddele. 

Die prosesse wat tans gebruik word om chem1ese prosesse te simuleer is 

gebaseer op eksJ::lisiete prosesmodelle van een of ander aard. Baie chemiese en 

inetallurgiese pro ;esse kan egter nie op 'n ekspl1siete wyse gemodelleer word 

n1e, en kan gevolglik ook n1e doeltreffendheid deur kommers1ole 

prosessimulators beskryf word nie. Die bedryf van baie prosesse vind derhalwe 

nte baat by die gebruik van voorspellende modelle en simulasie algoritmes nie 

en aanlegte word dikwels suboptimaal ontwerp en bedryf, wat uiteindetik tot 

aansienlike gcldelike verliese kan lei. 

Prosessimulasie word op die koop toe ook beperk deur die beskikbaarheid van 

berekeningsfasiliteite. Die konstruks1e van geskikte prosesmodelle hou geen 

voordecl in as h1erdie mode lie nie doeltref fendheid opgelos kan word nie. 

Teen die agtergrond van hierdie probleme is dit nie verrassend dat neurale 

netwcrke 'n besondere bekoring vir prosesingenieurs inhou nie, aangesien hullo 

beide hierdie dilemmas aanspreek. Hierdie nette kan implisiete prosesmodelle 

konstrueer deur te leer van voorbeelde en d1en ook as 'n raamwerk vir parallelle 

superrekenaars . In hierdie proefsknf word die gebruik van kunsn .... L Je neurale 

netwerke v1r gestad1gde toestandsmodellering en optimering van chem1ese en 

metallurgiese prosesse gevolglik ondersoek. 

Die eerste hoofstuk word gewy aan 'n kort oors19 oor die simulasie van 

chemiese en metallurg1ese aanlegte met konvens1onele tegnteke, asook die 

ontw1kkeling en impak van rekenaartegnologie en skynintelligensie in die 

prosesnywerhede. 

Kennis van die vanans1e kovanans1e matnkse van prosesdata is van kard1nale 

belang vir datarekons1lias1e en die 1dent1f 1kas1e en ehminas1e van sistemat1ese 

foute en alhoewel verske1e metodes aangewcnd kan word om h1erdie 

" • I . ,. . . .. 
==------=--- - - - - - --~---
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onbekende variansies te beraam, word daar in die tweede hoofstuk getoon dat 

die gebruik van neurale netwerke meer doeltreffend is as konvens1onele 

strategiee. 

In dte volgende hoofstuk word die belangrike probleem van sistematiesc fout­

opsporing in prosesdata ondersoek. Bestaande prosedures is statist1es van aard 

en werk goed vir stelsels onderworpe aan lineere beperkinge. Nie-lineere 

beperkinge kan nie doeltreffend deur hierdie prosedures hanteer word nie en 

daar word gewys dat terugwaarts-propagerende nette geleer kan word om 

sulkc foute in prosessisteme op te spoor, ongeag die aard van die beperkinge. 

In die vierde hoofstuk word dte rekons1has1e van prosesdata met behulp van 

mas5iewe parallelle dataverwerkingstrukture soos verteenwoordig deur 

teruqvoerende neurale nette, ondersoek. Alhoewel doeltreffende en 

gesofistikeerde algoritmes beskikbaar is vir die opt1mering van die tipe 

probleme, is daar 'n onversadigbare aanvraag na rekenaars wat groter en meer 

komplekse stelsels kan akkommodeer. S1mulas1e dui aan dat neurale nette 

effektief aangewend kan word vir die 1mplementenng van parallelle strategiee 

vir die tipe optimeringsprobleme. 

In die voorlaaste hoof stuk word die konneksionist1ese modellering . an n 

goudreduksie · en 'n logingsaanleg beskryf en daar word aangetoon 1..at die 

neurale netwerk-modelle aansienlik beter resultate lewer as die hnecre: regressie ­

modelle wat in die praktyk gebruik word . Dieselfde tegnieke v1r die modellering 

van 'n flottasie-aanleg vir apat1et word ook bespreek. Neural nette kan ook 

saam met and er metodes aangewend word en in d1eselfde hoof stuk word die 

gebruik van twee lineere programmeringsmodelle en 'n neural net om 'n 

gravitasieskeidingsbaan onder .Jestadigde toestande te simuleer en te optimeer, 

beskryf 

- . 
. . . 
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CHAPTER 1 

Introduction 

Summary 

In this introductory chapter an overview of the ill·defmed nature and dimensional 
cha1acter of model/mg and simulation problems in the chemical and metallurgical 
proc,•ssing industries 1s presented. A cursory mtroducllon to the field of artificial 
intPlll9~nce and its application m the process mdustries is given. Special emphasis 1s 
piaced on the use of art1f1c1al neural networks as far as the descflpt1on of large or 
complex processes 1s concernt.d, and the motivation and specific ob;ect1ves of this study 
are subsequently highlighted. 

1. 1 OBJECTIVES OF CHAPTER 1 

This chapter outlines the nature and background of process modelling 

;md simulation in !he chemical and metallurgical industries, with special 
reference to 

• the nature of problems related to process modelling ancf simulation 

in the chemical Lind metallurgical engineering industry; 

• the field of artificial intelligence with special emphasis on 

connectionist systems or neural networks; 

• current research and applications of neural networks in the 

chemical and metallurgical process industries; 

• the motivation and specific ob1ect1ves of this ~tudy 

1.2 THE NATURE OF PROCESS MODELLING AND SIMULATION 
PROBLEMS 

Numerous demands have to be met by modern chemical and metallurgi­

cal process technologies. Equipment st"lould for example be selected to 

yield the maximum return on investment, raw materials and energy 

. . . . .. 
. " . ' ----
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resources should be utilized 111 the most efficient way, and the plant has 

to be reliable and flexible, while also complying with growing world-wide 

demands that operations shoi;ld have as little impact on the environment 

as possible (Kraslawski et al., 1992). 

All these requireme11ts provide a continuous driving forcP to find new or 

improved methods of designing and optimizing proct.:ss plants (see 

appendix B for a brief review of process simulation methodology), in spite 

of the extraordinary complexity and seal i of the problem. Considering 

that design act1v1ties consume approximately 10-15% of the funds 

required to move from an initial concept to tho manufacturing ot a 

product, eind that the design step fixes approximately 80% of the cost 

involved in production (Westerberg, 1991), the ceaseless demand for 

imp. ovement in simula!1on and design i$ not surprizing. A plant designed 

for the chemical conversion and processing of rnw materials consists of a 

great number of different subsystems, fittings and process units All 

these systems can be intricately connected, each affecting the other in 

different ways. Process conditions can furthermore cover ranges of many 

orders of magnitude and chemicals can interact with one another in 

unpredictable and often destructive ways. 

It 1s therefore crucial that the approach to the design and 1nvestigat1on of 

such systems is focused on as few features of the system as possible, 

without seriously compromising the character of the system. It is only by 

separating the more important elements of the system from the less 

important ones, that the otherwise impenetrable confusion can be 

arranged in an orderly coordinated hierarchical structure amenable to 

investigation and understanding. In their quest for this elusive goal, 

engineers are faced with two basic dilemmas. The first concerns the 

nature of the processes they have to describe, while the second is 

related to the processing of information regarding the describable 

processes. 

Despite extensive world-wide fundamental research and development, 

the majority of chemical and meta1lurg1cal processes are ill -defined to 

such an extent that they simply can not be modelled adequately from 

first principles alnne. The main reason for this 1s the immense chasm in 

the body of knowledge concerning the behaviour of phys1co chemical 

. . 

---~~------------- ------- - -
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processes that instead of narrowing , appears to expand as the frontiers 

of science and technology are pushed ever further . This ill-defined nature 

of the processes that engineers have to harness and control in order to 

meet the growing demands of consumer societies requires the use of 

alternative modelling methodologies, which are not based on the use of 

knowledge 1n an exp11cit analy .ical form. 

The second problem that the process engineer has to come to grips with 

is the huge information processing burdens posed by complex 

engineering problems. In the early 1960s for E:!Xample, the workhorse of 

the day (an IBM mainframe) could integrate a simple differential equation 

over a weekend, while complex equations could take many weeks to 

solve. Meteoric progress has been made since, and much more powerful 

machines are available today, but these are still pitifully inadequate when 

viewed against the background of modern chemical engineering 

problems, which could involve complex relationships between many 

thousands of variables with domains spanning several orders of 

magnitude . 

With these problems in mind it is not difficult to understand .he 

extraordinary int€ieSt that artificial neural networks (the fundamentals of 

which are briefly reviewed in appendix A) have sparked in the process 

engineering community since the late 1 980s Not only do they serve as a 

vehicle for the construction of implicit models of ill -defined processes, 

they are also one of the pillars of a major new computational paradigm 

that promises to increase the power of available computing platforms by 

sev~ral orders of magnitude over the next few years. Despite the 

avalanche of research funds that h c; flowed into the research and 

development of neuralware and related techniques over the last several 

yei:irs, the technology is still young and much needs to be done to move 

it from research laboratories into the commercial sector, especially as far 

as the chemical and metallurgical industries are concerned. 

This dissertation 1s consequentl•/ an investigation into the use of artificial 

neural nc.works in the modelling and optimization of steady :..tate process 

circuits. Spe1..;c1 emphasis is placed on ill-defined processes, that is 

processes not readily represented by analytical or fundamental models. 

Since the modelling of plants of this nature 1s essentially data driven, a 

------- ------ --
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large part of the investigation revolves around the processing of plant 

data . These techniques include some aspects of the estimation of 

statistical parameters, the screening of the data for various types of 

errors, as well as the reconciliation of the data prior to use in the actual 

modelling of plants or process units . In the final chapter the modelling of 

industrial plants, as well as the optimization of a gravity separation circuit 

with a hybrid linear programming neural net model 1s discussed. 

The rest of this chapter is devoted to a brief introduction to the field of 

artificial intelligence, witt 1 spe-::1al reference to artificial neural network 

technology . 

1.3 PROGRESS IN ARTIFICIAL INTELLIGENCE 

In this section the application of neural nets in process engineering is 

discussed after a brief look at the use of artificial intelligence techniques 

to solve process engineering problems. These techniques are concerned 

with alternative methods for the use of knowledge rep1 esenting ill-defined 

processes rtnd have increasingly been used in the quest for solutions to 

modelling problems or the enhancement of existing solution strategies in 

the process engineering industry. 

1.3.1 Artificial intelligence 

By the end of World War II several groups of scientists of the United 

States and England were working on what is now knolfl. r as a computer. 

Although Alan Turing, the principal British scientist at the time, sug­

gested the use of logical operators (such as OR, AND, NOT, etc ) as a 

basis for fundamental instructions to these machines, the majority of 

investigators tavoured the use of numeric operators (+,-,<,etc.) . It was 

only with the shifting emphasis on methods to allow computers to 

behave more like humans that the approach advocated by Turing had 

begun to attract new interest. This entire ro~earch effort and its 

commercial repercussions are known as artificial mtelligence (Al), and 

comprize many aspirations, ranging from the design of machines to do 

various things considered to be intelligent, to machines which could 

provide insight into the mental faculties of man. Although different 

workers 1n the f ield have different goals, all seek to design machines that 

., . . _, 
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can solve problems. In order to achieve this goal, two basic strategies 
can be pursued (Minsky, 1993). 

The first strategy or top-down approach has been developed productively 

for several decades and entails the reduction of large complex systems to 

small manipulable units. These techniques encompass heuristic 

programming, goal-based reasoning, parsing and causal analysis and are 

efficient systematic search procedures, capable of the manipulation and 

rearrangement of elements of complex systems or the supervision or 

management of the interaction between subsystems interacting in 

intricate ways . The disadvantages of symbolic logic systems such as 

these are their inflex1b1ftty and restricted operation which limits them to 

very narrow domains of knowledge. 

Bottom-up strategies (i.e. connectionist procedures) endeavour to build 

systems with as little architecture as possible. These systems start off 

with simple elements (such as simplified models, small computer 

programs, elementary principles, etc.) and move towards more complex 

systems by connecting these units to produce large-scale phenomena. As 

a consequence, these systems a;e very ver3atile and capable of the 

representation of uncertain approximate relations between elements or 

the solution of problems involving large numbers of weak interactions 

(such as found in pattern recogi1ition and knowledge retrieval problems). 

Connectionist systems can on the other hand not reason well and are not 

capable of symbolic manipulation and logic analyses. 

The field of artificial intelligence is diversifying continuallyand has grown 

to comprize the major branches concerned with knowledge-based 

systems, neural nets, fuzzy logic techniques, as we:ll as genetic 
algorithms. 

1.3.2 Fuzzy logic 

Fuzzy logic or fuzzy systems use if-then rules in a similar way as rule ­

based expert systems to define relat1onsh1ps . The rules usually define a 

particular set of input states, and provide descriptions of the 

consequences if those part icular states prevail. Unlike expert systems, 

fuzzy logic systems use membership functions to attach numerical values 

to the antecedents of rules to denote the extent to which these premises 

. . .. 
--- --- ------~ - - - --- - - -
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are valid (Berardinis, 1992) Since these systems provide for smooth 

continuous valued trans1t1ons between differP.nt sets of outcomes, they 

are particularly attractive to process engineers. These systems are used 

in main-frame data base applications (Kllmasauskas, 1992), and have 

found major commercial application in the electronic control circuitry in 

automobiles, vacuum cleaners, air conditioners, washing machines, 

chlorine controllers for water purification plants, control systems for 

cement kilns, etc . since 1982 when only one patent was registered, 

compared to 1460 in 1992 (Dambrot, 1992; Kahaner, 1991 ; Rosenbaum, 
1992). 

1.3.3. Genetic algorithms 

Genetic algorithms are constituted by mathematical techniques inspired 

by the biological process of evolution and are mainly used for direct 

search and optimization . In contrast to Monte Carlo procedures, genetic 

algorithms have a strongly directed component which reduces search 

time considerably and improves convergence. The ability of genetic 

algorithms to find near-optimal solutions in huge search variable spaces, 

1s especially useful when hill-climbing or gradient search techniques fail 

o~·.fing to noise in the data, entrapment in local minima, or discontinuities 

in the objective functions ( Klimasauskas, 1 992; Sikora, 1992) . 

1.3.4 Knowledge-based systems 

Until recently knowledge-based or expert systems were undoubtedly the 

most impo1 tant branch of artificial intelligence to such an extent that 

they were often confused with the entire field of artificial intclliger.ce 
itself. 

An expert system essentially consists of methods of maintu iing a data 

base or a knowledge base of facts and relationships , ar well as 

structured routines for searching the data base as efficiently as "'Ossible. 

These systems provide the facility to trace a search proces:, (i.e. , x olain 

the conclusions of a decision-making process) in order to he.· tr · user 

evaluate the decisions. Expert systems have made important " •bu­

tions to the efficient development of complex systems, the develof;ment 

of more logically complex systems than previously thought possible, ... n i 

' --------~-~- - -- ------- -- --
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have furthermore reduced the technical level of expertise required to 

develc. ' these systems (Kllmasauskas, 1992) . 

Knowledge-based systems were confined to the research laboratories of 

a few universities till as recently as 1980, but had established a durable 

niche rn the process engineering rndustry less than a decade later. Today 

the United States, the United Kingdom, the European Economic 

Community and Japan an. all involved in major research programmes 

concerned with the development and implementation of expert systems. 

Large chemical engineerrng concerns :::uch as Du Pont and Exxon 

Cher.1icals are organizing Al departments and venture capital flows into a 

multitude of expert system companies which have mushroomed all over 

the world. In the process eng•neerrng sector these systems are used 

globally, by such companies as British Petroleum Chemicals, to cope with 

plant dynamics, process scale-up and the allocation of utilities, Shell Oil 

Company for the interpretation and filtering of alarm signals, Blue Circle 

cement company, etc., saving many millions of dollars for these 

companies in the process (Barnwell & Ertl , 1987; Allott, 1991 ). 

In retrospect the brcaJ.- through for knowledge-based systems in the 

process engineering sector in the late 1980s·early 1990s was a direct 

result of the maturation of technology allowing the use of real-t ime on­
line applications. 

1.3.5 Artificial neural networks 

Neural nets are powerful mathematical techniques inspired by the study 

of the human brain. Unlike trad1t1onal expert systems, where knowledge 

1s .;tored expl1c1tly rn a data base or as a set of rules or heuristics, neural 

nets generate their own rules by learning from examples, as is explained 

in more detail in appendix A . Items of knowledge are distributed across 

the network and reascnable responses are obtained when the net is 

presented with incomplete, noisy or previously unseen inputs . From the 

perspective of cognitive modelling of process systems know how, these 

pattern recognition and general1zat1on capabilities of neural net::: arc much 

more attractive than the symbol manipulation methodology of expert 

systems, especially as far as complex , ill-defined systems are concerned. 

. . . . .::. 
• ·t, ' - -- - -
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Many parallels can be drawn between the development of knowledge­

based systems and that of neural nets. Both had suffered from an 

overzealous approach in the early stages of their development. In the 

mid- 1980s for example, a common perception had temporarily made its 

way into the process engineering community that knowledge-based 

systems had failed to live up to expectations (Allott, 1991 l. Like their 

rule-based counterparts, neural nets are also sometimes seen as 

'solutions looking for problems'. Although the application of neural nets 

in the process engineering industry has not matured yet, there is every 

reason to believe that like other computational methods it will also find a 

solid niche rn this field. A closer 1ock at th~ historic development of 

neural nets will underpin the analogous paths nf these two branches of 

artificial intelligence. 

The field of neural networks had its inception 1n the 1940s when the 

paper of McCulloch and Pitts on the modelling of neurons, ar 'I Hebb's 

book The Organtzation of Behaviour first appeared in the 1940s. The 

interest sparked by these publications was further buoyed when 

Rosenblatt presented his Mark I Perceptron in 1958 and Widrow the 

ADALINE in 1960, but came to a dram ... tic end in 1969 when Minsky and 

Papert showed that the capabilities of the linear nets studied at the time 

were severely limited (Eberhart & Dobbins, 1990). These revelations 

caused a v •.. ..Jally total cessation rn the availability of research funding 

and many talented researchers left the field permanently. The initial 

interest in neural nets was only revived again some 14 years later in the 

early 1980s, and since then the field of neural networks has seen 

phenomenal growth, passing from a research curiosity to commercial 

fruition. This growth has in part been fomented by improv~ments in very 

large scale integration (VLSI) technology (Gaser et al , 1989), as well as 

the efforts of a small number of investigators who had continued to work 

during the 1 970s, despite a lack of funds and public interest. As had 

happened to expert systems several years ago, neural network business 

has soared, from an approximately $7 m11l1on industry rn 1987, to an 

estimated $120 million industry rn 1990 (Gardf"ler, 1990). 

-- ~ -.~.~- -~~~~--~-
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1.4 NEUROCOMPUTERS 

Ever since computers became generally available to the process engineer 

in the 1 960s, computing power has grown c ,plosively and this trend is 

expected to continue in the foreseeable future, with an order of 

magnitude increase rn capability approximately every five years 

(Stadtherr & Vegeais, 1985). From the humble devices in the 1960s, 

with not much more computing power than some of today's pocket 

calculators, new ground was broken with the introduction of Control 

Data Corporation's CDC 3600 and CDC 6600 machines in the early 

: 970s. These computers enabled engineers to simulate more complex 

prob1e1ns such as radiation damage in metals or the ground state of a 

hydrogen molecule from first principles. A further order of magnitude 

increase in computational power was gamed when the Cray-1 became 

available in 1976. The Cray-1 is estimated to be within an order of 

magnitude from the maximum capability one can expect from a single 

processor machine, and made the use of multiple processor machines 

imperative in the quest for more powerful devices. 

The concept of parallel computing 1s not new; the early ENIAC machina 

(1946) and ILLIAC (mid-1970s) were based on the principle of 

parallelism. As a result, subsequent generations of Cray machines were 

all multi-processor machines. The Cray XMP-2x series could calculate 

two processes simultaneou~1y, the XMP-4x series four processes, the 

XMP-8x eight processes, etc . Today 64-processors machines are being 
huilt along these lines. 

Several approaches to pardllel computer design can be taken, each 

appropriate to different methods of solution of chemical engineering 

problems (Best, 1990). These strategies are mainly concerned with the 

optimal combination of the number and the power of the process units 

implemented in the parallel structure and range from carrying out large 

modules of calculation on relatively few processors (coarse grained 

parallelism), to carryrng out very small units of calculation on a 11ery large 

number of primitive processors (fine-grain ?d parallelism}. The former 

strategy is embodied rn the design of vector parallel processing machines 

for example, in which a relatively small number of high performance 

process units are integrated. These machines are especially well -suited to 

. ' . . . \ . ·: . 
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applications involving repetitive computations of the same type and are 

actively researched in Japan! l I and the United States. 

In contrast, neurocomputers are based on fine-grained parallelism. These 

computers consist of arrays of primitive interconnected ;>rocessors with a 

small amount of memory that operate concurrently in either a d1gilal or 

an analog design and are essential for the development of practical 

applications of neural neh•1ork technology (Roth, 1990). First generation 

systems were characterized by pipelined 1mplementat1ons of digital VLSI 

technology with some low-level parallelism (Hecht-Nielsen , 1988). In 

reality these systems consisteci of "" .wral network simulators and did not 

exploit the supercomputing potentic:JI afforded by the parallel structures or 

dc•1ice physics of today's neural networks. Current analog systems can 

attain high packing dens1t1es and are attractive for h1g:1 speed 

applications such as discussed in chapter 4. Roth ( 1990) mentions for 

example an analog VLSI implementation of a Hopfield neural net with 256 

process elements and 130 000 fixed resistive weights that can converge 

in less than 1.4 µs . 

Although considerable progress has recently been made with VLSI 

technology, the performance of digital neurocomputers 1s limited by 

placement and routing problems on the silicon \ l afers from which they 

are mostly constructed (Treleaven et al., 1989). 

The most powerful neural net chips at present can be compared with the 

b:ologi::al intelligence of a fly . The universally reconstructable artificial 

neural net (URANN) designed by Korea Tellcom Research Centre (KTRC), 

has a size of 1 3 x 13 mm, 135 424 synapses and an operating speed of 

approximately 1 GHz. 

Siemens' Synapse I is a neurocomputer consisting of eight special chips 

or neuroprocessors, ~ach of which is capable of 800 000 000 synaptic 

weightings per second. The chips are based on CMOS technology, and 

the neurocomputer based on these chips is capable of approximately 5 x 

1 09 <:onnP.ctions fHH second. 

111Fu11tsu ' s VPP500 222 with 222 process units for example l'las a theoretical rating o f 
up to 355 gigaflops. 

-----~~~- - ~--~-~~~~- - - ~- ---~ -
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Analog and digital neurocomputers can both be designed for general or 

special purpose applications. 

1 .5 .1 General purpose neuroco.nputers 

General purpose neurocomputers are programmable and can support a 

w ide variety of neural network models, analogous to the frameworks 

provide ... by trarl!!1onal computers. A distinction is madr:: between parallel 

processor arrays and commercial coprocessor boards. Parallel processor 

arrays have cellular structures composed of large numbe~s of processing 

units c.onn~cted in regular topologies and ::ittarn high performance and 

parallelism through increased numbers of these units. Commercial 

coprocessors usually consist of signal processing or floating point 

accelerator !Joards which can plug rnto the back of a personal computer 

or workstation. These accelerators attain high performance by 

augmenting the proc-essrng and storage capab1lit1es of the host computer 

or workstation (PC, Apollo , Sun, VAX, etc .) by several orders of 

magnitude. 

1.5.2 Special purpose neurocomputers 

Special purpose neurocomputers are often very high performance 

systems based on the d1rnc t implementation of neural network models in 

electronic hard war - . The electronic structures of these computers 

typically resemble the structures of s1mplif1ed models of biological 

neurons and are currently enjoying the attention of research groups all 

ovP.r the world (AT & T Bell Laboratories, California Institute of Technology 

and Bellcore Laboratorie;; rn the USA, NEC and Fuiitsu in Japan, and 

Siemens and Texas Instruments in Europe) . 

1.6 CLIRREr T APPLICATIONS OF NEURAL NETS IN PROCESS 
ENGINEERING 

1.6 .1 Research developments 

Research and development have seen rapid growth 1n recent years and 

;:ire mainly directed at process fault de~ection and dia£,nosis, process 

control ·md process modelling and class1f1cat1on . Process fault detection 

and diagnosis is currently a very important problem in process 

automation (Sorsa et al. , 1991) and the use of neural network techniques 

. . . . . . . 
. . . .. . . 
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have been studied inten~1vely . Venkatasubrarnanian et al. ( 19~0) fc­

example, proposed the use of multilayer f cedforward neural networks 

with sigmoid al transfer functions for the fa ult detection and diagnosis of 

chemical processes and concluded that these types of networks yield 

promising results, even when trained with sparse data. The use of 

feed forward nets to diagnose faults in a heptane to-toluene proces~ 1n 

stea1..;y state was similarly investigated by Fun et al. ( 1993), who 

recommended the add1t1on of funct1onC\I links to the input layer of a 

feedforward neural net. while Hoskins et al. ( 1991) used a chemical plant 

simulator (Syschem plant) to 9enerate data for fault d1agno:;1s with a 

neural net. Despite the complexity of the pldnt, the system with two 

hidden layers performed well, and was recommended for use in actual 

plants. Sorsa et al. ( 1991) recommended the use of a multilayer 

perceptron with hyperbolic tangent nodes to detect faults in a he~t 

exchanger-stirred tank experiment, while Naidu et al. ( 1 990) discussed 

the use of back propagl't1on neural nets to detect sensor failures in non­

linear time-invariant plants. Kramer and Leonard ( 1 990) highlighted some 

of the drawbacks of neural nets used for fault detection, such as poor 

robustness and difficulty to generalize wnh sparse data. They 

recommended inter alia the use of distance-based cla~s1f1ers and the 

development of different training algorithms to improve performance. 

lnvest1gat1ons related to the use of neural nets in the field of process 

control are especially numerous. By using a neural net with a single 

hidden layer to control the pH of a stirred tank system to neutralize 

wastewater from a plant, Hunt and Sbarbaro ( 1991) obtained an absolute 

model mismatch of approximately 5%, which constituted a marked 

improvement over a traditional controller. In another investigation Hunt et 

al. ( 1992) investigated a large variety of different neural net architectures 

and proposed a structure con.:i'>ting of a learning vector quantization and 

a back propagation neural net connected in series in the feedback loop 

for the optimal control of non-linear process systems. Psichogios and 

Ungar ( 1991) similarly investigat:d direct and indirect model-based 

control of a non -linear exotherrrial continuous stirred tank reactor and 

found the performanc.e of neural 'letworks markedly better thar. that of a 

controller based on a linear autorag•essive moving average with 

exogenous input (ARM AX) model. Ydstie ( 1990) studied direct and 

indirect adaptive control with il neural net with one hidden layer, and 
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demonstrated the viability of neural nets for the r.ontrol of discrete event 

d'{nam1c systems and processes with non-linear dynamics. Bhat and 

McAvoy ( 1990) led an investigation into the control of the pH of a 

continuous stirred tank and showe,., neural nets to provide a more 

generol 'znd methodology than that based on the trad1t1onal 

autorcgre~· 1 ·e moving average (ARM.~) and convolution models used for 

control. 

In some of the work cun~~rr •r ·£i 1 '1 construction of conncct•on1st models 

of Ill defined processes, K1to et al. ( 1992) used a back propagallt'n 11eural 

net to estimate tile strength of acid sites genernted svnerg1st1c ... 'iy in 

binary mixed oxides. The acid strength was modelled 111 to . '"'1S of various 

phys1co chcm•r..11 properties and the rosults were found w bi? 1n good 

agreement with experimental data . Karim and Rivera ( 19~2) 

demonstrated feedforward and recurrent neurcl net methodologies to 

estimate the state of fermentation p•oces~es. They ca"'1e to the 

conclusion that the cor iugate gradient method of tran•ng these nets to 

m1n1m1le the error of prnd•ct1ons was more efficient th<lll •nethods based 

on steepest descent. Both types of net yielded compardble re~·ults, but 

the more complex recur rent net took a lo11ger tirno to train . 

The use of neural nets to predict the long term behaviour uf chemical 

processes has also come under close scrutiny recently As on alternative 

to many-steps-ahead prediction with multilayer back prof.)aga 1un neural 

nets, Su and McAvoy ( 1992) proposed the use of a parallel systern 

1dent1f1cation method . They derived a training algorithm for an e>.:tt:rnal 

recurrent neural net and used the net to 1dent1fy the dynamic behaviour 

of a biological wastewater plant and a catalytic reformer in a petroleum 

refinery . In another investigation Rico-Martinez et al. ( 1992) studied the 

capability of neural nets to predict the long term behaviour and observed 

bifurcations in the electrod1ssolution of copper in phosphoric acid. They 

used two networks in series, the first as a non-linear principal component 

extractor and tho second to process the data, and reported close 

agreement between the results of the model and experimental data. 

Reuter et al. ( 1993) and Reuter and Van Deventer ( 1990) proposed a 

simple generalized approach for the simulation and iJent1fication of batch 

and mixed flow mineral processing and metallurgical reactors with neural 
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nets. The method 1s based on the use a trained neural net to relate the 

parameters of the kinetic rate equations to the process cond1t1ons and is 

demonstrated with examples including among other a Tennessee copper 

rougher circuit, a Nchanga sulphide rougher circuit , line-ferrite leaching 

and the precipitation of jaros1te. Reuter et al. ( 1992) demonstrated the 

use of sigmoidal back propagation neural nets for the modelling of 

complex metal·slag equilibrium processes. By making use of published 

data they showed that a small network with a single hidden layer could 

be trained successfully with relatively sparse process data to model 

among other the activities in binary metal solutions, the distribution of 

manganese and sulphur between pig iron and slag, the d1stribut1on of 

copper between metal and slag, the d1stribut1on of tin oxides and iron 

oxides between metal and slag, as well as the v1scos.:y of lead smelting 

slags. Neural nets were shown to be s1mtlarly successful 1n the modelling 

of the kinematic viscosities of crude 011 fractions (Van der Walt et al ., 
1993a). 

In order to overcome some of the shortcomings of back propagation 

neural networks used for the modelling of mult1variable processes uf high 

dimension, Van Der Walt and Van Deventer ( 1992, 1993) proposed the 

use of a hybrirl subspace neural net model which could make better use 

of sparse dJta to extract the characteristic features of a process. As a 

first step the global variable space 1s characterized by a trained neural 

net. which is used to estimate the first order partial derivatives of the 

system. This 1s followed by a perturbation analysis which 1s used to 

subdivide the global variable space into various subspaces, each of which 

incorporates only those independent variables which influence the 

dependent variables significantly in the particular de main of the 

subspace. These subspaces can subsequently be modelled more 

accurately by making use of (neural net) models to relate the reduced 

number of independent variables to the dependent variables. Their 

method has been demonstratetj with a carbon-in-leach (CIL) reactor . 

These authors suggested the use of higher order neural networks and 

proposed a regression network (Van d~r Walt et al., 1993, 1993e) 

consisting of arrangements of nodes with various types of act1vat1on 

functions and add1t1ve and mult1pl1cative summation rules, which allow 

the combination of parametric, as well as non parametric relationships in 

the neural net model. The problem posed by sparse process data can 

,,I ~ r • ' ' - • ' • ' . . - ' 
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thus be alleviated to some extent in that some of the relationships 

between variables are specified beforehand. The method was 

demonstrated through the modelling of a hydrocyclone classifier. 

Not much attention has been paid to the use of neural net expert 

systems 1n the processing industry. In one of the few studies reported 

Smets and Bogaert ( 1992) used two neural networks to predict the 

stress corrosion of austenit1c stainless steels in chloride-bearing water. 

The nets were trained by means of case histories of failures of these 

metals under similar circumstances and managed to extract the principal 

features of these processes remarkably well. 

These examples of research and development efforts are by no means 

exhaustive, but are merely intended to serve as an indication of the vast 

scope and potential of neural net techniques in the chemical and 

metallurgical industries. 

1 .6 2 Commercial applications 

Despite the promise art1fic1al neural networks appear to hold for the 

chemical and metallurgical processing industries, the first commercial 

appl1cnt1ons for neural nets only saw the light approximately a year 

( 1 992) ago, with the 1mplementat1on of n hybrid neLJr al net/fuzly control 

system from Pavilion Technologies in Eastman Kodak's refinery in Texas. 

Other commercial applications include hybrid control systems sold by 

Neural Applications Corporation, consisting of neural nets as w~ll as 

expert systems, used 1n a1 l; furnaces. These systems are used to 

optimize the positions of the electrodes of the arc furnaces used for the 

smelting of scrap metal in steel plants, and are estimated to save 

approximately $US 2 000 000 annually on the operating costs of each 

furnace. 

The most recently reported commercial application of a neural net in the 

process industry concerns the control of a nuclear fusion reartor at AEA 

Technology's Culham Laboratory in Oxfordshire (Geake, 19.,31 • ••11i:; 

optimal cond1t1ons for fus101 in the Compass tokamak r .?ac .1, c i::•-ur 

where the turbulence in the plasma is minimal, and cannot i.:e calculated 

fast enough by conventional computers, which can take hours or even 

days to compute the setup of the magnetic fields needed to produce 

. ~· .. . ~ 
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suitable plasma shapes in the reaction chamber. Th~ problem is solved by 

making use of a neural net that can do the necessary calculations rn 

approximately ten microseconds (s1gnif1cantly faster than the fluctuations 

rn the plasma that typically last for a few hundred milliseconds) . The 

Compass net obtains data from 16 magnetic field sensors inside the 

chamber and has four output nodes linked to the magnetic controls of 

the system. An added advantage 1s the flexibility of the network, which 

can be reti ained (by sets of approximately 2000 exemplars at a time) 

when the implementati0n of different control strategies are warranted. 

Conventional controllers in contrast , can only cope with narrow ranges of 
process conditions. 

1.6.3 Future neurocomputer technologies 

As far as the construction of computer circuitry goes, silicon is 

doubtlessly the medium of choice, not least due to its abundant 

avallabrl1ty and cheapness. Despite th£' use of multilayers and epitaxy 

techniques, the material as used in the industry today poses many 

s1gnrf1cant d1sad.,1antages with regard to the design of neuralware, where 

packing density and compactness are of the utmost importance. 

As a result 1mpress1ve progress has been made with alternative computer 

technologies. Of thesr, optical or electro-optical computing 1s probably 

the closest to maturity (Loun , 1991 ; Lupo, 1989) . Light beams have a far 

greater capacity to carry information than electronic c ircuits (Canham, 

1993,) and the ootical implementation of neural nets has the potential for 

attaining very high connectivity , because beams of light can pass 

through one another without undue interference (Abu-Mostafa & Fsaltis, 

1987, Roth, 1990; Williams, 1 987). Until recently the expanding field of 

optoelectronics has been hampered by the use of complex and Axpensive 

materials 5uch as gallium arsenide, but other materials such as porous 

silicon has recently been 1dent1f1ed as a promising new alternative for the 

construction ~ f computer devices (Canhar~. 1993). 

Other technologies being investigated rncludF> molecular computing which 

could rn principle be based on the to . ' :re.. ' ' ~upramolecular sw1tch1ng 

devices that can self-assemble anrl 0 1l ,., switch between different 

conf1gurat1ons, but are not expected to rnach maturity in the foreseeable 
future (Bradley, 1993). 

r , . 
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1. 7 SPECIFIC OBJECTIVES OF THIS STUDY 

It is the overall objective of this study to develop new strategies for the 

modelling and simulation of processing systems based on the use of 

connectionist methods. Since these techniques are essentially data 

driven, a large part of the investigation focuses on the use of neural 

networks for the processing of raw plant dilta 1n order to improve the 

quality of models based on these data. In the final part of this 

dis::;ertation the construction of connection1st plant modals (which could 

be based on plant data processed by the techniques described in the 

previous chapters) is investigated. Both these aspects related to ill ­

definedncss, as well as the computationally intensive nature of process 

modelling are addressed. Chapters 2. 3 and 5 are devoted to the use of 

feedforward neural nets and chapter 4 explores the parallelist 

implementation of traditional algorithms rn feedback connectionist 

structures to enhance computing power. The specific objectives of this 

dissertation are addressed rn sequence rn the following chapters and 
include the: 

• estimation of variation in process data, especially if these data 
reflect quasi-steady state behaviour; 

• detection and location of gross errors in plant data, especially 

based on plant models subject to non·lrnear constraints; 

• more efficient reconc1liat1on of noisy process data, and 

• modelling and optimization of metallurgical plants and process 

circuits with neural nets and comparison with traditional models. 

• -----~ -=-~-----=--~----= --
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CHAPTER 2 

Estimation of measurement error variances 
Summary 

Measurements of flow varmbles generally violate mntenal tmlance constralfltS owmg to 
the presence of random and possibly systematic errors lfJ the clat,1 The vaflanr.e 
r wanance matnx uf the measurement errors wl11ch 1s req1.ured ro solve the data 
reconcilmt/On problem, 1s unfortunately not always available and h11s to be estimated 
These estimates are based on h1stoflc data or redundant observations of the state 
variables over a penod of llme. By makmg use of conventional techniques the vaf/ances 
and covariances of the measurement errors can be estmwted from the correspondmg 
vanances and covaflances of the constramt residuals, m con1unct1on with addlflonal 
hetmst1c mlo1mat1on, provided the constramts are l111ear 111 chapter 2 1t 1s shown that 
neural nets can Sml//arly be used to estlfnate these vammces a111/ covammces m process 
systems, regardless of the nature of the constra111ts imposed on the measLrement data. 

2. 1 OBJECTIVES OF THIS CHAPTER 

In chapter 2 the use of neural nets to estimate stochastic parameters in 

quasi-steady state process systems 1s explored . In particular 

• Appropriate connection1st structures and neurodynamics are 

investigated as a basis for the estimation of variance-covariance 

matrices of chemical process systems; 

• The use of these neural nets to estimate the variances of systems 

subject to linear and non-linear constra:nts is investigated, and 

• The accommodation of ~euristic information necessary to estimate 

the variance-covariance matrix of the system 1s investigated. 

2.2 BACKGROUND THEORY 

The monitoring of plant performance and the verification of system 

models are cruc1::illy dependent on reliable sets of steady state 

component and total flow rate data. In general the measured data violate 

the process constraints of the system, owing to random fluctuations m 

the observed values, or even systematic errors in these values due to 
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erroneous measurements or large d1screpanc1es between the actual 

behaviour of the system and the behaviour predicted by the system 

model. The observations or measurements consequently have to be 

reconciled with the process constraints, usually through the minimization 

of a quadratic criterion. This criterion 1s typically a function of the 

dif ferent;es between :he measured and the adjusted values, weighted by 

the inverse of the measurement error covariance matrix (Hodouin & 

Everell, 1 980). General reconciliation methods (discussed in more detail 

rn chapter 4) are usually based on the assumption that measurement 

errors are randomly Gaussian with a known covariance matrix, and 

distributed around a zero mean. In many practical s1tuat1ons, this matrix 

1s unknown and has to be estimated (Holly, et ::ii., 1989, Narasimhan et 

al., 1986). The most obvious method of doing so involves the analysis of 

N redundant observations x1 1, x1,2 • •. x1, N of the particular state variable 

X1 over a period of time. That 1s 

~. 

var(X11 = I N 1 I 1 L I x1.1 - x1,AvG l2 (2. 11 

This method of est1matrng variances or covariances 1s reliable only 1f the 

systen1 1s truly 1n a steadv state, which 1s not generally the case (Almasy 

and Mah, I 8 ). In most oroce~s systems steady state is a relative 

concept, defmed bv the t11ne f·arnc over which the system is considered. 

In process svstems the exp0 deo values of the state variables of the 

system ard gf.lne. ally St bject to :na11ge, which could be manifested by a 

series of srr.all flut: uation"' "' round .., 11xed point rn the variable space, or 

a gradual drift from such a pdnt, and when these deviations from steady 

state behaviour ar sinnrt1ca11t, the system 1s r.onsidered to be in a quasi­

steady state. The estima ion of the stochastic parameters prevailing in 

sys ems such as these at a ;:>articular instant 1s consequentl 11 1mpe,..,..,d by 

the change in the system's behaviour during the succee 

over which sampling takes place. Undur these c1rcum~ 

an indirect method of estimating the variances of the c.i ... 

has been recommended (Almasy & Mah, 1984). 

. rval 

use of 

Aiables 

' ~ .. .,. 
. 
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In the proposed method the relat1onsh1p between the covariances of the 

residuals of the quasi-steady state process system constraints <:1nd tht: 

covariance!; of the measurement residuals 1s used as a b~sis to derive a 

more accurate estimate of the covariances of the St< te variables than 1s 

possible with equations 2. 1 & 2.2. (In this d1ssertat1011 vlJnance 1s meant 

to indicate an element on the diagonal of a covariance matrix, while 

covariance is meant to indicate an off-diagonal element of such a 

covariance matrix) . Unltke the measu. ement errors, the c.:>nstratnt 

residuals can be computed directiy from measurements x, b without 

requmng an estimate of the true value of the state variable X, . It 1s 

consequently possible to compute the sample covartance matrix of the 

residuals of a set of system variables and use these vJlues in con1unction 

with other heuristic information to estimate the covariance matrix of the 

measurements of these variables. The add1t1onal information concerns the 

relationships between the elements of the covariance matrix of the 

measurements, for example the assumption that the of (-diagonal 

elements of the matrix are zero or very small owing to the use of 

independent instruments 1n the measurement of the state variables, or 

that the expected values of the different state vanables all have the same 

tendency to drift in a parttcular direction in the variable space. 

Unfortunately the relat1onsh1p between the covariance matrix of the 

measurement errors and the constraint residuals 1s well-defined for linear 

systems only, which poses a severe restriction on the procedure as 

regards its use in the chemical engineering industry. 

In this dissertation a new method to estimate the covariance matrix of 

observed variables, similarly based on the relationship between the 

covariances of the constraint residuals and the covariances of the 

measurement residuals described in the literature (Almasy & Mah, 1984; 

Keller et al., 1992), is proposed . In contrast to the methods d&scribed, 

this technique, which involves the use of an artificial neural net to 

represent the relL'tionsh1p between the covariances of the constraint 

residuals and that of the measurement errors, does not require the 

system to be linear, or the relationshio between the constraint and the 

rr aasurement residuals to be well defined . (The fundamentals of the 

neural nets on Nh1ch the method is based is described 1n more detail in 

appendix A.) Complementary heuristic information required in the 
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estimation of the covariance matrix of the measurement errors can 

furthermore be incorporated in the structure of the net itself. 

2 .3 PROBLEM STATEMENT 

Consider a process described by the following system of linear equations 

C.x 0 (2 .3) 

where C is a (n x p) coefficient matn < with n < p, representing the 

system constraints, and x 1: the true value of t"'e state vector. The 

observed or measured value x' , of th is vector 

x' = "' + e (2.4) 

is typically subiect to an error e, so that the constraint residuals r are 

related to the measurement vector x' as follows 

r = C.x' = C.(x + e), where (2.5) 

r: .(x + e) = C.x + C.e = C.e 12 .ni 

If e 1s considered to be a Gaussian variable with a zero mean and a 

covariance matrix V e• then 

Measured variables 

E(e) = 0 

var(e) = E(ee Tl V e 

Constramt residuals 

E(r) = E(C.e) 

var( r) = Ef(C.e)(C.e)T) = V r 

Since the system is linear 

E(r) = C.E(e) 

var( r) = C E(eeT).CT CV cT = e 

(2 .7) 

(2 .8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

' . ' 

' . . 
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If th-? system is non-linear, such as would arise from conservation 

equations involving the products of stream flows (F) and component 

fractions (f), as well as other non-linear relationships which may ensue 

from d1ff erent process circuit conf1gurat1ons, the relationship expressed 

by equation 2 .3 1s no longer valid and can not be used in trarj1tional 

analytical procedures to obtain estimates of the stat1st1cal prupert1es of 
the measured variables, 1.e. 

(F)r.C.f = 0 
(2. 13) 

where 

F ' = F + eF, and f' = f ~ e1, so that 

(2. 14) 

12. 15) 

The constraint resid1Jals are thus related to the measurement residuals eF 

and e1 not only in terms of the constant coefficient matrix C, but also in 

terms of the state variables, F and f, the true values of which are not 

known exactly. This 111-defmed relationship between the con. tra1nt and 

measurement residuals restricts the use of analytical methods for 

estimating the covariances of state variables (based on the covariances 

of the constraint residuals) to linear systems. This complication can be 

avoided by making use of an art1f1c1al neural net to represi;;m !he 

relationship between the properties of the constraint residuals and those 

of the measurerni:i11t residuals. This relationship is not unique and needs 

to be further defined by add1t1onal h13unst1c knuwledge. 

2 .4 ESTIMATION OF COVARIANCES BY MEANS OF NEURAL NETS 

By presenting an artificial neural net with exemplars of the relationship 

between the covariances of the constraint residuals and that of the 

measurement errors, the net forms an internal representation of this 

relationship which can be used to provide an estimate of the covariance 
matrix of the mea~urement errors . 

The general structure of the net 1s determined by the r · nbcr of process 

variables and constraints of the system. If the system 1s gerierally 
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described by N systi:?m variables and M process constraints, the 

c0rresponding net has an input layer consisting of M 2 process nodes, 

and an output layer consisting of N2 process nodes. This ger~ral 

structure of the neural net can be mC'dif1ed to account for the 

incorporation of add1t1onal rnfcr:nat1on 1n the system. If the covariances 

of the state variables are deemed to be negligible for example, the circuit 

structure can be rP.duct?d to accommodate the diagonal of the covariance 

matrix of the measurement errors only. Besides alteration of .he structure 

of the net to reflect add1t1onal k 10 vledge of the process, such 

"nowledge can also be nccommodated in the set of exemplars used to 

train the net. The use of neural nets c;uch as these 1s demonstrated in the 

f cillowrng examples. 

2 .4.1 Example 2. 1 (General process circuit subject to line~r process 

constraints l 

Cons1de1 the fallowing generalized process circuit consisting of 4 nodes 

and 9 floN streams, F1, F2 •.. F9 , as shown rn figure 2.1 . A material 

balance around each node yields t:·e following system of linear equations 

!''ode A· F1 - F2 + Fa 0 (2. 16) 

N1)de S: F2 F3 Fs F7 = 0 (2. 17) 

Node C F3 F4 F6 0 (2. 18) 

Node D. F-5 F1 Fe + F~ 0 (2. 19) 

To illustrate the use of l>oth a direct anJ an 1nd1rect (ne 1ral net) metl rod 
to estimate variances, a1id in order to better evaluate the performance of 

different neural net structures, the system is cc. ;1dered to cons1~t of two 

subset.:; of \ ariables The first subset (subset 1) comprized of variables 

F- 1, F2, Fo, F1. Fa and Fn displays c;teady st.Jte benav1our and the 

e..:pectecJ vnlues of all the variables rn the r;uuset are consequently 

independent of time. The second subse1 1subset 2) 1s comprized of 

v<1na .. 1les F3, F 4 and f'.5 and displays quasi -s teady state behaviour. rn thot 

the expected values of the variables of tile subset are dependent on time. 

The time dependence of the variables 1n ~oth subsets is indicated 1n tr:ble 

2.1. 
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For convenience the variables are assumed to be monitored 

independently, so that the off-diagonal elements of the covariance matrix 

of these variables are zero, making 1t necessary to estimale the diagonal 

elements of the covariance matrix only. In order to estimate these 

variances, the process variables F1-F9 were measured at time intervals 

1·t10. as 1nd1cated in table 2.2. It 1s from these observations that an 

estimate of the variances of the process variables at time t
0 

is required. 

The art1f1c1al neural net used to estimate the variances of the process 

variab1es m the c1rcu1t, consisted of an input layer with 4 process nodes, 

corresponding to the variances of the ~ constraint re:,iduals, and an 

output layer with 9 process nodes, corresponding to the variances 0f the 

9 process variables, s1m1lar to the generalized system portra· d in figure 

2.2 . In order to train the net, a set of exemplars composed of the 

variances of the process constraint residuals and the corresponding 

variances of the pr..'.>cess variables was generated (a variance of 0 .0134 

was us .. d, based on a variable with a unitary ex'Jected value) . As can be 

seen from figure 2.3, the net managed to form a generalized internal 

representation of the relat1onsh1p between the variances of the process 

variables and thClse of the constraints. The weight matrix of the trained 
net 1~ shown in table 2.3 . 

The variances of the constraint residuals calculated from the sample 

measurements at times t0 t 10 were subsequently presented to the net 

and the corresponding variances of the process variables were estimated. 

These estimates which are show11 in table 2.4, are more accurate than 

the estimates calculated d1r.::ctly from the sample data (also shown in 
table 2.4) . 

2.4.2 Example 2. 2 (Two-product separator subject to non-linear 
process constraints) 

In this example a high tension roll separator is considered . The separator 

class1f1es a feed stream F 1, cons1st1ng of 2 components W!th rnass 

f rnct1ons f 1, 1 and f 1,2• into two product streams F2 with ~omponent 
mass fract1onc; f 2.1 and f2 .2. as vJell as F3 , with com11Clnent mass 

fruct1ons f 3. 1 anu ,2• as shown 1n figure 2.4 . The flow streams and 

mass tractions are measured cind typically violate the conservation 
equ<.itionc; of th•.: system, viz . 

. . . . \ ' . . . . • • . \J 
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(2.20) 

(2.21) 

(2.22) 

Contrary to the previous system considered in example 2. 1. all the 

variables in this system are rn a quasr·steady state, so that a direct 

estimate of the covariance matrix of the state variables at time t0 yields 

inaccurate results. The expected v<>lues of t:1e system variables are 

shown in table 2 . 5. Owing to the non-linearity of the process constraints 

(equations 2.20 2.22), the relationship between the constraint residuals r 

and the measurement errors eF and et is 111-defined (the true values of F
1 

and f,,1 are unknown). The difficulties ensuing from the ill-definedness of 

this relationship make the use of a trad1t1onal numerical procedure 

inappropnate, whereas the use of an art1f1cial neural net 1s not affected 

by the 111-definedness of the relationship between the vanable and 

constraint residual vanances and provides an effective means of 

estimating the covariances of the system variables. 

To obtain an estimate of the covariance matrix V F,f of the process 

variables F, and f,,1 (1,j = 1 .2,3). an arbitrary set of values of the variables 

rs corrupted by errors with known covariances (and zero means) and a 

neural net wrth a structure srmrlar to that of the net shown rn figure 2. 2 

1s subsequently trained by means of these art1f1c1ally generated exemplars 

to construct an internal representation of the relt.1t1on between the 

covariances of the resultant constraint res 1duals and that of the variable 

residuals . The particular set of values used as a basis for the generation 

of synthetic training data rs not critical, as long as rt 1s large enough to 

ensure that the covariancu of the constraint residuals (on which the 

estimation of the covariances of the variable measurements will be 

based) would be subset of the training set. Failure to do sc could result 

in grossl·y' inaccurate estimates of the covariances of the variable 

measurements. Additional heuristic information on which the est1rnation 

of variances is based is either incorporated in the structure of the net 

itself, or in the exemplars used to train the net. If the interactions 

between vam1bles are considered to be negligible for example, the 

exemplars used for training could only contair: data relating variable and 

residual variances, or else the exemplars co:..ild contain data relating 

''"' . . . - . 
I I . • ' .. - .. 
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variable and residual covariances in general and the neural net could then 

be structured so that the weights of the net relating variable and res ' tJal 

covariances are zero. In addition to the relat1onsh1p between the 

sktistical properties of variable measurements and those of the 

constraint residuals, 311 measurements are considered to be totally 

independent, so that all off-diagonal elements of the covariance matrix 

are deemed to be zero. This information 1s incorporated direct!y into the 

structure of the neural net, which could subsequently be trained to 

construct an internal representation of the relationship between the 

variances of the constraint and measurement residuals . 

As before, the back propagation neural net trained to estimate the 

covariance matrix of the state variables consisted of an input and an 

output layer only . The input layer was composed o f 4 computational 

elements, corresponding to the variances of each of the 4 ~onstraint resi ­

duals, while the output layer consisted of 9 process nodes which corres­

ponded to the variances of each of the 9 system variables. The net was 

trained by repeatedly presenting 1t with exemplars of the relation 

between the V<>:-rances of the constraint and measurement res1l.uals . 

Training of the s1gmo1dal output units was accomplished by the 

ger.eral1zed delta rule (Rumelhart et al. , 1986; Leonard & Kramer, 1 990) 

also described in appendix A , through which the weights of t he net could 

be modified until 1t was able to form an internal representation of the 

relationship between the covariance matrix of the flow voriab les V F,f and 

the covariance matrix of the constraint residuals V ,, as shown in figure 

2. 5 . After convergence, the trained net was used to estimate the 

covariance .natrix V F 1 of the system variables, by presenting 1t with the 

computed sample variances of the measurement residuals . These 

variances were calculated directly from the measured data shown 1n table 

2.6 by means of equation 2. 1. The estimates obtained by the neural net 

are compared with the actual estimates in table 2. 7 . The weight matrix 

of the trained net 1s shown in table 2 .8 . 

To further illustrate the way in which neural nets can be used 1n 

con1unct1on with heuristic data to estimate variances of sets of 

measurements, the assumption that the covariances of the varn1bles are 

zero 1s mod1f1ed by assuming a correlation between the measurements of 

the compoilcnt mass fractions 11 1 ', f 1 ,2 '· 12.1'· 12 2'· f3 1 ' and f3,2', 1.e. 

. . . ~ . ~ 

\ . ~ 

. \ 
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non-zero covariances cov(f1,11fi.2l. covff2, 11f2,2) and cov(f311 l f3,2). 

Owing to tl"ie quasi-steady state of the system, direct computation of the 

sample covarnmces of the system from measurements such as those 

shown in table £ 9 1s inaccurate once again and as a consequence the 

covariances have to be estimated by an indirect procedure. A neural net 

similar to the one used previously in conjunction with the assumption of 

zero covariances can again be used. In this ci"ce the net's structure 

would have to be modified to accommodate thf' th1 •:? covariances of the 

mass fraction variables. The net is consequently r o --posed of an iriput 

layer with 3 process nodes (one for each varic-nce and ~ov~· · le 

constraint residuals), as well as 12 output nodes (of'e fc·r th . e of 

each of the 9 variables, as well as the three cova• ;c:nC" •1·~ments1 . 

After training, the ne: is presented with the sn , p. variances of the 

residv"IS, from which the 9 variances and 3 covJria11ces are estimateo. 

The estimated and the actual covariances of the process variables are 

shown in table 2.10. (Since estimates of the variances are very similar to 

those shown earlier on, only the estimates of cov(f1,1 l f 1,2l 

covlf2., If 2.2) and cov(f3, 1 j f3,2l are shown in table 2. 10.) The weights of 

the tra1.1ed net used to estimate these covariances are shown in table 

2 . 11. It is clear that the estimates made by the nellral net are more 

accurate than the estimates based on direct computation of the sample 

covariances (equation 2.2). 

2.5 CONCLUSIONS AND SIGNIFICANCE 

As was mentioned previously, tne relat1onsh1p between the covariance 

matrix of the measurement errors and the covariance matrix of the 

constraint residuals is not uniquely defined, and further restrictions need 

to be introduced bcfor:? the covariances of the measurement errors can 

be estimated from the covariances of the constraint residuals . This 

heuristic 1r.formation can be directly accounted for in the structure of the 

neural nP.t, or it can be embedded in the exemplars used to train the net. 

When the neural net is presented with the ambiguous data relating the 

variances of the measurement errors (V el with those of th~ constraint 

residuals (V rl, it relates V r with the average V I:; ot the system. 

• • • • • . • • • • ' • • ... • • • . • . • : • .,, ' •• : . • .•• I • '· . '. : ·.I •. 

• ' .. .. ! o • If #~' • ... • ' ' 
• .. I ' • - • • 
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The neural net forms an internal representation of the relation between 

the covariances of the constraint residuals nnd the covariances of the 

state variables (similar to the representation of the variances), which 

allows estim&u:;~ of the covariance~ of variables in the quasi-steady state 

process system that are generally more accurate than when these 

covariances are computed directly from the observed measurements. The 

method is not dependent on the linearity of the system and once a net is 

trained for a particular system configurntion, no retraining needs to be 

done to e~timate the covariance matrix of the state variables of the 

system. This feature together with their parallel architectures (Hecht­

Nielsen, 1 990) make neural netf very attractive in on-line rJrocess 

monitoring systems. 

In this dissertation only linear and bilinear systems (typical of many 

, recess engineering systems) have been considered. It w2s shown that 

these sy~tems can be nccounted for by simple sir,gle layer back 

propagation neural nets with sigmoidal c0mputat1onal elements. To 

summarize: 

~ 't • • 

• Neural nets can be used to estimate the covariance matrices of the 

variables of quasi -steady state process systems more accurately 

than can be derived from direct observation of these variables. 

• Contr.1ry . 1ore trad1t1onal procedures, the use of neural nets 1s 

nol restn :ted by the nature of the relationship between the 

covariances of the constraint residuals and those of the 

measurement errors. 

• Due to their parallel architecture and the capability of trained nets 

to pro11ide direct estimates of the covariance matrices of the state 

\/ariables of process Sy::.tems, neural nets show considerable 

potential for use in on-line process monitoring systems. 

. . 
. ~ .. ·"': '. , .. ... 
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2 .6 TABLES REFERRED TO IN CHAP I ER 2 

TABLE2.1 Expected values of process variables (example 2 . 1) 

TIME F1 F2 F3 F4 F5 F5 F1 Fa F9 

to 4 4.0 3.0 1.0 3 

t1 4 4.2 3.2 7.2 3 

t2 4 4.4 3.4 1.4 3 

t3 4 4.6 3.6 1.6 3 

t4 4 4.8 3.8 1.8 3 

t5 4 5.0 4.0 2.0 3 

t5 4 5.2 4 .2 2.2 3 

t7 4 5.4 4.4 2.4 3 

ta 4 5.6 4.6 2.6 3 

t9 4 5.8 4 .8 2.8 3 

t10 4 6.0 5.0 30 3 

• 
Quasi-steady state variables are distinguished from steady state variahles by bold italics 

TABLE 2.2 Measurements of process variables (example 2. 1) 

Fl, F2' F3' F4' F5' F5' F/ Fa' F9' 

to 1.05a 4.646 3.342 3.394 0.810 1.196 1.043 3.461 0 a42 

t1 1.106 3.280 4 402 2.44a 0.921 0.929 0.922 3.009 o.ao3 

t2 o.ao2 3.3a7 4.610 3.143 0.903 0.921 1.109 2.723 o.a6a 

t3 0.94a 4.741 3.500 3.6a5 1.185 1.199 0.91 a 2.513 o.a26 

t4 0.962 3 7a3 3 a2a 3.041 1.079 1.033 0.991 3.12a 1 .124 

t5 1.1 a5 4 631 3 657 3.£J9 1 633 1 11 a 0 916 2.465 0.969 

t5 0.907 4 632 4.934 3.1 a3 1 .679 1.162 0.936 2.97a 0 914 

t7 0.956 4.194 4 .922 3.328 2. 1 a1 1.140 0.99a 2.600 0.873 

ta 1.033 4.3a9 4 340 4 502 1.a70 1.143 0.873 3.136 1.025 

t9 0.877 4.373 5.287 5.013 2.995 0.960 0 984 2 ao1 0.941 

t10 1.197 4.507 6.2a2 4.329 3 464 o.a12 1.137 2.696 1.043 

... . . ..... . 
. . ,, . . I .. ,. . 

. ' f • . ' . . . . 
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TABLE 2.3 Weight matrix of neural net used to estimate varranr:es of 

flow variables (example 2.1) 

Vo, 1 Vo,2 Vo,3 Vo,4 Vo 5 Vo,6 Vo,7 Vo,a 

BIAS 1.375 • 1.267 1.314 1.2a3 ·1 219 ·1.154 · 1.357 ·1.316 

v,, 1 0 .73a 0 . 717 0. 115 0. 751 0.6~1 0.5a9 0.681 0.725 

v,,2 0 693 0.792 0.701 0 .659 0.645 0.701 0 .6aO 0.591 

v,,3 0 641 0.565 0 .719 0.717 0.472 0.601 0 697 0.567 

v,.4 0.639 0 .650 0.611 0.676 0 .632 0.589 0 725 0.677 

TABLE 2.4 Estimated and actual variances of process variables 

(example 2.1) 

Actual variances 

Fl F2 F3 F4 F5 F5 F1 Fa F9 

0 013 0.208 0.208 0 . 117 0 01 :3 0.013 0.013 0 .117 0 .013 

Estimates based on direct method (equation 2.1) 

F, F2 F3 F4 F5 F5 F1 Fa F9 

0 014 0 .245 0.715 0.510 0 .703 0.013 0 006 O.Oa5 0 .009 

Estimates made by neural net 

Fi F2 F3 F4 F5 F5 F1 Fa F9 

0.013 0.280 0 .382 0 221 0.021 0.021 0 015 0.092 0.008 

Vo,9 

1.2a9 

0 .620 

0.6aa 

0.645 

0 616 

• • o ' I ,,. ~ 
~ . . .. - . . . . ' 
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TABLE 2.5 Expected values of process variables 1example 2.2) 

TIME Fi F2 F3 I 1 , 1 f 1.2 '2. 1 '2. 2 13, 1 13,2 

to 1.000 0 .350 0.650 0 .260 0 .740 0 .297 0 703 0 240 0 760 

t, 1.100 0 .370 0 730 0 .280 0.720 0 398 0 602 0.220 0 .780 

t2 1.050 0 .380 0 .670 0 .290 0 .7 10 0.431 0 569 0.210 0.790 

t3 1. 150 0 .360 0.790 0.250 0.750 0.360 0.640 0.200 0.800 

t4 1.170 0 .390 0 .780 0.240 0 .760 0 .300 0 700 0.210 0 .790 

t5 1.220 0.410 0 810 0 .270 0 .730 0 448 0.552 0.180 0 820 

ts 1. 180 0.400 (' 180 0 .:'90 0.110 0 .524 0.476 0.170 0.830 

t1 1.210 0.420 0 .790 0.310 0 .690 0 .555 0.445 0.180 0.820 

ta 1 270 0.405 0 .865 0.340 0 660 0.746 0 254 0 .150 0.850 

t9 1.280 0.440 0.840 0 350 0 .650 0 . 770 0.230 0 . 130 0 .870 

t10 1 300 0.430 0.870 0 .360 0 .640 0 .805 0.195 0 . 140 0.860 

TABLE 2.6 Me<:isurements of process variables (examplP 2 2) 

TIME Fl . F2" .=3 ' f 1. 1 ' f 1,2 ' '2 1 '2 2 13 ,. 13,2 

to 0 .988 0.361 0 .'>48 0 .232 0 599 0 249 0 747 0 217 0.734 

t1 0 944 0.346 0 690 ::>.235 0.745 0 .352 0 1372 0 195 0 .816 

t2 1.162 0 .374 0.775 0.238 c 581 0 473 0 455 o. 191 0.783 

t3 1.2"12 0 .382 0 .852 0 .257 0 .631 C.316 0 .732 0.160 0.855 

t4 1 .• 46 0 46G 0 .917 0 .282 C.745 0 .30£ 0 .659 0 188 0 . 768 

15 1.184 0 .365 0 .796 U.233 0 808 0 .466 0 .509 0 215 0.'786 

15 1.021 0 459 o.a89 0 .236 0 .792 0 51)6 0 .552 0 .1 49 0 .695 

t7 1.438 0.389 0 .730 0.316 0 .681 0 .563 0 .518 0 . 192 0.776 

ta 1 :>09 0.359 1 .03:> 0 '354 0 .621 0 .753 c 212 C. 145 0.790 

tg 1.32S 0 .3G8 1 .006 0 .346 0.552 0 864 0 .201', 0.155 0 846 

t10 1.459 0 .419 0.721 0.796 0724 0.673 0.101 0.16 / 0 178 

. 
• . . ~···.. . f .. \ ' . . ' . . . . : . . • . . 

• • J • ·' \ • • ' • " : .. • • • • . ... 
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TABLE2.7 Estimated and actual variances of process variables 

(example 2.2) 

Actual variances 

F1 F2 F3 f 1 1 . f 1,2 f 2.1 f 2.2 f 3, 1 f 3,2 

0 0134 00016 0 0057 0 0009 00073 00012 0 0066 0 0008 00077 

Estimates oased on direct method (equation 2. 1) 

F1 F2 F3 f 1 • , f 1,2 f 2, 1 f 2,2 f 3, 1 f 3,2 

0 0123 0 0032 0 0178 0 0039 0 0065 0 0422 00412 0 C011 0 0118 

Estimates made by neural net 

F1 F2 F3 f 1. 1 f 1,2 f 2. 1 f 2.2 f 3, 1 f 3,2 

0 0120 0 0015 0 0051 00008 0 0069 0 0011 0 OOGl 00007 0 0071 

TABLE 2.8 Weight mat11x of neural net used to estimate variances of 

flow variables in non-linear system (example 2.2) 

Vo, 1 Vo,2 Vo,3 Vo 4 Vo,5 Vo,6 Vo,7 Vo 8 Vo,9 

BIAS 1.20~. 1.220 1.207 0.532 0.514 0.531 0.507 0.487 0.529 

v,,, 2.197 : .263 2.217 1 361 1 482 1.444 1 413 1.56J 1.438 

v, ?. 0 141 0.211 0 091 1.426 1 411 1 413 1.438 1.565 i .514 

v,,3 0 232 0.153 0.255 1.258 1.455 1 391 1.303 1 .384 1 307 

. ·. . . .' . ~ . ' . . :·· . . ,• . . . ' . .. .· - . . . 
• • .~. '. • • t .• • \ . • . 
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TABLE 2 .9 Measurements of process variables (covariances) (example 

2.2 - non-zero covariances) 

TIME F 1' F2' F3 ' f 1, 1 f 1.2· t2, 1 
. 

f2,2 ' f3, 1 f8,2 
. 

to 1.030 0.301 0 779 0.215 0.785 0.319 0.215 0 .286 0.714 

t, 0 .892 0 .3:4 0 558 0 325 0.675 0.443 0 .325 0.182 0 .818 

t2 1.027 o.~20 0.608 0 261 0 .739 0.386 0 .261 0.220 0.780 

t3 1.015 0.302 n 113 0 .257 0 743 0.345 0.257 0 168 0 832 

t4 1.106 0 .337 0 .768 0 24!:' 0 751 0 .327 0.249 0 200 0 .800 

ts 1.376 0.463 0 .913 0.322 0.678 0 .457 0.322 0 177 0.823 

t5 , .308 0.378 0.930 0.300 0.700 0 521 0.300 0 .142 0.858 

b 1.334 0.489 0.845 0 .303 0.697 0.535 0.303 0 .159 0.841 

ta 1 020 0.389 0 .631 0.293 0.707 0.867 0 293 0.176 0.824 

t9 1 157 0.361 0 .795 0 .305 0 695 0 .771 0 .305 0 150 0 .850 

t10 1 225 0 .500 0.725 0 .298 0 702 0.766 0.298 0 .142 0 .858 

TABLE 2. 10 Estimated and actual covariances of process variables 

(example 2.2 - non zero covariances) 

Actual covariances 

cov(f 1 1 t 1.2) 

0 00090 

cov(f2, 1 f 2.2) 

0.00118 

cov(t3, 1 t3 2) 

0.00077 

Estimates based on direct method (equation 2.2) 

cov(t1 , 11f1 ,?l cov(f2 . 1 I f2.2l cov(f 3, 1 f 3,2) 

0 .00202 0 03633 0 .00124 

Estimates made by neural net 

cov(f 1. 1 fl ,2l cov(f 2•11 f2 .21 cov(f 3, 1 f 3,21 

0 .0011 7 0.00138 u 00096 
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TABLE 2.11 Weight matrix of neural net used to estimate covariances of 

flow variables in non-linear system (example 2.2) 

Vo(f1 , 11f1 ,2) Vo!f 2, 1 I f2,:') Volf3, 1 I f3,2) 

JIAS -0.5916 0.4638 0.5210 

v1, 1 0 .2772 ·0 .3210 0.3081 

V1,2 ·0.3396 -0 .1790 0 3701 

V1 3 -0.3855 0 2423 0 .3322 
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FIGURE 2.1 GENERALIZED PROCESS CIRCUIT 
(EXAMPLE 2. 1) 
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FIGURE 2.3 NEURAL NET REPRESENTATION OF RELAT:ON 
BETWEEN CONSTRAINT AND MEASUREMENT 

VARIANCES IN EXAMPLE 2.1 
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FIGURE 2.4 HIGH TENSION ROLL SEPARATOR 
USED IN EXAMPLE 2.2 
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FIGURE 2 .5 NEURAL NET REPRESENTATION OF RELATION 
BETWEEN CONSTR/\!NT AND MEASUREMENT 

VARIANCES IN EXAMPLE 2.2 
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CHAPTER 3 

The detection and isolation of systematic errors in 
steady state systems 

Summary 

Th,. momtormg of pkmts nnd the veflf1carion of process models depend crur.mlly 011 relmble sets 
ol s t<>ady state component and tntal flow rate dtltn. These measurement dllta are gcnen1/ly 
r;ub1ect to random noise rand possibly systematic errors) and typically violate the process 
constramts of the system. It is consequently necessary to ad1ust the data. and also to account 
for systematic or gross errors m the data pnor •o tlus reconcil1Btion procedure, or as part of 1t, m 
order to nvo1d severe unpatrment of the ad1ustment process. Tl11s can be accomplished by usmg 
a ncurnl net to form an mtermtl representation of tlle relat1onsh1p between the residuals of the 
measurements or tlle process constramts, and rhc error catt'!gofles represented by these 
residuals. When presentod with other residuals generated by the process model th<> trained net 
can then classJ/y rhc residuals to the cntegofles 1t hod previously been trained to rccognue The 
ma1or advantage of usmg neural nets instead of conventional stnt1stical methods is thar neural 
nets cnn t e used more effectively for the detection of .'iystemot1c errors m proce :; systems 
stw1ect to non lmeo process constramts fa s1tuat1or1 co'Tlmon m the chemical and mmer11I 
processmg Industry/, D~ well as for errors wi th arbitrary or ill defined d1stf/b11t10ns 

3. 1 OBJECTIVES OF n;1s CHAPTER 

Despite extensive research over several decades, no i '1eti...od is as yet available 

to satisfactorily identify systematic errors in process systems sub1ect to an 

arbitrary set of constraints. The reason for t'11s 1s the ill-defir-Priness of the 

distributions of the residuals of non-linear process constraints, even when the 

distributions of the variable measurement residuals are known, as well as the 

difficulty of generating measurement residuals that can be analyzed with 

standard statistical methods. The main objectives of this chapter are 

consequently to explore the powerful pattern recognition capab1llt1es of neural 

networks to 

• model the relat1011sh1p betwer n the residuals of the process variables and 

constraints and the statistical parameters of these residuals for typical 

r.hcm1cal and metallurgical engineering procossos, and to 

·. . .... y· 1- . , _ .. 

. . ( • ~ ~< . ... r,.; • ...... . • - '."'°' "' 
' J_ I "-- , • . t 

- - - - " .__ "- • 4_ - .... -\, • - -
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• use these residual distnbutiN models to detect gross or systematic 

errors in the abovement1oned systems . 

3.2 BACKGROUND THEORY 

The acquisition of reliable plant data 1s fundamental to a clear understanding of 

the operational behaviour o, J plant, the modelling and optimization of process 

cir"uits, as well as the identification of other phenomena peculiar to the process 

(Verneu1I et al. , 1992) . These data are generally subject to random noise, or 

even gross errors, owing to inadequate instrumentation, failure or m1scalibration 

of measuring instruments, the departure of the process from steady state due 

to malfunctioning process equipment, or significant chdnges 1n the environment 

(Hlavacek, 1977) Typical process data will \" r::equently violate mass and 

energy conservation requirements, as well as other physical constraints 

pertaining to the process and will have to be adiusted 1n order to satisfy these 

constraints . Under these circumstances 1t 1s essential that gross errors are 

detected and accounted for prior to, or during reconciliation of the data, since 

failure to do so could result in a severely distorted p1ctu1·a of the process. 

(Hodouin & Vaz Coelho, 1987) . Since repeated measurement of a variable is 

not "In effective means for the detection of a systematic error, virtually all gross 

error detection schemes in 11olve statistical tests based on the characteristics of 

the constraint residuals of the measurement errors. Unfortunately these tests 

are generally only useful as far as systems subject to linear constraints e1re 

concerned (Serth et al., 1987; Tjoa & Biegler, 1991 ). In the chemical and 

mineral processing industries this 1s a major drawback, since most process 

ystems in these industries are non-linear. In this dissertation a new method is 

consequently proposed for the detection of systematic errors in constrained 

measurement data. This method is based on the powerful capability of neural 

nets to classify measurement errors, and is not hindered by the nature of the 

system constraints. 

Although a systematic error can indicate an error that differs from a random 

error only with regard to its expected value, while a gross error can indicate an 

error that differs from a random error with regard to its distribution function in 

general, the use of these terms in the I. terature 1s not consistent. For the 

purpose of this dissertation the terms systematic errors and gross errors are 

. . . --- - - -
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thus used interchangeably to denote errors that do not have the same 

distributions N distribution parameters as random measurement errors. 

3 .2. 1 Pre !.>lem statement 

To detect and isolate systematic errors in a measured set of constrained 

variables. two conditions have to be met. Fust 1s a knowledge of the 

distributions of the measurement residuals and second 1s the existence of 

analytical redundancy (where measured variables are overdetermined). 

The process constraints of a typical process system are described by Crowe 

(1989), 

C.x = 0 (3 .23) 

where C is an (m x n) constraint matrix of full row rank m (n > m) and x is the 

(n x 1) vector of true values of the state variables . If 

x' = x + e (3.24 ) 

where x ' constitutes the (n x 1) vector of measurements of the true values x, 

with an (n x 1) error vector e, and covariance matrix V I x• then the measured 

values of the process variables generally violate the process constraints 

C.x' = r :f:. 0 

or in terms of the true values and error components 

C.(x + e) = r (3.25) 

and assuming the constraints to be linear 

C.(x + e) = C.x + C.e = r , i.e. 

C.e = r (3.26) 

If it is assumed that the error vector e has a Gaussian distribution and that no 

systematic errors are present (the null hypothesis) , r is a multivariate normal 

with a zero mean (Madron et al., 1977; Romagnoli & Stephanopoulos, 1981; 

Mah & Tamhane, 1982; Tamhane & Mah, 1985), i.e. 
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E(r) E(C.el - C.E(el = 0 (3.27) 

OtherV\1se the expected value of r 1s not zero (the alternative hypothesis), i.e. 

E(rl = b = 0 (3 .281 

which 1nd1cates the presence of a systematic error with a bias of magnitude b. 

By making use of standard statistical criteria, or variants of these statistics, the 

two hypotheses can subsequently be evaluated and reiected or accepted, and 

the presence of gross errors be determined . 

Alternatively the measurement residuals e can be tested directly, making the 

need for additional procedures to isolate errors unnecessary. Since the true 

value of a state variable 1s generally unknown, the adjustments x' -x are 

evaluated after reconciliation of the data. If use 1s made of a least squares 

method for data reconc1hat1on, the process constraints have to be linear in 

order to ensure a known distribution for the measurement residual x' -x, 

assuming a known distribution for x' (Madron, 1985). 

3.2.2 Type I and type II errors 

When statistical hypotheses of populations are tested, twr .ypes of errors 

(referred to in the statistical literature as type I ">r type II errors) are possible 

(Walpole & Myers, 1978). A type I error is committed when the null hypothesis 

is valid, but erroneously rejected (i.e when a random error is incorrectly 

identified as a systematic error), a11d a type II error is committed when the null 

hypothesis is accepted when it is false (1.e. when a systematic error 1s not 

detected) . The probability of committing a type I error is known as the level of 

significance or the size of the critical region of the test, and is usually denoted 

by a, while the probability of a type II error being committed 1s usually denoted 

by B. In efficient ;ileasurement error detection schemes, the probabiiity of both 

these errors occurring should be as small as possible. 

Similar to statistical tests, the performance of a neural net error detection 

scheme can also be constructed to minimize the probability of the occurrence 

of type I or type II errors, through the appropriate labelling of training 

exemplars. To reduce the occurrence of type I errors, only the residuals in 

region CD in figure 3.1 are designated as gross errors. When the distributions 

of random and systematic errors overlap (shown schematically in figure 3. 1 ), 
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one critical region can only be adjusted at the expense of another. Stated 

differently, to ensure t11, t the probability of type II errors occurring 1s as low as 

possible, the probability of type I errors occurring has to be increased, as 1s 

shown diagrammatically in f 1gure 3 . 1. In the neural net error detection schemes 

discussed in this c 11apter, all the nets were trained to significance levels of less 

than 2%. 

3.2.3 Existing methods 

Generally speaking, approaches to fa ult detection and isolcition can be divided 

into tvvo major groups, depen :iing on whether or not the methods are based on 

the use of a plant model. Metho:is not based on the use of a model include limit 

checking, the use of speci~I sensnrs or multiple sensors (physical redundancy). 

frequency analysis, as well as thl. u~e of knowledge-based methods where 

rules derived from theory or ocperiencr are used to detect the presence of 

system failures or gross errors {Gertler, 18q8) . Methods 1n which mathematical 

models are used to detect gross Mrors ema 1ate from the concept of analytical 

redundancy, and has received considerabie -:ittention during the last two or 

three decades. 

Early method .. making use of mathema 1cal models • 1ere ba~ed on ;terative data 

adjustr.1ent procedures, whereby measuren ~nts WP.re "Ucccssive1y deleted from 

the measurement data set. Gross errors could subsequently b~ identified 

through association with the maximum et ! ct o f such a deletion on a !east 

squares objective function , but the method w as cumbersome, especially when 

applied to large sets of measurements (Romagnoli & Stephanopoulos, 1981). 

These methods for detecting the presence of systematic errors were :ater 

validated statistically, based on the relation between the residuals of the 

constraints and the measurement errors. Further advances followed with the 

proposal of univariate and multivariate statistical criteria for detection not on! { 

of the presence of gross errors in the data set as a whole, but also of the loci'l­

t1ons of these errors {Romagnoli & Stephanopoulos, 1981 ; Crowe et al., 198 .. ~; 

Knepper & Gorman, 1980; Madron, et al., 1 S77). These methods wen· only 

applicable to measurament data subject to linear constraints and non-,i~ eu con­

straints had to be linearized, typically by re!~ining first order terms in a Taylor 

series expansion (Crowe et al., 1986; Romagnoli & Stephanopoulos, 1980, 

1981; Stephenson & Shewchuck, 1986) An alternative method of studen•1zed 
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residuals not dependent on knowledge of the variances of the error 

measurements and purported to discriminate more accurately against outliers 

was similarly proposed by Jongelen et al. ( 1988) . 

Ragot et al. 11991) explored the application of parity space techniques for the 

detection of gross errors in analytically redundant process data and 

demonstrated the equivalence of this method to methods based on the use of 

normalized residuals. 

Although the principle on which all these tests was based remained essentially 

the same, many refinements to these tests were proposed 1n subsequent year~. 

Serth and Heenan ( 1986) for example, proposed a screened combinatorial test, 

as well as a modified 1terat1ve measurement lest which they applied to 

measurement data subject to bilinear constraints lord ache et al. ( 1 985) 

similarly proposed a modified test for the identification of multiple gross errors. 

Narasimhan and Mah ( 1987, 1989} recommend9d the use of a generali7ed 

likelihood ratio test, which could accommodate errors not only attributable to 

erroneous r.ieasurements, but also to actual aeviat1ons in the process itself, 

while Rollins and Davies ( 1992) 5uggested the use of an unbiased method to 

detect syster.iatic errors. The sorhisti~·~tion r,f current statistical procedures not 

withstanding, these methods all suffer from a serious shoru:'."lming. They are all 

inherently limited in their applicJh1lity to data restricted by linear process 

constraints. That is riot to say thes~ techniques can not be applied t data 

subject to non-linear process r.cnstra nts at all. Serth & Heenan ( 1986) and 

others na-.1e proved that uno• ~t<:1in circumstances (such as where the 

process c;onstraints crn be I. ed successf~1lly) the application of hese 

statistical methods yields rea satisfactory re:.ults (Crowe et al., 1986; 

Romagnoli & Stephanopr: u s, 1 ~nCJ, 1981 ). 

In a new approach Kramer ( 1992) has 1 ecently shown that auto associative 

neural networks can be implemented to detect and eliminate gross errors in 

measurement data subject to non-linear constraints. The disadvantage of these 

nets is that they depend on a large degree of redundancy in the measurement 

data, and are therefore not suitable for the detection and elimination of gross 

errors tr "'"' 1uldr variable measurements, or measurements characterized by 

small sarr p:0 sizes, ~uch as those frequently encountered in the metallurgical 

industry, " • i~ the independent measurement of process variables is often 

.. ·. . 
• t \. • " • 

'· '- ~ 
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difficult and expensive. Error classification by autoassociative neural nets also 

depends on the relative distribution of errors in the samples . If for example two 

out of three variable measurements contain biased or gross errors, the 

autoassoc1at1ve net will incorrectly characterize the unbiased error as biased, 

since it does not have an absolute reference regarding the features of a gross 

error. The methods discussed in this chapter differ from those proposed by 

Kramer ( 1992) 1n that they are based on the conservation equatians or other 

process constraints imposed on the measurement data . Thus unlike Kramer's 

approach they depend on a mathema~ical model and do not need large sets of 

measurernen s tc detect or isolate gross errors (a distinct advantage especially 

as far as mineral processing or metallurgical systems are concerned). 

It is consequently the aim of this investigation to highlight the use of neural net 

methods to detect gross errors in measurement data. These nets make use of 

the constraint and measurement residuals of the process system, and like 

autoassociative neural nets (but contrary to classical statistical methods), they 

also have a powerful ability to detect grri"s errors in the presence of non-linear 

constraints. 

3.3 THE DETECTION OF SYSTEMATIC ERRORS BY MEANS OF NEURAL 

NETS 

By presenting a fe orward neural net with examples of process measurement 

and constraint residuals as input, and appropriate classes indicating the 

presence of different types of errors as output, the net can be trained to 

generalize the relationship between residuals and the types of errors giving rise 

to these residuals. When presented with test vectors consisting of constraint 

and /or measurement residuals, it is then able to assign the input to the error 

categories it had been trained to recognize (analogous to the statistical 

hypothesis tests traditionally used to categorize errors). Since neural nets are 

not limited by the nature of the process constraints (unlike many statistical 

methods), they can be used to considerable advantage in different error 

detection schemes. Two such strategies are outlined in this chapter. 

3 .3 .1 Global detect ion of gross errors in sets of constrained variables 

The first strategy is the simplest and can be used to detect gross errors in sets 

of variables associated wiril nodes in the process circuit, similar to the global 

'. . 
' ~ 
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test 1n statistics (Romagnoli & Stephanopoulos, 1980). Note that this strategy 

as such does not allow the location of errors beyond the sets of variables 

associated with nodes in the process circuits. Despite this drawbac:!t. the 

strategy 1s useful 1n that no information regarding the true values of the process 

variables is required. The method 1s based on the effect that measurement 

residuals have on the process constraints of the system. The measurement and 

constraint residuals are directly proportional, i.e. zero-valued measurement 

residual vectors (associated with the true or reconciled values of the proce!>s 

variables) generate zero-valued constraint residual vectors, while a monotonous 

increase in the measurement residuals also results tn a corresponding 

monotonous increase in the constraint residuals . Systematic errors (which are 

usually signific;intly larger than random errors) generally result 1n constraint 

residuals that ~re larger than normal, and which can be distinguished from 

smaller constraint residuals which are usually associated with smaller random 

errors. 

In traditional statistical test methods (assuming that the distribution functions of 

the variable measuremem:s are known) the detection of gross errors is limited to 

linear or linearized process constraints which have essentially the same types of 

d1strrbution functions as the process variables. When the constraints are non­

linear their distributions are generally unknown and the constraint residuals can 

consequently not be subjected to statistical hypothesis testing. By making use 

of neural nets, this restriction is obviated, since the net can learn arbitrary 

distributions of the constraint residuals a priori, as 1s explained below. 

The general detection strategy involves training a neural net with examples of 

constraint residuals generated by measurement residuals of a known class. No 

mathematical models or explicit parameter specifications are involved in the 

process - the data used to train the net are the standard from which the net 

learns the distinction between residual..:; considered to be normal and those 

considered to be indicative of a bias in the process data. Plant data can be used 

for training the net, but artificial data are also convenient, since they are easy 

to generate and there 1s no uncertainty as f:ir as the classes to which the 

residuals belong are concerned. During the training process, the net constructs 

an internal modf.I of the relationship between the constraint residuals and the 

classes associai.ed with the germane measurel'!lent residuals. This model can 

~ --"-------- --- - -~---- --- - ---~ -- - - -~ - - ---- - - - - -
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subsequently be used to detect gross errors 1n measurements not encountered 

previously. 

As far as the strategies proposed in this dissertation are concerned, only two 

classes are recognized, viz. a class associated with random errors and a class 

associated with one or more gross errors in the observations. Extension of the 

number of classes (e.g. to discern between gross errors of various types) is a 

trivial matter that does not merit in-depth discussion. Once trained, the net can 

be presented with any set of constraint residuals generated by actual plant 

data, and it will assign these residuals to the classes it had been trained to 

recognize. The use of this strategy is clarified by way of the following example. 

Example 3.1. Detection of gross errors in a two-product classifier. 

Consider a two-product classifier such as a hydrocyclone where a feed stream 

(F 1) is split into two product !:treams, e.g. an overflow (F2) and an underflow 

c;tream (F3). If only two components are present, the mass balance equations 

can be expressed as 

(3.29) 

(3.30) 

(3 .31) 

where f 1,1 denotes the fraction of the i'th component in flow st re 1m Fr 

For the neural net to be able to detect systematic errors in the variables F1, F2, 

F3 and f1,1 • fl,2• fl ,3• f2,1• f2,2 and f2,3• it has to be presented with examples 

of what are considered to be such errors. As with any other procedure. this 

implies a knowledge of the distributions of the residuals of the variable 

measurements. For the purpose of this example, normal probability distributions 

were assumed and embodied in the training data. 

i) Training and test data 

Training and test sets were generated from a set of true values (i.e. an arbitrary 

set of values that satisfies the proce:;s constraints represented by equations 
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3.29 to 3.31). These training and test sets were derived by corrupting the sets 

of consistent data with random and gross errors of the form 

x' = x + e + b (3.32) 

where x' is the observed value of the process variable with a true value of x, e 

1s a random measurement residual with a normal distribution with a zero mean 

and a known variance, and b is a bias or systematic error component which is 

per definition zero in random errors and non-zero in gross or systematic errors. 

The magnitude of the bias was allowed to vary randomly between 10% and 

100% of the random variable measurement x , ·, i.e. 0. 1 • (x
1 

+ e,) ~ I bi I ~ x
1 

+ 
e, for gross errors, with a small standard deviation of 2.5%. The training set 

consisted of 200 feature vectors of the form { I r P j /ap;CLASSp}, 

where r P denotes the p'th const.·aint residual of the circuit, aP the standard 

deviation of the constraint residuals r P and the binary output CLASSP the type 

of error (0 for random and 1 for gross) associated with the p'th constraint 

r~sidual. By considering the n<Jrmalized magnitudes of the residuals, the 

relationship between the error classes and the constraint residuals is simplified, 

since the net does not need to accounl for the sign of the residuals . In more 

sophisticated error detection schemes (requiring more sophisticated neural net 

models) the actual values instead of the magnitudes of the residuals can be 

used in order to distinguish between different types of gross errors. Gross and 

random errors were present in approximately equal proportions in the training 

sets, to allow the net to construct representative models of each class. The test 

set was comprized of 100 foature vectors similar to those in the training sets. 

Ii') Structure of neural nets 

Four different neural netf which consisted of simple one-layer configurations 

(not counting the input layer which serves only to distribute the inputs to the 

rest of the net) were trained for error detection The nets were structured as 

showed rn figure 3 . 2, and differed only with respect to the process units used 

in each net. Four of the most popular t"pes of units described in the literature 

(Lippmann, 1987, Wasserman, 1990) were investigated, namely linear, sine, 
hyperbolic tangent and sigmoidal process units. 

. -
- . -
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iii) Training of the nets 

The nets were trained by means of the generalized delta rule ( Rumelhart et al., 

1986) and typically required less than 20 000 1terat1ons to converge. After 

convergence several runs on different test sets were made with each net. The 

weights of the trained nets are shown in tables 3 .1-3.4. 

iv) Results 

Tl1e ability of the trained nets to classify measurement errors as random or 

systematic is summarized in table 3.5 and 3.6. As can be seen, the 

performance of the nets does not appear to be particularly influenced by the 

type of transfer function implemented. The nets could detect approximately 

90% of the gross errors in the data they were trained on (as shown in table 

3. 5) and approximately 85% of the gross errors in data not encountered before 

(as shown in table 3.6) . Judqing from these small differences between the 

abilities of the nets to classify errors in the training and test data, it can be 

concluded that the nets generalize the training data well. Sir11ilar experiments 

were conducted with neural nets containing one or more hidden layers, but this 

did not result in any significant improvement in performance. 

3 .3.2 Location of gross errors in sets of constrained variables based on variable 

measurement residuals 

The second strategy differs from the previous one, in that the measurement 

residuals instead of the comtraint residuals are used to locate systematic 

errors. Traditional statistical methods make use ot analogous approaches, by 

reconciling the variable measurements and testing the residuals generated by 

reconciliation (Madron, 1985). Since these test procedures can not be 

separated from the data reconciliation problem {which have to be solv~d first to 

generate a set of variable adjustments which can be tested for gross prrors), 

they are affected by the ability of the reconciliation procedure to yield unbiased 

reconciled measurement values in the presence of gross errorr,. It is especially 

the least squares procedures that are sometimes vulnerable to this type of 

problem when the constraints of the process are non-linear (Madron, 1985) and 

as can be expected, the problem is aggravated by the presence of multiple 

gross errors. 

. . ' 
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A similar approach is p(Jssible with a n~ural net, where a set of reconciled 

process variables is also used as a basis for the location of systematic errors. 

The important distinction between the neural network approach and 

c1.>nventional statistical methods, 1s that the r. t can form an internal 

representation of the distributions of residuals and 1s consequently not 

restricted by the nature of, or the types of distribution functions associated 

with the process system. Like statistical methods, the neural net approach 1s 

also dependent on the generation of reconciled variable measurements and if 

the variable adjustments ate compromised by the presence of gross errors in 

the data, the performance of the ne t can also be expected to deteriorate owing 

to the lower quality of the inputs. 

The use of a neural net to locate systematic errors in process data entails the 

corruption of a consistent set of variable measurements (in effect assumed to 

be the true values of the process variables) with various types of errors, and 

training a neural net to classify these errors based on the measurement 

residuals I x, '-x, I or I x1 ' -x1" I· The following examples illustrate the technique. 

a) Example 3. 2: Location of multiple gr<>ss errors in an industrial flotation 

circuit 

The flotation circuit depicted in figu1 e 3. 3 has previously been described in the 

literature (Cutting, 1976) and consists of 12 process units, viz. 6 flotation 

banks (R 1, R2 & C 1-C4 ) , 5 hydrocycloncs and a mill. Since only the total flow 

rates of the process streams, F1, F2, .. F19 are conside·ed , the effect of the mill 

can be ignored. The circuit 1s thus subject to 11 linear process constraints 

(equations 3.33-3.43) and since measurements of the flow variables generally 

violate these constraints, they have to be adjusted prior to further · se. As part 

of the reconciliation procedure, it is necessary to detect and eliminate gross 

errors in the flow variable measurements, as the presence of these errors can 

lead to l~irge distortions in the reconciled values of the variables . Knowledgt? of 

the variances of these measurements 1s furthermore a prerequisite to the 

detection of systematic errors, as it is used to differentiate between the 

different classes of errors. As was pointed out in chapter 2, these variances are 

often not available and can then be estimated by some of the me~hods 

described in the preceding chApter. In order not to complicate this 

- - - ---- - --------- - - -
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d1? r~ stration unduly however, arbitrary variances ere assumed for the 
mc~s rnment errors. 

Process constnints: 

Flotation banks 

(3.33) 

F4 - Fs - Fe = 0 (3.34) 

Fg - F10 - F11 = O (3.35) 

(3.36) 

(3.37) 

(3.38) 

Hydrocyclones 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

The adjusted data, shown in table 3. 7, were used as a basis for generating arti­

ficial measurements, by corrupting the consistent set of measurements by 

various random and systematic errors. In this investigation all errors had a 

standard deviation of approximately 10%, so that random and systematic errors 

were differentiated sc'ely in terms of their expected values, as shown in figure 

3.4 where a normal error 1s compared with a gross error with a 15% bias . 

Since the constraints are linear, a traditional statistical method, such as the 

popular measurement test could also have been used to determine the presence 

of gross errors m the process variables (lordache et al., 1985). 

' ".1~ 
. . - ------ - -- --
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A single layer back propagation net (shown diagrammatically in figure 3.2) 

consisting of an input and output layer w ith 1 9 computational elements each 

(corresponding to the 19 process variables of the system) wa~ constructed to 

identify gross errors in the measured values of the flow streams F
1

, F
2

, . . F
19

. 

The states of the computational elements in the output layer of the net (one 

element for each measured variable) indicate the presence (output value = ·1) 

or the absence (output value = 0) of a gross error. It is in principle also 

possible to distinguish between systematic errors with different biases or 

expected values, by expanding the domains of the states of these elements, or 

perhaps by assigning errors to three different categories, viz. random, gross 
and indeterminate. 

The set of exemplars consists of feature vectors of the type T k = {I Fi ' -

Fd /a;;CLASS,}, where i = 1,2, .. 19, i.e . the inputs consist of the normalized 

magnitudes of the measurement residuals of the flow variables in the system 

( F;-Fi ' ), as well as an indication of the type of error associated with a particular 
measurement value (CLASSi). 

Approximatel v 50 artificially generated exemplars were needed to adequately 

train the neural net, as indicated in figure 3 . 5. After approximately 10 000 

training cycles (presentations of each vector in the training set to the net) very 

little improvement in the root mean square error (difference between actual and 

the desired output of the net) occurred , as shown in figure 3. 6 . The 

performance of the net could consequently be evaluated against the test set of 

vectors and is depicted graphically in figure 3. 7 . The labels A -G shown in figure 

3 . 7 denote the corruption of the measurement data with errors with different 

biases as explained in table 3 .8 . Biases are shown relative to the 

measurements. In figure 3 . 7 it can be seen that the net classified most gross 

errors correctly when the relative bias of the systematic error was larger than 

approximately 70%. These values are not absolute, since the performance of 

the net is also determined by the variance of the errors (approximately 0.013 in 

this easel. For systematic errors with expected values not much different from 

those of the actual measurements themselves (less than 40%), the 

discriminatory power of the net dropped markedly, as could be expected. 

- --
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b) Example 3. 3: Location of multiple gross errors in the measurement data 

of a three-stage backfill circuit subject to non-linear process constraints 

This example is an extension of example 3.1 discussed in section 3.3.1, and is 

based on a backfill circuit which consists of three hydrocyclones connected as 

indicated in figure 3.8 and which is used for the preparation of backfill material 

in a South African mine (Woollacott et al., 1992). Although the plant data both 

before and after reconciliation are provided in table 3. 9, the measured data 

could only be tested for gros .. errors in an arbitrary way, since no knowledge of 

the covariance matrices of these measurements was available. As before the 

adjusted data were corrupted with known errors, which enabled accurate 

evaluation of the nets. 

The material balance of the circuit is expressed by equations (3.44-3. 53). 

These equations constitute the constraints on the process system, tne residuals 

of which are incorporated in the training data set of the neural net. 

Process constraints : 

Fi + Fs - F5 = 0 

F5 + F7 - Fg = 0 

Fg - F2 · F3 = 0 

F3 - Fa - F1 = 0 

F2 - F4 - Fs = 0 

and for i = 1 to 6 

F 1·f1 ,1 + Fs. fs,1 - F5. f 6,i ""' 0 

F5.f6,i + F1. h,1 - Fg. fg,i = 0 

Fg. fg,1 - F2. f 2.1 - F3. f3,i = 0 

F3.f3,1 - F9.fs,1 • F1.f1,i :::: 0 

F2.f2,i - F4.f4,I - Fs.fs,1 = 0 

where 

I:J I:I fl ,J = 1, i = 1,2, .. 9, j = 1,2,3 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

. ~ 
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As in the previous exarnple, the reconciled values of all the flow variables Fi 

and f 1•1 are used as a basis for the demonstration of gross error detection by 

means of neural nets. In order not to unduly complicate computational 

procedures, the reconciled data have once again been corrupted artificially with 

only two classes of errors (i.e. random and systematic) . 

i) Training and test data 

In order to further evaluate the ability of neural nets to di::;criminate between 

error classes, eight different test and training data sets were generated from 

the reconciled data shown in table 3. 9. All errors had standard deviations of 

12% and biases as shown in table 3 .8 . As before, the training vectors T
1 

consisted of the normalized measurement residuals, as well as the classes 

associated with these residuals {I xi' -x, I /01;CLASS
1
}. 

ii) Structure of neural nets 

To determine the presence of systematic errors, a back propagation neural net 

with sigmoidal process units was used to categorize the two types of errors. 

The input layer of the net was compnzed of 19 input units, corresponding to 

each of the measurement residuals of the circuit, while the output layer 

similarly consisted of 19 units (one for each normalized measurement residual), 

for assigning the residualf to the appropriate error classes. 

tii) Results 

The net converged in less than 10 000 iterations, typically as shown in figure 

3.9, where the root mean square (RMS) value of the difference between the 

desired and the actual output of the net is shown during training. The ability of 

the net to isolate gross errors in the circuit is shown in figure 3. 10. This figure 

shows a sharp decline in the ability of the net to detect gross errors as the 

difference between the expected values of the normal and the gross error 

becomes less than approximately 20%. Similar trends were observed for otht:ir 
variances . 

. . 
--- - - - - - ~ ~---- - -
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c) Example 3.4: Detection of gross errors in metallurgical grinding circuit 

(Serth et al., 1987) 

In the previous examples the ability of neural nets to detect gross errors in data 

subject to non-linear constraints has been demonstrated. In this example the 

performance of a neural net is compared to that of a statistical method 

described in the literature (Serth et al., 1987, 1 989) . The specific method has 

been selected because it deals explicitly with non-linear constraints, and is 

furthermore repurted to be an efficient means of detecting multiple gross errors 

in measured data . 

With the modified iterative measurement test (MIMT) technique process data 

are first reconciled (based on linear or linearized process constraints) and from 

these data a test statistic (zi) is computed for each measured variable, i.e. Pj = 

e/ µi,J l'2 . Since the process constraints have been linearized, p1 is a standard 

normal deviate under the null hypothesis that zi contains no systematic error. 

Each test statistic p1 1s compared with a critical test value, Pc = z1 -~/2 • the 1-

B/2 point of the standard no1 mal distribution . The variable corresponding to the 

largest value of I Pj I > Pc is then deleted from the vector of measured variables 

and new reconciled measurement values are computed from the compressed 

measurement vector Zm· This step is followed by a limit check on the new 

reconciled measurements . If the limits are violated, the previously deleted 

variable is returned to the measurement set and the next largest va!ue of 

I Pj I> Pc 1s selected and the whole process repeated. If the upper and lower 

limits of the reconciled variables are not violated , the variable is not returned to 

the measurement set, since it is considered to contain a bias. 

The circuit consisted of a ball and rod mill connected to a ~yclone classifier as 

shown i:i figure 3.11 . Based on the constraints that i 1 ~ mass fractions have to 

sum to unity, the mass fractions of water in stream:: F5 to F9 have been 

eliminated, and the following set of equations was obta:· .Jd to describe mass 

f!ow in the circuit (Mular et al., 1976; Serth et al. , 1 ~87) . . : 1') following set of 

equations is identical to that used by Serth et al. ( 198, ' '1"• •:1 Ri = Fi and Wi,j 

= fi ,j· 

Rod ml'll (Node 1 J 

(3.54) 

. . 
~ . 

-- - - - - - - - - ~ - - -- - - -
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Pump (Node 2) 

Ball mill (Node 3) 

F3 + Fe - F5 + F5.I3
1f6,j - Fe.I31f8,j = 0 

F9.I3
1fa ,1 - F5.I 3

1f5 ,1 =- 0 

Cyclone (Node 4) 

i) Training and test data 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

As before, training and test data of the form {Ix,' -x, lfai; CLASS,} were 

generated from a consistent set of process data (shown in table 3. 10) . 

The errors introduced into the measurements were of the form x + e + b, 

where e had a zero mean and a standr,rd deviation of 2.5%, as investigated by 

Serth et al. ( 1987). Biases varied randomly between 10% and 100% of the 

values of the corresponding variable measurements, i.e. 0. 1 • (x 1 + e
1
) ~ I b, I ~ 

x, + ei, and were assigned randomly 1n equal proportions to a set of simulated 

measurements, so that approximately half of the measurement vectors 

contained random variables only, while the other half contained gross errors 

ranging from 10 to 100%. The proportions of the gross errors of various 

magnitudes were approximately equal as well, 1.e. there were just as many 

gross errors with magnitudes ranging from 10-20%, as there were errors with 

magnitudes ranging from 20-30% or 60-70%, etc . These errors are depicted 

schematically in figure 3 . 11 . 

. . • . J,,\ . 
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ii) Structure of neural nets 

In order to detect the presence of gross errors in the variables associated with 

particular nodes in the process circuit, a neural net with 24 input elements and 

24 hyperbolic tangent output elements (one for each of the 24 corresponding 

variables) was constructed and trained on the circuit as a whole. 

iii) Training and testing 

The nets were trained with the normalized cumulative delta rule (Rumelhart et 

al., 1986) and tested against thn test data after convergence. Training 

proceeded rapidly and as before all the nets converged in less than 20 000 

iterations. 

iv) Results 

The results of the tests are shown in tables 3. 1 1 and 3. 12. In table 3 . 11 the 

ability of the net to detect gross errors with different biases ranging in 

magnitude from 10-100% is shown and compared with the ability of the MIMT 

method. From these data 1t is cle~r that the net is more successful than the 

MIMT method . In table 3.12 the ability of the net to detect systematic errors in 

the various variables is shown. The net managed to detect virtually all gross 

errors i1 :ie variables, regardless of the magnitudes of the variables in the 

circuit. This is not so much due to the super:ority of the net as an error 

classifier, but can probably be attributed to an inability in the MIMT method to 

yield unbiased adjustments to the variables prior to testing for gross errors. The 

neural net in contrast, was evaluated with unbiased measurement residuals, 

hence the better perforniance. Other statistical methods such as the one 

proposed by Tjoa and Biegler ( 1991) could be ex~ected to detect systematic 

errors in the relatively smaller variables with a high degree of accuracy as well, 

as will be discussed in more detail in example 3 .5 of this section. 

d) Example 3. 5: Detection of gross errors in an arbitrary non-linear system 

This example has been used previously by Pai and Fisher ( 1988), Ramamurth1 

and Bequette ( 1990), as well as T1oa and Bi Pg I er ( 1991), and comprizes five 

measured variables xi' (i = 1, 2, .. 5) and three unmeasured variables x 1' (i = 
6, 7, 8), subject to six non-linear constraints. 

-- ------- - - - ---- -
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(3.62) 

The exact values of these variables are x = {4.5124, 5.5819, 1.9260, 1.4560, 

4 .8545, 11.070, 0.61647 2.0504}T (Tjoa & Biegler, 1991). Tjoa and Biegler 

( 1 991) considered the reconciliation of these variables with a hybrid successive 

quadratic programming (SOP) method which was used to minimize an objective 

function based on a joint probability distribution of both random and gross 

errors. The performance of the algorithm is considered in more depth in the 

following chapter, when data reconciliation with neural nets is investigated. At 

convergence of the SOP procedure, they tested each measurement against the 

combined distribution. Since the presence of gross errors are taken into 

account during the minimization of the bivariate objective function , the variable 

adjustments are unbiased, which facilitates the isolation of gross errors 

considerably (regardless of the test method used to identify these errors). The 

method is still dependent on the explicit specification of a joint distribution 

model however, which may not be an accurate reflection of the process model. 

In order ·o compare the error detection capability of a neural net with the 

method proposed by these authors, a 100 data sets were corrupted with 1 0% 

Gaussian noise to simulate random errors. In case 1 the 100-vector set is 

further corrupted with gross errors with a bias equal to four times the standard 

deviation (01) of the random errors. The gross errors were distributed equally 

among the five measured variables (x1 ') and in all 20% of the measurement 

vectors were corrupted (one gross error per measurement vector only). In case 

2 every fifth variable set was completely corrupted with gross errors (i.e. five 

gross errors per variable set) and in case 3 a gross error was placed m each 

data set for measurements x 1 • to x5 • in rotation . Since the success of the 

method is to a large extent ascribable to the ability of the reconciliation 

algorithm to generate unbiased estimates of the true values of the process 

' ·, 

' . . 
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variables, an exact comparison of the method with a neural net is not possible 

unless the same reconciliation procedure is used in both cases. Nonetheless if 

the ad1ustments or residuals arising from the reconciliation of the measurements 

by the SOP method are considered to be unbiased as concluded by Tjoa and 

Biegler ( 1 991 l, a reasonable compariso, 1 can be made by evaluating the 

response of the neural net to artificially generated unbiased residuals. 

The neural net consisted of an input layer with 1ive process elements 

(corresponding to the five measured v~lues x' only, c:is it was not necessary to 

take the unmeasured var '3ble .... into account) and an output layer with five 

sigmoidal process elements (one again for each variable xi') . 

As with previous examples, training nroceed£.d with the use of the normalized 

cumulative delta rule anu after convergence of the net after approximately 

20 000 iterations, the net was used to detect errors in test data sets 1 , 2 and 

3. The method proposed by Tjoa ano Biegler detected approximately 73% of 

the gross errors in case 1, 60% of the gross errors in case 2 and 69% of the 

gross errors in case 3. The neural net detected approximately 72%-74% of the 

gross errors in all cases. These resuits should only be regarded as an indication 

of the capability of a neural net however, since especially in cases 2 and 3 the 

method used by Tjoa and Biegler might have had to contend with some bias in 

the measurement residuals prior to evaluation, not taken into account when 

testing the net. The weights of the trained net are shown in tabie 3. 13. 

3.3.3 Location of gross errors in sets of constrained variables based on 

measurement and constraint residuals 

In somewhat more sophisticated approaches, error detection and isolation can 

be based on both measurement and constraint residuals, by training the ,1eural 

net with vectors of the form {lx1' -x1l/oi, rp l/op;CLASS1}, similar to an approach 

discussed by Aldrich and Van Deventer ( 1993), which was based on the 

measurements and the constraint residuals as such {x1',rp;CLASS1}. These 

techniques would I 1ave to be complemented by supervisory routines which 

would be able to interpret ambiguous output (a constraint residual might 

indicate the presence of a gross error , v1hile the relevant measurement residuals 

appear to be unbiased or vice versa). In critical systems for example, only data 

unambiguously classified as unbiased could C'e considered as such. 

, . 
• 
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3.4 DISCUSSl0N OF RcSUL TS AND CONCLUSIONS 

The use of neu, al nets for the detection of gross errors in process data is best 

explained in analogy w it'1 statistical tests presently used for the same purpose. 

These tests are based either on the constraint residuals generated by the 

incc'1sistent data, or directly on the measurement residuals generated when t'1e 

observed values of the variables are reconciled with the constraints. 

The neural net techn iques proposed in this chapter follow much the same 

approach and the prerequisites to the application of these methods are the 

same as for statistical tests - analytical redundancy of the process data and 

knowledge of the distribution of random errors in the data. An important point 

is the fact that the knowledge concerning the random errors does not need to 

be explicit when neural nets are used (i.e. the usual assumption of a normal 

:fistribution with a certain variance and a zero mean), since the net can derive 

its own representation of this distribution when provided with sufficient suitable 

process dc.:ta Once the net has constructed a model of the random errors in the 

measurements (from examples represented to it in the training phase). 1t uses 

this representation as the exclusive standard against w111ch errors are classified. 

A robust method to detect errors in constrained sets of measurements is based 

on the constrairt resiJuals of the conservation equations or other constraints of 

the process. When statistical methods are used, the distribution cf the 

constraint residuals has to be known and since this distribution 1s a function of 

the distributions of th1:: individual variable measurements, statistical methods are 

generally limited to Ii~ ear systems. (In non-linear systems the distribution of the 

constraint residuals is ,o longer the same as that of the measurement residuals 

and gene1 ally unknown). In neural nets this limitation does not apply, since the 

net learns the distribution of the constraint residuals for th~ particular system 

prior to classification of these residuals. Having learned this relationship for a 

particular set of constramt equations and a random error distribution, the net 

can be used to detect the presence of gross errors in the set of variable 

measurements. Once detected, other techniques can then be used to isolate 
these systematic errors. 

Alternatively (and in order to isolate gross errors directly) tests can be based on 

measurement residuals . In contrast with the constraint residuals, these 

measurement residuals can unfortunately not be determined directly from the 

' . 
- ----- - ---- --
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variable measurements themselves, since the true values of the variab!es at the 

time of measurement are not known (assuming the process model to be 

correct, the true values of the constraint residuals at the time of measurement 

am known to zero). As a result it is n()t possible to make use of the actual 

measurement residuals (the difforences between the true and the observed 

values of the variables) to locate gross P.rrors in the system. Use can be made 

of the estimated measurement residuals however (the differences between the 

reconciled and the observed values of the variables) . As a consequence the 

detection of gross errors based on measurement residuals is dependent on the 

accuracv with which the true values of the variables can be estimated, i.e. the 

reconciliation procedure used to filter the data . 

The relation between the measurement residuals is typically relatively simple 

and training of the net uncomplicated, so that accurate classif1cat1on of the 

errors is possible provided that the residuals presented to the net during training 

and testing are reasonably close estimates of the actual residuals of the 

measurements. 

The examples considered in this dissertation were intended to demonstrate the 

use of back propagation neural nets to detect gross errors in measurement data 

sub1ect to process constraints . In practice more sophisticated training 

procedures could be adopted, which could be used in conjunction with more 

sophisticated error classification schemes. It would <ilso be desirable to 

incorporate additional information in the net (such as equipment and instrument 

failure histories, previous knowledge about measurement covariances, etc.), 

either through direct modification of the architecture of the net, or by using the 

net in conjunction with a knowledge base or another neural system. 

In the light of these comments the following can be concluded: 

• neural nets constitute a powerful means of detecting gross errors 

in sets of con st: dined variables, regardless of the nature of the 

constraint!:i; 

• explicit know1ea3e nf the distribution of random errors in the 

varinbles 1s n Jt a prerequisite to the use of neural net methods to 

detect gross errors, since the nets can learn the distributions a 

f)riori; 

. . .. 
- ------------------ - - - -
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neur a: nets can be used to isolate gross errors in variable 

measurements, regardless of the constraints of the system 

• neural nets are able to discfiminate between different errors at 

ieast a~ well a~ standard statistical methods; ano 

• the ric ,. Jd to detect gross errors are relatively simple (no 

hidden l r-·; cr~ ~ ·e re4uired) and the performance o f these nets is 

moreover not affectea -significantly by ti:f:i type of tr.msfer function 
used. 
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3. 5 TABLES REFERRED TO IN CHAPTER 3 

TABLE 3 . 1 Weights of trained hyperbolic tangent neural net used to detect 
gross errors in example 3 .1. 

Vo, 1 Vo,2 Vo,3 

BIAS 7 2773 ·0.9801 ·0 .5564 

V1 , 1 9 . 1197 2.6379 ·0 .0008 

vi,2 0 .2414 2.7840 ·0 .1008 

Vj,3 0 .0637 1 .3763 0 .2227 

TABLE 3.2 Weights of trained sigmoidal neural net used to detect gross errors 
in example 3. 1. 

Vo, 1 Vo ,2 Vo,3 

BIAS -1. 1830 -1 .0019 -0 .7812 

Vi, 1 2.8595 -0.6192 0 .0164 

V1,2 0 .4902 1 .2586 -0 .2684 

v1,3 -0 .3364 0 1607 0 .1536 

TABLE 3.3 Weights of trained sinusoidal neural net used to detect gross errors 
in example 3. 1. 

Vo, 1 Vo,2 Vo ,3 

BIAS 0.9655 ·0 .5244 ·0.5777 

vi, 1 1.7577 · 1 .0830 0.0549 

vi,2 0.1078 1.4312 -0 .0467 

Vj,3 0.0592 0.6478 0.2131 

. - - . \ . - . "' .... -) . 
.. . .: ~ - ' .. . 

• •.;.,, 1.. . - ,.__ ~ -- - - - ---- - ------
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TABLE 3.4 Weights of trained linear neural net used to detect gross errors in 

example 3 .1. 

Vo, 1 Vo,2 Vo ,3 

BIAS 0 .1936 0.2874 ·0 .5502 

vi,, 0 .9029 0 .2629 0 .0577 

V1,2 0 .0498 0.6560 0 .0311 

Vj,3 0 .0594 0 2738 0 .1853 

TABLE 3. 5 Detection ( %) of gross errors (bias 10- 100%, standard deviation 

2.5%) in training data (example 3. 1). 

Process units : 

Average (%) errors detected 
Standard dev1at1on (%1 

SIGl11 

89.33 
5.44 

UNl21 

89.31 
5.45 

TANHt3l SINl41 

90.83 90.00 
6.47 4.97 

TABLE 3 .6 Detection (%) of gross errors (bias 10 100%, standard deviation 

2 .5%) in test ddta (example 3.1 ). 

Process units : 

Average (%) errors detected 
Standard deviation ( %1 

SIGl11 

88.00 
7.79 

UNf21 

82.33 
1.80 

TANH'3l 

86.56 
7.21 

SIN14l 

85.67 
6.45 

I 1 ls1gmo1dal. vlul • 1i(1 + e "I. (2111near. v(u) • k1 + kz .u, f31hyperbo11c tangent . vlu) •lo'',. t (11"+ a "I, f41s•ne: v(ul •11nlul 

. . . 
--------- - • --- !l____ -----
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TABLE3.7 Adjusted values of flotation circuit flow streams 

Fi F2 F3 F4 F5 F5 F1 Fa Fg Fio 
3 .418 2.950 0.468 3.492 1.808 1.684 0 .134 1.549 4 .882 3 .407 

Fi1 Fi2 Fi3 Fi4 F15 Fis Fn Fia Fig 

1.475 3 .660 3.557 0 .123 4.523 4.251 0 .273 3 .284 0 .966 

TABLE 3. 8 Ratios of the expected values of the uncorrupted measurements 

(x') to those of corrupted measurem<:nts (x' + b) • 

CASE A B c D E F G H 

E(x')/E(x' + bl 1.'25 1.25 1 .3 1.4 1.5 1. 7 2 

·All measurements had standard deviations of approximately 12% 
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TABLE 3.9 Plant and adjusted data from backfill circuit 

F9 F2 F3 

Cyclone Size or Exp Cale Exp Cale Exp Cale 
% solids 

150 5 .4 5.6 15.9 16.5 1.0 1.4 

106 16.4 15.4 33.5 32.5 8 .7 8 .8 

75 14.8 13.9 16.4 17. 1 12. 7 12.7 

53 9 . 1 9.7 9 .2 8 .2 12.4 10 2 

38 4 .0 5.9 3.8 3 .9 6 .2 6.7 

0 50.3 50.5 21.2 21 .8 59 ,0 60 .2 

solids 49.3 47.5 61 .8 62 .2 42.3 43 .5 

F2 F4 F5 

Cyclone Size or Exp Cale Exp Cale Exp Cale 
% solids 

II 150 15.9 16.5 18.6 17.2 16.5 15.9 

106 33.5 32.5 33.5 34. 7 29.5 30.4 

75 16.4 1 7.1 15.2 15.2 19.1 18.8 

53 9 .2 8.2 8 .2 8 .5 7 .6 7.9 

38 3 .8 3.9 2.5 2 .3 5 .9 5.5 

0 21 .2 21 .8 22.0 22 .0 21 .4 21 .6 

solids 61.8 62.0 61.7 62 .2 61 .2 61 . 2 

F3 F7 Fa 
Cyclone Size or Exp Cale Exp Cale Exp Cale 

% solids 

111 150 1.0 1.4 12.4 12.0 0.5 0.0 

106 8.7 8.8 35.9 36 2 5 .0 5.1 

75 12. 7 12 7 17.0 17.1 11 .4 12.2 

53 12 4 10.2 9.5 9.6 9.8 10 3 

38 6.2 6.7 3 7 3 .5 10. 1 7.1 

0 59.0 39.8 21.5 21 .6 63.2 65 .4 

solids 42.3 43 .5 23 .0 40.6 41 .5 

- -· ·-· ~- -----~.------~~-- - - -- -- -
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TABLE 3. 10 Consistent values of variables in metallurgical grinding circuit 

used for the generation of random and gross errors 

F1 F2 F3 f4 F5 F5 F7 Fe F9 
99.7 320.0 25.0 257 9 357.6 1109.4 1787 0 1084 3 702.7 

f5 , 1 t5,2 f5 ,J fs , 1 t5.2 f5 ,3 f1, 1 f1 ,2 f1.~ 
0.0679 0 .3964 0 .2570 0 0103 0 4622 0 .2826 0 .0200 0 .3663 0'268 

fe.1 fe .2 te.J f!l , 1 f9 ,2 f9 ,3 
0 .0328 0 .5566 0 .1831 00002 0 0721 0 2947 

TABLE 3.11 Gross errors detected (%) by neural net and MIMT method 

BIAS(%) 

<20 
20-30 
30·40 
40-50 
50-60 
60-70 
70·80 
80-90 
> 90 

MIMT1 

63 
80 
76 
81 
87 
84 
89 
92 
78 

1 
Modified iterative measurement test 

2sack propagation neural net 

BPNN2 

98.2 
100 
100 
100 
100 
100 
100 
100 
100 

TABLE 3.12 Comparison of neural net with MIMT method to detect gross 
errors in selected variables 

VARIABLE 
NUMBER 

7 
20 
1 
13 
3 
22 

DESCRIPTION 

largest flow 
largest compos1t1on 
2nd smallest flow 
2nd smallest composition 
Smallest flow 
Smallest composition 

% OF GROS5 ERRORS 
DETECTED 

MIMT1 

94 
93 
80 
64 
8 
0 

BPNN2 

99+ 
99+ 
99+ 
99+ 
99+ 
99+ 

1 Modified iterative measurement test 
2

oetectron of errors based on distribution of measurement residuals (see section 3.3.2) 
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TABLE 3. 13 Weights of trained neural net used in example 3. 5 

Vo, 1 Vo,2 Vo, 3 Vo.4 Vo,5 
BIAS 0 .4997 0 .8768 0 .5418 0.8929 0.6777 

v,, 1 3 .1778 0 .0780 ·0.0365 -0.1163 ·0.0924 

vi,2 0 .0744 3 .3703 ·0.0785 0 .2559 ·0.2869 

vi,3 0 .2166 0.5721 2.7970 0.0545 -0 .1915 

vi,4 ·0.6865 0.3314 0.0248 4.7152 0.2778 

vi,5 ·0.2422 ·0.1645 0.3275 ·0.0207 4 .2026 
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FIGURE 3. 1 PROBABILITY DISTRIBUTIONS OF 
RESIDUALS 
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FIGURE 3.3 A FLOTATION CIRCUiT WITH LINEAR PROCESS 
CONSTRAlf\ITS (Example 3.2) 
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FIGURE 3.5 RELATION BETWEEN PERFORMANCE OF NET 
AND SIZE OF EXEMPLAR SET 

PERCENTAGE OF SYSTEMATIC ERRORS IDENTIFIED 
100 ---

80 

60 

I 

40 ' 

20 
, 

0----
0 10 20 30 40 50 60 70 80 90 100 

NUMBER OF EXEMPLARS 

I FIGURE 3 .6 PERFORMANCE OF BACK PROPAGATION NEURAL NET 
DURING TRAINING 

RMS ERROR OF OUTPUTS 

0.30 - - ~-------------. 

0.25 I ' ' 

0.20 q .. . ... . . 
' ' 

Q 
0.15 ' ' ' ' u.. 
0. 10 - - -o. 

. ·""" (,,,. .. . .. 
'o_ 

- ~- - - -0-
- - -D- - - o----o- -0.05 .. . . 

0.00 

1 

I 
0 1 2 3 4 5 6 7 8 9 10 

NUMBER OF TRAINING CYCLES (Thousands) 

Stellenbosch University  https://scholar.sun.ac.za



FIGURE 3.7 CLASSIFICATION OF SYSTEMATIC ERRORS 
IN MEASUREMENT DATA 
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FIGURE 3.8 SYSTEM OF NEURAL NETS TO DETECT 
ERRORS IN HYDROCYC:LONE CIRCUIT (Example 3.3) 
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I FIGURE 3.9 PERFORMANCE OF BACK PROPAGATION NEURAL NET 
DURING TRAINING 
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FIGURE 3. 11 METALLURGICAL GRINDING CIRCUIT 
(Example 3.4) 
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CHAPTER 4 

The reconciliation of inconsistent process data 

Summary 

Smee measurements of variables m chemical and metallurgical plants generally violate the 
conservation and other constraints of these systems due to random measurement errors, 
these data have to be reconciled with the constraints p"or to further use. In 
multicomponent systems the reconc1Jiation of process data normally results in a non-linear 
constrained optimization µrob/em, which car: constitute a formidable computattonal burden 
when large systems have to .1e solved by conventional techmques. Connecttonist 
systems, such as artlf1cial neural networks can be implemented to considerable advantage 
for the solution of optimization problems such as these and m this dissertation tlleir use is 
explored. Three variants of crossbar feedback connectiC1nist systems have been 
investigated, two of which are based on gradient descent techmqucs and one based on a 
dlfcct search method. The results of s1muldt1ons, as well as a compa,,son with traditional 
computational procedures indicate that systems such as these bas(;d on gradient descent 
techniques can be used to solve large systems ell1ciently 

4.1 OBJECTIVES OF CHAPTER 4 

Robust and accurate procedures are currently available for the 

reconciliation of plant data not consistent with related plant models. These 

procedures are generally expensive in terms of computational requirements 

and given the size and complexity of some plant models, these techniques 

are not adequate for the solution of large-scal£o problems, or small -scale 

problems in ..:>n-line applications. The objectives of this chapter are thus: 

• • he examination of connect1onist structures for use in data 

reconciliation problems through the incorporation of standard search 

methods; 

• Evaluation of t he dynamics of these systems; 

• Comparison of the connectionist systems with c;onvent1onal efficient 

non-linear procedures. 

. . 
~ . . . . 

- - - - -~---- ~--
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4 .2 BACKGROUND THEORY 

A c.lear understanding of the operational behaviour vf a plant is essential 

for tt.~ identification of process phenomena, as well as for the optimization 

and control of the plant or process circuit . The collection and analysis of 

data from processes are therefore an important means for evaluating the 

performance of a plant or a;, '.ndividual process unit. The available data are 

gene• arly subject to rando.n n •. !;~ or even gross errors, which can among 

others be attributed to f a1lurr o.- 11iscalibrati"- 'Jf measuring instruments, 

the departure of the prcceE.s from str owing to malfunctioning 

process equipme,1t, or sig111f1c ar ~ -;ha; . Lhe environment. It is thus 

vital that the inconsistent r' ~ta c1 , • , econc1led with the process constraints 
prior to further use. 

4.2.1 General material and energy balance problem 

The usual approach to the reconciliation of measured variables 1s aimed at 

the minimization of the weighted sum of the squares of the measurement 

residuals , subject to conservation and other constraints of the process 
(Hodouin & Everell , 1980), i.e. 

min (x' - x") Tv ·1 (x' -x"), subject to (4. 1) 

d(x") = 0 

where v-1 
is a residual weighting matrix, usually the inverse of the 

variance-covariance matrix of the measurements x ', and x " the vector of 

reconciled measurements. Where an estimaie of this variance-covariance 

matrix is not available, a numerical weighting system can also be used by 

defining v·1 
as the inverse of the elements of the measurements of the 

variables {x}. 

Process circuits are often described in terms of a network consisting of m 
branches and n nodes, usually so that the nodes correspond with process 

units in the c1rcu1t, and branches correspond with connections or flow 

streams between the units (Vaclavek & Loucka, 1976, Vaclavek et al., 

1979; Romagnoli & Stephanopl)ulos, 1981 ; Cutting, 1976; Hodouin et al., 

1982). The topology of the circuit can then be described with the use of a 

., I • ' - - " o • ' " • ~ 
' ~ ,. . 

. . . .. , . . ' . •. . . ' . . 
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Boolean incidence matrix A(m,n), resulting in a set of material balance 
equations of the form 

d(x) = A.x - 0 (4.2) 

where x is the vector representing the material flow parameters of the 

system. It should be noted that although these parameters could represent 

any desirable physical entity, such as particle size fractions, chemical 

species or specific gravity, the choice of •he particular parameter is related 

to the structure of the incidence matrix A(m,n). A mill for example, would 

have a profound effect on a flow parameter representing a particle size 

fraction, but would merely serve as a conduit for a parameter representing 

a chemical species. Alth<.. ugh the general data reconcii1ation problem is 

also concerned with variable classification and the determination of 

unmeasured variable~. this dissertation deals only with measured variables 

subject to small random errors, in order not to unduly complicate the 

evaluation of the parallel systems investigated. 

The solution of the problem in ef feet ensures that the flow parameters are 

adjusted as little as possible, that all the conservatio.1 constraints are 

satisfied, and that the more reliable variable measurements are adjusted 

less than the less reliable variable measurements. 

4.2.2 Conventional optimization procedures 

Most conventional optimization procedures involve the identification of the 

overdetermined measurement errors, followed by rectification of these 

errors, and then the determination of determinable unmeasured flow 

parameters. These procedures are used in conjunction with schemes for 

the identification and elimination of systematic errors, and the re­

adjustment of flow variables where necessary (Tamhane & Mah, 1985; 
Romagnoli & Stephanopoulos, 1 981). 

Some of the optimization strategies for multicomponent balances include 

direct substitution of the variables in the constraints into tht:i objective 

function, optim1zdtion by means of Lagrange multipliers, direct solution by 

means of linear and non-linear programming techniques and the use of the 

Chebyshev minimax criterion (Hlavacek, 1977). Generalized least squares 
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techniques have bel:!n applied to cement clinker and uranium phosphate 

grinding processes (Hodoum, et al., 1982; Hodouir. & Vaz Coelho, 1987), 

flotation plants (Hodouin et al., 1988; Hodouin & Everell, 1980) and 

complex mineral benef1ciat1on plants (Cutting, 1976), for example. A 

somewhat different method employed by Crowe et al. ( 1983, 1986) 

concerned the construction of projection malrices to decompose the 

problem into two or three subproblems, depending on the linearity of the 

problem. Univariable search techniques have been employed with great 

success with strongly unimodal response >urfaces (White, et al., 1977), 

while non-linear problems have been solved by Newton-Raphson 

techniques, such as pertaining to grinding and classification plants 

(Cutting, 1976), as well as Gauss-Newton iterative algorithms (Pai & 

Fisher, 1988). ljoa & Biegler ( 1 991 ) made use of a hybrid successive 

quadratic programming (HSQP) method to rectify material balances around 

heat exchanger networks, while Sanchez et al. ( 1992) also used a 

successive quadratic programming (SOP) method to reconcile material and 
enthalpy measurements in a demethani, at1on plant. 

These techniques usually involve iterative procedures and are 

computationally demanding, especially as far as large complex plants are 

concerned, or where on-line material balancing is required. These 

disadvantages associated with the use of traditional meLhods make the 

use of connectionist systems or neural nets an attractive alternative for 

the optimization of mass balance problems. Due to their massively parallel 

structures, and recent advances m very large scale integration (VLSI) and 

ultra-large scale integration (ULSI) electronic circuits (Del Corso et al., 

1989; Goser et al., 1989; Murray, 1989), neural nets show great potential 

for the solution of computational problems of high dimension in processing 

times several orders of magnitude less than what could be achieved with 

sequential computational devices (Verieysen & Jespers, 1989; Best, 
1990). 

In this dissertation the use of connect1onist systems for the rect1f1cation of 

inconsistent redundant v.iriable r11tlasurements is proposed and 

demonstrated by way of two elementary examples. 

. , . -
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4.3 TYPES OF CONNECTIONIST SYSTEMS 

Recurrent or feedback nets, especially those !.:nown as crossbar or 

Hopfield nets, have been used for a wide range of optimization problems, 

ranging from the solution of non-polynomial (NP) complete combinatorial 

problems, such as the travelling salesperson problem (rank & Hopfield, 

1986) , combinatorial opt1mizat1on problems subject to inequality 

constraints (Abe et al., 1992), assignment problems (Wang, 1992a), 

systems of complex-valued linear equations (Wang, 1992c), the four 

colour mapping problem (Takefuji & Lee, 1991 ), the identification and 

recognition of visual images (Nasrabad1 & Choo, 1992; Yuille , 1989), as 

well as the solution of linear (Tank & Hopfield, 1986; Cichocki & 

Unbehauen, 1992, Wang, 1992b), non-linear (Kennedy & Chua, 1988; 

Wang & Tsang , 199 '11 d dynamic programming (Chiu, et al. , 1991) 

problems. These nets d1 rfe1 from feedforward systems (such as back 

propagation nats) in that information is not only passed forward through 

the layers of the net, but backwards or laterally as well. The performance 

of three different connectiornst systems expla ined below and referred t o as 

CS-I, CS-II and CS-Ill were investigated . 

4.3.1 Connectionist system I (CS-I) 

The architecture of CS-I corresponds to that of a crossbar or Hopfield 

neural nPt, as shown in figure 4 . 1. The system consists of three layers, 

viz. an input layer, a hidden layer with full lateral connections, as well as 

an ou tput layer. All layers have the same number (NJ of elements, and all 

are provided with linear transfer functions, of the form 

g(u) = k 1 .u + k2 , (k 1 , k 2 constant) 

The exact number of elements in each layer is determined by the number 

of process variables to be reconciled (i .e. one element for each process 
variable) . 

• • • I • • • • • • ..., ' • 

~ .... . ' 
'· . -- -----~ --
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a) Neurodynamics 

When these networks are viewed as dynamic systems, the network 

computation process car1 be seen as a system moving in a state spacel21 

through the constant application of some transition rules. These transition 

rules are procedures for updatir.g the state of the system, depending on its 

current state. The system dynamics or neurodynamics of the net are 

determined by the transition rule , as well as the order in which the system 

variables or node outputs are updated. If application of the transition rule 

ceases to affect the current sta ·e of the system, the system is said to 

have converged to a fixed point or attractor m the state space. The set of 

all initial states or points leading to this f1xJd point is known as the 

attractor ba~in of the particular attractor (Masson & Wang, 1990). 

In order to analyze the dynamics of the system it is usually convenient to 

define a scalar function , which depends on the state of the system and 

has a definite value for each point m the state space. If the value of this 

energy or cost function (E) does not increase with a change in the state 

(v) of the system (i .e. dE/dv ~ 0 , for all possible v) and 1s bounded from 

below, 1t is also a Lyapunov function, and an indication that the system is 
unconditionally stable. 

By mapping the objective function and the constraints of an optimization 

problem onto this energy function , these problems can be solved in that 

the optimal solutio11 to the pi oblem is forced to coincide with the minimum 

energy of the system. The dynamics of the r.st amount to a constraint 

relaxation process, where the energy mei:lsure is defined by the degree of 

constraint violation of the system. 

To use crossbar or Hopf;eld nets for material balance reconciliation 

problems it is neces:.ary to map the ob1cct1ve function (FoeJ) {which 

incorporates the process system constramts d) onto the net, such as by 

defining the energv function I El cf the net in terms of the ob1ect1ve 
function (FoeJl 

f2lThe state sp lCe of a set of vanable~ x = {x, I 1= 1,2,3, .. n} 1s the Cartesian product of 
' he domains 01 the vanab1es, 1 e. D · = 01 .02 .03 ... on · The state space Dx 0f the set of n 
v<>riables Ii..) is thus n-d:mens1om:I. 

. . . . .. . . -~ . 
. ~ . . . . . . ... . . -
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i.e . equivalent to 

(4.3) 

where the scalar function E represents the energy of me net, x' the vector 

of variable measurements, x" the vector of reconciled measurements, d(.) 

the (equality) constraints of the system, v0 the initial output state of the 

connect1on1st system, v' the current output state of the connect1oni:>t 

system, and VI x and VI d some weighting matrices. 

By defining the neurodynamics of the net by means of the Newton 
equations, i.e. 

du/dt ::... -dE/dv; (4.4) 

the computationctl energy func;tion E is forced to decrease monotonically, 

regardless of the r.ature of this function. 

Proof (Takefuji & Lee, 1991 ): 

dE/dt = L1 dv/dt.dE/dv1 

- -L1 (du/dt.dv/du1) .du/dt 

(4.5) 

As long as the transfer function v, = g(u
1
) is continuous and non­

decreasing, dv/du, is always positive and dE/dt always negative Oi zero. 

The resultant state of the system ca., consequently be related to a solution 
ot the prohlem. 

The neurodynamics vf the net at~ thus defined by a sit of ordinary 

differential or difference equations. which have to be ir.tegrated at each 

time increment to determine the output states of the neurons after each 
change of state. 

du/dt = -dE(v) /d(v
1
) (4 .6) 

. . ~ 
' . . . " . . . 
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u,t + 1 = u,1 + -dE(v) /dv,. t (4.7) 

Integration of these equations continues until the system has reached a 

point of stability (i .e. its energy has been reduced to a minimum, so that 

du/ dt = 0 , for all i) . In practical terms the system is considered to be 
stable when 

2; I dui/dt I s E (4.8) 

where E > 0 is an arbitrary small convergence criterion . The solution of 

this system of non-linear equations is based on the use of a gradient 

descent technique, with constant step size lengths. 

b} Scaling of data 

Before the data are presented to the net, it is important that tney are 

scaled to ranges that are ust:f ul with regard to the neurodyramic function 

being used. Without proper scaling, process elements could become 

saturated. which could eventually have a severe effect on the movement 

of the system through state space. Scaling 1s usually effectec' by 

normalizing the input data. After the network has processed the data, the 

results are descaled to the original units . 

c) Connection weights 

The weights of the net are defined bv the variance-covariance matrix of 

the measurements, as well as the weights associated with the process 

constraint residuals, as presented in equC!tion (4.3) . Since estimates of the 

variance-covariance matrix elements are often not available, a weight 

matrix based on the actual values of the variable measurements will be 

defined . This ensures that the values of small variables are not adjusted by 

increments that are unduly large in relation to the value of the variables 
themselves. 

The scaled input (measured values of the process variables) of the net 1s 

clamped to the input laye.-, and the states of the elements in the hidden 

layer are updated repeatedly and asynchronously (simulated by a random 

updating procedure) through numeric integration of the potentir.11 of each 

element. The system is allowed to settle into a minimum point, and the 

.. . . .. 

. ' . . , .. . . 
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output of the hidden layers (the solution) is passed forward to the process 

elements in the output layer, from where it is descaled to yield a solution 
to the optimization problem. 

4.3.2 Connectionist system II (CS-II) 

Thi.; system is essentially a generalized version of the first one, in that 

instead of having a single hidden layer, it has a !=>-dimensional array of 

hidden layers (If P = 1, the system reduces to CS-I), each containing N 

elements in general, as shown in figure 4 2 The input Sl':Ct1on of the 

system consists of a single input layer, each clement of which is 

connected to a corresponding element in each of the P hidden layers. The 

elements in the hidden layers are similarly connected to corresponding 

elements in the output luyer. The input and output layers do not proc~ : s 

the data, but merely serve as distribution points for data input and output. 

The same neurodynam1c principles concerning CS-I are applicable, except 

that once the measurement vectN has been fed to each of the different 

layers in the hidden array, P different sets of initial conditions are 

generated in the array prior to the commencement of relaxation of the 

energy of the net. Cycles of state changes are allowed to take place 

independently in each layer 1n the array , and when necessary the state of 

laye1 1s compared with those of its neighbours and the neighbouring state 

associated with the lowest energy is assumed by the particular layer in the 

array. Each layer 1s then again allowed to relax from a stochastically 

reinitialized condition close to the previous lowest energy state. 

Communication with a particular element and other elements in the 

network 1s allowed to take place only after a particular elemerit has 

become traµped in an energy minimum. This ensures that the movement 

of the hidden layer active in the deepest attractor basin in the array is not 

slowed down unnecessarily by frequent polling to assess the states of its 
neighbours. 

4 .3.3 Connectionist system Ill (CS-Ill) 

Direct search procedures are attractive for the solution of sets of non­

linear ec:;uations, since they are easy to use and computationally efficient. 

A direct random search procedure with systematic search space 
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contraction, such as proposed by Luus and Jaakola (1973) and Luus and 

Wang (1978) , has been incorporated in the neurodynamics of the third 

system, shown schematically in figure 4.3. CS-Ill is equivalent to CS-II, 

with the difference that instead of a gradient-based search, use is made of 

a direct method with a systematic reduction in the search space 

associated with each interval. The reduction in the search intervals 

associated with each of the search variables leads to a more efficient 

search procedure, since unless the search domain is in the immediate 

vicinity of the optir.ium, convergence by means of a random search can be 

very ineffective (Sarma, 1990) . The procedure is implemented as follows: 

1 . s~t the time increment counter j = 1. 

2 . Set up the system, so that the initial states (v0 ) of the artificial 

neurons in all P hidden layers correspond to the measured values 
{;- ') of the process variables. 

3. Define an initial search range R0, for each of the system states v 0i 
of the neural net. 

4 . Determine P sets of values, so that v 1, = v J·\ + ¢ i·1,.R i·\, where 

¢ 1·
1

, is a random number associated with the state of artificial 
neuron i at time j-1, and 0 s ¢ i·1, s 1, for all i and j . 

5. Of these p sets, determine the set which minimizes r , I du,/dt I . 

6 . If r ; I du, fdt I s €, terminate the search, if not, reduce the search 

ranges R 1, by an amount c5, i .e. R J
1 

= ( 1 - c5).R i·1,. If c5 = 1, 

terminate the search, if c5 = 1, repeat the procedure. 

After convergence a set of values v will remain , which corresponds to a 

r iimum in the energy of the system, i.e. where du/ dt = -dE/dv; == 0, for 

all i. This minimum will be the one closest to the initial state of the 

system, and in multimodal systems it might be necessary to incorporate 

stochastic procedures which would allow the system to find a global 

minimum point. The incorporation of procedures such as these was not 
pursued in this investigation. 

. - -------- - - -
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4.4 EXAMPLES 

4.4.1 Example 4. 1 : Two-product classifier 

In this example a two product classifier (such a:> a h·,tdrocyclone or a 

screw classifier) is considered, which classifies a feed stream (F
1

) with n 

components into two output streams (F2 and F3). Measurements of the 

flow rates (Fi) and component concentrations (f;,jl typicaliy violate the 

mass conserva~ion equations pertaining to the classifier, viz . 

(4. 7) 

The simulated output of connectionist systems CS-I, CS-II and CS-Ill 1s 

summarized in table 4. 1 for a two component system. As can be seen 

from figure 4 .4 , which portrays the performance of the ~S-1 system, the 

value of the objective function (energy of the net) decreases rapidly at first 

for step sizes smaller than 0.2, after whit:h diminishing progress is made 

with further computation. (A constant step size was used for ull the 

variables throughout the optimization procedure.) Step sizes larger than 

0.2 resulted in unstable behdviour of the system. The iteration steps 

referred to in figure 4.4 comprize cycles through which eRch variable 1s 

updated once on average. For the two-product classifier, with 21 process 

variables F;, f1.J (i = 1, 2, 3 & j = 1, 6) , an iteration step thu:; consisted of 

a series of 21 random variable selections and s11bseq1Jent ac11ustments of 

the selected variables. The reconciled values of the flow rates F
1 

and con­

centrations f,,1 resulted in a threefold order of magnitude decrease in the 

objective function (energy function of the net), which is 1nore or less 

comparable to results obtainable with other optimization techniques. 

The performance of CS-II (number of layers = 10 & 100) is comp.ucd 

with that of CS-I (number of layers = 1) in figure 4 . 5. It 1s clear that the 

additional l<tyers in the system do not lead to a s1gnif1cant improvement in 

performance. This is not surprizing, since the process system considered is 

subject to bilinear constraints only, and does not have a highly non-linear 
character. 

. . 

-- -- - ----- \ ---- - - - - -- - - - - -
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The connectionist system basec on dirt ct search techniques (CS-Ill) did 

not perform very ,•.1ell compared to those based on gradient descent 

techniques (CS-I and CS·ll), as ccin be seen from figure 4.6. The system 

used '"' this case consisted of 200 layers and had an initial range ot 0. 1 

for each sear .. h variable. This range was contracted to lero as the search 

progressed, oLr t only resulted in a decrease of about 60%-70% 1n the 

initial energy of the system. Other initial search ranges and contraction 

procedures did not lead to significantly better results. 

4.4.2 Example 4.2 (Pai & Fisher, 1988) 

This example (also used in chapter 3) is based on the one used by Pai & 

Fisher ( 1 988), as wcli as Tjoa and Biegler ( 1 991 ) . It is thus possible to 

make a rough compari " on of t'ie performance of the neural net with the 

computational procedures used by those authors. The example involves 

five measured variables x 1, x2, x3, x4 ind x5 and tnree unmeasured 

variables x6 , x 7 and x8 subject to six non-lin.Jar constraints. 

255.8 = 0 

2x1 + x..: . • x .i. x7 • x8 • 126.6 = O 13.62) 

As was mentioned 1r chapter 3 (example 3.5), the exact values of these 

variables are x = {4:.· 24, 5.5r · 9, 1 9260, 1.4560, 4.8545, 11.070, 

O.ti1647, 2.0b04}T ITjoa & Biegler, 1991). Tjoa and Bieyler (1991) 

corr•Jpted 100 sets of these data with Gaussian noise in order to conduct 

a statistical evaluation of a ta1lr>red objective function in a non-linear 

computational routine, as well as a hybrid successive quadratic 
programming (SOP) routine. 

In order to evaluate the use of a neural nat to reconcile inconsistent 

constrained data, the exact values of the variables are similarly corrupted 

I 
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by Gaussian noise of 10% and 30%. The errors of a single set of variables 

resulting from the errors of corruption are shown in tables 4 .2 (10% noise) 
and 4.3 (30% noise). 

One of the salient features of the system is the highly irregular response 

surf ace of the energy function of the net. The consequence of this highly 

non-linear character of the system is that the energy function is extremely 

sensitive to adjustment of the variables, especially at points where the 

derivative of tho energy or objective function with regard to the adjustable 

variable ( E/ x1' or El x, ") is very large (positive or negative). As a result 

Vte v small time steps had to be used in order to ensure that the 

ad1ustment of a variable does not lead to overshooting c.f a local optimum 
in the energy function surface. 

In the case of network CS-I, the optimal step size for each variable is 

determined by a subroutine whrch systematically decrea5es the value of 

the initial time step if at first rt does not result in a decrease in the syst m 

energy, until an improvement in the objective function is found. Ir. this 

way ielatrvbly 1 .... , ge time steps can be taken initially, which can be 

adjusted nec:r troublesome spots on the surface of the energy function 
when necessary. 

The result~ which compare favourably with those obtained by other n. in­

linear methods {TJoa & 81egler, 1991) are shown in ta .>les 4 .2 and 4 .3, 

and typically led to a reduction of three orders of magP.tudc :n the energy 

of the system after approximately 40 iteration ste........ The percentage 

errors in the values of the variables before anrf after reconciliation 

(compared to the exact values of the variables) are a so shown in tables 

4. 2 and 4. 3. Figure 4. 7 depicts some of these results graphically. Note 

that step sizes larger than approximately 10 5 lead to an unstable search 

procedure (compare with values larger than 0.2 0.3 in the previous 

example) . The use of different step sizes for the differen~ search variables 

(MUL TISTEP) instead of a constant step size for all variables, resulted in 

considerable 1mprovoments rn the performance of the system. 

In contrast to tho situation highli[ lted by example 4. 1, much is to be 

gained by using a multilayer system such as CS-II. In figure 4.8, the 

significant improvement in convergence based on the use of 10 layers, 

Stellenbosch University  https://scholar.sun.ac.za



- 97 -

versus 1 (CS-I) is illustrated. Tr · can be attributed to the non-linear 

character of the resr.,ionse surface of the energy function . By making use 

of CS-II, movement through the state space of the system is accelerated 

along steeper attractor r in gradients, than is the case when CS-I is 

used . 

Connectionist system C::i f 11 displays the same less favourable convergence 

behaviour as was the case in the previous example, as shown in figure 

4 . 9 . Exponential contraction of the range of the system results in 

somewhat 1:-etter performance, compared to a linear reduction. 

4.5 DISCUSSION OF RESULTS 

Judging from the reduction in the objective tu . ~tion (equation 4.1) of the 

reconciliation problem, the results obtained with neural nets simulated on a 

computer appear to be comparable to those normally associated with 

traditional non-linear optimization methods, even though the 

neurodynamics used in these nets are relatively basic. If necessary the 

results can be improved upon by making use of more sophisticated 

neurodynamic functions. These functions could incorporate other 

stochastic procedures such as simulated annealing and its variants (Jeffrey 

& Rosner 1986; Kiri< et al. , 1983; Kirkpatrick , 1992) or hill climbing terms 

(Takefuj i & Lee, 1991) to avoid entrapment in local minima, while moving 

the system through state space. 

The real advantage of using neural nets for data reconciliation problems is 

the fact that they can be implemented in electronic hardware which could 

fully exploit the massively parallel architectures of the nets. By making use 

of analog devices (Verleysen & Jespers, 1989) , which typically converge 

in the characteristic time of the artificial neurons (in the order of 1 o-6 to 

1 o-3 seconds), rapid computation is possible ( Kamgar-Parsi & Kamgar­

Parsi, 1 990). 

Since this investigation was based on the use of simulated neural nets, 

and not actual analog nets implemented in electronic circuits, no direct 

conclusions can be made with regard to the temporal aspects of the 

computational procedures. A rough estimate of the speedup is provided by 

Amdahl's law 

. 
. . . --- --- - - ----- -
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S = PtrP(1 -0) + 0J (4.8) 

where S i:.; the speedup factor, P the number of processors working on the 

task, and O the fraction of the programming code which can be executed 

in parallel. The time consumed by computational overheads was estimated 

to be not more than approximately 5% for all three connectionist systems, 

and on this basis and the results of the optimization experiments, it was 

possible to estimate the speedup factors for the solution of the data 

reconciliation problem~ outlined in examples 4 .1 and 4.2 These estimates 

are summarized in table 4.4. Two different situations are highlighted in the 

table, namely the location of a solution (local minimum) of the problem, 

and secondly the location of a global solution or minimum to the problem 

(by combining a stochastic pm':edure with a gradient descent or direct 

search methud). The gradient descent methods (CS I and CS-II) performed 

significantly better than the direct searc:h procedure (CS·lll). As can be 

expected, the larger th~ problem, the more is gained by making use of 

these parallel strategies. According to equation 4.8 the speedu~ factor is 

also quite sensitive to the fraction ot computer code that can be executed 

in parallel (estimated to be 95% in this investigation) . 

The quality of the solutions obtained with the simulated nets indicates 

however, that analog nets could be employed to considerable advantage 

to solve data reconciliation problems. 

The problems posed in example 4.2 presented non-linearities of a higher 

degree than the problem discussed in example 4.1 . This meant that 

smaller time steps had to be implemented to ensure a monr>tonic decrease 

in the energy of these systems, and as a result these sys.c:. 1s took longer 

to converge than the bilinear two-product classification system. After 

approximately 10 iteration steps or cycles (see figure 4.4) the energy of 

the bilinear system discussed in example 4 .1 (9 variables) did not show 

further significant decreases for step sizes !arger than 0 .3. The energy or 

objective function of the system considered m example 4.2 (8 variables) 

on the other hand, decreased by approximately two orders of magnitude 

after 25 iterations (and showed a decrease of approximately three orders 

of magnitude after 40 iteration steps). 

' 

Stellenbosch University  https://scholar.sun.ac.za



' - -

. . 
I 

• 

- 99 -

-

In figure 4 . 10 the CS-II 5ystem is compared with two other non-linea1· 

procedures used for the solution of the problem posed in example 4 . 2, viz . 

that of Broyden (Broyden, 1965; Pai & Fisher, 1988) and the constant 

derivative approach (Knepper & Gorman, 1980) . From this graph it can be 

seen that the CS-II system initially (steps 1 to 3) decreases the value of 

the energy or penalty function faster than the other two methods. In 

subsequent iteration stepl:> it loses ground, but in the end (steps 11 and 

1 2) the advantage gained by the methods of Broyden and constant 

derivatives is largely eradicated . It should be borne in mind that this 

comparison can serve as a rough guideline only, since the central 

processing unit (CPU) times associated with th!? execution of the iteration 

steps in the different algorithms can not be compared directly . If anything, 

a comparison of actual CPU times could only be to the advantage of the 

CS-II system with its relatively simple computational procedures. 

Another important factor that should not be overlooked is that in principle 

the efficiency o! the CS-II system is not affected sign1fica'1tly by an 

increase in the dimensional ity of the process system, whilP .. •er non­

parallel procedures such as those depicted in figure 4 . 1 ( J r e Jsually 

sensitive to increases in the size of the problem. In I .1 Je systems 

consisting of hundreds or even thousands of v::iriables, t:1e CS-II system 

can consequently be expected to perform signif 1cantly better than any 

other tradit ional procedure . 

4 .6 CONCLUSIONS 

In this chapter the use of connect1onist systems (which were simulated on 

a digital computer) for reconciling inconsistent measurement data is 

discussed. It has been shown that 

• The measurements of flow streams and assays inconsistent with 

process models can be reconciled accurately by procedures based 

on the use of connectionist systems; 

• The use of connectionist systems can lead to a significant reduction 

in the computational effort needed to optimize data reconciliation 

procedures; 

.. 
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• Even with small problems the pertormance of connectionist systems 

is at least com~arable to that of conventional procedures; 

• In problems of high dimensionality, procedures based on the use of 

connect. ) 7list systems appear to be more efficient than those based 
on conventional strategies. 

'" ~·.". ' . . . ., . . .: ,\ . . . ~ - . . - - - -- . - - - . 
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4. 7 TABLES REFERRED TO IN CHAPTER 4 

TABLE 4 1 Reconciled and measured values of the process 

variables in the two-product classifier (example 4. 1) 

TWO-COMPONENT SYSTEMl1l.121 

Measured 

F1 F2 F3 fl • 1 f. 2 '• f 2.1 f 2.2 f 3, 1 f 3,2 

0 .961 0 .602 0 .347 0 .198 0 .768 0 . 127 0.817 0.3b 0 .608 

Reconciled (CS-I) 

Fl I 2 F3 f 1 1 . f 1 ,2 f 2,, f 2 2 . f3,, f 3,2 

0.956 0 .608 0 .348 0 .205 0.752 0. 123 0 .828 0 351 0.613 

I 1 IRot10 of in1t1al energy of system to that o: final ener JY: 
Eo1 Et = 1 1000 

121The percentage error values e1' ard ej" were ... Lllculated as 
100.l(x1 ') - (x(lexactlllx(lexil . t :ind 100.1 (;.") • (x1" •exactl l(xj" lexact fl'Spect1vely 

. . 
: .. , ' . , .. 
~ ...._ ' I.• - I 

~------------- -- ---

Stellenbosch University  https://scholar.sun.ac.za



~ • I • 

-~ . .. T ,~ 

. • \ .. . 

- 102 -

TABLE 4.2 Reconciled and corrupted values ( 10% 
Gaussian noise) of the p:-ocess variables used 
example 4.211 l.121 

CORRUPTED VALUES 

x, X2 X3 X4 X5 "G X7 X9 
4.786 5.S64 1.917 1.365 5.307 10.22S0.617 2.064 
e, e2 e3 e4 es 95 e1 ea 
6.06 -0 .32 ·0.47 ·6.2S 9.32 ·7.63 0.09 0.66 

RECONCIL EC VALUES (CS-I) 

x, X2 X3 X4 Xs X5 X7 X9 
4.742 S.694 1.903 1.398 4.927 10.9420.S97 2.041 
e, e2 e3 e4 es e5 e1 es 
S.09 2.01 • 1. 19 -3.98 1.49 · 1.16 -3 .16 ·O 46 

I 
11

Rat10 of initial er.crgy of system to that of final energy: 

Eo/Et = 1000 (Euler); Eo!Et = 1000 (DSRI) 

1
2
lrhe percentage error values ei were calculated as 

100.((x1' ) • lx;ll/lx1'l 

in 

.. . 
l 4 
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TABLE 4.3 Reconciled and corrupted values (30% 

Gaussian noise) of the process variables used in 

example 4.21l l,12l 

CORRUPTED VALUES 

X1 X2 X3 X4 X5 X5 X7 Xa 

3.713 4.699 1.365 1.52a 3.6aO 9.oao 0.622 2.65a 

el e2 e3 e4 es ee e1 ea 

-17.72 -15.a2 -29.13 4.95 -24.19 -17.9a 0.90 29.63 

RECONCILED VALUES (CS-I) 

X1 x2 ,(3 X4 X5 X5 X7 xa 

5.163 S.36/ 1.a60 1.07a 5.041 11.8330.593 2.451 

e1 e2 e3 e4 es e5 e1 ea 

14.42 -3.85 -3.43 -25.96 3.a4 6.89 -3.81 19.54 

( 1) Ratio of in1t1al energy of system to that of final energy: 

Eo/E1 = 1000 (Euler); Eol Et = 1000 (DSRI) 

(2)The perce11tage error values ei were calculated as 

100.l(x1') - (x1)1/fx1' ) 

-- --- - - ----- . -
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TABLE 4.4 Estimated speedup factors for examples 4.1 & 4.2 

EXAMPLE SYSTEM NO OF PRO- SPEEDUP 
CESSORS FACTOR 

(Search for first local minimum) 

1 CS-I 21 10.50 

2 CS-I 8 5.93 

(Search for global minimum) 

1 CS-Ila 4200 19.91 

1 CS-llb 4200 19.91 

2 CS-Ila 1600 19.77 

2 CS-llb 1600 19. 77 

1 CS-Ill 4200 0.42 

2 CS-Ill 4200 0.42 
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FIGURE 4.3 STRUCTURE OF CONNECTIONIST SYSTEM CS-Ill 
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CHAPTER 5 

Connectionist plant models 

Summary 

Although the potential of new techniques for the construction of accurate plant models, 
such as those based on connect1onist methods, is generally acknowledged, ltttle on their 
practical application r:an be found in the chemical and metallurgical engineering literature. 
In this dissertation the use .Jf neural nets to model 11 gold reduction, a gold leach and a 
phosphate flotation plant 1s discussed The models performed better than the linear 
regression models used on the plants, even where relatively few data were available. 
The use of a neural net in con1unction with a linear programming model of a gravity 
concentration circuit is also explored. Use of the ntJt enables optimization of the circuit 
throt:gh an iterative procedure m which the neural net forces the linear programming 
models to consider only feasible states of the system. 

5. 1 OBJECTIVES 

The objectives of chapter 5 are: 

• The construction of connectionist models for metallurgical process 

plants, viz a gold reduction plant, a gold leach plant and a phosphate 

flotation plant; 

• Comparison of these models with the model· used on the plants; 

w The use of a neural ne! in conjunction with two linear programming 

models to optimize non-linear proces:> systems (exemplified by a 

gravity concentration circuit in this case) . By linearizing these 

processes the powerful capabilities of linear programming techniques 

can be exploited, while incorporation of the neural net model ensures 

that the non-linear character of the process is retained. 

• Investigation of the feasibility of the use of connectionist models on 

metallurgical plants. 

5.2 BACKGROUND 

The maJortty of chemical and mineral processing plants are burdened with 

copious amounts of process data, which makes it difficult to identify the 

. 
- ---------------- - - --
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essential features of the processes involved in plant operations. The 

development of process models based on these data is usually not cost 

effective and the data are usually analyzed by means of multiple linear or 

non-linear regression techniques. Since these techniques require explicit 

process models, they are not always suitable for modelling of the 

complex behaviour that industrial plants so often exhibit. In contrast, 

neural nets do not suffer from this drawback and (provided they are 

presented with enough representative dat'11 constitute an efficient means 

for the construction of implicit models of ill-defined processes. In spite of 

these well-known attributes (Venkatasubramanian & McAvoy, 1992), 

v---ry little has been published in the chemicdi s~gineering literature with 

regard to the use of neural nets in this way {Bhat & McAvoy, 1990; 

Bhat, et al., 1990). In this chapter the use of neural nets for the 

prediction of gold losses on a gold reduction plant and the consumption 

of various additives on a gold leach and phosrhate flotation plant is 

described and compared with regression models in use on the plants. 

The generalized plant modelling problem consists of two parts, namely 

the decomposition of the plant into sets of acyclic process circuits if 

necessary, followed by modelling of these irreducible subsystems. The 

decomposition of large or complex plants can be accomplished by various 

means which can among others be incorporated in connectionist 

structures (see for example appendix C) in order to take advantage of 

parallel processing strategies. Assuming the process system to be 

modelled to be acyclic, the problem concerned wrth the construction of a 
circuit or plant model can be expressed as follows: 

Y1, 1 Y1 ,2 .. Y1 ,p 

Y2, 1 Y2,2 .. Y2,p 
y = E A nxp (5.63) 

Yn, 1 Yn,2 .. Yn,p 

x,, 1 x, ,2 .. X1,m 

X2, 1 x2,2 .. X2,m 
x = E A nxm (5.64) 

Xn, 1 Xn,2 .. Xn,m 

. • .'f -
---· - -- - --·~- ---- ---- - - - --- - - - ---
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where Yi, k (i = 1,2 , .. p) represent p variables dependent on m causal or 

independent variables x1,k (j = 1,2, . . m), based on n observations (k = 
1,2, . . n). The variables Yi,k are usually parameters which provide a 

measure 01 the performance of the plant, while the xj.k variables are the 

plant parameters on which these performance variables are thought to 

depend. 

The problem is then to relate the matrix Y to some function of matrix X, 

in order to predict Y from X . The simplest approach, and a method often 

used on mineral processing plants, is to assume a linear relationship 

between X and Y, i.e. Y = X.k1 + k2 and to find the coefficient vectors 

k1 and k 2 by ordinary least squares methods, that is k 1 = (XTX)'1 .xTy 

and k2 = Y - X.k1, provided that the elements of the columns X; of 

matrix X are not correlated and that the number of observations is larger 

than the number of coefficients that has to be estimated (i.e. n > m). If 

not, other techniques, such as partial least square methods (Qin & 

McAvoy, 1992) can be used to obviate the problem. Should the 

assumption of multilinear relationships between the variables prove to be 

inadequate, they can be extended by the addition of suitable non-linear 

terms (Loveday & Marchant, 1972) , the incorporation of spline methods 

(Whiten, 1972), or replaced by non-linear regression met'1ods (Britton & 

Van VL!uren, 1973) . 

The main advartage of modelling techniques based on the use of neural 

nets, is that a priori assumptions with regard to the functional 

relationship betwPen x and y are not required . The net learns th is 

relationship instead , on the basis of examples of related x -y vector pairs 

or exemplars. 

5.3 MODELLING OF LOSSES ON A GOLD REDL'CTION PLANT 

The efficiency of gold redl•ction plants is often as. ~ssed in terms of the 

gold lost during the recovery process, since the rec..-,11ery of gold (which 

commonly exceeds 97%) is too insensitive a paramett. to use (Britton & 

Van Vuuren, 1973, Mac Kay & Lloyd, 1975). Ge'? l :'.·S~~ are generally 

comprized of the gold lost in a dissolved form, as v-. ,1 a: the gold lost in 

solid residues. These losses can not be explaineo 1 i8rms of a 

fundamental model of the plant (a typical design is show n in figure 5.1 

and is often predicted in practice by means of linear reg re:;~ ion models. 

These models relate the dissolved gold losses (y1 ) and the "ldissolved 

• ~ . -
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gold losses (y2 ) to a number of empirical parameters, namely the head 

grade of the ore (x1 i, residual grade of the ore (x2), solution tonnage 

(x3 ), treated tonnage (x4), filter feed rate ( x5), filter wash (x6), solids 

duty (x7), filter ARLA (x8), solution duty (xg), entering solution (x10), 

filter flocculation (x11 ), filter vacuum (x12), sodium cyanide agitator I 

(x 13}, and sodium cyanide agitator II (x 14). 

A set of lx1, x2, .. X14: Y1 , Y2l data consisting of a total of 76 vectors 

was obtained from a gold plant in South Africa, randomized and 

subdivided into a training set (60 vectors) and a test set ( 16 vectors). 

The training set consisted of exemplars presented to the neural nets 

during training (weight adjustment of the nets), while the test set was 

used to monitor the performance of the nets subsequent to training. This 

procedure is essential to ensure that the net generalizes the relationships 

between parameters correctly, instead of just learning to reproduce the 
data presented to it. 

A back propagation net w ith an input layer and one hidden layer, both 

comprized of fourteen processing elements or artificial neurons, and an 

output layer comprized of two processing elements was used to model 

the gold losses, as shown in figure 5 .2. The fourteen elements in the 

input layer corresponded to the fourteen input parameters used to 

correlate the gold losses (x1, x2 •.. x14), while the number of elements in 

the hidden layer was chosen arbitrarily . The input layer did not process 

the data, but merely served to distribute the data to the hidden layer. The 

output of the two processing elements in the output layer corresponded 

with the predicted values of the two output variables, namely the 

dissolved (y1) and undissolved gold loss (y2). 

The layers were connected in a feedforward manner, 1.e. no layer was 

connected to any layer preceding it, and all layers consisted of elements 

with hyperboli-: tangent translation functions, to ensure that low-valued 

and high-valued outputs were treated equally, 1.e. 

(5.65) 

The output of the net after training with the generalized delta rule 

(Rumelhart et al., 1986; Leonard & Kramer, 1990) 1s compared with the 

predicted outputs based on a linear regression analysis used on the plant. 

The results are depicted graphically in figures 5. 3 and 5.4. Based on the 

root mean square values of the correlation errors, the nets performed 

. . . . '· \ . 
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significantly better than the existing plant models (approximately 51 % for 

the undissolved gold losses and 87% for the dissolved gold losses). 

Neural nets containing more processing elements, either in the same 

hidden layer or in multiple hidden layer versions, did not substantially 

improve predictions. Nets with too many processing elements relative to 

the size of the data training set, have in fact shown a tendency to learn 

the data, rather than the relationships between parameters (much like 

fitting a polynomial of too high a degree to too few data) . 

5.4 MODELLING OF THE CONSUMPTION OF AN ADDITIVE TO A 
GOLD LEACH PLANT 

The consumption of an additive to a gold leach plant depends in a 

complex way on plant design and cperation, and is in practice (as in the 

previous case) modelled by li~1ear regression models based on empirical 

parameters considered to influence consumption significantly. In all, 

seven parameters were used to predict the consumpt n of the additive 

(y 1), namely percentage extraction (x 1), residual grade of ore (x
2

), 

cyanide flow rate (x3 ), head grade of gold ore (x4), type of ore (x
5

), 

agitation rate (x6) and temperature (X7) . 

The neural net shown in figure 5.5 consisted of an input layer with seven 

processing elements corresponding to the seven input parameters x 1, x
2

, 

. . . , , one hidden layer comprized of seven processing elements as well , 

and an output layer comprized of "'! single processing element, 

corresponding to the consumption of the additive (y1 ). All processing 

elements were provided with hyperbolic tangent transfer functions and 

were trained by means of the generalized delta rule (a common choice for 

these types of transfer functions). Training was once again effected by 

presenting the net repeatedly with exemplars of the experimental data 

contained in the training set (60 vectors in alll. As before, the set of 

plant data was randomized prior to subdivision into a test and a ti aining 

data set. After training the net was tested against the data test set ( 1 O 

vectors in all). The results for both the training and test sets are depicted 

in figure 5.6. Despite a relatively small training set, the net was able to 

generalize the relationship between the ,.,put and output variables, and 

predicted the consumption of the additive significantly better 

(approximately 83%, based on the average root mean :;quare error in 

prediction) than the multiple linear regression model used on the plant. 

-~----- -~ -- - - --- --
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5. 5 MODELLING OF RECOVERY AND REAGENT CONSUMPTION ON A 

PHOSPHATE FLOTATION PLANT 

The ore feed to a phosphate flotation plant (shown schematically in 

figure 5. 7) is analyzed hourly and these data, as well as those 

representing other parameters in the plant me aver aged on a daily basis 

and used to predict the consumption of three reagents in the plant, viz. 

water glass (y1 ), polyglycol ether (y2) and fatty acid (y3 ). The water 

glass or sodium silicate serves as a dispersant and depresses diopside, 

iron silicates and olivine. The fatty acid ac~5 as a collector for apatite and 

contributes to the frothing characteristics of the flotation cells, while the 

polyglycol ether (nonyl phenol tetraglfcol ether) is a non·ionic surfactant 

and emulsifier, serving as a froth modifier and a depressant for iron 

minerals and calcite. These reagents are expensive (totalling 

approximately 87% of the direct operating costs of the plant) and 

inadequate control of their consumption can have a major impact on 

plant economics (Fourie, 1981 ). More specifically, the variables (y1, y2 
and y3) are related to the mass fractions of apatite (x1 ). phlogopite (x2), 

lizardite (x3), magnetite (x4 ), diopside (x5), calcite (x6), dolomite (x7) and 

forsterite (xa) in the feed, as well as the feed pulp density (xg), feed flow 

rate {x10), the phosphate (P205) concentration in the fbed (x
11 

), iron 

content of the feed (x12) and the tailings (x 13) and concentrate (x
14

) 

flow rates . 

The data used in the investigation consisted of 438 sets of [x1 , x
2

, .. 

X14; y,, Y2. Y3) vectors, which were subdivided into a training set 

consisting of 408 vectors, and a test ~et consisting of 30 vectors. The 

origi:"al data set was not randomized before subdivision into the training 

and test data sets. This meant that the training data was related to an 

earlier period of plant operation, while the test data were related to a 

subsequent penod, during which possible changes in the process could 

have taken place. This is in contrast to the procedures followed rn the 

modelling of the previously discussed gold reduction and leach plants, 

and is perhaps a more realistic approach to plant modelling, where 

models are not maintained regularly (or at least not on a daily basis) . 

Instead of using a single neural net with three output nodes, three 

separate nets with one output each were used · an approach also used 

by Lu(; as et al. ( 1993) that yielded slightly better results than one based 

on the use of a single net with three outputs. Where more thar1 orie 

workstation 1s available, this strategy can rtlso be used to reduce the 

. . . 
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training times of large nets, sir.ce each net could be assigned tu a 

separate machine. If needed the three separate models can be 

recomposed by placing them side by side connected to the same input 

vector. The nets used to model the consumption of the different 

additives were all back propagation neural nets with sigmoidal processing 

elements, and as before the normalized cumulative delta rule was used to 
train the nets. 

5.5.1 Water glass consumption (y1) 

A single hidden layer consisting of six hidden units (vh, 1-vh,
6

) was used 

between the input and the output layers of the net, as illustrated in figure 

5.8 . The input layer v:as f . ,ly connected to both the hidden layer and the 

output layer of the net. Instead of training the net to a certain output 

error tolerance on the training exemplars, use was made of a cross 

validation method in which the performance of the net was periodically 

checked against the test data set, until improvement in the performance 

of the net became marginal. Note that this approach has no effect on the 

adjustment of the weights of the net during training, but merely serves as 

a guide to an appropriate neural net structure. 

5.5.2 Polyglycol ether (y2) and fatty acid (y3) consumption 

The nets used to model the polyglycol ether and fatty acid consumption 

had identical configurations and were comprized of two hidden layers 

each, as shown in figure 5 . 9. The first hidden layer consisted of six 

hidden elements (vh1. ,, vhl ,2• .. vh1 ,6), while the second had three 

(vh2, 1 • vh2,2 and vh2,3). The input layer was fully connected to the first 

hidden layer only, while the first hidden layer was fully connected to both 

the second hidden layer and the output element. As before, a cross 

validation technique was also used to determine the convergence of the 
nets. 

The performance of the three nets is summarized in table 5.1, where the 

average percentage errors of the various nets are compared with those of 

the multilinear regression models. The ability of the nets to generalize the 

trends in the data is also depicted in figures 5. 10 to 5 .15, where the 

predictions corresponding to the training and test data sets are 

h1ghhghted. As can be seen from these results, as well as those in table 

5 .1, the nets did not perform better than the regression models on the 

training data. They were able to generahLe the data better than the 

- - - -- - -- --------
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regression models however, as shown by the average errors in the test 
sets. 

5.6 STEADY STATE SIMULr\TION AND OPTIMIZATION OF A GRAVITY 

SEPARATION CIRCUIT BY MEANS OF LINEAR PROGRAMMING ANO 
ARTIFICIAL l'JEURAL NETS 

Ow1.1g l~ the empirical nature of gravity concentration technology, 

fundamenta: modelling of gravity separation circuits is not feasible at 

present, and as a result most models are of an empir.cal or semi-empirical 

nature (Jowett & Sutherland, 1985; Laplante & Shu, 1988). Spiral 

gravity concentrator circuits can be modelled and optimized by making 

use of neural nets (representing the requisite empirical knowledge of the 

system) embedded in conventional computational procedures. In this 

example simulation is based on two linear programming models and an 

artificial neural net representing the performance characteristics of the 

separators under various operating conditions. These concentrators (or in 

general, the i'th concentrator) each separates a feed (F1,,k, k = g,v,w) 

stream composed of a valuable element (v), gangue (g) and water (w), 

into a concent~ate (F\ kl• middlings (Fm,, k) and tailings stream (F\.kl· 

The neural n.::t is trained to generalize the relation between the process 

conditions, viz . the total flow rate (FTOT) , the dry solids flow rate (F05) 

and the feeu grade (cp) , and the concentrate-tailings (r c·\,)k = 

Fc1,,1k/Ft1,,lk) and middlings-tailings irm,t1,,1k = Fm1,,1k/Ft
11
,, kl separation 

factors for each of the three elements k in the circuit . (The operating 

characteristics of tho separntors are assumed to be identical, so that the 

subscript i in the sep..uation factors can be omitted .) 

This distrbuted representation of the experimental data can then be used 

in conjunction with the two linear programming models to simulate and 

optimize the gravity st.~aration circuit. 

5.6.1 Simulation procedure 

The strategy used to simulate the gravity separation circuit entails 

lincarization of the model equations ,reflecting the material conservation 

requirements of the system) for each concentrator in the circuit, which 

facilitates optimization by means of linear programming techniques. The 

highly non-linear character of the process ir. retained through the 

incorporetion of an artificial neural net previously trained to represent the 
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separation 01 a feed stream Ft,,k with a giv~n composition of elemer.ts g, 

v and w into three product streams F\k, Fm,,k and F\,k· The global 

optimization sctieme is iterative and optimization is guided by the neL•ral 

net in terms of an iff ·defrned constraint relaxation process, whereby the 

results obtained by the linear program models are forced to satrsfy the 
process constraints represented by the; neural net. 

By using the two linear programming models (Anthony, et al., 1991) 

sequentially (the one a subset of the other), the flow rates of the 

valuable element and flow paths of the separation circuit are optimized 

first in order to maximize the recovery of the valuable element, followed 

by optimization of the concentrate grade by minrmizing the gangue in the 
concentrate streams. 

The circuit configuration on which the mass balance t::quations are based, 

is shown rn figure 5. 16, which illustrates the steady state flow of the 

valuable element (v) between two concentrator units. The flow of the 

gangue (gl and water (w) 1s similar to that of the valuable element. 

Recycle streams are rndicated by ry\1 (concentrate), rz\
1 

(middlrngs) and 

rmk1.J (taiftngs). Both linear !)rogramming models ct re deriveu from a 

materral balance around the general circuit model depicted rn f 19ure 5 1 6. 

No explicit restrictions are specified and all constraints are derived from 
experimental data. 

5.6.2 linear programming model I 

The model which 1s described in more detail elsewhere (Anthony, ct al., 

1991 ; Reuter et al., 1988; Reuter & Van Deventer, 1990) is formulated 

by considering all possible process constraints impo::>ed on the material 

conservation equations of the system shown in figure 5. 16. 

Mass balance constraints: 

Ffj,k + r:rmJik + r:rzjik + !:rYjik - Ftj,k - FmJ,k - F\k = 0 (5.26) 

Ft. Fb. ""rm· k = 0 J,k- J,k- ... l,J 

Fm. '"'rz· .k - 0 J,k - ... l,J -

Fe. Fa. ""ry· .k = J,k - J,k - ... l,J 0, for (i = 1. 2,3; j = 1.~ •.. N and k = v, g, w) 
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Separator, external and recycle constraints: 

The separation factors used in the model are specified in terms of upper 

and lower bounds, for each component or element k as follows: 

r' '· k· Fm· k - Fe k s 0 , I, I, (5.27) 

Fe r•~ U Fl 0 
I , k - • t J.. t I.. s. 

rm ,t,L Ft - F'1 G 
l, k• 1,k I,. 

Fm rm,t,U Ft 0 
1,k - t,k · l,k s , 

with (k -= v, g, w) 

In accordance with the plant being modelled, certain non-feasible recycle 

streams can be eliminated by setting rm, / to zero, for the appropriate 

i,J,k-values. All process variables arc furthermore bounded by limits 

derived from th~ ope:at1onal ch<:vacterist1cs of the pldnt. 

Objer.tive function 

The aim of the object ive function of mode. I 1s to maximize the recovery 

of valuable elements, subiect to the constraints dP.rived from the ma~s 
balance streams, i.e. 

Max: 08 J = F8
1 , 11 F8 2,v -+ •• + F"N.v (5 28) 

where F\ 11 represents t~e recovery of the valuable clement v trom 
concentrator unit i in the circuit. 

5.6.3 Linear programming model II 

Model II minimizes the flow of the gangue and water in the concentrate 

recovery streams F
8

1,k and is constrained by the flow configuration 
determined by model I, i.e. 

(5 .29) 

with k = g & w, and N the number of spiral concentrntors in the circuit. 

The separation factors applicable to the gangue and the water are 

appropriately restricted .. o reflect the operability 11m1ts of the plant: 
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re.t,L Ft - Fe. s 0 
1,9· 1,9 1,9 (5.30) 

Fe - r c,t.U Ft s 0 1,g 1,9 • 1,g 

Fm - rrn,t,U Ft s 0 1,g 1.11· 1, I 

rrn.t ,L Ft _ Fm ... 0 
lw• l,W 1,W "" 

Fni - rrn.t.U F' • 0 1,W l,W • 1,W 

Realistic values are assigned to the flow variables, based on the 
operational limitations of the c1rcu1t. 

5 .6.4 Neural net representation of separation process 

A back propagation neural net with an input layer with three 

computational elements (one for FTOT, F05 and CJ>), a hidden layer with 

twelve computational elements and an output layer with six 

computational elements (one for each re,rnk and rm·\. k = g,v, w) is 

used, similar to the structure shown in figure A. 1 in appendix A . The net 

is subsequently trained with a set of exemplars of the form 

{FTOT,Fos, <t>,re.mk,rm,tk}· The exemplars are generated from 

experimental data obtained from a commercial plant, based on the 

assumption that the only factors influencing the separation factors are 

the process conditions FTor. F05 and CJ>. The beh.·viour of all gravity 

concentrators is thus considered to be identical. In more sophisticated 

analyses these assumptions can be modified to take the behaviour of 

ind1v1dual process units into account. Presentation of these data enables 

the net to learn the ill·defired relationship between the separation factors 
and the process conditions. 

5.6.5 Optimized flow circuit 

The results of the optimization of a flow circuit containing four gravity 

concentrator banks are shown in figure 5. 1 7, while the corresponding 

values of the flow streams are summarized in table 5.2. The simulated 

separation factors which are modelled with the neural net, satisfy the 
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experimental data as shown in figure 5. 18. Discrepancies between the 

simulated and experimental data can be attributed to experimental errors, 

the influence of other less significant parameters not accounted for in the 

model, as well as the somewhat uneven distribution of the plant data. 

This modelling methodology can be applied to many other mineralogical 

separation processes which are difficult to describe fundamentally, such 

as hydrocyclone classification, heavy medium separation and flotation. 

As with any model, the success of the procedure depends on the 

accuracy of the assumptions on which the linear programming models (or 

other numerical computational routines) are based, as well as the 

availability of a large body of reliable process data. 

5. 7 DISCUSSION OF RES UL TS 

The use of neural nets to model metallurgical plants can lead to 

significant improvements in the prediction of the behaviour of the plants 

modelled. Non linear regression techniques would probably also have led 

to an improvement on the multilinear regression models, but the 

ident1f1cation of suitable explicit models can often be a cumbersome 

procedure of trial and error, especially where process change~ over 

longer periods necessitate the continuous development of new models to 

best fit the data over a given period. Neural nets would have to be 

retrainedl31 to accommodate periodic changes in the behaviour of the 

plant • a relatively inexpensive process with the use of commercial neural 

network software such as Brainmaker™ or Neura/Works Professional 

///Plus™. 

A surprizing aspect of the investigation is the satisfactory results 

obtained with relatively few data, especially in the prediction of the 

consumption of additives in the gold leach plant, as well as those in the 

phosphate flotation plant. A general rule of thumb for the construction of 

neural nets 

n 
2 s ks 10 

k.(m + p) 
(5.66) 

where n is the number of exemplars in the training d ·t d set, Nh the 

number of hidden units, m the number of units in the input layer and p 

the number of units in the output layer, suggests the use of no more than 

131progress 1s being made with the adaptive training of neural nets, which would greatly 
reduce the expense related to the maintenance of connectionist plant models. 

,.. . ' . 

- --~~~-~~-·~- -
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between three and fifteen processing elements in the hidden layers of the 

net. The factor k depends on the noisiness of the data; k-values of 

around 2 can be used for noise-free data, while noisy data warrant 

factors of up to 10 or even 50-100 in extreme cases. In the neural net 

models of the polyglycol ether and fatty acid consumption, an equivalent 

of approximately 27 hidden units were used, 'Nithout detriment to the 

capability of the nets to generalize the trends exemplified by the training 
data . 

One of the strategies cften followed whe.n dealing with non-linear (1 .e. 

mathematically intractable) process systems, is to linearize these systems 

(usually through Taylor expansions around points of interest) . Although 

these approaches enable the use of well established and powerful 

mathematical techniques for simulation and optimization, they are often 

severely limited by their inability to capture the essential characteristics 

of the system (Kim et al., 1990). In section 5.6 it was shown that the 

nnn-linear character of a process system (exemplified by a gravity 

concentrat1or, circuit) can be modelled separately with a neural net, 

which can then be used in conjunction with linearized models of the 

system for simulation and optim1zat1on . The neural net in effect forces 

the linear programming models to consider only feasible system states 
during the search orocedure. 

A further advantage in the use of .connect1onist plant models is the 

potential gain in computational power, due to the parallel architectures of 

neural nets. Standard procedures for the incorporation of neural nets 

(which can be trained off-line as often as necessary) into electronic 

circuits are available and can be used in on-line applications of 

processing plants (Gaser et al., 1989; Murray, 1989; Rosetta et al., 
1989; Zurada, 1992) . 

5.8 CONCLUSIONS 

• Ill-defined metallurgical or chemical processing plants can be modelled 

effectively with neural nets, even \ lCn olant data are comparatively 
sparse; 

• The most effective way of model!1ng plants in tha presence of noisy 

data is through the use of cross-vdll<bting methods in which the 

ability of the net to generalize the relationship between the input and 

output data is monitored during training; 

- - ---~- - ---~-
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• A technique based on the use of hybrid neural net linear programming 

models for the modelling and optimization of a gravity concentration 

circuit was demonstrated. The technique is sufficiently general for 

application to other similar separation circuits in the metallurgical 
industry. 

• These neural net models have the additional advantage that they can 

be implemented in on -line applications with ease. 

- -- - - -
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5 .10 TABLES REFERRED TO IN CHAPTER 5 

TABLE 5. 1 Average % errors in the prediction of additive con~umption 

in the phosphate flotation plant 

Training data 

MLR 

BPNN 

Test data 

MLR 

BPNN 

Y; 
10.05 

10.81 

Y1 

12.93 

10.78 

Y2 
10.23 

13.79 

Y2 
23.09 

16.01 

Y3 
11. 10 

12.42 

Y3 
14.35 

9 .93 

TABLE 5. 2 Flow rates [kg /hi in optimized gravity separator 

Lank (see figure 5. 17) 

f'1 a • 125 53 F', 9 35 F', w • 1700 
F'2 9 • 122 41 F1, w • , 594 25 F'2 w • 2000 
f 13g • 136 59 P2w • 1001 80 F13,. • 1500 
F",g - 55 51 F13 w 1343 32 F1,,. • 2000 
F', - 63 20 fl, w 1989 .09 P:, g - 125.53 
F'2 " • 93 87 rm l• 444 05 F 2 - 122 41 
F'3 h 81 34 rm '34 • 9 35 F 3 g 136 59 
F1 1h • 20180 rmw31 • 1989 09 F". 0 •555 1 
F1 1 w .. 31 89 rzG1 4 • 333 04 F 1 v • 63 20 
F1 2 w • 36 04 ,,u,, - 43 04 F 2 • 93 87 
f•3 ... 62 87 '1V42 • 41 97 F J • "' 81 34 
f14,,, .. 29 84 ,,a0 • 56 52 f1 v• 201 ,80 
fb1g•717.32 rz• 14 .. 457 F 1,. • 31 .89 
f D2g • 699 46 ,, •• , .. 27 39 F"2 ... 36 04 
f b3 g • 942,01 rz~ 12 • 40,68 F"3w • 6287 
Fb, h • 4 09 rz• 13 • 35 25 P:, .. - 29 84 
F0 2 h - 6 07 rzw,, • 69 62 Fm,oil • 43.04 
F03 h • 5 26 r1"11 • 143 48 P"111 - 41 .97 
r-0 1 w • 1594 .25 rz"'12 • 162 16 F'"3 g - 56 .52 
fb2 .. - 1801 80 rz "' 43 • 282 90 F'", g - 333 04 
F113 w • 1343.32 F11 11 • 552.85 Fm, v • 27.39 
F11 9 • 717.32 F'2 9 • 863 83 Fm2 v • 40 68 
F'2" • 699 46 F', ~ • 691 07 F'"3 • 35 :?5 
F1

3.0 • 942 01 F11 9 • 691 .07 F'"1., • 4 67 
F1

4 8 • 444.05 F'1 v • 90 00 f"'1w • 143.48 
F11 v • 4.09 F'2.v • 140.63 F"'2 .. - 162.16 
F'2 v • 6 07 F13v • 112.50 Fm3 w • 282.90 
F13., • 5 .26 F'1v • 112.50 F"', ... 69 62 

~ 

I 
I 

-- -------=---=---~- ---------=-- =------== - - -
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FIGURE 5.1 A TYPICAL GOLD REDUCTION PLANT 
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FIGURE 5.3 PREDICTION OF DISSOLVED GOLD LOSSES 
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FIGURE 5 .4 PREDICTION OF UNDISSOLVED GOLD LOSSES 

0.19 -f 
RM S ERRO RS 
MLR = 100 0 

(/) 0.17 
BPNN = 48 7 

w CJ 
:::::> 
.....J 
<{ 0.15 
> 
Cl 
w 
~ 0.13 
u 
Cl 

~ 0.11 T 
Cl 

- IDEAL 

0.09 - i' MLR 

0 BPNN 
0.07 

0.07 0.09 0.11 0.13 0.15 0.17 

EXPERIMENTAL VALUES 

·-~--~--~ -

Stellenbosch University  https://scholar.sun.ac.za



! FIGURE 5.5 NEURAL NET MODEL OF ADDITIVE 
I CONSUMPTION IN GOLD PLANT 

INPUT 
LAYER 

x r 

HIDDEN 
LAYER 

' 

... 
... 

... ' 
... ... ' 

' ' ... ' 
' 

OUTPUT 
LAYER 

_ ..., _______ -'- ll ADDITIVE 
_ - -........ , CONSUMPTION 

.... , 
, , , 

, 

, 

n BIAS 

FIGURE 5.6 PREDICTION OF ADDITIVE CONSUMPTION 
IN GOLD LEACH PLANT 

120 

en 
~ 100 
_J 

~ 80 
0 
w 
I- 60 u 
0 
w 
a: 
a.. 

RMS ERRORS 
MLR = 100 
BPNN = 16.56 

•• IDEAL 

.. MLR 

0 BPNN 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 

EXPERIMENTAL VALUES 

Stellenbosch University  https://scholar.sun.ac.za



FIGURE 5. 7 FLOWSHEET OF PHOSPHATE 
FLOTATION PLANT 
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FIGURE 5.8 NEURAL NET MODEL OF WATER 
GLASS CONSUMPTION 
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FIGURE 5.9 NEURAL NET MODEL OF POLYGLYCOL 
ETHER & FATTY ACID CONSUMP;ION 
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FIGLJRE 5.10 PREDICTION OF WATER GLASS CONSUMPTION (Y1) 
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FIGURE 5 . 11 PREDICTION OF WATER GLASS CONSUMPTION (Y1) 
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FIGURE 5 .12 PREDICTION OF POLYGLYCOL ETHER CONSUMPTION (Y2) 
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FIGURE 5.13 PREDICTION OF POLYGLYCOL ETHER CONSUMPTION (Y2) 
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FIGURE 5 .14 PREDICTION OF FATTY ACID CONSUMPTION (Y3) 
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FIGURE 5.15 PREDICTION OF FATTY ACID CONSUMPTION (Y3) 
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FIGURE 5. 16 FLOW OF VALUABLE ELEMENT 
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FIGURE 5.17 FOUR-UNIT SEPARATOR BANK 
AFTER OPTIMIZATION 
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CHAPTER 6 

Conclusions 

In this dissertation the use of connect1onist systems or neural nets for 

the modelling of steady state processes has been explored . Attention 

was given to the processing of plant O\Jta prior to modelling, i.e. tht? 

esumation of variance-covariance matrices associated with measure­

ment.3 the detection and isolation cf gross errors in the plant data, the 

rec or ciliation or filtering of the data after elimination of gross errors and 

finally the construction of plant models based on the use of plant data 

i:;.reprocessed by the foregoing techniques. 

The variance-covariance matrices of process variables are generally 

unknown and often difficult or expensive to measure. Under these 

circumstances estimates of these parameters can be made with the use 

of neural net•;, as was demonstrated in chapter 2 . The methods depend 

on the n r •t . .. ling of the relationship between the variances and 

covariances of the residuals of the process constraints and the 

corresponding variances and covariances of the measurements of the 

process variables. Since this relationship is not unique, additional 

information is required to estimate the variances and covariances of the 

variable measurements. This information can be integrated with a neural 

net either through modif1cat1on of the topoloyy of the net, or as distinct 

patterns in the training examples presented to the net, as was shown in 

chapter 2. 

The detection and diagnosis of f au Its in complex process plants are one 

of the most important aspects of the monitoring and control of such 

plants. Existing methods are usually based on the analytical redundancy 

afforded by a mathematical model ot the system and make use of 

statistical tests to detect and isolate gross errors in the plant data . These 

tests depend on the distributions of the residuals of the process variable 
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measurements, as well as the residuals of the constraints of the process 

model. Since these distriuutions are generally unknown and especially 

difficult to estimate in non-linear systems standard gross error detection 

strategies are ineffective for all but simple (linear) process systems. 

By making use of neural nets the ill -defined relationship between the 

residuals of the variable measurements and the residuals of the process 

constraints can be modelled accurately, regardless of the (non-)lrnearity 

of tf-,o system and can be used effectively to detect and isolate 

systematic errors, as was shown in chapter 3. In i.:ontrast with 

conventional statistical methods, explicit knowledge of random error 

distributions is not required, since the neural net can construct this 

distribution directly from process data. These techniques are not limited 

to the process engineering industry, but could find wide application 1n 

many other areas dea:ing with complex technological systems, such as 
aviation, electronic engineering, aerospace, etc. 

In chapter 4 the exploitation of the supercomputing potential of neural 

nets for the reconciliation of inconsistent process data was investigated. 

The reconciliation of process data which characterize the behaviour of 

large or complex plants generally constitutes a large computational 

burden which can be alleviated considerably by more efficient computi11g 

techniques or devices . These types of problems lend themselves well to 

connectionist c0mputing devices or neurocomputers which consist of 

large numbers of pnm1t1ve processing units. In chapter 4 it was s:1own 

that by assigning a process unit in the neurocomputer to each of the 

process variables that has to be reconciled significant gains in 

computational efficiency can be attained. The use of such systems is 

particularly attractive for large systems. The performance of these 

systems is furthermore particularly sensitive to the degree of parallelism 

and although not explored rn any depth, rt was shown that an increase in 

the parallelism of the syrtem could result in considerable enhancement in 

the performance of the computational device. 

In chapter 5 the construction of plant models based on neural nets was 

discussed. The dissolved and undissolved gold losses in a gold reduction 

plant, the consumption of an additive in a gold leach t'Jlant, as well as the 

behaviour of a phosphate flotation plant were predicted satisfactorily by 

. \ . . .. ,, . . .. 
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rieans of neural net models. These models were also compared with the 

models in use on the plants and found to be more accurate. 

The optimization of separation circuits or plants can often oe 

accomplished by partitioning the circuit into a linear(1zed) and a non-linear 

subsystem, wnich can be optimized with a proct::dure based on the 

iterative use of linear programming techniaues. The non-linear subsystem 

which is generally ill-defined can be represented with a neural net, which 

can be usP.d in a modular fashion with the linear programming 

superstructurf:, as was demonstrated with a gravity concentration circuit. 

The modular nature of these strategies renders them more useful, since 

the behaviour of specific types of separators can be modelled 

independently in terms of a generalized connectionist data base that can 

be used in linear prcgramming optimize s Dnd simulation routines. 

Stellenbosch University  https://scholar.sun.ac.za



. . 
' .' 

b 

c 

cov(·) 

d(·) 

D 

e 

E 

E(·) 

F 

f 

- 137 -

SYMBOLS 

inciaenc.e matrix of a orocess circuit 

recycle or loop matrix with elements { a,,
1 
·} 

elements of looµ matrix 

constant input current to amplifiers in chjective 
function section of linear programmi1 a neural net 

bias vector of gross error {b
1
} 

constant input current to amplifiers in constraint 
section of linear programming neural net 

matrix of process constraint coefficients 

input capacitance of k 'th amplifier in a neurocomputer 

covariance 

set of process constraints 

Cartesian product of the domains of variables 

j' th column vector in transposed loop matrix A· 

t:1e network" output corresponding to field element fk# 

errors m measu1 ements of process ·1ariables { e,} 

scalar energy or cost function serving as a measure of 
the overall state of a feedback neural net 

expected value 

initial energy of a neural net system 

energy of a stable neural net system 

random er1 or in measured compo.;1tior1 f of process 
strear F 

random error in measured µrecess flow screams F 

1 a11dom error ir. variable x 

flow rates of process streams {F
1
} 

mass frar:tions \f,) of components in flow stre'3m f 

. «>• • ~ , .. ·. . . . . . ,·. ' . ; . . . . . . . . . . 
. . . 

Stellenbosch University  https://scholar.sun.ac.za



---- - - . 
. - . i . . . 

• .1 . . 

f(x) 

f· . " 
I .J 

FosJ 

F\_k 

h 

H( · ) 

• 138 -

an arbitrary set of functions of a set of variables x 

concentrate recovery of element k from concentrator j 

tailings recovery of element k from concentrator j 

flow rate of element k of concentrate str ~ 11 ·rom 
gravity concentrator i 

dry solids flow rate fror l concentrator i 

flow rate of element k of feed stream to gravity 
concentrator i 

fields in training or test vectors in general 

mass fraction of component J in flow stream F, 

adjusted mass fraction of component j in flow stream 
F; 

measured mass fraction of component j in flow stream 
F; 

j'th field element in input vector to neural net 

flow rate of element k of middlings stream from 
gravity concentrator i 

an objective function 

flow rate element k of tailings stream from gravity 
concentrator i 

total flow rate 

incremental change in g between time i and i· 1 

set of (rn)equality constraints 

transfer function of neural net process element 

transfer function in constraint section of linear 
programming neural net 

descaled output of k ' th element of neural network 

transfer function in objective fur.-::t1on section of linear 
programming neural net 

step length in numerical integration routine 

set of equality constraints (design specification 
constraints) 

approximation to inverse Jacobian J 1 (y) 

j'th network input 

• • . - • !· • . 
.. . . . . . 
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Jacobian 

incremental change in J" 1 between time i and i-1 

a factor associated with the noisiness of neural net 
training data 

set of constant paramt!ters 

coefficient vectors of linear regression models Y = 
X .k 1 + k2 

j'th cycle in a process circuit 

block diagonal, block triangular and border matrice~ 

maximum value that an element in a field can assume 

mi11 imum value that an element in a field can assume 

number of processing elements in the hidden layer(s) 
of a neural net 

actual output of k ' th element of neural network 

internal parameters in a sequential modular simulator 

the number of processors or processing elements in a 
parallel computational structure 

weighting factor allocated to stream sJ 

critical value of standard normal deviate 

j'th standard normal deviate 

ratio defined as qj,i = s1,/(s1,1_1) 

upper bound of q
111 

lower bound of q1,1 

a bounded state variable domain 

a set of bounded state variable domains 

vector of process constraint residuals resulting from 
errors in measurements of process variables {r p} 

set of equality constraints (flowsheet equations) 

lower limit of range allowed for output of neural net 

upper limit of range allowed for output of neural net 

!ower limit of range allowed for input of neural net 

upper limit of range allowed for input of neurcil net 
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search range <1ssociated with variable i at time j 

resistance of k 'th amplifier in a neurocomputer 

recycle of element k in tailings stream from 
concentrator j to i 

re:::ycle of element k in concentrate stream from 
concentrator j to i 

recycle of elerr.ent k in middlings stream from 
concentrator j to i 

speedup factor 

j'th stream in a generic process circuit 

gradient function defined as [f,)X1) · f
1
,
1
• t/X1· 1) )/ [XJ,I -

x1,,.1 I 

time 

time increment, equivaient to ari iteration step in 
terms of the computational algorithm 

time at which observation j of a state variable takes 
place 

k'th training vector of a neural net 

desired value of j'th output vf a neural net 

the potential of processing element i at time t, i.e. the 
sum of the products or the weights and outputs of all 
other elements feed :ng into the procesdng element 

set of output statr~s of computational elements ir. 
neural net {vj} 

weights associated with the material "alance 
constraints incorporated in the energy function E 

variance-covariance matrix of measurement residuals 
e 

variance-covariance matrix of constraint residuals r 

variance-covariance matrix of the precess 
variable x 

initial output states of computational elements in the 
neural net 

variance 

j ' th processing element 1n the (i'th) hidden layer of a 
neural net 
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j'th node in input layer of neural net 

k 'th node in output layer of neural net 

connection strength or weight between process units i 
and j in neural net 

(n x m) matrix of observations of m independent 
variables x1 k 

' 
vector of independent variables [x 1 ,x2 , • . xpl (true 
values) 

uncorrupted measuremer.t ; unbiased error 

adjusted values of process variables {xi" } 

measured values of process variables {x1'} 

j'th observation of variable x 1 

average value of variable x, 

j'th state variable 

(n x p) matrix of observations of p dependent 
variables Yi ,k 

incremental change in y between time i and i-1 

vector of dependent variables [y 1 ·Y2···Yml (true 
values) 

(k'th observation of the) j'th dependent variable 

vector of decision variables 

upper bound of vector of decision variables z 

lower bound of vector of decision variables z 

probability of the occurrence of a type I error 

domain of 1'th variable in a set 

probability of the occurrence of a type II error 

lower limit of concentrnte-tailings separation factor 
rc ,t 

1,k 

uoper limit of concentrate-tailings separation factor 
rc.t 

1,k 

... . 

--------
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1,k 
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T 
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Subscripts 

g 

h 

h1 

h2 

0 

v 
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concentrate tailings separation factor for element k ifl 
concentrator i 

lower limit of m1ddlings-tailin~s separation factor rm.t 
1,k 

uoper limit of middlings-tailings separation factor rtn.r 
1,k 

middlings-tailings separation factor for element k in 
concentrator/ 

an arbitrary small vt1lue 

c0nvergence criterion 

random number associated with varit1ble i at time 1 (0 
s ¢li s 1) 

variance of multivariate normal deviate p
1 

feed gradft 

bias of process element i in a neural net 

learning rate 

the fraction of computer cede that can be executed in 
parallel 

gangue 

an only hidden layer 

first hidden layer 

second hidden layer 

input 

output 

valuable element 

water 

. . . . . 
• • • I - -
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APPENDIX A 
BRIEF REVIEW OF THE FUNDAMENTALS OF 
BACK PROPAGATION NEURAL NETWORKS 

A.1 STRUCTURE OF BACK PROPAGATION NEURAL NETWORKS 

Excellent in depth discussions on neural nets can be found in the 

literature and only a very brief overview is provided in !his dissertation 

(Hecht-Niel')en, 1990; Hush & Horne, 1993, Lippmann, 1987, 1989; 

Rumelhart et al., 1986; Wasserman, 1989). 

A neural net is a parallel distributed information processing structure, 

consisting of an arrangement of interconnected primitive processing 

elements. Each processing element can have an arbitrary number of input 

connections, but only one output connection (that can branch or fan out 

to form a multiple output connection) as shown in f igure A . 1. These 

elements or artificial neurons can have local memory and also possess 

transfer functions that can use or alter this memory, process input 

signals and produce the output signals of the elements. 

The processing elements of a neural net are typically divided into disjoint 

subsets, called layers, in which all the process units generally possess 

the same computational characteristics. The layers comprising a neural 

net are usually categorized as either input, hidden or output layers, to 

denote the way m which they interact with the information environment 

of the net. 

The back propagation nets used in thi5 study were feedforward networks 

(see figure A.2) which could be trained by repeatedly presenting th~m 

with examples of scaled inputs (see next section) and desired outputs 

(Bhat et al., 1990; Bhat & McAvoy, 1990; Hecht-Nielsen, 1990; Hinton, 

1989; Hornik, et al., 1989; Karim & Rivie c. , 1992; Leonard & Kramer, 

1990; Lippmann, 1987, 1989; Rumelhart et al., 1986; Wasserman, 
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• 989). Training, which entailed the adjustment of the weight matrix of 

the net, occur~ by means of learning algorithms designed to minimize the 

mean sqL,are error between tne desired and the actual output of the net 

1Battiti, 1992; Bhat & McAvoy, 1990). During the learning proces:; 

nformation 1s propagated back through the net in order to update the 

connection weights of the net, so that the net can form an internal 

representation of the relationship between the inputs and the outputs 
presented to it. 

A.2 NEURODYNAMICS 

Computation in back propagation neural nets is feedforward and 

synchronous, i.e. the states of the process units in layers nearest to the 

input layer of the net are updated before units in successive layers 

further down in the net. The activation rules determine the way in which 

the process units are updated and are typically of the form 

(A.1) 

where u,(t) designates the potential 01 a process unit at time t , 1.e. the 

difference between the weighted sum of all the inputs to the unit and the 
unit bias 

(A.2) 

The form of the transfer function g may vary, but could be a linear, step 

or si ;Jmoidal transfer function, among others, with a domain typically 

much smaller than that of the potential of the process unit . such as [0; 1 J 

or (- 1 1], for example. 

The ~raining of back propagc1tion neural nets is an iterative process 

involvin3 the changing of the weights of the net, typically by means of a 

gradient descent method, in order to minimize an error criterion, that is 

(A.3) 

(A.4) 

where r is the learning rate and E the error criterion, i.e. 

(A.5) 

. . 
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based on the uifference between the desired (T 0 ,
1
1 and the actual outputs 

(v0 ) of the unit. 

A.3 SCALING OF DATA 

Before data can be presented to a neural net, it is usually necessary to 

scale them to ranges w'iich would enable the net to learn. A hyperbolic 

tangent transfer function produces outputs in the raroqe lying between - 1 

and 1 and for this type of net to learn effectively. it is necessary to scale 

the outputs to the same ran3e. This is usually accomplished by mapping 

the minimum and maximum values of the actual input and output data 

linearly to the respective minimum and maximum values of the network 

ranges. If an exemplar presented to the net consists of I input fields and 

D output fields, i.e. lf1#. fi# ... t,#, f1 + 1#, f1+ 2# ... f1+ o#I. two sets of 

corresponding vectors can be defined [m 1• m2• .. m1. m1 + 1 • m1 +2• .. 

m1 + ol and IM1. M2• .. M1. M1 + 1• M1 + 2• .. M 1+ ol. where mk and Mk 

typically correspond to the minimum and maximum values141 that f k# 

could assume. If the ranges allowed for the inrut and output layer of the 

net are respectively defined as (r,,1, R1#) and (rQ#. Ro#L i
1
# as the 

11etwork input corresponding to f1# , dk# the network output 

corresponding to fk#• ok# the actual output of the net and gk# the 

corresponding real world output, then the mappings of the real world 

data to those of the network r:an then be described as follows: 

Input 

(A.61 

Output 

(A .7) 

Mapping trorT' :1etwork output to real world 

(A .8) 

Non-numeric or missing field values are usually mapped to the middle of 

the target range, that is Yz (R1# + r1#l or Y2 (Ro#+ ro#l . 

141These indices can assume any values, as long as mk < Mk. 

.. • 1• .. 
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APPENDIX B 
BRIEF REVIEW OF PROCESS SIMULATION 

METHODOLOGY 

In the systems technology approach, it is fundamental to discern 

between systems or process analysis which is concerned with the 

outputs of a system, based on certain inputs, and process synthesis, 

which is concerned with the inputs of a system, based on certain outputs 

(Takamatsu, 1983). Analysis entails the investigation of the structures of 

the system and the relations and interactions among its various elements, 

and it is useful for calculating unknown system outputs from known 

inputs. In contrast , synthesis is concerned with the design of elements 

and their complex mode of interaction in order to transform given system 

inputs into desired outputs. Although distinct concepts, analysis and 

synthesis are closely entwined . In practice synthesis operations are 

followed by analyses in which the behaviour of the system is 

investigated , especially in order to derive a basis from which the future 

evolution and optimization of the system can be pursued. 

Analysis is not limited to a formal decomposition of the system or object; 

1t is a complex and creative process in its own right, and no general 

consensus exists as to the best strategy for the modelling and simulation 

of chemical plant: or process circuits (Evans, 1987) In essence process 

simulation starts with a process flow sheet, from which a simulation 

model 1s constructed. This conceptual representation typically consists of 

a model or unit operation block for each processing step or processiny 

unit in the circuit. These unit operation blocks are connected in a specific 

structure and comprized of sets of equations relating the ini:- uts and out­

puts pertaining to each block. In the pre-computer era prior to the end of 

the Second World War no more than comparatively simple (stationary, 

discrete, deterministic, one dimensional) models could be solved, and 

then only by graphical or analytical means (Hofmann, 1988). More 

. . . - .... : - -------- . 
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SC'phisticated models were developed as digital computers became 

cheaper and more available. Strategies for solving the equations of these 

models can broadly be classified as sequential modular, non-sequential 

modular (equation-based), or more recently, two-tier approaches, which 

are hybrids of the former two methods (Evans, 1987, Perregaard & 

Sorensen, 1992). Although the sequential modular approach (Diwekar et 

al., 1992) appears to be the more popular of the two, and the strategy 

employed in most commercial simulation software packages, equation 
solving methods are rapidly gaining ground. 

B. 1 STEADY STA TE SIMULATION 

Technically speaking, chemical processes are never at steady state, but 

are always fluctuating or drifting in the state space describing their 

behaviour. If these process changes take place over comparatively long 

periods, the process is considered to be in a steaJy or a quasi-steady 

state. Three different strategies are followed to model these equilibria, 

viz . the sequential modular, the equation-t:,ased and the simultaneous 
modular approach. 

B. 1.1 Sequential modular simulators 

The sequential modular approach forms the backbone of most 

commercial process simulators, and is based on the implementation of 

pro:::ess unit blocks as computational subroutines, calculating output as 
functionally related to input. 

The first step towards the modelling of flowsheets with this strategy 

entails the partitioning of the flowsheet, i.e . the identification and 

assembly of collections of unit modules forming maximal cyclic 

subsystems that have to be solved together. Calculations are carried out 

by a sequential procession from one module to another, generally in the 

direction of the material flow streams. fkcycle loops in the process are 

accommodated through initial estimc-t~ :.. of rqlect'9d (torn) recycle 

streams, w h are updttted in the coun c c ... u~c...o<:>::.i 1'9 passes through 
the flowsheet (Mclane et at ., 1979) . 

The development of sequential modular process simu.ators began in the 

late 1950s, when stand-alone programs designed for calculating unit 

... . . 
- -=---=- - -
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operations were sequenced, so that the flow of unit c. 

corresponded with the flow of material and energy in the actu 

?Jtior.s 

,ess 

(Biegler, 1989) . The earliest attempt was made with Flexible Flowsheet, 

which was followed rapidly by others suiJh as SPECS at Shell, COPE at 

Exxon and FLOWTRAN at Monsanto. These unit operation modules 

allowed the construction of large flowsheets with a minimum of effort, 

and the construction of special solution strategies without altering the 

overall approach to the flowsheeting programs. Difficulties arose when 

the recy(:le structure of thA. flowsheet resulted in awkward iterations in 

the calculation sequence, and as a consequence only the simplest 

convergence algorithms (such as those based on direct subst1tut1on, 

dominant eigenvalues and Wegstein routines), which allow convergence 

of a single recycle loop at a time, could be implemented. The general 

architecture of sequential modular process simulators is shown in figure 

B. 1 . It is estimated that up to 80% of the computational effort stems 

from the determination of physical properties of the materials to be 

processed, and as a result major differences between various sequential 

modular simulators can be attributed to the sophistication and scope of 

their physical property calculators. The individual unit or process models 

can be solved with different degrees of rigor, and can involve tens of 

thousands of equations to represent the equipment, as well as the 

physical properties of the materials being processed (Westerberg, 1991 ). 

The benefits of implementing a sequential modular simulator include 

conceptual simplicity, advantage that can be take1l from a large number 

of industrially developed process models, and the possible inclusion of 

convergence heuristics accumulated over the ye:us. Sequential moaular 

methods used in process simulators such as ASPEN (Evans et al., 1979), 

PROCESS (Brannock et al., 1979) and SIMBAD (Leone et al., 1987; 

Montagna et al., 1987; Vecch1ett1 et al., 1987) are well-suited for solving 

steady state simulation problems which are well-defined, although even 

these types of systems may involve up to three nested levels of 1terat1on 

ir. the solution procedure (Perkins, 1983). These 1terat1on levels include 

calculations concerned with the est1mat1on of physical properties, the 

unit or process ,,. rlL;1 , i ' d the convergence of torn flow ~treams . 

Sequential modular pa'-kages are less et:1c1ent in solving systems where 

not all the parnmetci..; (feed streams to all the units and process 

parameters) are defined (Perkins, 1983), and the complications posed by 

. ~ 

' -- - - - -
" 
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large highly integrated systems can moreover result in severe prnblems 

with convergence (Harrison, 1992) . The most important disadvantage of 

sequential modular strategies might well prove to be their inability to 

exploit parallel computational strategies which are steadily growing m 

importance every year (Vegeais & Stadtherr, 1992). As the name 

suggests, these procedures can not solve different modules simultane­

ously, unless they are completely independent. 

a) Flowsheet convergence methods 

iJ Unconstrained flowsheeting 

Unconstramed flowsheeting models (see figure B.2/ are often represented 

in block structures with external feed and product streams and a recycle 

loop with tear stream values x. Under the sequential modular architecture 

the model of the block is structured in an input-output form, so that for 

specified values of the internal parameters of the model and given values 

of the process feed and tear streams, the model will provide values for 

the product streams, as well as a calculated value f(x) for the tear stream 

vector . Th~ values of x and f(x) are subsequently converged to ..vithin 

suitable tolerances. 

ii) Constrained flowsheeting 

In the application of sequential modular simulators, it 1s often desirable to 

use the simulator to determine the values of design variables or internal 

par:imeters p, in order to compliy with certain design constraints, 

d(x,p) = 0, as depicted in figure B.3. These problems are referred to as 

constrained flowsheet problems, subject to the constraints d(x,p) = 0, and 

it 1s consequently necessary to find both x and p so that f(x) = x and 

d(x,p) = 0 . In sequential modular simulators, this is traditionally 

accomplished by use of additional calculation loops, which may be 

nested with the tear stream loops. In an outer loop strategy for assumed 

values of x and p for example, tear stream calculations are repeated until 

the equality f(x) = x 1s satisfied. The constraints d(x,p) -0 are then 

evaluated, and 1f not satisfied, p 1s suitably adjusted anr! the iteration 

process repeated. These variable partitioning schemes are often 

ineffective, so that tear equations and design constraints have to be 

solved simultaneously. Some of the numerical methods which are 
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commonly used 1n constrained and unconstrained sequential modular 

models, are successive su )Stitution, as well as the methods of Wegstein 

and Broyden . 

The simplest approach for the solution of f (x) = x , is based on successive 

substitution, i.e. x1+ 1 = f(><1). Convergence is guaranteed only if all 

eigenvalues of the Jacobian of ftxl have a modulus less than unity (Clark 

& Rekla1tis, 1984). This method is often used in a modified form to 

enhance convergence (Wegstein 's method), 

(8.1) 

To induce stability q1,i is usually bounded from above and below; Qi.min ~ 

q1,1 ~ Qj,max· A more sophisticated and powerful strategy is based on the 

method proposed by Broyden (Clark & Reklait is, 1984; Broyden, 1965), 

which can be summarized as follows 

(8 .2) 

w here 

where H is an approximation to the inverse Jacobian of J " 1 (y), and ~J" 1
1 

= s\ - J'\1 .~ g, = gi - g1 -l and ... y, = Y1" Y1-l 

B.1.2 Non-sequential modular or equation-based methods 

In contrast to the development of sequential modular simulators, which 

were historically developed mainly by the industrial community, non 

sequential process simulators were by and large derived from academic 

circles (Biegler, 1989) and although these simulators have certain 

attractive features, their d1ffus1on into the commercial arena remains slow 

(personal communication, Ch1mowitz, 1993). These equation solving 

methods (Perkins, 1983; Rajniak et al., 1992) comprising the so-called 
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simultaneous or global approach, are concerned with the collection of all 

equations describing the flowsheet and to solve them as a large system 

of non-linear equations. In contrast to the sequential mcdular apprcach, 

the numerical procedures and the directionality of information flow 

through the system is completely divorced from the plant description. 

The flowsheeting probiem is essentially reduced to the solution of a very 

ldrge and sparse set of non-linear equations (Vegeais & Stadtherr, 1992) 

which can involve tens or even hundreds of thousands of equations 

(Fouchy, 1991; Hlavacek, 1977; Westerberg, 1991 ), and can be 
mathematically summarized as: 

solve F(x,u) = 0 (8.3) 

with G(x,u) s; 0, where 

x is the vector of state (independent) variables, and u 1s the vector of 

decision (independent) variables, F(x,u) constitutes the set of process 

models equations and G(x,u) the set of inequality or equality constraints. 

The extra step requiring the calculation of output streams from input 

streams for constituent process units found in the sequential modular 

approach is consequently dispensed with in equation-based methods. 

Two basic approaches can be followed to solve the systems of 

equations, and the rationale behind both is to obtain a solution strategy 

that will converge rapidly and reliably for the particular problem 
(St;Jd!herr & !-lilton, 1982)_ 

The first aopro ... ch is based on tearing a sufficient number of variables to 

oermit ct1~} rem;:iining var:ables to be calculated as a sequence of smaller 

proh1ems. fl1e taar variables are calculated by some sort of successive 

~ubstitution procedure, provided that the tear equations contain the tear 

vari~hles .n an explicit form. If not, standard root finding techniques can 

be used together with che residuals of the tear equations. This approach 

pffectively amounts to the solution of a larqe system of non-linear 

equations by iterating on1y on a few toar vari!lbles, which constitutes a 

drastic reduction rn the dimensionF ""' ··blem. The key step in 
the tearing approach hinges aroui elopment of an appropriate 
solution strategy, 1.e. which vanaL which equations to solve 

for which variables (the output set) a. • . .Jll as the sequence in which 

these equations should be solved (preceden -::e ordering). Owrng to the 
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problems involved with the eff1c1ent selection of a reliable solution 

strategy, the approach based on tear equations hds not been adopted 

whole-heartedly by the process engineering community. 

The second approach to solving the system of equations, the quasi-linear 

approach, involves the simultaneous linearization of all equations and 

iteration un all variables, typically using Newton-Raphson and quasi· 

Newton·Raphson mt: · ~ 1ods or suitable variants thereof. In each iteration a 

huge set of spdrse linear equaticns (possibly involving saveral thousand 

variables) has to be solved, and the use of sparse matrix strategies is 

essential for all but the smallest problems, aue to the computational 

problems created by fill-in associat~d with the use of normal matrix 

methods. 

The advantage of the equation-based approach is that 1t is a convenient 

and natural method for specifying variables and constraints. It is also the 

approach with the most potential for exploiting parallel computational 

structures, provided that the computation of sparse matrices can be 

parallelized adequately. Disadvantages include the requirement of good 

initial estimates for variables, difficulties that might be associated with 

the handling of non-linear and discor.tinuous relationships between 

variables, especially those relating physical properties, possible 

difficulties associated with the diagnosis of problems, as well as not 

making use of the large number of unit operation models developed by 

industries. 

11) Executive routines 

The executive part of the process simulation model is concerned with the 

management of the flow of information during simulation. The executive 

accepts input data, determines the topology of the flowsheet and derives 

and controls the sequence of calculutions in the flowsheet. Control is 

then passed to the unit operation level for the execution of each module, 

where specialized procedures from a unit operations library calcuiate 

material and energy balances for a particular unit. Frequent calls are also 

made by the executive and unit operations to physical properties libraries 

for such routine tasks as phase equilibrium, enthalpy and other stream 

property calculations. 

. . . . . . " . . 
- -
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b) Sparse mi trix methods 

As has been mentioned, one of the approaches to solving a large system 

of non-linear equatior.s, involves the simultaneous linearization of all 

equations and iteration on all the variables until the system converges. 

The repeatea solution of large sparse linearized systems of equations of 

the form A .x = k can easily overburden the available computational 

resources, and it is therefor dasirable to decompose these system into 

smaller and more manageable blocks of equations and variables. A few 

decomposition strategies commonly used for this purpose are 

decomposition into a so-called block triangular form (BTF), bordered 

block diagonal form (!::sBDF) and the b1Jrdered block triangular form 

(BBTF) . 

i) Block triangular form 

The system of equations is first reduced to a set of irreducible blocks, 

after which the blo-:ks are partitioned (Lin and Mah, 1978) . The strategy 

fails for large irreducible blocks, owing to excessive computational 

requirements. In this case reversing back to a simultaneous modular 

approach can solve the problem, with each module representing a block 

with a relatively small number of units that can be handled more 

conveniently . 

ii) Bordered block diagonal form 

This technique proposed by Westerberg and Berna (1978), permits 

efficient use of mass storage and involves permutation of the coefficient 

matrix A into a bordered block diagonal form, i.e. 

(8.4) 

where M 1 is a block diagonal matrix, with each diagonal block 

corresponding to a single unit. The external variables that describe flows 

between units are represented by the border matrices M2 ar,d M4 . The 

rows constituting M3 and M4 represent a set of equations to reduce fill-

1n, while solving for M 1 , as well as a set of connecting equations 

describing the flowsheet Ordinary Gaussian eltminat1on 1s used to reduce 

. . . - \ ' 

~ 
- . -- ·- -
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M 1-blocks into the upper triangular form and corresponding areas in M
3 

to zero. An important advantage of this approach is that each block or 

process unit can be accommodated individually in memory, wh!ch greatly 

reduces the burden on computational resources. Since relatively little 

access (generally of the same order as the number of diagonal blocks) to 

mass storage 1s required, the performance of the bordered block diagonal 
form is not impeded unduly. 

iii) Bordered block triangular form (BBTFJ 

The BBTF is an al•P.rnative to the BBOF approach of Westerberg and 

Bern~. and entails tht: rormation of a matrix A 

* A = 
4 

(8.5) 

through appropriate tearing. In this case M 1 is block triangular, and the 

columns in the borders M 2 and M4 correspond to design variables, while 

the rows in M3 and M 4 represent form equations. Off-diagonal elements 

in M 1 indicate information flows between units in the system. Gaussian 

elim ination w ith back substitucion can similarly be used to so!ve the 
system. 

B.1.3 Simultaneous-modular or two-tier approach 

The late 1970s and the early 1980s saw the development of a continuum 

of approaches spanning the gap between sequemi::il and non-sequential 

modular simulators. Simultaneous modular approachf,s gradually evolved 

into simultaneous modular methods where unit operations reniamed 

essentially intact, but stream connections were solved simultaneously. 

Equation-oriented approaches on the other hand, were adapted to 

incorporate procedures at the lowest le,1els, e.g. for the calculation of the 

physical properties of process materials. The simultaneous-modular 

approach 1s not as well-defined as the sequential modular or non­

sequent1al modular approaches and broadly consists of strategies that 

have been developed to exploit the advantages of both the equat1on­

based and the sequential modular approach, especially as far as rnakmg 

use of the large base of existing sequential modular software of the latter 

(Perkins, 1983, Shacham et al. , 1 ~ . 2) . Some of these strategies involve 
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the simultaneous solution of design specifications and tot n recycle 

strec;ims, as well as a two-tier approach where alternal~ une is made of 

an approximate equation basea process model and a rigorous prucedural 

model (Mahalec et al., 1979). In the two-tier approach the approximate 

equation-based model is solved exactly ir, order to generate new 

parameter estimates for use in the rigorous model. The rigorous model is 

usP.d in turn to generate new values for adjustable parameters in the 

approximate model, tha approximations uf which could be linear or non ­
linear (Mahalec et al., 1979). 

8.1 .4 r.alculation of physical properties 

Virtually all commercial simulators have separ;ite sections that distinguish 

between process models and stream connections on the one hand, and 

the physical properties (data banks and correlations) on the other. Almost 

all commercial simulators make use of cubic equations of state models 

for the description of pure components. Local activity coefficient models 

(such as UNIOUAC, NATL and Wilson) dre supplemented by the use of 

group contribution methods (such as UNIFAC), while well-known sctivity 

coefficient correlations for hydrocarbons, such as Chao-Seader and 
Grayson-Streed are employed frequently. 

Owing to the time consuming nature of physical property models, as well 

as their separ~tion from the rest of the flowshcet, the u:;e of loral 

property models that can be fully exploited by the simulator has been 
pro;Josed (Biegler, 198q). 

B.2 OPTIMIZATION 

The optimizatior1 of process flowsheets became feasible for large scale 

problems with the developnif:nt of lir1ear programm1n9 codes in the late 

1950s and ~ainer, further ma1 r en tum with the introduction of mixed 

integer linear programming package5 in the 1 960s (Westerberg, 1991). 

Prior to that, optimization consisted of ad hoc techniqu~s. SL1ch as case 

studies, which could only be applied to small plrints . 

When a flowsheet is optir.iized, a ~ystem 1)f equations similar tu those 

enco• ' '1terea during 5imulation, 1s solved with sonie process parameters 
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determined and others free, rn order to maximize or minimize a specific 
objective function, i.e. 

max/min F{x,z) (9 6) 

subject to 

R(x,z) = 0 

H{x,z) = 0 

G(x,z) ;:::: 0, and 

Zmin ::5 z S Zmax 

where z 1s d vector of decision variables, x a vector of system variables, 

F the objective function, R{x,z) the flowsheet equations, H{x,z) the 

design specification constraints, G(x,z) inequality constraints and Zmin 

and Zmax the bounds on the dec1s1on variables. 

Methods for solvtr1g flowsheet optimization problems can be divided into 

two broad categories, namely feasible and infeasible path methods 

(K1sala et al., 1987). Feasible path methods require the equality 

constraints of the problem to be satisfied at every intermediate estimate 

of the decision variables alon9 the trajectory towards the optimal 

solution, while with infeasible path methods the equality constraints need 

only be sa•isfied at the optimal solution. Since the entire flowsheet has to 

converge at every time step of the calculation 5equence, feasible path 

methods are very time consuming and only really effective as far as 

smaller problems are concerned (Biegler, 1989). 

Infeasible path methods, which came into their own ;n the early 1980s, 

can be subdivided into three further classes, depending on the !ype of 

simulation strategy involved, i.e. sequential modular, two tier 

simultaneous modular and equation-based methods. In sequential 

modular methods, the modular architecture of the simulator 1s used, and 

te"r streams and the optimization problem are converged simultAneously 

by a convergence block (Biegler, 1989; Biegler & Hughes, 1 ::182). 

Successive quadratic programming techniques, which require very few 

function evalua~1ons fnr convergence, are often used for optimization in 

. . . . 
--=-- . . . "" . ' · ~ 
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commercial simulators. These techniques are less efficient with regard to 

equation-based methods, which generally require the optimization of 

large problems subject to many equality constraints. Equation-based 

methods solve the optimization problem directly instead, as a large non­

linear programrr.ing problem. Although these methods are potentially very 

efficient, more development needs to be done in order to counter many 

of the numerical problems arising from applications to chemical 

engineering problems (Kisaia, et al., 1987). Simultaneous modular or 

two-tiered have their origin in attempts to apply the equation-oriented 

methodology iteratively. These algorithms make use of sequential 

modular process unit simulators to generate a simplified flowsheet that 

can be solved as a non-linear programming problem. Hybrid methods 

which incorporate or combine some of the features of these strategies 

have been proposed by various authors (Biegler, 1982) . 

A number of methods is available for solving the non-line:.· roqr .... , • ' '· :g 

problem, of which gradient-based algo11thms and e~pecially !-.. Jccessive 

quadratic programming are regarded as one of the most efticient (Chan & 

Prince, 1986; Westerberg, 1991). In successive quadratic programming 

procedures a quadratic programming problem is set up at each step, by 

taking a second order approximation of the Lagrange function and first 

order approximations of the constraints . The solution of this quadratic 

programming problem yields a search direction along which a penalty 

function can be m1nim1zed, and the process is repeated at each base 

point until a soluticn to the original programming problem is obtained. 

Constraints are not necessarily satisfied at base points. 

Example~ of equation oriented packages include OUASILIN (Hutchison et 

al., 1986a, 1986b; Smith & Morton, 1988), SYMBOL (Gorczynski et al., 

1979), GENDER (Gorczynski et al., 1979) and SPEEDUP (Westerberg, 

1991 ). 

B.3 DYNAMIC SIMULATION 

Despite the availability of several dynamic process simulation tools, no 

system has yet gained general acceptance as a s1mulat1on tool for large 

scale process plants (H:;,estadt & Herzberg , 1986) . ThE' dynamic 

. . . . . ' . . 
' ' . , 
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simulation of processes typically involves systems of stiff non-linear 

ordinary differential equations (ODEs), as well as algebraic equations, 

usually of high dimensionality . These equations are typically sparse (often 

less than 1 % of the Jacobian elements are non-zero). In contrast to 

steady state systems, complications such as discontinuities between time 

and state events can also occur. Dynamic systems can be simulated by 

modular as well as equation-based methods. 

8.3.1 Modular methods 

There are two different approaches to modular dynamic simulation, also 

referred to as coupled modular methods. The coupled modular approach 

is also referred to as the simultaneous modular approach in the literature. 

This is unfortunate, since it leads to confusion with simultaneous modular 

(two tier) methods used in steady state simulation, to which it bears little 

resemblance. In coupled modular methods all modules are integrated by a 

common routine, such as implemented by the general purpose process 

simulator DYNSYL). As an alternative, modules are provided with 

individual integration routines, integrated over a common time horizon. 

This approach is known as uncoupled modular, independent mod11lar or 

sequential modular (Hlavacek, 1983). Use of the last term is also not 

recommended, since 1t can lead to unnecessary confusion with sequential 

modular aµproaches used in steady state simulatioil, to which it bears 

little resemblance . Although integration usually refers to r:.>utines for 

solving systems of ordinary differential equations, parti;:il differential 

equations can be solvfld as well, provided that these equations can be 
discretized properly. 

8.3.2 Equation-based methods 

With t.quation-based methods all the equations of the system are solved 

simultaneously, through partitioning (various methods are available) and 

the use of sparse matrix techniques, to take advantage of the structure 

of the sets of equations. Some of these methods include decomposition 

of the system into a block triangular matrix, based on the structure of the 

occurrence matrix of the system (Himmelblau & Bischoff, 1968). A 

solution is then obtained by direct or iterative techniques. An alternative 

strategy is to decompose the flowsheet, so that individual units can be 

treated separate:y . Integration of the systems of equations is 

' .. . 
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accomplished by predictor-corrector methods. Depending on its activity, 

each unit can then be solved with a different number cf Newton-Raphson 

iterations. Another promising strategy is to decompose the system into 

tv.o ::;ubsystems - a fast one and a slow one. Different integration 

mt?thods and step lengths (multi-rate methods) can then be applieJ to 

each sy~;tem . The two subf . .vstenis are connected by means of a 

polynomial interpolator or extra!J, 13tor. 

8 .4 FUTURE TRENDS IN PRO(,ESS SIMU' "~ 

Proce'3s industries are at p'eS'" t l xp61 ~ tremendous changes. 

Companies of industrialized "."lun , ,.,-, are increasingly focusing o:i the 

manufacture of high tech,101~ r: c• specialty products with an increased 

intellectual component, such as those encountered in the fields of 

biotechnology, pharmaceuticals and material science, while moving away 

from the manufacturing of commod1,y goods, which are becoming less 

attractive (Gorsek et al. , 1992) . As a consequence producers of 

commodity goods such as metals, minerals, pulp, food and paper, are 

compelled to become more efficient, and to rely ir.creasingly on the use 

of process simulation to improve plant performance. The demand for 

improved modelling techniques is moreover driven by increased use of 

batch processing in the manufacture of specialty products (Graells et al , 

1992). 

Advances in the simulation and modellir.g uf chemic(ll ant: m~tallurgical 

processes is so closely related to the growth of the information 

processing industry, that 1t can nut really be considered in proper 

perspective without focusing on the development of computational tools 

(Evans, 1987; Sb::rbaro, 1991 ). The continuous demand for more 

sophisticated and powerful computational systems is two-fold . Although 

conceptually simple to model, a process system may be large, so that the 

sheer computational burden posed by the dimension or structure of the 

system causes it to be an intractable problem to solve. In certain cases, a 

doubling in the d1mens1on of the problem can for instance result in up to 

a sixteenfold increase 1n the computational burden placed on 

conventional methods (Rangaiah, 1985; ~~euckroth et al., 1976, Shc.nno, 

1983) . Other types of systems, on the other hand, mny involve only a 

few variables, but could bt1 very hard to describe fundamentally . The: first 

type of proble!'n has fueled the demc:n-J for so-callE> 1J supt?rvomput1ng 

• f I • • ... • • • I • : f I' ' • 
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devices, while the second has underpinned the necessity for 

computational !>tructures which can accommodate heuristic knowledge. 

3oth demands have been met by a number of different systems which 

hav~ been developed or matured in the last decade only. Of these, neural 

nets are particularly attractive, due to their potential for processing huge 

amounts of data, as well as for their ability to serve as r~positories for 

heuristic or empirical knowledge. 

Stellenbosch University  https://scholar.sun.ac.za



. . ·" . 

FIGURE B. 1 PROCESS ANALYSIS AND SYNTHESIS 
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FIGURE 8.3 TYPICAL CONSTRAINED FLOWSHEET 
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APPENDIX C 
DECOMPOSITION OF PROCESS CIRCUITS 
CONTAINING RECYCLE FLOW STREAMS 

Before a large process systemf 51 representing a complex network of 

interacting elements can be analyzed, it has to be decomposed into 

smaller subsystems that can be investigated separately in order to 

decrease the burden on computing facilities . Decomposition is typically 

implemented in stages (Mah, 1983) and to this end it is convenient to 

represent the flowsheet in terms of a digraph, the vertices of which 

represent the process units and the edges of which represent the flow of 

material or energy between these units (Cordoba, 1988; Pho & Lapid•1s, 

1973). The first stage of decompos1t1on, or partitioning, entails the 

division of the flowsheet into blocks of maximal cyclicity, 1.e. the parts of 

the flowsheet that have to be corverged pr:or to the commen~ement of 

any downstream calculations (Evans et al., 1979; Mah 1983). P:ocess 

units in each of these maximal cyclic blocks a1 e linked togP.ther by 

material and energy flow streams, and the equations d scribing the3e 

relationsh!ps consequently have to be solved together (Evans, et al., 

1979; Mah, 1983). Partitioning is unique and can bP. conducted by a 

number of different algorithms, such as those based on the use of a 

reachability matrix or a depth-kst search j)rocedure (Mah, 1974; Ledet & 

H:1-.1melblau, 1970) . 

As soon as the compiete system of equations describing the process 

circuit is pari.itioned into ci set of irreducible subsystems of simultaneous 

equations, 1t ic; usually desirable to furt er decompose lhesE. blocks of 

eauat:ons in orr:ier to simplify the;r solutic;n (H1mmelblau & Bischoff, 

15l•L MtJP' •S not n prec1~aly defined conct•pt. Cuirenr methods have, for example, proved 
effe ... uve in S'>lving mildly non linear systems wtth up to ! 0 000 variables, ·...,h1le 
d11f1culhcs have bcon enr;ou:-itered with badly non linear systems with as few as 100 
variables !Shanno, 19831. For the ourposes of this d ccuss1on, a large system 15 thus 
con:;1rtered to be any t.,pe oi system tha• 1s d1tf1cult to solve Ill practice, e1the~ as a 
result of the d1mens1on or the structure of the system. 

. . 
. . . . . . , . - ' . . . - ~--!:\ ,. : . , , . , , •, . 
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1968, Motard & Westerberg, 1981 ). The decompos1t1on of such an 

irreducible subsystem is known as tearing and in terms of a digraph 

representation of a process circuit, a tear set is a set of edges whose 

removal leaves each vertex connected to another at most by paths going 

only in one direction. The objective of tearing is to reduce the 

computation time needed to solve the fl~: i. , d ~ et of system equations 
simultaneously. 

C. 1 CURRENT METHODS FOR THE SELECTION Of- TEAR SETS 

One of the simplest criteria for the selection of tear sets, is to minimize 

the number of streams in the set. Another is to allocate weights to 

streams in proportion to the number of variable.3 they comprize and to 

minimize the weighted sum of the tear set, i .e. involve the least number 

of variables, rather than streams (Mah, 1983). 

Murthy and Husain ( 1983) described a tearing algorithm that works 

directly on the digraph of the process system. Their algorithm was 

designed to search for the cut set that would best minimize the sum of 

weights assigned to the process streams. They propo~ed the assignment 

of weights so that the tearing of input streams would affect the least 

number of output streams. 

Upadhye and Grens ( 1975) argued that a superior alternative entails the 

requirement that the tear set belongs to a non-redundant family of sets. 

A tear set is considered to be non -redundant if !t does not contain 

multiple tears. Their claim is supported by their own results, as well as 

those of Rosen and Pauls (1977). This strategy was dP-veloped further by 

exploiting the geometrical characteristics of non-redundant tear sets 

(Motard and Westerberg, 1981). When flowsheP.ts are constrained, such 

as by the imposition of design specifications on process units, the 

character of the original unconstra1,.,,,d flowsheet may be altered, so 1 hat 

this approach to decomposition is not necessarily the best one to follow 
(Lau & Ulrichson, 1992). 

The decomposition of process circuit by l"'leans of neurcl nets is not 

discussed in detail here, because the principles are demonstrated in 

section C.3 by means of a simple example. 

"' I. •• . . 
./ . .. . ... :.. .. 
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C.2 THE USE OF A RECURRENT NEURAL NET TO DECOMPOSE 

CIRCUITS WITH RECYCLE STREAMS INTO SERIAL UNITS 

Process circuits can be represented in several different ways, one of 

which is by means of a loop or recycle matrix, A· in which the elements 

a,,1 .. of the matrix are defined by a,,1 • = 1, if stream s
1 

forms part of the 

loop 11, otherwise a,,1 • = 0. in this configuration it can be shown that the 

optimal decomposition of the circuit is equivalent to a zero -one optimal 

covering problem. These problems can be solved by means of linear 

programming feedback neural nets. 

Tne construction of a linear programming neural net is depicted in figure 

C.1. The net is composed of two sections, one of which re;.H:isents the 

objective function of the programming problem and the other of which 

represents the constraints of the system. The objective function section 

of the analog version of the net contains n amplifiers (one for each 

independent variable vk in the objective function), each of which is fed a 

constant input current of ak #. The k ' th amplifier in this se<'· .• .in has an 

input capacitance of ck 11 and an equivalent resistance rk#· These 

amplifiers are furthermore assumed to satisfy the hard limiting non-linear 

input-output relat1un 

(C.1) 

The output of these amplif 1ers can thus only assume the values 0 or 1, 

and represents the solution to the optimization prot lem. 

The constraint section of the net contains m am )lifiers (one for each 

problem constraint) arranged in the same way cs those found in the 

objective function section. Each of these amplif ers is proviatid with a 

constant bias current bk /1 as input, and also r :ce1ves an input current 

from the amplifiers in the objective section. Th : output of the amplifiers 

c1
11 in the constraint section is an indication ot the extent to which the 

onstraints ol the system are satisfied, i .e. 

. . . . . . . ' . . . . . '· . . 
. . 
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(C.2) 

These equations indicdte that when the j'th constrcJint is violated, the j'th 

amplifier in the constraint sectic11 feeds a curren oroport1onal to di,J to 

the i'th amplifier in the objective function section. This current becomes 
ze1 o when the constraint is satisfied. 

Prior to stabilization of the net, the amplifiers in the objective function 

section attempt to minimize the values of the output variables vk, by 

pushing them to zero. At the same time the amplifiers in the constraint 

section attempt to satisfy the system constraints by pulling the output of 

the corresponding amplifiers in the objective function section through the 

injection of current of opposite polarity into these amplifiers. At 

equilibrium the output of the amplifiers in the objective function section 

represents the optimal solution to the problem, subject to the constraints 
imposed on the system. 

The neurodynamics of the 11et can be expressed by equation C.3, 

(C.31 

The energy of the system ca!1 moreover be: expressed as 

E = D. v + !G(D1v - b/J, where g(.) = dG(.)/d(.) (C.4) 

Provideo that the transfer function gv(u
1
) is bound'9d and monotonically 

increasing, these dynamics minimize the Lyapur1ov function represented 
by equation C.4 (Tank & Hopf1eld, 1986) 

C.3 EXAMPLE C.1 

In this exa1 nple the use of a linear programming net to optimally 

decompose an elementary process circuit into sequential subunits 

containing no recycle streams is demonstrated. Consider the process 

circuit depicted in figure C.2, which was also used by Pho and Lapidus 

( 1973) to demonHrate the use of an iterative tearing algorithm. The 

corresponding loop matrix of the system, which consists of five process 

units connected by 10 streams, is shown in table C. 1. The 1ptimal 

, .. . . . 
. . . . . . • . . l . • . . . . . . . 
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decomposition of this system can be formulated in terms of a zero-one 
optimal covering problem, i.e. 

min ;rp#(Sj)·Xj, subject to 

ra,,1·xi ~ 1, i = 1,2, .. M and xi = 0 or 1 (C.5) 

The structure of the neural net used to decompose the system is similar 
to that depicted in figure C.1. 

TABLE C.1 LOOP MATRIX OF PROCESS CIRCUIT (EXAMPLE C.1) 

la) 51 52 S3 54 S5 ss 57 5e S9 510 lb) 51 s2 53 S4 S5 ss S7 58 S9 

11 1 1 0 0 0 0 1 0 11 0 1 0 0 0 0 0 0 0 
12 0 (.' 0 0 1 0 1 0 12 0 0 0 0 1 0 0 0 0 
13 0 0 1 0 0 0 0 1 13 0 0 0 0 0 0 0 0 
14 0 1 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 
Is 1 1 0 0 0 1 0 0 0 15 0 1 0 0 0 0 0 0 0 
Is 0 0 0 1 0 0 1 0 0 Is 0 0 0 0 1 0 0 0 0 
17 0 0 1 0 0 0 0 1 0 17 0 1 0 0 0 0 0 0 0 
le 1 0 0 0 1 0 1 0 0 le 0 1 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 :l 0 

The output of the net after four iteration steps is shown in table C. 1 (b). 

The use of lim~ar programming neural nets such as the one described in 

this appendix can subsequently be used to generate optimal tear sets in 

partition blocks of arbitrary size and can be used in conjunction with the 

data reconciliation systems described in chapter 4 to accommodate large 
systems. 
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FIGURE C.1 A LINEAR PROU!~AM"lllNG NEURAL NET 
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