An electronic survey of preferred podcast format and content requirements among trainee Emergency Medicine specialists in four Southern African Universities

by

Kamlin Ekambaram

Division of Emergency Medicine

Research assignment presented in partial fulfilment of the requirements for the degree Masters of Medicine in the Faculty of Medicine and Health Sciences at Stellenbosch University

Supervisors: Professor HH Lamprecht

Dr Willem Jooste

December 2020
Table of Contents

DECLARATION .. IV
LIST OF ABBREVIATIONS .. V
ACKNOWLEDGEMENTS ... VI

PART A: LITERATURE REVIEW .. 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Methods</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Section A—Online Medical Education</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Origins of Medical Education</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Information Technology and Medical Education</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Digital audio-compression</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Portable Digital-Audio File Players</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Online Education</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Asynchronous Education in Medicine</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>The Free Open-Access Medical Education Movement (FOAMed)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Podcasts</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Podcasting in Medicine</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Generational Learners and their Learning Styles</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Section B—Podcasting in Emergency Medicine</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Origins of Emergency Medicine</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Prevalence of Emergency Medicine Podcasts</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Utilisation Measures</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Methods of Access</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Ideal Podcast Duration</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Reasons for Emergency Medicine Podcast Usage</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Barriers to Use</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Cost and feasibility of producing an EM podcast</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Quality Assurance</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Benefits of podcast-usage in EM</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Influence of level of training</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>EM Podcasting in Southern Africa</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Identification of gaps of needs for further research in Southern Africa</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>References</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>List of Figures</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Appendix: Data Extraction Table</td>
<td>19</td>
</tr>
</tbody>
</table>

PART B: MANUSCRIPT IN ARTICLE FORMAT .. 22

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Title Page</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Abstract</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Keywords</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>African Relevance</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Introduction</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Methods</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Study Population</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Survey Development</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Survey testing</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Survey Administration, Distribution and Data Collection</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Data analysis</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>Results</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>Discussion</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>Conclusion</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>Dissemination of Results</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>Authors’ Contributions</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td>Declaration of Competing Interest</td>
<td>37</td>
</tr>
<tr>
<td>20</td>
<td>Acknowledgements</td>
<td>37</td>
</tr>
</tbody>
</table>
REFERENCES .. 38
LIST OF TABLES AND FIGURES .. 41
APPENDIX, SURVEY ... 42

PART C: SUPPORTING DOCUMENTATION .. 51

A. STUDY PROTOCOL ... 52
B. HEALTH ETHICS REVIEW COMMITTEE APPROVAL .. 68
C. AUTHOR GUIDANCE: AFRICAN JOURNAL OF EMERGENCY MEDICINE .. 70
Declaration

By submitting this research assignment electronically, I, Kamlin Ekambaram declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

Date: December 2020
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-ROM</td>
<td>Compact disc read-only memory</td>
</tr>
<tr>
<td>CME</td>
<td>Continuous Medical Education</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency Department</td>
</tr>
<tr>
<td>EM</td>
<td>Emergency Medicine</td>
</tr>
<tr>
<td>EMCT</td>
<td>Emergency Medicine Cape Town</td>
</tr>
<tr>
<td>FCEM-SA</td>
<td>Faculty of the College of Medicine South Africa</td>
</tr>
<tr>
<td>FOAMed</td>
<td>Free Open-Access Medical Education</td>
</tr>
<tr>
<td>JIF</td>
<td>Journal Impact Factor</td>
</tr>
<tr>
<td>JiTT</td>
<td>Just-in-Time Teaching</td>
</tr>
<tr>
<td>kb/s</td>
<td>Kilobytes per second</td>
</tr>
<tr>
<td>mb</td>
<td>Megabytes</td>
</tr>
<tr>
<td>MMed</td>
<td>Masters of Medicine</td>
</tr>
<tr>
<td>MP3</td>
<td>MPEG Layer</td>
</tr>
<tr>
<td>MPEG</td>
<td>The Moving Picture Experts Group</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PSA</td>
<td>Procedural Sedation-Analgesia</td>
</tr>
<tr>
<td>SMi</td>
<td>Social Media Index</td>
</tr>
<tr>
<td>SU</td>
<td>University of Stellenbosch</td>
</tr>
<tr>
<td>UB</td>
<td>University of Botswana</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>UP</td>
<td>University of Pretoria</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Acknowledgements

I wish to express my sincere appreciation to my supervisor, Professor HH Lamprecht, who mentored and supported me through this process with the utmost patience. Without his constant guidance, especially throughout trying and uncertain times, this project would not have materialised.

I would also like to thank Dr Willem Jooste for his expertise and camaraderie in making this submission possible. His experience in the particular field of medical education and academic writing was invaluable.

I would like to pay special acknowledgement to the support from my family, including from my fiancé Dr S Brijlall, without whom I would not have had the motivation or been able to dedicate the time required to complete this project.

Finally, I am deeply indebted to my sister, Lerissa Ekambaram, for the relentless, endless hours of content and language editing she assisted with, and for her continual love and support.
Part A: Literature Review
Background

Podcasting in Emergency Medicine (EM) is proliferating in both production and consumption in the current age of technology and social media [1]. However, its questionable influence on current university curricula, as well the educational benefits and potential downsides of podcasting in EM have not been well documented [2].

This review serves to examine current literature regarding the podcast-usage trends of training EM specialists by examining the parallel origins and development of medical education and information technology; a partnership that led to the field of online medical education and, ultimately, podcasting in EM.

Methods

This review comprises two sections:

- **Section A** – a brief review on the history and development of online medical education and the technology that supports/facilitates it
- **Section B** – a deeper dive into the specific role that educational podcasts play in the medical subspeciality of Emergency Medicine.

For **Section A** we conducted a semi-structured review from a wide variety of sources including popular internet search engines, online newspaper articles, company product pages and scholarly articles. Our initial search terms included (“Medical Education” OR “Technology” OR “Online Education” OR “Podcast” OR “Medical Podcast” OR “Educational Podcast”) but was later refined and guided by results of preceding searches.

For **Section B** we searched the medical literature using common databases: MEDLINE, Science Direct, and SCOPUS in combination with Google Scholar. The initial search-string used was (“Podcast” OR “audio-blog” OR “Podcasting”) AND (“Emergency Medicine”) AND (“trainee” OR “registrar” OR “resident”). Additionally, we conducted a review of references from included articles in conjunction with alternate search strategies to augment the pool of relevant literature. The resulting articles were included if they reported the presence of a podcast in emergency medicine, the study population included registrars, and they were published in English. Papers were initially excluded upon review of their title and abstracts. A second round of articles were excluded upon review of the full text. Data extraction methodology was applied to the remaining papers (Appendix).
Section A – Online Medical Education

Origins of Medical Education

The changing zeitgeist of medicine, in concert with the progression of civilisation, has led to the evolution of medical education over the centuries.

The earlier, limited sharing of the insights of Charaka around 500 B.C on the practice of Ayurveda in Sanskrit medical texts, and the translation of Greek and Arabic manuscripts by Constantine in the 10th century, transitioned to the establishment of Universities with formal, centralised teachings during the 16th-17th centuries [3,4]. These transformations endeavoured to serve the needs of populations that were both continuously growing and ageing - gaining in medical complexity.

The 21st century heralded the present era of electronic-learning and social media, inducing the metamorphosis of medical education; from the static and linear sharing of information into more dynamic, decentralised and agile methods of education [5].

Information Technology and Medical Education

Technology has impacted the face of medicine through two main avenues – playing a role in the advancement of medical education and in supporting healthcare itself [5]. The general advancement of medical education is dependent upon the availability and access to medical knowledge which, in turn, is commensurate with the available technology supporting the sharing of information. Subsequently, we can infer that the progression of medical education is precluded, to some degree, by the advancements in information technology; as seen by a trend from printed textbooks and didactic lectures into blog posts and podcasts [6].

During the initial phases of the internet, students were mainly limited by data-transfer speeds. Tamm et al. [7] noted the challenges in using 33.6 kilobytes per second (kb/s) dial modems, which limited the size of digital-audio files that could reliably be distributed over the internet to 1.5 megabytes (mb), when attempting to combine static radiology images with audio for lectures. It became apparent that widespread adoption of information technology in education would require two main things: faster transfer speeds, and smaller file sizes.

Digital audio-compression

The desire to store and disseminate media to reach a global market was not unique to education, being initially explored by the entertainment industry [8]. Built and based upon a series of advancements into the physics of sound and frequencies inaudible to humans, the concept of ‘lossy audio’ sparked research and development into digital audio compression – culminating in the creation of the popular MPEG Layer 3 (MP3) digital-audio file format [9–11].
Utilising this form of compression, it became possible to fit an entire song onto a single floppy disc, and then multiple onto a CD-ROM (compact disc read-only memory) [12]. For medical trainees, and the general population alike, this paved the way for easier access to multimedia content.

Portable Digital-Audio File Players

Although neither the first nor the last to do so, Apple’s widely popular iPod improved portability in the world of recorded audio – adding to the already-enticing digitisation age [13,14]. Apple’s first iPod, released in 2001, boasted a 5-gigabyte hard drive for storage of music [15]. Like many other MP3 players of its time, the first-generation iPod could store and play multiple digital-audio formats. With these conveniently pocket-sized devices, users could not only store thousands of compressed audio files, but also listen in crisp, near-lossless audio quality wherever they were.

These developments would serve to kindle the industry of podcasting, catalysed by a market primed for the easily consumable sharing of information and perpetuated by ongoing innovations in the world wide web (Web 2.0); spawning the commensurable relationship between the industry of podcasts and medical education.

Online Education

The appeal of using the internet for education by students (online learning) includes a reduction in costs such as commuting and accommodation, an increase in the flexibility of time and commitments, and the opportunity to easily access and network with colleagues beyond country and continental barriers [16].

Online education can be divided into two categories: synchronous and asynchronous learning [17]. Synchronous electronic learning (e-learning) is a form of education where the instructor, trainee and classmates interact with each other, at the same time, in a shared online space. Contrastingly, asynchronous e-learning may take place at any time, through a variety of online channels, and does not require direct interaction between participants.

Asynchronous Education in Medicine

In the ensuing technological age, asynchronous platforms of learning in medical education would begin to thrive; born of the necessity to resolve the disparity between the growing demands of clinical medicine and the methods of traditional medical education [18]. Didactic lectures and the structured, unidirectional, communication of knowledge were always destined to fall short of fulfilling the demands placed upon students by the relentless pace required to grow their expertise to satisfactorily engage with growing curricula [19].

This perceived knowledge-translation gap created a niche for asynchronous learning, which trainees could inquire into and utilise as an educational supplement, running independently of their structured syllabus.
Perhaps the earliest record of asynchronous digital medical education is in the 1960s when general practitioners used recorded didactic lectures as continuing medical education (CME) [20]. More recently, a study of EM trainees in California confirmed non-inferiority on their in-training exam scores when 25% of their didactic, synchronous-education time was replaced with an asynchronous curriculum [21]. Ultimately, social media – and its exponential growth during the age of information technology – would further cement the role of asynchronous learning in medical education [22].

The Free Open-Access Medical Education movement (FOAMed)

Another resource serving as an important lure to medical students is the Free Open-Access Medical education (FOAMed) movement [23]. Primarily spearheaded by clinicians motivated by their frustration with the vast translation gap between emerging medical knowledge and clinical practice, this movement provided a useful adjunct to traditional medical teachings. Medical education was transitioning; from a primarily institution-driven, instructional, didactic teaching format, into something more decentralised, personal, and democratic.

FOAMed resources are more accessible and portable than their traditional counterparts, allowing trainees to educate themselves using resources immediately available, and best suited to their real-time needs; depending upon their ability to engage with social media. The FOAMed bouquet is seemingly limitless, and while some resources contain mainly text, images and animations (viz. Blog sites, Twitter feeds, online textbooks and Facebook pages), other resources rely heavily on the use of multimedia (viz. YouTube channels and Podcast shows) [24–26].

Podcasts

The word podcast – a portmanteau coined by Ben Hammersley [27] – refers to recorded digital-audio segments, made available episodically, for download or live-streaming. Podcasting neither requires an ‘iPod’ nor ‘broadcasting’, although stemming from these root words. Other less popular words encompassing the concept of podcasts include blog-casting, audiocasting and audio-blogging [27].

The podcasting continuum can be separated into production and consumption. Educational podcasts are typically recorded by the podcaster (podcast creator) in a suitable environment, undergo editing and processing, uploaded to an internet service where they are hosted after being tagged with metadata for Really Simple Syndication (RSS) feeds, and then submitted to a streaming service where they are distributed.

Users are then able to browse these streaming services via the web or a smartphone app, and select podcasts by show, episode, content, or producers (Figure 1).
Podcasts, as medical resource, were generated – and in-use – before social media platforms were adopted en masse [31].

The first generation of medical podcasts were used predominantly by major medical journals to provide content – ranging from issue summaries to news, marketing, and interviews with authors of included papers – to current and potential journal subscribers [32]. The episodic nature of podcasts lent itself well to the issue releases from these journals. This initial form of podcasting was seen as static – due to the lack of interactivity between podcaster and listener – and as a result, medical educationalists began to explore the use of podcasts to deliver recorded didactic lectures to their students via online platforms [33].
With the coordination and coverage afforded by social networking platforms coupled with the growing internet community, the role of podcasting in medicine would fundamentally alter; its original function of marketing medical journals evolving into a second generation of podcasts that promise more independent, and autonomous, methods for de novo medical education [34,35].

Generational Learners and their Learning Styles

In 2020, the typical postgraduate EM trainee belongs to Generation Y (Born 1981 – 1996, also known as millennials) [39,40]. Being born into an era of information technology, with constant exposure to its influences and benefits throughout their lives, Alison Black [41], a leading educationalist, suggests that millennials have been primed to expect fast-paced solutions and explanations on-demand. Consequently, millennials find the concept of searching through numerous physical resources extraordinarily inefficient and unfavourable. Additionally, this cohort of medical trainees prefer personally relevant material, while favouring educational content that is both high-yield and entertaining [42,43].

"Journalists have linked this online podcasting boom to the ubiquity of smartphones, time spent in transit, and online music services. Others attribute it to the brain-stimulating and addictive effects of audio learning, or the multitasking potential of listening. The beauty is in the overlap."

- Jeff D Jardins, Editor-in-Chief of Visual Capitalist
Section B – Podcasting in Emergency Medicine

Origins of Emergency Medicine

EM, as a recognised medical speciality, is one of the youngest to be admitted to a bouquet of medical postgraduate training programs. From its probable conception during the 1960s, to its official recognition in the United States of America (USA) in 1979, the speciality of EM would continue to expand during the coming decades; finally reaching Sub-Saharan shores via South Africa in 2004 [36–38].

Prevalence of Emergency Medicine Podcasts

There is no universal definition as to what constitutes an EM podcast. In much the same way that medical specialities contain their own emergencies, medical podcasts of various medical specialities accommodate content regarding emergencies related to their respective fields. For example, emergencies in paediatrics could be found in both paediatrics and EM. Therefore, a podcast focused on the paediatric speciality may cover topics relevant to paediatric EM but may not be specifically listed as an EM podcast.

Consequently, with the definition of an EM podcast being nebulous and flexible, using an automated, term-based search engine becomes problematic. Unless the podcaster includes the tag of ‘emergency medicine’ in the metadata upon upload to the host server, podcast cataloguing sites may fail to capture these and present them in a user search. Additionally, there are too many podcast servers and no single regulatory body of educational podcasts to peruse. Subsequently, there proved to be very few academic texts reporting, specifically, on the prevalence of academic emergency medicine podcasts.

Nevertheless, in 2019, Little et al. [44] conducted a Google-based search for educational, medical podcasts using the search-string “podcasts in ________”; where each medical speciality was inserted. The results from each search for the first 50 pages were then evaluated manually. They found that emergency medicine boasted the highest number of active podcasts (n=28), with a total of 2 434 episodes – the next highest being Internal Medicine with only 13 active podcast shows totalling just 1 374 episodes. Active podcasts being defined as any podcast with an episode released within the past 6 months of the search [44].

As a programme in its infancy, EM has a less well-established hierarchy of medical education compared to its counterparts. Around the same time that EM was gaining traction as a medical speciality, podcasting began increasing in popularity in education. Welcoming the opportunity to support a synchronous curriculum with an asynchronous component, it is likely that a kinship formed between EM and educational podcasting - residing under the broader umbrella of FOAMed – leading to the described popularity of podcasting in EM.

Utilisation Measures

Measuring the number of people who consume podcasts, or their usage patterns, is another complicated endeavour. Studies represent this value in different ways; some categorise ‘usage’ as a qualitative variable,
and those who consider it quantitative measure it by using varied qualifiers. Essentially, there is little homogeneity in existing literature from which to draw definite conclusions.

We found three articles that classified the utilisation of podcasts by qualifying podcast-users as registrars who access podcasts at least once a month. Purdy et al. [45] and Riddell et al. [46] – both studies from North America – listed the prevalence of podcast-usage among participants, ranging from 88.8% to 90%. The third study, by Thurtle et al. [47], reported only on the popularity of specific EM podcasts, but with an unknown qualifier. Additionally, their reported podcast-usage varied by the nationality of participants; 0% for Papua New Guinea, and one out of four for Botswana registrars.

Furthermore, a South African study reported that 21% of the surveyed division of EM in Cape Town used podcasts [48].

Methods of Access

Riddell et al. [46] found that most of their respondents (91.4%) listen to podcasts on their smartphone in the only study to explicitly report on preferred method of access to EM podcasts by trainees.

Although not reporting explicitly on podcasts, Kleynhans et al. [48] reported that desktop computers and laptops were the preferred mode of access to all online educational resources, while smartphones were the more popular option to interact with social media in their South African population.

Ideal Podcast Duration

In the only identified study with information on the preferred length of podcasts, the preponderance of registrars stated their ideal podcast would be 11-30 minutes [46]. Little et al. [44] calculated the average EM podcast episode to be 36.6 minutes long [40].

During semi-structured interviews with EM residents from the USA, respondents reported often choosing their podcasts by comparing the length of the podcast episode with the perceived free time they have between commitments, or during compatible planned activities (such as a commute to work or a regular jog) [49]. Interestingly, they admitted to pausing podcasts when the allotted time ended; preventing continuous, attentive and concentrated engagement to achieve deep understanding. Although the studied registrars acknowledged the negative aspects, and possible lost benefits, of these sporadic, irregular and staccato listening experiences, they nevertheless hoped they would gain some cumulative educational advantage from participating in them [49].

Reasons for Emergency Medicine Podcast-Usage

Purdy et al. [45] reported that the most popular reasons for EM registrars attempting to access podcasts as an educational medium were to gain auxiliary information on core EM knowledge (98%), procedural skills (95%) and studying diagnostic imaging (92%). Podcast-usage for Just-in-time teaching (JiTT) proved a popular theme for North American-based EM registrars [45,50–52].
Respondents selected podcast episodes using the following guides and criteria: peer or faculty referral, duration compatibility with upcoming activities, entertainment value, benefit toward exam-preparation and as primers for new broad topics and medical language [45,46,49,50].

Residents reported incomplete or curtailed listening if they were distracted or found the podcasts too long, too boring or of poor quality [46,49].

The advantages and disadvantages of podcast-usage, compared to traditional methods, as presented by the reviewed literature, are given by Figure 2.

Barriers to Use

Although there are several free podcasts available for download, many hosting platforms require a paid subscription (to a website, journal, or academic course) to access their body of podcasts – which may be more valuable for students to consume. It is for this reason, and that of podcast-listeners requiring both internet connectivity and suitable listening devices, that Cho et al. [53] cites cost as a factor in why users may not listen to podcasts.

Additionally, Kleynhans et al. [48] found that a lack of electricity or access to the internet are other reasons given by EM personnel for not using podcasts. However, Thurtle et al. [47] noted that it was lack of awareness, rather than access, that precluded podcast usage. Interestingly, these limitations were not shared among participants from the included North American papers [45,46,49,50].

A universal impediment to podcast-usage was its inability to be context-specific [47–49].

Cost and feasibility of producing an EM podcast

At a minimum, creating an EM podcast requires recording hardware and software, editing software, and sufficient internet connectivity to upload to a podcast hosting service. To consume podcasts, the user would simply need a device capable of processing media-files and internet-connectivity to download or stream the podcast (Figure 1).
Free editing software (such as Audacity, http://www.audacityteam.org/) is readily available for download, and relatively easy to operate. Various online platforms allow authors to distribute their material free of charge; iTunes, YouTube, and Facebook are a few examples. Hosting services range from freemium (free, with restrictions) to paid subscriptions – of which there are low-cost options [54].

Quality Assurance

Mallin et al. [50] reported that their studied EM registrars rarely (36.4%), and never (5.9%), evaluated the quality of the evidence referenced in a podcast episode. Only 77% of the registrars surveyed by Purdy et al. [45] thought that references in a podcast were necessary. Furthermore, Riddell et al. [49] noted that even when podcasts references were listed, registrars seldom reviewed them.

The social networking nature of educational podcasts leads to difficulties in determining their quality and impact. The freedom afforded by the podcasting-continuum often means that podcast creators have carte
blanche over their content, scope and delivery, without having to undergo review before publication. To date, there exists no standard quality assessment instrument for educational podcasts and FOAMed resources in general, placing the burden of proving the quality of these podcasts upon the user [55].

Current social networking metrics – including Facebook likes, Twitter retweets and Alex Rank [56] – typically place podcasts with a superior popularity-ranking higher up on a user-search results list [57]. Additionally, and correspondingly, user-reviews of podcasts have no standard template for critique and may result in a biased categorisation.

However, as experts in EM tend to be respected and popular among the FOAMed community, it is assumed that the content they review and share is likely of a higher quality. Thoma et al. [58] likened this concept to that of traditional, scientific peer review of published articles. This led to their development of the Social Media Index (SMi) as a quality measure of FOAMed resources; with a function analogous to that of the Journal Impact Factor (JIF) used for traditional medical journals.

Benefits of podcast-usage in EM

Two studies reported on the benefits of podcast-usage by using surrogate markers. Purdy et al. [45], reported that more respondents read studies in full (72%), and read more critical appraisals (79%), because of being able to access these materials through podcasts. Likewise, 72.2% of registrars studied by Riddell et al. [46] reported having changed their practice due to the influence of podcasts.

In a study by Mallin et al. [50], when simply asked if they found podcasts beneficial, 70.3% of residents replied in the positive.

Influence of level of training

According to the semi-structured interviews conducted by Riddell et al. [49], as the registrars’ educational needs and experiences matured with time, many acknowledged a change in their listening habits; becoming more selective about content.

Purdy et al. [45] reported that a significantly larger number of residents used podcasts when compared to programme directors (90% v. 45%, p < 0.01). While not explicitly mentioning podcasts, or level of training, Kleynhans et al. [48] found a difference in social media usage between respondents under the age of 30 (94.4%) when compared with those over 35 (68.2%).

We could posit that these differences are the result of two prominent factors: a higher degree of comfort in accessing and navigating technology, social media and podcasts by the younger generation, and the receptiveness of millennial learners to asynchronous online education.

EM Podcasting in Southern Africa

Our google search for ‘Emergency Medicine podcast in Africa’ resulted in a handful of internationally based podcasts with episodes that pertain to the practice of EM in Africa. One such podcast is The #badEM podcast
[59] - hosted on SoundCloud (https://soundcloud.com); a second generation medical podcast focussed on Emergency Care in Africa, linked to the popular blog site Brave African Discussions in Emergency Medicine (#badEM) [60]. At the time of writing, SoundCloud hosts just two episodes from #badEM, with the last episode being published in October 2019.

Our search failed to return more results for active, locally produced, African EM educational podcasts.

Identification of gaps of needs for Further Research in Southern Africa

The following are some identified gaps for further investigation among EM registrars in Southern Africa:

- Current podcast-use characteristics – including prevalence, reasons for use and barriers to use
- Preferred podcast content
- Desired podcast format – including content-delivery and length preference
- Willingness to consume a locally produced, context-specific Southern African EM podcast.

Conclusion

Global podcast-usage – as an asynchronous educational adjunct – is popular among Emergency Medicine registrars. The value of podcasts to the current generation of learners, and those to come, increases in accordance with the importance and relevance of asynchronous education in Emergency Medicine. Targeted, context-specific inquiry into the EM podcasting continuum is imperative as Emergency Medicine continues to grow as a speciality across the world - Southern Africa being no exception. Finally, to better align podcast content with user needs, further research is required to elucidate the preferred podcast-usage characteristics of Emergency Medicine learners, including the benefits and risks of long-term educational podcast-usage.
References

List of Figures

Figure 1 Basic schematic of the social-podcasting-continuum... 6
Figure 2 Venn diagram of studies including information on advantages and disadvantages of podcast-usage. .. 11
Appendix. Data Extraction Table

<table>
<thead>
<tr>
<th>AUTHOR(S)</th>
<th>YEAR</th>
<th>TITLE</th>
<th>STUDY TYPE</th>
<th>COUNTRY</th>
<th>STUDY POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdy et al.</td>
<td>2015</td>
<td>The use of free online educational resources by Canadian emergency medicine residents and program directors</td>
<td>Survey</td>
<td>Canada</td>
<td>Residents (n = 214)</td>
</tr>
<tr>
<td>Mallin et al.</td>
<td>2014</td>
<td>A Survey of the Current Utilization of Asynchronous Education Among Emergency Medicine Residents in the United States</td>
<td>Survey</td>
<td>United States of America</td>
<td>Residents (n = 219)</td>
</tr>
<tr>
<td>Kleynhans et al.</td>
<td>2016</td>
<td>Emergency medicine educational resource use in Cape Town: modern or traditional?</td>
<td>Survey</td>
<td>South Africa</td>
<td>Faculty and Postgraduate students at division of EM, Cape Town (n = 87); Registrars (n = 34)</td>
</tr>
<tr>
<td>Riddell et al.</td>
<td>2016</td>
<td>A Survey of Emergency Medicine Residents' Use of Educational Podcasts</td>
<td>Survey</td>
<td>United States of America</td>
<td>Residents (n = 356)</td>
</tr>
<tr>
<td>Little et al.</td>
<td>2020</td>
<td>Podcasting in Medicine: A Review of the Current Content by Specialty</td>
<td>Google-based investigational search literature review</td>
<td>Global</td>
<td>A google-based search of all podcasts in medicine</td>
</tr>
<tr>
<td>Riddell et al.</td>
<td>2020</td>
<td>Independent and Interwoven: A Qualitative Exploration of Residents' Experiences With Educational Podcasts</td>
<td>Semi-structured interviews</td>
<td>United States of America</td>
<td>Residents (n=16)</td>
</tr>
<tr>
<td>Thurtle et al.</td>
<td>2015</td>
<td>Free Open Access Medical Education resource knowledge and utilisation amongst Emergency Medicine trainees: A survey in four countries</td>
<td>Survey</td>
<td>Australia, United Kingdom, Papua New Guinea</td>
<td>Registrars (n = 44)</td>
</tr>
</tbody>
</table>
Appendix. Data Extraction Table Continued

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Prevalence of Podcasts</th>
<th>Prevalence of Podcast-usage</th>
<th>Reasons for Use</th>
<th>Reasons for Non/Cautionary Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdy et al.</td>
<td>Podcasts (90%), Vodcasts (71%) usage by respondents at least once a month</td>
<td>Core EM Education (98%); Procedural Skills (95%); Diagnostic/Imaging Interpretation (92%); JITT (86%); Investigating controversial topics (82%)</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Mallin et al.</td>
<td>Respondents spent 35% of the extracurricular time on podcasts</td>
<td>Timesaving; Entertaining; Peer reviewed; Interactive; up to date; Free; Practical Learning; Revision for exams;</td>
<td>Mostly people’s opinions; Time consuming; no awareness; internet and electricity concerns; bandwidth restriction; read and retain faster than video</td>
<td></td>
</tr>
<tr>
<td>Kleynhans et al.</td>
<td>Podcasts (21%); YouTube (35%)</td>
<td>Keep with current literature (88.5%); Learn EM core content (70.2%); Portability (66.9%); Learn while doing something else (65.5%); Ease of use (66%)</td>
<td>Respondents stopped listening if: Too boring (57.9%); Not high quality (57.9%); Too long (55.2%)</td>
<td></td>
</tr>
<tr>
<td>Riddell et al.</td>
<td>Podcasts used by 88.8% of respondents at least monthly; Once a week (48%)</td>
<td>Described usage patterns into three themes: Opportunistic engagement (accessibility, divided attention, entertainment); community (Podcast host, peers, faculty), personalized learning (pressure to study, exposure, fill knowledge gaps).</td>
<td>Divided attention - knowledge retention from podcasts not great; groupthink bias; Lack of context-relevant material; Fragmented learning; incomplete; passivity of the learning experience;</td>
<td></td>
</tr>
<tr>
<td>Little et al.</td>
<td>Total number of Emergency Medicine podcasts (32), Active podcasts (28). Total Episodes (2 434)</td>
<td>Not studied</td>
<td>Not studied</td>
<td></td>
</tr>
<tr>
<td>Riddell et al.</td>
<td>All (100%) of the study’s participants used podcasts for education - likely selection bias as the study set out to study those residents who use podcasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thurtle et al.</td>
<td>75% of Respondents were aware of podcasts. Use of podcasts at least once a month by name: Ultrasound (9%), SmartEM (7%), ER Cast (9%), PHARM (11%), SGEM (5%). Use by country: PNG (0.0%); Botswana (1, 25%)</td>
<td>Lack of access [1 (25%) Botswana respondents]; Not Easy to Navigate [1 (4%) of Australian respondents]; Do not trust content [2 (20%) of UK respondents, 2 (9%) of Australian respondents]</td>
<td>not studied</td>
<td></td>
</tr>
</tbody>
</table>
Appendix. Data Extraction Table Continued

<table>
<thead>
<tr>
<th>AUTHOR(s)</th>
<th>QUALITY METRICS</th>
<th>CHOICE OF TOPIC</th>
<th>BENEFITS OF PODCAST-USAGE</th>
<th>LENGTH</th>
<th>METHODS OF ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdy et al.</td>
<td>77% of residents thought references where important</td>
<td>JITT (86%); Investigating controversial topics (82%); Entertainment value (41%); Peer referral (50%)</td>
<td>72% read studies in full; 79% read more critical appraisals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallin et al.</td>
<td>36.4% rarely and 5.9% never evaluate the quality of evidence</td>
<td>80% based on recent clinical encounters</td>
<td>70.3% reported podcasts as beneficial</td>
<td></td>
<td>Computers (desktop and laptop) were most frequently used to access educational resources except for social media where smartphones were preferred.</td>
</tr>
<tr>
<td>Kleynhans et al.</td>
<td>None listed</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riddell et al.</td>
<td>Peer referral (88.7%); Faculty referral (65.7%)</td>
<td>Podcasts change their clinical practice (72.2%)</td>
<td>84.6% reported ideal length <30m</td>
<td></td>
<td>Smartphones (91.4%)</td>
</tr>
<tr>
<td>Little et al.</td>
<td>Not studied</td>
<td>Not studied</td>
<td>36.6m average per episode; 1 485 hours of content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riddell et al.</td>
<td>Sometimes performed literature review/search after listening to a podcast</td>
<td>Primers for broad topics; based on perceived length of an activity that can be done simultaneously</td>
<td>Related to daily activities that can be done simultaneously with podcast consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thurtle et al.</td>
<td>Not studied</td>
<td>Not reported – just lists popular podcasts used</td>
<td>Not reported</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stellenbosch University https://scholar.sun.ac.za
Part B: Manuscript in Article Format

African Journal of Emergency Medicine (AfJEM)
An electronic survey of preferred podcast format and content requirements among trainee Emergency Medicine specialists in four Southern African Universities

K Ekambarama; HH Lamprechta,b; V Lallooc; N Carusod; A Engelbrechte; W Joostef

a Division of Emergency Medicine, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
b Division of Emergency Medicine, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
c Division of Emergency Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
d Division of Emergency Medicine, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
e Division of Emergency Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
f New Somerset Hospital, Cape Town, South Africa

Corresponding author:

hl@sun.ac.za

Division of Emergency Medicine, Office No. 7076, Clinical Building, Faculty of Medicine and Health Sciences, University of Stellenbosch Tygerberg Campus, PO Box 241, Cape Town, 8000, South Africa

Word Count: 2905

Table/Figure Count: 5
Abstract

Introduction

Global usage of educational Emergency Medicine (EM) podcasts is popular and ever-increasing. This study aims to explore the desired content, format, and delivery characteristics of a potential educational, context-specific Southern African EM podcast, by investigating current podcast usages, trends and preferences among Southern African EM registrars of varying seniority.

Methods

We developed an electronic survey - using a combination of existing literature, context-specific specialist-training guidance, and input from local experts – exploring preferred podcast characteristics among EM registrars from four Southern African universities.

Results

The study's response rate was 75%, with 24 of the 39 respondents being junior registrars. Ninety-four percent (94%) of respondents used EM podcasts as an educational medium: 64% predominantly using podcasts to supplement a personal EM study program. The primary mode of accessing podcasts was via personal mobile devices (84%). Additionally, respondents preferred a shorter podcast duration (5–15 minutes), favoured multimedia podcasts (56%) and showed an apparent aversion towards recorded faculty lectures (5%). Eighty-two percent (82%) of respondents preferred context-specific podcast content, with popular topics including toxicology (95%), cardiovascular emergencies (79%) and medico-legal matters (74%). Just-in-Time learning proved an unpopular learning strategy in our study population, despite its substantial educational value.

Conclusion

Podcast-usage proved to be near-ubiquitous among the studied Southern African EM registrars. Quintessentially, future context-specific podcast design should cater for mobile device-use, shorter duration podcasts, more video content, context-specific topics, and content optimised for both Just-in-Time learning.

Keywords

Emergency Medicine; Online education; Podcasts; FOAMed; asynchronous online learning.
African relevance

- Educational Emergency Medicine (EM) podcasts are widely available and increasing in popularity globally - including in Southern Africa.
- Many of the globally available EM podcasts lack the content and delivery characteristics specific to the Southern African EM context.
- Until now, precise user-uptake, usage and access trends, and the preferred podcast characteristics of EM podcasts in Southern Africa remained unexplored.
- This study demonstrates the desirability of educational, context-specific Southern African EM podcasts and presents several noteworthy observations for prospective podcast developers and educationalists in creating such podcasts.
Title
An electronic survey of preferred podcast format and content requirements among trainee Emergency Medicine specialists in four Southern African Universities.

Introduction
For the current generation of training emergency medicine (EM) specialists, the popularity of traditional teaching platforms – such as overhead projector slides, didactic PowerPoint lectures and seminars – is diminishing [1]. Social media, and the Free Open-Access Medical education (FOAMed) movement, has brought life to various methods of asynchronous online-learning [2]. Blog sites, Twitter feeds, YouTube channels, Facebook pages and Podcast shows are a few examples of online multimedia platforms where medical education is consumed and actively participated in.

Podcasts are recorded digital-audio segments, made available episodically for download or live streaming [3]. Their benefits in medical education have been well documented [4,5]. Podcasts also provide an excellent source of asynchronous and self-directed learning [6]. There is a significant and growing body of emergency medicine (EM) podcasts available [7].

At least 88% of EM registrars, in a survey of training programs across the United States of America (USA), reported listening to podcasts at least once a month [8]. The two most popular reasons for podcast consumption were to keep up with current literature and review core EM knowledge. Importantly, 70% reported changing their clinical practice based on their exposure to podcast content.

Podcasts – as an e-learning tool – may prove to be well-suited to the current Southern African Generation Y EM trainees [9]. Podcasts’ effectiveness as an educational medium is associated with how well the content aligns with the perceived needs of its listeners [10]. Additionally, She et al. [11] suggested that the creation of an asynchronous curriculum is both feasible and effective for EM trainees. Therefore, a context-specific podcast, developed for the educational needs of Southern African EM trainees, could both directly engage and benefit its audience.

Contrary to popular belief, Matt Brown Media [12] demonstrated that, of the 15 682 South African citizens surveyed, only 10.2% cited a lack of access as a barrier to podcast consumption. Likewise, Thurtle et al. [13] showed that it is not a lack of access, but rather a lack of awareness, that is the primary barrier to medical podcast-usage in other African countries.

Currently, there is limited data on the use and benefits of educational podcasts in Southern Africa. After surveying the use of online-educational multimedia in the division of Emergency Medicine in Cape Town (EMCT), Kleynhans et al. [14] reported that only 21% used educational podcasts, despite more than 50% accessing some form of online educational resource at least once a month.
This study aims to explore the optimal content, format, and delivery characteristics of a potential educational, context-specific Southern African EM podcast, by investigating current podcast usage, trends and preferences among Southern African EM registrars of varying seniority.

Methods

The study used a cross-sectional electronic survey to explore current podcast usages, trends and preferences of EM registrars from one of four Southern African universities.

Study Population

The study population includes registrars from EM specialist training programmes who were officially registered for the four-year Master of Medicine (MMed) offered by the following Southern African universities during the 2019 and 2020 academic years:

- The University of Botswana (UB) (n = 5),
- The University of Cape Town (UCT) (n = 18),
- The University of Pretoria (UP) (n = 12), and
- The University of Stellenbosch (SU) (n = 17).

We define EM registrars as doctors currently working in a specialist training post in EM; junior registrars as first or second year of training, and senior registrars as years three or above.

Survey Development

Matava et al. [10] conducted a similar study on Canadian Anaesthesia registrars. We obtained permission to adapt their questionnaire to the Southern African EM context by using the syllabus of the Faculty of the College of Emergency Medicine South Africa (FCEM-SA) [15,16]. The blueprint of this syllabus guides training at the universities surveyed.

From this, identified potential podcast-topics were separated into four groups: practical, basic-science, clinical and professional. Additional professional topics were proposed by the investigators, who were lecturers in the universities’ MMed programs.

The survey was reviewed for content and face validity by an educationalist and EM specialist from SU and UCT, respectively. The final survey (Appendix) explored the following:

- Current podcast-use characteristics,
- Preferred podcast topics (listed above),
- Desired podcast format (including content-delivery and length preference), and
- The willingness to consume a context-specific Southern African EM podcast.
Survey testing

The survey instrument required no alteration after pilot testing on two EM registrars from UCT who assessed for clarity and user-friendliness. While we excluded the results of the pilot survey from the final data analysis, both EM registrars were sent the final survey for completion.

Survey Administration, Distribution and Data Collection

We obtained approvals from the SU Health Research Ethical Committee (Ref no: S19/09/194) and the included institutions. A hyperlink to the online survey was provided to the relevant MMed division heads, who distributed it to their EM registrars.

After consenting, respondents were directed to the electronic survey administered via the personal, password-protected Google Forms (Google Inc.) account of the primary author.

Responses were collected anonymously and without potentially identifiable information. Collected demographic information included only the year of study and current university affiliation. We collected responses from February to April 2020; sending regular one-monthly reminders to increase response rates. Data analysis included incomplete responses.

Data analysis

Survey data was exported to Microsoft Excel (Microsoft Co.) for analysis. Descriptive statistics were used to summarise categorical data and the two-tailed Fisher's exact test to analyse nominal data. A p-value < 0.05 was regarded as statistically significant.

The response rate calculation was based on total eligible responders and included partially completed survey responses.

Results

Thirty-nine registrars responded (75% response rate), with the most (n = 14) from UCT (Figure 1).

![Figure 3](https://scholar.sun.ac.za)
The prevalence of medical podcast-usage was 95%, with 65% of respondents devoting 1–4 hours a week to podcast consumption. Eighty-two percent of respondents accessed content from a mobile device. Desktop/laptop use (both streaming and downloading) was less preferred (Table 1).

Table 1 Podcast use characteristics by the level of training

<table>
<thead>
<tr>
<th></th>
<th>Junior Registrars (n=24)</th>
<th>Senior Registrars (n=15)</th>
<th>Total Respondents (n=39)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods used to view podcasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stream directly via a portable device</td>
<td>13 (54%)</td>
<td>7 (47%)</td>
<td>20 (51%)</td>
<td>0.23</td>
</tr>
<tr>
<td>Download on a portable device</td>
<td>11 (46%)</td>
<td>8 (53%)</td>
<td>19 (49%)</td>
<td>0.23</td>
</tr>
<tr>
<td>Stream directly via desktop/laptop online</td>
<td>3 (13%)</td>
<td>4 (27%)</td>
<td>7 (18%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Download on desktop/laptop for offline use</td>
<td>3 (13%)</td>
<td>4 (27%)</td>
<td>7 (18%)</td>
<td>0.18</td>
</tr>
<tr>
<td>I do not review podcast material</td>
<td>1 (4%)</td>
<td>1 (7%)</td>
<td>2 (5%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Manner in which podcasts are used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As part of your personal EM study program</td>
<td>18 (75%)</td>
<td>7 (47%)</td>
<td>25 (64%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Revision for assessments</td>
<td>8 (33%)</td>
<td>8 (53%)</td>
<td>16 (41%)</td>
<td>0.13</td>
</tr>
<tr>
<td>Introduction of new EM curriculum topic</td>
<td>11 (46%)</td>
<td>4 (27%)</td>
<td>15 (38%)</td>
<td>0.14</td>
</tr>
<tr>
<td>Post clinical shift review</td>
<td>8 (33%)</td>
<td>2 (13%)</td>
<td>10 (26%)</td>
<td>0.12</td>
</tr>
<tr>
<td>Pre-procedural or real-time case review during clinical shift</td>
<td>4 (17%)</td>
<td>2 (13%)</td>
<td>6 (15%)</td>
<td>0.34</td>
</tr>
<tr>
<td>I do not use medical podcasts</td>
<td>1 (4%)</td>
<td>1 (7%)</td>
<td>2 (5%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Favoured podcast type by learning preference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multimedia podcasts (audio with still images or slideshow)</td>
<td>13 (54%)</td>
<td>9 (60%)</td>
<td>22 (56%)</td>
<td>0.24</td>
</tr>
<tr>
<td>Podcast with accompanying PDF / Blog posts</td>
<td>13 (54%)</td>
<td>6 (40%)</td>
<td>19 (49%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Audio only podcasts</td>
<td>10 (42%)</td>
<td>7 (47%)</td>
<td>17 (44%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Video podcasts</td>
<td>13 (54%)</td>
<td>1 (7%)</td>
<td>14 (36%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Recorded faculty lectures</td>
<td>1 (4%)</td>
<td>1 (7%)</td>
<td>2 (5%)</td>
<td>0.49</td>
</tr>
<tr>
<td>I am not interested in medical podcasts</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td>1 (3%)</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Sixty-four percent of the respondents used podcasts as a part of their EM study plan, and 41% used podcasts to revise for formal assessments. Only 15% used podcasts immediately before a case or procedure while on a clinical shift.

Fifty-six percent of respondents preferred podcasts with multimedia content – audio with accompanying still images or slideshows. Podcasts with show-notes (portable document format (PDF) or blog posts) interested 49% of respondents, while recorded didactic lectures were the least popular (5%).

Junior registrars, when compared to senior registrars, preferred video podcasts (54% v. 7%, \(p = 0.002 \)). A higher proportion of junior registrars also preferred to use podcasts as a part of their EM study program (75% v. 47%, \(p = 0.057 \)), while senior registrars preferred to use podcasts to revise for assessments (53% v. 33%, \(p = 0.125 \)).

Reasons for failure to regularly use podcasts included a lack of available time (38%, 3/8) and a lack of familiarity with accessing course content via podcasts (25%, 2/8). A solitary respondent reported having no access to a listening or viewing device.

The ranking of respondents’ preferred podcast topics is reflected in Table 2.

Table 2 Preferred podcast topics by level of training

<table>
<thead>
<tr>
<th>Practical topics</th>
<th>Junior Registrars (n=24)</th>
<th>Senior Registrars (n=15)</th>
<th>Total Respondents (n=39)</th>
<th>(p) values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator management</td>
<td>18 (75%)</td>
<td>14 (93%)</td>
<td>32 (82%)</td>
<td>0.13</td>
</tr>
<tr>
<td>Basic critical care and resuscitation skills (e.g. Rapid sequence induction; airway management)</td>
<td>18 (75%)</td>
<td>11 (73%)</td>
<td>29 (74%)</td>
<td>0.29</td>
</tr>
<tr>
<td>Ultrasound-guided procedures</td>
<td>18 (75%)</td>
<td>11 (73%)</td>
<td>29 (74%)</td>
<td>0.29</td>
</tr>
<tr>
<td>Basic orthopaedic skills (e.g. Fracture/dislocation management)</td>
<td>15 (63%)</td>
<td>12 (80%)</td>
<td>27 (69%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Trauma resuscitation (e.g. Resuscitative thoracotomy; lateral canthotomy)</td>
<td>15 (63%)</td>
<td>11 (73%)</td>
<td>26 (67%)</td>
<td>0.22</td>
</tr>
<tr>
<td>Procedural analgesia sedation</td>
<td>10 (42%)</td>
<td>11 (73%)</td>
<td>21 (54%)</td>
<td>0.04</td>
</tr>
<tr>
<td>None of the above</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td>1 (3%)</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Basic science topics

<p>| Research Methods / Biostatistics | 16 (67%) | 10 (67%) | 26 (67%) | 0.27 |
| Physiology | 16 (67%) | 9 (60%) | 25 (64%) | 0.24 |
| Pharmacology | 17 (71%) | 7 (47%) | 24 (62%) | 0.09 |</p>
<table>
<thead>
<tr>
<th>Topic</th>
<th>Preferred Podcasts</th>
<th>Weekly Podcasts</th>
<th>2 Year Podcasts</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td>14 (58%)</td>
<td>8 (53%)</td>
<td>22 (56%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Clinical Anatomy</td>
<td>11 (46%)</td>
<td>5 (33%)</td>
<td>16 (41%)</td>
<td>0.20</td>
</tr>
<tr>
<td>Professional topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Medicine in Resource-limited settings</td>
<td>19 (79%)</td>
<td>12 (80%)</td>
<td>31 (79%)</td>
<td>0.31</td>
</tr>
<tr>
<td>Medico-legal issues</td>
<td>15 (63%)</td>
<td>14 (93%)</td>
<td>29 (74%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Crisis Management</td>
<td>16 (67%)</td>
<td>11 (73%)</td>
<td>27 (69%)</td>
<td>0.26</td>
</tr>
<tr>
<td>Professionalism and ethics</td>
<td>17 (71%)</td>
<td>7 (47%)</td>
<td>24 (62%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Time Management</td>
<td>11 (46%)</td>
<td>9 (60%)</td>
<td>20 (51%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Morbidity and Mortality in the Emergency Department</td>
<td>12 (50%)</td>
<td>8 (53%)</td>
<td>20 (51%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Finance and wellbeing for Emergency Physicians</td>
<td>14 (58%)</td>
<td>6 (40%)</td>
<td>20 (51%)</td>
<td>0.14</td>
</tr>
<tr>
<td>Organ Donation in the Emergency Department</td>
<td>10 (42%)</td>
<td>9 (60%)</td>
<td>19 (49%)</td>
<td>0.14</td>
</tr>
<tr>
<td>Patient safety in the Emergency Department</td>
<td>10 (42%)</td>
<td>6 (40%)</td>
<td>16 (41%)</td>
<td>0.26</td>
</tr>
<tr>
<td>Clinical topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicology</td>
<td>24 (100%)</td>
<td>13 (87%)</td>
<td>37 (95%)</td>
<td>0.14</td>
</tr>
<tr>
<td>Cardiovascular emergencies</td>
<td>18 (75%)</td>
<td>13 (87%)</td>
<td>31 (79%)</td>
<td>0.23</td>
</tr>
<tr>
<td>Pulmonary emergencies</td>
<td>17 (71%)</td>
<td>13 (87%)</td>
<td>30 (77%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Resuscitative problems and techniques</td>
<td>18 (75%)</td>
<td>10 (67%)</td>
<td>28 (72%)</td>
<td>0.24</td>
</tr>
<tr>
<td>Acute signs and symptoms in children</td>
<td>16 (67%)</td>
<td>12 (80%)</td>
<td>28 (72%)</td>
<td>0.20</td>
</tr>
<tr>
<td>Renal and genito-urinary emergencies</td>
<td>16 (67%)</td>
<td>11 (73%)</td>
<td>27 (69%)</td>
<td>0.26</td>
</tr>
<tr>
<td>Gastrointestinal emergencies</td>
<td>14 (58%)</td>
<td>11 (73%)</td>
<td>25 (64%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Acute signs and symptoms in adults</td>
<td>14 (58%)</td>
<td>10 (67%)</td>
<td>24 (62%)</td>
<td>0.23</td>
</tr>
<tr>
<td>Infectious disease and allergy</td>
<td>15 (63%)</td>
<td>9 (60%)</td>
<td>24 (62%)</td>
<td>0.26</td>
</tr>
<tr>
<td>Gynaecological and obstetrical emergencies</td>
<td>12 (50%)</td>
<td>10 (67%)</td>
<td>22 (56%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Pre-hospital emergency</td>
<td>11 (46%)</td>
<td>9 (60%)</td>
<td>20 (51%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Emergency wound management</td>
<td>11 (46%)</td>
<td>7 (47%)</td>
<td>18 (46%)</td>
<td>0.26</td>
</tr>
</tbody>
</table>
When compared to junior registrars, a significantly higher proportion of senior registrars requested topics on procedural sedation (73% v. 42%, $p = 0.04$), medico-legal matters (93% v. 63%, $p = 0.03$) (Table 2) and a combination of both (67% v. 33%, $p = 0.04$). Conversely, junior registrars preferred pharmacology (71% v. 47%, $p = 0.09$) and ventilator management (93% v. 75%, $p = 0.13$).

There was a distinct preference for a duration of 5–15 minutes for all podcast content-delivery type categories (Figure 2a).

Figure 4 Ranking of desired podcast format. **a.** Ranking of preferred length for given podcast content delivery type by percentage of respondents. **b.** Ranking of respondents’ likelihood of listening to a podcast delivery type of an acceptable length.

Practice oral exams were the most desired content-delivery type (Figure 2b), with 62% responding that they would be ‘extremely likely’ – and a further 28% ‘likely’ – to consume this. Procedural skills showed a similar distribution, while recorded didactic lectures – together with debates or discussions – were least popular.
More than half of the respondents (24/39) felt that, in addition to links to supplementary FOAMed resources, rapid review flashcards (24/39) and multiple-choice question (MCQ) quizzes (23/39) would aid in knowledge retention. One respondent reported that podcasts alone were adequate.

Eighty-two percent (32/39) of registrars stated that they would be either ‘likely’ (18/39) or ‘extremely likely’ (18/39) to consume a context-specific Southern African emergency medicine podcast (Table 3).

Table 3 Respondents’ likelihood of watching a context-specific Southern African emergency medicine podcast

<table>
<thead>
<tr>
<th></th>
<th>Junior Registrars (n = 24)</th>
<th>Senior Registrars (n = 15)</th>
<th>Total Respondents (n = 39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely likely</td>
<td>9 (38%)</td>
<td>7 (47%)</td>
<td>16 (41%)</td>
</tr>
<tr>
<td>Likely</td>
<td>11 (46%)</td>
<td>5 (33%)</td>
<td>16 (41%)</td>
</tr>
<tr>
<td>Neutral</td>
<td>4 (17%)</td>
<td>1 (7%)</td>
<td>5 (13%)</td>
</tr>
<tr>
<td>Unlikely</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Extremely unlikely</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td>1 (3%)</td>
</tr>
</tbody>
</table>

Discussion

Our study demonstrated a near-ubiquitous use of educational podcasts among the studied EM registrars. The high prevalence (95%) of podcast-use in our study corresponds with EM registrar podcast-usage in the USA; a 2014 study reporting that 70.3% of EM registrars endorsed the use of educational podcasts, and a 2017 study reporting a podcast-usage prevalence of 88.8%, among the respective EM registrars studied [6,8]. This implication of a global trend towards increased podcast usage proves encouraging for a locally produced educational EM podcast.

Respondents in our study reported a preponderance of mobile device use for accessing podcast material. This correlates with a study by Riddell et al. [8], who found that 91.4% of USA-based EM registrars accessed podcasts via their smartphones.

Antithetically, a study of Canadian anaesthesia registrars reported that only 38% of respondents downloaded podcasts onto their mobile devices [10]. A similar study of Canadian undergraduate medical students reported they often co-browsed other desktop applications and websites while simultaneously consuming podcasts [17]. Conceivably, the unique – and often unpredictable – context of EM training programs requires an easily accessible podcast solution, available for asynchronous consumption, above a more structured, and possibly more comprehensive, desktop-based consumption schedule.

However, mobile connectivity is firmly considered the primary and preferred method of internet access across Southern Africa, thereby supporting its use for podcast consumption [18]. Additionally, smart devices
are continually gaining in storage capacity and processing power, improving their capability for multimedia consumption. Furthermore, mobile devices outnumber their desktop counterparts due to their relatively lower cost and operational requirements. Consequently, we recommend that Southern African context-specific podcasts should be optimised for both mobile connectivity and mobile device use.

Junior registrars were significantly more likely to consume video podcasts, in comparison to senior registrars (54% v. 7%, \(p = 0.002 \)). Purdy et al. [19] noted a similar finding when comparing video podcast-usage between Canadian EM residents and EM Program Directors (71% v. 27%, \(p < 0.01 \)). Correspondingly, Kleynhans et al. [14] found that at least 35% of the surveyed division of EMCT reported the use of YouTube as an educational medium. These findings suggest that younger learners may be more inclined to engage with video content. In her book, Gen Y: Who They Are and How They Learn, Alison Black [20] suggested that fast-paced video games and access to online video sharing since childhood have made Generation Y learners more receptive to educational media with higher subjective entertainment value. Likewise, by conducting a series of semi-structured interviews of EM registrars, Riddell et al. [21] found that both entertainment and engagement are substantial driving factors that positively affect podcast use. This possible development in learning styles requires further exploration in subsequent generations of EM registrars as, presently, there is no evidence to claim that EM registrars learn more effectively in one perceptual mode versus another [9,22].

Although clinical toxicology was by far the most popular podcast topic in our study, a direct comparison with international literature proved problematic due to different context-specific educational needs and EM topic category groupings. Nevertheless, The Dantastic Mr Tox and Howard Show is an international podcast dedicated to toxicology, which ranks among the most popular of all listed Apple Podcasts [23]. The show has an average user rating of 4.8/5, with reviewers crediting it as being both ‘high-yield’ and ‘entertaining’. This alludes to a general appreciation of toxicology as a popular podcast topic throughout the global EM community. Local factors may also contribute to the popularity of toxicology as a podcast topic in our study. One such factor may be the significant burden of deliberate self-poisoning presentations placed on local emergency departments (ED), as demonstrated by van Hoving et al. [24].

Our study demonstrates that a significant proportion of junior registrars preferred to use podcasts as part of their EM study program (75% v. 47%, \(p = 0.06 \)) and as an introduction to new curriculum topics (46% v. 27%, \(p = 0.14 \)). Conversely, their senior counterparts favoured podcast-use as a tool for revision for assessments (53% v. 33%, \(p = 0.13 \)). These differing preferences likely reflect the diverging educational needs specific to the respondents’ level of training.

Interestingly, the level of training of respondents did not appear to have a considerable influence on the overall preferences of podcast topics in our study (Table 2). However, senior registrars were more inclined to request a combination of both procedural sedation and medico-legal matters (67% v. 33%, \(p = 0.04 \)), plausibly reflecting the increased clinical exposure to these topics during the senior years of EM registrar training.
A 2009 study by Hodkinson et al. [25] noted that a significant medico-legal risk existed among Cape Town’s EDs, where procedural sedation-analgesia (PSA) was performed. Remarkably, they found that only 15.3% of the EDs had written protocols to guide practitioners. Moreover, Meyer et al. [26] demonstrated that none of the PSA administered at Steve Biko Hospital in Pretoria had documented informed consent. In a study in Southern Gauteng, Delecia et al. [27] concluded that, apart from institutional risk-management, structured, formal training is vital to mitigate the medico-legal risks associated with PSA. These findings highlight the importance of the perceived need for further asynchronous context-specific educational support on these topics by respondents in our study.

Just-in-Time (JiT) learning (self-directed, personalised learning at the time of need) has proven to be a successful and productive adult learning strategy in medical education [27,28]. Fascinatingly, our study reports low podcast-use for just-in-time learning during (15%) and immediately after (26%) a clinical shift. This contrasts with the findings of Mallin et al. [6], who showed that 80% of EM registrars in their study used recent patient encounters to guide the podcast content that they reviewed. Furthermore, in a study by Purdy et al. [19], 86% of the Canadian EM registrars surveyed used online resources for answering questions at the point of patient care. The complex educational and cultural factors, likely responsible for the diversities seen in the uptake of JiT learning in our study population, warrant further study. An essential step toward incorporating JiT learning among Southern African EM registrars would be providing more context-specific and readily accessible educational media.

Respondents in our study exhibited an appreciation for test-enhanced learning in the form of podcast adjuncts: links to supplementary FOAMed resources, accompanying PDF/blog posts and test-orientated resources. The testing-effect is an educational technique proven to improve long-term retention by devoting periods of learning to test and recall [29,30]. The creators of future Southern African EM podcasts should, therefore, strongly consider the use of high-quality multimedia alongside consolidatory test-based resources.

A shorter podcast duration (5-15 minutes) was preferred for all content delivery-types. This contrasts with USA-based EM registrars who preferred longer podcasts (20-30 minutes), aligning with the global average EM podcast-length of 36.6 minutes [7,8]. The preference of our study participants for shorter podcasts may support their relative aversion toward didactic lectures, as the traditional length of faculty lectures is 45 minutes (Figure 3). Additionally, Southern African EM training programs may offer less time for podcast consumption, given the time pressure of service delivery in an overwhelmed public health system [31].

Another key finding for potential content-developers is the overwhelming popularity (90%) of the practice oral-exam format. Not only would these podcasts prove popular, but they would encourage more beneficial exam-focused learning among EM registrars [32,33].

Our study had similar limitations commonly associated with survey-methodology. This includes non-responder bias (respondents not using podcasts regularly being less likely to respond) and responder bias.
(respondents who are regular and passionate podcast users being more likely to respond). Additionally, a certain level of computer literacy is required to complete an online survey, which could have resulted in an unmeasured access-barrier among non-responders. However, given our study’s exploratory nature, coupled with our high response rate (75%), these limitations should not distract from the study results. Crucially, 74% of the survey responses were received before the implementation of the Covid-19 nationwide lockdowns in South Africa and Botswana [34–36]. While we surmise that the ongoing social-distancing measures may generate bias toward online education (including podcasts), the precise effect of this on our study’s results cannot be known. However, this potential bias may inadvertently accentuate the identified significance of educational podcasts in the evolving landscape of medical education – catalysed by the ongoing Covid-19 pandemic.

Based on our study’s findings, Southern African EM podcast developers should note the following:

- The preference of mobile devices for podcast-usage
- Using more video podcasts to engage Generation Y learners
- Context-specific podcast content to better align current teaching with clinical practice
- The appreciation of test-enhanced podcast adjuncts
- JiT learning as a useful but underappreciated means of medical education
- The popularity of shorter duration podcasts
- Repeat surveys to calibrate podcast characteristics to evolving contexts, technology and learning requirements

Conclusion

Podcast-usage proved to be near-ubiquitous among the studied Southern African EM registrars. Quintessentially, future context-specific podcast design should cater for mobile device-use, shorter duration podcasts, more video content, context-specific topics, and content optimised for both Just-in-Time Teaching, and test-enhanced learning.

Dissemination of results

Results from this study were shared with the program directors of the included training universities.

Authors’ contributions

Authors contributed as follow to the conception or design of the work; the acquisition, analysis, or interpretation of data for the work; and drafting the work or revising it critically for important intellectual content: KE contributed 65%, HL contributed 15%, WJ contributed 10% and VL, NC and AE contributed 5% each.

All authors approved the version to be published and agree to be accountable for all aspects of the work.
Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgements

We are grateful to Dr Clyde Matava and colleagues for permission to adapt their survey for use in this study.

KE also thanks Lerissa Ekambaram for assisting with content and language editing.
References

List of Tables and Figures

Table 1 Podcast use characteristics by the level of training ... 29
Table 2 Preferred podcast topics by level of training .. 30
Table 3 Respondents' likelihood of watching a context-specific Southern African emergency medicine podcast .. 33

Figure 1 Respondents by University and Level of training .. 28
Figure 2 Ranking of desired podcast format. a. Ranking of preferred length for given podcast content delivery type by percentage of respondents. b. Ranking of respondents’ likelihood of listening to a podcast delivery type of an acceptable length ... 32
Appendix. Survey

A Southern African Survey: Emergency Medicine podcast usage trends and requirements.

This survey is about medical podcast usage in Southern Africa among training emergency physicians. You have been selected as a potential respondent due to your affiliation with an emergency medicine training program in Southern Africa, to complete a short 5-minute survey.

Your response will be collected, de-identified, and utilised as a part of a research project and MMED dissertation with the potential for publication. You are not required to complete any personal contact details.

Should you agree to continue, kindly click on the link below to start the short survey.

You are free to leave any question(s) blank. The author’s email addresses are provided below and at the end should you have any questions or queries about the survey.

Thank you for your participation in this survey.

Kind Regards,

Dr Kamlin Ekambaram

Emergency Medicine Registrar
University of Stellenbosch
kamlin.ekambaram@gmail.com

*Required

1. Are you currently working as an Emergency Medicine Registrar in Southern Africa? *

Question 1 of 18

Mark only one circle.

- Yes
- No

2. Please select your current year of training

Question 2 of 18

Mark only one circle.

- Year 1
- Year 2
- Year 3
- Year 4
- Other:

3. Please select your university

Question 3 of 18

Mark only one circle.

- University of Cape Town
- University of KwaZulu-Natal
- University of Stellenbosch
- University of Pretoria
- University of the Witwatersrand
- University of Botswana
- Other:

4. How many hours per week do you spend viewing or listening to medical podcasts?

Question 4 of 18

Mark only one circle.

- None
- < 1 hour per week
- 1-2 hours per week
5. Please select the method(s) you use to review podcast materials

Question 5 of 18

Tick all that apply.

- Stream directly via desktop / laptop online
- Download on desktop / laptop for offline use
- Stream directly via a portable device (iPod/Mp3 player/smartphone/tablet)
- Download on a portable device (iPod/Mp3 player/smartphone/tablet) manually or automatically for offline use
- I do not review podcast material
- Other:

6. Which of the following best describes how you use medical podcasts? (Select all that apply)

Question 6 of 18

Tick all that apply.

- Review prior to a real-time case / procedure on shift
- Revision for exams
- As a part of your routine study
- Introduction of a new topic
- Post shift review
- I do not use medical podcasts
- Other:

7. Which of the following podcast format(s) best suits you?

Question 7 of 18

Tick all that apply.

- Audio only podcasts
- Multimedia podcasts (audio with still images or PowerPoint slides)
- Video podcasts
- Podcast with accompanying PDF / Blog posts
- Recorded faculty lectures
- I am not interested in Medical Podcasts
8. If you do not use podcasts, which of the following reasons best explain(s) why not? (Select all that apply)

Tick all that apply.

- I do not have access to an appropriate listening/viewing device(s)
- I do not have sufficient bandwidth or mobile data for streaming/downloading of podcasts
- I did not know they were available
- I am not used to accessing course material via podcast
- I do not like accessing course material via podcast
- I have experienced technical problems
- I do not have enough time to watch/listen to a podcast
- The quality of the information in podcasts is poor
- Current podcast content is not relevant to my practice
- Other:

9. How likely are you to listen to a context-specific Southern African Emergency Medicine podcast relevant to your work environment?

Mark only one circle.

- Extremely unlikely
- Unlikely
- Neutral
- Likely
- Extremely likely

10. Which of the following basic science/core knowledge topics would you like in a podcast?

Tick all that apply.

- Clinical Anatomy
- Physiology
- Pathology
- Pharmacology
- Research Methods / Biostatistics
11. Which of the following procedural topics would you like to see covered in a podcast?

Question 11 of 18

Tick all that apply.

- Basic critical care and resuscitation skills (e.g. Rapid sequence induction; airway management)
- Ultrasound-guided procedures
- Procedural analgesia sedation
- Basic orthopaedic skills (e.g. Fracture/dislocation management)
- Trauma resuscitation (e.g. Resuscitative thoracotomy; lateral canthotomy)
- Ventilator management
- None of the above
- Other:

12. Which of the following Clinical topics would you like to see covered in a Podcast? (Select all that apply)

Question 12 of 18

Tick all that apply.

- Pre-hospital emergency
- Resuscitative problems and techniques
- Acute signs and symptoms in adults
- Acute signs and symptoms in children
- Emergency wound management
- Cardiovascular emergencies
- Pulmonary emergencies
- Gastrointestinal emergencies
- Renal and genito-urinary emergencies
- Gynaecological and obstetrical emergencies
- Infectious disease and allergy
- Toxicology
- None of the above
- Other:

13. Which of the following professional topics would you like to see covered in a podcast? (Select all that apply)
Question 13 of 18

Tick all that apply.

- Finance and wellbeing for Emergency Physicians
- Professionalism and ethics
- Patient safety in the Emergency Department
- Medico-legal issues
- Morbidity and Mortality in the Emergency Department
- Time Management
- Crisis Management
- Emergency Medicine in Resource-limited settings
- Organ Donation in the Emergency Department
- None of the above
- Other:
14. What is your preferred length for each of the following types of podcasts?

Question 14 of 18

Mark only one circle per row.

<table>
<thead>
<tr>
<th></th>
<th>< 5 mins</th>
<th>5 - 15 mins</th>
<th>15 - 30 mins</th>
<th>30 - 45 mins</th>
<th>> 45 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Didactic Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debates / Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Article reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recorded Didactic Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debates / Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Article reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. To what extent are you likely to stream or download the following podcast types of an acceptable length?

Question 15 of 18

Mark only one circle per row.

<table>
<thead>
<tr>
<th></th>
<th>Extremely</th>
<th>Unlikely</th>
<th>Unsure</th>
<th>Likely</th>
<th>Extremely</th>
<th>Likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded Didactic Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debates / Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Article reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice Oral Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recorded Didactic Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debates / Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Article reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice Oral Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. How often would you like a new podcast to be uploaded?

Question 16 of 18

Mark only one circle.

- Daily
- Once a week
- Twice a week
- Once a month
- Other:

17. Which of the following do you think is the most useful method to assist with knowledge retention from podcasts?

Question 17 of 18

Tick all that apply.

- Discussion Board posted alongside the podcast
- Links to other relevant FOAMed resources
- Pre and/or post podcast MCQs
- Rapid review clinical flash cards
- Opt-in email subscription with pearls and new episode updates
- None – podcasts alone are adequate
- Other:

18. Please enter any additional comments you would like to add about this survey or the study as a whole.
Part C: Supporting Documentation
A. Study Protocol

Title

An electronic survey of desired podcast format and content requirements among training Emergency Medicine specialists in South Africa.

Introduction

The age of overhead projector slides, didactic PowerPoint lectures and seminars is seemingly fading away. Newer technology and evidence into the science of learning is rapidly shaping medical education [1].

With the rise of social media, the FOAMed (Free open access medical education) bouquet has brought life to various methods of asynchronous learning. Blogs, twitter feeds, YouTube and Facebook are just a few examples of online media platforms where registrars consume medical education and actively participate in ongoing discussions. Social media is seen by many as a means to reduce the knowledge gap from published literature into practice [2].

Podcasts are recorded digital audio segments made available episodically for live streaming, or downloadable for later consumption [3]. They are an excellent source of medical education when compared to other methods of asynchronous and self-directed learning [1]. There is a significant and growing body of emergency medicine (EM) podcasts available. A survey of EM residents from training programs across the USA reported that over 88% listen to podcasts at least once a month, with the most popular reasons for podcast consumption reported as enabling listeners to “keep up with current literature” and “review core EM knowledge [4].” Interestingly, 70% of respondents reported changing their clinical practice based on podcast content.

Podcasts, as an e-learning tool, may be best suited to the current "millennial" cohort of South African emergency medicine trainees [5]. Kleynhans et al. reported that emergency medicine trainees in Cape Town under the age of 30 were more inclined to use social media as an educational resource [6]. Additionally, more than 50% of respondents reported accessing online multimedia more than once a month with YouTube (35%) and podcasts (21%) being the most common for educational purposes. She et al. suggested that the creation of an asynchronous curriculum is both feasible and effective for emergency medicine trainees [7].

This discrepancy between local and international educational podcast consumption has been previously attributed to lack of access, but research conducted by the team from the popular MATT BROWN SHOW podcast found that among the South Africans surveyed (n=15682), only 10.2% of respondents cited a lack of access (mobile data or bandwidth) as a barrier to consumption [8]. Although this study included all South Africans and entertainment podcasts, these findings are echoed by a recent article by Thurtle et al. that suggests that lack of awareness is the primary barrier to medical podcast usage in Botswana and Papua New Guinea [9].
A possible explanation for the difference in local podcast consumption trends despite growing popularity among South African EM doctors, is the lack of a context-specific South African EM podcast content. Only a handful of international podcasts include content relevant to the South African setting; however, these are infrequent and often from the perspective and interpretation of the podcast creator [10].

Finally, the effectiveness of a podcast as an educational medium has been linked with how well the content aligns with the listeners perceived needs [11]. Following this, it stands to reason that a podcast developed based on the content needs of South African emergency medicine trainees could both directly engage and benefit this audience.

Motivation

While the long-term benefits of a medical, educational podcast in South Africa are unclear, we cannot deny the growing popularity of this educational medium. This study aims to serve as a part of an internal project for the development and implementation of an educational South African emergency medicine podcast. This project is currently in its early development and this research project aims to guide it further. We hypothesize that South African emergency medicine registrars have specific and clear requirements for an educational podcast which may vary by level of seniority.

Study Aim

To explore the optimal content and format requirements for a South African Emergency Medicine Registrar-specific podcast by investigating current podcast usages trends and preferences among South African Emergency Medicine Registrars of varying levels of seniority.

Objectives

To survey South African EM registrars across the various training programs to analyse:

1. characteristics of an EM podcast:
 1.1 content;
 1.2 format;
 1.3 preferred length,

2. current South African EM podcast usage:
 2.1 trends;
 2.2 indications;
 2.3 user demographics (and non-user);
 2.4 barriers to use,

3. differences in usage trends, content and format requirements:
3.1 among the various training programs;
3.2 Between levels of seniority.

Methods

This study is an e-Survey of South African EM registrars who train in South Africa.

Study Population

The study population includes between 80 and 90 EM registrars – this number varies at any given time as registrars are continually entering and exiting the various training programs. EM registrars are defined as doctors that are currently working as a Registrar in Emergency Medicine and are registered to complete the four year Masters of Medicine (MMED) programs offered by the following universities’ Divisions of Emergency Medicine:

- The University of Cape Town;
- The University of Stellenbosch;
- The University of Witwatersrand;
- The University of KwaZulu-Natal;
- The University of Pretoria.

This study population not only encompasses a vast geographical and cultural group of registrars but also includes South African and International EM registrars from working in different provincial health systems across the country. International registrars are defined as non-South African, foreign qualified doctors that are registered to practice in South Africa as supernumerary registrars. We intend to compare the various groups to identify any significant difference in podcast needs with the ultimate aim of creating an educational podcast that serve the needs of the entire South African EM community.

Sampling

The sampling frame includes all the registered MMED in Emergency Medicine students throughout South Africa at the time of survey completion.

Survey Development

A similar study has been conducted on Canadian Anaesthesia residents by Matava et al.[11] in 2013. After obtaining permission from the Canadian authors, the survey tool was adapted to the South African Emergency Medicine context and using guidelines for self-administered surveys among clinicians [12,13]. Content questions where adapted and grouped from the current Faculty of the College of Emergency Medicine (FCEM) blueprint with professional topics included by the author [14]. The survey was then amended after review by an educationalist and emergency medicine specialist from the University of Stellenbosch and the University of Cape Town respectively who assessed for face and content validity.
Survey testing

The investigators pretested the survey. Pilot testing will be conducted on Cape Town emergency medicine registrar(s) during their academic rotation coinciding with the study period (typically one to two registrars), to assess for clarity and user-friendliness of the survey. Responses from the pilot survey will be excluded from data analysis.

Survey Administration and Distribution

After all the relevant ethical and institutional approvals have been sought, we intend to contact the division heads of the various emergency medicine training programs across South Africa. After obtaining their consent, we will ask them to distribute the survey to their EM registrars for completion by a method(s) of their choosing. Reminders will be sent to the program directors a month apart for three months. Incomplete responses will be included in the data analysis.

Data Collection

After consenting to participation (consent process discussed later), respondents will be directed to the actual electronic survey. We will administer the survey via the personal, password protected, Google Forms (Google Inc.) account of the lead investigator. A hyperlink to the online survey will be provided to the relevant program directors.

Data Safety and Monitoring

During the data collection period, access to the database will be password protected under the personal account of the author. Data collected will be available only to the author(s).

Upon completion of data collection, we will print copies of the documents and store them in the dedicated, access-controlled research document locker at the division of Emergency Medicine offices. After hard copies of the data are safely and securely stored, the survey and the cloud database will be permanently deleted.

We will only capture the following demographic and identifying data: age, year of study, and program affiliation of the respondents.

No contact details of the participants will be asked for or stored.

At no point during the study will patient information be required or captured.

Data analysis

All data collected will be exported from Google Sheets into Microsoft Excel for analysis. We intend to analyse the data and compare perceived podcast content and trends between junior and senior registrars. We define junior registrar as year 1-2 and senior registrar as year 3 and above at the time of survey participation. Descriptive statistics will be used to summarise the categorical and a two-tailed Fishers exact test for the nominal data. A p-value of <= 0.05 is regarded as statistically significant.
The response rate calculation will be based on total eligible responders and will therefore include partially completed responses.

Time Schedule

<table>
<thead>
<tr>
<th>TASK</th>
<th>TIME FRAME (MONTHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMDRC</td>
<td>3</td>
</tr>
<tr>
<td>HREC</td>
<td>3</td>
</tr>
<tr>
<td>DATA COLLECTION</td>
<td>3-6</td>
</tr>
<tr>
<td>DATA MANAGEMENT</td>
<td>2</td>
</tr>
<tr>
<td>ANALYSIS AND REPORTING</td>
<td>2</td>
</tr>
<tr>
<td>WRITING</td>
<td>2</td>
</tr>
<tr>
<td>THE INITIAL SUBMISSION FOR PUBLICATION</td>
<td>2</td>
</tr>
</tbody>
</table>

Ethical Considerations

Description of risks and benefits

The risk to participants is presumed minimal. These include time spent to complete the survey and the possibility of social desirability bias. This survey, however, asks very few opinion questions, and thus unlikely to change existing views on the use of podcasts in medical education. A draft of the survey questions and design (Appendix A) developed by the authors is available for review.

As previously mentioned, all data will be kept and stored in an encrypting de-identified format.

Outcomes of this study will provide a more in-depth insight into the preferred learning practices of EM registrars and possibly the basis for educators to tailor new educational media to these preferences. It may also guide the development of a context-specific EM podcast in South Africa. Using the podcast medium for medical education and rapid distribution of new knowledge, and decrease the local knowledge translation gap, and disseminate pertinent new information.

Another potential benefit of this study is an insight into the use of self-administered electronic surveys for the development of context-specific podcast in other medical specialities in South Africa.

The email address of the author will be available at the end of the survey to address any unforeseen issues.

Autonomy and the Informed Consent process
A formal introductory information page with an opt-in consent checkpoint will greet participants upon opening the hyperlink distributed to them by the respective program directors. After agreeing to participate, respondents will be directed to the actual survey. Should participants decline consent, the survey will end and thank participants for their time - these will be considered as non-responders. Responders may at any time before analysis, withdraw from the study, and thus their results will not be included for analysis.

Privacy and Confidentiality

This study will not report on individual user preferences. It is possible that smaller training programs may be able to infer individual user responses from a sub-group analysis. Since the data represents only current preferences and usage and in no way tests current core knowledge or opinions, we do not anticipate this to be an issue.

Participants will not be contacted directly. Instead, program directors will be contacted and asked to disseminate the survey link to eligible participants.

Distributive Justice

This research project is intended as part of a larger FOAMed initiative which aims to provide free, accessible, medical education that is context specific with minimal barriers to access. Results from this project may also be used by educators for various purposes. While it is currently not the primary aim of this research project to actually create the FOAMed resource, should the data not accurately reflect the true needs of the target population, it is possible that it may misguide any projects based solely upon the outcomes of this study.

Remuneration for participation

No remuneration will be awarded for participation.

We do not anticipate any emotional or physical research-related injuries during this study.

Limitations

Sample population - The population we aim to survey is small. We have limited the population to only those doctors currently working as emergency medicine specialist trainees and occupying an EM registrar post. Our results may not be generalisable to other junior doctors working in Emergency centres, Emergency Medicine Specialists and to MMED in EM students who are not in a Registrar post.

Response rate - Participation and response rates are always of concern with survey studies. This can introduce significant responder and non-responder bias.

Study design, data collection and data interpretation are not blinded. This lack of blinding may introduce bias and potentially invalidate some results.

Reporting and Implementation of results
We aim to publish the results of this study in a reputable and appropriate academic journal. We also intend to present study results as an abstract at local conferences. We will provide the respective heads of the various training programs involved with the results of the survey in publication format.

Resources

Available resources

Google Inc. provides a free to use online survey application tool registered to the author.

Personal computers used to capture, and process data are the property of the data collectors.

Budget

The study is self-funded.

<table>
<thead>
<tr>
<th>EXPENSE</th>
<th>COST (ZAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELEPHONE AND DATA</td>
<td>400.00</td>
</tr>
<tr>
<td>STATISTICAL SERVICE</td>
<td>0.00</td>
</tr>
<tr>
<td>STATIONERY AND PRINTING</td>
<td>0.00</td>
</tr>
<tr>
<td>GOOGLE FORMS</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>400.00</td>
</tr>
</tbody>
</table>

The motivation for expenses:

Telephone and data - To maintain direct contact with heads of department and data collectors. Bandwidth will be required for data capture and processing.

Acknowledgement(s)

We acknowledge Dr Clyde Matava, the principal investigator from “eLearning among Canadian anesthesia residents: a survey of podcast use and content needs” for permission to adapt and use their survey tool in our research.
References

Appendix. Draft Survey

This survey is about medical podcast usage in South Africa among training emergency physicians. You have been selected as a potential respondent due to your affiliation with an emergency medicine training program in South Africa, to complete a short 5-minute survey. Your response will be collected, de-identified, and utilised as a part of a research project and MMED dissertation with the potential for publication. You are not required to complete any personal contact details. Should you agree to continue, kindly click on the link below to start the short survey. You are free to leave any question blank. The authors' email addresses are provided below and at the end should you have any questions or queries about the survey.

[Hyperlink to Google Docs]

Thank you for your participation in this survey
Kind Regards,

Dr Kamlin Ekambaram
Emergency Medicine Registrar
University of Stellenbosch
kamlin.ekambaram@gmail.com
Q1: Are you currently working as an Emergency Medicine Registrar in South Africa?
 Yes
 No

Q2: Please select your current year of training?
 One
 Two
 Three
 Four
 Other: _____________________________

Q3: Please select your University
 University of Cape Town
 University of KwaZulu-Natal
 University of Stellenbosch
 University of Pretoria
 University of Witswaterand

Q4: How many hours per week do you spend viewing or listening to medical podcasts?
 None
 < 1 hour per week
 1-2 hours per week
 2-4 hours per week
 >4 hours per week

Q5: Please select the method(s) you use to review podcast materials:
 Stream directly via desktop / laptop online
 Download on desktop / laptop for later offline use
 Stream directly via portable device (iPod/Mp3 player/smartphone/tablet)
 Download on portable device (iPod/Mp3 player/smartphone/tablet) manually or automatically for later offline use
 I do not review podcast material
 Other: _____________________________
Q6: Which of the following best describes how you use medical podcasts? (Select all that apply)

- Review prior to realtime case / procedure on shift
- Revision for exam
- Part your routine study
- Introduction of new topic
- Post shift review
- I do not use medical podcasts
- Other: ____________________________

Q7: Which of the following podcast format(s) best suits you?

- Audio podcasts
- Multimedia podcasts (audio with still images or powerpoint slides)
- Video podcasts
- Podcast with accompanying PDF / Blog posts
- Recorded faculty lectures
- I am not interested in Medical Podcasts
- Other: ____________________________

Q8: If you do not use podcasts, which of the following reasons best explain(s) why not? (Select all that apply)

- I do not have access to an appropriate listening/viewing device.
- I do not have sufficient bandwidth or mobile data for streaming/downloading of podcasts
- I did not know they were available
- I am not used to accessing course materials via podcast.
- I do not like accessing course materials via podcast.
- I have experienced technical problems
- I do not have enough time to watch/listen to a podcast
- The quality of the information in the podcasts is poor
- Current podcast content is not relevant to my practice
- Other ____________________________
Q9: How likely are you to listen to a context-specific South African Emergency Medicine Podcast relevant to your work environment?
 - Extremely unlikely
 - Unlikely
 - Neutral
 - Likely
 - Extremely likely

Q10: Which of the following basic science/core knowledge topics would you like in a Podcast?
 - Clinical Anatomy
 - Physiology
 - Pathology
 - Pharmacology
 - Research Methods / Biostatistics
 - None of the above
 - Other: ______________________

Q11: Which of the following procedural topics would you like to see covered in a Podcast?
 - Basic critical care and resuscitation skills, e.g. Rapid sequence induction, and airway management
 - Ultrasound-guided procedures
 - Procedural analgesia sedation
 - Basic orthopaedic skills, e.g. Fracture/dislocation management
 - Trauma resuscitation, e.g. Resuscitative thoracotomy, lateral canthotomy
 - Ventilator management
 - None of the above
 - Other: __________________________

Q12: Which of the following Clinical topics would you like to see covered in a Podcast? Select all that apply
 - Pre-hospital emergency
 - Resuscitative problems and techniques
Acute signs and symptoms in adults
Acute signs and symptoms in children
Emergency wound management
Cardiovascular emergencies
Pulmonary emergencies
Gastrointestinal emergencies
Renal and genito-urinary emergencies
Gynaecological and obstetrical emergencies
Infectious disease and allergy
Toxicology
None of the above
Other: __________________________

Q13: Which of the following professional topics would you like to see covered in a Podcast? Select all that apply

- Finance and wellbeing for Emergency Physicians
- Professionalism and ethics
- Patient safety in the Emergency Department
- Medico-legal issues
- Mortality and Morbidity in the Emergency Department
- Time Management
- Crisis Management
- Emergency Medicine in Resource-limited settings
- Organ Donation in the Emergency Department
- None of the above
- Other: __________________________
Q14: What is your preferred length for each of the following types of podcasts?

<table>
<thead>
<tr>
<th>Type</th>
<th><5 MINS</th>
<th>5-15 MINS</th>
<th>15-30 MINS</th>
<th>30-45 MINS</th>
<th>> 45 MINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORDED DIDACTIC LECTURES</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>DEBATES/DISCUSSION</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>JOURNAL ARTICLE SUMMARIES</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>PROCEDURAL SKILLS</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>CASE PRESENTATIONS</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Q15: To what extent are you likely to stream, download or view online the following podcast types of an acceptable length?

<table>
<thead>
<tr>
<th>Type</th>
<th>EXTREMELY UNLIKELY</th>
<th>UNLIKELY</th>
<th>DO NOT KNOW</th>
<th>LIKELY</th>
<th>EXTREMELY LIKELY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORDED DIDACTIC LECTURES</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>DEBATES/DISCUSSION</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>JOURNAL ARTICLE SUMMARIES</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>PROCEDURAL SKILLS</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>CASE PRESENTATIONS</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>PRACTICE ORAL EXAM</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Q16: How often would you like a new podcast to be uploaded?

- Daily
- Weekly
- Biweekly
- Monthly
- Other: _____________________________

Q17: Which of the following do you think is the most useful method to assist with knowledge retention from Podcasts?
Discussion Board posted alongside podcast
Links to other relevant FOAMed resources
Pre and post MCQ’s
Rapid review clinical flash cards
Opt-in email subscription with Pearls and new episode updates

None – podcasts alone are adequate
Other: ______________________________

Q18: Please enter any additional comments you would like to add about this survey or the study as a whole
__

Thank you for your participation in this survey

Please click the submit button to complete the survey.

Kind Regards,

Dr Kamlin Ekambaram
Emergency Medicine Registrar
University of Stellenbosch

kamlin.ekambaram@gmail.com
B. Health Ethics Review Committee Approval

12/12/2019

Project ID: 11419

HREC Reference No: S19/09/194

Project Title: An electronic survey of desired podcast format and content requirements among training Emergency Medicine specialists in South Africa

Dear Dr Kamlin Elambaram

The New Application received on 08/10/2019 was reviewed by members of the Health Research Ethics Committee via Minimal Risk Review procedures on 12/12/2019 and was approved with a stipulation.

Please note the following information about your approved research protocol:

Approval date: 12 December 2019

Expiry date: 11 December 2020

The stipulation of your ethics approval are as follows:

Please upload approval from the SU Division for Institutional Research and Planning when obtained

Please remember to use your project ID 11419 and ethics reference number S19/09/194 on any documents or correspondence with the HREC/UREC concerning your research protocol.

Translation of the consent document(s) to the language(s) applicable to your study participants should now be submitted to the HREC.

Please note that this decision will be ratified at the next HREC full committee meeting. HREC reserves the right to suspend approval and to request changes or clarifications from applicants. The coordinator will notify the applicant (and if applicable, the supervisor) of the changes or suspension within 1 day of receiving the notice of suspension from HREC. HREC has the prerogative and authority to ask further questions, seek additional information, require further modifications, or monitor the conduct of your research and the consent process.

After Ethical Review:

Please note you can submit your progress report through the online ethics application process, available at: https://apply.ethics.sun.ac.za and the application should be submitted to the Committee before the year has expired. Please see Forms and Instructions on our HREC website for guidance on how to submit a progress report.

The Committee will then consider the continuation of the project for a further year (if necessary). Annually a number of projects may be selected randomly for an external audit.

Provincial and City of Cape Town Approval

Please note that for research at a primary or secondary healthcare facility, permission must still be obtained from the relevant authorities (Western Cape Department of Health and/or City Health) to conduct the research as stated in the protocol. Please consult the Western Cape Government website for access to the online Health Research Approval Process; see: https://www.westerncape.gov.za/general-publication/health-research-approval-process. Research that will be conducted at any tertiary academic institution requires approval from the relevant hospital manager. Ethics approval is required BEFORE approval can be obtained from these health authorities.

We wish you the best as you conduct your research.

For standard HREC forms and instructions, please visit Forms and Instructions on our HREC website (www.sun.ac.za/healthresearchethics)

If you have any questions or need further assistance, please contact the HREC office at 021 938 9677.

Yours sincerely,

Mrs. Melody Shanara

Coordinator

HREC1
The Health Research Ethics Committee (HREC) complies with the SA National Health Act No. 61 of 2003 as it pertains to health research. The HREC abides by the ethical norms and principles for research, established by the World Medical Association (2013, Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects), the South African Department of Health (2006, Guidelines for Good Practice in the Conduct of Clinical Trials with Human Participants in South Africa (2nd edition)), as well as the Department of Health (2015). Ethics in Health Research: Principles, Processes and Structures (2nd edition).

The Health Research Ethics Committee reviews research involving human subjects conducted or supported by the Department of Health and Human Services, or other federal departments or agencies that apply the Federal Policy for the Protection of Human Subjects to such research (United States Code of Federal Regulations Title 45 Part 46); and/or clinical investigations regulated by the Food and Drug Administration (FDA) of the Department of Health and Human Services.
C. Author Guidance: African Journal of Emergency Medicine

The author guidelines for the *African Journal of Emergency Medicine* can be found at (accessed 10 September 2020):

Web link: https://www.elsevier.com/journals/african-journal-of-emergency-medicine/2211-419x/guide-for-authors

Direct PDF-link:

http://www.elsevier.com/wps/find/journaldescription.cws_home/725742?generatepdf=true
The African Journal of Emergency Medicine (AfJEM) is the official journal of the African Federation for Emergency Medicine. It is an Africa-centric, peer-reviewed journal aimed in particular at supporting emergency care across, you guessed it, Africa. AfJEM publishes original research, reviews, brief reports of scientific investigations, case reports as well as commentary and correspondence related to topics of scientific, ethical, social and economic importance to emergency care in Africa. Articles will be of direct importance to African emergency care, but may have originated from elsewhere in the world.

AfJEM publishes manuscripts of international quality. This is ensured through a process of rigorous peer-review (see below) where manuscripts are evaluated for accuracy, novelty and importance. It is however recognised that African researchers in emergency care are disadvantaged in the available range of journals into which they can publish their work. The editorial team is aware that this is due to many reasons, including that developing world topics are often considered too basic for western Emergency Medicine journals, or that topics are concerned with conditions which are largely irrelevant to those audiences. Furthermore, the quality of submitted manuscripts is often lower than acceptable international journal standards due to inadequate research training. AfJEM is dedicated to support all authors who wish to make an attempt at publication on an African Emergency care topic. In order to maintain and produce a high quality, international standard Emergency Medicine journal, AfJEM has devised Author Assist. For more detail go to http://www.afjem.com/author-assist.html.
AfJEM is uniquely tailored to the needs and requirements of emergency care workers dedicated to improving emergency medicine in Africa. AfJEM specifically aims to address resource limitations as it pertains to the African continent. It will be ideal reading material for physicians, nurses and pre-hospital care workers wishing to improve their knowledge on general emergency medicine, trauma care, paediatrics, injury and disease prevention, service improvement, policy and ethics, disaster preparedness and response, and all other aspects of emergency care. In keeping with the African Federation for Emergency Medicine, it is our aim to be recognised as the international voice of quality emergency medical care in Africa.

ABSTRACTING AND INDEXING

PubMed Central
Scopus
EBSCOhost
Embase
Emerging Sources Citation Index (ESCI)
Directory of Open Access Journals (DOAJ)
South African Department of Higher Education and Technology African Index Medicus

EDITORIAL BOARD

Editors-in-Chief

Stevan R. Bruijns, University of Cape Town Division of Emergency Medicine, South Africa Lee A. Wallis, University of Cape Town Division of Emergency Medicine, South Africa

Deputy Editor-in-Chief

Mike Wells, University of the Witwatersrand Department of Emergency Medicine, Johannesburg, South Africa Technical Assistant

Megan Banner, African Federation for Emergency Medicine, Cape Town, South Africa Production Assistants

Rachel L. Allgaier, University of Cape Town Division of Emergency Medicine, Cape Town, South Africa Chrystal Bae, University of Maryland School of Medicine, Baltimore, Maryland, United States Jennifer Pigoga, Emory University School of Public Health, Atlanta, Georgia, United States Faiaak Sayed, Tawam Hospital Department of Emergency Medicine, Al Ain, United Arab Emirates Jared Sun, University of California Los Angeles Department of Emergency Medicine, Los Angeles, California, United States

Associate Editors

Joseph Bonney, Komfo Anokye Teaching Hospital Department of Emergency Medicine, Kumasi, Ghana Petra Brysiewicz, University of KwaZulu-Natal School of Nursing and Public Health, Durban, South Africa Jennifer Chipps, University of the Western Cape Faculty of Community and Health Sciences, Cape Town, South Africa Lara Nicole Goldstein, University of the Witwatersrand Department of Emergency Medicine, Johannesburg, South Africa Wyness Gondwe, University of Malawi Kamuzu College of Nursing, Blantyre, Malawi Timothy Hardcastle, University of KwaZulu-Natal Department of General Surgery, Durban, South Africa Clint Hendrikse, University of Cape Town Division of Emergency Medicine, Cape Town, South Africa Ian Higginson, Derriford Hospital, Department of Emergency Medicine, Plymouth, United Kingdom Gabrielle A Jacquet, Boston Medical Center Department of Emergency Medicine, Boston, Massachusetts, United States Craig Lambert, University of Johannesburg Department of Emergency Medical Care, Auckland Park, South Africa Hein Lamprecht, Stellenbosch University Division of Emergency Medicine, Stellenbosch, South Africa Michael McCaul, Stellenbosch University, Department of Global Health, Division of Epidemiology and Biostatistics, Cape Town, South Africa
Elizabeth Molyneux, University of Malawi Paediatrics and Child Health, Zomba, Malawi
Jeremiah Njenga, Centric Air Ambulance, Nairobi, Kenya
Maxwell Osei-Ampofo, Komfo Anokye Teaching Hospital Department of Emergency Medicine, Kumasi, Ghana
Rockefeller R.A.O Oteng, University of Michigan Hospitals, Department of Emergency Medicine, Ann Arbor, Michigan, United States
Hendry Sawe, Muhimibili University of Health and Allied Sciences Emergency Medicine Department, Dar es Salaam, Tanzania, United Republic of
Wayne Smith, Stellenbosch University Division of Emergency Medicine, Stellenbosch, South Africa
Melanie Stander, Stellenbosch University Division of Emergency Medicine, Stellenbosch, South Africa
Willem Stassen, University of Cape Town, Captown, South Africa
prehospital emergency care, emergency medical services, emergency care systems, helicopter emergency medical services, critical care transport and retrieval, emergency centre dispatch
Benjamin Wachira, The Aga Khan University Hospital, Department of Accident and Emergency, Nairobi, Kenya

International Advisory Board

Michael L. Callaham, University of California, San Francisco; UCSF Helen Diller Medical Center at Parnassus Heights and World Association of Medical Editors Ethics Committee, San Francisco, California, United States
Peter Cameron, The Alfred Hospital, Emergency and Trauma centre and Monash University, Emergency Medicine, Melbourne, Australia
Maaret Castren, Department of Emergency Medicine and Services, Department of Diagnostics and Therapeutics, Helsinki University Hospital, Helsinki University, Helsinki, Finland
Fausto Catena, Parma University Hospital, Department of Emergency Surgery, Parma, Italy
Giles Cattermole, King's College Hospital NHS Trust, London, UK; Chinese University of Hong Kong, Hong Kong; Centre Hospitalier Universitaire de Kigali, University of Rwanda, Kigali, Rwanda
Baljit Cheema, University of Cape Town Division of Emergency Medicine; Western Cape Health, METRO EMS, Cape Town, South Africa
Aris K. Exadaktylos, Inselspital University Hospital Bern, Department of Emergency Medicine, Berne, Switzerland
Mark Fitzgerald, Alfred Hospital; National Trauma Research Institute; Monash University, Central Clinical School, Department of Surgery, Melbourne, Australia
Heike Geduld, Stellenbosch University, Division of Emergency Medicine; African Federation for Emergency Medicine, College of Emergency Medicine of South Africa, Cape Town, South Africa
Colin Graham, The Chinese University of Hong Kong Accident and Emergency Medicine Academic Unit, Hong Kong, Hong Kong
Bhakti Hansoti, Johns Hopkins University, Department of Emergency Medicine; Johns Hopkins School of Public Health, Department of International Health, Baltimore, Maryland, United States
Andrew M Kestler, St. Paul's Hospital; University of British Columbia; Centre for Health Evaluation & Outcome Sciences, Vancouver, British Columbia, Canada
Eddy Lang, University of Calgary, Cumming School of Medicine, Department of Emergency Medicine; Alberta Health Services, Calgary, Alberta, Canada
Fiona E. Lecky, University of Sheffield, Emergency Medicine; University of Manchester; Salford Royal Hospitals NHS Foundation Trust and Trauma Audit and Research Network (TARN), Sheffield, United Kingdom
Russell MacDonald, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
Ian K Maconochie, Imperial College London Academic and Paediatric Emergency Medicine, London, United Kingdom
Terrence Mulligan, University of Maryland School of Medicine, International EM Program; Stellenbosch University, Division of Emergency Medicine, Stellenbosch, South Africa
Marcus Ong Eng Hock, Singapore General Hospital, Department of Emergency Medicine; SingHealth Services, Data Analytics, Health Services Research Center (HSRC); Duke-NUS, Health Services and Systems Research, Singapore, Singapore
Georges Ramalanjaona, University of Antananarivo, Faculty of Medicine; University of Mahajanga, Faculty of Medicine; American College of Emergency Physicians, Antananarivo, Madagascar
Ellen Weber, Zuckerberg San Francisco General Department of Emergency Medicine, San Francisco, California, United States
Scott L Zeller, University of California Riverside, Riverside, California, United States

GUIDE FOR AUTHORS
INTRODUCTION

The African Journal of Emergency Medicine (AfJEM, ISSN: 2211-419X) is the official journal of the African Federation for Emergency Medicine. It is an international, peer-reviewed journal aimed in particular at supporting emergency care across Africa. AfJEM publishes original research, reviews, brief reports of scientific investigations, case reports as well as commentary and correspondence related to topics of scientific, ethical, social and economic importance to emergency care in Africa. Articles will be of direct importance to African emergency care, but may have originated from elsewhere in the world.

TYPES OF ARTICLES

Original Article: Original studies of basic or clinical investigations in areas relevant to emergency medicine. Reference to the relevance of the research in a resource poor setting is essential and should be alluded to in the discussion section. References and a structured abstract (see Preparation below) are required. Maximum length: 3,000 words, 5 tables and/or figures, plus the abstract (300 words) and references (max 50). The checklists found on the following websites should be used to structure your manuscript (a copy of the checklist indicating which elements of the reporting format you adhered to, a signed conflict of interest form - see below- should be submitted with your manuscript):

a. For randomised control trials: http://www.consort-statement.org
b. For cohort, case-control, and cross-sectional studies: http://www.strobe-statement.org/
c. All other studies: http://www.equator-network.org/

2. Review Articles: Extensive reviews of the literature on a narrow clinical topic. References must include, but need not be limited to, the past 3 years of the literature. A structured abstract is required (see Preparation below). Maximum length: 3,000 words, plus the abstract (max 300 words) and references (max 50). Please contact the editor in chief before you submit a review. The following reporting checklists should be used to structure your manuscript (a copy of the checklist indicating which elements of the reporting format you adhered to, a signed conflict of interest form - see below- should be submitted with your manuscript):

a. A Resourced-tiered review checklist is the standard reporting format for publication in AfJEM:

b. If your topic does not lean itself towards a resourced tiered review consider alternative reporting checklists for systematic reviews and meta-analyses such as Prisma checklist (http://www.prisma-statement.org) or similar. Please check with the editor-in-chief before using a checklist other that the resources-tiered checklist.

3. Case Reports: Brief descriptions of a previously undocumented disease process, a unique unreported manifestation or treatment of a known disease process, or unique unreported complications of treatment regimens. Case reports should be structured as follow: Introduction, Case report and Discussion. It should not contain an exhaustive review of the literature. Consider consent for patient identifiable information (download from website). A structured abstract (see Preparation below) is required. Maximum length: 1,000 words, plus abstract (max 150 words) and references (max 10), and 1 table or figure a copy of the checklist indicating which elements of the reporting format you adhered to, a signed conflict of interest form - see below- should be submitted with your manuscript). Case reports listed for publication after 2015 are published online only and compiled within a virtual issue once a year.

4. Abbreviated paper (previously Brief Research Reports): Reports of preliminary data and findings or studies with small numbers demonstrating the need for further investigation.
References and a structured abstract (see Preparation below) are required. Maximum length: 1,500 words, plus the abstract (max 300 words) and references (max 10) and 3 tables and/or figures. Checklists described for original research above should be used to structure your manuscript (a copy of the checklist indicating which elements of the reporting format you adhered to, a signed conflict of interest form - see below- should be submitted with your manuscript)

5. Commentary: Descriptions of clinical and nonclinical problems and solutions; descriptions of novel approaches to planning, management, or provision of emergency services; and practical "how-to" articles describing aspects of emergency medicine management (includes African country acute care profiles). A narrative abstract (see Preparation below) is required. Maximum length: 3,000 words, plus the abstract (max 300 words) and references (max 50). A signed conflict of interest form- see below- should be submitted with your manuscript.

6. Editorials (commissioned and including op-ed): Authoritative comments or opinions on major current problems of emergency physicians or on controversial matters with significant implications for emergency medicine; or, qualified, thorough analysis and criticism of articles appearing in AfJEM. Maximum length: 1,500 words plus references (max 5). An abstract is not required. A signed conflict of interest form- see below- should be submitted with your manuscript.

7. Correspondence: Discussion, observations, opinions, corrections, and comments on topics appearing in AfJEM; very brief reports or other items of interest. Maximum length: 500 words, plus references (max 5). An abstract is not required. Please enter: Not applicable, Correspondence when prompted to enter an abstract. Letters discussing an AfJEM article should be received within 6 weeks of the article's publication. The article must be included in the references. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published. A signed conflict of interest form- see below- should be submitted with your manuscript.

8. Erratum: Corrections on topics appearing in AfJEM. Maximum length: 300 words, plus references (max 5). An abstract is not required. Please enter: Not applicable, Erratum when prompted to enter an abstract. Letters discussing an AfJEM article should be received within 6 weeks of the article's publication. The article must be included in the references. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder. A signed conflict of interest form- see below- should be submitted with your manuscript.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Please submit your article via https://www.evise.com/profile/api/navigate/AFJEM

Submission Checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.
Ensure that the following items are present:

One author has been designated as the corresponding author with contact details: • E-mail address
• Full postal address

All necessary files have been uploaded:

Title page
Cover letter
Manuscript:
• Include keywords
• All figures (include relevant captions)
• All tables (including titles, description, footnotes)
• Ensure all figure and table citations in the text match the files provided • Indicate clearly if color should be used for any figures in print Graphical Abstracts / Highlights files (where applicable)

Conflict of Interest Form
Supplemental files (where applicable): Relevant reporting checklist

Further considerations
• Manuscript has been 'spell checked' and 'grammar checked'
• All references mentioned in the Reference List are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
• A competing interests statement is provided, even if the authors have no competing interests to declare
• Journal policies detailed in this guide have been reviewed
• Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center. BEFORE YOU BEGIN

Ethics in Publishing

For information on Ethics in Publishing and Ethical guidelines for journal publication see https://www.elsevier.com/publishingethics and https://www.elsevier.com/ethicalguidelines. The work described in your article must have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans http://www.wma.net/en/30publications/10policies/b3/index.html; EC Directive 86/609/EEC for animal experiments http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm; Uniform Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org. AfJEM is a member of the Committee on Publication Ethics (COPE) which advises on the management of cases where research or publication misconduct occurred (http://publicationethics.org/). Consent forms for patients (if required) can be downloaded in both English and French.

Plagiarism detection AfJEM is a member of iThenticate. iThenticate is a plagiarism screening service that verifies the originality of content submitted before publication. iThenticate checks submissions against millions of published research papers, and millions of pages of web content. Authors, researchers and freelancers can also use iThenticate to screen their work before submission by visiting http://www.ithenticate.com/

Conflict of interest

Collate conflicts of interest in a separate section at the end of the article before the acknowledgements and do not, therefore, include them on the title page, as a footnote to the
title or otherwise. If no conflict of interest exists please state: The author(s) declare no conflict of interest Conflicts of interests that require disclosure include, but are not limited to:

a. Associations with commercial entities that provided support for the work reported in the submitted manuscript (the timeframe for disclosure in this section of the form is the life span of the work being reported).
b. Associations with commercial entities that could be viewed as having an interest in the general area of the submitted manuscript (in the three years before submission of the manuscript).

c. Non-financial associations that may be relevant or seen as relevant to the submitted manuscript. Example: I /We, the authors), declare the following interests: AA has received speaker fees from BBB company. CC has received fees as an advisory board member for DDD company. EE's institution receives funding from FFF company for a trial in which he is co-investigator

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see 'Multiple, redundant or concurrent publication' for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright holder. To verify originality, your article may be checked by the originality detection service Crossref Similarity Check.

Use of inclusive language

Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Content should make no assumptions about the beliefs or commitments of any reader; contain nothing which might imply that one individual is superior to another on the grounds of age, gender, race, ethnicity, culture, sexual orientation, disability or health condition; and use inclusive language throughout. Authors should ensure that writing is free from bias, stereotypes, slang, reference to dominant culture and/or cultural assumptions. We advise to seek gender neutrality by using plural nouns ("clinicians, patients/clients") as default/wherever possible to avoid using "he, she," or "he/she." We recommend avoiding the use of descriptors that refer to personal attributes such as age, gender, race, ethnicity, culture, sexual orientation, disability or health condition unless they are relevant and valid. These guidelines are meant as a point of reference to help identify appropriate language but are by no means exhaustive or definitive.

Authorship

All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the
case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Clinical trial results

In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors’ meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Article transfer service

This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information.

Journal rights

For articles published in AFJEM Elsevier uses an Exclusive License Agreement to define these rights. For articles published in AFJEM Elsevier uses an Exclusive License Agreement to define these rights. Under this license the rights granted to AFJEM include: An exclusive right to publish and distribute an article. The right to provide the article in all forms and media so the article can be used on the latest technology even after publication. The right to publish and disseminate the article under Creative Commons Attribution Non-Commercial No Derivatives (CC-BY-NC-ND) for the purposes of Open Access publication. Additional rights to enforce the rights in the work, on behalf of an author, against third parties in the case of plagiarism, ethic disputes and fraud.Author rights: As an author you (or your employer or institution) retain certain rights: Patent, trademark and other intellectual property rights in the article The right for proper attribution and credit for the published work The right to reuse their own work in the same way readers can as defined by CC-BY-NC-ND license.

For further details you are referred to: https://www.elsevier.com/about/company-information/policies/copyright. User rights: The CC-BY-NC-ND licence is used to govern the terms on which an article can be reused. CC-BY-NC-ND allows users to copy and distribute the article, provided this is not done for commercial purposes and the article is not changed or edited in any way. The author must be attributed and must not be represented as endorsing the use made of the work.

Elsevier supports responsible sharing

Find out how you can share your research published in Elsevier journals. Open access

Please visit our Open Access page for more information.

Open access (OA)
There is no publication fee for this journal. On publication, articles are made freely available to all (including non-subscribers) via the ScienceDirect platform. Learn more about Elsevier's pricing policy: https://www.elsevier.com/openaccesspricing

Elsevier Researcher Academy

Researcher Academy is a free e-learning platform designed to support early and mid-career researchers throughout their research journey. The "Learn" environment at Researcher Academy offers several interactive modules, webinars, downloadable guides and resources to guide you through the process of writing for research and going through peer review. Feel free to use these free resources to improve your submission and navigate the publication process with ease.

Language and language services

Please write your text in UK English by setting your word processor to English (U.K.). Authors who require information about language editing and copyediting services pre- and post-submission please visit http://webshop.elsevier.com/languagediting or our customer support site at https://service.elsevier.com for more information. Also see Author Assist below.

Author Assist It is the aim of the AfJEM to be representative of all parts of the African continent; we recognise within this that some African researchers in emergency care may be disadvantaged in the available range of journals into which they can publish their work. We are aware that this is due to many reasons, including that topics are concerned with www.afjem.com conditions which are largely irrelevant to other audiences. AfJEM is dedicated to supporting all authors who wish to publish on an African emergency care topic. In order to maintain and produce a high quality, international standard Emergency Medicine journal, AfJEM has devised Author Assist. AfJEM enlists the help of a team of experienced volunteers (Author Assistants) to help improve the quality of manuscripts before peer- review submission. Go to http://www.afjem.com/author-assistance.html for more information.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Submit your article

Peer review and Referees

Each paper submitted to the journal is firstly checked for completeness and similarity by the technical editor followed by an initial desk review by one of the editors-in-chief. Papers not suitable for publication are either rejected outright (out-of-scope) or rejected- refer Author Assist (within scope, but poor quality). This is usually done within the first three to five days. Papers accepted for peer review are then assigned to an associate editor who takes responsibility for assigning peer reviewers and providing a synthesis of reviews to the editor-in-chief for a decision. All original content submitted to the AfJEM is peer reviewed by a minimum of two and up to four reviewers. Editorials, op-ed pieces and regular features are reviewed by a single expert reviewer, usually an associate editor of the journal. Peer review is double blinded, which means the identities of the authors are concealed from the reviewers, and vice versa. More information is available on our website. To facilitate this, please include the following separately: Title page (with author details): This should include the title, authors'
names and affiliations, and a complete address for the corresponding author including an e-mail address. Blinded manuscript (no author details): The main body of the paper (including the references, figures, tables and any acknowledgments) should not include any identifying information, such as the authors' names or affiliations. The latter is specifically required to compliment the Author Assist process. AFJEM operates a strict peer reviewer code of conduct policy. Details can be found in the Reviewer Area on http://www.afjem.com. Authors are encouraged to submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that an editor retains the sole right to decide whether or not the suggested reviewers are used.

PREPARATION

Peer review

This journal operates a double blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of one independent expert reviewer to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor's decision is final. More information on types of peer review.

Double-blind review

This journal uses double-blind review, which means the identities of the authors are concealed from the reviewers, and vice versa. More information is available on our website. To facilitate this, please include the following separately:

Title page (with author details): This should include the title, authors' names, affiliations, acknowledgements and any Declaration of Interest statement, and a complete address for the corresponding author including an e-mail address.

Blinded manuscript (no author details): The main body of the paper (including the references, figures, tables and any acknowledgements) should not include any identifying information, such as the authors' names or affiliations.

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article Structure

Please use the manuscript template to structure your manuscript:

https://www.elsevier.com/__data/promis_misc/Manuscript template(AFJEM).pdf

Ensure that author identifiers are not included in the main manuscript file submitted. Inclusion of an abstract in the manuscript is not required. Consult the guidance and checklists described...
in Types of Articles above to structure your manuscript correctly. All article types will require the signed conflict of interest form to be submitted as a supplementary file. Original articles, abbreviated papers, case reports and review articles will require the reporting checklist to be submitted as e-component. Where these have not been supplied, the manuscript will be returned to the author.

Subdivision

Divide your article into clearly defined sections as per the guidance given in Types of Articles above. Numbers are not to be used for sections or subsections. Section headings should be in **bold**. Subsection headings should be in italics. Each heading should appear on its own separate line. Subsections in addition to the sections described in Types of Articles above should be used sparingly.

Clinical trial results

In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors' meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Discussion

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions

The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices

If there is more than one appendix, it should be identified starting with Appendix B, C, etc. Do not use Appendix A. Formulae and equations in appendices should be given separate numbering: Eq. (B.1), Eq. (B.2), etc.; in a subsequent appendix, Eq. (C.1) and so on. Similarly for tables and figures: Table B.1; Fig. B.1, etc. All appendices will be considered online material only.

Essential Title Page Information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the**
complete postal address. Contact details must be kept up to date by the corresponding author.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

- **Word count.** Please provide a word count
- **Table/figure count.** Please provide a table/figure count

Abstract

A concise and factual abstract of no more than 300 words is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. Non-standard or uncommon abbreviations should be avoided, but if essential, it must be defined at the first mention. With the exception of a submission for Editorials, Practical pearl, Correspondence and Erratum, structured abstracts are required for all article types

Types of abstracts include: *Research abstracts* should adhere to the following format: Introduction, Methods, Results and Conclusion. *Case reports* should adhere to the following format: Introduction, Case report and Discussion. *Narrative abstracts* are acceptable for non-research abstracts (concepts and commentary)

Keywords

The submission system will prompt authors to provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Statistics

Describe statistical methods with enough detail to enable a knowledgeable reader with access to the original data to verify the reported results. References for the design of the study and complex or unusual statistical methods should be to standard works when possible (with pages stated). Commonly used methods such as the chi-square test, t-test, ANOVA, linear and logistic regression need not be referenced. Define statistical terms, www.afjem.com abbreviations, and most symbols. Technical statistical terms should ideally be replaced by simpler terms where possible and referenced if not. Specify the computer software used. The results section must be written so the average reader can understand the findings. The
methods section is allowed to be more complex if unavoidable. When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals). For normally distributed data give means and confidence intervals and for data that is not normally distributed give the median and interquartile range. Avoid relying solely on statistical hypothesis testing, such as p-values. If p-values are used, include 2 digits of precision (i.e. \(p=0.65 \)) for values greater than 0.01. Give 3 digits for values between 0.01 and 0.001 and report values smaller than 0.001 as \(p < 0.001 \). Describing non-significant p-values as NS is not acceptable and a numerical value should be given. When using tables consider including counts and percentages. In general, including the chi-square statistic, t statistic, F statistic and degrees of freedom is not useful. Regression output should be limited to the most important findings. Estimates of variance explained (\(R^2 \), correlation coefficients, and standardised regression coefficients or effect size) should not be presented as the main result of the analysis.

Math Formulae

Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., \(X/Y \). In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text). Bear in mind that complex formulae, such as log likelihood expressions or symbolic expressions for regression models are often beyond the grasp of the average reader. Consider making this available as an online only appendix.

Footnotes

Footnotes are discouraged and when used should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Mandatory inclusions

Mandatory inclusions will be included in the final manuscript and will be added by the technical editor after acceptance. It will be placed just before the acknowledgments. The documents listed below should be included for the relevant article types as e-component. Failure to include these will result in the submission being returned to include.

1. **Signed conflict of interest document:**
 Required for all article types. Download document here

2. **Reporting checklist**
 Required for Original articles, Review Articles, Abbreviated papers and Case Reports. Please provide a copy of the reporting checklist clearly indicating which elements of the reporting format has been adhered to and which not. Provide a brief explanation for deviations from a reporting checklist
 a. For randomised control trials: http://www.consort-statement.org
 b. For cohort, case-control, and cross-sectional studies: http://www.strobe-statement.org/
 e. For systematic reviews and meta-analyses: http://www.prisma-statement.org
 f. All other studies: http://www.equator-network.org/

Artwork
Image manipulation

Whilst it is accepted that authors sometimes need to manipulate images for clarity, manipulation for purposes of deception or fraud will be seen as scientific ethical abuse and will be dealt with accordingly. For graphical images, this journal is applying the following policy: no specific feature within an image may be enhanced, obscured, moved, removed, or introduced. Adjustments of brightness, contrast, or color balance are acceptable if and as long as they do not obscure or eliminate any information present in the original. Nonlinear adjustments (e.g. changes to gamma settings) must be disclosed in the figure legend.

Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.
• Ensure that color images are accessible to all, including those with impaired color vision.

A detailed guide on electronic artwork is available. You are urged to visit this site; some excerpts from the detailed information are given here. Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.
Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi. TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Colour artwork/ figure
Please make sure that artwork/ figure files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable colour figures then Elsevier will ensure, at no additional charge, that these figures will appear in colour on the Web (e.g., ScienceDirect and other sites) in addition to colour reproduction in print. For further information on the preparation of electronic artwork/ figure, please see https://www.elsevier.com/artworkinstructions.

Artwork Figure captions
Ensure that each illustration/ figure has a caption. Supply captions separately, listed at the end of your manuscript after the references, and not included in the separately uploaded artworks/ figures. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.
Illustration services

Elsevier's Author Services offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier's expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Text graphics

Text graphics may be embedded in the text at the appropriate position. See further under Electronic artwork.

Tables

Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article. Tables should be placed within the text where it is referenced. The preferred format for tables is as follow. Include tables in the main text of the manuscript. Each table should be labelled at the top with footnotes at the bottom.

Table 1 Title of table

<table>
<thead>
<tr>
<th>Align heading left</th>
<th>Align heading middle</th>
<th>Align heading middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align content left</td>
<td>Align content middle</td>
<td>Align content middle</td>
</tr>
<tr>
<td>Align content middle</td>
<td>Align content left</td>
<td>Align content middle</td>
</tr>
<tr>
<td>Align content middle</td>
<td>Align content middle</td>
<td>Align content middle</td>
</tr>
<tr>
<td>a Footnote 1, b Footnote 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.
Data references

This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

References in a special issue

Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style

Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given. List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.

Examples:
Reference to a journal publication:
Reference to a journal publication with an article number:
Reference to a book:

Reference to a chapter in an edited book:
Reference to a dataset:
Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by ‘et al.’ For further details you are referred to ‘Uniform Requirements for Manuscripts submitted to Biomedical Journals’ (J Am Med Assoc 1997;277:927–34) (see also Samples of Formatted References).

Journal Abbreviations Source

Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.issn.org/services/online-services/access-to-the-ltwa/. The correct abbreviation for AFJEM is: Afr J Emerg Med

Video

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be
properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the file in one of our recommended file formats with a preferred maximum size of 150 MB per file, 1 GB in total. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

Research data

This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the "References" section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking

If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

Mendeley Data
This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. During the submission process, after uploading your manuscript, you will have the opportunity to upload your relevant datasets directly to Mendeley Data. The datasets will be listed and directly accessible to readers next to your published article online.

For more information, visit the Mendeley Data for journals page.

Data statement

To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.

Additional information

Manuscripts should not exceed 30 typewritten pages for original articles and 6 typewritten pages for short communications (incl. tables and figure legends). The editors reserve to themselves the right of condensing any paper submitted.

AFTER ACCEPTANCE

French title and abstract translation

Following acceptance of your paper and prior to proofs being returned to you for a final check, the technical team will translate your manuscript title and abstract to French. This will be included in the final proof.

Manuscript translation

Following acceptance authors are now encouraged to submit a self-translated version of their final approved manuscript (title, abstract and text) into any Africa-relevant language (i.e. French, Arabic, Swahili, Portuguese, etc.). The self-translated manuscript will be published as a supplementary file along with the formal English version. The self-translated version will not be checked by the editing team and the following notice will appear near the link to the self-translated version: A [language] translation of this paper has been provided by the authors. The translation has not been check by the editorial team.

The purpose of a self-translation is to improve the visibility and accessibility of the manuscript's content. This should be kept in mind when the author(s) take the decision to provide a translation. The translation should be provided in a Word document and sent directly to the editor in chief within two weeks of acceptance. A cover page should precede the translation stating the Title of the paper in English, the names of the Authors the Manuscript number and the language the paper was translated in. The translation should include a title, abstract and the main manuscript (text, figures and tables) each on a separate page. It should include citations but not the references as this is already available in the main manuscript.

Online proof correction

To ensure a fast publication process of the article, we kindly ask authors to provide us with their proof corrections within two days. Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on
figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author will be notified and receive a link to the published version of the open access article on ScienceDirect. This link is in the form of an article DOI link which can be shared via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's Author Services.

AUTHOR INQUIRIES

Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.

You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2018 Elsevier | https://www.elsevier.com