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SYNOPSIS
e e S g e Sy S e A e, PO e T e R

Since the advent of modern process industries engineers engaged in the
modelling and simulation of chemical and metallurgical processes have had to
contend with two important dilemmas. The first concerns the ill-defined nature
of the processes they have to describe, while the second relates to the
limitations of prevailing zomputational resources.

Current process simulation procedures are based on explicit process models in
cne fcrm cr another. Many chemical and metallurgical processes are not
amanable to this kind of modelling however, and can not be incorporated
effectively into current commercial process simulators. As a 'esult many
process operations do not benefit from the use of predictive models and
simulation routines and plants are often poorly designed and run, ultimately
leading to considerable losses in revenue.

In addition to this dilemma, process simulation is in a very real way constrained
by available cornputing resr irces. The construction of adequate process models
is essentially meaningless if these models can not be solved efficiently - a
situation occurring all too often.

In the light of these problems, it is thus not surprizing that zonnectionist
systems or neural network metnods are singularly attractive tc process
engineers, since they provide a powerful means of addressiny both these
dilemmas. These nets can form implicit process models throigh learning by
example, and also serve as a vehicle for parallel supercomputing devices. In this
dissertation the use of artificial neural netwerks for the steady =tate modelling
and optimization of chemical and metallurgical process circuits is consequently
investigated.

The first chapter is devoted to a brief overview of the simulation ot chemical
and metallurgical plants by conventional methods, as well as the evolution and
impact of computer technology and artificial intelligence on the process
indust:ies.

Knowledge of the variance-covariance matrices of process data is of paramount
importance to data reconciliation and gross error detection problems, and
although various methods can be employed to estimate these often unknown
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variances, it is shown in the second chapter that the use of feedforward neural
nets can be more efficient than conventional strategies.

In the following chapter the important problem of gross error detection in
process data is addressed. Existing procedures are statistical and work well for
systems subject to linear constraints. Non-linear constraints are not handled
well by these methods and it is shown that back propagation neural nets can be
trained to detect errors in process systems, regardless of the nature of the
constraints.

In the fourth chapter the exploitation of the massively parallel information
processing structures of feedback neural nets in the optimization of process
data reconciliation problems s investigated. Although effective and
sophisticated algorithms are available for these procedures, there is an ever
present demand for computational devices or routines ..at can accommodate
progressively larger or more complex problems. Simulations indicate that neural
nets can be efficient instruments for the implementation of parallel strategies
for the optimization of such problems.

In the penultimate chapter a gold reduction plant and a leach plant are modelled
with neural nets and the models shown to be considerably better than the linear
regression models used in practice. The same technique is also demonstrated
with the modelling of an apatite flotation plant. Neural nets can also be used in
conjunction with other methods and in the same chapter the steady state
simulation and optimization of a gravity separation circuit with the use of two
linear programming models and a neural net are described.
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OORSIG

Sedert die ontstaan van prosesingenieurswese, het ingenieurs gemoeid met die
modellering en simulasie van chemiese en metallurgiese prosesse met twee
belangrike dilemmas te kampe gehad. Die eerste het te make met die swak-
gedefinieerde aard van chemiese prosesse, wat die beskrywing en dus ook die
beheer daarvan kompliseer, terwyl die tweede verband hou met die beperkinge
van huidige berekeningsmiddele.

Die prosesse wat tans gebruik word om chemiese prosesse te simuleer is
gebaseer op eksglisiete prosesmodelle van een of ander aard. Baie chemiese en
inetaliurgiese prosesse kan egter nie op ‘n eksplisiete wyse gemodelleer word
nie, en kan gevolglik ook nie doeltreffendheid deur kommersiéle
prosessimulators beskryf word nie. Die bedryf van baie prosesse vind derhalwe
nie baat by die gebruik van voorspellende modelle en simulasie-algoritmes nie
en aanlegte word dikwels suboptimaal ontwerp en bedryf, wat uiteindelik tot
aansienlike geldelike verliese kan lei.

Prosessimulasie word op die koop toe ook beperk deur die beskikbaarheid van
berekeningsfasiliteite. Die konstruksie van geskikte prosesmodelle hou geen
voordeel in as hierdie modelle nie doeltreffendheid opgelos kan word nie.

Teen die agtergrond ven hierdie probleme is dit nie verrassend dat neurale
netwerke 'n besondere bekoring vir prosesingenieurs inhou nie, aangesien hulle
beide hierdie dilemmas aanspreek. Hierdie nette kan implisiete prosesmodelle
konstrueer deur te leer van voorbeelde en dien ook as 'n raamwerk vir parallelle
superrekenaars. In hierdie proefskrif word die gebruik van kunsniuuje neurale
netwerke vir gestadigde toestandsmodellering en optimering van chemiese en
metallurgiese prosesse gevolglik ondersoek.

Die eerste hoofstuk word gewy aan 'n kort oorsig oor die simulasie van
chemiese en metallurgiese aanlegte met konvensionele tegnieke, asook die
ontwikkeling en impak van rekenaartegnologie en skynintelligensie in die
prosesnywerhede.

Kennis van die variansie-kovariansie-matrikse van prosesdata is van kardinale
belang vir datarekonsiliasie en die identifikasie en eliminasie van sistematiese
foute en alhoewel verskeie metodes aangewend kan word om hierdie
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onbekende variansies te beraam, word daar in die tweede hoofstuk getoon dat
die gebruik van neurale netwerke meer doeltreffend is as konvensionele
strategieé.

In die volgende hoofstuk word die belangrike probleem van sistematiese fout-
opsporing in prosesdata ondersoek. Bestaande prosedures is statisties van aard
en werk goed vir stelsels onderworpe aan lineére beperkinge. Nie-lineére
beperkinge kan nie doeltreffend deur hierdie prosedures hanteer word nie en
daar word gewys dat terugwaarts-propagerende nette geleer kan word om
sulke foute in prosessisteme op te spoor, ongeag die aard van die beperkinge.

In die vierde hoofstuk word die rekonsiliasie van prosesdata met behulp van
massiewe parallelle dataverwerkingstrukture soos verteenwoordig deur
terugvoerende neurale nette, ondersoek. Alhoewel doeltreffende en
gesofistikeerde algoritmes beskikbaar is vir die optimering van die tipe
probleme, is daar 'n onversadigbare aanvraag na rekenaars wat groter en meer
komplekse stelsels kan akkommodeer. Simulasie dui aan dat neurale nette
effektief aangewend kan word vir die implementering van parallelle strategieé
vir dié tipe optimeringsprobleme.

In die voorlaaste hoofstuk word die konneksionistiese modellering an 'n
goudreduksie- en 'n logingsaanleg beskryf en daar word aangetoon (at die
neurale netwerk-modelle aansienlik beter resultate lewer as die lineére regressie-
modelle wat in die praktyk gebruik word. Dieselfde tegnieke vir die modellering
van 'n flottasie-aanleg vir apatiet word ook bespreek. Neural nette kan ook
saam met ander metodes aangewend word en in dieselfde hoofstuk word die
gebruik van twee lineére programmeringsmodelle en 'n neural net om 'n
gravitasieskeidingsbaan onder jestadigde toestande te simuleer en te optimeer,
beskryf.
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CHAPTER 1

introduction

Summary

In this introductory chapter an overview of the ill-defined nature and dimensional
character of modelling and simulation problems in the chemical and metallurgical
processing industries is presented. A cursory introduction to the field of artificial
intelligence and its application in the process industries is given. Special emphasis is
piaced on the use of artificial neural networks as far as the description of large or
complex processes is concerned, and the motivation and specific objectives of this study
are subsequently highlighted.

“

1.1 OBJECTIVES OF CHAPTER 1

This chapter outlines the nature and background of process modelling
and simulation in the chemical and metallurgical industries, with special
reference to

® the nature of problems related to process modelling and simulation
iIn the chemical and metallurgical engineering industry;

® the field of artificial intelligence with special emphasis on
connectionist systems or neural networks:

® current research and applications of neural networks in the
chemical and metallurgical process industries;

= the motivation and specific objectives of this study

1.2 THE NATURE OF PROCESS MODELLING AND SIMULATION
PROBLEMS

Numerous demands have to be met by modern chemical and metallurgi-
cal process technologies. Equipment should for example be selected to
yield the maximum return on investment, raw materials and energy
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resources should be utilized in the most efficient way, and the plant has
to be reliable and flexible, while also complying with growing world-wide
demands that operations should have as little impact on the environment
as possible (Kraslawski et al., 1992).

All these requirements provide a continuous driving force to find new or
improved methods of designing and optimizing process plants (see
appendix B for a brief review of process simulation methodology), in spite
of the extraordinary complexity and scal: of the problem. Considering
that design activities consume approximately 10-15% of the funds
required to move from an initial concept to the manufacturing of a
product, and that the design step fixes approximately 80% of the cost
involved in production (Westerberg, 1991), the ceaseless demand for
impiovement in simulation and design is not surprizing. A plant designed
for the chemical conversion and processing of raw materials consists of a
great number of different subsystems, fittings and process units. All
these systems can be intricately connected, each affecting the other in
different ways. Process conditions can furthermore cover ranges of many
orders of magnitude and chemicals can interact with one another in
unpredictable and often destructive ways.

It is therefore crucial that the approach to the design and investigation of
such systems is focused on as few features of the system as possible,
without seriously compromising the character of the system. It is only by
separating the more important elements of the system from the less
important ones, that the otherwise impenetrable confusion can be
arranged in an orderly coordinated hierarchical structure amenable to
investigation and understanding. In their quest for this elusive goal,
engineers are faced with two basic dilemmas. The first concerns the
nature of the processes they have to describe, while the second is
related to the processing of information regarding the describable
processes.

Despite extensive world-wide fundamental research and development,
the majority of chemical and metaillurgical processes are ill-defined to
such an extent that they simply can not be modelled adequately from
first principles alone. The main reason for this is the immense chasm in
the body of knowledge concerning the behaviour of physico-chemical
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appendix B for a brief review of process simuiation methodology), in spite
of the extraordinary complexity and scale of the problem. Considering
that design activities consume approximately 10-15% of the funds
required to move rom an initial concept to the manufacturing of a
product, and that the design step fixes approximately 80% of the cost
involved in production (Westerberg, 1991), the ceaseless demand for
improvement in simulation and design is not surprizing. A plant designed
for the chemical conversion and processing of raw materials consists of a
great number of different subsystems, fittings and process units. All
these systems can be inwicately connected, each affecting the other in
different ways. Process conditions can furthermore cover ranges of many
orders of magnitude and chemicals can interact with one another in
unpredictable and often destructive ways.

It is therefore crucial that the approach to the design and investigation of
such systems is focused on as few features of the systein as possible,
without seriously compromising the character of the system. It is only by
separating the more important elements of the system from the less
important ones, that the otherwice impenetrable confusion can be
arranged in an orderly coordinated hierarchical structure amenabie to
investigation and understanding. In their quest for this elusive goal,
engineers are faced with two basic dilemmas. The first concerns the
nature of the processes they have to describe, while the second is
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he body of knowledge concerning the behaviour of physico-chemical
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processes that instead of narrowing, appears to expand as the frontiers
of science and technology are pushed ever further. This ill-defined nature
of the processes that engineers have to harness and control in order to
meet the growing demands of consumer societies requires the use of
alternative modelling methodologies, which are not based on the use of
knowledge in an expiicit analy.ical form.

The second problem that the process engineer has to come to grips with
is the huge information processing burdens posed by complex
engineering problems. In the early 1960s for example, the workhorse of
the day (an IBM mainframe) could integrate a simple differential equation
over a weekend, while complex equations could take many weeks to
solve. Meteoric progress has been made since, and much more powerful
machines are available today, but these are still pitifully inadequate when
viewed against the background of modern chemical engineering
problems, which could involve complex relationships between many
thousands of variables with domains spanning several orders of
magnitude.

With these problems in mind it is not difficult to understand .he
extraordinary interest that artificial neural networks (the fundamentals of
which are briefly reviewed in appendix A) have sparked in the process
engineering community since the late 1980s. Not only do they serve as a
vehicle for the construction of implicit modeis of ill-defined processes,
they are also one of the pillars of a major new computational paradigm
that promises to increase the power of available computing platforms by
several orders of magnitude over the next few years. Despite the
avalanche of research funds that h s flowed into the research and
development of neuralware and related techniques over the last several
years, the technology is still young and much needs to be done to move
it from research laboratories into the commercial sector, especially as far
as the chemical and metallurgical industries are concerned.

This dissertation is consequently an investigation into the use of artificial
neural ne.works in the modelling and optimization of steady-state process
circuits. Special emphasis is placed on ill-defined processes, that is
processes not readily represented by analytical or fundamental models.
Since the modelling of plants of this nature is essentially data driven, a
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large part of the investigation revolves around the processing of plant
data. These techniques include some aspects of the estimation of
statistical parameters, the screening of the data for various types of
errors, as well as the reconciliation of the data prior to use in the actual
modelling of plants or process units. In the final chapter the modelling of
industrial plants, as well as the optimization of a gravity separation circuit
with a hybrid linear programming neural net model is discussed.

The rest of this chapter is devoted to a brief introduction to the field of
artificial intelligence, with special reference to artificial neural network
technology.

1.3 PROGRESS IN ARTIFICIAL INTELLIGENCE

In this section the application of neural nets in process engineering is
discussed after a brief look at the use of artificial intelligence techniques
to solve process engineering problems. These techniques are concerned
with alternative methods for the use of knowledge representing ill-defined
processes and have increasingly been used in the quest for solutions to
modelling problems or the enhancement of existing solution strategies in
the process engineering industry.

1.3:1 Artificial intelligence

By the end of World War |l several groups of scientists of the United
States and England were working on what is now known as a computer,
Although Alan Turing, the principal British scientist at the time, sug-
gested the use of logical operators (such as OR, AND, NOT, etc.) as a
basis for fundamental instructions to these machines, the majority of
investigators favoured the use of numeric operators (+,-, <,etc.). It was
only with the shifting emphasis on methods to allow computers to
behave more like humans that the approach advocated by Turing had
begun to attract new interest. This entire research effort and its
commercial repercussions are known as artificial intelligence (Al), and
comprize many aspirations, ranging from the design of machines to do
various things considered to be intelligent, to machines which could
provide insight into the mental faculties of man. Although different
workers in the field have different goals, all seek to design machines that
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can solve problems. In order to achieve this goal, two basic strategies
can be pursued (Minsky, 1993).

The first strategy or top-down approach has been developed productively
for several decades and entails the reduction of large complex systems to
small manipulable units. These techniques encompass heuristic
programming, goal-based reasoning, parsing and causal analysis and are
efficient systematic search procedures, capable of the manipulation and
rearrangement of elements of complex systems or the supervision or
management of the interaction between subsystems interacting in
intricate ways. The disadvantages of symbolic logic systems such as
these are their inflexibility and restricted operation which limits them to
very narrow domains of knowledge.

Bottom-up strategies (i.e. connectionist procedures) endeavour to build
systems with as little architecture as possible. These systems start off
with simple elements (such as simplified models, small computer
programs, elementary principles, etc.) and move towards more complex
systems by connecting these units to produce large-scale phenomena. As
a consequence, these systems are very versatile and capable of the
representation of uncertain approximate relations between elements or
the solution of problems involving large numbers of weak interactions
(such as found in pattern recognition and knowledge retrieval problems).
Connectionist systems can on the other hand not reason well and are not
capable of symbolic manipulation and logic analyses.

The field of artificial intelligence is diversifying continuallyand has grown
to comprize the major branches concerned with knowledge-based
systems, neural nets, fuzzy logic techniques, as well as genetic
algorithms.

1.3.2 Fuzzy logic

Fuzzy logic or fuzzy systems use if-then rules in a similar way as rule-
based expert systems to define relationships. The rules usually define a
particular set of input states, and provide descriptions of the
consequences if those particular states prevail. Unlike expert systems,
fuzzy logic systems use membership functions to attach numerical values
to the antecedents of rules to denote the extent to which these premises
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are valid (Berardinis, 1992). Since these systems provide for smooth
continuous valued transitions between differant sets of outcomes, they
are particularly attractive to process engineers. These systems are used
in main-frame data base applications (Klimasauskas, 1992), and have
found major commercial application in the electronic control circuitry in
automobiles, vacuum cleaners, air conditioners, washing machines,
chlorine controllers for water purification plants, control systems for
cement kilns, etc. since 1982 when only one patent was registered,
compared to 1460 in 1992 (Dambrot, 1992; Kahaner, 1991; Rosenbaum,
1992).

1.3.3.  Genetic algorithms

Genetic algorithms are constituted by mathematical techniques inspired
by the biological process of evolution and are mainly used for direct
search and optimization. In contrast to Monte-Carlo procedures, genetic
algorithms have a strongly directed component which reduces search
time considerably and improves convergence. The ability of genetic
algorithms to find near-optimal solutions in huge search variable spaces,
is especially useful when hill-climbing or gradient search techniques fail
owing to noise in the data, entrapment in local minima, or discontinuities
in the objective functions (Klimasauskas, 1992; Sikora, 1992).

1.3.4 Knowledge-based systems

Until recently knowledge-based or expert systems were undoubtedly the
most impoitant branch of artificial intelligence - to such an extent that
they were often confused with the entire field of artificial intelligerce
itself.

An expert system essentially consists of methods of mainta ing a data
base or a knowledge base of facts and relationships, a: well as
structured routines for searching the data base as efficiently as ossible.
These systems provide the facility to trace a search process (i.e. -xalain
the conclusions of a decision-making process) in order to he,: - - user
evaluate the decisions. Expert systems have made important ~-n' iby-
tions to the efficient development of complex systems, the development
of more logically complex systems than previously thought possible, and
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have furthermore reduced the technical level of expertise required to
develc » these systems (Klimasauskas, 1992).

Knowledge-based systems were confined to the research laboratories of
a few universities till as recently as 1980, but had established a durable
niche in the process engineering industry less than a decade later. Today
the United States, the United Kingdom, the European Economic
Community and Japan are all involved in major research programmes
concerned with the development and implementation of expert systems.
Large chemical engineering concerns such as Du Pont and Exxon
Chemicals are organizing Al departments and venture capital flows into a
multitude of expert system companies which have mushroomed all over
the world. In the process engineering sector these systems are used
globally, by such companies as British Petroleum Chemicals, to cope with
plant dynamics, process scale-up and the allocation of utilities, Shell Qil
Company for the interpretation and filtering of alarm signals, Blue Circle
cement company, etc., saving many millions of dollars for these
companies in the process (Barnwel!l & Ertl, 1987: Allott, 1991).

In retrospect the breakthrough for knowledge-based systems in the
process engineering sector in the late 1980s-early 1990s was a direct
result of the maturation of technology allowing the use of real-time on-
line applications.

1.3.5 Artificial neural networks

Neural nets are powerful mathematical techniques inspired by the study
of the human brain. Unlike traditional expert systems, where knowledge
is stored explicitly in a data base or as a set of rules or heuristics, neural
nets generate their own rules by learning from examples, as is explained
in more detail in appendix A. Items of knowledge are distributed across
the network and reascnable responses are obtained when the net is
presented with incomplete, noisy or previously unseen inputs. From the
perspective of cognitive modelling of process systems know-how, these
pattern recognition and generalization capabilities of neural nets are much
more attractive than the symbol manipulation methodology of expert
systems, especially as far as complex, ill-defined systems are concerned.



Stellenbosch University https://scholar.sun.ac.za

- 18 -

Many parallels can be drawn between the development of knowledge-
based systems and that of neural nets. Both had suffered from an
overzealous approach in the early stages of their development. In the
mid-1980s for example, a common perception had temporarily made its
way into the process engineering community that knowledge-based
systems had failed to live up to expectations (Allott, 1991). Like their
rule-based counterparts, neural nets are also sometimes seen as
‘solutions looking for problems'. Although the application of neural nets
in the process engineering industry has not matured yet, there is every
reason to believe that like other computational methods it will also find a
solid niche in this field. A closer iock at the historic development of
neural nets will underpin the analogous paths of these two branches of
artificial intelligence.

The field of neural networks had its inception in the 1940s when the
paper of McCulloch and Pitts on the modelling of rneurons, ar{ Hebb's
book The Organization of Behaviour first appeared in the 1940s. The
interest sparked by these publications was further buoyed when
Rosenblatt presented his Mark | Perceptron in 1958 and Widrow the
ADALINE in 1960, but came to a dramatic end in 1969 when Minsky and
Papert showed that the capabilities of the linear nets studied at the time
were severely limited (Eberhart & Dobbins, 1990). These revelations
caused a v..ually total cessation in the availability of research funding
and many talented researchers left the field permanently. The initial
interest in neural nets was only revived again some 14 years later in the
early 1980s, and since then the field of neural networks has seen
phenomenal growth, passing from a research curiosity to commercial
fruition. This growth has in part been fomented by improvements in very
large scale integration (VLSI) technology (Goser et al., 1989), as well as
the efforts of a small number of investigators who had continued to work
during the 1970s, despite a lack of funds and public interest. As had
happened to expert systems several years ago, neural network business
has soared; from an approximately $7 million industry in 1987, to an
estimated $120 million industry in 1990 (Gardner, 1990),
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1.4 MEUROCOMPUTERS

Ever since computers became generally available to the process engineer
in the 1960s, computing power has grown explosively and this trend is
expected to continue in the foreseeable future, with an order of
magnitude increase in capability approximately every five vyears
(Stadtherr & Vegeais, 1985). From the humble devices in the 1960s,
with not much more computing power than some of today's pocket
calculators, new ground was broken with the introduction of Control
Data Corporation's CDC 3600 and CDC 6600 machines in the early
1970s. These computers enabled engineers to simulate more complex
probleins such as radiation damage in metals or the ground state of a
hydrogen molecule from first principles. A further order of magnitude
increase in computational power was gained when the Cray-1 became
available in 1976. The Cray-1 is estimated to be within an order of
magnitude from the maximum capability one can expect from a single
processor machine, and made the use of multiple processor machines
imperative in the quest for more powerful devices.

The concept of parallel computing is not new; the early ENIAC machine
(1946) and ILLIAC (mid-1970s) were based on the principle of
parallelism. As a result, subsequent generations of Cray machines were
all multi-processor machines. The Cray XMP-2x series could calculate
two processes simultaneousiy, the XMP-4x series four processes, the
XMP-8x eight processes, etc. Today 64-processors machines are being
built along these lines.

Several approaches to parallel computer design can be taken, each
appropriate to different methods of solution of chemical engineering
problems (Best, 1990). These strategies are mainly concerned with the
optimal combination of the number and the power of the process units
implemented in the parallel structure and range from carrying out large
modules of calculation on relatively few processors (coarse-grained
parallelism), to carrying out very small units of calculation on a very large
number of primitive processors (fine-grain:d parallelism). The former
strategy is embodied in the design of vector parallel processing machines
for example, in which a relatively small number of high performance
process units are integrated. These machines are especially well-suited to
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applications involving repetitive computations of the same type and are
actively researched in Japan'” and the United States.

In contrast, neurocomputers are based on fine-grained parallelism. These
computers consist of arrays of primitive interconnected processors with a
small amount of memory that operate concurrently in either a digiial or
an analog design and are essential for the development of practical
applications of neural neiwork technology (Roth, 1950). First generation
systems were characterized by pipelined implementations of digital VLSI
technology with some low-level parallelism (Hecht-Nielsen, 1988). In
reality these systems consisted of r 2ural network simulators and did not
exploit the supercomputing potential afforded by the parallel structures or
device physics of today's neural networks. Current analog systems can
attain high packing densities and are attractive for high speed
applications such as discussed in chapter 4. Roth (1990) mentions for
example an analog VLSI implementation of a Hopfield neural net with 256
process elements and 130 000 fixed resistive weights that can converge
in less than 1.4 us.

Although considerable progress has recently been made with VLSI
technology, the performance of digital neurocomputers is limited by
placement and routing problems on the silicon vafers from which they
are mostly constructed (Treleaven et al., 1989).

The most powerful neural net chips at present can be compared with the
b'ological intelligence of a fly. The universally reconstructable artificial
neural net (URANN) designed by Korea Tellcom Research Centre (KTRC),
has a size of 13 x 13 mm, 135 424 synapses and an operating speed of
approximately 1 GHz.

Siemens' Synapse | is a neurocomputer consisting of eight special chips
or neuroprocessors, each of which is capable of 800 000 000 synaptic
weightings per second. The chips are based on CMOS technology, and
the neurocomputer based on these chips is capable of approximately 5 x
109 connections per second.

WFyjitsu's VPP500/222 with 222 process units for example has a theoretical rating of
up to 355 gigaflops.
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Analog and digital neurocomputers can both be designed for general or
special purpose applications.

1.6.1 General purpose neuroco.nputers

General purpose neurocomputers are programmable and can support a
wide variety of neural network models, analogous to the frameworks
provide.: by traditional computers. A distinction is made between parallel
processor arrays and commercial coprocessor boards. Parallel processor
arrays have cellular structures composed of large numbe:s of processing
units connected in regular topologies and attain high performance and
parallelism through increased numbers of these units. Commercial
coprocessors usually consist of signal processing or floating point
accelerator boards which can plug into the back of a personal computer
or workstation. These accelerators attain high performance by
augmenting the processing and storage capabilities of the host computer
or workstation (PC, Apollo, Sun, VAX, etc.) by several orders of
magnitude.

1.5.2 Special purpose neurocomputers

Special purpose neurocomputers are often very high performance
systems based on the direct implementation of neural network models in
electronic hardwar-. The electronic structures of these computers
typically resemble the structures of simplified models of biological
neurons and are currently enjoying the attention of research groups all
over the world (AT&T Beli Laboratories, California Institute of Technology
and Bellcore Laboratories in the USA, NEC and Fujitsu in Japan, and
Siemens and Texas Instruments in Europe).

1.6 CURRENT APPLICATIONS OF NEURAL NETS IN PROCESS
ENGINEERING

1.6.1 Research developments

Research and development have seen rapid growth in recent years and
are mainly directed at process fault detection and diagnosis, process
control and process modelling and classification. Process fault detection
and diagnosis is currently a very important problem in process
automation (Sorsa et al., 1991) and the use of neural network techniques
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have been studied intensively. Venkatasubramanian et al. (1990) fec-
example, proposed the use of multilayer feedforward neural networks
with sigmoidal transfer functions for the fault detection and diagnosis of
chemical processes and concluded that these types of networks yield
promising results, even when trained with sparse data. The use of
feedforward nets to diagnose faults in a heptane-to-toluene process in
steacy state was similarly investigated by Fan et al. (1993), who
recommended the addition of functional links to the input layer of a
feedforward neural net, while Hoskins et al. (1991) used a chemical plant
simulator (Syschem plant) to generate data for fault diagnosis with a
neural net. Despite the complexity of the plant, the system with two
hidden layers performed well, and was recommended for use in actual
plants. Sorsa et al. (1991) recommended the use of a multilayer
perceptron with hyperbolic tangent nodes to detect faults in a heat
exchanger-stirred tank experiment, while Naidu et al. (1990) discussed
the use of back propagation neural nets to detect sensor failures in non-
linear time-invariant plants. Kramer and Leonard (1990) highlighted some
of the drawbacks of neural nets used for fault detection, such as poor
robustness and difficulty to generalize with sparse data. They
recommended inter alia the use of distance-based classifiers and the
development of different training algorithms to improve performance.

Investigations related to the use of neural nets in the field of process
control are especially numerous. By using a neural net with a single
hidden layer to control the pH of a stirred tank system to neutralize
wastewater from a plant, Hunt and Sbarbaro (1991) obtained an absolute
model mismatch of approximately 5%, which constituted a marked
improvement over a traditional controller. In another investigation Hunt et
al. (1992) investigated a large variety of different neural net architectures
and proposed a structure congsisting of a learning vector quantization and
a back propagation neural net connected in series in the feedback loop
for the optimal control of non-linear process systems. Psichogios and
Ungar (1991) similarly investigatzd direct and indirect model-based
control of a non-linear exothermal continuous stirred tank reactor and
found the performance of neural 1etworks markedly better thar. that of a
controller based on a linear autoragressive moving average with
exogenous input (ARMAX) model. Ydstie (1990) studied direct and
indirect adaptive control with a neural net with one hidden layer, and
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demonstrated the viability of neural nets for the control of discrete event
dynamic systems and processes with non-linear dynamics. Bhat and
McAvoy (1990) led an investigation into the control of the pH of a
continuous stirred tank and showe~ neural nets to provide a more
generalzed methodology than that based on the traditional
autoregrescive moving average (ARMA) and convolution models used for
control.

In some of the work concearr g the construction of connectionist rmodels
of ill-defined processes, Kito et al. (1992) used a back propagation neural
net to estimate the strength of acid sites generated svnergistically in
binary mixed oxides. The acid strength was modelled in te. ms of various
physico-chemizal properties and the results were found 10 be in good
agreement with experimental data. Karim and Rivera (19¢2)
demonstrated feedforward and recurrent neural net methodologies to
estimate the state of fermentation processes. They came to the
conclusion that the conjugate gradient method of training these nets to
minimize the error of predictions was more efficierit than methods based
on steepest descent. Both types of net yielded comparable results, but
the more complex recuirent net took a longer time to train.

The use of neural nets to predict the long term behaviour of chemical
processes has also come under close scrutiny recently. As an alternative
to many-steps-ahead prediction with multilayer back propagation neural
nets, Su and McAvoy (1992) proposed the use of a parallel system
identification method. They derived a training algorithm for an external
recurrent neural net and used the net to identify the dynamic behaviour
of a biological wastewater plant and a catalytic reformer in a petroleum
refinery. In another investigation Rico-Martinez et al. (1992) studied the
capability of neural nets to predict the long term behaviour and observed
bifurcations in the electrodissolution of copper in phosphoric acid. They
used two networks in series, the first as a non-linear principal component
extractor and the second to process the data, and reported close
agreement between the results of the model and experimental data.

Reuter et al. (1993) and Reuter and Van Deventer (1990) proposed a
simple generalized approach for the simulation and identification of batch
and mixed flow mineral processing and metallurgical reactors with neural
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nets. The method is based on the use a trained neural net to relate the
parameters of the kinetic rate equations to the process conditions and is
demonstrated with examples including among other a Tennessee copper
rougher circuit, a Nchanga sulphide rougher circuit, zinc-ferrite leaching
and the precipitation of jarosite. Reuter et al. (1992) demonstrated the
use of sigmoidal back propagation neural nets for the modelling of
complex metal-slag equilibrium processes. By making use of published
data they showed that a small network with a single hidden layer could
be trained successfully with relatively sparse process data to model
among other the activities in binary metal solutions, the distribution of
manganese and sulphur between pig iron and slag, the distribution of
copper between metal and slag, the distribution of tin oxides and iron
oxides between metal and slag, as well as the viscosity of lead smelting
slags. Neural nets were shown to be similarly successful in the modelling
of the kinematic viscosities of crude oil fractions (Van der Walt et al.,
1993a).

In order to overcome some of the shortcomings of back propagation
neural networks used for the modelling of multivariable processes of high
dimension, Van Der Walt and Van Deventer (1922, 1993) proposed the
use of a hybrid subspace neural net model which could make better use
of sparse data to extract the characteristic features of a process. As a
first step the global variable space is characterized by a trained neural
net, which is used to estimate the first order partial derivatives of the
system. This is followed by a perturbation analysis which is used to
subdivide the global variable Space into various subspaces, each of which
incorporates only those independent variables which influence the
dependent variables significantly in the particular domain of the
subspace. These subspaces can subsequently be modelled more
accurately by making use of (neural net) models to relate the reduced
number of independent variables to the dependent variables. Their
method has been demonstrated with a carbon-in-leach (CIL) reactor.
These authors suggested the use of higher order neural networks and
proposed a regression network (Van der Walt et al., 1993, 1993e¢)
consisting of arrangements of nodes with various types of activation
functions and additive and multiplicative summation rules, which allow
the combination of parametric, as well as non-parametric relationships in
the neural net model. The problem posed by sparse process data can
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thus be alleviated to some extent in that some of the relationships
between variables are specified beforehand. The method was
demonstrated through the modelling of a hydrocyclone classifier.

Not much attention has been paid to the use of neural net expert
systems in the processing industry. in one of the few studies reported
Smets and Bogaert (1992) used two neural networks to predict the
stress corrosion of austenitic stainless steels in chloride-bearing water.
The nets were trained by means of case histories of failures of these
metals under similar circumstances and managed to extract the principal
features of these processes remarkably well.

These examples of research and development efforts are by no means
exhaustive, but are merely intended to serve as an indication of the vast
scope and potential of neural net techniques in the chemical and
metallurgical industries.

1.8.2 Commercial applications

Despite the promise artificial neural networks appear to hold for the
chemical and metallurgical processing industries, the first commercial
applications for neural nets only saw the light approximately a year
(1992) ago, with the implementation of a hybrid neural net/fuzzy control
system from Pavilion Technologies in Eastman Kodak's refinery in Texas.
Other commercial applications include hybrid control systems sold by
Neural Applications Corporation, consisting of neural nets as well as
expert systems, used in arc furnaces. These systems are used to
optimize the positions of the electrodes of the arc furnaces used for the
smelting of scrap metal in steel plants, and are estimated to save
approximately $US 2 000 000 annually on the operating costs of each
furnace.

The most recently reported commercial application of a neural net in the
process industry concerns the control of a nuclear fusion reactor at AEA
Technology's Culham Laboratory in Oxfordshire (Geake, 1923'. Yo
optimal conditions for fusion in the Compass tokamak reac.oi cecur
where the turbulence in the plasma is minimal, and cannot be calculated
fast enough by conventional computers, which can take hours or even
days to compute the setup of the magnetic fields needed to produce
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suitable plasma shapes in the reaction chamber. The problem is solved by
making use of a neural net that can do the necessary calculations in
approximately ten microseconds (significantly faster than the fluctuations
in the plasma that typically last for a few hundred milliseconds). The
Compass net obtains data from 16 magnetic field sensors inside the
chamber and has four output nodes linked to the magnetic controls of
the system. An added advantage is the flexibility of the network, which
can be retiained (by sets of approximately 2000 exemplars at a time)
when the implementation of different control strategies are warranted.
Conventional controllers in contrast, can only cope with narrow ranges of
process conditions.

1.6.3 Future neurocomputer technologies

As far as the construction of computer circuitry goes, silicon is
doubtlessly the medium of choice, not least due to its abundant
availability and cheapness. Despite the use of multilayers and epitaxy
techniques, the material as used in the industry today poses many
significant disadvantages with regard to the design of neuralware, where
packing density and compactness are of the utmost importance.

As a result impressive progress has been made with alternative computer
technologies. Of these, optical or electro-optical computing is probably
the closest to maturity (Louri, 1991; Lupo, 1989). Light beams have a far
greater capacity to carry information than electronic circuits (Canham,
1993,) and the optical implementation of neural nets has the potential for
attaining very high connectivity, because beams of light can pass
through one another without undue interference (Abu-Mostafa & Psaltis,
1987; Roth, 1990; Williams, 1987). Until recently the expanding field of
optoelectronics has been hampered by the use of complex and expensive
materials such as gallium arsenide, but other materials such as porous
silicon has recently been identified as a promising new alternative for the
construction ¢ f computer devices (Canham, 1993).

Other technologies being investigated include molecular computing which
could in principle be based on the fori  tii ~f supramolecular switching
devices that can self-assemble and th:n switch between different
configurations, but are not expected to reach maturity in the foreseeable
future (Bradley, 1993).
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1.7  SPECIFIC OBJECTIVES OF THIS STUDY

It is the overall objective of this study to develop new strategies for the
modelling and simulation of processing systems based on the use of
connectionist methods. Since these techniques are essentially data
driven, a large part of the investigation focuses on the use of neural
networks for the processing of raw plant data in order to improve the
quality of models based on these data. In the final part of this
dissertation the construction of connectionist plant models (which could
be based on plant data processed by the techniques described in the
previous chapters) is investigated. Both these aspects related to ill-
definedness, as well as the computationally intensive nature of process
modelling are addressed. Chapters 2, 3 and 5 are devoted to the use of
feedforward neural nets and chapter 4 explores the parallelist
implementation of traditional algorithms in feedback connectionist
structures to enhance computing power. The specific objectives of this
dissertation are addressed in sequence in the following chapters and
include the:

® estimation of variation in process data, especially if these data
reflect quasi-steady state behaviour;

® detection and location of gross errors in plant data, especially
based on plant models subject to non-linear constraints;

®* more efficient reconciliation of noisy process data, and

®* modelling and optimization of metallurgical plants and process
circuits with neural nets and comparison with traditional models.
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CHAPTER 2

Estimation of measurement error variances

Summary

Measurements of flow variables generally violate material balance constraints owing to
the presence of random and possibly systematic errors in the data. The variance
rovariance matrix of the measurement errors which is required to solve the data
reconciliation problem, is unfortunately not always available and has to be estimated.
These estimates are based on historic data or redundant observations of the state
variables over a period of time. By making use of conventional techniques the variances
and covariances of the measurement errors can be estimated from the corresponding
variances and covariances of the constraint residuals, in conjunction with additional
heuristic information, provided the constraints are linear. In chapter 2 it is shown that
neural nets can similarly be used to estimate these variances and covariances in process
systems, regardless of the nature of the constraints imposed on the measurement data.

“

2.1 OBJECTIVES OF THIS CHAPTER

In chapter 2 the use of neural nets to estimate stochastic parameters in
quasi-steady state process systems is explored. In particular

® Appropriate connectionist structures and naurodynamics are
investigated as a basis for the estimation of variance-covariance
matrices of chemical process systems:

® The use of these neural nets to estimate the variances of systems
subject to linear and non-linear constraints is investigated, and

® The accommodation of heuristic information necessary to estimate
the variance-covariance matrix of the system is investigated.

2.2 BACKGROUND THEORY

The monitoring of plant performance and the verification of system
models are crucially dependent on reliable sets of steady state
component and total flow rate data. In general the measured data violate
the process constraints of the system, owing to random fluctuations in
the observed values, or even systematic errors in these values due to
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erroneous measurements or large discrepancies between the actual
behaviour of the system and the behaviour predicted by the system
model. The observations or measurements consequently have to be
reconciled with the process constraints, usually through the minimization
of a quadratic criterion. This criterion is typically a function of the
differences between the measured and the adjusted values, weighted by
the inverse of the measurement error covariance matrix (Hodouin &
Everell, 1980). General reconciliation methods (discussed in more detail
in chapter 4) are usually based on the assumption that measurement
errors are randomly Gaussian with a known covariance matrix, and
distributed around a zero mean. In many practical situations, this matrix
is unknown and has to be estimated (Holly, et al., 1989: Narasimhan et
al., 1986). The most obvious method of doing so involves the analysis of
N redundant observations x; 1, x| 2, .. Xy of the particular state variable
X, over a period of time. That is

N
var(X) = [N-11" 2 (x;; - x avg )2 (2.1)
i=1
N
coviXX) = IN-T1" Z (x;-xav6 M X - Xkave)  (2.2)

=1

This method of estimating variances or covariances is reliable only if the
system is truly in a steadv state, which is not generally the case (Almasy
and Mah, 1984). In most process systems steady state is a relative
concept, defined by the time frame over which the system is considered.
In process systems the expected values of the state variables of the
system are geneially subject to change, which could be manifested by a
series of small fluctuations around a fixed point in the variable space, or
a gradual drift from such a peint, and when these deviations from steady
state behaviour are significant, the system is considered to be in a quasi-
steady state. The estimation of the stochastic parameters prevailing in
systems such as these at a particular instant is consequently impe~~d by

the change in the system's behaviour during the succee . rval
over which sampling takes place. Under these circums use of
an indirect method of estimating the variances of the o. .riables

has been recommended (Almasy & Mah, 1984).
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In the proposed method the relationship between the covariances of the
residuals of the quasi-steady state process system constraints and the
covariances of the measurement residuals is used as a basis to derive a
more accurate estimate of the covariances of the stute variables than is
possible with equations 2.1 & 2.2. (In this dissertation variance is meant
to indicate an element on the diagonal of a covariance matrix, while
covariance is meant to indicate an off-diagonal element of such a
covariance matrix). Unlike the measurement errors, the constraint
residuals can be computed directiy from measurements x; ., without
requiring an estimate of the true value of the state variable X,. It is
consequently possible to compute the sample covariance matrix of the
residuals of a set of system variables and use these values in conjunction
with other heuristic information to estimate the covariance matrix of the
measurements of these variables. The additional information concerns the
relationships between the elements of the covariance matrix of the
measurements, for example the assumption that the off-diagonal
elements of the matrix are zero or very small owing to the use of
independent instruments in the measurement of the state variables, or
that the expected values of the different state variables all have the same
tendency to drift in a particular direction in the variable space.
Unfortunately the relationship between the covariance matrix of the
measurement errors and the constraint residuals is well-defined for linear
systems only, which poses a severe restriction on the procedure as
regards its use in the chemical engineering industry.

In this dissertation a new method to estimate the covariance matrix of
observed variables, similarly based on the relationship between the
covariances of the constraint residuals and the covariances of the
measurement residuals described in the literature (Almasy & Mah, 1984;
Keller et al., 1992), is proposed. In contrast to the methods described,
this technique, which involves the use of an artificial neural net to
represent the reletionship between the covariances of the constraint
residuals and that of the measurement errors, does not require the
system to be linear, or the relationship between the constraint and the
measurement residuals to be well-defined. (The fundamentals of the
neural nets on which the method is based is described in more detail in
appendix A.) Complementary heuristic information required in the
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estimation of the covariance matrix of the measurement errors can
furthermore be incorporated in the structure of the net itself.

2.3 PROBLEM STATEMENT
Consider a process described by the following system of linear equations
Cx =0 (2.3)

where C is a (n x p) coefficient matrix with n < p, representing the
system constraints, and x iz the true value of the state vector. The
observed or measured value x', of this vector

X =x4 e (2.4)

is typically subject to an error e, so that the constraint residuals r are
related to the measurement vector x' as follows

r=Cx' = C.(x + e), where {2.5)
Cix + e) =C.x + C.e = C.e (2.6)

If e is considered to be a Gaussian variable with a zero mean and a
covariance matrix V|, then

Measured variables
E(e) = 0 (2.7)
var(e) = E(ee”) = V|, (2.8)
Constraint residuals
E(r) = E(C.e) (2.9)
var(r) = E[(C.e)(C.e)T] = V|, (2.10)
Since the system is linear
E(r) = C.E(e) (2.11)

var(r) = C.E(ee”).CT = cv €T = v, (2.12)
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If the system is non-linear, such as would arise from conservation
equations involving the products of stream flows (F) and component
fractions (f), as well as other non-linear relationships which may ensue
from different process circuit configurations, the relationship expressed
by equation 2.3 is no longer valid and can not be used in traditional
analytical procedures to obtain estimates of the statistical pruperties of
the measured variables, i.e.

FTcf=0 (2.13)
where

F'=F + er, andf' = f + ey, so that

r=F.Cf=(F+ e C.if + e (2.14)

(FIT.C.e; + (ep)T.C.t + (ep)T.C.e (2.15)

-
I

The constraint residuals are thus related to the measurement residuals e
and e; not only in terms of the constant coefficient matrix C, but also in
terms of the state variables, F and f, the true values of which are not
known exactly. This il-defined reiationship between the con:traint and
measurement residuals restricts the use of analytical methods for
estimating the covariances of state variables (based on the covariances
of the constraint residuals) to linear systems. This complication can be
avoided by making use of an artificial neural net to represent the
relationship between the properties of the constraint residuals and those
of the measurement residuals. This relationship is not unique and needs
to be further defined by additional heuristic knuwledge.

2.4 ESTIMATION OF COVARIANCES BY MEANS OF NEURAL NETS

By presenting an artificial neural net with exemplars of the relationship
between the covariances of the constraint residuals and that of the
measurement errors, the net forms an internal representation of this
relationship which can be used to provide an estimate of the covariance
matrix of the measurement errors.

The general structure of the net is determined by the r - nber of process
variables and constraints of the system. If the system is generally
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described by N system variables and M process constraints, the
corresponding net has an input layer consisting of M? prccess nodes,
and an output layer consisting of N2 process nodes. This gereral
structure of the neural net can be medified to account for the
incorporation of additional infcrmation in the system. If the covariances
of the state variables are deemed to be negligible for example, the circuit
structure can be reduced to accommodate the diagonal of the covariance
matrix of the measurement errors only. Besides alteration of ihe structure
of the net to reflect additional knowledge of the process, such
knowledge can also be accommodated in the set of exemplars used to
train the net. The use of neural nets such as these is demonstrated in the
following examples.

2.4.1 Example 2.1 (General process circuit subject to linear process
constraints)

Consider the following generalized process circuit consisting of 4 nodes
and 9 flow streams, Fy, Fy, .. Fg, as shown in figure 2.1. A material
balance around each node yields tie following system of linear equations

MNode A: Fy-Fy + Fg =0 (2.16)
Node 8: Fp-F3 + Fg-F7 =0 (2.17)
Node C. F3-F4-Fg =0 (2.18)
Node D: Fg + F7-Fg + Fg = 0 (2.19)

To illustrate the use of both a direct and an indirect (neural net) method
to estimate variances, and in order to better eva'uate the performance of
different neural net structures, the system is cc _sidered to consist of two
subsets of variables. The first subset (subset 1) comprized of variables
Fv. F2, Fg Fy, F3 and Fq displays steady state benaviour and the
expected values of all the variables in the suuset are consequently
independent of time. The second subset (subset 2) is comprized of
variavles F3, F4 and Fg and displays quasi-steady state behaviour. in that
the expected values of the variables of the subset are dependent on time.
The time dependence of the variables in both subsets is indicated in table
- |
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For convenience the variables are assumed to be monitored
independently, so that the off-diagonal elements of the covariance matrix
of these variables are zero, making it necessary to estimaie the diagonal
elements of the covariance matrix only. In order to estimate these
variances, the process variables Fi1-Fg were measured at time intervals
t1-tyo, as indicated in table 2.2. It is from these observations that an
estimate of the variances of the process variables at time tp is required.

The artificial neural net used to estimate the variances of the process
variabies in the circuit, consisted of an input layer with 4 process nodes,
corresponding to the variances of the 4 constraint residuals, and an
output layer with 9 process nodes, corresponding to the variances of the
9 process variables, similar to the generalized system portra d in figure
2.2. In order to train the net, a set of exemplars composed of the
variances of the process constraint residuals and the corresponding
variances of the process variables was generated (a variance of 0.0134
was uscd, based on a variable with a unitary exnected value). As can be
seen from figure 2.3, the net managed to form a generalized internal
representation of the relationship between the variances of the process
variables and those of the constraints. The weight matrix of the trained
net is shown in table 2.3.

The variances of the constraint residuals calculated from the sample
measurements at times ty-tjg were subsequently presented to the net
and the corresponding variances of the process variables were estimated.
These estimates which are showi in table 2.4, are more accurate than
the estimates calculated dirzctly from the sample data (also shown in
table 2.4).

2.4.2 Example 2.2 (Two-product separator subject to non-linear
process constraints)

In this example a high tension roll separator is considered. The separator
classifies a feed stream F;, consisting of 2 components with mass
fractions f; ; and f; 5, into two product streams F2 with ~omponent
mass fractions f; ¢ and f,;, as well as F3, with component mass
fractions f3 4 and f,,, as shown in figure 2.4. The flow streams and
mass fractions are measured and typically violate the conservation
equations of the system, viz.
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F1-F2-F3 =0 (2.20)
Fif1,1-Fafa 4 -F3f34 =0 (2.21)
Ci1f1,2-Fafa 2 -Fafz3 5, =0 (2.22)

Contrary to the previous system considered in example 2.1, all the
variables in this system are in a quasi-steady state, so that a direct
estimate of the covariance matrix of the state variables at time tp vields
inaccurate results. The expected verlues of the system variables are
shown in table 2.5. Owing to the non-linearity of the process constraints
(equations 2.20-2.22), the relationship between the constraint residuals r
and the measurement errors ef and ey is ill-defined (the true values of F;
and f; ; are unknown). The difficulties ensuing from the ill-definedness of
this relationship make the use of a traditional numerical procedure
inappropriate, whereas the use of an artificial neural net is not affected
by the ill-definedness of the relationship between the variable and
constraint residual variances and provides an effective means of
estimating the covariances of the system variables.

To obtain an estimate of the covariance matrix Vg of the process
variables F; and f; ; (i,j = 1,2,3), an arbitrary set of values of the variables
is corrupted by errors with known covariances (and zero means) and a
neural net with a structure similar to that of the net shown in figure 2.2
is subsequently trained by means of these artificially generated exemplars
to construct an internal representation of the relation between the
covariancus of the resultant constraint residuals and that of the variable
residuals. The particular set of values used as a basis for the generation
of synthetic training data is not critical, as long as it is large enough to
ensure that the covariances of the constraint residuals (on which the
estimation of the covariances of the variable measurements will be
based) would be * subset of the training set. Failure to do sc could result
in grossly inaccurate estimates of the covariances of the variable
measurements. Additional heuristic information on which the estimation
of variances is based is either incorporated in the structure of the net
itself, or in the exemplars used to train the net. If the interactions
between variables are considered to be negligible for example, the
exemplars used for training could only contair. data relating variable and
residual variances, or else the exemplars could contain data relating
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variable and residual covariances in general and the neural net could then
be structured so that the weights of the net relating variable and res: 'ual
covariances are zero. In addition to the relationship between the
stotistical properties of variable measurements and those of the
constraint residuals, all measurements are considered to be totally
independent, so that all off-diagonal elements of the covariance matrix
are deemed to be zero. This information is incorporated directly into the
structure of the neural net, which could subsequently be trained to
construct an internal representation of the relationship between the
variances of the constraint and measurement residuals.

As before, the back propagaticn neural net trained to estimate the
covariance matrix of the state variables consisted of an input and an
output layer only. The input layer was composed of 4 computational
elements, corresponding to the variances of each of the 4 ~onstraint resi-
duals, while the output layer consisted of 9 process nodes which corres-
ponded to the variances of each of the 9 system variables. The net was
trained by repeatedly presenting it with exemplars of the relation
between the veriances of the constraint and measurement resicuals.
Training of the sigmoidal output units was accomplished by the
gereralized delta rule (Rumelhart et al., 1986; Leonard & Kramer, 1990)
also described in appendix A, through which the weights of the net could
be modified until it was able to form an internal representation of the
relationship between the covariance matrix of the flow variables Vg s and
the covariance matrix of the constraint residuals V|, as shown in figure
2.5. After convergence, the trained net was used to estimate the
covariance matrix Vg ¢ of the system variables, by presenting it with the
computed sample variances of the measurement residuals. These
variances were calculated directly from the measured data shown in table
2.6 by means of equation 2.1. The estimates obtained by the neural net
are compared with the actual estimates in table 2.7. The weight matrix
of the trained net is shown in table 2.8.

To further illustrate the way in which neural nets can be used in
conjunction with heuristic data to estimate variances of sets of
measurements, the assumption that the covariances of the variables are
zero is modified by assuming a correlation between the measurements of
the component mass fractions f; 1", f; ', f21" 122", 134" and f3 5, i.e.
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non-zero covariances covify q|f; 7), covif; 1[f; 5) and covifs 1|f3 o).
Owing to the quasi-steady state of the system, direct computation of the
sample covanances of the system from measurements such as those
shown in table 2 9 is inaccurate once again and as a consequence the
covariances have to be estimated by an indirect procedure. A neural net
similar to the one used previously in conjunction with the assumption of
zero covariances can again be used. In this ce<e the net's structure
would have to be modified to accommodate the thi - covariances of the
mass fraction variables. The net is consequently ro.mnosed of an input
layer with 3 process nodes (one for each variance and sovar - e
constraint residuals), as well as 12 output nodes (ore for the + . e of
each of the 9 variables, as well as the three covarianc: aiements).

After training, the net is presented with the saipiz variances of the
residu=ls, from which the 9 variances and 3 coveriances are estimated.
The estimated and the actual covariances of the process variables are
shown in table 2.10. (Since estimates of the variances are very similar to
those shown earlier on, only the estimates of covify 1/fq,2).
covify 11f3 2) and covifz ¢ |f3 ) are shown in table 2.10.) The weights of
the traimed net used to estimate these covariances are shown in table
2.11. It is clear that the estimates made by the neural net are more
accurate than the estimates based on direct computation of the sample
covariances (equation 2.2).

2.5 CONCLUSIONS AND SIGNIFICANCE

As was mentioned previously, tne relationship between the covariance
matrix of the measurement errors and the covariance matrix of the
constraint residuals is not uniquely defined, and further restrictions need
to be introduced before the covariances of the measurement errors can
be estimated from the covariances of the constraint residuals. This
heuristic information can be directly accounted for in the structure of the
neural net, or it can be embedded in the exemplars used to train the net.
When the neural net is presented with the ambiguous data relating the
variances of the measurement errors (V|,) with those of the constraint
residuals (V ), it relates V|, with the average V¢ of the system.
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The neural net forms an internal representation of the relation between
the covariances of the constraint residuals and the covariances of the
state variables (similar to the representation of the variances), which
allows estimawss of the covariances of variables in the quasi-steady state
process system that are generally more accurate than when these
covariances are computed directly from the observed measurements. The
method is not dependent on the linearity of the system and once a net is
trained for a particular system configuration, no retraining needs to be
done to estimate the covariance matrix of the state variables of the
system. This feature together with their parallel architectures (Hecht-
Nielsen, 1990) make neural nets very attractive in on-line process
monitoring systerns.

In this dissertation only linear and bilinear systems (typical of many
' rocess engineering systems) have been considered. It was shown that
these systems can be accounted for by simple single layer back
propagation neural nets with sigmoidal computational elements. To
summarize:

®= Neural nets can be used to estimate the covariance matrices of the
variables of quasi-steady state process systems more accurately
than can be derived from direct observation of these variables.

® Contrary o nore traditional procedures, the use of neural nets is
not restri:ted by the nature of the relationship between the
covanances of the constraint residuals and those of the
measurement errors.

®= Due to their parallel architecture and the capability of trained nets
to provide direct estimates of the covariance matrices of the state
variables of process systems, neural nets show considerable
potential for use in on-line process monitoring systems.
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2.6 TABLES REFERRED TO IN CHAPIER 2

TABLE 2.1 Expected values of process variables’ (example 2.1)

TIME Fy Fa Fq Fa Fs Fg F Fg Fg

to 1 4 40 30 10 1 1 3 1
t 1 4 £F EZ 2 3 1 3 1
ty 1 4 44 34 14 1 1 3 1
t3 1 4 48 384 18 1 1 3 1
ta 1 4 48 38 1.8 1 1 3 1
ts 1 4 50 40 20 1 1 3 |
tg 1 4 52 42 22 1 1 3 1
ty 1 4 54 44 24 1 1 3 1
tg 1 4 56 46 26 1 1 3 1
tg 1 4 58 48 28 1 1 3 1
t10 1 4 60 50 30 1 1 3 1

'Quasi-steady state variables are distinguished from steady state variables by bold italics

TABLE 2.2 Measurements of process variables (example 2.1)

Fi' F' F3' Fi' Fg' Fg' Fy Fg' Fg'
) 1.058 4.646 3.342 3.394 0.810 1.196 1.043 3.461 0.842
14 1.106 3.280 4.402 2.448 0.921 0.929 0.922 3.009 0.803
ts 0.802 3.387 4.610 3.143 0.903 0.921 1.109 2.723 0.868
i3 0.948 4.741 3.500 3.685 1.185 1.199 0.918 2.513 0.826
tg 0.962 3.783 3.828 3.041 1.079 1.033 0.991 3.128 1.124
i5 1.185 4.631 3.657 3.2.9 1.633 1.118 0.916 2.465 0.969
tg 0.907 4.632 4.934 3.183 1.679 1.162 0.936 2.978 0.914
ty 0.956 4.194 4.922 3.328 2.181 1.140 0.998 2.600 0.873
tg 1.033 4.389 4340 4.502 1.870 1.143 0.873 3.136 1.025
tg N0.877 4.373 5.287 5.013 2.995 0.960 0.984 2.801 0.941
t1o 1.197 4.507 6.282 4.329 3.464 0.872 1.137 2.696 1.043
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TABLE 2.3 Weight matrix of neural net used to estimate variances of
flow variables (example 2.1)

Vo,1 Vo2 Vo3 Vo4 Vo5 Vo6 Vo7 Vo8 Voo

BIAS -1.375 -1.267 -1.314 -1.283 -1.219 -1.154 -1.357 -1.316 -1.289
Vi1 0.738 0.717 0.715 0.751 0.621 0.589 0.681 0.725 0.620
Vi,2 0.693 0.792 0.701 0.659 0.645 0.701 0.680 0.593 0.688
Vi3 0.641 0.565 0.719 0.717 0.472 0.601 0.697 0.567 0.645
Via 0.689 0.650 0.611 0.676 0.632 0.589 0.725 0.677 0.616

TABLE 2.4 Estimated and actual variances of process variables
(example 2.1)

Actual variances

Fq Fo F3 Fa Fg Fg Fs Fg Fg
0.013 0.208 0.208 0.117 0.013 0.013 0.013 0.117 0.013
Estimates based on direct method (equation 2.1)

Py Fg Fy ¥ Fg Fg Fy Fy Fy
0.014 0.245 0.715 0.510 0.703 0.013 0.006 0.085 0.009
Estimates made by neural net

Fy, F Fy Fy Fg Fg F; Fg Fo

0.013 0.280 0.382 0.221 0.021 0.021 0.015 0.092 0.008
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TABLE 2.5 Expected values of process variables {example 2.2)

TIME Fq

to 1.000
14 1.100
ty 1.050
t3 1.150
171 1.170
tg 1.220
tg 1.180
ty 1.210
tg 1270
tg 1.280
tio 1.300

F2

0.350
0.370
0.380
0.360
0.390
0.410
0.400
0.420
0.405
0.440
0.430

F3

0.650
0.730
0.670
0.790
0.780
0.810
¢ 780
0.790
0.865
0.840
0.870

f1.1

0.260
0.280
0.290
0.250
0.240
0.270
0.290
0.310
0.340
0.350
0.360

f1,2

0.740
0.720
0.710
0.750
0.760
0.730
0.710
0.690
0.660
0.650
0.640

2,1

0.297
0.398
0.431
0.360
0.300
0.448
0.524
0.565
0.746
0.770
0.805

12,2

0.703
0.602
0.569
0.640
0.700
0.552
0.476
0.445
0.254
0.230
0.195

3,1

0.240
0.220
0.210
0.200
0.210
0.180
0.170
0.180
0.150
0.130
0.140

f3,2

0.760
0.780
0.790
0.800
0.790
0.820
0.830
0.820
0.850
0.870
0.860

TABLE 2.6 Measurements of process variables (example 2.2)

TIME Fq'

to 0.988
tq 0.944
to 1.162
t3 1.272
ta 1.746
5 1.184
ig 1.021
ty 1.438
tg 1.509
tg 1.328

1

459

Fa'

0.361
0.346
0.374
0.382
0.466
0.365
0.459
0.389
0.359
0.368
0.419

F3'

0.548
0.690
0.775
0.852
0.917
0.796
0.889
0.730
1.032
1.005
0.721

f1.0°

0.232
0.235
0.238
0.257
0.282
0.233
0.236
0.316
0.354
0.346
0.296

0.5989
0.745
G.581
0.631
0.745
0.808
0.792
0.681
0.621
0.552
0.724

0.249
0.352
0.473
C.316
0.302
0.466
0.506
0.563
0.753
0.864
0.673

- J

0.747
0.672
0.455
0.732
0.659
0.509
0.552
0.518
c.212
0.204
0.181

f3,1’

0.217
0.195
0.19
0.168
0.188
0.215
0.149
0.192
C.145
0.165
0.167

f3,2

0.734
0.816
0.783
0.855
n.768
0.786
0.695
0.776
0.790
0.846
0.778
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TABLE 2.7 Estimated and actual variances of process variables
(example 2.2)

Actual variances

Fi F3 Fa Hy he fhy 22 KBy f32
0.0134 0.0016 0.0057 0.0009 0.0073 0.0012 0.0066 0.0008 0.0077
Estimates based on direct method (equation 2.1)

By, Pg By Ay hao Yoy Ty Yay Tas
0.0123 0.0032 92.0178 0.0039 0.0065 0.0422 00412 0.0011 0.0118
Estimates made by neural net

Fy, By B Wy ha e B2 5y faz

0.0120 0.00'5 0.0051 0.0008 0.0069 0.0011 0.0061 0.0007 0.0071

TABLE 2.8 Weight matrnx of neural net used to estimate variances of
flow variables in non-linear system (example 2.2)

Vo.1 VYo,2 VYo,3 Vo4 Vo5 Vo6 Vo,7 Vo8 Vo9

BIAS -1.2035 -1.220 -1.207 -0.532 -0.514 -0.531 -0.507 -0.487 -0.529
Vi1 2.197 ..263 2.217 -1.361 -1.482 -1.444 -1.413 -1.560 -1.438
Vi 2 0.141 0.211 0.091 1.426 1.411 1.413 1.438 1.565 1.514

Vi3 0.232 0.153 0.255 1.258 1.455 1.397 1.303 1.384 1,307
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TABLE 2.9 Measurements of process variables (covariances) (example
2.2 - non-zero covariances)

TIME Fi' By 3 Hes K By B2 far fag
to 1.080 0.301 0.779 0.215 0.785 0.319 0.215 0.286 0.714
t 0.892 0.324 0.558 0.325 0.675 0.443 0.325 0.182 0.818
ty 1.027 0.420 0.608 0.261 0.739 0.386 0.261 0.220 0.780
t3 1.015 0.302 0.713 0.257 0.743 0.345 0.257 0.168 0.832
ts 1.106 0.337 0.768 0.24C 0.751 0.327 0.249 0.200 0.800
ts 1.376 0.463 0.913 0.322 0.678 0.457 0.322 0.177 0.823
tg 1.308 0.378 0.930 0.300 0.700 0.521 0.300 0.142 0.858
t; 1.334 0.489 0.845 0.303 0.697 0.535 0.303 0.159 0.841
tg 1.020 0.389 0.631 0.293 0.707 0.867 0.293 0.176 0.824
tg 1.157 0.361 0.795 0.305 0.695 0.771 0.305 0.150 0.850
1

.225 0.500 0.725 0.298 0.702 0.766 0.298 0.142 0.858

TABLE 2.10 Estimated and actual covariances of process variables
(example 2.2 - non-zero covariances)

Actual covariances

cov(fy 11fy,2) covifz,q1f2,2) covify q[f3,2)
0.00090 0.00118 0.00077
Estimates based on direct method (equation 2.2)

cov(fy 1/fy 2) cov(fz 1/f2,2) covifz 1|f3,2)
0.00202 0.03633 0.00124
Estimates made by neural net

covify 11y 2) covify 1 [f2 2l covifz 1/f3 )

0.00117 0.00138 0.00096
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TABLE 2.11 Weight matrix of neural net used to estimate covariances of
flow variables in non-linear system (example 2.2)

Volfr 11f1.2)  volfz,11f22)  velfs,q]f3,2)

3IAS  -0.5916 0.4638 -0.5210
Vi1 0.2772 -0.3210 -0.3081
Vi 2 -0.3396 -0.1790 -0.3701

Vi3 -0.3855 -0.2423 -0.3322
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FIGURE 2.1 GENERALIZED PROCESS CIRCUIT
(EXAMPLE 2.1)

FIGURE 2.2 STRUCTURE OF NEURAL NET USED
TO ESTIMATE VARIANCES IN PROCESS
CIRCUITS IN EXAMPLES 2.1 & 2.2

VARIANCES OF MEASUREMENT RESIDUALS (V,)
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VARIANCES OF CONSTRAINT RESIDUALS (V)
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" FIGURE 2.3 NEURAL NET REPRESENTATION OF RELAT!
BETWEEN CONSTRAINT AND MEASUREMENT
VARIANCES IN EXAMPLE 2.1
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BETWEEN CONSTRAINT AND MEASUREMENT
VARIANCES IN EXAMPLE 2.2
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CHAPTER 3

The detection and isolation of systematic errors in
steady state systems

Summary

The monitoring of plants and the verification of process models depend crucially on reliable sets
of st2ady state component and total flow rate data. These measurement data are generaily
subject to random noise (and possibly systematic errors) and typically violate the process
constraints of the system. It is consequently necessary to adjust the data, and also to account
for systematic or gross errors in the data prior fo this reconciliation procedure, or as part of it, in
order to avoid severe impairment of the adjustment process. This can be accomplished by using
a neural net to form an internal representation of the relationship between the residuals of the
measurements or the process constraints, and the error categories represented by these
residuals. When presented with other residuals generated by the process model. the trained net
can then classify the residuals to the categories it had previously been trained to recognize. The
major advantage of using neural nets instead of conventional statistical methods is that neural
nets can be used maore effectively for the detection of systematic errors in process systems
subject to non-linea process constraints (a situation common in the chemical and mineral
processing industry), as well as for errors with arbitrary or ill-defined distributions.

3.1 OBJECTIVES OF THIS CHAPTER

Despite extensive research over several decades, no inet~od is as yet available
to satisfactorily identify systematic errors in process systems subject to an
arbitrary set of constraints. The reason for this is the ill-definedness of the
distributions of the residuals of non-linear process constraints, even when the
distributions of the variable measurement residuals are known, as well as the
difficulty of generating measurement residuals that can be analyzed with
standard statistical methods. The main objectives of this chapter are
consequently to explore the powerful pattern recognition capabilities of neural
networks to

= model the relationship betwern the residuals of the process variables and
constraints and the statistical parameters of these residuals for typical
chemical and metallurgical engineering processes, and to
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= use these residual distribution models to detect gross or systematic
errors in the abovementioned systems.

3.2 BACKGROUND THEORY

The acquisition of reliable plant data is fundamental to a clear understanding of
the operational behaviour oi a plant, the modelling and optimization of process
circuits, as well as the identification of other phenomena peculiar to the process
(Verneuil et al., 1992). These data are generally subject to random noise, or
even gross errors, owing to inadequate instrumentation, failure or miscalibration
of measuring instruments, the departure of the process from steady state due
to malfunctioning process equipment, or significant changes in the environment
(Hlavacek, 1977). Typical process data will ¢ "sequently violate mass and
energy conservation requirements, as well as other physical constraints
pertaining to the process and will have to be adjusted in order to satisfy these
constraints. Under these circumstances it is essential that gross errors are
detected and accounted for prior to, or during reconciliation of the data, since
failure to do so could result in a severely distorted picture of the process.
(Hodouin & Vaz Coelho, 1987). Since repeated measurement of a variable is
not an effective means for the detection of a systematic error, virtually all gross
error detection schemes involve statistical tests based on the characteristics of
the constraint residuals of the measurement errors. Unfortunately these tests
are generally only useful as far as systems subject to linear constraints are
concerned (Serth et al., 1987; Tjoa & Biegler, 1991). In the chemical and
mineral processing industries this is a major drawback, since most process
<ystems in these industries are non-linear. In this dissertation a new method is
consequently proposed for the detection of systematic errors in constrained
measurement data. This method is based on the powerful capability of neural
nets to classify measurement errors, and is not hindered by the nature of the
system constraints.

Although a systematic error can indicate an error that differs from a random
error only with regard to its expected value, while a gross error can indicate an
error that differs from a random error with regard to its distribution function in
general, the use of these terms in the literature is not consistent. For the
purpose of this dissertation the terms systematic errors and gross errors are
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thus used interchangeably to denote errors that do not have the same
distributions cor distribution parameters as random measurement errors.

a3.2.1 Prcblem statement

To detect and isolate systematic errors in a measured set of constrained
variables, two conditions have to be met. First is a knowledge of the
distributions of the measurement residuals and second is the existence of
analytical redundancy (where measured variables are overdetermined).

The process constraints of a typical process system are described by Crowe
(1989),

Cx=0 (3.23)

where C is an (m x n) constraint matrix of full row rank m (n > m) and x is the
(n x 1) vector of true values of the state variables. If

xX'=x+e (3.24)

where x' constitutes the (n x 1) vector of measurements of the true values x,
with an (n x 1) error vector e, and covariance matrix V|, then the measured
values of the process variables generally violate the process constraints

Cx'=r=z0
or in terms of the true values and error components

Cix +e) =7 (3.25)
and assuming the constraints to be linear

Cix +e) =Cx + Ce =r,ie.

Ce=r (3.26)

If it is assumed that the error vector e has a Gaussian distribution and that no
systematic errors are present (the null hypothesis), r is a multivariate normal
with a zero mean (Madron et al., 1977; Romagnoli & Stephanopoulos, 1981;
Mah & Tamhane, 1982; Tamhane & Mah, 1985), i.e.
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E(r) = E(C.e) = C.Ele) = O (3.27)
Otherwise the expected value of r is not zero (the alternative hypothesis), i.e.
Ein =b =0 (3.28)

which indicates the presence of a systematic error with a bias of magnitude b.
By making use of standard statistical criteria, or variants of these statistics, the
two hypotheses can subsequently be evaluated and rejected or accepted, and
the presence of gross errors be determined.

Alternatively the measurement residuals e can be tested directly, making the
need for additional procedures to isolate errors unnecessary. Since the true
value of a state variable is generally unknown, the adjustments x'-x are
evaluated after reconciliation of the data. If use is made of a least squares
method for data reconciliation, the process constraints have to be linear in
order to ensure a known distribution for the measurement residual x'-x,
assuming a known distribution for x' (Madron, 1985).

3.2.2 Type | and type |l errors

When statistical hypotheses of populations are tested, twr :ypes of errors
(referred to in the statistical literature as type | or type Il errors) are possible
(Walpole & Myers, 1978). A type | error is committed when the null hypothesis
is valid, but erroneously rejected (i.e when a random error is incorrectly
identified as a systematic error), and a type Il error is committed when the null
hypothesis is accepted when it is false (i.e. when a systematic error is not
detected). The probability of committing a type | error is known as the level of
significance or the size of the critical region of the test, and is usually denoted
by a, while the probability of a type Il error being committed is usually denoted
by B. In efficient measurement error detection schemes, the probabiiity of both
these errors occurring should be as small as possible.

Similar to statistical tests, the performance of a neural net error detection
scheme can also be constructed to minimize the probability of the occurrence
of type | or type Il errors, through the appropriate labelling of training
exemplars. To reduce the occurrence of type | errors, only the residuals in
region CD in figure 3.1 are designated as gross errors. When the distributions
of random and systematic errors overlap (shown schematically in figure 3.1),
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one critical region can only be adjusted at the expense of another. Stated
differently, to ensure the t the probability of type Il errors occurring is as low as
possible, the probability of type | errors occurring has to be increased, as is
shown diagrammatically in figure 3.1. In the neural net error detection schemes
discussed in this chapter, all the nets were trained to significance levels of less
than 2%.

3.2.3 Existing methods

Generally speaking, approaches to fault detection and isolation can be divided
into two major groups, depending on whether or not the methods are based on
the use of a plant model. Methods not based on the use of a model include limit
checking, the use of special senscrs or multiple sensors (physical redundancy),
frequency analysis, as well as the use of knowledge-based methods where
rules derived from theory or experience are used to detect the presence of
system failures or gross errors (Gertler, 1288). Methods in which mathematical
models are used to detect gross arrors emanate from the concept of analytical
redundancy, and has received considerabie attention during the last two or
three decades.

Early methods making use of mathematical models .rere based on iterative data
adjustraent procedures, whereby measuremants weare cuccessively deleted from
the measurement data set. Gross errors could subsequently bs identified
through association with the maximum eif .ct of such a deletion on a least
squares objective function, but the method was cumbersome, especially when
applied to large sets of measurements (Romagnoli & Stephanopoulos, 1981).
These methods for detecting the presence of systematic errors were !ater
validated statistically, based on the relation between the residuals of the
constraints and the measurement errors. Further advances followed with the
proposal of univariate and multivariate statistical criteria for detection not only
of the presence of gross errors in the data set as a whole, but also of the loca-
tions of these errors (Romagnoli & Stephanopoulos, 1981; Crowe et al., 1985;
Knepper & Gorman, 1980; Madron, et al.,, 1577). These methods were only
applicable to measurement data subject to linear constraints and non-iinear con-
straints had to be linearized, typically by retaining first order terms in a Taylor
series expansion (Crowe et al., 1986; Romagnoli & Stephanopoulos, 1980,
1981; Stephenson & Shewchuck, 1986). An alternative method of studentized
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residuals not dependent on knowledge of the variances of the error
measurements and purported to discriminate more accurately against outliers
was similarly proposed by Jongelen et al. (1988).

Ragot et al. (1991) explored the application of parity space techniques for the
detection of gross errors in analytically redundant process data and
demonstrated the equivalence of this method to methods based on the use of
normalized residuals.

Although the principle on which all these tests was based remained essentially
the same, many refinements to these tests were proposed in subsequent years.
Serth and Heenan (1986) for example, proposed a screened combinatorial test,
as well as a modified iterative measurement test which they applied to
measurement data subject to bilinear constraints. lordache et al. (1985)
similarly proposed a modified test for the identification of multiple gross errors.
Narasimhan and Mah (1987, 18989) recommended the use of a generalized
likelihood ratio test, which could accormmodate errors not only attributable to
erroneous rmeasurements, but also to actual deviations in the process itself,
while Rollins and Davies (1992) suggested the use of an unbiased method to
detect systematic errors. The sophistication of current statistical procedures not
withstanding, these methods all suffer from a serious shoricoming. They are all
inherently limited in their applicability to data restricted by linear process
constraints. That is not to say these techniques can not be applied tc data
subject to non-linear process constraints at all. Serth & Heenan (1986) and

others have proved that und~: certain circumstances (such as where the
process constraints cen be | ved successfully) the application of hese
statistical methods yields reas 2 v satisfactory recults (Crowe et al., 1986;

Romagneli & Stephanopotulos, 1540, 1981).

In a new approach Kramer (1992) has recently shown that autoassociative
neural networks can be implemented to detect and eliminate gross errors in
measurement data subject to non-linear constraints. The disadvantage of these
nets is that they depend on a large degree of redundancy in the measurement
data, and are therefore not suitable for the detection and elimination of gross
errors in s=ir jular variable measurements, or measurements characterized by
small sampic sizes, such as those frequently encountered in the metallurgical
industry, w2 the independent measurement of process variables is often
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difficult and expensive. Error classification by autoassociative neural nets also
depends on the relative distribution of errors in the samples. If for example two
out of three variable measurements contain biased or gross errors, the
autoassociative net will incorrectly characterize the unbiased error as biased,
since it does not have an absolute reference regarding the features of a gross
error. The methods discussed in this chapter differ from those proposed by
Kramer (1992) in that they are based on the conservation equations or other
process constraints imposed on the measurement data. Thus unlike Kramer's
approach they depend on a mathematical model and do not need large sets of
measuremen s to detect or isolate gross errors (a distinct advantage especially
as far as mineral processing or metallurgical systems are concerned).

It is consequently the aim of this investigation to highlight the use of neural net
methods to detect gross errors in measurement data. These nets make use of
the constraint and measurement residuals of the process system, and like
autoassociative neural nets (but contrary to classical statistical methods), they
also have a powerful ability to detect grnss errors in the presence of non-linear
constraints.

3.3 THE DETECTION OF SYSTEMATIC ERRORS BY MEANS OF NEURAL
NETS

By presenting a fe forward neural net with examples of process measurement
and constraint residuals as input, and appropriate classes indicating the
presence of different types of errors as output, the net can be trained to
generalize the relationship between residuals and the types of errors giving rise
to these residuals. When presented with test vectors consisting of constraint
and/or measurement residuals, it is then able to assign the input to the error
categories it had been trained to recognize (analogous to the statistical
hypothesis tests traditionally used to categorize errors). Since neural nets are
not limited by the nature of the process constraints (unlike many statistical
methods), they can be used to considerable advantage in different error
detection schemes. Two such strategies are outlined in this chapter.

3.3.1 Global detection of gross errors in sets of constrained variables

The first strategy is the simplest and can be used to detect gross errors in sets
of variables associated with ncdes in the process circuit, similar to the global
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test in statistics (Romagnoli & Stephanopoulos, 1980). Note that this strategy
as such does not allow the location of errors beyond the sets of variables
associated with nodes in the process circuits. Despite this drawback the
strategy is useful in that no information regarding the true values of the process
variables is required. The method is based on the effect that measurement
residuals have on the process constraints of the system. The measurement and
constraint residuals are directly proportional, i.e. zero-valued measurement
residual vectors (associated with the true or reconciled values of the process
variables) generate zero-valued constraint residual vectors, while a monotonous
increase in the measurement residuals also results in a corresponding
monotonous increase in the constraint residuals. Systematic errors (which are
usually significantly larger than random errors) generally result in constraint
residuals that are larger than normal, and which can be distinguished from
smaller constraint residuals which are usually associated with smaller random
errors,

In traditional statistical test methods (assuming that the distribution functions of
the variable measurements are known) the detection of gross errors is limited to
linear or linearized process constraints which have essentially the same types of
distribution functions as the process variables. When the constraints are non-
linear their distributions are generally unknown and the constraint residuals can
consequently not be subjected to statistical hypothesis testing. By making use
of neural nets, this restriction is obviated, since the net can learn arbitrary
distributions of the constraint residuals a priori, as is explained below.

The general detection strategy involves training a neural net with examples of
constraint residuals generated by measurement residuals of a known class. No
mathematical models or explicit parameter specifications are involved in the
process - the data used to train the net are the standard from which the net
learns the distinction between residuals considered to be normal and those
considered to be indicative of a bias in the process data. Plant data can be used
for training the net, but artificial data are also convenient, since they are easy
to generate and there is no uncertainty as far as the classes to which the
residuals belong are concerned. During the training process, the net constructs
an internal model of the relationship between the constraint residuals and the
classes associaied with the germane mezsurement residuals. This model can
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subsequently be used to detect gross errors in measurements not encountered
previously.

As far as the strategies proposed in this dissertation are concerned, only two
classes are recognized, viz. a class associated with random errors and a class
associated with one or more gross errors in the observations. Extension of the
number of classes (e.g. to discern between gross errors of various types) is a
trivial matter that does not merit in-depth discussion. Once trained, the net can
be presented with any set of constraint residuals generated by actual plant
data, and it will assign these residuals to the classes it had been trained to
recognize. The use of this strategy is clarified by way of the following example.

Example 3.1. Detection of gross errors in a two-product classifier.

Consider a two-product classifier such as a hydrocyclone where a feed stream
(F4) is split into two product streams, e.g. an overflow (F2) and an underflow
stream (F3). If only two components are present, the mass balance equations
can be expressed as

F1-F3-F3 =0 (3.29)

Fif1,1-Faf1 2-F3fy 3 =0 (3.30)

Fifa,1 - Fafz2-Fafy3 =0 (3.31)

where f; ; denotes the fraction of the i'th component in flow stream F;.

For the neural net to be able to detect systematic errors in the variables F, F,
Fz and fy 4, f1 2, f1,3. f2,1. f2.2 and f; 3, it has to be presented with examples
of what are considered to be such errors. As with any other procedure, this
implies a knowledge of the distributions of the residuals of the variable
measurements. For the purpose of this example, normal probability distributions
were assumed and embodied in the training data.

i) Training and test data

Training and test sets were generated from a set of true values (i.e. an arbitrary
set of values that satisfies the process constraints represented by equations
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3.29 to 3.31). These training and test sets were derived by corrupting the sets
of consistent data with random and gross errors of the form

X =xXx+e+hb (3.32)

where x' is the observed value of the process variable with a true value of x, e
is a random measurement residual with a normal distribution with a zero mean
and a known variance, and b is a bias or systematic error component which is
per definition zero in random errors and non-zero in gross or systematic errors.
The magnitude of the bias was allowed to vary randomly between 10% and
100% of the random variable measurement Xi', 1.e. 0.1%(x; + &) < |bj| = x; +
e; for gross errors, with a small standard deviation of 2.5%. The training set
consisted of 200 feature vectors of the form {Irp|/a,;CLASS,},

where p denotes the p’'th constraint residual of the circuit, O, the standard
deviation of the constraint residuals fp and the binary output CLASSp the type
of error (O for random and 1 for gross) associated with the p'th constraint
residual. By considering the nourmalized magnitudes of the residuals, the
relationship between the error classes and the constraint residuals is simplified,
since the net does not need to account for the sign of the residuals. In more
sophisticated error detection schemes (requiring more sophisticated neural net
models) the actual values instead of the magnitudes of the residuals can be
used in order to distinguish between different types of gross errors. Gross and
random errors were present in approximately equal proportions in the training
sets, to allow the net to construct representative models of each class. The test
set was comprized of 100 feature vectors similar to those in the training sets.

if) Structure of neural nets

Four different neurai nets which consisted of simple one-layer configurations
(not counting the input layer which serves only to distribute the inputs to the
rest of the net) were trained for error detection. The nets were structured as
showed in figure 3.2, and differed only with respect to the process units used
in each net. Four of the most popular tvpes of units described in the literature
(Lippmann, 1987; Wasserman, 1990) were investigated, namely linear, sine,
hyperbolic tangent and sigmoidal process units.
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iif) Training of the nets

The nets were trained by means of the generalized delta rule (Rumelhart et al.,
1986) and typically required less than 20 00O iterations to converge. After
convergence several runs on different test sets were made with each net. The
weights of the trained nets are shown in tables 3.1-3.4.

iv) Results

The ability of the trained nets to classify measurement errors as random or
systematic is summarized in table 3.5 and 3.6. As can be seen, the
performance of the nets does not appear to be particularly influenced by the
type of transfer function implemented. The nets could detect approximately
90% of the gross errors in the data they were trained on (as shown in table
3.5) and approximately 85% of the gross errors in data not encountered before
(as shown in table 3.6). Judging from these small differences between the
abilities of the nets to classify errors in the training and test data, it can be
concluded that the nets generalize the training data well. Similar experiments
were conducted with neural nets containing one or more hidden layers, but this
did not result in any significant improvement in performance.

3.3.2 Location of gross errors in sets of constrained variables based on variable
measurement residuals

The second strategy differs from the previous one, in that the measurement
residuals instead of the constraint residuals are used to locate systematic
errors. Traditional statistical methods make use of analogous approaches, by
reconciling the variable measurements and testing the residuals generated by
reconciliation (Madron, 1985). Since these test procedures can not be
separated from the data reconciliation problem (which have to be solved first to
generate a set of variable adjustments which can be tested for gross errors),
they are affected by the ability of the reconciliation procedure to yield unbiased
reconciled measurement values in the presence of gross errors. It is especially
the least squares procedures that are sometimes vulnerable to this type of
problem when the constraints of the process are non-linear (Madron, 1985) and
as can be expected, the problem is aggravated by the presence of multiple
gross errors.
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A similar approach is pussible with a neural net, where a set of reconciled
process variables is also used as a basis for the location of systematic errors.
The important distinction between the neural network approach and
conventional statistical methods, is that the rn t can form an internal
representation of the distributions of residuals and is consequently not
restricted by the nature of, or the types of distribution functions associated
with the process system. Like statisical methods, the neural net approach is
also dependent on the generation of reconciled variable measurements and if
the variable adjustments are compromised by the presence of gross errors in
the data, the performance of the net can also be expected to deteriorate owing
to the lower quality of the inputs.

The use of a neural net to locate systematic errors in process data entails the
corruption of a consistent set of variable measurements (in effect assumed to
be the true values of the process variables) with various types of errors, and
training a neural net to classify these errors based on the measurement
residuals |x;'-x;| or |x;"-x;"|. The following examples illustrate the technique.

a) Example 3.2: Location of multiple gross errors in an industrial flotation
circuit

The flotation circuit depicted in figuie 3.3 has previously been described in the
literature (Cutting, 1976) and consists of 12 process units, viz. 6 flotation
banks (Ry, Ry & C4-C4), 5 hydrocyclones and a mill. Since only the total flow
rates of the process streams, Fq, F,, .. F1g are considered, the effect of the mill
can be ignored. The circuit is thus subject to 11 linear process constraints
(equations 3.33-3.43) and since measurements of the flow variables generally
violate these constraints, they have to be adjusted prior to further use. As part
of the reconciliation procedure, it is necessary to detect and eliminate gross
errors in the flow variable measurements, as the presence of these errors can
lead to large distortions in the reconciled values of the variables. Knowledge of
the variances of these measurements is furthermore a prerequisite to the
detection of systematic errors, as it is used to differentiate between the
different classes of errors. As was pointed out in chapter 2, these variances are
often not available and can then be estimated by some of the methods
described in the preceding chapter. In order not to complicate this
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deironstration unduly however, arbitrary variances are assumed for the
mMeas reiment errors.

Process constriints:

Flotation banks

Fy-Fp-Fg =0 (3.33)
By by 50 (3.34)
Fg-Fig-Fyy =0 (3.35)
F12-Fi3-Fi4 =0 (3.36)
Fi5-Fig-F17 =0 (3.37)
Fi6 - F1g-Fi19 = 0 (330

Hydrocyclones
F3 + F13-F4 =0 (3.39)
Fg-Fy7-Fg =0 (3.40)
Byt Foh B e 3 (3.41)
Fio + F17-F12 =0 (3.42)
Fig + F1g-F15 = 0 (3.43)

The adjusted data, shown in table 3.7, were used as a basis for generating arti-
ficial measurements, by corrupting the consistent set of measurements by
various random and systematic errors. In this investigation all errors had a
standard deviation of approximately 10%, so that random and systematic errors
were differentiated sc'ely in terms of their expected values, as shown in figure
3.4 where a normal error is compared with a gross error with a 15% bias.

Since the constraints are linear, a traditional statistical method, such as the
popular measurement test could also have been used to determine the presence
of gross errors in the process variables (lordache et al., 1985).
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A single layer back propagation net (shown diagrammatically in figure 3.2)
consisting of an input and output layer with 19 computational elements each
(corresponding to the 19 process variables of the system) was constructed to
identify gross errors in the measured values of the flow streams Fy, Fy, .. Fygq.
The states of the computational elements in the output layer of the net (one
element for each measured variable) indicate the presence (output value = 1)
or the absence (output value = 0) of a gross error. It is in principle also
possible to distinguish between systematic errors with different biases or
expected values, by expanding the domains of the states of these elements, or
perhaps by assigning errors to three different categories, viz. random, gross
and indeterminate.

The set of exemplars consists of feature vectors of the type Ty = {|F'-
Fi|/o;;CLASS}, where i = 1,2,..19, i.e. the inputs consist of the normalized
magnitudes of the measurement residuals of the flow variables in the system
(Fi-F;'), as well as an indication of the type of error associated with a particular
measurement value (CLASS)).

Approximately 50 artificially generated exemplars were needed to adequately
train the neural net, as indicated in figure 3.5. After approximately 10 000
training cycles (presentations of each vector in the training set to the net) very
little improvement in the root mean square error (difference between actual and
the desired output of the net) occurred, as shown in figure 3.6. The
performance of the net could consequently be evaluated against the test set of
vectors and is depicted graphically in figure 3.7. The labels A-G shown in figure
3.7 denote the corruption of the measurement data with errors with different
biases as explained in table 3.8. Biases are shown relative to the
measurements. In figure 3.7 it can be seen that the net classified most gross
errors correctly when the relative bias of the systematic error was larger than
approximately 70%. These values are not absolute, since the performance of
the net is also determined by the variance of the errors (approximately 0.013 in
this case). For systematic errors with expected values not much different from
those of the actual measurements themselves (less than 40%), the
discriminatory power of the net dropped markedly, as could be expected.
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b) Example 3.3: Location of multiple gross errors in the measurement data
of a three-stage backfill circuit subject to non-linear process constraints

This example is an extension of example 3.1 discussed in section 3.3.1, and is
based on a backfill circuit which consists of three hydrocyclones connected as
indicated in figure 3.8 and which is used for the preparation of backfill material
in a South African mine (Woollacott et al., 1992). Although the plant data both
before and after reconciliation are provided in table 3.9, the measured data
could only be tested for gross errors in an arbitrary way, since no knowledge of
the covariance matrices of these measurements was available. As before the
adjusted data were corrupted with known errors, which enabled accurate
evaluation of the nets.

The material balance of the circuit is expressed by equations (3.44-3.53).
These equations constitute the constraints on the process system, the residuals
of which are incorporated in the training data set of the neural net.

Process constraints:

Fi + F5-Fg =0 (3.44)
Fg + F7-Fg =0 (3.45)
Fg-Fy-F3 =0 (3.46)
F3-Fg-F7 =0 (3.47)
Fp-F4-Fg =0 (3.48)

and fori = 1t0o 6

Fi.f1,i + Fs.f5- Fe.fg; = O (3.49)
Fe.fe,i + F7.f7,i- Fo.fgi = 0 (3.50)
Fo.fg,i- F2.f2i- F3.f3, = 0 (3.51)
Fa.f3- Fg.fgi- F7.f7, =0 (3.52)
Fa.f2,i- Fa.fa,;-Fsf5; = 0 (3.53)

where

i Zifi=11=12.9]=123
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As in the previous example, the reconciled values of all the flow variables F;
and fi; are used as a basis for the demonstration of gross error detection by
means of neural nets. In order not to unduly complicate computational
procedures, the reconciled data have once again been corrupted artificially with
only two classes of errors (i.e. random and systematic).

i) Training and test data

In order to further evaluate the ability of neural nets to discriminate between
error classes, eight different test and training data sets were generated from
the reconciled data shown in table 3.9. All errors had standard deviations of
12% and biases as shown in table 3.8. As before, the training vectors T
consisted of the normalized measurement residuals, as well as the classes
associated with these residuals {|x;'-x;|/0;;CLASS;}.

if) Structure of neural nets

To determine the presence of systematic errors, a back propagation neural net
with sigmoidal process units was used to categorize the two types of errors.
The input layer of the net was comprized of 19 input units, corresponding to
each of the measurement residuals of the circuit, while the output layer
similarly consisted of 19 units (one for each normalized measurement residual),
for assigning the residuals to the appropriate error classes.

iif) Results

The net converged in less than 10 000 iterations, typically as shown in figure
3.9, where the root mean square (RMS) value of the difference between the
desired and the actual output of the net is shown during training. The ability of
the net to isolate gross errors in the circuit is shown in figure 3.10. This figure
shows a sharp decline in the ability of the net to detect gross errors as the
difference between the expected values of the normal and the gross error
becomes less than approximately 20%. Similar trends were observed for other
variances.
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c) Example 3.4: Detection of gross errors in metallurgical grinding circuit
(Serth et al., 1987)

In the previous examples the ability of neural nets to detect gross errors in data
subject to non-linear constraints has been demonstrated. In this example the
performance of a neural net is compared to that of a statistical method
described in the literature (Serth et al., 1987, 1989). The specific method has
been selected because it deals explicitly with non-linear constraints, and is
furthermore repurted to be an efficient means of detecting multiple gross errors
in measured data.

With the modified iterative measurement test (MIMT) technique process data
are first reconciled (based on linear or linearized process constraints) and from
these data a test statistic () is computed for each measured variable, i.e. p; =
eil,uj,]y’. Since the process constraints have been linearized, p; is a standard
normal deviate under the null hypothesis that z; contains no systematic error.
Each test statistic p; is compared with a critical test value, p. = zy.g/2, the 1-
/2 point of the standard normal distribution. The variable corresponding to the
largest value of |pj| >p is then deleted from the vector of measured variables
and new reconciled measurement values are computed from the compressed
measurement vector z,,,. This step is followed by a limit check on the new
reconciled measurements. If the limits are violated, the previously deleted
variable is returned to the measurement set and the next largest value of
|Pj| >p¢ Is selected and the whole process repeated. If the upper and lower
limits of the reconciled variables are not violated, the variable is not returned to
the measurement set, since it is considered to contain a bias.

The circuit consisted of a ball and rod mill connected to a cyclone classifier as
shown in figure 3.11. Based on the constraints that i~ mass fractions have to
sum to unity, the mass fractions of water in streams Fg to Fg have been
eliminated, and the following set of equations was obtaiiad to describe mass
flow in the circuit (Mular et al., 1976; Serth et al., 1987). hn following set of
equations is identical to that used by Serth et al. (198" wi*h R; = F; and W,
= fi,j'

Rod mill (Node 1)

Fq-Fg + Fg.23f5, = 0 (3.54)
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Fq - F5.2%5,; = 0 (3.55)
Pump (Node 2)

F3 + Fs + Fg- F7 - F5.2%f5 ;- Fg.Z3fg,; 0+ F7.23f;, = 0 (3.56)

Fefs,; + Fefg, - Faf7; =0, (j = 1,2,3) (3.57)
Ball rill (Node 3)

F3 + Fg-Fg + Fg.Z%fg, - Fg.Z3fg; = 0 (3.58)

Fg.Z3fg, - Fg.23fg,; = O (3.59)
Cyclone (Node 4)

F7-Fg-Fg-Fr.23%f;; + Fg.5%g; + Fg.53fg; = 0 (3.60)

F7t7- Fefg,- Fa.fg; = 0, (j = 1,2,3) (3.61)

i) Training and test data

As before, training and test data of the form ({|x;'-x;|/o;; CLASS;} were
generated from a consistent set of process data (shown in table 3.10).

The errors introduced into the measurements were of the form x + e + b,
where e had a zero mean and a standard deviation of 2.5%, as investigated by
Serth et al. (1987). Biases varied randomly between 10% and 100% of the
values of the corresponding variable measurements, i.e. 0.1*(x; + ) < |b;| <
x; + e;, and were assigned randomly in equal proportions to a set of simulated
measurementis, so that approximately half of the measurement vectors
contained random variables only, while the other half contained gross errors
ranging from 10 to 100%. The proportions of the gross errors of various
magnitudes were approximately equal as well, i.e. there were just as many
gross errors with magnitudes ranging from 10-20%, as there were errors with
magnitudes ranging from 20-30% or 60-70%, etc. These errors are depicted
schematically in figure 3.11.
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if) Structure of neural nets

In order to detect the presence of gross errors in the variables associated with
particular nodes in the process circuit, a neural net with 24 input elements and
24 hyperbolic tangent output elements (one for each of the 24 corresponding
variables) was constructed and trained on the circuit as a whole.

iii) Training and testing

The nets were trained with the normalized cumulative delta rule (Rumelhart et
al., 1986) and tested against the test data after convergence. Training
proceeded rapidly and as before all the nets converged in less than 20 000
iterations.

iv) Results

The results of the tests are shown in tables 3.11 and 3.12. In table 3.11 the
ability of the net to detect gross errors with different biases ranging in
magnitude from 10-100% is shown and compared with the ability of the MIMT
method. From these data it is clear that the net is more successful than the
MIMT method. In table 3.12 the ability of the net to detect systematic errors in
the various variables is shown. The net managed to detect virtually all gross
errors ii e variables, regardless of the magnitudes of the variables in the
circuit. This is not so much due to the superiority of the net as an error
classifier, but can probably be attributed to an inability in the MIMT method to
yield unbiased adjustments to the variables prior to testing for gross errors. The
neural net in contrast, was evaluated with unbiased measurement residuals,
hence the better performance. Other statistical methods such as the one
proposed by Tjoa and Biegler (1991) could be expected to detect systematic
errors in the relatively smaller variables with a high degree of accuracy as well,
as will be discussed in more detail in example 3.5 of this section.

d) Example 3.5: Detection of gross errors in an arbitrary non-linear system

This example has been used previously by Pai and Fisher (1988), Ramamurthi
and Bequette (1990), as well as Tjoa and Biegler (1991), and comprizes five
measured variables x;' (i = 1, 2, .. 5) and three unmeasured variables x;' (i =
6, 7, B), subject to six non-linear constraints.
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A(x1)2 - 0.7%; + x3xg + (x2)2xgx7 + 2x3(xg)? - 255.8 = 0

X1 - 2x3 + 3x1X3 - 2XXg - XaX9%xg + 111.2 = 0

X3Xg - X1 + 3x3 + X9X7 - x3(xB}V’ -33.67 =0

Xg - Xq - (x3)2 + X7 + 3xg =0

Xg - 2X3X7%xg = 0

2x1 + XpX3Xg + X7-xg- 126.6 = 0 (3.62)

The exact values of these variables are x = {4.5124, 5.5819, 1.9260, 1.4560,
4.8545, 11.070, 0.61647, 2.0504}7 (Tjoa & Biegler, 1991). Tjoa and Biegler
(1991) considered the reconciliation of these variables with a hybrid successive
quadratic programming (SQP) method which was used to minimize an objective
function based on a joint probability distribution of both random and gross
errors. The performance of the algorithm is considered in more depth in the
following chapter, when data reconciliation with neural nets is investigated. At
convergence of the SQP procedure, they tested each measurement against the
combined distribution. Since the presence of gross errors are taken into
account during the minimization of the bivariate objective function, the variable
adjustments are unbiased, which facilitates the isolation of gross errors
considerably (regardless of the test method used to identify these errors). The
method is still dependent on the explicit specification of a joint distribution
model however, which may not be an accurate reflection of the process model.

In order o compare the error detection capability of a neural net with the
method proposed by these authors, a 100 data sets were corrupted with 10%
Gaussian noise to simulate random errors. In case 1 the 100-vector set is
further corrupted with gross errors with a bias equal to four times the standard
deviation (o;) of the random errors. The gross errors were distributed equally
among the five measured variables (x;') and in all 20% of the measurement
vectors were corrupted (one gross error per measurement vector only). In case
2 every fifth variable set was completely corrupted with gross errors (i.e. five
gross errors per variable set) and in case 3 a gross error was placed in each
data set for measurements x;' to X5' in rotation. Since the success of the
method is to a large extent ascribable to the ability of the reconciliation
algorithm to generate unbiased estimates of the true values of the process



Stellenbosch University htips://scholar.sun.ac.za

- 68 -

variables, an exact comparison of the method with a neural net is not possible
unless the same reconciliation procedure is used in both cases. Nonetheless if
the adjustments or residuals arising from the reconciliation of the measurements
by the SQP method are considered to be unbiased as concluded by Tjoa and
Biegler (1991), a reasonable comparisoin can be made by evaluating the
response of the neural net to artificially generated unbiased residuals.

The neural net consisted of an input layer with iive process elements
(corresponding to the five measured values x' only, as it was not necessary 1o
take the unmeasured var able. into account) and an output layer with five
sigmoidal process elements (one again for each variable x;').

As with previous examples, training proceeded with the use of the normalized
cumulative delta rule and after convergence of the net after approximately
20 000 iterations, the net was used to detect errors in test data sets 1, 2 and
3. The method proposed by Tjoa and Biegler detected approximately 73% of
the gross errors in case 1, 60% of the gross errors in case 2 and 69% of the
gross errors in case 3. The neural net detected approximately 72%-74% of the
gross errors in all cases. These resuits should only be regarded as an indication
of the capability of a neural net however, since especially in cases 2 and 3 the
method used by Tjoa and Biegler might have had to contend with some bias in
the measurement residuals prior to evaluation, not taken into account when
testing the net. The weights of the trained net are shown in tabie 3.13.

3.3.3 Location of gross errors in sets of constrained variables based on
measurement and constraint residuals

In somewhat more sophisticated approaches, error detection and isolation can
be based on both measurement and constraint residuals, by training the neural
net with vectors of the form {|x;'-x;|/0;, lrplfop;CLASSi), similar to an approach
discussed by Aldrich and Van Deventer (1993), which was based on the
measurements and the constraint residuals as such {x;'.rp;CLASSi}. These
techniques would have to be complemented by supervisory routines which
would be able to interpret ambiguous output (a constraint residual might
indicate the presence of a gross error, while the relevant measurement residuals
appear to be unbiased or vice versa). In critical systems for example, only data
unambiguously classified as unbiased could re considered as such.
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3.4 DISCUSSINN OF RESULTS AND CONCLUSIONS

The use of neural nets for the detection of gross errors in process data is best
explained in analogy with statistical tests presently used for the same purpose.
These tests are based either on the constraint residuals generated by the
inccnsistent data, or directly on the measurement residuals generated when the
observed values of the variables are reconciled with the constraints.

The neural net techniques proposed in this chapter follow much the same
approach and the prerequisites to the application of these methods are the
same as for statistical tests - analytical redundancy of the process data and
knowledge of the distribution of random errors in the data. An important point
is the fact that the knowledge concerning the random errors does not need to
be explicit when neural nets are used (i.e. the usual assumption of a normal
distribution with a certain variance and a zero mean), since the net can derive
its own representation of this distribution when provided with sufficient suitable
process data. Once the net has constructed a model of the random errors in the
measurements (from examples represented to it in the training phase), it uses
this representation as the exclusive standard against which errors are classified.

A robust method to detect errors in constrained sets of measurements is based
on the constrairt residuals of the conservation equations or other constraints of
the process. When statistical methods are used, the distribution of the
constraint residuals has to be known and since this distribution is a function of
the distributions of the individual variable measurements, statistical methods are
generally limited to lirear systems. (In non-linear systems the distribution of the
constraint residuals is no longer the same as that of the measurement residuals
and generally unknown). In neural nets this limitation does not apply, since the
net learns the distribution of the constraint residuals for the particular system
prior to classification of these residuals. Having learned this relationship for
particular set of constraint equations and a random error distribution, the net
can be used to detect the presence of gross errors in the set of variable
measurements. Once detected, other techniques can then be used to isolate
these systematic errors.

Alternatively (and in order to isolate gross errors directlv) tests can be based on
measurement residuals. In contrast with the constraint residuals, these
measurement residuals can unfortunately not be determined directly from the
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variable measurements themselves, since the true values of the variables at the
time of measurement are not known (assuming the process model to be
correct, the true values of the constraint residuals at the time of measurement
are known to zero). As a result it is not possible to make use of the actual
measurement residuals (the differences between the true and the observed
values of the variables) to locate gross errors in the system. Use can be made
of the estimated measurement residuals however (the differences between the
reconciled and the observed values of the variables). As a consequence the
detection of gross errors based on measurement residuals is dependent on the
accuracy with which the true values of the variables can be estimated, i.e. the
reconciliation procedure used to filter the data.

The relation between the measurement residuals is typically relatively simple
and training of the net uncomplicated, so that accurate classification of the
errors is possible provided that the residuals presented to the net during training
and testing are reasonably close estimates of the actual residuals of the
measurements.

The examples considered in this dissertation were intended to demenstrate the
use of back propagation neural nets to detect gross errors in measurement data
subject to process constraints. In practice more sophisticated training
procedures could be adopted, which could be used in conjunction with more
sophisticated error classification schemes. It would also be desirable to
incorporate additional information in the net (such as equipment and instrument
failure histories, previous knowledge about measurement covariances, etc.),
either through direct modification of the architecture of the net, or by using the
net in conjunction with a knowledge base or another neural system.

In the light of these comments the following can be concluded:

" neural nets constitute a powerful means of detecting gross errors
in sets of constiained variables, regardless of the nature of the
constraints;

" explicit knowleaje nf the distribution of random errors in the
variables is not a prerequisite to the use of neural net methods to
detect gross errors, since the nets can learn the distributions a
priori;
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neural nets can be used to isolate gross errors in variable
measurements, regardless of the constraints of the system

neural nets are able to discriminate between different errors at
ieast as well as standard statistical methods; and

the nets ..2d to detect gross errors are relatively simple (no
hidden I7yers are required) and the performance of these nets is
moreover not affected significantly by the type of transfer function
used.



Stellenbosch University https://scholar.sun.ac.za

-72-

3.5 TABLES REFERRED TO IN CHAPTER 3

TABLE 3.1 Weights of trained hyperbolic tangent neural net used to detect

gross errors in example 3.1.

Vo,1
BIAS 7.2773
Vig 9.1197
Vi 2 0.2414
Vi3 0.0637

Vo,2

-0.9801
-2.6379
2.7840

1.3763

Vo,3

-0.5564
-0.0008
-0.1008

0.2227

TABLE 3.2 Weights of trained sigmoidal neural net used to detect Gross errors

in example 3.1.

Vo,1
BIAS -1.1830
Vi 2.8595
Vi.2 0.4902
Vi3 -0.3364

Vo,2

-1.0019
-0.6192
1.2586

0.1607

Vo,3

-0.7812
0.0164
-0.2684

0.1536

TABLE 3.3 Weights of trained sinusoidal neural net used to detect gross errors

in example 3.1.

Vo,1
BIAS 0.9655
Vi1 1.7577
Vi'z 0.1078

Vi3 10.0592

Vo,2

-0.56244
-1.0830
1.4312

0.6478

Vo,3

-0.5777
0.0549
-0.0467

0.2131
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TABLE 3.4 Weights of trained linear neural net used to detect gross errors in
example 3.1.

Vo,1 Vo,2 Vo,3
BIAS 0.1936 -0.2874 -0.5502
¥i 4 0.9029 -0.2629 0.0577
Vi,2 0.0498 0.6560 -0.0311
Vi3 0.0594 0.2738 0.1853

TABLE 3.5 Detection (%) of gross errors (bias 10-100%, standard deviation
2.5%) in training data (example 3.1).

Process units: sig!! LIN(2) TANHI3  gINI)
Average (%) errors detected 89.33 89.31 90.83 90.00
Standard deviation {%) 5.44 5.45 6.47 4,97

(4)

3 ’s:gmuidal: viu)=1/(1 +e™), (2hinear: viu) =k; + kz.u, mhvnarhohc tangent: viu) = (e*-e")/(e¥ + e}, "sine: viu) =sin(u)

TABLE 3.6 Detection (%) of gross errors (bias 10-100%, standard deviation
2.5%) in test data (example 3.1).

Process units: sig!! LIN2) TANH3  SINI4
Average (%) errors detected 88.00 82.33 86.56 85.67
Standard deviation (%) 7.79 1.80 7.21 6.45

‘"sigmoidal: viup=1/(1+e"), lz'Ilr\ur: viu) =ky +kj.u, ‘mhvparbnlic tangent: vi{u) = (g"-e “}/{e" +a"), "'slm: viu) = sin(u)
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TABLE 3.7 Adjusted values of flotation circuit flow streams

Fi. Fa2 F3 Fq4 Fg Fg F; Fg Fg Fyp
3.418 2.950 0.468 3.492 1.808 1.684 0.134 1.549 4.882 3.407

F11. Fiw2 Fi3 Fia Fis Fig Fy7 Fig Fyg
1.475 3.660 3.557 0.123 4.523 4.251 0.273 3.284 0.966

TABLE 3.8 Ratios of the expected values of the uncorrupted measurements
(x') to those of corrupted measurements (x' +b)"

CASE A B c D E F G H

E(x')/E(x' +b) 1 1.225 1.256 1.3 1.4 1.5 p B 2

"All measurements had standard deviations of approximately 12%
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TABLE 3.9 Plant and adjusted data from backfill circuit

Fg F2 F3
Cyclone  Size or Exp Calc Exp Calc  Exp Calc
% solids
1 150 5.4 5.6 159 165 1.0 1.4
106 164 154 3356 325 8.7 8.8
75 148 13.9 164 171 127 12.7
53 9.1 9.7 9.2 8.2 124 10:2
38 4.0 5.9 3.8 3.9 6.2 6.7
0 50.3 50.5 212 21.8 590 60.2

solids 49.3 475 618 62.2 423 435

F2 F4 F5

Cyclone  Size or Exp Calc Exp Calc Exp Calc
% solids

] 150 159 1656 1868 17.2 185 15.9
106 33.5 325 335 347 298 304
75 184 1721 162 152 191 188
53 9.2 8.2 8.2 8.5 7.6 7.9
38 3.8 3.9 25 2.3 5.9 5.5
0 212 21.8 220 220 214 2186

solids 61.8 9820 61.7 622 61.2 81.2

Fa F7 Fs

Cyclone  Size or Exp Calc Exp Cale Exp Calc
% solids

1l 150 1.0 1.4 124 120 0.5 0.0
106 8.7 8.8 359 362 B0 5.1
75 124 127 YRQ 1Y 114 323
53 12.4 0.2 Bb 9.6 9.8 10.3
38 6.2 6.7 3.7 3.6 7 (e
0 59,0 398 216 216 63.2 65.4

solids 42.3 435 - 23.0 406 415
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TABLE 3.10 Consistent values of variables in metallurgical grinding circuit
used for the generation of random and gross errors

Fq F2 F3 Fa Fg Fg F7 Fa Fg
99.7 3200 250 2579 3576 1109.4 1787.0 1084.3 702.7

fs5,1 fs2 fs3  fg,1 fez fga 174 fz2 3
0.0679 0.3964 0.2570 0.0103 0.4622 0.2826 0.0200 0.3663 0.2268

fa,1 fa2 faa fg faz faa
0.0328 0.5566 0.1831 0.0002 0.0721 0.2947

TABLE 3.11 Gross errors detected (%) by neural net and MIMT method

BIAS(%) MiMmT! BPNNZ
<20 63 98.2
20-30 80 100
30-40 76 100
40-50 81 100
50-60 87 100
60-70 84 100
70-80 89 100
80-90 92 100
>90 78 100

;Modified iterative measurement test
Back propagation neural net

TABLE 3.12 Comparison of neural net with MIMT methed to detect gross
errors in selected variables 1

VARIABLE DESCRIPTION % OF GROSS ERRORS

NUMBER DETECTED
MIMT!  BPNNZ

7 Largest flow 94 99 +

20 Largest composition 93 99 +

1 2nd smallest flow 80 99 +

13 2nd smallest composition 64 99 +

3 Smallest flow 8 99 +

22 Smallest composition 0 99 +

1Modifiod iterative measurement test
2Detection of errors based on distribution of measurement residuals (see section 3.3.2)
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TABLE 3.13 Weights of trained neural net used in example 3.5

Vo,1 Vo,2 Vo,3 Vo,4 Vo,5
BIAS 0.4997 0.8768 0.5418 0.8929 0.6777
Vi1 3.1778 0.0780 -0.0365 -0.1163 -0.0924
Vi2 0.0744 3.3703 -0.0785 0.2559 -0.2869
Vi,3 0.2166 0.5721 2.7970 0.0545 -0.1915
Via -0.6865 0.3314 -0.0248 4.7152 0.2778

Vi§ -0.2422 -0.1645 0.3275 -0.0207 4.2026
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FIGURE 3.1 PROBABILITY DISTRIBUTIONS OF
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FIGURE 3.3 A FLOTATION CIRCUIT WITH LINEAR PROCESS

CONSTRAINTS (Example 3.2)
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FIGURE 3.5 RELATION BETWEEN PERFORMANCE OF NET
AND SIZE OF EXEMPLAR SET
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" FIGURE 3.7 CLASSIFICATION OF SYSTEMATIC ERRORS 1
IN MEASUREMENT DATA
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'FIGURE 3.9 PERFORMANCE OF BACK PROPAGATION NEURAL NET |
DURING TRAINING I
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FIGURE 3.11 METALLURGICAL GRINDING CIRCUIT
(Example 3.4)
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CHAPTER 4

The reconciliation of inconsistent process data

Summary

Since measurements of variables in chemical and metallurgical plants generally violate the
conservation and other constraints of these systems due to random measurement errors,
these data have to be reconciled with the constraints prior to further use. In
multicomponent systems the reconciliation of process data normally results in a non-linear
constrained optimization problem, which can constitute a formidable computational burden
when large systems have to »e solved by conventional technigues. Connectionist
systems, such as artificial neural networks can be implemented to considerable advantage
for the solution of optimization problems such as these and in this dissertation their use is
explored. Three variants of crossbar feedback connectionist systems have been
investigated, two of which are based on gradient descent techniques and one based on a
direct search method. The results of simulations, as well as a comparison with traditional
computational procedures indicate that systems such as these based on gradient descent
techniques can be used to solve large systems efficiently

4.1 OBJECTIVES OF CHAPTER 4

Robust and accurate procedures are currently available for the
reconciliation of plant data not consistent with related plant models. These
procedures are generally expensive in terms of computational requirements
and given the size and complexity of some plant models, these techniques
are not adequate for the solution of large-scale problems, or small-scale
problems in on-line applications. The objectives of this chapter are thus:

= ,he examination of connectionist structures for use in data
reconciliation problems through the incorporation of standard search
methods;

s Evaluation of the dynamics of these systems;

= Comparison of the connectionist systems with conventional efficient
non-linear procedures.
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4.2 BACKGROUND THEORY

A clear understanding of the operational behaviour of a plant is essential
for the identification of process phenomena, as well as for the optimization
and control of the plant or process circuit. The collection and analysis of
data from processes are therefore an important means for evaluating the
performance of a plant or an ndividual process unit. The available data are
generally subject to randoin nc'ca or even gross errors, which can among
others be attributed to failure or miscalibratin= of measuring instruments,

the departure of the process from st owing to malfunctioning
process equipment, or significant =hai, ' the environment. It is thus
vital that the inconsistent cata 1, - reconciled with the process ccnstraints

prior to further use.
4.2.1 General material and energy balance problem

The usual approach to the reconciliation of measured variables is aimed at
the minimization of the weighted sum of the squares of the measurement
residuals, subject to conservation and other constraints of the process
(Hodouin & Everell, 1980), i.e.

min (x'-x") TV 1(x'-x"), subject to (4.1)
d(x") = 0

where V! is a residual weighting matrix, usually the inverse of the
variance-covariance matrix of the measurements x', and x" the vector of
reconciled measurements. Where an estimaie of this variance-covariance
matrix is not available, a numerical weighting system can also be used by
defining V! as the inverse of the elements of the measurements of the
variables {x}.

Process circuits are often described in terms of a network consisting of m
branches and n nodes, usually so that the nodes correspond with process
units in the circuit, and branches correspond with connections or flow
streams between the units (Vaclavek & Loucka, 1976: Vaclavek et al.,
1979; Romagnoli & Stephanopoulos, 1981; Cutting, 1976; Hodouin et al.,
1982). The topology of the circuit can then be described with the use of a
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Boolean incidence matrix A(m,n), resulting in a set of material balance
equations of the form

dix) = Ax =0 (4.2)

where x is the vector representing the material flow parameters of the
system. It should be noted that although these parameters could represent
any desirable physical entity, such as particle size fractions, chemical
species or specific gravity, the choice of the particular parameter is related
to the structure of the incidence matrix A(m,n). A mill for example, would
have a profound effect on a flow parameter representing a particle size
fraction, but would merely serve as a conduit for a parameter representing
a chemical species. Althcugh the general data reconciliation problem is
also concerned with variable classification and the determination of
unmeasured variables, this dissertation deals only with measured variables
subject to small random errors, in order not to unduly complicate the
evaluation of the parallel systems investigated.

The solution of the problem in effect ensures that the flow parameters are
adjusted as little as possible, that all the conservation constraints are
satisfied, and that the more reliable variable measurements are adjusted
less than the less reliable variable measurements.

4.2.2 Conventional optimization procedures

Most conventional optimization procedures involve the identification of the
overdetermined measurement errors, followed by rectification of these
errors, and then the determination of determinable unmeasured flow
parameters. These procedures are used in conjunction with schemes for
the identification and elimination of systematic errors, and the re-
adjustment of flow variables where necessary (Tamhane & Mah, 1985:;
Romagnoli & Stephanopoulos, 1981).

Some of the optimization strategies for multicomponent balances include
direct substitution of the variables in the constraints into the objective
function, optimization by means of Lagrange multipliers, direct solution by
means of linear and non-linear programming techniques and the use of the
Chebyshev minimax criterion (Hlavacek, 1977). Generalized least squares
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techniques have been applied to cement clinker and uranium phosphate
grinding processes (Hodouin, et al., 1982; Hodouir & Vaz Coelho, 1987),
flotation plants (Hodouin et &al., 1988; Hodouin & Everell, 1980) and
complex mineral beneficiation plants (Cutting, 1976), for example. A
somewhat different method employed by Crowe et al. (1983, 1986)
concerned the construction of projection mairices to decompose the
problem into two or three subproblems, depending on the linearity of the
problem. Univariable search techniques have been employed with great
success with strongly unimodal response surfaces (White, et al., 1977,
while non-linear problems have been solved by Newton-Raphson
techniques, such as pertaining to grinding and classification plants
(Cutting, 1976), as well as Gauss-Newton iterative algorithms (Pai &
Fisher, 1988). Tjoa & Biegler (1991) made use of a hybrid successive
quadratic programming (HSQP) method to rectify material balances around
heat exchanger networks, while Sanchez et al. (1992) also used a
successive quadratic programming (SQP) method to reconcile material and
enthalpy measurements in a demethanization plant,

These techniques usually involve iterative procedures and are
computationally demanding, especially as far as large complex plants are
concerned, or where on-line material balancing is required. These
disadvantages associated with the use of traditional methods make the
use of connectionist systems or neural nets an attractive alternative for
the optimization of mass balance problems. Due to their massively parallel
structures, and recent advances in very large scale integration (VLSI) and
ultra-large scale integration (ULSI) electronic circuits (Del Corso et al.,
1989; Goser et al., 1989; Murray, 1989), neural nets show great potential
for the solution of computational problems of high dimension in processing
times several orders of magnitude less than what could be achieved with
sequential computational devices (Verieysen & Jespers, 1989; Best,
1990).

In this dissertation the use of connectionist systems for the rectification of
inconsistent redundant variable measurements s proposed and
demonstrated by way of two elementary examples.
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4.3 TYPES OF CONNECTIONIST SYSTEMS

Recurrent or feedback nets, especially those known as crossbar or
Hopfield nets, have been used for a wide range of optimization problems,
ranging from the solution of non-polynomial (NP) complete combinatorial
problems, such as the travelling szlesperson problem (lank & Hopfield,
1986), combinatorial optimization problems subject to inequality
constraints (Abe et al., 1992), assignment problems (Wang, 1992a),
systems of complex-valued linear equations (Wang, 1992c), the four
colour mapping problem (Takefuji & Lee, 1991), the identification and
recognition of visual images (Nasrabadi & Choo, 1992; Yuille, 1989), as
well as the solution of linear (Tank & Hopfield, 1986; Cichocki &
Unbehauen, 1992, Wang, 1992b), non-linear (Kennedy & Chua, 1988;
Wang & Tsang, 199i] =.d dynamic programming (Chiu, et al., 1991)
problems. These nets diifer from feedforward systems (such as back
propagation nets) in that information is not only passed forward through
the layers of the net, but backwards or laterally as well. The performance
of three different connectionist systems explained below and referred to as
CS-1, CS-ll and CS-Ill were investigated.

4.3.1 Connectionist system | (CS-1)

The architecture of CS-l corresponds to that of a crossbar or Hopfield
neural net, as shown in figure 4.1. The system consists of three layers,
viz. an input layer, a hidden layer with full lateral connections, as well as
an output layer. All layers have the same number (N) of elements, and all
are provided with linear transfer functions, of the form

glu) = kq.u + ky, (kq, kp constant)

The exact number of elements in each layer is determined by the number
of process variables to be reconciled (i.e. one element for each process
variable).
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al Neurodynamics

When these networks are viewed as dynamic systems, the network
computation process can be seen as a system moving in a state space!?!
through the constant application of some transition rules. These transition
rules are procedures for updating the state of the system, depending on its
current state. The system dynamics or neurodynamics of the net are
determined by the transition rule, as well as the order in which the system
variables or node outputs are updated. If application of the transition rule
ceases to affect the current state of the system, the system is said to
have converged to a fixed point or attractor in the state space. The set of
all initial states or points leading to this fixad point is known as the
attractor bacsin of the particular attractor (Masson & Wang, 1990).

In order to analyze the dynamics of the system it is usually convenient to
define a scalar function, which depends on the state of the system and
has a definite value for each point in the state space. If the value of this
energy or cost function (E) does not increase with a change in the state
(v) of the system (i.e. dE/dv < 0, for all possible v) and is bounded from
below, it is also a Lyapunov function, and an indication that the system is
unconditionally stable.

By mapping the objective function and the constraints of an optimization
problem onto this energy function, these problems can be solved in that
the optimal solution to the problem is forced to coincide with the minimum
energy of the system. The dynamics of the rat amount to a constraint
relaxation process, where the energy measure is defined by the degree of
constraint violation of the system.

To use crossbar or Hopfield nets for material balance reconciliation
problems it is necessary to map the objective function (Fgg ) (which
incorporates the process system constraints d) onto the net, such as by
defining the energy function (E) of the net in terms of the objective
function (Fgg,)

2IThe state space of a set of variables x = {x; (= 1.2,3,..n} is the Cartesian product of
'he domains of the variabies, ie. D* = @1.02.03...0,. The state space D, of the set of n
veriables (x) is thus n-dimensional.
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Fosy = (x'x") TV, T(x'x") + (d(x")1TV |4 " [d(x")]
i.e. equivalent to
E = WOV, Oy + [div)ITV g Mrais ) (4.3)

where the scalar function E represents the energy of the net, x' the vector
of variable measurements, x" the vector of reconciled measurements, df(.)
the (equality) constraints of the system, v© the initial output state of the
connectionist system, v' the current output state of the connectionist
system, and V|, and V|4 some weighting matrices.

By defining the neurodynamics of the net by means of the Newton
equations, i.e.

duj/dt = -dE/dv, (4.4)

the computational energy function E is forced to decrease monotonically,
regardless of the nature of this function.

Proof (Takefuji & Lee, 1991):

dE/dt = Ij dVi/dt.dE/dVg

Z; dv;/dt.(-du;/dv;)

-Z; (duy/dt.dv/du;).du;/dt

-Z; (dvi/dy;).(duy/dt)?2 < 0 (4.5)

As long as the transfer function v, = glu) is continuous and non-
decreasing, dv;/du; is always positive and dE/dt always negative or zero.
The resultant state of the system can consequently be related to a solution
ot the prohlem.

The neurodynamics of the net ara thus defined by a sot of ordinary
differential or difference equations, which have to be integrated at each
time increment to determine the output states of the neurons after each
change of state.

du/dt = -dE(v)/d(v;) (4.6)
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Ul =yl + dE(v)/dv,. t (4.7)

Integration of these equations continues until the system has reached a
point of stability (i.e. its energy has been reduced to a minimum, so that
du/dt = 0, for all i). In practical terms the system is considered to be
stable when

2, |dui/dt| < e (4.8)

where € > 0 is an arbitrary small convergence criterion. The solution of
this system of non-linear equations is based on the use of a gradient
descent technique, with constant step size lengths.

b) Scaling of data

Before the data are presented to the net, it is important that tney are
scaled to ranges that are useful with regard to the neurodyramic function
being used. Without proper scaling, process elements could become
saturated, which could eventually have a severe effect on the movement
of the system through state space. Scaling is usually effected by
normalizing the input data. After the network has processed the data, the
results are descaled to the original units.

c) Connection weights

The weights of the net are defined bv the variance-covariance matrix of
the measurements, as well as the weights associated with the process
constraint residuals, as presented in equation (4.3). Since estimates of the
variance-covariance matrix elements are often not available, a weight
matrix based on the actual values of the variable measurements will be
defined. This ensures that the values of small variables are not adjusted by
increments that are unduly large in relation to the value of the variables
themselves.

The scaled input (measured values of the process variables) of the net is
clamped to the input layer, and the states of the elements in the hidden
layer are updated repeatedly and asynchronously (simulated by a random
updating procedure) through numeric integration of the potential of each
element. The system is allowed to settle into a minimum point, and the
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output of the hidden layers (the solution) is passed forward to the process
elements in the output layer, from where it is descaled to yield a solution
to the optimization problem.

4.3.2 Connectionist system Il (CS-ll)

This system is essentially a generalized version of the first one, in that
instead of having a single hidden layer, it has a P-dimensional array of
hidden layers (If P = 1, the system reduces to CS-1), each containing N
elements in general, as shown in figure 4.2, The input section of the
system consists of a single input layer, each element of which is
connected to a corresponding element in each of the P hidden layers. The
elements in the hidden layers are similarly connected to corresponding
elements in the output layer. The input and output layers do not proce:s
the data, but merely serve as distribution points for data input and output.

The same neurodynamic principles concerning CS-| are applicable, except
that once the measurement vecter has been fed to each of the different
layers in the hidden array, P aifferent sets of initial conditions are
generated in the array prior to the commencement of relaxation of the
energy of the net. Cycles of state changes are allowed to take place
independently in each layer in the array, and when necessary the state of
layer is compared with those of its neighbours and the neighbouring state
associated with the lowest energy is assumed by the particular layer in the
array. Each layer is then again allowed to relax from a stochastically
reinitialized condition close to the previous lowest energy state.
Communication with a particular element and other elements in the
network is allowed to take place only after a particular element has
become trapped in an energy minimum. This ensures that the movement
of the hidden layer active in the deepest attractor basin in the array is not
slowed down unnecessarily by frequent polling to assess the states of its
neighbours.

4.3.3 Connectionist system il (CS-IIl)

Direct search procedures are attractive for the solution of sets of non-
linear equations, since they are easy to use and computationally efficient.
A direct random search procedure with systematic search space
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contraction, such as proposed by Luus and Jaakola (1973) and Luus and
Wang (1978), has been incorporated in the neurodynamics of the third
system, shown schematically in figure 4.3. CS-lIi is equivalent to CS-lI,
with the difference that instead of a gradient-based search, use is made of
a direct method with a systematic reduction in the search space
associated with each interval. The reduction in the search intervals
associated with each of the search variables leads to a more efficient
search procedure, since unless the search domain is in the immediate
vicinity of the optirum, convergence by means of a random search can be
very ineffective (Sarma, 1990). The procedure is implemented as follows:

1. Set the time increment counter j = 1,

2. Set up the system, so that the initial states (vO) of the artificial
neurons in all P hidden layers correspond to the measured values
{x') of the process variables.

3. Define an initial search range RO, for each of the system states vo,
of the neural net.

4. Determine P sets of values, so that vh =yl 4 @ "R, where
¢ is a random number associated with the state of artificial
neuron i at time j-1, and 0 < ¢ ', < 1, for all i and j.

5. Of these P sets, determine the set which minimizes Z | du;/dt | .

6. If Z; | du/dt| < e, terminate the search, if not, reduce the search
ranges R) by an amount 4, i.e. REL = (1 - ORI, K& =1,
terminate the search, if § = 1, repeat the procedure.

After convergence a set of values v will remain, which corresponds to a
rimum in the energy of the system, i.e. where du;/dt = -dE/dv; = 0, for
all i. This minimum will be the one closest to the initial state of the
system, and in multimodal systems it might be necessary to incorporate
stochastic procedures which would allow the system to find a global
minimum point. The incorporation of procedures such as these was not
pursued in this investigation.
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4.4 EXAMPLES
441 Example 4.1: Two-product classifier

In this example a two-product classifier (such as a hydrocyclone or a
screw classifier) is considered, which classifies a feed stream (Fy) with n
components into two output streams (F, and F3). Measurements of the
flow rates (F) and component concentrations (fi;) typicaliy violate the
mass conservation equations pertaining to the classifier, viz,

F1 v Fz - F3 = 0
FT'f1,i - F2'f2,i - F3‘f3.i = 0, fori = 1,2. va ) (4.7)

The simulated output of connectionist systems CS-I, CS-Il and CS-lll is
summarized in table 4.1 for a two-component system. As can be seen
from figure 4.4, which portrays the performance of the CS-l system, the
value of the objective function (energy of the net) decreases rapidly at first
for step sizes smaller than 0.2, after which diminishing progress is made
with further computation. (A constant step size was used for all the
variables throughout the optimization procedure.) Step sizes larger than
0.2 resulted in unstable behaviour of the system. The iteration steps
referred to in figure 4.4 comprize cycles through which each variable is
updated once on average. For the two-product classifier, with 21 process
variables F;, f;; (i = 1, 2, 3 & j = 1, 6), an iteration step thus consisted of
a series of 21 random variable selections and subsequent adjustments of
the selected variables. The reconciled values of the fiow rates F; and con-
centrations f;; resulted in a threefold order of magnitude decrease in the
objective function (energy function of the net), which is nore or less
comparable to results obtainable with other optimization techniques.

The performance of CS-ll (number of layers = 10 & 100) is compared
with that of CS-l (number of layers = 1) in figure 4.5. It is clear that the
additional 'ayers in the system do not lead to a significant improvement in
performance. This is not surprizing, since the process system considered is
subject to bilinear constraints only, and does not have a highly non-linear
character.
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The connectionist system based on direct search techniques (CS-lll) did
not perform very well compared to those based on gradient descent
techniques (CS-l and CS-ll), as can be seen from figure 4.6, The system
used in this case consisted of 200 layers and had an initial range of 0.1
for each sear-h variable. This range was contracted to zero as the search
progressed, cut only resulted in a decrease of about 60%-70% in the
initial energy of the system. Other initial search ranges and contraction
procedures did not lead to significantly better results.

4.42 Example 4.2 (Pai & Fisher, 1988)

This example (also used in chapter 3) is based on the one used by Pai &
Fisher (1988), as weli as Tjoa and Biegler (1991). It is thus possible to
make a rough comparison of the performance of the neural net with the
computational procedures used by these authors. The example involves
five measured variables x;, x,, X3, X4 and x5 and three unmeasured
variables xg, x; and xg subject to six non-linear constraints.

%ix1)? - 0.7x; + x3xg + (X2)2xgx7 + 2x3(xg)” - 265.8 = 0

X1 - 2Xp + 3X1X3 - 2XpXg - XgX7%g + 111.2 = 0

XaXg - X1 + 3xg + X91X7 - Xalxg)” - 33.57 = 0

Xq - X - (x3)2 + x7 + 3xg = 0

Xg - 2¥-X+Xg = 0

2X9 + Xy.%a + X7-xg- 126.6 = 0 (3.62)

As was mentioned i chapter 3 (example 3.5), the exact values of these
variables are x = {4.5724, 5.50:9, 1.9260, 1.4560, 4,8545, 11.070,
0.61647, 2'0504}T (Tioa & Biegler, 1991). Tjoa and Biegler (1991)
corrupted 100 sets of these data with Gaussian noise in order to conduct
a statistical evaluation of a tailored objective function in a non-linear
computational routine, as well as a hybrid successive quadratic
programming (SQP) routine.

In order to evaluate the use of a neural net to reconcile inconsistent
constrained data, the exact values of the variables are similarly corrupted
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by Gaussian noise of 10% and 30%. The errors of a single set of variables
resulting from the errors of corruption are shown in tables 4.2 (10% noise)
and 4.3 (30% noise).

One of the salient features of the system is the highly irregular response
surface of the energy function of the net. The consequence of this highly
non-linear character of the system is that the energy function is extremely
sensitive to adjustment of the variables, especially at points where the
derivative of the energy or objective function with regard to the adjustable
variable ( E/ x;' or E/ x") is very large (positive or negative). As a result
very small time steps had to be used in order to ensure that the
adjustment of a variable does not lead to overshooting cf a local optimum
in the energy function surface.

In the case of network CS-I, the optimal step size for each variable is
determined by a subroutine which systematically decreases the value of
the initial time step if at first it does not result in a decrease in the system
energy, until an improvement in the objective function is found. In this
way relatively I.,ge time steps can be taken initially, which can be
adjusted near troublesome spots on the surface of the energy function
when necessary.

The results which compare favourably with those obtained by other non-
linear methods (Tjoa & Biegler, 1991) are shown in tadles 4.2 and 4.3,
and typically led to a reduction of three orders of magnr.tude .n the energy
of the system after approximately 40 iteration steps. The percentage
errors in the values of the variables before and after reconciliation
(compared to the exact values of the variables) are aiso shown in tables
4.2 and 4.3. Figure 4.7 depicts some of these results graphically. Note
that step sizes larger than approximately 10°° lead to an unstable search
procedure (compare with values larger than 0.2-0.3 in the previous
example). The use of different step sizes for the different search variables
(MULTISTEP) instead of a constant step size for all variables, resulted in
considerable improvements in the performance of the system.

In contrast to the situation highlic 1ted by example 4.1, much is to be
gained by using a multilayer system such as CS-Il. In figure 4.8, the
significant improvement in convergence based on the use of 10 layers,
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A

versus 1 (CS-1) is illustrated. Th < can be attributed to the non-linear
character of the response surface of the energy function. By making use
of CS-Il, movement through the state space of the system is accelerated
along steeper attractor boasin gradients, than is the case when CS-l is
used.

Connectionist system CS-lll displays the same less favourable convergence
behaviour as was the case in the previous example, as shown in figure
4.9. Exponential contraction of the range of the system results in
somewhat better performance, compared to a linear reduction.

4.5 DISCUSSION OF RESULTS

Judging from the reduction in the objective iu. ction (equation 4.1) of the
reconciliation problem, the results obtained with neural nets simulated on a
computer appear to be comparable to those normally associated with
traditional non-linear optimization methods, even though the
neurodynamics used in these nets are relatively basic. If necessary the
results can be improved upon by making use of more sophisticated
neurodynamic functions. These functions could incorporate other
stochastic procedures such as simulated annealing and its variants (Jeffrey
& Rosner. 1986; Kirk et al., 1983; Kirkpatrick, 1992) or hill climbing terms
(Takefuji & Lee, 1991) to avoid entrapment in local minima, while moving
the system through state space.

The real advantage of using neural nets for data reconciliation problems is
the fact that they can be implemented in electronic hardware which could
fully exploit the massively parallel architectures of the nets. By making use
of analog devices (Verleysen & Jespers, 1989), which typically converge
in the characteristic time of the artificial neurons (in the order of 10 to
103 seconds), rapid computation is possible (Kamgar-Parsi & Kamgar-
Parsi, 1990).

Since this investigation was based on the use of simulated neural nets,
and not actual analog nets implemented in electronic circuits, no direct
conclusions can be made with regard to the temporal aspects of the
computational procedures. A rough estimate of the speedup is provided by
Amdahl's law
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S = P/[P(1-Q) + Q] (4.8)

where S is the speedup factor, P the number of processors working on the
task, and O the fraction of the programming code which can be executed
in parallel. The time consumed by computational overheads was estimated
to be not more than approximately 5% for all three connectionist systems,
and on this basis and the results of the optimization experiments, it was
possible to estimate the speedup factors for the solution of the data
reconciliation problems outlined in examples 4.1 and 4.2. These estimates
are summarized in table 4.4. Two different situations are highlighted in the
table, namely the location of a solution (local minimum) of the problem,
and secondly the location of a global solution or minimum to the problem
(by combining a stochastic procedure with a gradient descent or direct
search method). The gradient descent methods (CS-1 and CS-ll) performed
significantly better than the direct search procedure (CS-lll). As can be
expected, the larger the problem, the more is gained by making use of
these parallel strategies. According to equation 4.8 the speedup factor is
also quite sensitive to the fraction of computer code that can be executed
in parallel (estimated to be 95% in this investigation).

The quality of the solutions obtained with the simulated nets indicates
however, that analog nets could be employed to considerable advantage
to solve data reconciliation problems.

The problems posed in example 4.2 presented non-linearities of a higher
degree than the problem discussed in example 4.1. This meant that
smaller time steps had to be implemented to ensure a monntonic decrease
in the energy of these systems, and as a result these sys.ei s took longer
to converge than the bilinear two-product classification system. After
approximately 10 iteration steps or cycles (see figure 4.4) the energy of
the bilinear system discussed in example 4.1 (9 variables) did not show
further significant decreases for step sizes larger than 0.3. The energy or
objective function of the system considered in example 4.2 (8 variables)
on the other hand, decreased by approximately two orders of magnitude
after 25 iterations (and showed a decrease of approximately three orders
of magnitude after 40 iteration steps).
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In figure 4.10 the CS-ll system is compared with two other non-linear
procedures used for the solution of the problem posed in example 4.2, viz.
that of Broyden (Broyden, 1965; Pai & Fisher, 1988) and the constant
derivative approach (Knepper & Gorman, 1980). From this graph it can be
seen that the CS-ll system initially (steps 1 to 3) decreases the value of
the energy or penalty function faster than the other two methods. In
subsequent iteration steps it loses ground, but in the end (steps 11 and
12) the advantage gained by the methods of Broyden and constant
derivatives is largely eradicated. It should be borne in mind that this
comparison can serve as a rough guideline only, since the central
processing unit (CPU) times associated with the execution of the iteration
steps in the different algorithms can not be compared directly. If anything,
a comparison of actual CPU times could only be to the advantage of the
CS-ll system with its relatively simple computational procedures.

Another important factor that should not be overlooked is that in principle
the efficiency of the CS-ll system is not affected significantly by an
increase in the dimensionality of the process system, while cioer non-
parallel procedures such as those depicted in figure 4.10 are usually
sensitive to increases in the size of the problem. In lirje systems
consisting of hundreds or even thousands of variables, the CS-ll system
can consequently be expected to perform significantly better than any
other traditional procedure.

4.6 CONCLUSIONS

In this chapter the use of connectionist systems (which were simulated on
a digital computer) for reconciling inconsistent measurement data is
discussed. It has been shown that

= The measurements of flow streams and assays inconsistent with
process models can be reconciled accurately by procedures based
on the use of connectionist systems;

= The use of connectionist systems can lead to a significant reduction
in the computational effort needed to optimize data reconciliation
procedures;
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Even with small problems the performance of connectionist systems
is at least comparable to that of conventional procedures;

In probleris of high dimensionality, procedures based on the use of
connectionist systems appear to be more efficient than those based
on conventional strategies.
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4.7 TABLES REFERRED TO IN CHAPTER 4

TABLE 4.1 Reconciled and measured values of the process
variables in the two-product classifier (example 4.1)

TWO-COMPONENT SYSTEM(1).{2)

Measured

Fi Fa F3 fq9 f12 f21 f22 f31 fa2
0.961 0.602 0.347 0.198 0.768 0.127 0.817 0.354 0.608

Reconciled (CS-1)

Fi, Fa F3 f14 f12 21 fa22 f31 f32
0.956 0.608 0.348 0.205 0.762 0.123 0.828 0.351 0.613

”)Ratio of initial energy of system to that ot final ener jy:
Eo/Ef = 11000

(2)1e percentage error values e;' ard e;" were calculated as
100.1{x;') - (%" Jexact])/(X{"Jexact and 100.[(: ") - %" iexact)/1X;" Jexact respectively



Stellenbosch University https://scholar.sun.ac.za

- 102 -

TABLE 4.2 Reconciled and corrupted values (10%
Gaussian noise) of the process variables used in
example 4.2(1).(2)

CORRUPTED VALUES

X1 X2 X3 Xa X5 Xg X7 Xg
4.786 5564 1.917 1,365 5.307 10.2250.617 2.064
€1 €7 es ey €g 2g ez eg
6.06 -0.32 -047 -6.25 9.32 -7.63 0.09 0.66

RECONCILEL VALUES (CS-I)

X1 X2 X3 X4 X5 Xg X7 Xg
4.742 5.694 1.903 1.398 4.927 10.942 0.597 2.041
€4 es €3 ey eg €g ey €g
509 201 -1.19 -398 149 -1.16 -3.16 -0.46

L ’Ratio of initial enargy of system to that of final energy:
Eo/Es = 1000 (Euler); Eo/Er = 1000 (DSRI)

(2)1he percentage error values e; were calculated as
100.1(x;") - (x;)1/(x;")
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TABLE 4.3 Reconciled and corrupted values (30%
Gaussian noise) of the process variables used in
example 4,212

CORRUPTED VALUES

X1 X2 X3 X4 X5 Xg X7 Xg
3.713 4699 1.365 1.528 3.6B0 9.080 0.622 2.658
e1 es €3 ey eg eg ey eg
-17.72 -15.82 -29.13 4.95 -24.19 -17.98 0.90 29.63

RECONCILED VALUES (CS-I)

X4 X2 X3 X4 Xg Xg X7 Xg
5.163 65.36/ 1.860 1.078 5.041 11.8330.593 2.451
e €s g es eg €g ey eg
14.42 -3.856 -3.43 -25.96 3.84 6.89 -3.81 19.54

(MRatio of initial energy of system to that of final energy:
Eo/E; = 1000 (Euler); Eo/Ef = 1000 (DSRI)

2rhe percentage error values e; were calculated as
100.1(x;") - (xj)1/0x;")
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TABLE 4.4 Estimated speedup factors for examples 4.1 & 4.2

EXAMPLE SYSTEM NO OF PRO- SPEEDUP
CESSORS FACTOR

(Search for first local minimum)

1 CS-| 21 10.50
2 CS-I 8 5.93

(Search for global minimum)

1 CS-lla 4200 19.91
1 CS-llb 4200 19.91
2 CS-lla 1600 19.77
2 CS-llb 1600 19.77
1 CS-li 4200 0.42
2 CS-lil 4200 0.42




Stellenbosch University https://scholar.sun.ac.za

FIGURE 4.1 STRUCTURE OF CONNECTIONIST
SYSTEM CS-|

l

OUTPUT LAYER

HIDDEN LAYER

CROSSBAR
CONNECTIONS

INPUT LAYER

FIGURE 4.2 STRUCTURE OF CONNECTIONIST SYSTEM CS-II

(N x P) ARRAY OF
OUTPUT ELEMENTS |

|

J ¥ L,
(N x P) ARRAY OF g . s . . . ’ ’
HIDDEN ELEMENTS v

CROSSBAR
FEEDBACK
CONNECTIONS

N process variables

(N x P} ARRAY OF
INPUT ELEMENTS

P process layers




Stellenbosch University https://scholar.sun.ac.za

FIGURE 4.3 STRUCTURE OF CONNECTIONIST SYSTEM CS-II|
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FIGURE 4.5 PERFORMANCE OF CS.|| i
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FIGURE 4.7 PERFORMANCE OF CS-I
EFFECT OF STEP SIZE ON DECREASE IN ENERGY
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FIGURE 4.9 PERFORMANCE OF CS-llI
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CHAPTER 5

Connectionist plant models

Summary

Although the patential of new techniques for the construction of accurate plant models,
such as those based on connectionist methods, is generally acknowledged, little on their
practical application can be found in the chemical and metallurgical engineering literature.
In this dissertation the use of neural nets to model a gold reduction, a gold leach and a
phosphate flotation plant is discussed. The models performed better than the linear
regression models used on the plants, even where relatively few data were available.
The use of a neural net in conjunction with a linear programming model of a gravity
concentration circuit is also explored. Use of the net enables optimization of the circuit
through an iterative procedure in which the neural net forces the linear programming
models to consider only feasible states of the system.

5.1 OBJECTIVES
The objectives of chapter 5 are:

= The construction of connectionist models for metallurgical process
plants, viz a gold reduction plant, a gold leach plant and a phosphate
flotation plant;

=  Comparison of these models with the model: used on the plants;

“ The use of a neural net in conjunction with two linear programming
models to optimize non-linear process systems (exemplified by a
gravity concentration circuit in this case). By linearizing these
processes the powerful capabilities of linear programming techniques
can be exploited, while incorporation of the neural net model ensures
that the non-linear character of the process is retained.

= |nvestigation of the feasibility of the use of connectionist models on
metallurgical plants.

5.2 BACKGROUND

The majority of chemical and mineral processing plants are burdened with
copious amounts of process data, which makes it difficult to identify the
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essential features of the processes involved in plant operations. The
development of process models based on these data is usually not cost
effective and the data are usually analyzed by means of multiple linear or
non-linear regression techniques. Since these techniques require explicit
process models, they are not always suitable for modelling of the
complex behaviour that industrial plants so often exhibit. In contrast,
neural nets do not suffer from this drawback and (provided they are
presented with enough representative data) constitute an efficient means
for the construction of implicit models of ill-defined processes. In spite of
these well-known attributes (Venkatasubramanian & McAvoy, 1992),
vory little has been published in the chemicai €ngineering literature with
regard to the use of neural nets in this way (Bhat & McAvoy, 1990:
Bhat, et al., 1990). In this chapter the use of neural nets for the
prediction of gold losses on a gold reduction plant and the consumption
of various additives on a gold leach and phosphate flotation plant is
described and compared with regression models in use on the plants.

The generalized plant modelling problem consists of two parts, namely
the decomposition of the plant into sets of acyclic process circuits if
necessary, followed by modelling of these irreducible subsystems. The
decomposition of large or complex plants can be accomplished by various
means which can among others be incorporated in connectionist
structures (see for example appendix C) in order to take advantage of
parallel processing strategies. Assuming the process system to be
modelled to be acyclic, the problem concerned with the construction of a
circuit or plant model can be expressed as follows:

(Vi1 vi2 o oy,
Y27 Y22 - Vo

Y =]|.. 4 e € RMxp (5.63)
Yni1 Yn2 - VYnp
-X1,1 X1,2 - X1m
X211 %22 « Xpum

X =|.. - = R € Rxm (5.64)
"n,1 Xn,2 Xn,m
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where y; , (i = 1,2, .. p) represent p variables dependent on m causal or
independent variables x; (j = 1,2, .. m), based on n observations (k =
1,2, .. n). The variables y;, are usually parameters which provide a
measure o1 the performance of the plant, while the Xj k variables are the
plant parameters on which these performance variables are thought to
depend.

The problem is then to relate the matrix Y to some function of matrix X,
in order to predict Y from X. The simplest approach, and a method often
used on mineral processing plants, is to assume a linear relationship
between X and Y, i.e. Y = X.k; + ks and to find the coefficient vectors
ki and k, by ordinary least squares methods, that is ky = (XTX)1.XTy
and kz = Y - X.kq, provided that the elements of the columns X; of
matrix X are not correlated and that the number of observations is larger
than the number of coefficients that has to be estimated (i.e. n > m). If
not, other techniques, such as partial least square methods (Qin &
McAvoy, 1992) can be used to obviate the problem. Should the
assumption of multilinear relationships between the variables prove to be
inadequate, they can be extended by the addition of suitable non-linear
terms (Loveday & Marchant, 1972), the incorporation of spline methods
(Whiten, 1972), or replaced by non-linear regression methods (Britton &
Van Vuuren, 1973).

The main advantage of modelling techniques based on the use of neural
nets, is that 2 priori assumptions with regard to the functional
relationship between x and y are not required. The net learns this
relationship instead, on the basis of examples of related x-y vector pairs
or exemplars.

5.3 MODELLING OF LOSSES ON A GOLD REDUCTION PLANT

The efficiency of gold reduction plants is often as:assed in terms of the
gold lost during the recovery process, since the recovery of gold (which
commonly exceeds 97%) is too insensitive a paramete to use (Britton &
Van Vuuren, 1973, MacKay & Lloyd, 1975). Ge'd louses are generally
comprized of the gold lost in a dissolved form, as w || a: the gold lost in
solid residues. These losses can not be explained 7 terms of a
fundamental model of the plant (a typical design is shown in figure 5.1
and is often predicted in practice by means of linear regression models.
These models relate the dissolved gold losses (yy) and the ' ndissolved



Stellenbosch University https://scholar.sun.ac.za
-113 -

gold losses (y;) to a number of empirical parameters, namely the head
grade of the ore (xqj, residual grade of the ore (x3), solution tonnage
(x3), treated tonnage (x4), filter feed rate (xg), filter wash (xg), solids
duty (x7), filter ARLA (xg), solution duty (xg), entering solution (x10),
filter flocculation (x44), filter vacuum (xq5), sodium cyanide agitator |
(x13), and sodium cyanide agitator Il (x44).

A set of [xq, x3, .. X14; vy, y2] data consisting of a total of 76 vectors
was obtained from a gold plant in South Africa, randomized and
subdivided into a training set (60 vectors) and a test set (16 vectors).
The training set consisted of exemplars presented to the neural nets
during training (weight adjustment of the nets), while the test set was
used to monitor the performance of the nets subsequent to training. This
procedure is essential to ensure that the net generalizes the relationships
between parameters correctly, instead of just learning to reproduce the
data presented to it.

A back propagation net with an input layer and one hidden layer, both
comprized of fourteen processing elements or artificial neurons, and an
output layer comprized of two processing elements was used to model
the gold losses, as shown in figure 5.2. The fourteen elements in the
input layer corresponded to the fourteen input parameters used to
correlate the gold losses (xy, X3, .. X14), while the number of elements in
the hidden layer was chosen arbitrarily. The input layer did not process
the data, but merely served to distribute the data to the hidden layer. The
output of the two processing elements in the output layer corresponded
with the predicted values of the two output variables, namely the
dissolved (y4) and undissolved gold loss (ya).

The layers were connected in a feedforward manner, i.e. no layer was
connected to any layer preceding it, and all layers consisted of elements
with hyperboliz tangent translation functions, to ensure that low-valued
and high-valued outputs were treated equally, i.e.

glu) = (e¥-eY)/(e" + eV) (5.65)

The output of the net after training with the generalized delta rule
(Rumelhart et al., 1986; Leonard & Kramer, 1990) is compared with the
predicted outputs based on a linear regression analysis used on the plant.
The results are depicted graphically in figures 5.3 and 5.4. Based on the
root mean square values of the correlation errors, the nets performed
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significantly better than the existing plant models (approximately 51% for
the undissolved gold losses and 87% for the dissolved gold losses).

Neural nets containing more processing elements, either in the same
hidden layer or in multiple hidden layer versions, did not substantially
improve predictions. Nets with too many processing elements relative to
the size of the data training set, have in fact shown a tendency to learn
the data, rather than the relationships between parameters (much like
fitting a polynomial of too high a degree to too few data).

5.4 MODELLING OF THE CONSUMPTION OF AN ADDITIVE TO A
GOLD LEACH PLANT

The consumption of an additive to a gold leach plant depends in a
complex way on plant design and cperation, and is in practice (as in the
previous case) modelled by linear regression models based on empirical
parameters considered to influence consumption significantly. In all,
seven parameters were used to predict the consumpt .n of the additive
(y1), namely percentage extraction (x1), residual grade of ore (x,),
cyanide flow rate (x3), head grade of gold ore (x4), type of ore (xg),
agitation rate (xg) and temperature (x7).

The neural net shown in figure 5.5 consisted of an input layer with seven
processing elements corresponding to the seven input parameters xq, X,
- ,. one hidden layer comprized of seven processing elements as well,
and an output layer comprized of 32 single processing element,
corresponding to the consumption of the additive (y1). All processing
elements were provided with hyperbolic tangent transfer functions and
were trained by means of the generalized delta rule (a common choice for
these types of transfer functions). Training was once again effected by
presenting the net repeatedly with exemplars of the experimental data
contained in the training set (60 vectors in all). As before, the set of
plant data was randomized prior to subdivision into a test and a training
data set. After training the net was tested against the data test set (10
vectors in all). The results for both the training and test sets are depicted
in figure 5.6. Despite a relatively small training set, the net was able to
generalize the relationship between the input and output variables, and
predicted the consumption of the additive significantly better
(approximately 83%, based on the average root mean square error in
prediction) than the multiple linear regression model used on the plant.
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5.5 MODELLING OF RECOVERY AND REAGENT CONSUMPTION ON A
PHOSPHATE FLOTATION PLANT

The ore feed to a phosphate flotation plant (shown schematically in
figure 5.7) is analyzed hourly and these data, as well as those
representing other parameters in the plant are averaged on a daily basis
and used to predict the consumption of three reagents in the plant, viz.
water glass (yq), polyglycol ether (y5) and fatty acid (y3). The water
glass or sodium silicate serves as a dispersant and depresses diopside,
iron silicates and olivine. The fatty acid acis as a collector for apatite and
contributes to the frothing characteristics of the flotation cells, while the
polyglycol ether (nonyl phenol tetraglycol ether) is a non-ionic surfactant
and emulsifier, serving as a froth modifier and a depressant for iron
minerals and calcite. These reagents are expensive (totalling
approximately 87% of the direct operating costs of the plant) and
inadequate control of their consumption can have a major impact on
plant economics (Fourie, 1981). More specifically, the variables ¥y, v2
and y3) are related to the mass fractions of apatite (x1), phlogopite (x5),
lizardite (x3), magnetite (x4), diopside (xg), calcite (xg), dolomite (x5) and
forsterite (xg) in the feed, as well as the feed pulp density (xg), feed flow
rate (xqg), the phosphate (P,05) concentration in the feed (xq1), iron
content of the feed (xq3) and the tailings (xy3) and concentrate (x14)
flow rates.

The data used in the investigation consisted of 438 sets of Xq: %2, ..
X14: Y1. Y2. y3l vectors, which were subdivided into a training set
consisting of 408 vectors, and a test set consisting of 30 vectors. The
original data set was not randomized before subdivision into the training
and test data sets. This meant that the training data was related to an
earlier period of plant operation, while the test data were related to a
subsequent period, during which possible changes in the process could
have taken place. This is in contrast to the procedures followed in the
modelling of the previously discussed gold reduction and leach plants,
and is perhaps a more realistic approach to plant modelling, where
models are not maintained regularly (or at least not on a daily basis).
Instead of using a single neural net with three output nodes, three
separate nets with one output each were used - an approach also used
by Lucas et al. (1993) that yielded slightly better results than one based
on the use of a single net with three outputs. Where more than one
workstation is available, this strategy can also be used to reduce the
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training times of large nets, since each net could be assigned tu a
separate machine. If needed the three separate models can be
recomposed by placing them side by side connected to the same input
vector. The nets used to model the consumption of the different
additives were all back propagation neural nets with sigmoidal processing
elements, and as before the normalized cumulative delta rule was used to
train the nets.

5.5.1 Water glass consumption (yq)

A single hidden layer consisting of six hidden units (Vh,1-Vh,g) was used
between the input and the output layers of the net, as illustrated in figure
5.8. The input layer v-as f. Jly connected to both the hidden layer and the
output layer of the net. instead of training the net to a certain output
error tolerance on the training exemplars, use was made of a cross
validation method in which the performance of the net was periodically
checked against the test data set, until improvement in the performance
of the net became marginal. Note that this approach has no effect on the
adjustment of the weights of the net during training, but merely serves as
a guide to an appropriate neural net structure.

5.5.2 Polyglycol ether (y2) and fatty acid (y3) consumption

The nets used to model the polyglycol ether and fatty acid consumption
had identicai configurations and were comprized of two hidden layers
each, as shown in figure 5.9. The first hidden layer consisted of six
hidden elements (Vh1,1: Vh1,20 - Vhi,6), while the second had three
(Vh2,1: Vh2,2 and v 3). The input layer was fully connected to the first
hidden layer only, while the first hidden layer was fully connected to both
the second hidden layer and the output element. As before, a cross
validation technique was also used to determine the convergence of the
nets.

The performance of the three nets is summarized in table 5.1, where the
average percentage errors of the various nets are compared with those of
the multilinear regression models. The ability of the nets to generalize the
trends in the data is also depicted in figures 5.10 to 5.15, where the
predictions corresponding to the training and test data sets are
highlighted. As can be seen from these results, as well as those in table
5.1, the nets did not perform better than the regression models on the
training data. They were able to generalize the data better than the
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regression models however, as shown by the average errors in the test
sets.

5.6 STEADY STATE SIMULATION AND OPTIMIZATION OF A GRAVITY
SEPARATION CIRCUIT BY MEANS OF LINEAR PROGRAMMING AND
ARTIFICIAL MEURAL NETS

Owing (o the empirical nature of gravity concentration technology,
fundamental modelling of gravity separation circuits is not feasible at
present, and as a result most models are of an empirical or semi-empirical
nature (Jowett & Sutherland, 1985; Laplante & Shu, 1988). Spiral
gravity concentra‘or circuits can be modelled and optimized by making
use of neural nets (representing the requisite empirical knowledge of the
system) embedded in conventional computational procedures. In this
example simulation is based on two linear programming models and an
artificial neural net representing the performance characteristics of the
separators under various operating conditions. These concentrators (or in
general, the i'th concentrator) each separates a feed (F'i'k, k = g,v,w)
stream composed of a valuable element (v), gangue (g) and water (w),
into a concentrate (F%; ), middiings (F™, ,) and tailings stream (FY ).

The neural nct is trained to generalize the relation between the process
conditions, viz. the total flow rate (FTOT), the dry solids flow rate (FDS)
and the feea grade (@), and the concentrate-tailings (', =
Fi,k/F'i ) and middlings-tailings (MY = F™iw/Fli) separation
factors for each of the three elements k in the circuit. (The operating
characteristics of the separators are assumed to be identical, so that the
subscript i in the separation factors can be omitted.)

This distr'buted representation of the experimental data can then be used
in conjunction with the two linear programming models to simulate and
optimize the gravity separation circuit.

5.6.1 Simulation procedure

The strategy used to simulate the gravity separation circuit entails
linearization of the model equations ireflecting the material conservation
requirements of the system) for each concentrator in the circuit, which
facilitates optimization by means of linear programming technigues. The
highly non-linear character of the process is retained through the
incorporation of an artificial neural net previously trained to represent the
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separation of a feed stream F',,k with a given composition of elemer.ts g,
v and w into three product streams F 4 F™ « and F'ix. The global
optimizaticn scheme is iterative and optimization is guided by the nevural
net in terms of an ill-defined constraint relaxation process, whereby the
results obtained by the linear program models are forced to satisfy the
process constraints represented by the neural net.

By using the two linear programming models (Anthony, et al., 1991)
sequentially (the one a subset of the other), the flow rates of the
valuable element and flow paths of the separation circuit are optimized
first in order to maximize the recovery of the valuable element, followed
by optimization of the concentrate grade by minimizing the gangue in the
concentrate streams.

The circuit configuration on which the mass balance equations are based,
is shown in figure 5.16, which illustrates the steady state flow of the
valuable element (v) between two concentrator units. The flow of the
gangue (g) and water (w) is similar to that of the valuable element.
Recycle streams are indicated by ry";,j (concentrate), rz"i., (middlings) and
rm"i.j (tailings). Both linear programming models are derived from a
material balance around the general circuit model depicted in figure 5 16.
No explicit restrictions are specified and all constraints are derived from
experimental data.

5.6.2 Linear programming model |

The model which is described in more detail elsewhere (Anthony, et al.,
1991; Reuter et al., 1988; Reuter & Van Deventer, 1990) is formulated
by considering all possible process constraints imposed on the material
conservation equations of the system shown in figure 5.16.

Mass balance constraints:
F',-'k + Zrmji + £rzji* + oryjik - Flik = F™jx - Fx =0 (5.26)
th.k - Fbj'k - Ermi']’k =0
ij,k . Erzi'jk =0

Fik - Pk - Zryi % = 0, for (i = 1,2,3;j = 1.2, N and k = v, g, w)
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Separator, external and recycle constraints:

The separation factors used in the model are specified in terms of upper
and lower bounds, for each component or element & as follows:

[e L.l .k-Fmi,k . Fci,k <0 (527)

Fci'k =k ..Ul,k‘Fli,I\ s 0

R T TR L PY
i TR i 10 LT
with (k = v, g, w)

In accordance with the plant being modelled, certain non-feasible recycle
streams can be eliminated by setting rm; ;" to zero, for the appropriate
i.j.k-values. All process variables are furthermore bounded by limits
derived from the operational characteristics of the plant.

Objective function

The aim of the objective function of mode. | is to maximize the recovery
of valuable elements, subject to the constraints derived from the mass
balance streams, i.e.

Max: OBJ = F%)  F3, + .. + Fay (6.28)

where F“Lv represents the recovery of the valuable element v from
concentrator unit / in the circuit.

5.6.3 Linear programming model Il

Model Il minimizes the flow of the gangue and water in the concentrate
recovery streams F’M and is constrained by the flow configuration
determined by model |, i.e.

Min: GRADE = Fa1'k > Faz,k LT FaN_k (5.29)
with k = g & w, and N the number of spiral concentrators in the circuit.

The separation factors applicable to the gangue and the water are
appropriately restricted to reflect the operability limits of the plant:
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Realistic values are assigned to the flow variables, based on the
operational limitations of the circuit.

5.6.4 Neural net representation of separation process

A back propagation neural net with an input layer with three
computational elements (one for FTOT, F0S an4 @) a hidden layer with
twelve computational elements and an output layer with six
computational elements (one for each ™, and Mmt. k = gv,w) is
used, similar to the structure shown in figure A.1 in appendix A. The net
is subsequently trained with a set of exemplars of the form
{FTOTFOS @, rem rmt)  The exemplars are generated from
experimental data obtained from a commercial plant, based on the
assumption that the only factors influencing the separation factors are
the process conditions FTOT, FOS ang @. The behaviour of all gravity
concentrators is thus considered to be identical. In more sophisticated
analyses these assumptions can be modified to take the behaviour of
individual process units into account. Presentation of these data enables
the net to learn the ill-defired relationship between the separation factors
and the process conditions.

5.6.5 Optimized flow circuit

The results of the optimization of a flow circuit containing four gravity
concentrator banks are shown in figure 5.17, while the corresponding
values of the flow streams are summarized in table 5.2. The simulated
separation factors which are modelled with the neural net, satisfy the
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experimental data as shown in figure 5.18. Discrepancies between the
simulated and experimental data can be attributed to experimental errors,
the influence of other less significant parameters not accounted for in the
model, as well as the somewhat uneven distribution of the plant data.
This modelling methodology can be applied to many other mineralogical
separation processes which are difficult to describe fundamentally, such
as hydrocyclone classification, heavy medium separation and flotation.
As with any model, the success of the procedure depends on the
accuracy of the assumptions on which the linear programming models (or
other numerical computational routines) are based, as well as the
availability of a large body of reliable process data.

5.7 DISCUSSION OF RESULTS

The use of neural nets to model metallurgical plants can lead to
significant improvements in the prediction of the behaviour of the plants
modelled. Non-linear regression techniques would probably also have led
to an improvement on the multilinear regression models, but the
identification of suitable explicit models can often be a cumbersome
procedure of trial and error, especially where process changes over
longer periods necessitate the continuous development of new models to
best fit the data over a given period. Neural nets would have to be
retrained'3! to accommodate periodic changes in the behaviour of the
plant - a relatively inexpensive process with the use of commercial neural
network software such as Brainmaker'™ or NeuralWorks Professional
H/Plus™ .

A surprizing aspect of the investigation is the satisfactory results
obtained with relatively few data, especially in the prediction of the
consumption of additives in the gold leach plant, as well as those in the
phosphate flotation plant. A general rule of thumb for the construction of
neural nets

n

Ny = —— 8, 2=k=<10 (5.66)
k.lm + p)

where n is the number of exemplars in the training d:a ser, Ny the
number of hidden units, m the number of units in the input layer and p
the number of units in the output layer, suggests the use of no more than

13IProgress is being made with the adaptive training of neural nets, which would greatly
reduce the expense related to the maintenance of connectionist plant models.
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between three and fifteen processing elements in the hidden layers of the
net. The factor k depends on the noisiness of the data; k-values of
around 2 can be used for noise-free data, while noisy data warrant
factors of up to 10 or even 50-100 in extreme cases. In the neural net
models of the polyglycol ether and fatty acid consumption, an equivalent
of approximately 27 hidden units were used, without detriment to the
capability of the nets to generalize the trends exemplified by the training
data.

One of the strategies cften followed when dealing with non-linear (i.e.
mathematically intractable) process systems, is to linearize these systems
(usually through Taylor expansions around points of interest). Although
these approaches enable the use of well established and powerful
mathematical techniques for simulation and optimization, they are often
severely limited by their inability to capture the essential characteristics
of the system (Kim et al., 1990). In section 5.6 it was shown that the
non-linear character of a process system (exemplified by a gravity
concentratior; circuit) can be modelled separately with a neural net,
which can then be used in conjunction with linearized models of the
system for simulation and optimization. The neural net in effect forces
the linear programming models to consider only feasible system states
during the search nrocedure.

A further advantage in the use of .connectionist plant models is the
potential gain in computational power, due to the parallel architectures of
neural nets. Standard procedures for the incorporation of neural nets
(which can be trained off-line as often as necessary) into electronic
circuits are available and can be used in on-line applications of
processing plants (Goser et al., 1989; Murray, 1989; Rosetto et al.,
1989; Zurada, 1992).

5.8 CONCLUSIONS

® lli-defined metallurgical or chemical processing plants can be modelled
effectively with neural nets, even when plant data are comparatively
sparse;

®* The most effective way of modelling plants in the presence of noisy
data is through the use of cross-validating methods in which the
ability of the net to generalize the relationship between the input and
output data is monitored during training;
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A technique based on the use of hybrid neural net linear programming
models for the modelling and optimization of a gravity concentration
circuit was demonstrated. The technique is sufficiently general for
application to other similar separation circuits in the metallurgical
industry.

These neural net models have the additional advantage that they can
be implemented in on-line applications with ease.



Stellenbosch University https://scholar.sun.ac.za

- 124 -

5.10 TABLES REFERRED TO IN CHAPTER 5

TABLE 5.1 Average % errors in the prediction of additive consumption
in the phosphate flotation plant

Training data y; Y2 Y3
MLR 10.05 10.23 11.10
BPNN 10.81 13.79 12.42
Test data Y1 Y2 Y3
MLR 12.93 23.09 14.35
BPNN 10.78 16.01 9.93

TABLE 5.2 Flow rates [kg/h] in optimized gravity separator
L ank (see figure 5.17)

%, = 125,53
Fe = 122.41
F'3, = 136.59
Fo%y = 55.51
Fyn = 63.20
F2n = 93.87
Fi3, = 81.34
Fyy = 201.80
F o = 31.89
Fi . = 36.04
Fy ., = 62.87
Fyw = 29.84
g = 717.32
F, 5 = 699.46
b3, = 942.01
Fo , = 4.09
sz'“ = 6.07
F°3n = 5.26
) = 1694.25
FY, » = 1801.80
FP3 .. = 1343.32
Flyo = 717.32
F'3 o = 699.46
Flyy = 942,01
Flag = 444,06
F'yv = 4.09
F'z_., = 6.07
F!.v = 5.26

Fa, = 9.35

F'y . = 1594.25
F';3+ = 1B801.80
Faw = 1343.32
Flyw = 1989.09
rmisy = 444.05

rm';. = 9.35§
rm*¥34 = 1989.09
fluu = 333.04
r2%, = 43.04
l'lo‘z = 41.97
l'l'.] = 56.52
rz'y4 = 4.67
rz'qy = 27.39
r2%y; = 40.68

rz'43 = 35.25

2%, = 69.62

ll*“ = 143.48
rz%; = 162.16
rz%4s = 282.90
F'iy = 552.85
F'34, = 863.83
F"‘!J - 691.07
Flyg = 691.07
F‘!.v = 90.00

F'3, = 140.63
Fl3. = 112,50
Flev = 112.50

i

F™ . = 143.48
F' = 162.18
F"y.w = 282.90
Fhew = 69.62
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FIGURES5.1 A TYPICAL GOLD REDUCTION PLANT
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FIGURE 5.3 PREDICTION OF DISSOLVED GOLD LOSSES
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FIGURE 5.5 NEURAL NET MODEL OF ADDITIVE
CONSUMPTION IN GOLD PLANT
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FIGURE 5.7 FLOWSHEET OF PHOSPHATE

FLOTATION PLANT
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| FIGURE 5.9 NEURAL NET MODEL OF POLYGLYCOL
ETHER & FATTY ACID CONSUMPTION
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FIGURE 5.11 PREDICTION OF WATER GLASS CONSUMPTION (Y1)
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FIGURE 5.13 PREDICTION OF POLYGLYCOL ETHER CONSUMPTION (Y2)
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FIGURE 5.14 PREDICTION OF FATTY ACID CONSUMPTION (Y3)
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FIGURE 5.15 PREDICTION OF FATTY ACID CONSUMPTION (Y3)
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FIGURE 5.17 FOUR-UNIT SEPARATOR BANK
AFTER OPTIMIZATION
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CHAPTER 6

Conclusions

%

In this dissertation the use of connectionist systems or neural nets for
the modelling of steady state processes has been explored. Attention
was given to the processing of plant aata prior to modelling, i.e. the
estimation of variance-covariance matrices associated with measure-
ments the detection and isolation cf gross errors in the plant data, the
recorciliation or filtering of the data after elimination of gross errors and
finally the construction of plant models based on the use of plant data
preprocessed by the foregoing techniques.

The variance-covariance matrices of process variables are generally
unknown and often difficult or expensive to measure. Under these
circumstances estimates of these parameters can be made with the use
of neural nets, as was demonstrated in chapter 2. The methods depend
on the m...ling of the relationship between the variances and
covariances of the residuals of the process constraints and the
corresponding variances and covariances of the measurements of the
process variables. Since this relaticnship is not unique, additional
information is required to estimate the variances and covariances of the
variable measurements. This information can be integrated with a neural
net either through modification of the topology of the net, or as distinct
patterns in the training examples presented to the net, as was shown in
chapter 2.

The detection and diagnosis of faults in complex process plants are one
of the most important aspects of the monitoring and control of such
plants. Existing methods are usually based on the analytical redundancy
afforded by a mathematical model of the system and make use of
statistical tests to detect and isolate gross errors in the plant data. These
tests depend on the distributions of the residuals of the process variable
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measurements, as well as the residuals of the constraints of the process
model. Since these distributions are generally unknown and especially
difficult to estimate in non-linear systems, standard gross error detection
strategies are ineffective for all but simple (linear) process systems.

By making use of neural nets the ill-defined relationship between the
residuals of the variable measurements and the residuals of the process
constraints can be modelled accurately, regardless of the (non-)linearity
of the system and can be used effectively to detect and isolate
systematic errors, as was shown in chapter 3. In contrast with
conventional statistical methods, explicit knowledge of random error
distributions is not required, since the neural net can construct this
distribution directly from process data. These techniques are not limited
to the process engineering industry, but could find wide application in
many other areas dealing with complex technological systems, such as
aviation, electronic engineering, aerospace, etc.

In chapter 4 the exploitation of the supercomputing potential of neural
nets for the reconciliation of inconsistent process data was investigated.
The reconciliation of process data which characterize the behaviour of
large or complex plants generally constitutes a large computational
burden which can be alleviated considerably by more efficient computing
techniques or devices. These types of problems lend themselves well to
connectionist computing devices or neurocomputers which consist of
large numbers of primitive processing units. In chapter 4 it was siaown
that by assigning a process unit in the neurocomputer to each of the
process variables that has to be reconciled significant gains in
computational efficiency can be attained. The use of such systems is
particularly attractive for large systems. The performance of these
systems is furthermore particularly sensitive to the degree of parallelism
and although not explored in any depth, it was shown that an increase in
the parallelism of the system could result in considerable enhancement in
the performance of the computational device.

In chapter 5 the construction of plant models based on neural nets was
discussed. The dissolved and undissolved gold losses in a gold reduction
plant, the consumption of an additive in a gold leach nlant, as well as the
behaviour of a phosphate flotation plant were predicted satisfactorily by
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means of neural net models. These models were also compared with the
models in use on the plants and found to be more accurate.

The optimization of separation circuits or plants can often be
accomplished by partitioning the circuit into a linear(ized) and a non-linear
subsystem, which can be optimized with a procedure based on the
iterative use of linear programming techniaues. The non-linear subsystem
which is generally ill-defined can be represented with a neural net, which
can be used in a modular fashion with the linear programming
superstructure, as was demonstrated with a gravity concentration circuit.
The modular nature of these strategies renders them more useful, since
the behaviour of specific types of separators can be modelled
independently in terms of a generalized connectionist data base that can
be used in linear prcgramming optimizers and simulation routines.
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A incidence matrix of a process circuit

A’ recycle or loop matrix with elements {am-'}

aj; elements of loop matrix

ak” constant input current to amplifiers in chjective
function section of linear programmiiig neural net

b bias vector of gross error {b;}

by” constant input current to amplifiers in constraint
section of linear programming neural net

C matrix of process constraint coefficients

ck# input capacitance of k'th amplifier in a neurocomputer

cov(+) covariance

d(-) set of process constraints

D’ Cartesian product of the domains of variables

D, j' th column vector in transposed loop matrix A"

d # the network output corresponding to field element f, #

k k

e errors in measurements of process variables {e;}

E scalar eneray or cost function serving as a measure of
the overall state of a feedback neural net

E(-) expected value

E initial energy of a neural net system

0 9

E¢ energy of a stable neural net system

e¢ random error in measured compositior f of process
strear F

ef random error in measured process flow streams F

ey random error in variable x

F flow rates of process streams {F;}

f rnass fractions {f,_i} of components in flow stream F
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fix) an arbitrary set of functions of a set of variables x

Faj‘k concentrate recovery of element k from concentrator

Fhi,k tailings recovery of element k from concentrator j

ik flow rate of element k of concentrate stt= n rom
gravity concentrator /

FOS, dry solids flow rate frorn concentrator /

Fi « flow rate of element k of feed stream to gravity
concentrator /

f# fields in training or test vectors in general

fi.i mass fraction of component j in flow stream F,

fi'i“ gdjusted mass fraction of component j in flow stream

i

fii measured mass fraction of component j in flow stream
Fi

fi j'th field element in input vector to neural net

ok flow rate of element k of middlings stream from
gravity concentrator /

Fogy an objective function

Fi « flow rate element k of tailings stream from gravity
concentrator /

FroT total flow rate

Ag incremental change in g between time i and i-1

G(-) set of (in)equality constraints

gl-) transfer function of neural net process element

gel*) transfer function in constraint section of linear
programming neural net

gi# descaled output of k'th element of neural network

gy} transfer function in objective function section of linear
programming neural net

h step length in numerical integration routine

H(-) set of eguality constraints (design specification

constraints)
H; approximation to inverse Jacobian J '(y)

i# )'th network input



AJ?

p?(Sj)

Pec
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9j,max

4j, min
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Jacobian
incremental change in J°! between time i and i-1

a factor associated with the noisiness of neural net
training data

set of constant parameters

coefficient vectors of linear regression models ¥ =
X.k1 + kz

j'th cycle in a process circuit

block diagonal, block triangular and border matrice:
maximum value that an element in a field can assume
minimum value that an element in a field can assume

number of processing elements in the hidden layer(s)
of a neural net

actual output of k'th element of neural network
internal parameters in a sequential modular simulator

the number of processors or processing elements in 2
parallel computational structure

weighting factor allocated to stream s;
critical value of standard normal deviate
j'th standard normal deviate

ratio defined as q;; = s; /(sj.1)

upper bound of g; ;

lower bound of g;;

a bounded state variable domain

a set of bounded state variable domains

vector of process constraint residuals resulting from
errors in measurements of process variables {r,}

set of equality constraints (flowsheet equations)
lower limit of range allowed for output of neural net
upper limit of range allowed for output of neural net
lower limit of range allowed for input of neural net

upper limit of range allowed for inpul of neural net



To,j

u;(t)

var(-)

Vhii),j
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search range associated with variable / at time J
resistance of k'th amplifier in a neurocomputer

recycle of element k in tailings stream from
concentrator j to /

recycle of element k in concentrate stream from
concentrator j to /

recycle of element k in middlings stream from
concentrator j to /

speedup factor
j'th stream in a generic process circuit

gradient function defined as [f,ilx;) - f i (i1 -
X i.1]
Jui=1

time

time increment, equivaient to an iteration step in
terms of the computational algorithm

time at which observation j of a state variable takes
place

k'th training vector of a neural net

desired value of j'th output of a neural net

the potential of processing element / at time t, i.e. the
sum of the products of the weights and outputs of all
other elements feeding into the processing element

set of output states of computational elements in
neural net {v}

weights associated with the material nalance
constraints incorporated in the energy function £

variance-covariance matrix of measurement residuals
e

variance-covariance matrix of constraint residuals r

variance-covariance matrix of the preccess
variable x

initial output states of computational elements in the
neural net

variance

J'th processing element in the (i'th) hidden layer of a
neural net
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Vi j'th node in input layer of neural net

Vo k k'th node in output layer of neural net

Wi | connection strength or weight between process units /
and j in neural net

X (n x m) matrix of observations of m independent
variables x; \

x vector of independent variables [x,X2,..Xp] (true
values)

X + e uncorrupted measuremert; unbiased error

x" adjusted values of process variables {x;"}

x' measured values of process variables {x;'}

Xi(.i) j'th observation of variable x;

Xj, AVG average value of variabie x;

X; j'th state variable

Y (n x p) matrix of observations of p dependent
variables y; «

Ay incremental change in y between time i and i-1

y vector of dependent variables [yq,y3,..yml (true
values)

Yit k) (k'th observation of the) j'th dependent variable

z vector of decision variables

Zmax upper bound of vector of decision variables z

Zenin lower bound of vector of decision variables z

Greek letters

a probability of the occurrence of a type | error

a; domain of i'th variable in a set

B probability of the occurrence of a type Il error

I’C-"Li,k Iipc‘{\t:er limit of concentrate-tailings separation factor
ik

rety, upper limit of concentrate-tailings separation factor
' =5k
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ret concentrate-tailings separation factor for element & in
concentrator /
F’“"’Li‘k Pn‘{‘,’fi"mit of middlings-tailings separation factor
i,
rm.t,Ui’k #Rﬂe; limit of middlings-tailings separation factor
I,
rm™t middlings-tailipgs separation factor for element & in
concentrator /
d an arbitrary small value
€ convergence criterion
@, random number associated with variable i at time j (0
< 9l <1)
Hi)j variance of multivariate normal deviate P|
P feed grade
9, bias of process element / in a neural net
r learning rate
Q the fraction of computer code that can be executed in
parallel
Subscripts
g gangue
h an only hidden layer
h1 first hidden layer
h2 second hidden layer
i input
o output
v valuable element

w water
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APPENDIX A
BRIEF REVIEW OF THE FUNDAMENTALS OF
BACK PROPAGATION NEURAL NETWORKS

A.1 STRUCTURE OF BACK PROPAGATION NEURAL NETWORKS

Excellent in-depth discussions on neural nets can be found in the
literature and only a very brief overview is provided in this dissertation
(Hecht-Nielsen, 1990; Hush & Horne, 1993, Lippmann, 1987, 1989;
Rumelhart et al., 1986; Wasserman, 1989).

A neural net is a parallel distributed information processing structure,
consisting of an arrangement of interconnected primitive processing
elements. Each processing element can have an arbitrary number of input
connections, but only one output connection (that can branch or fan out
to form a multiple output connection) as shown in figure A.1. These
elemsnts or artificial neurons can have local memory and also possess
transfer functions that can use or alter this memory, process input
signals and produce the output signals of the elements.

The processing elements of a neural net are typically divided into disjoint
subsets, called layers, in which all the process units generally possess
the same computational characteristics. The layers comprising a neural
net are usually categorized as either input, hidden or output layers, to
denote the way in which they interact with the information environment
of the net.

The back propagation nets used in this study were feedforward networks
(see figure A.2) which could be trained by repeatedly presenting them
with examples of scaled inputs (see next section) and desired outputs
(Bhat et al., 1990; Bhat & McAvoy, 1990; Hecht-Nielsen, 1990; Hinton,
1989; Hornik, et al., 1989; Karim & Rivie'v, 1992; Leonard & Kramer,
1990; Lippmann, 1987, 1989; Rumelhart et al., 1986; Wasserman,
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1989). Training, which entailed the adjustment of the weight matrix of
the net, occurs by means of learning algorithms designed to minimize the
mean square error between the desired and the actual output of the net
(Battiti, 1992; Bhat & McAvoy, 1990). During the learning process
'nformation is propagated back through the net in order to update the
connection weights of the net, so that the net can form an internal
representation of the relationship between the inputs and the outputs
presented to it.

A.2 NEURODYNAMICS

Computation in back propagation neural nets is feedforward and
synchronous, i.e. the states of the process units in layers nearest to the
input layer of the net are updated before units in successive layers
further down in the net. The activation rules determine the way in which
the process units are updated and are typically of the form

vilt+1) = glu(t)] (A.1)

where u;(t) designates the potential of a process unit at time t, i.e. the
difference between the weighted sum of all the inputs to the unit and the
unit bias

Ui(t’ = }:jW"jV,(t) = 6', lA.2)

The form of the transfer function g may vary, but could be a linear, step
or sigmoidal transfer function, among others, with a domain typically
much smaller than that of the potential of the process unit, such as [0;1]
or [-1'1], for example.

The training of back propagation neural nets is an iterative process
involving the changing of the weights of the net, typically by means of a
gradient descent method, in order to minimize an error criterion, that is

wiilt+1) = w;;(t) + Aw; j, where (A.3)
W‘,J = -1.0€/d Wi'j (A.4)
where 7 is the learning rate and € the error criterion, i.e.

€= %X, - Vo )2 (A.5)
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based on the difference between the desired (T, ) and the actual outputs
(vg,j) of the unit.

A.3 SCALING OF DATA

Before data can be presented to a neural net, it is usually necessary to
scale them to ranges which would enable the net to learn. A hyperbolic
tangent transfer function produces outputs in the rarge lying between -1
and 1 and for this type of net to learn effectively, it is necessary to scale
the outputs to the same range. This is usually accomplished by mapping
the minimum and maximum values of the actual input and output data
linearly to the respective minimum and maximum values of the network
ranges. If an exemplar presented to the net consists of | input fields and
D output fields, i.e. [f1#, fo#, .. fi#, £, 1#, f.2#, .. f,, p#], two sets of
corresponding vectors can be defined [my, my, .. m;, my.q, My,o, ..
my4+pl and My, My, .. My, M4, M2, .. M, pl, where my and M,
typically correspond to the minimum and maximum values'*! that f #
could assume. If the ranges allowed for the input and output layer of the
net are respectively defined as (n# Ri#) and (rp#, Rp#), ii# as the
network input corresponding to fj#. dy# the network output
corresponding to fi#, o # the actual output of the net and g,# the
corresponding real world output, then the mappings of the real world
data to those of the network can then be described as follows:

Input

ii# = [(R#-r#).f# + M.r# - m.R#1/IMj-mj] (A.6)
Output

di# = [(Rp#-rp#).f# + My.rp# - m . Rp#l/IM-m,] (A.7)

Mapping from network output to real world
Qk# = [( Vlk-mk).ok# + RD#.mk - rD#.Mkll[RD#-rD#l (A.8)

Non-numeric or missing field values are usually mapped to the middle of
the target range, that is % (R/# +r#) or % (Rp# +rp#).

[4IThese indices can assume any values, as long as my < M.
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FIGURE A.1 TYPICAL STRUCTURE OF A
FEEDFORWARD NEURAL NET
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APPENDIX B
BRIEF REVIEW OF PROCESS SIMULATION

METHODOLOGY
“

In the systems technology approach, it is fundamental to discern
between systems or process analysis which is concerned with the
outputs of a system, based on certain inputs, and procass synthesis,
which is concerned with the inputs of a system, based on certain outputs
(Takamatsu, 1983). Analysis entails the investigation of the structures of
the system and the relations and interactions among its various elements,
and it is useful for calculating unknown system outputs from known
inputs. In contrast, synthesis is concerned with the design of elements
and their complex mode of interaction in order to transform given system
inputs into desired outputs. Although distinct concepts, analysis and
synthesis are closely entwined. In practice synthesis operations are
followed by analyses in which the behaviour of the system is
investigated, especially in order to derive a basis from which the future
evolution and optimization of the system can be pursued.

Analysis is not limited to a formal decomposition of the system or object;
it is a complex and creative process in its own right, and no general
consensus exists as to the best strategy for the modelling and simulation
of chemical planiz or process circuits (Evans, 1987). In essence process
simulation starts with a process flow sheet, from which a simulation
model is constructed. This conceptual representation typically consists of
a model or unit operation block for each processing step or processing
unit in the circuit. These unit operation blocks are connected in a specific
structure and comprized of sets of equations relating the inputs and out-
puts pertaining to each block. In the pre-computer era prior to the end of
the Second World War no more than comparatively simple (stationary,
discrete, deterministic, one-dimensional) models could be solved, and
then only by graphical or analytical means (Hofmann, 1988). More
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sophisticated models were developed as digital computers became
cheaper and more available. Strategies for solving the equations of these
models can broadly be classified as sequential modular, non-sequential
modular (equation-based), or more recently, two-tier approaches, which
are hybrids of the former two methods (Evans, 1987; Perregaard &
Sorensen, 1992). Although the sequential modular approach (Diwekar et
al., 1992) appears to be the more popular of the two, and the strategy
employed in most commercial simulation software packages, equation
solving methods are rapidly gaining ground.

B.1 STEADY STATE SIMULATION

Technically speaking, chemical processes are never at steady state, but
are always fluctuating or drifting in the state space describing their
behaviour. If these process changes take place over comparatively long
periods, the process is considered to be in a steady or a quasi-steady
state. Three different strategies are followed to mode! these equilibria,
viz. the sequential modular, the equation-tased and the simultaneous
modular approach.

B.1.1 Sequential modular simulators

The sequential modular approach forms the backbone of maost
commercial process simulators, and is based on the implementation of
process unit blocks as computational subroutines, calculating output as
functionally related to input.

The first step towards the modelling of flowsheets with this strategy
entails the partitioning of the flowsheet, i.e. the identification and
assembly of collections of unit modules forming maximal cyclic
subsystems that have to be solved together. Calculations are carried out
by a sequential procession from one module to another, generally in the
direction of the material flow streams. Recycle loops in the process are
accommodated through initial estimater of calected (torn) recycle
streams, w' ch are updated in the course of succussive passes through
the flowsheet (McLane et al., 1979).

The development of sequential modular process simu.ators began in the
late 1950s, when stand-alone programs designed for calculating unit
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operations were sequenced, so that the flow of unit c..  ations
corresponded with the flow of material and energy in the actu cess
(Biegler, 1989). The earliest attempt was made with Flexible Flowsheet,
which was followed rapidly by others such as SPECS at Shell, COPE at
Exxon and FLOWTRAN at Monsanto. These unit operation modules
allowed the construction of large flowsheets with a minimum of effort,
and the construction of special solution strategies without altering the
overall approach to the flowsheeting programs. Difficulties arose when
the recycle structure of the flowsheet resulted in awkward iterations in
the calculation sequence, and as a consequence only the simplest
convergence algorithms (such as those based on direct substitution,
dominant eigenvalues and Wegstein routines), which allow convergence
of a single recycle loop at a time, could be implemented. The general
architecture of sequential modular process simulators is shown in figure
B.1. It is estimated that up to B0% of the computational effort stems
from the determination of physical properties of the materials to be
processed, and as a result major differences between various sequential
modular simulators can be attributed to the sophistication and scope of
their physical property calculators. The individual unit or process models
can be solved with different degrees of rigor, and can involve tens of
thousands of equations to represent the equipment, as well as the
physical properties of the materials being processed (Westerberg, 1991).
The benefits of implementing a sequential modular simulator include
conceptual simplicity, advantage that can he taken from a large number
of industrially developed process models, and the possible inclusion of
convergence heuristics accumulated over the years. Sequential modular
methods used in process simulators such as ASPEN (Evans et al., 1979),
PROCESS (Brannock et al., 1979) and SIMBAD (Leone et al., 1987;
Montagna et al., 1987; Vecchietti et al., 1987) are well-suited for solving
steady state simulation problems which are well-defined, although even
these types of systems may involve up to three nested levels of iteration
in the solution procedure (Perkins, 1983). These iteration levels include
calculations concerned with the estimation of physical properties, the
unit or process ir.duic ., and the convergence of torn flow streams.

Sequential modular packages are less etlicient in solving systems where
not all the parameters (feed streams to ail the units and process
parameters) are defined (Perkins, 1983), and the complications posed by
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large highly integrated systems can moreover result in severe problems
with convergence (Harrison, 1992). The most important disadvantage of
sequential modular strategies might well prove to be their inability to
exploit parallel computational strategies which are steadily growing in
importance every year (Vegeais & Stadtherr, 1992). As the name
suggests, these procedures can not solve different modules simultane-
ously, unless they are completely independent.

a) Flowsheet convergence methods
il Unconstrained flowsheeting

Unconstrained flowsheeting models (see figure B.2} are often represented
in block structures with external feed and product streams and a recycle
loop with tear stream values x. Under the sequential modular architecture
the model of the block is structured in an input-output form, so that for
specified values of the internal parameters of the model and given values
of the process feed and tear streams, the model will provide values for
the product streams, as well as a calculated value f(x) for the tear stream
vector. The values of x and f(x) are subsequently converged to within
suitable tolerances.

i) Constrained flowsheeting

In the application of sequential modular simulators, it is often desirable to
use the simulator to determine the values of design variables or internal
parameters p, in order to comply with certain design constraints,
d(x,p) =0, as depicted in figure B.3. These problems are referred to as
constrained flowsheet problems, subject to the constraints d(x,p) =0, ard
it is consequently necessary to find both x and p so that f(x) =x and
d(x,p) =0. In sequential modular simulators, this is traditionally
accomplished by use of additional calculation loops, which may be
nested with the tear stream loops. In an outer loop strategy for assumed
values of x and p for example, tear stream calculations are repeated until
the equality f(x)=x is satisfied. The constraints dix,p) =0 are then
evaluated, and if not satisfied, p is suitably adjusted anc the iteration
process repeated. These variable partitioning schemes are often
ineffective, so that tear equations and design constraints have tc be
solved simultaneously. Some of the numerical methods which are



Stellenbosch University https://scholar.sun.ac.za

-171 -

commonly used in constrained and unconstrained sequential modular
models, are successive sudstitution, as well as the methods of Wegstein
and Broyden.

The simplest approach for the solution of f(x) =x, is based on successive
substitution, i.e. x;,1=f(x). Convergence is guaranteed only if all
eigenvalues of the Jacobian of fix) have a modulus less than unity (Clark
& Reklaitis, 1984). This method is often used in a modified form to
enhance convergence (Wegstein's method),

Xji+1 = (1-qi,i).f,-,i(xi) G 3 Qj,i-X;,i (B.1)
where qi'i = sj.i"(sj,i-i)' and
si,i = [Fjilx) - Fjiqlxi ) 1Ix5 - xji.9)

To induce stability q;; is usually bounded from above and below; Qj,min <
Qj,i = dj,max- A more sophisticated and powerful strategy is based on the
method proposed by Broyden (Clark & Reklaitis, 1984; Broyden, 1965),
which can be summarized as follows

Yie1 = Y- 4.Hipq1.gily) (B.2)
where

Hiv1 = Hi - (H.Ag; - Ay).(2y) T.Hi/Ay) TH;. Ag)), and

(ay,)TH,.ag, = O

where H is an approximation to the inverse Jacobian of J"lv). and .ﬂJ“i
=JN -0 .40 = gi- 9.1 and Ay, = v, -y

B.1.2 Non-sequential modular or equation-based methods

In contrast to the development of sequential modular simulators, which
were historically developed mainly by the industrial community, non-
sequential process simulators were by and large derived from academic
circles (Biegler, 1989) and although these simulators have certain
attractive features, their diffusion into the commercial arena remains slow
(personal communication, Chimowitz, 1993). These equation solving
methods (Perkins, 1983; Rajniak et al., 1992) comprising the so-called
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simuitaneous or global approach, are concerned with the collection of all
equations describing the flowsheet and to solve them as a large system
of non-linear equations. In contrast to the sequential modular apprcach,
the numerical procedures and the directionality of information flow
through the system is completely divorced from the plant description.
The flowsheeting probiem is essentially reduced to the solution of a very
large and sparse set of non-linear equations (Vegeais & Stadtherr, 1992)
which can involve tens or even hundreds of thousands of equations
(Fouchy, 1991; Hlavacek, 1977: Westerberg, 1991), and can be
mathematically summarized as:

solve F(x,u) = 0 (B.3)
with G(x,u) < 0, where

x is the vector of state (independent) variables, and u is the vector of
decision (independent) variables, F(x,u) constitutes the set of process
models equations and G(x,u) the set of inequality or equality constraints.
The extra step requiring the calculation of output streams from input
streams for constituent process units found in the sequential modular
approach is consequently dispensed with in equation-based methods.
Two basic approaches can be followed to solve the systems of
equations, and the rationale behind both is to obtain a solution strategy
that will converge rapidly and reliably for the particular problem
(Stadtherr & Hilton, 1982).

The first approach is based on tearing a sufficient number of variables to
permit the remaining variables to be calculated as a sequence of smaller
probiems. The taar variables are calculated by some sort of successive
substitution procedure, provided that the tear equations contain the tear
variables in an explicit form. If not, standard root finding techniques can
be used together with the residuals of the tear equations. This approach
effectively amounts to the solution of a large system of non-linear
equations by iterating only on a few tear variables, which constitutes a

drastic reduction in the dimensions - "~ nblem. The key step in
the tearing approach hinges arous elopment of an appropriate
solution strategy, i.e. which variaL which equations to solve

for which variables (the output set) a. .. sl as the sequence in which
these equations should be solved (precedence ordering). Owing to the
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problems involved with the efficient selection of a reliable solution
strategy, the approach based on tear equations has not been adopted
whole-heartedly by the process engineering community.

The second approach to solving the system of equations, the quasi-linear
approach, involves the simultaneous linearization of all equations and
iteration on all variables, typically using Newton-Raphson and quasi-
Newton-Raphson meihods or suitable variants thereof. In each iteration a
huge set of sparse linear equaticns (possibly involving several thousand
variables) has to be solved, and the use of sparse matrix strategies is
essential for all but the smallest problems, due to the computational
problems created by fill-in associated with the use of normal matrix
methods.

The advantage of the equation-based approach is that it is a convenient
and natural method for specifying variables and constraints. It is also the
approach with the most potential for exploiting parallel computational
structures, provided that the computation of sparse matrices can be
parallelized adequately. Disadvantages include the requirement of good
initial estimates for variables, difficulties that might be associated with
the handling of non-linear and discontinuous relationships between
variables, especially those relating physical properties, possible
difficulties associated with the diagnosis of problems, as well as not
making use of the large number of unit operation models developed by
industries.

al Executive routines

The executive part of the process simulation model is concerned with the
management of the flow of information during simulation. The executive
accepts input data, determines the topology of the flowsheet and derives
and controls the sequence of calculations in the flowsheet. Control is
then passed to the unit operation level for the execution of each module,
where specialized procedures from a unit operations library calcuiate
material and energy balances for a particular unit. Frequent calls are also
made by the executive and unit operations to physical properties libraries
for such routine tasks as phase equilibrium, enthalpy and other stream
property calculations.
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b) Sparse metrix methods

As has been mentioned, one of the approaches to solving a large system
of non-linear equatioris, involves the simultaneous linearization of all
equations and iteration on all the variables until the system converges.
The repeated solution of large sparse linearized systems of equations of
the form A.x = k can easily overburden the available computational
resources, and it is therefor desirable to decompose these system into
smaller and more manageable blocks of equations and variables. A few
decomposition strategies commonly used for this purpose are
decomposition into a so-called block triangular form (BTF), bordered
block diagonal form (SBDF) and the bordered block triangular form
(BBTF).

i Block triangular form

The system of equations is first reduced to a set of irreducible blocks,
after which the blocks are partitioned (Lin and Mah, 1978). The strategy
fails for large irreducible blocks, owing to excessive computational
requirements. In this case reversing back to a simultaneous modular
approach can solve the problem, with each module representing a block
with a relatively small number of units that can be handled more
conveniently.

if) Bordered block diagonal form

This technique proposed by Westerberg and Berna (1978), permits
efficient use of mass storage and involves permutation of the coefficient
matrix A into a bordered block diagona! form, i.e.

M| M,
A = (B.4)
My| M,

where My is a block diagonal matrix, with each diagonal block
corresponding to a single unit. The external variables that describe flows
between units are represented by the border matrices M, ard My. The
rows constituting M3 and My represent a set of equations to reduce fill-
in, while solving for My, as well as a set of connecting equations
describing the flowsheet. Ordinary Gaussian elimination is used to reduce
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M;-blocks into the upper triangular form and corresponding areas in M5
to zero. An important advantage of this approach is that each block or
process unit can be accommodated individually in memory, which greatly
reduces the burden on computational resources. Since relatively little
access (generally of the same order as the number of diagonal blocks) to
mass storage is required, the performance of the bordered block diagonal
form is not impeded unduly.

i) Bordered block triangular form (BBTF)

The BBTF is an al*ernative to the BBDF approach of Westerberg and
Berna, and entails the formation of a matrix A

M, | M,
R = (B.5)
M3 | M,

through appropriate tearing. In this case M, is block triangular, and the
columns in the borders M, and My correspond to design variables, while
the rows in M3 and M, represent form equations. Off-diagonal elements
in My indicate information flows between units in the system. Gaussian
elimination with back substitution can similarly be used to solve the
system.

B.1.3 Simultaneous-modular or two-tier approach

The late 1970s and the early 1980s saw the development of a continuum
of approaches spanning the gap between sequenual and non-sequential
modular simulators. Simultaneous modular approache:ss gradually evolved
into simultaneous modular methods where unit operations remamned
essentially intact, but stream connections were solved simultaneously.
Equation-oriented approaches on the other hand, were adapted to
incorporate procedures at the lowest levels, e.g. for the calculation of the
physical properties of process materials. The simultaneous-modular
approach is not as well-defined as the sequential modular or non-
sequential modular approaches and broadly consists of strategies that
have been developed to exploit the advantages of both the equation-
based and the sequential modular approach, especially as far as rmaking
use of the large base of existing sequential modular software of the latter
(Perkins, 1983, Shacham et al., 1%--2). Some of these strategies involve
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the simultaneous solution of design specifications and toin recycle
streams, as well as a two-tier approach where alternaic use is made of
an approximate equation-based process model and a rigorous procedural
model (Mahalec et al., 1979). In the two-tier approach the approximate
equation-based model is solved exactly i order to generate new
parameter estimates for use in the rigorous modei. The rigorous model is
used in turn to generate new values for adjustable parameters in the
approximate model, the approximations of which could be linear or non-
linear (Mahalec et al., 1979).

B.1.4 Calculation of physical properties

Virtually all commercial simulators have separate sections that distinguish
between process models and stream connections on the one hand, and
the physical properties (data banks and correlations) on the other. Almost
all commercial simulators make use of cubic equations of state models
for the description of pure components. Local activity coefficient models
(such as UNIQUAC, NRTL and Wilson) are supplemented by the use of
group contribution methods (such as UNIFAC), while well-known activity
coefficient correlations for hydrocarbons, such as Chao-Seader and
Grayson-Streed are employed frequently.

Owing to the time consuming nature of physical property models, as well
as their separation from the rest of the flowsheet, the use of local
property modeis that can be fully exploited by the simulator has been
proposed (Biegler, 1989).

B.2 OPTIMIZATION

The optimization of process flowsheets became feasible for large scale
problems with the development of linear programming codes in the late
1950s and gainen further moimentum with the introduction of mixed
integer linear programming packages in the 1960s (Westerberg, 1991),
Prior to that, optimization consisted of ad hoc techniques, such as case
studies, which could only be applied to small plants.

When a flowsheet is optimized, a system of equations similar to those
encol'nterea during simulation, is solved with sorne process parameters
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determined and others free, in order to maximize or minimize a specific
objective function, i.e.

max/min F(x,z) (B 6)
subject to

Rix.z) = 0

H(x,z) = 0

G(x,z) = 0, and
Zmin S 2 S Zyax

where z is a vector of decision variables, x a vector of system variables,
F the objective function, R(x,z) the flowsheet equations, H(x,z) the
design specification constraints, G(x,z) inequality constraints and Zrin
and z,,,, the bounds on the decision variables.

Methods for solving flowsheet optimization problems can be divided into
two broad categories, namely feasible and infeasible path methods
(Kisala et al., 1987). Feasible path methods require the equality
constraints of the problem to be satisfied at every intermediate estimate
of the decision variables along the trajectory towards the optimal
solution, while with infeasible path methods the equality constraints need
only be satisfied at the optimal solution. Since the entire flowsheet has to
converge at every time step of the calculation sequence, feasible path
methods are very time consuming and only really effective as far as
smaller problems are concerned (Biegler, 1989).

Infeasible path methods, which came into their own in the early 1980s,
can be subdivided into three further classes, depending on the type of
simulation strategy involved, i.e. sequential modular, two-tier
simultaneous modular and equation-based methods. In sequential
modular methods, the modular architecture of the simulator is used, and
tear streams and the optimization problem are converged simultaneously
by a convergence block (Biegler, 1989; Biegler & Hughes, 1982).
Successive quadratic programming techniques, which require very few
function evaluations for convergence, are often used for optimization in
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commercial simulators. These techniques are less efficient with regard to
equation-based methods, which generally require the optimization of
large problems subject to many equality constraints. Equation-based
methods solve the optimization problem directly instead, as a large non-
linear programming problem. Although these methods are potentially very
efficient, more development needs to be done in order to counter many
of the numerical problems arising from applications to chemical
engineering problems (Kisaia, et al., 1987). Simultaneous modular or
two-tiered have their origin in attempts to apply the equation-oriented
methodology iteratively. These algorithms make use of sequential
modular process unit simulators to generate a simplified flowsheet that
can be solved as a non-linear programming problem. Hybrid methods
which incorporate or combine some of the features of these strategies
have been proposed by various authors (Biegler, 1982).

A number of methods is available for solving the non-linez-  rogr.. . v g
problem, of which gradient-based algonthms and especially s.uccessive
quadratic programming are regarded as one of the most efticient (Chan &
Prince, 1986; Westerberg, 1991). In successive quadratic programming
procedures a quadratic programming problem is set up at each step, by
taking a second order approximation of the Lagrange function and first
order approximations of the constraints. The solution of this quadratic
programming problem yields a search direction along which a penalty
function can be minimized, and the process is repeated at each base
point until a soluticn to the original programming problem is obtained.
Constraints are not necessarily satisfied at base points.

Example~ of equation oriented packages include QUASILIN (Hutchison et
al., 1986a, 1986b; Smith & Morton, 1988), SYMBOL (Gorczynski et al.,
1979), GENDER (Gorczynski et al.,, 1979) and SPEEDUP (Westerberg,
1991).

B.3 DYNAMIC SIMULATION

Despite the avaiiability of several dynamic process simulation tools, no
system has yet gained general acceptance as a simulation tool for large
scale process plants (Hiliestadt & Herzberg, 1986). The dynamic
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simulation of processes typically involves systems of stiff non-linear
ordinary differential equations (ODEs), as well as algebraic equations,
usually of high dimensicnality. These equations are typically sparse (often
less than 1% of the Jacobian elements are non-zero). In contrast to
steady state systems, complications such as discontinuities between time
and state events can also occur. Dynamic systems can be simulated by
modular as well as equation-based methods.

B.3.1 Modular methods

There are two different approaches to modular dynamic simulation, also
referred to as coupled modular methods. The coupled modular approach
is also referred to as the simultaneous modular approach in the literature.
This is unfortunate, since it leads to confusion with simultaneous modular
(two-tier) methods used in steady state simulation, to which it bears little
resemblance. In coupled modular methods all modules are integrated by a
common routine, such as implemented by the general purpose process
simulator DYNSYL). As an aiternative, modules are provided with
individual integration routines, integrated over a common time horizon.
This approach is known as uncoupled modular, independent modular or
sequential modular (Hlavacek, 1983). Use of the last term is also not
recommended, since it can lead to unnecessary confusion with sequential
modular approaches used in steady state simulation, to which it bears
little resemblance. Although integration usually refers to routines for
solving systems of ordinary differential equations, partial differential
equations can be solved as well, provided that these equations can be
discretized properly.

B.3.2 Equation-based methods

With equation-based methods all the equations of the system are solved
simultaneously, through partitioning (various methods are available) and
the use of sparse matrix techniques, to take advantage of the structure
of the sets of equations. Some of these methods include decomposition
of the system into a block triangular matrix, based on the structure of the
occurrence matrix of the system (Himmelblau & Bischoff, 1968). A
solution is then obtained by direct or iterative techniques. An alternative
strategy is to decompose the flowsheet, so that individual units can be
treated separateiy. Integration of the systems of equations is
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accomplished by predictor-corrector methods. Depending on its activity,
each unit can then be solved with a different number of Newton-Raphson
iterations. Another promising strategy is to decompose the system into
two subsystems - a fast one and a slow one. Different integration
methods and step lengths (muiti-rate methods) can then be applied to
each system. The two subsvstems are connected by means of a
polynomial interpolator or extrap. 'ator.

B.A FUTURE TRENDS IN PROCESS SIMU! ™~

Process industries are at present cxpe . tremendous changes.
Companies of industrialized ~.nun 25 are increasingly focusing on the
manufacture of high techinolog: or specialty products with an increased
intellectual component, such as those encountered in the fields of
biotechnology, pharmaceuticals and material science, while moving away
from the manufacturing of commodiiy goods, which are becoming less
attractive (Gorsek et al., 1992). As a consequence producers of
commodity goods such as metals, minerals, pulp, food and paper, are
compelled to become more efficient, and to rely increasingly on the use
of process simulation to improve plant performance. The demand for
improved modelling techniques is moreover driven by increased use of
batch processing in the manufacture of specialty products (Graells et al,
1992).

Advances in the simulation and modelling of chemical and metallurgical
processes is so closely related to the growth of the information
processing industry, that it can not really be considered in proper
perspective without focusing on the development of computational tools
(Evans, 1987; Sbarbaro, 1991). The continuous demand for more
sophisticated and powerful computational systems is two-fold. Although
conceptually simple to model, a process system may be large, so that the
sheer computational burden posed by the dimension or structure of the
system causes it to be an intractable problem to solve. In certain cases, a
doubling in the dimension of the problem can for instance result in up to
a sixteenfold increase in the computational burden placed on
conventional methods (Rangaiah, 1985; Heuckroth et al., 1976; Shanno,
1983). Other types of systems, on the other hand, may involve only a
faw variables, but could be very hard to describe fundamentally. The first
type of prohlem has fueled the demand for so-called supgercomputing
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devices, while the second has underpinned the necessity for
computational structures which can accommodate heuristic knowledge.
3oth demands have been met by a number of different systems which
have been developed or matured in the last decade only. Of these, neural
nets are particularly attractive, due to their potential for processing huge
amounts of data, as well as for their ability to serve as repositories for
heuristic or empirical knowledge.
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FIGURE B.1 PROCESS ANALYSIS AND SYNTHESIS
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FIGURE B.3 TYPICAL CONSTRAINED FLOWSHEET
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APPENDIX C
DECOMPOSITION OF PROCESS CIRCUITS

CONTAINING RECYCLE FLOW STREAMS
e e e e o R R ey e—

Before a large process system!®! representing a complex network of
interacting elements can be analyzed, it has to be decomposed into
smaller subsystems that can be investigated separately in order to
decrease the burden on computing facilities. Decomposition is typically
implemented in stages (Mah, 1983) and to this end it is convenient to
represent the flowsheet in terms of a digraph, the vertices of which
represent the process units and the edges of which represent the flow of
material or energy between these units (Cordoba, 1988; Pho & Lapidus,
1973). The first stage of decomposition, or partitioning, entails the
division of the flowsheet into blocks of maximal cyclicity, i.e. the parts of
the flowsheet that have to be converged prior to the commencement of
any downstream calculations (Evans et al., 1979; Mah, 1983). Process
units in each of these maximal cyclic blocks are linked together by
material and energy flow streams, and the equations d 'scribing these
relationships consequently have to be solved together (Evans, et al.,
1979; Mah, 1983). Partitioning is unique and can be conducted by a
number of different algorithms, such as those based on the use of a
reachability matrix or a depth-first search procedure (Mah, 1974; Ledet &
Himmelblau, 1970).

As soon as the compiete system of equations describing the process
circuit is partitioned into a set of irreducible subsystems of simultaneous
equations, it is usually desirable to further decompose these blocks of
eguations in order to simplify their solution (Himmelblau & Bischoff,

I51'Large’ is not a precisaly defined concept. Cuirent methods have, for example, proved
effective in snlving mildly rion linear systems with up to 10 000 variables, while
difficulties have been encountered with badly non-linear systems with as few as 120
variables (Shanno, 1983). For the purposes of this discussion, a large system is thus
considered to be any lype of system that is difficult to solve in practice, either as a
result of the dimension or the structure of the system.
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1968; Motard & Westerberg, 1981). The decomposition of such an
irreducible subsystem is known as tearing and in terms of a digraph
representation of a process circuit, a tear set is a set of edges whose
removal leaves each vertex connected to another at most by paths going
only in one direction. The objective of tearing is to reduce the
computation time needed to solve the eni.e -et of system equations
simultaneously.

C.1  CURRENT METHODS FOR THE SELECTION OF TEAR SETS

One of the simplest criteria for the selection of tear sets, is to minimize
the number of streams in the set. Another is to allocate weights to
streams in proportion to the number of variables they comprize and to
minimize the weighted sum of the tear set, i.e. involve the least number
of variables, rather than streams (Mah, 1983).

Murthy and Husain (1983) described a tearing algorithm that works
directly on the digraph of the process system. Their algorithm was
designed to search for the cut set that would best minimize the sum of
weights assigned to the process streams. They propocsed the assignment
of weights so that the tearing of input streams would affect the least
number of output streams.

Upadhye and Grens (1975) argued that a superior alternative entails the
requirement that the tear set belongs to a non-redundant family of sets.
A tear set is considered to be non-redundant if it does not contain
multiple tears. Their claim is supported by their own results, as well as
those of Rosen and Pauls (1977). This slrategy was developed further by
exploiting the geometrical characteristics of non-redundant tear sets
(Motard and Westerberg, 1981). When flowsheests are constrained, such
as by the imposition of design specifications on process units, the
character of the original unconstrained flowsheet may be altered, so ‘hat
this approach to decomposition is not necessarily the best one to follow
(Lau & Ulrichson, 1992).

The decomposition of process circuit by means of neural nets is not
discussed in detail here, because the principles are demonstrated in
section C.3 by means of a simple example.
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C.2 THE USE OF A RECURRENT NEURAL NET TO DECOMPOSE
CIRCUITS WITH RECYCLE STREAMS INTO SERIAL UNITS

Process circuits can be represented in several different ways, one of
which is by means of a loop or recycle matrix, A" in which the elements
ai_j' of the matrix are defined by ai‘f = 1, it stream s; forms part of the
loop I;, otherwise au' = 0. In this configuration it can be shown that the
optimal decomposition of the circuit is equivalent to a zero-one optimal
covering problem. These problems can be solved by means of linear
programming feedback neural nets.

The construction of a linear programming neural net is depicted in figure
C.1. The net is composed of two sections, one of which reprasents the
objective function of the programming problem and the other of which
represents the constraints of the system. The objective function section
of the analog version of the net contains n amplifiers (one for each
independent variable v, in the objective function), each of which is fed a
constant input current of a,*. The k'th amplifier in this sec*.un has an
input capacitance of c¢,* and an equivalent resistance . These
amplifiers are furthermore assumed to satisfy the hard limiting non-linear
input-output relation

Vi = gylug), where

1,ifu, = 0, and

gv{uk)
gylug) = 0,ifu, < 0 (C.1)

The output of these amplifiers can thus only assume the values O or 1,
and represents the solution to the optimization proclem.

The constraint section of the net contains m amlifiers (one for each
problem constraint) arranged in the same way s those found in the
objective function section. Each of these amplif ers is proviaed with a
constant bias current b,* as input, and also riceives an input current
from the amplifiers in the objective section. Th: output of the amplifiers
ci# in the constraint section is an indication of the extent to which the
constraints of the system are satisfied, i.e.

ci' = @gclu)), where
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Ui = D]V - bi#' and
gclu) = 0, if u =0
Gely) = 1,ifuy; < 0 (C.2)

These equations indicate that when the J'th constraint is violated, the j'th
amplifier in the constraint secticn feeds a curren: oroportional to di'j to
the i'th amplifier in the objective function section. This current becomes
zei10 when the constraint is satisfied.

Prior to stabilization of the net, the amplifiers in the objective function
section attempt to minimize the values of the output variables vy, by
pushing them to zero. At the same time the amplifiers in the constraint
section attempt to satisfy the system constraints by pulling the output of
the corresponding amplifiers in the objective function section through the
injection of current of opposite polarity into these amplifiers. At
equilibrium the output of the amplifiers in the objective function section
represents the optimal solution to the problem, subject to the constraints
imposed on the system.

The neurodynamics of the net can be expressed by equation C.3,
ci¥dudt = - - ur? - %d;.g,(Dv - b;) (C.3)
The energy of the system can moreover be expressed as
E = D.v + ZG(Dyv - b¥), where g(.) = dG{(.)/dl(.) (C.4)

Providea that the transfer function gy(u)) is bounded and monotonically
increasing, these dynamics minimize the Lyapunov function represented
by equation C.4 (Tank & Hopfield, 1986).

C.3 EXAMPLE C.1

In this exanple the use of a linear programming net to optimally
decompose an elementary process circuit into sequential subunits
containing rio recycle streams is demonstrated. Consider the process
circuit depicted in figure C.2, which was also used by Pho and Lapidus
(1973) to demonstrate the use of an iterative tearing algorithm. The
corresponding loop matrix of the system, which consists of five process
units connected by 10 streams, is shown in table C.1. The osptimal
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decomposition of this system can be formulated in terms of a zero-one
optimal covering problem, i.e.
min Ep'(sjl.x;, subject to
Za;'x; = 1,i=1,2,.Mandx = Oor 1 (C.5)

The structure of the neural net used to decompose the system is similar
to that depicted in figure C.1.

TABLE C.1 LOOP MATRIX OF PROCESS CIRCUIT (EXAMPLE C.1)

la) sy sz s3 s4 S5 S S7 S@ S9 S10 (b) s1 s2 s3 sq4 s5 sg S7 sg Sg S10
[ LR T Y S TR - A [ h & 1 @0 O & 0 0 & & 0O
I g ¢ 009 1T 8 1 3 0 7 2. & 6 0 ¢ * 0 © O O 0
s ¢ 1 D T 0 & 8§ ¥ O 9 k& 1T & 6 5 8 & 0 oD
.8 % 40 % 8.9 ¥ 8.0 s & + & o 0 06 o 6 ¢ o0
I 1 .2 090 B % & 7 8 D B &% ¢ 0 0 & O O @4 @
B 9 » & 14 3 06 6 1 & 9O g o o 6 UL &Y & O.D
I @ % 8% 9 8 D -89 0 P8 Y 0 0 0 &6 O 0 & D
B 11 @ O 8. .19 0 % o .89 s 0 " @ 8' 6 6 O 0 6 B
R N T TR TR TR T R h 0 6 0 0 1 & 0o B @ ©

The output of the net after four iteration steps is shown in table C.1(b).

The use of linear programming neural nets such as the one described in
this appendix can subsequently be used to generate optimal tear sets in
partition blocks of arbitrary size and can be used in conjunction with the
data reconciliation systems described in chapter 4 to accommodate large
systems.
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FIGURE C.1 A LINEAR PROGRAMMING NEURAL NET
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