Kwaliteit van water wat aan wild in die Kalahari-gemsbok Nasionale Park voorsien word

H. VAN A. DREYER

Kwaliteit van boorgatwater in die Kalahari-gemsbok Nasionale Park wissel van vars (<5 dele per duisend totale opgeloste soute) tot hoog gemanipleer (>)10 dpd). Water in kriple waaruit wild drink, het altyd 'n swakker kwaliteit as die uit 'n boorgat of uit 'n dam. Die hoe konsentrasie van soute in kriplewater, wat tot gevolg het dat die water van 'n groot aantal waterpunte as ondrinkbaar vir vee geklassifiseer kan word, word veroorsaak deur volgehoue verdamping uit damme en kripe. Damwater word egter gereeld met "varser" water vanuit boorgate aangevul, maar 'n vlootknoop verhoed dit by kripe. Die belangrikste minerale en ione wat in hoë konsentrasies in hierdie waters voorkom, is Na+, SO42-, Cl-, en in enkele gevalle ook Ca++.

Sleutelewoorde: Saliniteit, verdamping, varswater, waterkwaliteit, soutwater, Kalahari.

H. van A. Dreyer, Departement Soologie, Universiteit Stellenbosch, 7600 Republiek van Suid-Afrika.

Summary
The quality of the water originating from boreholes in the Kalahari Gemsbok National Park (KGNP) varies from fresh (<5 ppm TDS), to mineralised (5-10 ppm TDS), to highly mineralised (>10 ppm TDS). According to the water standards of Boocock & Van Straaten (1962) 35 percent of the dams (reservoirs) and 48.8 percent of the troughs in the KGNP can be classified as non-potable for domestic stock. If the standards for livestock set by the SWA/Namibian Department of Water Affairs are used only 40 percent of drinking points can be classified as potable for livestock. If their upper limits set for specific ions are applied, 56.2 percent of the troughs contained excessive sodium levels (>2 000 ppt), 7.5 percent excessive calcium (>1 000 ppt), 5 percent excessive magnesium (>500 ppt) and 40 percent excessive chloride levels (>3 000 ppt). Earlier workers reported that wild animals in the KGNP use water that is highly mineralised and personal observations revealed that antelopes in the KGNP use water with a salinity up to 18 parts per thousand total dissolved salts.
The water in troughs and dams is generally more mineralised than that in the boreholes, which can be ascribed to evaporation from the dams and troughs, with a resultant concentration of the elements. The salts that occur in the highest concentrations are Na⁺, SO₄²⁻, Cl⁻ and sometimes Ca²⁺ as well. The volume of water evaporated from the troughs (capacity 1 200 ℓ), was 63 litres per day in summer. Water in the dams is of a better quality than that in the troughs because dams are allowed to overflow, and their water is regularly supplemented with "fresher" water from the boreholes. In the case of the troughs this process of overflowing and supplementing of water is regulated by a ball valve inside the trough.

It was mainly water in troughs at salt water boreholes which contained the highest concentrations, and is thus influenced by evaporation. This results from the fact that the animals drink large quantities of water at the fresh-water localities, which, in turn, allows regular supplementing of "fresher" water from the dam.

During strong winds the dams sometimes overflow. At the salt water localities the antelope prefer this overflow water because, although more mineralised than that in the dams, it is less mineralised than the water in the troughs.

The sodium content of the water in the two boreholes that were monitored throughout the year corresponded in seasonal variation with an increase during summer-autumn and a decrease during winter. This could result from the infiltration of rainwater during summer, to reach the watertable a few months later, thus reducing the sodium concentration. A second possibility is that the strong northwesterly winds prevailing from June to September cause windmills to withdraw so much water from the boreholes that the water table falls and is then supplemented with fresher water from adjacent aquifers. A third possibility is that water from different levels, and thus different geological strata, is removed by strong winds, causing variations in sodium concentrations. It is suggested that in the KGNP the first two explanations could apply.

Inleiding

Die kwaliteit van soutinhoud van ondergrondse water word grootlik bepaal deur die tipe gesteente wat as waterdraer optree, veral wat betref die wateroplosbare minerale in die gesteentes. Die ondergrondse water in die Kalahari kom meestal in pre-Kalahari gesteentes en op sekere plekke in die Kalahari Groep voor (Verhagen 1985). Arad (1984) beweer dat die geminaliseerde water van die suidelike Kalahari gevorm is toe oppervlakwater tydens die laaste nat siklus (17 000-15 000 jaar geleden) uit mere in die gebied begin verdamp het (lakustriene toestande het toe in die panssame geheers). Hyde (1971) beweer egter dat water tydens droë siklusse vir lang tye aan die oplosbare gesteentes van die ondergrondse waterdraer blootgestel was en sonder aanvulling deur vars water kon versout.

Volgens Mazor, Bielsky, Verhagen, Sellschop, Hutton & Jones (1980) kan die NaCl, wat algemeen in die water van die Kalahari voorkom, moontlik ontstaan met vrystelling vanuit die Ecca skalies in die pre-Kalahari gesteentes.

Materiaal en Methodes

Watermonster is eenmalig en waar moontlik uit die py, dam en oorloop van die dam en krip by 80 boorgate versamel. Vier geselecteerde windpompe is gekies waarby watermonster aan 'n maandelike basis versamel is om seisoenale variasie in soutinhoud te bepaal ('n herhalende seisoenale veranderde kan moontlik 'n aanduiding van ondergrondse aanvulling verskaf). Die vier windpompe staan by 'n soutwater- (Bedinkt) en 'n varswater- (Kwang) boorgat in die rivier, sowel as 'n soutwater- (Seewe Panne) en 'n varswater- (Stoffelsdraai) boorgat in die duine.

Die totale soutinhoud (saliniteit) van die water is bepaal met 'n American Optical handrefraktometer as dele per duisend (dpd totale opgeloste soute), terwyl die konsentrasie van die belangrikste elemente met behulp van 'n Varian AA-1275 atoomabsorpsie-spektrofotometer (A.A.) bepaal is as dele per miljoen (dpm). Al die oplossings met die A.A. is gedoen volgens riglyne soos deur Allan (1970) voorgestel. 'n Paar monsters is na die Kaapse streeklaboratorium van die WNNR te Bellville gestuur om 'n aantal anioene soos HCO₃⁻, CO₃⁻ en SO₄²⁻ te bepaal. Die totale Cl⁻konsentrasies is met 'n CMT 10 chloriditator bepaal.

'N Glasveselkrip, soortgelyk aan die waaruit die wild drink, is met water van wisselende soutghalte opgevul en dan aan die wilde diere beskikbaar gestel om te sien in watter mate die verwydering van soutwater die saliniteitstoename beïnvloed. Die hoeveelheid water wat op 'n seisoenale basis uit 'n krip verdamp, is met behulp van 'n verdampingshouer, waarvan die blootgestelde oppervlak bekend is, bepaal.

Statisties is die verband tussen die konsentrasies van die konsentrasies van die verschillende minerale in die watermonster en die salinite daarvan met behulp van korrelasie-analise (r) getoets. Student se t-toets (t) is uitgevoer om te sien of die verskille in mineraalinhoud van die water in die py, dam, oorloop en krip betekenisvol was.
Resultate

(i) Variasies in waterkwaliteit

Die kwaliteit van die watermonsters het gewissel vanaf vars tot hoogs geminaliseerd. Vir die doel van hierdie studie is die water soos volg ingedeel: (1) Varswater is water met 'n saliniteit van minder as vyf dele per duisend, dit wil sê wat minder as 5 000 dele per miljoen totale opgeloste soute bevat en geskik is vir menslike gebruik. (2) Geminaliseerde water is die waarvan die saliniteit wissel van vyf tot 10 dele per duisend (5 000-10 000 dpm) en nog geskik is vir gebruik deur vee. (3) Hoogs geminaliseerde water het 'n saliniteit van meer as 10 dpm (>10 000 dpm) en is ongeskik vir menslike en makvee gebruik (Boocock & Van Straaten 1962). Na laasgenoemde twee word gesamentlik verwys as soutwater.

Van die 80 boorgate waarvan die water ontleed is, is 17 (21,2 persent) in die Auobrivier, 26 (32,5 persent) in die Nossobrivier, 29 (36,3 persent) in die gebied tussen die twee riviere en agt (10 persent) in die gebied suidwes van die Auobrivier geleë. Water uit hoofsaaklik damme en krippe is vir ontleding gebruik, aangesien dit geredelik bekommel was. Daar was duidelike verskille tussen die waterkwaliteit van damme en krippe onderling, en tussen damme en krippe van bogenoemde gebiede (Tabel 1).

Tabel 1

Die persenuaste damme (D) en krippe (K) in die verskillende areas waarvan die water as vars (V) d.w.s. < 5 dpm opgeloste soute, geminaliseerd (G) (5-10 dpm) en hoogs geminaliseerd (HG) (>10 dpm) geklassifiseer kan word.

<table>
<thead>
<tr>
<th>AREA</th>
<th>V</th>
<th>G</th>
<th>HG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auobrivier</td>
<td>94,0%</td>
<td>6,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>(D)</td>
<td>88,0%</td>
<td>12,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>(K)</td>
<td>30,8%</td>
<td>23,1%</td>
<td>46,2%</td>
</tr>
<tr>
<td>Nossobrivier</td>
<td>30,8%</td>
<td>7,7%</td>
<td>61,5%</td>
</tr>
<tr>
<td>(D)</td>
<td>34,5%</td>
<td>27,6%</td>
<td>37,9%</td>
</tr>
<tr>
<td>(K)</td>
<td>31,0%</td>
<td>13,8%</td>
<td>55,2%</td>
</tr>
<tr>
<td>Sentrale-duinevela</td>
<td>12,5%</td>
<td>25,0%</td>
<td>62,5%</td>
</tr>
<tr>
<td>(D)</td>
<td>0,0%</td>
<td>12,5%</td>
<td>87,5%</td>
</tr>
<tr>
<td>(K)</td>
<td>43,7%</td>
<td>21,3%</td>
<td>35,0%</td>
</tr>
<tr>
<td>Suidwestelike-duineveld</td>
<td>40,0%</td>
<td>11,2%</td>
<td>48,8%</td>
</tr>
</tbody>
</table>

Die verskil tussen die kwaliteit van water in damme en krippe kan hoofsaaklik aan verdamping toegeskryf word en daarom is daar 'n toename in soutkonsentrasie (mineralisasie) vanaf die pyp (boorgat), deur die dam en tot in die krip. Die oorloopwater stem ooreen met die water in die dam en is dan ook oor die algemeen minder geminaliseerd as die water in die krip. Daar is ook duidelike verskille tussen die kwaliteit (soutinhoud) van water by vars- en soutwaterlokaleite (Fig. 1).
Fig. 1. Die gemiddelde saliniteit van die water in die pyp, dam, oorloop en krip soos gemes by die vars- (n=52) en soutwaterlokaliteite (n=28) in die KGRP.

’n Vergelyking tussen die water uit die pyp by varswaterlokaliteite en die water in die damme by dieselfde lokaliteite toon dat die gemiddelde saliniteit by die pyp (\(\bar{x}=3,13\) d.p.d; Standaard afwyking \(\pm 1,07; n=18\)) nie betekenisvol van die gemiddelde saliniteit in die damme (\(\bar{x}=3,22\) d.p.d; SA\(\pm 1,09; n=30\)) verskil nie (\(t=0,79; gv=46; P>0,05\)). As die saliniteit van water uit die pyp (\(\bar{x}=15,89\) d.p.d; SA\(\pm 2,11; n=25\)) met die in damme (\(\bar{x}=16,36\) d.p.d; SA\(\pm 8,09; n=39\)) by die soutwaterlokaliteite vergelyk word, is daar ook nie statisties betekenisvolle verskille nie (\(t=0,28; gv=62; P>0,5\)). Die saliniteit van water in die damme by soutwaterlokaliteite (\(\bar{x}=37,36\) d.p.d; SA\(\pm 35,78; n=39\)) verskil hoogs betekenisvol (\(t=15,79; gv=76; P<0,00005\)) van die water in die krippe, terwyl die verskil by die varswaterlokaliteite (\(\bar{x}=3,73\) d.p.d; SA\(\pm 1,56; n=30\)) statisties nie betekenisvol is nie (\(t=1,73; gv=58; P>0,05\)). Statisties verskil die kwaliteit van die varswater (\(\bar{x}=3,66\) d.p.d; SA\(\pm 1,08; n=9\)) by varswaterboorgate nie betekenisvol van die water in die krip nie (\(t=1,84; gv=16; P>0,5\)) terwyl dit by die krippe van soutwaterlokaliteite betekenisvol (\(t=2,46; gv=28; P<0,02\)) verskil van die oorloopwater (\(\bar{x}=21,8\) d.p.d; SA\(\pm 13,32; n=15\)).

(ii) Die invloed van verdamping op saliniteitstoename

Saliniteitstoename in damme en krippe kan toegeskryf word aan verdamping uit blootgestelde oppervlaktes. Dit is waarskynlik dat die saliniteit van water by standaardkrippe (Oppervlakte = 5,575 m²; Volume = 1 200 liter) met gemiddelde 8,3 persent sal toeneem met elke 100 liter water wat verdamp. Die hoeveelheid water wat per tydseenheid uit die krip verdamp, hang nuut saam met faktore soos wind, vogtigheid en verral temperatuur, en varieer aansienlik op ‘n maandelikse basis (Fig. 2).
Soos hierbo genoem, verander die saliniteit van water in varswaterkrippe min met verdamping en verskil dus ook min van dié van water in damme en pype. By soutwaterlokaliteite verskil die toename in saliniteit in krippe gedurende die somer betekenisvol van die toename gedurende die winter ($t=2,269$; $v=12$; $P<0,05$). In die somer vertoon dit 'n verhoogde toename sodra die saliniteit ongeveer 20 dpd bereik, aangesien verdamping vinniger plaasvind en al minder water dan deur wilde diere gedrink word (Fig. 3).

Fig. 2. Die gemiddelde hoeveelheid (liter) water wat per dag in die KGNP vanuit 'n standaardkrip verdamp het vanaf Maart 1986 tot Februarie 1987.

Fig. 3. Die saliniteitstoename van kripwater in die somer en winter in die KGNP.
(iii) Die verband tussen mineraalkonsentrasie en saliniteit

Die saliniteit van watermonster wat by die verskillende lokaliteite geneem is, verteenwoordig die konsentrasie van totale opgeloste soute. Na+, Cl- en SO\textsubscript{4}2- is die belangrikste komponente, terwyl die ander ionek en verbindingen slegs in enkele gevalle 'n waarnembare rol speel.

Statisties is die korrelasie tussen saliniteit en konsentrasies van Na+ (r=0.73; P<0.001), Cl- (r=0.95; P<0.001) en SO\textsubscript{4}2- (r=0.933; P<0.001) baie hoog en betekenisvol. Die korrelasie tussen saliniteit en die konsentrasie van K+ (r=0.69; P<0.001) sowel as CO\textsubscript{3}2- (r=0.601; P<0.005) is hoog en betekenisvol, terwyl daar 'n matige korrelasie met Ca++ (r=0.55; P<0.01) en Mg++ (r=0.43; P<0.05) bestaan wat ook nog betekenisvol is. 'n Baie lae korrelasie — statisties nie betekenisvol nie — is tussen saliniteit en konsentrasies van HCO\textsubscript{3}- (r=0.108; P>0.1) gevind. Figuur 4 toon die konsentrasies van natrium, kalium, kalsium en magnesium ten opsigte van toenemende saliniteit.

![Graph showing the relationship between salinity and mineral concentrations](image)

Fig. 4. Die verband tussen die saliniteit van die kripwater en die konsentrasies van Na+, K+, Ca++ en Mg++ in die KGNP.

(iv) Seisoenale variasie in ondergrondse waterkwaliteit

Aangesien die twee windpompe, Sewe Panne en Bedinkt (soutwater), wat gemonitor is, vir lang tye buite werking was, kon geen gereelde watermonster by die bek van die pyp vir ontleiding geneem word nie. Die paar monsters wat wel bekom is, dui op 'n hoër natriumkonsentrasie in die somer as in die winter. Die twee windpompe Kwang en Stoffelsdraai se varswater verskaf egter 'n redelike aanduiding van seisoenale fluktusies. Op 'n maandelikse basis was Na+ die enigste element wat in redelike groot konsentrasies voorgekom het. Die konsentrasies van die ander ionek was so laag dat die verandering onbeduidend was.

By Stoffelsdraai is die laagste (637 dpm) natriumkonsentrasie in Sep-
tember en die hoogste (1 530 dpm) in Januarie aangeteken. Kwang toon ook 'n laagtepunt (739 dpm) in September, maar 'n hoogtepunt (1 910 dpm) in April (Fig. 5).

![Graph showing sodium concentrations for Stoffelsdraai and Kwang over time]

Fig. 5. Die seisoenale verandering in die Na\(^+\) konsentrasie van die grondwater by Kwang en Stoffelsdraai boorgate in die KGNP.

Bespreking

As die standaarde van Boocock & Van Straaten (1962) aanvaar word, kan 35 persent van alle damme en 48,8 persent van die krippe in die KGNP se water as ondrinkbaar vir vee beskou word. Gemeet aan die Drinkwaterstandaarde vir Lewende Hawe van die Departement van Waterwese, SWA/Namibië (Winter 1985) is slegs 40 persent van die krippe se water geskik vir dierlike gebruik. Volgens hulle beperkings vir sekere soutkonsentrasies sou 56,2 persent as te hoë natriumvlakke (>2 000 dpm), 7,5 persent as te hoë kalsiumvlakke (>1 000 dpm), 5 persent as te hoë magnesiumvlakke (>500 dpm) en 40 persent (>3 000 dpm) as te hoë chloriedvlakke nie aan die standaarde voldoen nie. Uit die onledings van die
ander elemente blyk dit dat suifaat ook soms te hoë konsentrasies bereik, maar enkele uitsonderings ten opsigte van ander soute en ione is egter moontlik. Church (1979) het ’n maksimum toleransievlak van tussen 13 en 17 dpd totale opgeloste soute vir vee voorgevestel. Wild in die KGNP benut egter wel gemineraliseerde en hoogs gemineraliseerde water wat as on-drinkbaar vir vee beskou sou word (Brynard 1958; Child et al. 1971; Le Riche, KGNP, pers. med.). Persoonlike waarnemings toon dat wild in die KGNP water met ’n saliniteit van tot 18 dpd sal drink.

Die verskille in toenemende saliniteit van kripwater uit sout- en varswater-boorgate kan hoofsaaklik daaraan toegeskryf word dat varswater in groter volumes per dier, en deur ’n groter getal diere benut word as soutwater (Dreyer 1987). Meer water word dus onttrek uit die varswaterkrippe wat gedurig aangevul word deur varser water uit die dam. Oor die algemeen is gevind dat water met ’n saliniteit van >10 dpd nie vinnig genoeg deur die wild gedrink word om die versoutingsproses deur middel van aanvulling uit die dam teen te werk nie. By die soutwaterkrippe met ’n saliniteit van >10 dpd is dit dus hoofsaaklik die water wat verdam wat verwang word. ’n Verdere aspekt wat tot die toenemende saliniteit van water in krippe bydra, is die vorm van laasgenoemde. Die glasveselkrippe wat tans meestal in die KGNP gebruik word, vernou trapsgewys na onder en dit veroorsaak dat daar ’n groot blootgestelde oppervlak in verhouding tot die volume van die water bestaan. Dit het tot gevolg gehad dat tot 63 liter water per dag in die somer uit die krip met ’n inhoudsmaat van 1 200 liter, verdamp het (Fig.2). Kriel (1967) het bereken dat die verdamping vanaf ’n klas A-pan 3 300 mm per jaar oorskry.

Die water in damme het ’n laer soutgehalte as water in krippe aangesien water in ’n dam sodra die wind waai gereeld aangevul word deur varser water uit die boorgat. Tydens sterk wind loop die damme soms oor. By die soutwaterlokaliteite is hierdie oorloopwater beskikbaar vir wild, en alhoewel dit ’n laer soutgehalte as die kripwater het, is dit nogtans hoër as die damwater. Die rede hiervoor is dat die oplosbare soute wat van vorige uitkristalliserings in die grond rondom die dam teenwoordig is, weer in die water oplos en die saliniteit daarvan sodoende verhoog.

Die boorgate by Kwang en Stoffelsdraai — in die rivierbedding en duineveld onderskeidelik en sowat 60 km uit mekaar — wat gemonitor is vir moontlike seisoenale wisseling in waterkwaliteit, toon ’n duidelike ooreenkomst met ’n toename in natriumkonsentrasie in die somer-herfs en ’n afname in die winter. Die rede vir hierdie seisoenale verandering in die saliniteit kan drieërlei van aard wees. Eerstens, moontlik as gevolg van aanvulling van die ondergrondse watertafel met water wat tydens die reëenseisoen in die grond infiltreer het. Sulke water bereik die ondergrondse water dan eers ’n paar maande nadat die reëenseisoen verby is, om sodoende die natriumkonsentrasie te verlaag. Mazor (1982) het bepaal dat daar ’n tydperk van vier tot ses maande na reënaal verloop voordat daar ’n styging in die ondergrondse watervlak is. Tweedens kan die sterk noordwestwind wat van Junie tot September oor die Kalahari waai veroorsaak dat soveel water uit die boorgate onttrek word dat die watertafel hier daal en uit aangrensende bronne met ’n hoër kwaliteit water aangevul word.
(Mazor, Verhagen, Sellschop, Jones, Robins, Hutton & Jennings 1977). Child et al. (1971) noem 'n derde moontlikheid, naamlik dat die seisoenale variasie in saliniteit hoofsaaklik toegeskryf kan word aan die feit dat die water teen verskillende tipe uit die boorgate onttrek word vanweë die variasie in windsnelheid. Dit het dan tot gevolg dat die water op verskillende dieptes relatief tot die oppervlak onttrek word. Die water afkomstig uit verskillende geologiese formasies, is dus gestratificeer en skep soodanig die moontlikheid dat die kwaliteit van die water wat uitgepomp word, binne enkele dae kan wissel. 'n Kombinasie van eersgenoemde twee moontlikhede is die waarskynlikste aangesien die kwaliteit van die water eerder op 'n seisoenale as daaglikse basis varieer.

Gevolgtrekking

Dit is hoofsaaklik elemente soos natrium, kalsium, magnesium, chloried en sulfaat wat hydra tot die versouting van 'n groot persentasie van die water wat aan wilde diere in die KGNU voorsien word. Hierdie versooting word grotendeels deur verdamping veroorsaak. Wysigings aan die huidige kripsel dat kan egter die saliniteit van sekere geminaliseerde suiings betekenisvol verlaag.

Dankbetuigings

Ek wil graag die Raad van Kuratoren vir Nasionale Parke, en veral dr. A. Hall-Martin bedank vir die geleeheid om die studie te ondernemer. Die onderskraging en vriendelike hulp sowel as gasvryheid van die Parkhoof, mnr. E.A.N. le Riche, word baie waarder om het veel bygedra tot die suksesvolle voltooiing van die studie. My opregte dank ook aan my studieleer, prof. J.A.J. Nel, vir sy ondersteuning, asook aan Mike en Anette Knight vir hul raad en bystand tydens my verby van Nossobkamp. Die studie is gefinansier deur 'n beurs van die WNNR (SNO), die Raad van Kuratoren vir Nasionale Parke en die Bob Blundell Memorial Scholarship.

Verwysings

ALLAN, J.E. 1970. The Preparation of Agricultural Samples for Analysis by Atomic Absorption Spectroscopy. Varian Techtron; California, U.S.A.

