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ABSTRACT 

This study sought to improve the technical performance (coefficient of performance 

(COP) and specific cooling power (SCP)), environmental impacts and economic 

viability of employing the adsorption working pairs produced from waste streams of 

mango processing in the adsorption cooling system (ACS).  The specific objectives 

were: to produce and characterize mango seed husk activated carbon (AC) using NaCl 

as the activation agent and compared with commercial AC; assess the performance 

(in terms of COP and SCP) of the mango seed husk AC (with commercial AC as the 

control) paired with both high-grade and low-grade ethanol as refrigerants; improve 

the heat and mass transfer performance of commercial AC paired with both high-grade 

and low-grade ethanol as refrigerants through composite formation; and evaluate the 

environmental and economic impacts of integrating adsorption cooling system (ACS) 

in dried mango chips processing in both grid and off-grid power conditions.  

Mango seed husk AC was produced through slow pyrolysis method using NaCl as the 

activation agent. About 100 g of dried mango seed husk was soaked in 250 ml of NaCl 

solution of concentrations (10 w/v%, 20 w/v%, and 30 w/v%) to obtain impregnation 

ratios of 0.25, 0.5 and 0.75 at 25 °C. The carbonization temperatures were 400 °C, 

450 °C, and 500 °C. The experimental design was based on a 33 (impregnation ration, 

soaking time, and carbonization time) Box-Behnken fractional factorial optimization 

method with three center runs, giving total runs of 15. The responses analyzed were 

bulk density, ash content, and surface area. The optimized mango seed husk AC 

produced was tested in an ACS constructed in-house and its performance compared 

with commercial AC. The composite AC were also formed by soaking commercial AC 

in NaCl solution at varying concentrations of 10 w/v %, 15 w/v %, 20 w/v %, 25 w/v %, 

30 w/v % and 35.7 w/v %, for 24 hours at 25 °C, dried at 105 °C for 24 hours and then 
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tested in ACS constructed in-house with high purity (99.7%) and low-grade (60%) 

ethanol to evaluate the effect of ethanol grade on the performance of the composite 

formed. Finally, three scenarios for each power setting (on-grid and off-grid) were 

studied, on-grid: coal as boiler fuel and conventional chiller for cooling (Scenario 1), 

mango seed as boiler fuel and adsorption chiller for cooling (Scenario 2) and mango 

seed as boiler fuel and ACS for cooling (Scenario 3). Off-grid scenarios 4, 5 and 6 

corresponded to on-grid scenarios 1, 2 and 3, respectively. Environmental impacts 

and economic viability for each scenario were based on material and energy balances 

and South African economic conditions, respectively.  

 

The results showed that mango seed husk AC had comparable ash content (6.92%) 

to the commercial AC. The SCP, COP and temperature drop recorded in ACS for 

mango seed husk AC when paired with high purity (99.7%) ethanol reduced from 40 

W/kg, 0.050 and 4.46 °C to 37.3 Wkg-1, 0.048, and 4.5 °C, respectively, when paired 

with low-grade ethanol (60%). Moreover, the COP and SCP of commercial AC paired 

with high purity ethanol were 0.099 and 84.5 Wkg-1, which reduced to 0.091 and 

75.5 W/kg, respectively, when paired with low-grade ethanol. In addition, the COP of 

the composite AC containing 20%, 25% and 30% NaCl paired with low-grade ethanol 

were 0.121, 0.160 and 0.146, respectively, which were higher than when paired with 

high purity ethanol, thus 0.082, 0.080, and 0.076, respectively. In terms of 

environmental and economic impacts, on-grid scenario 3 showed the greatest 

potential for reducing emissions and improving economic viability by emitting 7.10×105 

kgCO2eq/yr and internal rate of return (IRR) of 25.33% compared to scenario 1 that 

had the GHG emission of 7.89×105 kgCO2eq/yr and IRR of 17.48%.  In off-grid, 

scenario 6 had the least GHG emission of 6.90×105 kgCO2eq/yr and IRR of 24.84% 
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while scenarios 4 had the highest GHG emission of 7.67×105 kgCO2eq/yr and IRR of 

16.09%.  

 

Overall, it is possible to improve the heat and mass transfer of activated carbon paired 

with low-grade ethanol. The improvement in heat and mass transfer when AC + NaCl 

was paired with low-grade ethanol suggests that low-grade ethanol can be used as an 

alternative refrigerant. However, in areas where silica gel is accessible, forming 

composite with silica gel + NaCl paired with pure water as refrigerant would eliminate 

the mass transfer challenges associated with using AC+NaCl composites paired with 

ethanol. Furthermore, the replacement of vapour compression cooling technology with 

ACS and boiler fuel with mango seed has led to the reduction in GHG emission and 

improvement in the economic viability of dried mango chip processing. Thus, the study 

has improved the technical, economic and environmental performance of ACS in 

terms of temperature maintenance, resource consumption, and emissions. 
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ABSTRAK 

 Hierdie studie het beoog om die tegniese werkverrigting (koëffisiënt van 

werkverrigting (KVW) en spesifieke verkoelingskrag (SVK)), omgewingsimpak en 

ekonomiese lewensvatbaarheid te verbeter deur die aanwending van adsorpsiepare 

geproduseer uit die afvalstrome van mango-prosessering in die adsorpsie 

verkoelingstelsel. Die spesifieke doelstellings was: om mangosaaddop geaktiveerde 

koolstof (GK) te produseer deur NaCl as die aktiveringsmiddel te gebruik, dit te 

karakteriseer en met kommersiële GK te vergelyk; die werkverrigting (in terme van 

KVW en SVK) van die mangosaaddop GK (met kommersiële GK as die kontrole) 

gekombineer met beide hoë suiwerheid en lae-graad etanol as koelmiddels, te 

assesseer; die hitte- en massa-oordrag werkverrigting van kommersiële GK 

gekombineerd met beide hoë suiwerheid en lae-graad etanol as koelmiddels te 

verbeter deur samestelling vorming; en die assessering van die omgewings- en 

ekonomiese impak wanneer adsorpsie verkoelingstelsel (AVS) in gedroogde 

mangoskyfie-prosessering geïntegreer word in beide netwerk en buite-netwerk krag 

kondisies 

Mangosaaddop GK is geproduseer deur ’n stadige pirolise metode deur gebruik 

te maak van NaCl as die aktiveringsmiddel. Ongeveer 100 g gedroogde 

mangosaaddop is in 250 ml NaCl oplossing geweek met konsentrasies (10 % w/v, 20 

% w/v, en 30 % w/v) om impregneringsverhoudings van 0.25, 0.5 en 0.75 by 25 °C te 

verkry. Die verkolingstemperature was 400 °C, 450 °C, en 500 °C. Die eksperimentele 

ontwerp is gebaseer op ’n 33 (impregneringsverhouding, weektyd, en verkolingstyd) 

Box-Behnken fraksionele faktoriaal optimeringsmetode met drie middellope, vir ’n 

totaal van 15 lope. Die response geanaliseer was massadigtheid, as-inhoud, en 

oppervlakarea. Die geoptimiseerde mangosaaddop GK geproduseer is getoets in ’n 
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binne-huis geboude AVS en sy werkverrigting is vergelyk met kommersiële GK. Die 

saamgestelde GK is ook gevorm deur kommersiële GK in NaCl oplossing by verskeie 

konsentrasies van 10 % w/v, 15 % w/v, 20 % w/v, 25 % w/v, 30 % w/v en 35.7 % w/v, 

vir 24 uur by 25 °C te week, te droog by 105 °C vir 24 uur, en dan te toets in ’n binne-

huis geboude AVS met hoë suiwerheid (99.7 %) en lae-graad (60 %) etanol om die 

effek van etanol graad op die werkverrigting van die samestelling gevorm, te evalueer. 

Laastens, drie scenario’s vir elke kragstelsel (binne-netwerk en buite-netwerk) is 

bestudeer: steenkool as ketelbrandstof en konvensionele afkoeler vir verkoeling 

(Scenario 1), mangosaad as ketelbrandstof en konvensionele afkoeler vir verkoeling 

(Scenario 2), en mangosaad as ketelbrandstof en AVS vir verkoeling (Scenario 3). 

Buite-netwerk scenario’s 4, 5 en 6 stem ooreen met binne-netwerk scenario’s 1, 2 en 

3, onderskeidelik. Omgewingsimpak en ekonomiese lewensvatbaarheid vir elke 

scenario is gebaseer op materiaal- en energiebalanse en Suid-Afrikaanse 

ekonomiese kondisies, onderskeidelik. 

Die resultate het gewys dat mangosaaddop GK vergelykbare as-inhoud 

(6.92 %) het as die kommersiële GK. Die SVK, KVW en temperatuurval aangeteken 

in AVS vir mangosaaddop GK wanneer dit met hoë suiwerheid (99.7 %) etanol 

gekombineer is, was 77.3 W/kg, 0.048 en 4.5 °C – ’n afname van 87.5 W/kg, 0.050 en 

4.46 °C wanneer dit gekombineer word met lae-graad etanol (60 %). Verder, die KVW 

en SVK van kommersiële GK gekombineer met hoë suiwerheid etanol was 0.098 en 

122 W/kg, wat afgeneem het na 0.091 en 111 W/kg, onderskeidelik, wanneer 

gekombineer is met lae-graad etanol. Daarby was die KVW van die saamgestelde GK 

wat 20 %, 25 %, en 30 % NaCl bevat, gekombineer met lae-graad etanol 0.121, 0.160 

en 0.146, onderskeidelik. Dit was hoër as toe dit gekombineer is met hoë suiwerheid 

etanol – 0.082, 0.080, en 0.076, onderskeidelik. In terme van omgewings- en 
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ekonomiese impak, het binne-netwerk scenario 3 die grootste potensiaal gewys vir die 

vermindering van emissies en verbetering van ekonomiese lewensvatbaarheid deur 

uitstorting van 7.10×105 kgCO2 ekw/jr en interne opbrengskoers (IOK) van 25.33 %, 

vergelyk met scenario 1 wat KHG emissies van 7.89×105 kgCO2 ekw/jr en IOK van 

17.48 % gehad het. In buite-netwerk, het scenario 6 die minste KHG emissies gehad 

- 6.90×105 kgCO2 ekw/jr en IOK van 24.84 %, terwyl scenario 4 die hoogste KHG 

emissies van 7.67×105 kgCO2 ekw/jr gehad het en IOK van 16.09 %. 

 Alles in ag geneem, is dit moontlik om die hitte- en massa-oordrag van 

geaktiveerde koolstof gekombineer met lae-graad etanol te verbeter. Die verbetering 

in hitte- en massa-oordrag wanneer GK + NaCl met lae-graad etanol gekombineer is, 

stel voor dat lae-graad etanol gebruik kan word as ’n alternatiewe verkoeler. In areas 

waar silika jel bereikbaar is, sal die vorming van ’n samestelling met silika jel + NaCl 

gekombineer met suiwer water as verkoeler, die massa-oordrag uitdagings 

geassosieer met die gebruik van GK + NaCl samestellings gekombineer met etanol, 

elimineer. Verder, die vervanging van damp kompressie verkoelingstegnologie met 

AVS, en ketelbrandstof met mangosaad, het tot die vermindering in KHG emissies 

gelei en die verbetering in ekonomiese lewensvatbaarheid van gedroogde 

mangoskyfie-prosessering. Dus het hierdie studie die tegniese, ekonomiese en 

omgewingswerkverrigting van AVS in terme van temperatuur handhawing, hulpbron 

verbruik en emissies, verbeter. 
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Chapter 1 Introduction 

1.1 Cooling technologies and their role in food security 

Lack of cooling technologies is a major cause of postharvest losses of perishable 

crops, causing food insecurity and loss of income for communities that rely heavily on 

agriculture for their livelihoods [1,2]. There are many cooling technologies available 

such as conventional vapour compression cooling system (CVCC), vacuum cooling, 

hydro-cooling, evaporative cooling, etc. but most of these require electricity to operate 

while some such as evaporative cooling technologies are weather dependent. 

Therefore, providing agricultural communities with reliable cooling technologies 

throughout the season can impact positively on their food security and economic well-

being. 

Alternative postharvest cooling technologies include adsorption cooling systems 

(ACSs) that have been used in the postharvest handling of perishable produce to 

minimize the consumption of electricity and reduce greenhouse gas emissions [3]. 

ACS employs a solid material called adsorbent to take up a refrigerant gas at low 

pressure and temperature followed by desorption by heat [4]. The heat can be 

obtained from solar, geothermal, waste heat from factories, combustion of fuels [4–6] 

and many other sources. The independence of ACS on electricity and environmental 

conditions such as relative humidity makes this cooling system an ideal choice for use 

in off-grid communities.  

The performance of the ACS is assessed by specific cooling power (SCP) in addition 

to the coefficient of performance (COP). The SCP is affected by the cycle time which 

is the time between the adsorption of the refrigerant, pre-heating of the adsorber bed 

and its content, desorption of the refrigerant, cooling of the adsorber bed and the start 
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of the next adsorption. Furthermore, the cooling performance of ACSs is also affected 

by the type of adsorbent/refrigerant pairing used. The frequently used 

adsorbent/refrigerant pairings are AC/ethanol, AC/methanol, AC/ammonia, silica 

gel/water, and zeolite/water [6,7]. These adsorbent/refrigerant pairings are either 

associated with global warming, toxicity or poor performance due to inefficient heat 

and mass transfer [8,9]. 

This study seeks to introduce sustainable innovations in ACS operations in the form 

of introducing novel composite adsorbent and refrigerant pairs and utilization of 

bioenergy from waste streams of mango processing, to make AC more eco-friendly 

and low cost. In particular, the innovations are expected to improve the technical, 

economic and environmental performance of ACS in terms of temperature 

maintenance, resource consumption, and emissions. In the study, mango seed husk, 

a bioresource generated from the mango processing waste stream, served both as 

the source of heat and an adsorbent. The mango seed husk was processed into AC 

using sodium chloride as an activation agent, which subsequently was used to 

produce composite AC-sodium chloride adsorbent for the cooling system. The other 

portion of the mango husk is combusted for energy generation to run the cooling 

system.  

1.2 Mango waste from mango processing as feedstocks for bioenergy and bio-

sorbents in low cost refrigeration system 

During the processing of mango into various products, a huge amount of wastes are 

generated [10,11]. Mango seeds and peels are the main wastes generated, each 

representing 17-22% and 10-20%  of the weight of fruit respectively depending on the 

variety [12]. Even though some processors processed the whole mango fruit into 

value-added products such as mango atchar, most processors dispose of the mango 
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waste streams into the environment [10] which causes environmental hazards such 

as emission of methane gas during decomposition of the mango waste. Exploring the 

suitability of and subsequent use of mango waste to replace commercial adsorbents 

and as a source of energy in the area of adsorption refrigeration will reduce waste 

handling and food insecurity issues and be a source of income. 
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Chapter 2 Literature review 

2.1 Overview of cooling systems 

Cooling technologies play a critical role in slowing down senescence, maintaining 

product quality and extending shelf life, which is the postharvest period a product 

remains acceptable [13]. The rate of deterioration of horticultural produce is 

influenced by temperature [13] according to Arrhenius’ equation as follows 

                   𝐾 = 𝐴𝑒−𝐸𝑎 (𝑅𝑇)⁄                                                                                    2. 1 

Where: 𝐾 is the rate constant (s-1), 𝑇 is the temperature(K), 𝐴 is the pre-

exponential factor (or prefactor) (s-1), 𝐸𝑎 is the activation energy (kJmol-1), R is 

the universal gas constant (kJmol-1K-1). Thus, storing horticultural produce at 

relatively high temperature increases the rate of chemical, biochemical and 

physiological processes, which result in faster deterioration.  The choice and 

design of cooling technologies depend on factors such as physiological 

properties of the fresh produce, power consumption and supply, source and 

availability of materials, ambient conditions, cost and environmental impacts. A 

detailed discussion of these factors for each cooling technology has been 

provided below. Classification of the available cooling technologies is shown in 

Figure 2.1. 

2.1.1 Conventional vapour compression cooling system  

A conventional vapour compression cooling (CVCC) system comprises four basic 

components: evaporator, condenser, expansion valve and compressor. The flow 

chart of the operation of the conventional vapour compression cooling system is 

shown in Figure 2.2.  
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Figure 2.1 Classification of cooling systems [adapted from [14,15]] 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Flow chart for the conventional vapour compression cooling cycle. Note: 

1, 2, 3 and 4 are the states of the refrigerant during the process 
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Heat transfer fluid (refrigerant) undergoes evaporation, compression, 

condensation, and expansion processes, respectively, as it enters and exits 

these components. Liquefied refrigerant goes into the evaporator and it is 

converted into vapour by addition of latent heat of vaporization from the 

evaporator compartment. This results in cooling the evaporator compartment. 

The cooling effect in the evaporator can be calculated using Equation 2.2. 

𝑄̇𝑒𝑣𝑎

𝑚̇𝑟𝑒𝑓
= ℎ1 − ℎ4 = ℎ𝑓𝑔                                                                                   2. 2 

Where: 𝑄̇𝑒𝑣𝑎 is the cooling rate in the evaporator (kJs-1), ℎ1 and ℎ4 are the specific 

enthalpies of the refrigerant exiting and entering the evaporator (kJkg-1), and 𝑚̇𝑟𝑒𝑓 

is the refrigerant mass flow rate (kgs-1), ℎ𝑓𝑔 is specific the latent heat of 

vaporization of the refrigerant (kJkg-1). The refrigerant vapour then enters the 

compressor where it is pressurized to relatively high pressure and temperature. 

Assuming the compression is adiabatic, the energy input during the compression 

process can be determined using Equation 2.3. 

𝑊̇𝑐𝑜𝑚𝑝

𝑚̇𝑟𝑒𝑓
= ℎ2 − ℎ1                                                                                      2. 3 

Where: 𝑊̇𝑐𝑜𝑚𝑝 is the compressor work input rate (kJs-1), ℎ2 and ℎ1 are the 

enthalpies of the refrigerant exiting and entering the compressor (kJkg-1). When 

the pressure approaches that of the condenser, the vapour enters the condenser 

where it is cooled to the liquid and there is heat transfer from the refrigerant to 

the surroundings. The energy rejected during the condensation of the refrigerant 

can be determined using Equation 2.4. 

𝑄̇𝑐𝑜𝑛

𝑚̇𝑟𝑒𝑓
= ℎ2 − ℎ3                                                                                           2. 4 
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Where: 𝑄̇𝑐𝑜𝑛 is the rate of heat rejection by the condenser (kJs-1), ℎ2 and ℎ3 are 

the enthalpies of the refrigerant exiting and entering the condenser (kJkg-1), and 

𝑚̇𝑟𝑒𝑓 is the refrigerant mass flow rate (kgs-1). After exiting the condenser, the 

liquid refrigerant enters the expansion valve where the depressurization of the 

refrigerant vapour takes place before re-entering the evaporator. There is no heat 

transfer during the throttling process. The refrigerant leaves the expansion valve 

as a two-phase liquid-vapor mixture. 

ℎ3 = ℎ4 = ℎ𝑓4 + 𝑥𝑟𝑒𝑓(ℎ𝑔4 − ℎ𝑓4)                                                   2. 5 

Where: ℎ3 and ℎ4 are the specific enthalpies of the refrigerant entering and exiting 

the expansion valve (kJkg-1), ℎ𝑓4 and ℎ𝑔4 are specific enthalpies of the liquid and 

vapour component of the two-phase liquid-vapor mixture leaving the expansion 

valve (kJkg-1), and 𝑥𝑟𝑒𝑓 is the fraction of the two-phase liquid-vapor mixture that 

in the vapour phase. The cycle then repeats itself. The coefficient of performance 

of the process can be determined by Equation 2.6. 

𝐶𝑂𝑃 =

𝑄𝑒𝑣𝑎
̇

𝑚𝑟𝑒𝑓̇

𝑊̇𝑐𝑜𝑚𝑝

𝑚̇𝑟𝑒𝑓

  =
ℎ1 − ℎ4

ℎ2 − ℎ1
                                                                2. 6 

 
The CVCC systems have limitations of electricity dependency and utilization of 

environmentally unfriendly refrigerants. The power input of 412.5 kW was 

reportedly required to operate a conventional vapour compression chiller with the 

cooling capacity of 597 kW [16] while CO2 emission of 75 ton/year was reported 

for a conventional vapour compression chiller that used 750 kg of refrigerant 

R134a with 7% leakage of the refrigerant [17]. Furthermore, about 1.25 kg CO2 

is emitted per kWh of power produced from coal to operate this cooling 
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technology [18]. As a result of these limitations, sorption cooling systems have 

been proposed and studied as a suitable substitute for vapour compression 

cooling systems. 

2.1.2 Other cooling systems 

There are other cooling technologies that are also employed for postharvest 

handling of fresh horticultural produce. Some of these cooling technologies are 

forced-air cooling, hydro-cooling, vacuum cooling, and evaporative cooling.  

Forced-air precooling 

Forced-air cooling usually uses a conventional compression system. A forced-air 

system is a precooling method that manages the air flow (using a blower) around 

the produce [13,19]. The amount of power consumed depends on the amount of 

cooling desired and the type of fresh produce to be cooled. To reduce the 

temperature of 5 kg of cauliflower head from 24 °C to 1 °C requires 0.3684 kW 

(blower and the conventional cooling system) of power consumption [20].  This 

technology also resulted in a loss of 2.89% weight of the cauliflower head due to 

evaporation of water from its surface [20]. This weight loss is undesirable for both 

farmers and processors because the economic benefit of the product is related 

to the weight.  Loss of water also affects the quality attributes of the produce.  In 

addition to weight loss and electricity dependence, the high cost of construction 

and installation is hampering the use of this technology in rural communities. A 

3.5 kW of forced air built by USDA (United States Department of Agriculture) 

team in Maryland, United States costs US $1,200 USD [21].  
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Hydro-cooling 

In the case of fast cooling of produce, hydro-cooling is employed, which involves 

showering or dipping the product in chilled water [21]. The produce and the 

packaging material have to be water tolerant in order to apply this cooling method 

[13,21]. The amount of water and electricity consumption to cool four ton of 

broccoli from 30 °C to 6 °C by showering with water at 0 °C was estimated by 

Thorpe [22]. It was reported that hydro-cooling with water recycling requires 

20 kWh of electricity consumption and water consumption of 75 liters per ton of 

broccoli whereas, without any recycling, the power and water consumption are 

300 kWh and 60,000 liters per ton of broccoli respectively [22]. 

Vacuum cooling 

A highly sensitive product might require cooling at lower pressure. For vacuum 

cooling, the pressure in the cooling chamber is reduced to a point where water 

boils at a low temperature.  The produce is cooled as water evaporate from its 

surface [13]. Vacuum cooling could be applied to fresh produce with a large 

surface to volume ratio such as spinach, parsley, lettuce, broccoli, etc. [13,23,24]. 

The operation of vacuum cooling is dependent on electricity consumption, which 

may not be readily available in every agricultural community, to create the 

vacuum needed to effect the evaporation of the water. For example, 5 kg of 

cauliflower head was cooled from 24 °C to 1 °C for about an hour by consuming 

0.8516 kW of electricity to reduce the pressure from atmospheric to 2.9 kPa [20]. 

As a result of evaporation of the water, a weight loss of 4.55% was recorded for 

the cauliflower head [20], which is undesirable since it is related to the profit that 

farmers and processors can make. Apart from the vacuum pump to create the 
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vacuum, other expensive components such as condenser also required to 

condense the water vapour to be discharged through the drain [25]. Thus, the 

electricity consumed, and expensive equipment needed for vacuum cooling 

prohibits its application in rural communities.  

Evaporative cooling 

Evaporative cooling is the most economical way of reducing the temperature by 

moisturizing the air. It has some benefits over mechanical refrigeration system. It 

is friendly to the environment (reduces CO2 emission) as it does not use 

refrigerant [26]. It does not make noise as there is no moving part. It uses little or 

no electricity. Energy consumption by evaporative cooling is about 4-10 times 

lower than that for conventional vapour especially in dry and hot climatic 

conditions [27,28].  It does not require high initial capital investment, as well as 

the operational cost is negligible. The operating cost is about 20 times lower than 

that for CVCC [27,29]. It can be quickly and easily installed [26]. Its maintenance 

is easy and can be constructed with locally available materials in remote areas 

[21,26,30]. However, its cooling efficiency depends on the prevailing weather 

condition [21,26,30]. Evaporative cooling can reduce weight loss and quality 

defects, such as wilting since air is humidified and cooled by the system [27]. 

However, the high relative humidity achieved in the evaporative cooling could 

encourage the growth of microorganisms since the recommended storage 

relative humidity for most fresh produce is about 85-95% [27] that can cause 

deterioration of the fresh produce. There is also a high risk of contracting 

Legionnaire’s disease if the recycled water for cooling is not monitored and 

treated [27]. There have been attempts to improve the performance of 
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evaporative cooling by introducing a desiccant wheel to adsorb water in the 

process air and fan to induce forced convection [31–33]. To make the system 

suitable for areas with the limited supply of electricity, the thermoelectric 

generator could be used to generate power the fan and the desiccant wheel [34]. 

Regardless of the source of power to drive the desiccant wheel and the fan, the 

performance of the system depends heavily on changing humidity in the 

atmosphere thereby making it unreliable and not an ideal choice for cooling. 

More so, since evaporative cooling depends on the prevailing weather conditions, 

the temperature difference between the dry-bulb temperature and wet-bulb 

temperatures of the ambient air which is the driving force is normally very small 

leading to low cooling capacity. Despite this, the COP of evaporative cooling is 

very high compared with other cooling technologies due to less energy 

consumption by the evaporative cooler. COP of evaporative cooling is reported 

to be in the range of 15-20 while that for CVCC is between 2 to 4 [35]. 

 

2.1.3 Sorption cooling system 

Sorption cooling systems can be categorized into absorption (liquid-gas system) 

or adsorption system (solid-gas system). Absorption is a reversible volumetric 

occurrence where the substance in a gaseous phase (absorbate) is taken in and 

combines with another substance in the liquid phase  (absorbent) to form a 

solution, followed by subsequent separation by heat [14,36]. A conventional 

absorption cooling system is made up of an absorber, a pump, a generator, a 

condenser and an evaporator [36] which works in a cyclical fashion to achieve 

the cooling effect. The flow process of the conventional absorption cooling system 
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is shown in Figure 2.3. Condenser and evaporator perform a similar function as 

in the conventional vapour compression system. Absorption cooling system, 

however, differs from the CVCC regarding the number of heat transfer fluid used. 

While only one suitable heat transfer fluid (refrigerant) is used in a vapour 

compression system, the absorption cooling system employs two heat transfer 

fluid (the absorbent solution and refrigerant) [36]. The cyclical process begins in 

the absorber where the absorbent (e.g. LiBr solution) takes in the refrigerant 

vapour (e.g. water vapour) which exits the evaporator at reduced temperature 

and pressure. The liquid absorbent-refrigerant solution is transported to the 

generator by a pump through a heat exchanger where it is preheated by the hot 

concentrated absorbent solution (e.g. LiBr solution) returning from the generator. 

Reaching the generator, the liquid absorbent-refrigerant solution is heated to 

relatively high temperature and pressure to evaporate the refrigerant (e.g. water) 

from the mixture of a liquid absorbent and refrigerant vapour. The refrigerant 

vapour then enters the condenser to be condensed and liquid absorbent (e.g. 

LiBr solution) returns to the absorber. The condensed refrigerant then passes 

through an expansion valve without any heat transfer nor work done on the 

refrigerant and enters the evaporator. When the refrigerant enters the evaporator, 

it takes up heat from the evaporator compartment and the refrigerant is vaporized 

and goes to the absorber to be absorbed by the absorbent. The process repeats 

itself [36].   

 

 

 
 

Stellenbosch University https://scholar.sun.ac.za



14 
 

 

 

 

 

 

 

 

 

Figure 2.3 Flow chart of a typical absorption cooling system [redrawn from [36]] 

Note: 1, 2, 3, 4, 5 & 6  are the stages of the process  

The mass and energy balance equations for the entire process is as presented 

in Equation 2.7. 

𝑚̇𝑟𝑒𝑓 = 𝑚̇5 = 𝑚̇6 = 𝑚̇7                                                                     2. 7 

Where: 𝑚̇𝑟𝑒𝑓 is the mass flow rate of the refrigerant (kgs-1), 𝑚̇5, 𝑚̇6 and 𝑚̇7 are 

the mass flow rates (kgs-1) of the stream at stages 5, 6, and 7, respectively. 

Mass balance in the generator is presented in Equation 2.8 

𝑚̇2 = 𝑚̇3 + 𝑚̇5                                                                                     2. 8 

Where: 𝑚̇2, 𝑚̇3 and 𝑚̇5 are the mass flow rates (kgs-1) of the stream at stages 2, 

3, and 5, respectively. 

The mass balance in the absorbent solution is as given in Equation 2.9. 

𝑚̇3𝑥3 = 𝑚̇2𝑥2                                                                                      2. 9 

Where: 𝑚̇2 and 𝑚̇3 are the mass flow rates (kgs-1) defined in Equation 2.7, 𝑥2 and 

𝑥3 are the concentrations of the stream at stage 2 and 3, respectively. It follows 

that the amount of heat added to the absorbent solution-refrigerant mixture in the 

generator is as given in Equation 2.10. 
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𝑄̇𝑔𝑒𝑛 = 𝑚̇5ℎ5 + 𝑚̇3ℎ3 − 𝑚̇2ℎ2                                                       2. 10 

Where: 𝑚̇2, 𝑚̇3 and 𝑚̇5are the mass flow rates (kgs-1) defined in Equations 2.6 

and 2.7; ℎ2, ℎ3 and ℎ5 are the specific enthalpies (kJkg-1) at stages 2, 3, and 5, 

respectively, 𝑄̇𝑔𝑒𝑛 is rate of heat addition in the generator (kJs-1).   

Amount of heat liberated through the absorber is presented in Equation 2.11 

𝑄̇𝑎𝑏𝑠 = 𝑚̇7ℎ7 + 𝑚̇4ℎ4 − 𝑚̇1ℎ1                                                        2. 11 

Where: 𝑚̇1, 𝑚̇4 and 𝑚̇7 are the mass flow rates (kgs-1) of streams at stages 1, 4, 

and 7, respectively; ℎ1, ℎ4, and ℎ7 are the specific enthalpies (kJkg-1) at stages 1, 

4, and 7, respectively; Q̇abs is the rate of heat rejection through the absorber 

(kJs-1). Amount of heat liberated through the condenser is presented in Equation 

2.12. 

𝑄̇𝑐𝑜𝑛 = 𝑚̇6ℎ6 − 𝑚̇5ℎ5                                                                       2. 12 

Where 𝑚̇5 and 𝑚̇6are the mass flow rates (kJs-1) defined in Equation 2.6; ℎ5 and 

ℎ6 are the specific enthalpies (kJkg-1) at stages 5 and 6, respectively. The cooling 

rate in the evaporator compartment is then calculated using Equation 2.13 

𝑄̇𝑒𝑣𝑎 = 𝑚̇𝑟𝑒𝑓(ℎ1 − ℎ7)                                                                    2. 13 

Where: 𝑚̇𝑟𝑒𝑓 is the refrigerant mass flow rates (kJs-1) defined in Equation 2.6; ℎ1 

and ℎ7 are the specific enthalpies (kJkg-1) defined in Equation 2.11. 

Absorption cooling system has some operational and costs limitations that hinder 

its application. The absorption system requires electricity to run one or more 

pumps, which are critical components of the system [37], and therefore may not 

be suitable for communities with limited access to electricity or cannot afford the 

electricity. About 107.5 kW of electricity was reportedly required to operate an 

absorption cooling system with a cooling capacity of 2395 kW [16]. Regardless 
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of the electricity consumption by pumps, the high capital cost of absorption 

cooling systems is a major drawback for this technology.  An absorption cooling 

system with a cooling capacity 2395 kW was reported to cost about US $314,348 

while the conventional vapour compression cooling technology of the same 

cooling capacity was also reported to cost about US $178, 137 [16,38].  Due to 

the high capital cost, the absorption cooling systems have found little application 

for small-scale cooling systems. 

An adsorption cooling system comprises four main components: an adsorber (or 

desorber), evaporator, condenser, and valve. A typical flow diagram and 

Clapeyron diagram of an ACS are shown in Fig 2.4. The adsorption cooling cycle 

proceeded through four cyclical processes (Fig 2.4): isosteric pre-heating 

process, isobaric desorption process, isosteric pre-cooling process, and isobaric 

adsorption process. The process begins by allowing the mode of the valve 

between hot adsorbent B (adsorbent that is already charged with the refrigerant 

and about to be heated) and evaporator to be closed but opened to cold 

adsorbent A which allows vaporized refrigerant gas from the evaporator to be 

adsorbed into the pores of cold adsorbent A where the refrigerant gas condenses 

into liquid (process 4-1: Isobaric cooling). During the adsorption process, heat of 

adsorption is generated resulting in rise in temperature (below the boiling point of 

the refrigerant) and pressure of the adsorbent and its content. As more refrigerant 

is adsorbed, more heat of adsorption is generated, and temperature and pressure 

increase. Since rise in temperature has negative effect on adsorption [39], this 

heat is quickly removed into the environment. While this process is ongoing, the 

adsorbent B (that was already charged with the refrigerant to its maximum 
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adsorption capacity) is preheated (Process 1-2: isosteric heating) which raises its 

temperature and pressure (but below its boiling point) similar to the effect created 

by compressor in the conventional vapour compression system (Section 2.1.1). 

This compressor effect is dependent on the type of adsorbent/refrigerant pair 

involved. The heating of the adsorbent B continues (Process 2-3: isobaric 

heating) and the refrigerant vaporizes and begins to leave the adsorbent B to 

desorb its adsorbed the refrigerant gas and the valve between adsorbent B and 

condenser is opened (while it is closed to adsorbent A) to allow refrigerant vapour 

(gas) to flow to the condenser to be condensed into liquid and heat of 

condensation is rejected into the environment. After the desorption of the 

refrigerants, the hot adsorbent B is cooled down (process 3-4: isobaric cooling). 

The condensed refrigerant then passes through an expansion valve without any 

heat transfer nor work done on the refrigerant and enters the evaporator. When 

the refrigerant enters the evaporator, it takes up heat from the evaporator 

compartment and the refrigerant is vaporized. The mode of the valve between 

hot adsorbent B is now opened to allow the vaporized refrigerant goes to the 

adsorbent B to be adsorbed by the absorbent while the valve is closed to 

adsorbent A. As the adsorption continues, adsorbent A is heated, and the process 

repeats itself. The time lapse between the beginning of adsorption of refrigerant 

in adsorber A, the desorption of refrigerant from adsorber B, the cooling of 

adsorber B, and the start of the next adsorption in adsorber A is termed cycle 

time. 
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Figure 2.4: a. Flow chart of a typical single-stage two-bed adsorption cooling 

systems; b. Clapeyron diagram for the conventional single-stage two-bed adsorption 

cooling system. Note: 1, 2, 3, 4, 5 & 6  are the stages of the process  
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For an ideal ACS, the material balance in Fig 2.4a can be written as follows: 

                                           𝑚̇2 = 𝑚̇3                                                                                2. 14 

                                          𝑚̇2′ = 𝑚̇3′                                                                              2. 15 

                                        𝑚̇𝑟𝑒𝑓 = 𝑚̇1 = 𝑚̇4 = 𝑚̇5 = 𝑚̇6 = 𝑚̇2 + 𝑚̇2′                    2. 16 

Where: 𝑚̇1, 𝑚̇2, 𝑚̇3, 𝑚̇4, 𝑚̇5, 𝑚̇6are the mass flow rates (kgs-1) of the stream at 

stages 1,2, 3, 4, 5, and 6, respectively. 

The ACS energy balance could be determined by considering Fig 2.4b for the 

adsorbent bed, the condenser and the evaporator as follows: 

Adsorbent bed 

Four processes occur in the adsorbent bed. The energy balance for each of these 

processes are provided below 

1. Process 1-2: Isosteric heating 

In this process, the adsorbent bed is preheated. The total sensible heat input 

during this process is the sum of the sensible heats of the adsorbent container, 

porous adsorbent, and the refrigerant (liquid and vapour phase) at the constant 

highest adsorption capacity. These are given by the following Equation 2.17 [40,41] 

𝑄𝑖𝑠𝑜𝑠𝑡𝑒𝑟𝑖𝑐 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = ∫ 𝑚𝑚𝑐𝐶𝑚𝑐𝑑𝑇
𝑇2

𝑇1

+ ∫ 𝑚𝑎𝑑𝑠𝐶𝑎𝑑𝑠𝑑𝑇
𝑇2

𝑇1

+ ∫ 𝑚𝑟𝑒𝑓𝐶𝑟𝑒𝑓𝑑𝑇         
𝑇2

𝑇1

2. 17 

Where: 𝑚𝑚𝑐 is the mass of the adsorbent container (kg), 𝐶𝑚𝑐 is the specific heat 

capacity of the adsorbent container (Jkg-1K-1), 𝑚𝑎𝑑𝑠 is the mass of the adsorbent 

(kg), 𝐶𝑎𝑑𝑠 is the specific heat capacity of the adsorbent (Jkg-1K-1),  𝑚𝑟𝑒𝑓 is the 

mass of the refrigerant (kg), 𝐶𝑟𝑒𝑓 is the specific heat capacity of the refrigerant 

(Jkg-1K-1), 𝑇1 and 𝑇2 are the temperatures (K) at states 1 and 2 respectively. 
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2. Process 2-3: Isobaric heating  

The total energy required to drive this process has two main effects. Firstly, it 

causes a sensible heating of all the adsorbent bed constituents and increases 

their internal energy. Secondly, it initiates the desorption of the refrigerant from 

the adsorbent and produces the gas phase. Therefore, the total input heat is the 

sum of the sensible heats (of the adsorbent container, the adsorbent, and the 

refrigerant) and the total latent heat of desorption (Equations 2.18 & 2.19) [40,41] 

𝑄𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = ∫ 𝑚𝑚𝑐𝐶𝑚𝑐𝑑𝑇
𝑇3

𝑇2

+ ∫ 𝑚𝑎𝑑𝑠𝐶𝑎𝑑𝑠𝑑𝑇
𝑇3

𝑇2

+ ∫ 𝑚𝑟𝑒𝑓𝐶𝑟𝑒𝑓𝑑𝑇         
𝑇3

𝑇2

2. 18 

𝑄𝑑𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = −𝑚𝑎𝑑𝑠 ∫ 𝑞𝑠𝑡 [
𝜕𝑊

𝜕𝑇
]

𝑃=𝑃𝑐𝑜𝑛

𝑇3

𝑇2

𝑑𝑇                                                             2. 19 

Where 𝑚𝑚𝑐,  𝐶𝑚𝑐, 𝑚𝑎𝑑𝑠, 𝐶𝑎𝑑𝑠, 𝑚𝑟𝑒𝑓, 𝐶𝑟𝑒𝑓 are defined in Equation 2.20, 
𝜕𝑊

𝜕𝑇
 is the 

change in refrigerant uptake or concentration (kgkg-1) with respect to 

temperature,  𝑞𝑠𝑡 is the isosteric heat adsorption of the adsorbent/refrigerant pair 

(Jkg-1), 𝑇2 and 𝑇3 are the temperatures (K) at states 2 and 3 respectively. 

3. Process 3-4: Isosteric cooling 

During the cooling process, the refrigerant concentration (kg adsorbed refrigerant 

per kg of adsorbent) is at its minimum and sensible heat is transferred to the 

ambient. The total heat transferred from the adsorbent bed during this process is 

computed by [40,41]: 

𝑄𝑖𝑠𝑜𝑠𝑡𝑒𝑟𝑖𝑐 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = ∫ 𝑚𝑚𝑐𝐶𝑚𝑐𝑑𝑇
𝑇3

𝑇4

+ ∫ 𝑚𝑎𝑑𝑠𝐶𝑎𝑑𝑠𝑑𝑇
𝑇3

𝑇4

+ ∫ 𝑚𝑟𝑒𝑓𝐶𝑟𝑒𝑓𝑑𝑇             
𝑇3

𝑇4

2. 20 

Where: 𝑚𝑚𝑐,  𝐶𝑚𝑐, 𝑚𝑎𝑑𝑠, 𝐶𝑎𝑑𝑠, 𝑚𝑟𝑒𝑓, 𝐶𝑟𝑒𝑓 are defined in Equation 2.20, 𝑇3 and 𝑇4 

are the temperatures (K) at states 3 and 4, respectively. 
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4. Process 4-1: Isobaric cooling 

 Once the pressure of the adsorbent container and its content reach that of the 

adsorption pressure, the refrigerant is adsorbed onto the adsorbent and heat of 

adsorption is generated which raise the temperature of the adsorbent container 

and its content (which is normally removed by cooling the adsorbent container 

and its content). The total heat generated during isobaric adsorption is the sum 

of sensible heats (Equation 2.21) and internally generated the heat of adsorption 

(Equation 2.22) [40,41] 

𝑄𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = ∫ 𝑚𝑚𝑐𝐶𝑚𝑐𝑑𝑇
𝑇4

𝑇1

+ ∫ 𝑚𝑎𝑑𝑠𝐶𝑎𝑑𝑠𝑑𝑇
𝑇4

𝑇1

+ ∫ 𝑚𝑟𝑒𝑓𝐶𝑟𝑒𝑓𝑑𝑇         
𝑇4

𝑇1

2. 21 

𝑄𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = −𝑚𝑎𝑑𝑠 ∫ 𝑞𝑠𝑡 [
𝜕𝑊

𝜕𝑇
]

𝑃=𝑃𝑎𝑑𝑠

𝑇4

𝑇1

𝑑𝑇                                                                  2. 22 

Where 𝑚𝑚𝑐,  𝐶𝑚𝑐, 𝑚𝑎𝑑𝑠, 𝐶𝑎𝑑𝑠, 𝑚𝑟𝑒𝑓, 𝐶𝑟𝑒𝑓 are defined in Equation 2.20, 
𝜕𝑊

𝜕𝑇
 is the 

change in refrigerant uptake (kgkg-1) with respect to temperature,  𝑞𝑠𝑡 is the 

isosteric (latent) heat of adsorption of the adsorbent/refrigerant pair (Jkg-1), 𝑇1 

and 𝑇4 are the temperatures (K) at states 1 and 4 respectively. The effect of 

changes in composition of the refrigerant and the adsorbent on isosteric (latent) 

heat of adsorption was discussed further in Chapter 6. 

Condenser  

The refrigerant vapour enters the condenser as soon as it desorbs from the 

adsorbent bed. In the condenser, the thermal energy of the refrigerant gas is 

removed first by rejection of sensible energy from the superheated vapour at the 

condenser pressure and temperature. When the refrigerant vapor reaches the 

saturated vapour state, it starts to condense, and the latent energy of 
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condensation is rejected to the ambient. The total heat rejected can be calculated 

as 

𝑄𝑐𝑜𝑛 = 𝑚𝑟𝑒𝑓[ℎ𝑔 (𝑃𝑐𝑜𝑛,𝑇) − ℎ𝑓(𝑇𝑎𝑚𝑏)]                                                                        2. 23 

Where: 𝑄𝑐𝑜𝑛 is the condenser energy rejected; ℎ𝑔 (𝑃𝑐𝑜𝑛,𝑇) is specific heat of the 

refrigerant vapour at the condenser temperature and pressure (kJkg-1); ℎ𝑓(𝑇𝑎𝑚𝑏) 

is specific heat of the liquid refrigerant at the ambient temperature and pressure 

(kJkg-1); 𝑚𝑟𝑒𝑓 is the mass of the condensed refrigerant (kg). 

Evaporator 

As the refrigerant vapour is being adsorbed from the evaporator by the adsorbent, 

the useful cooling in the evaporator can be calculated using Equation 2.24 [3,41] 

𝑄𝑒𝑣𝑎 = 𝑚𝑟𝑒𝑓ℎ𝑓𝑔                                                                          2. 24 

 
Despite the similar thermodynamic principles underlining the operation of both 

adsorption and absorption cooling system, there are some differences in terms 

of component and performance. Pump is not a component of adsorption cooling 

system and therefore does not depend on electricity to function. However, the 

performance of adsorption system is inferior compare to that of absorption system 

[6,36,42]. The COP of absorption cooling system could be up to 1.2 whereas that 

for ACS is normally less than 0.6 [35] Absorption cycle requires a higher 

temperature heat source to run its operation in comparison with adsorption 

cooling system. The mechanism of adsorption system is described in detail in 

Section 2 3.  
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2.2 Adsorption cooling system 

Adsorption cooling systems rely on the adsorption of a refrigerant gas into an 

adsorbent at low pressure followed by removal of heat of adsorption, and 

subsequent desorption of the refrigerant by heating the adsorbent [43]. During 

the adsorption of the refrigerant onto the adsorbent, the refrigerant absorbs heat 

from the evaporator compartment in the form of latent heat of vaporization. This 

leaves a cooling effect in the refrigerant container [4]. The amount of heat absorbs 

from the refrigerant container depends on the latent heat of vaporization of the 

refrigerant, the amount of refrigerant adsorbent, the adsorbent/refrigerant pair 

involved and the strength of attraction. A refrigerant with a high latent heat of 

vaporization paired with an appropriate adsorbent is generally preferred. Latent 

heat of vaporization of ethanol is about 40% less than that of water and AC has 

a weak affinity for water. Therefore, low-grade ethanol (60% ethanol, 40% water) 

paired with composite AC+NaCl was used as the adsorbent/refrigerant pair in this 

study. Since water and ethanol are miscible and therefore some water also 

evaporates during the adsorption process, the latent heat of vaporization of the 

low-grade ethanol would be higher than that for the high-grade ethanol. The 

detailed operation of the continuous ACS is explained in Section 2.1.2 

2.2.1 Development of adsorption cooling systems 

The ACSs are categorized into a single-stage, two-stage, and three-stage system 

depending on the temperature of the heat source [15,44–46]. Single-stage 

adsorption system requires the highest heat source temperature, followed by that 

for two-stage and three-stage system.  
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2.2.2 Single-stage adsorption cooling systems (ACSs) 

The most common and basic ACSs are single-stage adsorption systems. The 

basic conventional single-stage ACS is the two-bed adsorption system (Figure 

2.4a). The Clapeyron diagram for the conventional two-bed single-stage ACS is 

shown in Figure 2.4b. The two-bed single-stage ACS undergoes four processes 

per cycle [40] and the energy balance for each of the processes is as described 

in Section 2.1.2. Modifications have been done to the basic conventional single-

stage adsorption systems to enhance performance. This is done by heat and 

mass transfer intensification as well as by better heat management schemes [47]. 

The modifications introduced to enhance the performance of the single-stage 

adsorption systems include thermal wave cycle, forced convection cycles and 

cascading cycles [48–50], as well as mass recovery and heat recovery or 

increased adsorber beds [51,52]. Examples of the advanced single-stage 

systems include two-bed mass recovery [51,52], three-bed [53,54] three-bed 

mass recovery/heat recovery [55,56], four-bed [57], four-bed mass recovery/heat 

recovery [58] and six-bed adsorption system. The experimental COP value of 

0.90 at 5 °C evaporator temperature, the condenser temperature of 40 °C and 

200 °C desorption temperature was obtained for forced convective thermal wave 

cycle [59]. 

However, most of these systems are complex and the actual equipment is yet to 

be built and tested to evaluate the COP in practice [59]. Despite these 

modifications, single-stage adsorption system used heat source at a higher 

temperature than the other stage systems, and therefore, has the limitation of not 

being able to function when the heat source temperature is below 50 °C along 
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with a condenser temperature of 30 °C or higher [44,54,60]. Additional 

equipment such as a pump may be required to run thermal wave cycles [59].   

2.2.3 Multi-stage adsorption cooling system 

Despite several heat management schemes to improve COP in adsorption 

cooling systems using advanced single-stage systems, the challenge remains 

that the systems cannot be used when the temperature difference between the 

heat source and the heat sink is less than 25 °C [44]. Therefore, two-stage and 

three-stage cycles have been proposed to utilize unexploited near-ambient 

temperature waste heat [59] which is impossible with the basic cycles [44,61,62]. 

The two-stage cycle is made up of six heat exchangers: a condenser, an 

evaporator and two pairs of adsorbers [44,54]. A two-stage system, which 

involved introducing two additional adsorbers,  utilizing a heat source 

temperature below 50 °C in combination with a 30 °C condenser temperature 

(thus, the temperature difference between the heat source and the sink known 

as desorption temperature lift (𝑇𝑑𝑒𝑠 − 𝑇𝑐𝑜𝑛) is < 25 °C and cannot be used by 

single-stage adsorption systems) was proposed [44]. The two-stage system 

works on the concept of reducing the regenerating or desorption temperature lift 

(𝑇𝑑𝑒𝑠 − 𝑇𝑐𝑜𝑛) of the adsorbent by dividing the evaporator temperature lift 

(𝑇𝑐𝑜𝑛 − 𝑇𝑒𝑣𝑎) into two smaller stages [44] (Figure 2.5).  This reduces the final 

desorption temperature from 𝑇𝑑𝑒𝑠
′ for single-stage adsorption systems to 𝑇𝑑𝑒𝑠 for 

two-stage adsorption systems (Figure 2.5). Therefore, the refrigerant pressure 

increases through two successive stages of pressurization from the evaporator 

to the condenser pressure level [44]. The Dühring diagram for the conventional 

two-bed single-stage ACS is shown in Figure 2.5. 
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Figure 2.5 Comparison of the Dühring diagram for the conventional two-stage 

adsorption cooling system [Re-drawn from [[44]] Note: 𝑇𝑐𝑜𝑛 is condenser 

temperature, 𝑇𝑑𝑒𝑠 is final desorption temperature (two-stage), 𝑇𝑑𝑒𝑠′ is final 

desorption temperature (single-stage) 

The first stage of pressurization increases the refrigerant pressure from the 

pressure level of the evaporator to an intermediary pressure level, which is 

lower than the pressure in the condenser. In the second stage, the refrigerant 

pressure is raised from the intermediary pressure level to the condenser 

pressure level (Figure 2.5).  

Despite the advantage of low-temperature utilization, multi-stage systems are 

bulkier than the single-stage due to the increase in the number of adsorbent beds 

from two in the conventional single-stage system to four or six in multi-stage 

systems. Furthermore, as the number of adsorbent beds increases the amount 

of construction material and cost also increase. Therefore, the conventional 
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single-stage adsorption system was chosen, designed and constructed in this 

study. As long as there is enough supply of heat source, single-stage would be 

cheaper in terms of material cost, easier to construct and operate compared with 

multi-stage systems. The heat source in this study is the mango seed waste 

which is abundantly available in mango growing communities. 

 

2.2.4 Performance measurements of adsorption cooling systems 

Performance measurements are important to assess the system and to improve 

its performance. It also helps in comparing the system to what has already be 

done. There are many ways to assess the technical performance of a cooling 

technology such as energy efficiency ratio (EER), the coefficient of performance 

(COP [63,64]) and the specific cooling power (SCP [65,66]). EER is the ratio of 

net cooling capacity - or heat removed (in Btu) to the total input rate of electric 

energy applied [67]. EER can be converted to COP and provides similar 

information (amount of latent heat removed, and power supplied) compared to 

COP and therefore has not been used often to describe the performance of ACS. 

In the adsorption cooling system, the commonly used methods to assess the 

performance of adsorption cooling systems are by COP and SCP (Equations 

2.25, 2.26 and 2.27). COP is the ratio of the heat removed (which as product 

mass of refrigerant and its latent heat of evaporation) in the evaporator to the 

heat supplied to the ACS.   

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝐶𝑂𝑃) =  
𝑄𝑒𝑣𝑎

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑
                                             2.25 

                                                        𝑄𝑒𝑣𝑎 = 𝑚𝑟𝑒𝑓ℎ𝑓𝑔                                                   2. 26  
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 (𝑆𝐶𝑃) =  
𝑄𝑒𝑣𝑎

𝑚𝑎𝑑𝑠𝜏𝑐𝑦𝑐𝑙𝑒
(𝑊 𝑘𝑔 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡⁄ )               2.27 

Where 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 is the total heat supplied (J), 𝑚𝑎𝑑𝑠 is the mass of the adsorbent 

(kg), 𝜏𝑐𝑦𝑐𝑙𝑒 is the cycle time (s),  𝑚𝑟𝑒𝑓 is the mass of the refrigerant (kg), ℎ𝑓𝑔 is the 

specific latent heat of evaporation (kJkg-1), 𝑄𝑒𝑣𝑎 is the heat extracted in the 

evaporator (J). 

2.3 Principle mechanism in an adsorption process 

ACS works based on the principle of adsorption. Adsorption is a surface 

phenomenon (the higher the surface area the higher the adsorption) whereby 

molecules are attracted and deposited onto a surface. The surface is known as 

the adsorbent and the molecule is known as the adsorbate (or refrigerant). 

Adsorption can be categorized into physisorption (physical adsorption) or 

chemisorption (chemical adsorption). The adsorption dynamics of each type of 

adsorption process is different depending on the type of adsorbent/refrigerant 

pair involved. The physisorption and chemisorption would occur simultaneously 

in composite adsorbents such as activated carbon impregnated with salts such 

as CaCl2, NaCl and water-based refrigerants as the water-ethanol mixture (60% 

ethanol: 40% water) being proposed in this study. 

 

Physisorption 

Physisorption, also known as physical adsorption, refers to the phenomenon in 

which gas molecules are adhere to a porous surface through van der Waals 

forces at a pressure less than the vapor pressure of the gas molecules [68,69]. 

Studies have shown that in cases where water-based refrigerants such as the 

water-ethanol mixture refrigerants, paired with AC, the water is less readily 
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adsorbed due to the non-polar nature of both ethanol and AC [70,71]. Therefore, 

the use of composite adsorbent (AC+ NaCl) as being proposed in this study would 

enhance the performance of the refrigerant. The AC component of the composite 

adsorbent would adsorb the refrigerant molecules (mostly the ethanol because e 

AC is a poor adsorbent for water [70,72]) to the pores of the adsorbent through 

van der Waals forces and liberate a latent heat of adsorption [69]. The rate of 

liberation of the heat of adsorption is usually different for different refrigerants and 

their mixtures (thus, whether the refrigerant is pure or a mixture as is the case 

with the use of water-ethanol mixture [71]) (Figure 2.5). The heat of adsorption 

for physisorption is, however, usually lower than 80 kJmol-1 [69,73].  

 

 

 

 

 

 

Figure 2.6 Schematic diagram of physisorption and chemisorption [redrawn from 

[69]] 

Due to the exothermic nature of physisorption, the rate of adsorption normally 

reduces with increase in temperature because of the increases in the kinetic 

energy of the refrigerant molecules, thereby, reducing the van der Waals forces, 

which leads to the reduction in the adsorption rate. 
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Chemisorption 

Unlike physisorption, the chemisorption depends on the existence of chemical 

bonds (binding sites) between the adsorbent and the refrigerant (adsorbate) 

(Figure 2.5). Salts like NaCl have a strong affinity for water than refrigerants such 

as ethanol [70], the NaCl component of the composite adsorbent would attract 

refrigerant molecules (mostly water molecules from the low-grade ethanol) 

leading to the formation of covalent bonding or hydrogen bonding and therefore 

liberate high heat of adsorption (generally greater than  80 kJmol-1) in comparison 

with physisorption [69,73]. Chemisorption occurs slowly at low temperature and 

then increases with temperature after certain activation energy (normally greater 

than 40 kJmol-1) is attained [73]. The adsorption rate in chemisorption continues 

to increase up to a certain temperature where the chemical bonds between the 

adsorbent and the refrigerant (adsorbate) are overcome and then decreases [73].  

The chemical bond between the adsorbent and the refrigerant in chemisorption 

are, however, broken down using thermal energy during desorption at high 

temperature depending on the refrigerant and adsorbent pairing under 

consideration [69]. In contrast to adsorption, the desorption rate (the rate of 

removal of refrigerant (adsorbate) from the adsorbent) increases with increase in 

temperature.  

2.3.1 Adsorption equilibrium isotherm models 

Adsorption equilibrium data is one of the important data needed for the sizing of 

ACS [74]. These data are generally different for different adsorbent/refrigerant 

pairs and are therefore generated through experimental studies [74].There are 

several models used to describe the adsorption equilibrium data of an 
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adsorbent/refrigerant pair. These models are applied to the adsorption and 

desorption stages of the ACS. The commonly used models are the Freundlich 

equation, the Langmuir equation, BET equation, and Dubinin equations. Each of 

these models has its own limitations. Due to the nature of the 

adsorbent/refrigerant used in this study, the suitable model must describe both 

physisorption and chemisorption adsorption processes. 

Freundlich Equation 

Freundlich model is usually applied to adsorption processes that occur on 

heterogeneous surfaces (physisorption) [75] such as activated carbon and 

molecular sieves [76] and homogenous surfaces (chemisorption). It gives an 

isotherm expression that explains the distribution of active adsorption sites on the 

adsorbent and its surface heterogeneity [75,76]. The Freundlich equation can be 

written as shown below [14]:  

𝑊 = 𝑊𝑜 (
𝑃

𝑃𝑆(𝑇)
)

1 𝑛⁄

                                                                               2. 28 

Where 𝑊 is the equilibrium adsorption uptake (kgkg-1) is, 𝑊𝑜 is the equilibrium 

adsorption uptake (kgkg-1), 𝑃𝑆 (𝑇) is the saturation pressure (kPa) at temperature 

T, 𝑃 is the adsorption pressure (kPa), n is the exponential parameter. The slope 

of the isotherm ranges between 0 and 1 and this is used to measure the 

adsorption intensity or surface heterogeneity of the adsorbent. A slope 

approaching zero implies the surface is more heterogeneous, whereas uniform 

surfaces (chemisorption) have the slope below unity but greater than zero [76]. 

Despite its application for both chemisorption and physisorption, Freundlich 

isotherm model is not suitable to describe the equilibrium data in this study since 
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it is not consistent thermodynamically as it does not obey Henry’s law at low 

refrigerant (adsorbate) concentration or pressure [75,76]. 

Langmuir Equation 

Langmuir model is used to describe monolayer adsorption on a homogeneous 

surface (chemisorption) [75] and it is based on the principle that the rate of 

adsorption equals the rate of desorption [15]. Langmuir model assumes that the 

molecules of the refrigerant are adsorbed onto a fixed localized site, one site can 

accommodate one refrigerant molecule, refrigerant molecules adsorbed onto the 

nearby sites do no interact and all adsorption sites have same adsorption energy 

[15,77]. The Langmuir equation model can be represented by Equation below. 

𝜃 =
𝐵𝑃

1 + 𝐵𝑃
                                                        2. 29 

Where 𝑃 is the adsorption pressure(kPa), θ is the number of sites on the 

adsorbent occupied by the gaseous refrigerant, 𝐵 is the equilibrium constant. 

Since the adsorbent in this study (composite AC+NaCl) has both heterogeneous 

and homogenous surface, Langmuir model is not suitable to describe the 

equilibrium data in this study.  

BET Equation 

Brunauer–Emmett–Teller (BET) model, like Langmuir’s model, is based on 

adsorption to a localized adsorption site where there is no interaction between 

the refrigerant on adjacent adsorption sites. However, the BET theory applies to 

multilayer adsorption while the Langmuir adsorption model applies to monolayer 

adsorption. BET theory usually used to calculate the specific surface area for 

porous media. The BET model could be represented by  
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𝑞

𝑞𝑠
=

𝐵(𝑃 𝑃𝑆⁄ )

(1 − 𝑃 𝑃𝑆⁄ )(1 − 𝑃 𝑃𝑆⁄ ) + 𝐵(𝑃 𝑃𝑆⁄ )
                           2. 30 

Where 𝑃 is the adsorption pressure(𝑘𝑃𝑎), B is the equilibrium constant, 𝑃𝑆 is the 

refrigerant saturation pressure(kPa), q is the refrigerant concentration. BET 

model is appropriate for adsorption onto solid surfaces with homogeneous 

chemical properties [78]. The surface of composite adsorbent used in this study 

is, however, not chemically homogenous since the NaCl is not covering all the 

pores of the AC (NaCl is impregnated only in the micropore of AC [79]). Thus, 

BET model may not be appropriate in this case. 

Dubinin Equations 

The model is a semi-empirical equation used to describe the adsorption of gases 

on microporous adsorbents through the pore-filling mechanism [75,78]. It has 

also been used to study the adsorption behavior of cadmium on nano zero-valent 

iron particles (chemisorption) [75]. Thus, this model is suitable to fit the adsorption 

equilibrium data in this study. There are two variations of the Dubinin 

equation: Dubinin–Radushkevich (D-R) and Dubinin–Astakhov (D–A) equations.  

The Dubinin–Radushkevich (D-R) equation is given by [80] 

𝑊 = 𝑊𝑜 𝑒𝑥𝑝 {[−
𝑅𝑇

𝐸
𝑙𝑛

𝑃𝑆(𝑇)

𝑃
]

2

}                                    2. 31 

A modification of the Dubinin–Radushkevich (D-R) equation was done to develop 

the Dubinin–Astakhov (D–A) equation [14,80] 

𝑊 = 𝑊𝑜 𝑒𝑥𝑝 {−𝐷 [𝑇𝑙𝑛 
𝑃𝑠(𝑇)

𝑃
]

𝑛

}                                     2. 32 

Where D is the affinity coefficient. Both D and n depend on the brand and the 

type of adsorbent/refrigerant pair [14].  
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2.3.2 Adsorption kinetics 

Another important parameter in the design of ACS is the adsorption kinetics. This 

parameter controls the cycle time of the adsorption process (fast kinetics implies 

shorter cycle time) [74] and sizing of the ACS. Kinetics data is different for 

different adsorbent/refrigerant pair. Adsorbent/refrigerant pairs with a strong 

affinity for each other generally result in fast diffusion [74] of the refrigerant to the 

adsorbent and fast kinetics. Fast kinetics are generally preferred as it leads to a 

reduction in the cycle time and size of the adsorber. Slow kinetics may be 

overcome by increasing the amount of adsorbent [74] which consequently 

increase the size of the adsorber and bulkiness of the ACS. Another way to 

overcome slow kinetics is through composite formation. AC is known to have 

weak attraction (affinity) for water [70,71] and therefore low-grade ethanol may 

not be a good refrigerant pairing for AC and would lead to slow kinetics and long 

cycle time. To increase this attraction for water fraction in low-grade ethanol, 

composite AC+NaCl was formed and the kinetics of this composite need to be 

measured and used in the sizing of the ACS. One of the well-known adsorption 

kinetic models is the linear driving force model which is used to understand the 

dynamics of adsorption and to predict the system performance. The adsorption 

or desorption rate of the adsorbent/refrigerant pair is estimated using the linear 

driving force model below [79]: 

𝑑𝑊

𝑑𝑡
= 𝐾(𝑊𝑒𝑞 − 𝑊)                                                         2. 33 
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Where: 𝑊 is the equilibrium uptake (kgkg-1), 𝑊𝑒𝑞 is the equilibrium adsorption 

uptake (kgkg-1), 𝐾 is the equilibrium constant, 
𝑑𝑊

𝑑𝑡
 is the rate of adsorption 

uptake at any particular time. 

2.4 Selection of adsorbent and refrigerant 

A choice of a suitable adsorbent/refrigerant pair is critical to the performance of 

the ACS. The amount of heat (latent heat) removed from the refrigeration 

compartment depends on latent heat of vaporization of the refrigerant at the 

temperature and pressure in the ACS, as well as a suitable adsorbent to adsorb 

a large quantity of the refrigerant. The evaporation temperature is determined by 

the temperature at which desired refrigeration is to be achieved/maintained while 

the pressure is a requirement to achieve evaporation at this temperature which 

can be achieved through compressor effect (as discussed in section 2.1.2). In 

addition, changes in the adsorbent-refrigerant pair also affects the performance 

of ACS due to change in heat of adsorption associated with different 

adsorbent/refrigerant pairs. High heat of adsorption limits the rate of adsorption 

of refrigerant by the adsorbent [39] and this affects the performance of the ACS. 

A good refrigerant with a high latent heat of vaporization paired with an unsuitable 

adsorbent with a large surface area translates into poor adsorption of the 

refrigerant and poor performance of the system. Similarly, a good adsorbent with 

a large surface area paired with an unsuitable refrigerant with a high latent heat 

of vaporization also translates into poor system performance. Examples of 

unsuitable pairing are AC/water [71] and silica gel/ethanol while examples of 

suitable pairing are silica gel/water [44], AC/ethanol [81]. There are certain criteria 
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used in selecting the desirable adsorbent and refrigerant to be used. These 

criteria have been described below.  

2.4.1 Choice of adsorbent 

The adsorbents can be classified as physical, chemical and composite 

adsorbents. Figure 2.7 shows the classification of adsorbents used in the 

adsorption cooling system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Classification of adsorbents [adopted from [82]] 

Adsorbents are solid materials onto which refrigerants/adsorbates are adsorbed. 

A suitable adsorbent for adsorption cooling should have the following 

characteristics [83]: These characteristics of the adsorbent are to be considered 

with reference to the possible adsorbents and refrigerants as each of these 
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properties are dependent on the type of refrigerant and adsorbent under 

consideration and the operation conditions of the ACS. 

1. Adsorption of a large quantity of the refrigerant  at low temperature  

2. Desorption of most of the refrigerant when the heat is applied  

3. Have a large concentration difference with a small change in desorption 

temperature. 

4. Ability to adsorb and desorb the refrigerant for many cycles. 

5. Must have a high heat of adsorption relative to sensible heat.  

6. High thermal conductivity and be thermally and chemically stable.  

7. Non-toxic and non-corrosive.  

8. Low cost and widely available.  

In reality, there is no ideal adsorbent that has all of the above characteristics. 

2.4.2 Choice of refrigerant 

Table 2.1 shows some refrigerants used in ACS and their global warming 

potential. There are many factors that must be considered when selecting the 

best refrigerant. As with the adsorbent, the characteristics of the refrigerant are 

to be considered with reference to the possible adsorbents and refrigerants pairs 

as each of these properties are dependent on the type of refrigerant and 

adsorbent under consideration and the operation conditions of the ACS. Some of 

these factors are [84]:  

1. High latent heat of evaporation to minimize the circulation rate of the 

refrigerant and reduce the amount of adsorbent to use. 
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2. The molecular size of the refrigerant should be small to facilitate faster 

adsorption onto the adsorbent. 

3. Refrigerant with a strong affinity with the adsorbent to reduce the amount 

of adsorbent to be used thereby minimizing the size of the heat 

exchangers 

4. The refrigerant/adsorbent pair should not solidify over the expected range 

of concentration and temperature conditions to which it is subjected. 

5. The refrigerant should be very volatile than the adsorbent to facilitate the 

separation of the refrigerant from the adsorbent. 

6. The refrigerant should be thermally stable with the adsorbent at the 

operating temperature conditions. 

7. The refrigerant should be non-toxic, non-corrosive and non-flammable. 

8. The production process of the refrigerant should have low global warming 

potential (GWP) 
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Table 2.1 Types of refrigerants used in adsorption cooling system and their global 

warming potential [9].  

Refrigerant Chemical formula GWP 

R134a C2H2F4 1300 

R507 50%C2HF5+50%C2H3F3 3300 

Methanol CH3OH 2.8 

Water H2O NA 

Ethanol C2H5OH NA 

R113 C2F3Cl3 5000 

R141b C2H3FCl2 630  

Ammonia NH3 0 

R114 C2F4Cl2 9300  

R115 C2F5Cl 9300  

R11 CCl3F 4000  

R12 CCl3F2 8500  

R13 CClF3 11700 

R21 CHFCl2 210  

R23 CHF3 1700  

n-Butane C4H10 4 
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2.5 Problems with adsorption cooling systems 

2.5.1 Poor thermal conductivity of the adsorbents 

One of the causes of the low coefficient of performance of the current ACSs is 

the low thermal conductivity of the adsorbent [85]. The thermal conductivity of AC 

falls between 0.15 Wm-1K-1 to 0.50 Wm-1K-1 [86–89]. For instance, the COP 

obtained for AC/ammonia, AC/ethanol, and AC/methanol working pairs are 0.67 

[6], 0.8, and 0.78 [81,90,91], respectively. 

Many studies have been done to produce a composite adsorbent to increase the 

performance of AC adsorption systems by using chloride salts which affected the 

heat of adsorption, adsorption kinetics and thermodynamic equilibrium of the 

composites formed [6,92].  Chloride salts used are calcium chloride, magnesium 

chloride, barium chloride, strontium chloride [6], manganese II chloride, nickel 

chloride and cobalt II chloride [93] and lithium chloride [94]. The thermal 

conductivity of some of these chloride salts is 0.57-0.598 Wm-1K-1 for magnesium 

chloride [95], 1.09 Wm-1K-1 for calcium chloride [96].  The introduction of these 

chloride salts has led to an increase in the amount of refrigerant adsorbed and 

specific cooling performance. For example, specific cooling performance 

increased from 557 Wkg-1 of the adsorbent for AC/ammonia to 731 Wkg-1 of 

adsorbent obtained for AC-calcium chloride composite/ammonia pair [6]. Hence 

improving the heat transfer performance of the AC could have positive effect on 

the amount of refrigerant adsorbed and specific cooling performance.  

One method is to increase the thermal conductivity of the granular fixed beds 

consists of decreasing the inter-granular porosity by mixing together AC granules 
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of different sizes [97]. The approach resulted in a 35% improvement in thermal 

conductivity of the AC [97].  This approach could have negative effect on the 

kinetics of adsorption and desorption, thus affecting mass transfer. Another 

method is to use a consolidated adsorbent (formed by mixing adsorbents with a 

binder and the mixture is compressed) to increase internal heat transfer within 

the adsorber. However, consolidated adsorbents have the problem of low mass 

transfer which could result in very low adsorption rates, particularly sub-

atmospheric pressure refrigerants such as water, methanol, and ethanol 

[42,59,98,99].  Therefore, it was proposed to perform experiments to determine 

the thermal conductivity and wall coefficients of performance of consolidated 

adsorbents, as well as their permeability (which is a measurement of mass 

transfer performance) to enhance and to optimize the heat and mass transfer 

performance of the consolidated adsorbents [47]. 

2.5.2 Design of adsorber beds 

The adsorbent bed plays a critical role in adsorption cooling. Its performance 

affects the performance of the entire system. Shmroukh et al. [100]  noted that 

poor adsorber bed designs lead to the production of thermal dead zones within 

the adsorber, thus, creating areas without efficient and adequate heat and mass 

transfer. Experiments with adsorber bed have produced high values for 

adsorption capacity and coefficient of performance, which deviate from the real 

adsorption refrigeration systems. Li et al. [99] classified resistance to heat transfer 

inside the adsorber bed into: 

1. Convective heat transfer resistance between the heat transfer fluid and the 

adsorbent tube wall 
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2. The thermal conduction resistance through the metal wall of the adsorber 

bed  

3. The thermal contact resistance between the metallic wall and the 

adsorbent particulate 

4. Thermal conduction resistance within the adsorbent 

According to Li et al. [99], resistances 1 and 2  contribute very little to the thermal 

resistance and can be reduced by increasing the heat transfer fluid velocity and 

reducing the wall thickness respectively while 3 and 4 are the main causes of 

thermal resistances. The thermal contact resistance between the metallic wall 

and the adsorbent could be minimized by using coated adsorber or increasing 

the heat transfer area by using heat exchangers [7,99]. Coated adsorbers are 

used to decrease thermal contact resistance between the metallic wall and the 

adsorbent. This is done by using binders that stick the adsorbent onto the metallic 

wall. In doing so, the mass of the adsorber is also increased. This innovation 

increased the metal-adsorbent heat transfer coefficient [7,42]. The main 

drawback of this innovation is that the ratio of the inert mass and adsorbent mass 

is increased thereby decreasing the COP [47]. However, effective heat 

management is required to overcome this challenge. 

Another method to reduce heat transfer resistance is the use of heat exchangers 

including finned tubes, plate fins, plate heat exchangers, and plate-fin heat 

exchangers [99] if the wall heat transfer coefficient is not high and if no swelling 

and shrinking effect of occurs in the adsorbent. The shortcoming of this technique 

is that it increases the thermal capacity of the adsorber [47].  
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2.5.3 Adsorbent/refrigerant pairing 

The choice of adsorbent and refrigerant (adsorbate) pair used in adsorption 

cooling is essential to its performance [5,83]. The working pairs such as 

AC/ethanol, AC/methanol, AC/ammonia, silica gel/water, and zeolite/water 

[5,6,93] have limitations in their performance. Water has low saturation pressure 

which limits its evaporation resulting in poor mass transfer performance [5,6,82], 

methanol and ammonia are both toxic [5,6]. Ethanol has a low latent heat of 

vaporization [5,82] but is environmentally benign and not poisonous  [8].  

Some studies have been done to outline the challenges of some working pairs. 

For instance,  a review was presented by Askalany et al.[101] on ACSs with 

adsorption pairs of AC with ammonia, ethanol, methanol, hydrogen, nitrogen, and 

diethyl, pitch-based AC (Maxsorb III) with R134a, R507A, and n-butane and AC 

with CO2 respectively. It was noted from their work that the refrigerants R134a 

and R507a  are not eco-friendly due to their high global warming potential (GWP) 

(due to the environmental impacts of producing the refrigerant) of 1300 kg CO2 

per kg refrigerant [9]. Also, n-butane, hydrogen, methanol, ethanol, and diethyl 

ether are not suitable because of their high flammability while ammonia is a highly 

poisonous refrigerant [101]. 

A review was done by Shmroukh et al. [93] to compare a range of adsorption 

refrigeration working pairs such as AC/methanol, AC/ethanol, and AC. Maximum 

equilibrium adsorption capacity for AC/methanol, AC/ethanol, and AC (maxsorb 

III)/R-134a were reported as 0.259 kgkg-1, 1.2 kgkg-1 and 2 kgkg-1 respectively. 

The conclusion reached from this further study was needed to develop adsorption 
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pairs having higher adsorption capacity with little or no environmental impact, as 

well as to build reliable, efficient, and durable adsorption systems [93]. 

A novel adsorbent was produced from AC, silica-gel, and CaCl2 for use in solar 

adsorption cooling and dehumidification systems to increase the coefficient of 

performance of AC [79]. The silica gel and CaCl2 were introduced into the pores 

of the raw AC. Investigations revealed that the maximum adsorption capacity of 

the new adsorbent was 0.23 kg water per kg adsorbent at 27 °C and a water 

vapour pressure of 900 Pa. It was further reported that the maximum adsorption 

capacity of the raw AC and pure CaCl2 were 0.02 kg water per kg of AC and 0.9 g 

water vapour per gram of CaCl2 respectively under the same conditions [79]. The 

results of this study reveal that the synthesized adsorbent (silica gel AC/CaCl2) 

performed better than both raw AC and pure CaCl2 [79]. Moreover, the thermal 

conductivity of the adsorbent was also improved by the introduction of CaCl2 [79].  

2.5.4 Source and availability of adsorbent and refrigerant 

Commercially, AC is produced by using high-cost raw materials such as 

petroleum coke [102] and coal [103]. The price of coal and petroleum cokes are 

US$72.5/ton and US$110.5/ton [104] respectively. Furthermore, these materials, 

coal and petroleum coke, are non-renewable, their reserves are being depleted 

[105], and also contribute to pollution of the environment as a result of the 

presence of sulphur  and greenhouse gas emissions during the production and 

activation of AC due to the energy supply needed for activation [106] as one 

constituent of these materials. In addition, these materials are also not available 

in most communities. Besides, both commercial AC and chloride salts used are 
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expensive [107,108] resulting in a high cost of ACSs. Besides, zeolite and silica 

gel are not readily available in rural communities while AC could be made from 

many carbonaceous materials including agricultural residues such as mango 

kernel, and solid wastes from processing which are readily available in rural 

communities [41]. Furthermore, AC can be made to suit a specific application by 

varying the process parameters such as activation time, activation temperature, 

the concentration of the activation chemical, etc [41]. 

Despite being readily available, water performs poorly with AC [109]. Ammonia 

is not readily available in rural communities and it is expensive. Ethanol can be 

produced locally available agricultural materials such as fruits and vegetables 

due to the availability of fermentable substrates [110,111]. For example, ethanol 

could be produced from blemished mangoes and peels as a means of reducing 

challenges of mango waste handling. The sugar content of mango and mango 

peels are 16-18% w/v and 11-13% w/v respectively, making them suitable for 

ethanol production through fermentation [112,113]. 

2.5.5 Source of energy for adsorption cooling in food processing 

Finding a suitable heat source to power the ACS is critical not only to the 

performance of the ACS but also to the environment. Fossil fuel sources of heat 

are not suitable for powering adsorption systems because of depletion of 

reserves, fluctuating market prices and greenhouse gas emission, and low 

coefficient of performance of the adsorption cycle  [105].  Renewable energy 

options such as solar and wind are intermittent and unpredictable [114], the 

capital cost for geothermal energy production is high (it ranges between 

US$1,500 to US$3,000 per kW) [115], and cannot be afforded by small-scale 
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farmers and processors. Hydro energy is dependent on the availability of a river 

which is not available in all communities as well as regular rainfall or snowfall 

which is unpredictable [114].  

Biomass is another source of energy which is readily available in the form of 

agricultural and forestry residues and these could be used as a source of heat to 

power the adsorption system. For example, the energy content of sun-dried 

mango kernel (10-15% moisture content) is 21.74 MJkg-1 [116,117] which is 

comparable to low-grade coal (heating value of 18.0-25.5 MJkg-1) [117]. The 

utilization of mango kernel as a heat source may be a cost-effective way to 

minimize the problem of waste disposal along the mango supply chain [12]. 

A large amount of waste heat is also available in the food industry.  During the 

primary utilization of energy, large quantities of waste heat are discarded into the 

environment in the form of hot water and hot exhaust air (Table 2.2). The 

discharge of waste heat reduces the efficient utilization of the primary energy but 

causes thermal pollution [59]. Waste heat may include thermal energy stored in 

hot water, hot exhaust air, combustion flue gas, and hot liquid foods. For example, 

refrigerated trucks are generally powered by diesel engines. The energy 

efficiency of diesel engines is about 35% and the temperature of exhaust gas 

from a diesel engine is 500 °C. Therefore the employment of these waste exhaust 

gas in adsorption refrigeration could reduce fuel consumption and improve the 

overall efficiency of the engine [47,118–123]. Table 2.2 shows quantities of some 

waste heat available in the food industry [124]. 
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Table 2.2 Quantities of waste heat in a canned fruit and vegetable processing 

facility(adapted from [124]) 

Unit 

operations 

Product Quantity 

(m3/ton of 

product) 

Temperature 

(oC) 

Heat content 

(MJ/ton of 

product)* 

Water 

blanching  

Snap beans 0.124-0.350 90 33.6-94.9 

Lima beans 0.822 90 222.9 

Peas 0.240-0.385 90 65.1-104.4 

Steam 

blanching 

Snap beans 0.125-0.150 90 33.9-40.7 

Lima beans 0.113-0.238 90 30.7-64.6 

Peas 0.191-0.313 90 51.8-84.9 

Vibratory 

spiral 

blancher 

Snap beans 0.027 90 7.3 

Lima beans 0.025 90 6.8 

Brussels 

sprouts 

0.015 90 4.1 

Broccoli 0.011 90 2.9 

Cauliflower 0.003 90 0.8 

Steam 

blanching 

with water 

recovery 

Snap beans 4.937 90 1339.3 

Lima beans 4.967 90 1347.4 

Peas 4.967 90 1347.4 

Cooker 

condensate 

 0.117-0.210 120 31.7-56.9 

Cooling 

water 

 0.250-0.415 55 67.8-112.6 

Can 

topping 

water 

overflow 

 0.165-0.210 95 44.8-56.9 

  * 25 oC was used as the reference temperature  
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2.6 Economic and environmental impacts of an adsorption cooling system 

2.6.1 Economic impacts analysis 

Adsorption cooling systems have been reported to be more expensive in 

comparison with the conventional vapour compression chiller. For instance, the 

capital cost of 10 kW nominal cooling power adsorption cooling system for room 

cooling was reported to cost € 13000 [125]. The adsorption cooler was to be 

driven by solar energy. The installed cost (the sum of the cost of the solar field, 

the solar circuit, the adsorption chiller itself) of this adsorption cooling system was 

reported to be between € 26323 - € 29733, while the installed cost of the 

conventional vapour compression chiller of the same cooling power was € 4260 

[125]. The annual operating cost of this adsorption cooling system was reported 

to be between € 435 - € 728 per annum compared with €1489 per annum for the 

conventional vapour compression chiller of the same cooling power [125]. As a 

result of the utilization of solar energy to power the adsorption cooling system, 

the estimated annual savings was between € 761-1054 while the annual electrical 

energy savings 2668-3631 kW [125]. The payback period for the adsorption 

cooling system ranges from 13-15 years [125]. Thus, ACS are expensive than 

the conventional vapour compression chiller of the same cooling capacity.  

2.6.2 Environmental impacts analysis adsorption cooling system 

The contribution of adsorption cooling systems to global warming stems from the 

type of refrigerants used [9,126] and the greenhouse gas emission associated 

with the source of desorption energy supply [126]. Greenhouse has emission 

resulting from the production of both refrigerant and adsorbent, and the leakage 
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of refrigerants [126] are the main causes of environmental degradation of of 

refrigerants and adsorbents. Table 2.1 (Section 2.4.2) shows the types of 

refrigerants used in the adsorption cooling system and their global warming 

potential. As a result of the high global warming potential of chlorine, bromine, 

and fluorine-containing refrigerants such as R134a, R507, R141, R11, R12, R13, 

R21, R23, R113, R114, and R115 (Table 2.1), attention has now been focused 

on environmentally benign refrigerants such as ethanol and water. Apart from the 

contribution to global warming potential, some refrigerants like methanol are toxic 

and can, therefore, destroy living organisms in the environment is not handled 

properly. Furthermore, both methanol and ethanol also pose fire risks and should 

be handled properly to avoid the destruction of properties through a fire outbreak. 

The source of desorption energy supply to the adsorption cooling system has 

been discussed in Section 2.6.5. A 10 kW cooling capacity solar powered 

adsorption cooling system was used to cool a room. It was reported that there 

was between 890.7-1251.8 [125] reduction in emissions compared with the 

conventional vapour compression cooling system of the same cooling capacity.  

Adsorption system is relatively an environmentally friendly system in comparison 

with the vapour compression system [8]. The utilization of adsorption cooling 

technology was reported to have resulted in the reduction of CO2 emission by 

conventional vapour compression chiller of the same cooling capacity from 50 kg 

CO2/ kWh to 14.9 kg CO2/ kWh [127]. Furthermore, ACS can be driven by waste 

heat at a temperature as low as 50 °C [53] which is readily available in the food 

industry (Table 2.1 in Section 2.3.5) while absorption cooling system is driven by 

heat source temperature at least 110 °C [128]. Adsorber/desorber bed in the ACS 
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functions like the compressor in the vapour compression system but in this case, 

the compression takes place by application of heat instead of electric power to 

change the mode from adsorber to desorber. The absence of an electrically 

powered mechanical compressor has led to a reduction in electrical energy 

consumption. For instance, the driving energy of 90 kW for conventional vapour 

compression cooling was reduced to 26.8 kW in an industrial adsorption chiller to 

cool water from the initial temperature of 31 °C to 9 °C [127]. The energy 

consumption by ACS can be reduced further in a small ACS due to the absence 

of a pump which makes this technology possible to use in off-grid communities 

[3]. 

2.7 Production of bio-based sorbents 

There are different types of bio-based sorbents such as aerogels, foam 

membranes, inorganic meshes, and surface modified fabrics [129]. Others are 

natural products such as cotton, rice straw, coconut husk, banana peels [129], 

etc. that have been used extensively during separation processes. Each of these 

sorbents has a different production method for a particular application. For 

instance, glucose aerosol could be produced through the process of 

hydrothermal carbonization, freeze-drying, and pyrolysis while cellulose 

nanofibers could also be produced following hydrophobic modification and 

freeze-drying [129]. Activated carbon is one of the bio-based sorbents widely 

used. This study is focused on activated carbon production and its application in 

adsorption cooling systems. Production of AC can either be through physical or 

chemical activation or physicochemical activation [10,130–132]. Prior to the 

activated carbon production, the feedstock undergoes some pre-treatment steps 
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such as washing, drying, size reduction, and sieving. Washing is necessary to 

remove for loose compounds including sand, dust and mineral impurities that may 

have been attached to the feedstock through contact with the sand during 

harvesting of the biomass or transportation process [132,133]. The presence of 

these impurities on the feedstock, if not removed, may contribute to the high ash 

content of the resultant activated carbon resulting in low adsorption capacity and 

mechanical strength of the activated [132,134]. Sulaiman et al [132,135] 

investigated the reduction of ash component of oil palm shell, fronds, and trunk 

through washing. It was found that the ash component reduced by 43.16%, 

52.18%, and 7.42% respectively for palm shell, frond, and trunk in comparison 

with the unwashed biomass [132,135]. The removal of the impurities on the 

feedstock through washing is influenced by (i) type of mixing (agitation or non-

agitation), (ii) size of feedstock, (iii) amount of water, and (iv) soaking time [136]. 

Drying of the feedstock after washing is necessary to reduce the mechanical 

energy spent during size reduction [137]. Drying normally takes place in an air-

oven drier at 80 0C or sun drying for two consecutive days [132] prior to size 

reduction (crushing, grinding, and milling). Despite the cost incur during drying 

and size reduction due to the energy consumption, Bamaga et al [138] noted that 

these pre-treatment steps may reduce for the cost associated with from poor 

waste disposal through landfilling or other methods. Besides, size reduction is 

critical in classification and suitability of the activated carbon produced. Activated 

carbon is categorized into powder, granular and pellet forms and each has its 

unique application [132]. 
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Generally, feedstock pre-treatment steps for activated carbon production should 

be [132]:  

1. affordable and consumes less energy and feedstock 

2. Consume less water and chemical to reduce liquid waste discharge 

3. Have a low operational risk  

Table 2.3 Table Classification and application of activated carbon [132] 

Type activated 

carbon 

Description Application 

Powder Particle size <0.18 mm, 

average diameter of 01.15-

0.25 mm 

Suitable for a batch 

experiment followed by 

filtration. Applied in liquid 

phase applications 

Granular Particle size of 0.2–5 mm. 

Irregular in shape 

Used in an adsorption 

application such as 

adsorption cooling and  

vapour phase applications 

Pellet A powdered activated carbon 

mixed with a binder, and 

fused and shaped into a 

pellet. Diameter ranging from 

0.8 to 5.0 mm 

Applied mainly in gas phase 

application 

 

 

2.7.1 Physical activation method 

The material is carbonized under an inert atmosphere and then activated at a 

high temperature ranging from 800 °C -1000 °C [139] using either steam or carbon 

dioxide as the activating reagent to convert portion of the carbon into AC. The 

physical activation method can be represented by the reaction below [132]: 

𝐶 + 𝐶𝑂2 → 2𝐶𝑂                ∆𝐻 = +173 𝑘𝐽𝑚𝑜𝑙−1 
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𝐶 + 𝐻2𝑂 → 𝐶𝑂 + 𝐻2     ∆𝐻 = +132 𝑘𝐽𝑚𝑜𝑙−1 

The carbonization increases the carbon contents of the char produced with 

increased surface area compared with the biomass from which it is produced 

[132]. The carbonization process proceeds through four stages [132]:  

1. Stage 1 refers to the dehydration stage where moisture is removed from 

the feedstock at a temperature below 200 °C.  

2. Stage 2 refers to the onset of feedstock decomposition leading to the 

discharge of tar and organic acids and this occurs at 170 °C -270 °C. 

3. Stage 3 the decomposition of the feedstock occurs at 270 °C –350 °C and 

liquid and gas are discharged.  

4. Stage 4 occurs at a temperature greater than 350 °C where there is an 

increase in carbon content through the removal of remaining volatiles. 

Physical activation, however, results in high energy consumption, low carbon 

yield [132], and expensive and dangerous (especially steam activation) for small-

scale systems [139]. 

2.7.2 Chemical activation method 

In chemical activation, the material is treated with activating chemical prior to 

carbonization at a temperature between 400 °C-500 °C [10,140]. Activation 

chemicals used are CaCl2, ZnCl2, H3PO4, K2CO3, and KOH to produce activated 

carbon with different properties depending on the activation chemical used [141]. 

Chemical activation is preferred to physical activation as the former results in 

higher yields and uses less operating energy, and is particularly suitable for 

biomass materials [10,131,140]. There are two chemical activation procedures: 

1. Physical mixing of the dried feedstock and the solid chemical followed by 
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carbonization process and 2. Wet impregnation method where the biochar or the 

raw feedstock are soaked in an activating chemical solution and dried prior to 

carbonization process [142]. Rashidi and Yusup [132] stated that dehydrating 

agents used as chemical activation such as CaCl2 and ZnCl2  prevent the 

formation unwanted products such as tar and other liquid products that have the 

ability to block the pores and improves the volatile material evolution from the 

carbon leading to the pore development. 

2.7.3 Physiochemical activation 

This involves the chemical impregnation of the feedstock, followed by the physical 

activation using CO2 or steam [143]. According to Chowdhury et al [144], 

physicochemical activation could be applied when the chemical agent is not 

completely removed during the washing stage of the chemical activation method, 

leading to pore blockage. Thus, an additional step of physical activation is 

required to improve the pore formation. This combination of physical and 

chemical activation method produces activated carbon having unique properties 

[132]. 

2.7.4 Overview of technologies for activated carbon production 

The type of technology for activated carbon production impacts on the 

characteristics of the final product [132]. 

Furnace/Pyrolysis carbonization 

Conventionally, AC is produced through carbonization in a furnace [145,146]. 

Heat is transferred to the feedstock through conduction, convection, and radiation 

from the outer surface where the heat source is located to the inner where the 

Stellenbosch University https://scholar.sun.ac.za



55 
 

feedstock is located. As a result of the slow heat transfer from the heat source to 

the material partly due to the low heat transfer of the feedstock, a thermal gradient 

is established in the furnace, leading to long carbonization times and high energy 

consumption and operating cost. Examples of feedstocks that were carbonized 

using pyrolysis are shown in Table 2.4 

Microwave carbonization 

Microwave heating is another technology employed in the production of activated 

carbon. Microwave heating provides electromagnetic energy at 0.3 GHz to 

300 GHz that is absorbed by the feedstock and converted into energy and 

uniformly distributed throughout the feedstock [132,147]. Since microwave 

heating is able to transmit at an extremely faster speed (speed of light) [148], 

activated carbon production using the microwave heating method is faster, 

resulting in reduced processing time, and low energy cost compared with the 

conventional method of heating [132]. Examples of feedstocks that were 

carbonized in a microwave carbonization are shown in Table 2.4 

Hydrothermal carbonization  

Hydrothermal carbonization improves the carbon content of the feedstock prior 

to activation, a feature that is also shared by the conventional carbonization 

method. Unlike the conventional carbonization method, hydrothermal 

carbonization takes place in water (liquid phase) [149]. The hydrothermal is a 

smokeless operation [132] which takes occurs in water suspension at 

180 °C-280 °C and in some cases at 300 °C -390 °C for a few hours in an 

autoclave [132,150] and at a slightly greater pressure than the saturated pressure 

of water, to ensure the water remains in a liquid phase and to achieve an inert 
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condition [132]. The product from the hydrothermal carbonization is called hydro-

char [150]. 

Table 2.4 Overview of technology and feedstock for activated carbon production 

Feedstock Activation type Carbonization 

technology 

Maximum 

Surface area 

(m2g-1) 

Reference 

Palm shell Chemical (H3PO4) Furnace  615  [143] 

Palm shell Physicochemical 

(CO2) 

Furnace  614  [143] 

Empty palm 

fruit bunch 

fibers 

Physical (steam) Furnace 

(pyrolysis) 

603.76  [145] 

Waste tea Chemical (K2CO3) Furnace 

(Nabertherm S27) 

1722 [146] 

Waste tea Physicochemical 

(H3PO4)+ 

carbonization at 

350°C 

Microwave 

furnace 

1157  [151] 

Palm empty 

fruit bunch 

Chemical (ZnCl2) Furnace 86.62 [152] 

Palm shell Chemical 

H3PO4/KOH 

Furnace 490/810 [153] 

Lignin Chemical KOH Hydrothermal 3235 [149] 

Palm date 

seed 

Chemical NaOH hydrothermal 1282.89 [154] 

Coconut 

shell 

Chemical NaOH Hydrothermal 876.14 [155] 

It has been reported that most of the reaction in the hydrothermal carbonization 

occurs with the first 20 minutes [132]. The reaction that takes place during the 

hydrothermal method of lignocellulosic material is shown below 

𝐶6𝐻10𝑂5(𝑠)  → 𝐶6𝐻2𝑂(𝑠) + 5𝐻2𝑂(𝑙)         ∆𝐻 = −2.52 𝑀𝐽𝑘𝑔−1 
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Hydrothermal carbonization can be applied feedstocks high in moisture content 

since the product takes place in a liquid state. Thus, pre-drying of the feedstock 

is eliminated. This would result in time, cost and energy saving to dry the 

feedstock which is a requirement in conventional carbonization method. 

Furthermore, it eliminates air pollution resulting from hazardous gas emissions 

(CO2, nitrogen oxide, sulphur oxide) from conventional carbonization method as 

these gasses dissolve in the water [132]. The hydro-char produced normally has 

a very low surface area [156,157] as it is yet to be activated. The activation of the 

hydro-char is done either by chemically or physically to improve the surface area 

[154,155,157]. Examples of feedstocks used for hydrothermal carbonization 

followed by activation are shown in Table 2.4. 

2.8 Production of composite activated carbon adsorbent 

Composite adsorbents are produced to improve the heat and mass transfer 

properties, as well as adsorption properties (e.g. equilibrium adsorption capacity, 

and heat of adsorption) of a physical adsorbent such as activated carbon. 

Composite adsorbents can be produced by simple mixtures of physical 

adsorbents such as activated carbon and chloride salts in a defined mass or 

volume ratio. This method is used particularly for granular activated carbon [6,85]. 

Impregnation is another method of producing a composite adsorbent where 

chloride salt is dissolved in water or other solution. Activated carbon is then put 

in the salt solution and dried to remove the water [6]. This can improve thermal 

conductivity by up to 10 times, which is larger than that of the composite beds 

produced using simple mixture method [85,119]. To further enhance the thermal 
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conductivity, consolidated beds can be formed by compressing impregnated 

beds [6,85,119]. In some cases, binders are used [85]. 
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Chapter 3 Problem statement and research objectives  

3.1 Problem statement 

Cooling plays a critical role in the preservation of fresh produce from deterioration 

[13]. Several cooling technologies have been designed for the preservation of 

agricultural produce. The current cooling technologies have an inherent problem 

of rising electricity cost, limited water availability, weather dependent and 

negative environmental effects and therefore are not effectively used by farmers 

and processors in both grid and off-grid agricultural communities [34]. 

Furthermore, to avoid failure of adoption, the impacts of introducing new 

technological innovation must be assessed in terms of technical performance 

(COP, SCP), economic performance (IRR, NPV), and environmental 

performance (GWP) to ensure that it is economically and environmentally 

sustainable. In this study, processing and preservation of mangoes would be 

used as a case study. Mango was chosen because it can be processed into a 

stable product by employing cooling and drying unit operations which can be 

integrated by using an adsorption cooling system. 

Adsorption cooling is driven by heat from sources such as solar, geothermal, 

waste heat from factories, combustion of fuels, etc. [5,6,158]. The existing ACSs 

have adsorber bed packed with low thermal conductivity adsorbent, as well as 

expensive and poor performance working pairs. This makes ACSs not affordable 

in rural agricultural communities. Therefore, it is essential to enhance the 

performance of the ACS by developing adsorption pairs which are 

environmentally benign with improved properties (sorption capacity, heat and 
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mass transfer) to build adsorption refrigeration systems that are compact, 

efficient, reliable, and durable. Furthermore, mango seed wastes are abundantly 

available in mango growing communities and it has the potential of being used 

as AC because of its lignocellulose content [10,116].  Sodium chloride (NaCl) 

which has higher thermal conductivity than commonly used salts [96,159] is also 

accessible [139]. The heating value of mango seed is comparable to coal 

[116,117] and therefore would serve as a suitable renewable energy source.  

In this study, both high-grade (99.7%) and low-grade (60%) ethanol would be 

used as the refrigerant. A composite AC+NaCl would be formed to improve the 

thermal and adsorption performance of AC.  The utilization of NaCl is expected 

to improve the properties (sorption capacity, heat and mass transfer, and 

compressor effect) of the composite AC+NaCl of when paired with ethanol/water 

mixture due to the high water affinity of NaCl compared with untreated AC. 

Secondly, mango seed AC would be synthesized and used as an adsorbent. 

NaCl would be the activation chemical used to produce the mango seed AC. In 

addition, the economic and environmental impacts of integrating ACS along with 

the replacement of coal with mango seed as the boiler fuel in dried mango chips 

processing in both grid and off-grid communities would be assessed.  

3.2 Research questions 

To achieve the overall objective of improving performance and making ACSs 

affordable, the following research questions will be answered: 

(1) What are the physical and functional properties of AC produced from 

mango seed using pyrolysis activated with NaCl?  
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(2) At what conditions can AC from mango seed be produced in a pyrolysis 

method to have functional properties that are close to or better than 

conventional AC? 

(3) How do sodium chloride concentration, soaking time and carbonization 

time impact on AC characteristics? 

(4) How and why changes in changes in AC properties through composite 

formation affect the performance of ACS?  

(5) How does the adsorption cooling performance of water-ethanol mixture 

improve by formation of composite AC+NaCl adsorbent? 

(6) What are the economic and environmental benefits of integrating the ACS 

and replacement of boiler in a fruit processing plant, using mango 

processing as a case study? 

 

3.3 Research objectives 

The main objective of this study is to improve the technical, environmental and 

economic performance of ACS for storing perishable horticultural produce in rural 

agricultural communities without access to electricity, using mangoes as a case 

study. 

3.3.1 Specific objectives 

(i) Produce and characterize AC from mango seed husk and sodium chloride.  

(ii) Assess the performance of the NaCl activated mango seed husk carbon 

with both high-grade ethanol and low-grade ethanol as refrigerants. 
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(iii) Explain the fundamental mechanisms by which changes to AC (through 

composite formation) and refrigerant (ethanol) grade affect the system 

performance  

(iv) Evaluate the economic impacts and environmental impacts of integrating 

ACS and replacing the boiler fuel in mango food processing. 

 3.4 Novelty statement 

Heat transfer and adsorption performance of AC have been improved by using 

several chloride salts to form composite adsorbents [160–162]. The introduction 

of these chloride salts gives the resultant adsorbent its unique thermal and 

adsorption characteristics. The thermal conductivity of the adsorbents is reported 

to have increased through the composite formation with chloride salts 

[94,160,161]. The salts used to form the composite adsorbents have low thermal 

conductivity compared with sodium chloride (NaCl). For example, the thermal 

conductivity of CaCl2 is 1.09 Wm-1K-1 [96] while that of NaCl is 7 Wm-1K-1  [159]. 

Moreover, most of these studies employed high-grade (pure) refrigerants such as 

ethanol paired with the composite adsorbent formed. However, studies involving 

low-grade ethanol (the mixture of water and ethanol) as the refrigerant have not 

been reported. Understandably, water/ethanol mixtures would affect the mass 

transfer in the adsorption bed unless the functional properties of the adsorbent 

are modified to aid both heat and mass transfer. NaCl has not been used to form 

a composite with AC despite its higher thermal conductivity than the other 

chloride salts used in previous studies. Therefore, in this study, NaCl was used 

to form a composite with AC to pair with low-grade ethanol. The utilization of NaCl 

is expected to improve simultaneously both the heat and mass transfer 
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properties, sorption capacity and the compressor effect when paired with 

ethanol/water mixture due to the high water affinity of NaCl. 

Drying and cooling are the most energy-intensive unit operations in a dried 

mango chips processing plant. Currently, in South Africa, energy for the drying 

unit is obtained from steam generated by the combustion of coal. Coal as fossil 

fuel contributes to greenhouse gas (GHG) emission, it is costly and not 

renewable. Moreover, the exhaust from the boiler which contains substantial 

energy is rejected into the environment. Furthermore, the conventional vapour 

compression technology is used as the cooling technology. This technology also 

contributes further to the degradation of the environment due to its dependence 

on electricity produced from coal and the type of refrigerant used. Therefore, this 

study used an integrated approach to study the economic and environmental 

impacts of replacing both the conventional vapour compression technology and 

boiler fuel with ACS and mango seed generated during the mango processing. 

The energy from the boiler exhaust was used to power the ACS. This was to lead 

to zero-waste generation, reduce greenhouse gas (GHG) emission, and improve 

the economic viability of the dried mango chips processing.  

3.5 Scientific contributions 

The results from this study have been published in three peer-reviewed journals 

and are presented here with permission from the publishers (Appendix A1, A2 & 

A3). 

The following are the contributions of myself and my supervisor (co-authors) 

contributed to Chapters 5, 6 &7 in the dissertation:  
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Chapter Authors Nature of 

contribution 

Extent of 

contribution 

Chapter 5:Production 

and optimization of 

NaCl-activated carbon 

from mango seed 

using surface 

response 

methodology 

Myself Organized and 

reviewed literature. 

Performed experiment 

and analyzed data. 

Conceptualized and 

wrote the paper  

85% 

Prof Annie 

Chimphango 

Provided advice as 

the supervisor 

Contributed to editing 

of paper 

15% 

Chapter 6: Evaluating 

the potential of using 

ethanol /water mixture 

as a refrigerant in an 

adsorption cooling 

system by using 

activated carbon- 

sodium chloride 

composite adsorbent 

and mango seed 

activated carbon 

 

Myself Organized and 

reviewed literature 

Performed experiment 

and analyzed data 

Conceptualized and 

wrote the paper 

80% 

Prof Annie 

Chimphango 

Provided advice as 

the supervisor 

Contributed to editing 

of paper 

20% 

Chapter 7:An 

integrated strategy 

targeting drying and 

cooling unit 

operations to improve 

economic viability and 

reduce environmental 

impacts in a mango 

processing plant 

 

Myself Organized and 

reviewed literature 

Gathered and 

modelled the data 

Conceptualized and 

wrote the paper 

80% 

Prof Annie 

Chimphango 

Provided advice as 

the supervisor 

Contributed to editing 

of paper 

20% 
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1. Production and optimization of NaCl-activated carbon from mango seed using 

response surface methodology. This published in Biomass Conversion and 

Biorefinery (https://doi.org/10.1007/s13399-018-0361-3). This can be found in 

Chapter 5. 

 The study has investigated the production and optimization of granular mango 

husk AC for gas phase applications, particularly adsorption cooling. The 

optimization was done by varying the soaking time, carbonization temperature, 

and impregnation ratio of the dry weight of mango seed husk to NaCl. The 

optimized granular AC produced has a comparable surface area to AC produced 

from agro-residues but has the advantage of lower ash content compared to AC 

produced from agro-residues. 

2.  Evaluating the potential of using ethanol/water mixture as a refrigerant in the 

adsorption cooling system by using commercial activated carbon - sodium 

chloride composite adsorbent and mango seed activated carbon. This is 

presented in Chapter 6. Part of this Chapter has been published in International 

Journal of Refrigeration (https://doi.org/10.1016/j.ijrefrig.2018.09.025). 

The study has provided information on the possibility of improving the properties 

of AC+ NaCl composite paired with high purity and low-grade ethanol in an ACS. 

The presence of NaCl in the AC has increased the COP and SCP when paired 

with low-grade ethanol.  

3. An integrated strategy targeting drying and cooling unit operations to improve 

economic viability and reduce environmental impacts in a mango processing 

plant. This is presented in Chapter 7 and has been published in Clean 
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Technologies and Environmental Policy (https://doi.org/10.1007/s10098-018-

1623-2) 

This study has investigated the economic and environmental impacts of replacing 

boiler fuel and vapour compression cooling technology in dried mango chips 

processing plant powered on-grid and off-grid were investigated using an 

integrated approach based on zero-waste generation. The replacement of vapour 

compression cooling technology with ACS and boiler fuel with mango seed has 

led to the reduction in GHG emission and improvement in the economic viability 

of dried mango chip processing. 
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Chapter 4 Research approach  

4.1 Research methodology 

This study was done through a multidisciplinary technique involving harnessing 

skills, knowledge and expertise to perform various tasks. The mango seed husk 

was used in this study because it is a lignocellulosic material, thus making it 

suitable for AC production [132]. The mango seed was opened to separate the 

husk from the seed. The de-husked mango seed, on the other hand, was not 

used to produce the AC due to its high-value bioactive contents such as oil, 

nutrients, and other essential elements which could be extracted to add economic 

value to the mango seed [163]. The mango seed husk was subjected to size 

reduction prior to chemical characterization to determine the amount of lignin, 

cellulose, and hemicellulose it contains. The mango seed husk was then used to 

produce AC. There are two ways to produce AC: physical method and chemical 

method. The physical method involves a two-step method of carbonization and 

activation. The activation is done by using steam at high temperature or carbon 

dioxide on a carbonized material. However, due to the danger of using steam at 

high pressure at the small-scale level, steam activation was not used. Moreover, 

carbon dioxide is not environmentally friendly and contribute to global warming. 

In the chemical method of AC production, the activation and the carbonization 

steps take place simultaneously. The chemicals used could be acids, bases, or 

salts. The type of chemical used affects the properties and application of the AC 

formed. In this study, NaCl was used as the activation chemical due to its ability 

to increase the amount of carbon yield [164], and its accessibility for small scale 
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production of activated carbon.  The mango seed husk was prepared for AC 

production by steeping the mango seed husk in various concentration of sodium 

chloride at various lengths of time. The steeping time and NaCl concentration 

affect the properties of AC produced. The treated mango seed husk was then 

carbonized using slow pyrolysis method. The type of pyrolysis method used 

determines the carbonization temperature range, yield, and properties of the 

carbon. Fast pyrolysis is known to take place at high temperature, resulting in the 

production of more bio-oil and less carbon [136]. On the other hand, slow 

pyrolysis is known to occur at a relatively lower temperature than the fast 

pyrolysis to produce more carbon and less bio-oil. Since the focus is to produce 

AC, slow pyrolysis method was used in this study. Characterization and 

optimization of the AC were done to determine the best factors that give the best 

properties (Details of the AC production from mango seed husk could be found 

in Chapter 5). 

It was expected to produce enough AC from the mango seed husk to use for 

composite formation with NaCl. The purpose of the composite formation is to 

enhance the properties (sorption capacity, compressor, heat and mass transfer) 

of the refrigerant and adsorbents pairing during adsorption cooling. However, due 

to the small production capacity of the laboratory scale pyrolysis equipment 

available, the mango seed husk AC produced was not enough for the composite 

formation. Therefore, commercial AC was used for composite formation. The 

composites formed, the mango seed husk AC, and untreated commercial AC was 

used as the adsorbents for testing in ACS (details of these tests can be found in 

Chapter 6).  
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The next activity was the design and construction of the adsorption cooling 

system. Two-bed, single-stage ACS model was chosen because of its simplicity 

and it is less difficult to construct and operate and uses less material to construct 

when compared with two-stage models. Factors considered in the design were 

the properties of the refrigerant (e.g. latent heat of vaporization, mass transfer of 

the refrigerant) and the adsorbent (e.g. surface area, heat transfer properties, 

affinity to attract the refrigerant, adsorption equilibrium data) as well as the 

operating condition and the physiological properties (e.g. respiratory heat) of the 

mango fruit (Details can be found in Section 4.2). Both high-grade (99.7%) and 

low-grade (60%) ethanol were used as the refrigerants. Based on the above, the 

construction materials were selected to ensure minimal heat transfer between the 

storage chamber and the environment. The double wall of stainless steel and the 

polystyrene was constructed as the storage chamber. Polystyrene was used as 

insulation material because of its ease of accessibility and it is less costly. 

Finally, the ACS was integrated into a mango dried chips processing by replacing 

CVCC with ACS (powered by boiler waste heat). The knowledge in GHG 

emission and plant design and economics was used in assessing the 

environmental and economic impacts of integrating ACS in dried chips 

processing in order to develop sustainable dried mango chips processing that is 

profitable and more eco-friendly (Chapter 7). 

4.2 Design of the adsorption cooling system 

Two-bed, single-stage ACS was designed in-house to be used for adsorption 

cooling testing of various adsorbents in Chapter 6. Two-bed, single-stage ACS 

model was chosen because of its simplicity and it is less difficult to construct and 
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operate and uses less material to construct when compared with two-stage 

models.  Properties of the refrigerant, and the adsorbent (activated carbon), as 

well as the operating condition and the physiological properties of the mango fruit, 

were considered in the sizing of the components of the ACS. The properties of 

the refrigerants considered were its latent heat of vaporization, saturation 

pressure, and the specific heat capacity. The adsorbent properties considered 

were the BET surface area, adsorption equilibrium, and isotherm data and 

kinetics data [74] (more information on these data can be found in Chapter 6). 

The design of the ACS was based on the northern South African climate as that 

is where mango is cultivated. The average environmental temperature during the 

harvesting period (from January to April) of the mango was taken as 30 °C. In 

addition, the physiological properties of the mango fruit were considered in 

choosing the storage temperature of the mango fruit. The recommended storage 

temperature of the mango was assumed to be 12 °C [165] (Table 4.1). Transient 

factors such as the opening of the door to remove stored mango fruit could affect 

the heat transfer and cooling rates in the storage chamber. Estimation of heat 

infiltration during storage through door opening depends on several factors such 

as the frequency of opening, and the velocity of air flow into the storage chamber 

when the door is opened. The velocity of air flow into the storage chamber when 

the door is opened depends on the prevailing ambient air condition around the 

storage chamber. However, since door opening increases the heat load and 

reduces the cooling rate of the mango fruit, frequent opening of the door could 

have undesirable consequences such as weight loss of the mango fruit, increase 

spoilage, and attendant economic and environmental impacts. Hence the ACS 
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was designed on the assumption that there would be no door opening during 

storage. Using these initial data and the above assumptions, the refrigerator 

cabinet heat transfer, the evaporator coils, and the condenser coil were analyzed, 

designed and constructed. The components were then connected to each other 

through valves and sealed.  

Table 4.1 Parameters considered in the design of the adsorption cooling system 

Parameter Value 

Field/ambient temperature, Tfield 30 °C 

Recommended cooling temperature, Tref 12 °C 

Evaporator temperature, Teva 12 °C 

Condenser temperature, Tcon 30 °C 

 

Prior to performance testing for commissioning, the entire system was checked 

for leaks by subjecting it to a 2 MPa hydrostatic pressure to ensure that the 

system was sealed since the system operates under vacuum condition and any 

leakage of air from the environment into the system would affect the system 

performance. Details design of each component is shown below 

Refrigerator storage cabinet analysis 

The purpose of the refrigerator storage cabinet is to prevent heat transfer from 

the surroundings to the inside of the cabinet. The amount of heat transferred to 

the storage cabinet determines the amount of work a refrigerator will need to do 

and this, in turn, affects the size of the parts of the whole refrigerator. Heat is 

transferred by conduction, convection, and radiation. In order to allow minimum 

heat transfer into the storage cabinet, it is important to choose an insulation 
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material that has low thermal conductivity. In this study, polystyrene (thermal 

conductivity of 3.84 ×10-5 kWm-1 k-1) was chosen because of its ease of use, 

availability, cost and low thermal conductivity. A 0.4 m × 0.4 m× 0.3 m stainless 

steel container which was readily available in the Process Engineering 

department workshop was fitted with polystyrene (Insulpro CC) and evaporator 

(copper) coils for used as the storage cabinet in this design. The refrigeration 

heat load was based on the full mango fruit storage capacity. During the storage 

of the mango in the storage cabinet, the heat load would consist of heat gain 

through the wall of the refrigerator cabinet, field heat of mango, respiratory heat 

of mango, and heat infiltration through the opening of the storage area.  The 

detailed calculation of these heat loads is shown in Appendix B. 

Heat gain through the refrigerator wall 

The refrigerator cabinet had an inner wall made of stainless steel and an outer 

wall of polystyrene as shown in Appendix B. There is parallel convection and 

radiation (from the ambient) heat transfer occurring at the outside of the storage 

chamber, while heat transfer through the walls of the storage chamber occurs in 

series. The thermal resistance network and the heat load calculation is shown in 

Appendix B. 

 Product field heat load 

The air in the refrigerator cabinet surrounding the mangoes has to be cooled. The 

heat content of the air is affected by the field heat of the mangoes. In the case of 

the field heat, the rate of heat transfer from the mango to the air would be by 

natural convection as there is no fan. Natural convection is governed by the 

geometry, the orientation of the mango in the refrigeration compartment, as well 
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as the temperature difference between the mango surface and surrounding 

refrigerator air. It was assumed that the mangoes are spherical in shape. The 

diameter of the mango was assumed to be 0.086 m [166]. Therefore, Equations 

4.1 to 4.5 could be used to estimate the heat transfer coefficient [167] 

𝑁𝑢 = 2 + 
0.589 𝑅𝑎𝐷

1/4

[1 + (0.469 𝑃𝑟⁄ )9/16]4/9
                              4. 1 

 𝑅𝑎𝐷 =
𝑔𝛽(𝑇𝑓𝑖𝑒𝑙𝑑 − 𝑇𝑟𝑒𝑓)𝐷3

𝜈2
𝑃𝑟                                        4. 2 

ℎ =
𝑘

𝐷
𝑁𝑢                                                                                  4. 3 

𝑇𝑓 =
𝑇𝑎𝑚𝑏 + 𝑇𝑒𝑣𝑎

2
                                                                   4. 4 

𝛽 =
1

𝑇𝑓
                                                                                       4. 5 

 
Where: 𝑁𝑢 is the Nusselt number, 𝐷 is the diameter (characteristic length) of the 

mango (m). 𝛽 is the coefficient of volume expansion (K-1), 𝑔 is the gravitational 

acceleration (ms-2), 𝑇𝑓𝑖𝑒𝑙𝑑 and 𝑇𝑒𝑣𝑎 are ambient and evaporator temperature 

respectively defined in Table 4.1, 𝑇𝑓 represents the temperature of film of air (K), 

𝑣 is the kinematic viscosity of the air (m2s-1), ℎ is the heat transfer coefficient 

(Wm-2K-1), 𝑃𝑟 is Prandtl number. 

By using Equation 4.1 to 4.5, the heat transfer coefficient could be calculated 

which was then used to calculate the field heat transfer rate  

𝑄̇ = ℎ𝐴(𝑇𝑓𝑖𝑒𝑙𝑑 − 𝑇𝑟𝑒𝑓) × 𝑁𝑚𝑎𝑛𝑔𝑜                                             4. 6 

Where: 𝐴 is the heat transfer area of the mango fruit, and 𝑁𝑚𝑎𝑛𝑔𝑜 is the number 

of mango fruit in the storage chamber. 

The respiration heat load of mango  
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Mangoes continue their metabolic activity in the form of respiration, after harvest. 

During the respiration process, heat is generated. The amount of respiratory heat 

produced by mango is 133.4 × 10−3 Wkg−1 at 15 °C  [165] which is close to the 

storage temperature. Therefore, the total amount of respiratory heat produced in 

during storage of the mango is calculated as 

𝑄̇𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑚𝑎𝑛𝑔𝑜  × 133.4 × 10−3 𝑊𝑘𝑔−1                      4. 7 

Where: 𝑚𝑚𝑎𝑛𝑔𝑜 is the mass of mango stored in the storage chamber. 

Evaporator analysis 

The evaporator is at a pressure of 5 kPa lower temperature while the air in the 

storage chamber is at atmospheric pressure. Since temperature and pressure 

are directly related, the evaporator temperature is also lower than the air inside 

the storage chamber. Therefore, the thin layer of warm air in the storage chamber 

surrounds the evaporator and heat of transfer (by conduction) from the thin warm 

air to the evaporator coils leading to the evaporation of the refrigerant (at the 

saturation temperature of the evaporator operating pressure). Consequently, the 

temperature thin layer of air close to the evaporator coil drops and its density 

increases since at constant pressure density of a gas and its temperature are 

inversely related [167]. Thus, the denser air goes down and it is replaced by 

another thin warm layer of air which also transfer heat to the evaporator to cause 

the refrigerant to evaporate, leading to temperature drop and increase in density 

of this thin layer of air. This air also goes down and it is replaced by another. 

Thus, the temperature in the storage chamber reduces from the top close to the 

evaporator to the bottom of the storage chamber. Thus, the continuous 

replacement of denser and colder air by lighter and warmer air creates a natural 

Stellenbosch University https://scholar.sun.ac.za



75 
 

convection current [167] in the storage chamber leading to the overall 

temperature drop in the storage chamber. In order to estimate the heat transfer 

between the evaporator and the air inside the storage chamber, the following 

correlation is used 

𝑄̇𝑡𝑜𝑡𝑎𝑙 = ℎ𝐴(𝑇𝑎𝑚𝑏 − 𝑇𝑒𝑣𝑎)                                                       4. 8 

Where: 𝑇𝑎𝑚𝑏 is the ambient temperature (K), 𝑇𝑒𝑣𝑎 is the evaporator saturation 

temperature (K) (Table 4.1), 𝑄̇𝑡𝑜𝑡𝑎𝑙 is the sum of heat transfer through the six 

faces of the storage chamber, the field heat from the mango fruit, and the 

respiratory heat (W),  (details in Appendix B), 𝐴 is the heat transfer area (m2), ℎ 

is the heat transfer coefficient (Wm-2K-1).  

In order to find the heat transfer area, the heat transfer the natural heat transfer 

coefficient must be known. This can be computed using the correlation below 

[167,168] 

𝑁𝑢 = 0.59 × 𝑅𝑎𝐿
1 4⁄                                                                  4. 9 

Where: 𝑁𝑢 is Nusselt number, 𝑅𝑎𝐿 is the Rayleigh number 

The Rayleigh number was also estimated using Equation 4.10 [167] 

𝑅𝑎𝐿 =
𝑔𝛽(𝑇𝑎𝑚𝑏 − 𝑇𝑒𝑣𝑎)𝐿𝑐

3

𝜈2
𝑃𝑟                                                   4. 10 

Where: 𝑔 is the gravitational acceleration (ms-2), 𝛽 and 𝑇𝑓 could be estimated 

using Equations 4.4 and 4.5, 𝑇𝑎𝑚𝑏 and 𝑇𝑒𝑣𝑎 are defined in Table 4.1, 𝐿𝑐 is the 

characteristic length which represents the height of the storage chamber (m), 𝑣 

is the kinematic viscosity of the air (m2s-1), ℎ is the heat transfer coefficient 

(Wm-2K-1), 𝑃𝑟 is Prandtl number. 
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Thus, the Nusselt number obtained in Equation 4.7 could be used to estimate the 

heat transfer coefficient using Equation 4.11 [167] 

𝑁𝑢 =
ℎ 𝐿𝑐

𝑘
                                                                                 4. 11 

The parameters in Equation 4.11 are as defined above. Substituting the heat 

transfer coefficient obtained in Equation 4.11 into Equation 4.8, the heat transfer 

area could be calculated. With the heat transfer area obtained, the length of the 

copper pipe (evaporator) could be calculated using Equations 4.12  

                     𝐴 = 2𝜋𝑟𝐿                                                                                    4. 12  

Where: 𝐴 is the heat transfer area (m2), 𝑟 is the radius of the copper pipe (m), 𝐿 

is the length of the copper pipe (m). 

Condenser analysis 

During desorption of the refrigerant, the refrigerant is heated until it evaporates 

from the adsorbent. When the refrigerant vapour comes into contact with a 

condenser which is at a lower temperature than the saturation temperature of the 

refrigerant vapour at condenser pressure, the refrigerant vapour condenses.  

During the condensation, the refrigerant gives out its latent heat of vaporization 

and this leads to phase change from vapour to liquid. However, the condensed 

liquid refrigerant is still at high temperature. Thus, it needs to be cooled down 

further by giving out its sensible energy prior to flowing into the evaporator. Thus, 

the total energy rejected during condensation is the sum of the latent heat and 

the sensible heat. The following parameters were used in the condenser sizing 

1. The condenser is wire-and-tube type condenser. 

2. Condenser temperature (𝑇𝑐𝑜𝑛) = Ambient temperature (𝑇𝑎𝑚𝑏,1) = 30 oC 
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3. Temperature of ambient air after coming in contact with hot condenser 

𝑇𝑎𝑚𝑏,2 surface goes up by about 3 oC above local ambient temperature 

[169]. 

4. The mass flow rate of the refrigerant, 𝑚̇𝑟𝑒𝑓 = 2.174 ×  10−4 kgs−1 (Table 

6.5 Chapter 6). 

5. Saturated temperature of hot ethanol (𝑇1) = 80 oC 

6. Final temperature of ethanol after cooling (𝑇2)  = 35 oC 

7. Latent heat of vaporization of ethanol ( hfg) = 840 kJkg-1 

8. External diameter of copper pipe (𝑑𝑜) = 9.375 × 10-3 m 

9. Internal diameter of copper pipe (𝑑𝑖) = 6.25 × 10-3 m 

Therefore, the energy balance for the condenser could be determined using 

Equation 4.13  

𝑄̇𝑐𝑜𝑛 =  𝑚̇𝑟𝑒𝑓 ℎ𝑓𝑔 +  𝑚̇𝑟𝑒𝑓𝐶𝑝,𝑟𝑒𝑓 (𝑇𝑠𝑎𝑡 − 𝑇𝑐𝑜𝑛)                    4. 13 

The heat transfer area of the condenser could be estimated using Equation 4.14. 

𝑄̇𝑐𝑜𝑛 = 𝑈𝐴∆𝑇𝑙𝑚                                                                               4. 14 

However, 𝑈 and ∆𝑇𝑚 are not known and needs to be calculated. ∆𝑇𝑙𝑚 could be 

calculated using Equation 4.15 

∆𝑇𝑙𝑚 =
(𝑇1 − 𝑇𝑎𝑚𝑏,2) − (𝑇2 − 𝑇𝑎𝑚𝑏,1)

𝑙𝑛 (
𝑇1 − 𝑇𝑎𝑚𝑏,2

𝑇2 − 𝑇𝑎𝑚𝑏,1
)

                                          4. 15 

The parameters in Equation 4.15 are defined above. 

The overall heat transfer coefficient could also be calculated using Equation 4.16 

1

𝑈𝑂
=

1

ℎ𝑜
+

1

ℎ𝑜𝑑
+

𝑑𝑜 ln(𝑑𝑜 𝑑𝑖⁄ )

2𝑘𝑤
+

𝑑𝑜

𝑑𝑖
×

1

ℎ𝑖𝑑
+

𝑑𝑜

𝑑𝑖
×

1

ℎ𝑖
                       4.16 

Where: 
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𝑈𝑂 is the overall heat transfer coefficient based on the outside area of the tube 

(Wm-2K-1) 

ℎ𝑜 is the outside fluid heat transfer coefficient (Wm-2K-1), 

ℎ𝑖 is the inside fluid heat transfer coefficient (Wm-2K-1) 

ℎ𝑜𝑑 is the outside dirt coefficient (fouling factor) (Wm-2K-1)taken to be 5000 

Wm-2K-1 [170], 

ℎ𝑖𝑑 is the inside dirt coefficient (fouling factor) which is assumed to be 5000 

Wm-2K-1 [170], 

𝑘𝑤 is the thermal conductivity of copper tube wall taken to be 378 Wm-1K-1 [170] 

𝑑𝑖 is the tube inside diameter (m) 

𝑑𝑜 is the tube outside diameter (m)  

 

In order to estimate the overall heat transfer coefficient, the outside air heat 

transfer coefficient, ℎ𝑜, and the inside refrigerant heat transfer coefficient, ℎ𝑖 need 

to be determined. The outside air heat transfer coefficient, ℎ𝑜 could  be calculated 

by using the simple correlation between ℎ𝑖 and ℎ𝑜 proposed by Chaddock and  

Chato which is as follows that heat transfer coefficient inside tubes (ℎ𝑖) is 0.77 

times that of heat transfer coefficient outside the tubes (ℎ𝑜) if the vapour Reynolds 

number Re < 35000 [171].Thus, 

ℎ𝑖 = 0.77 ℎ𝑜                                                       4. 16 

The inside refrigerant heat transfer coefficient, ℎ𝑖 was estimated using the relation 

as follows [171,172] 

ℎ𝑖 = 0.555 [𝑔𝜌𝑙 

(𝜌𝑙 − 𝜌𝑣) 𝑘𝑙
3 ℎ𝑓𝑔

𝜇𝑙 × (𝑇𝑠𝑎𝑡 − 𝑇𝑐𝑜𝑛) × 𝑑𝑖
]

1
4

                4. 17 
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Where: 

ρl is the density of liquid ethanol (kgm-3) 

ρv is the density of ethanol vapour (kgm-3) 

μl is the dynamic viscosity of liquid ethanol (kgm-1s-1) 

μ𝑣 is the dynamic viscosity of ethanol  vapour (kgm-1s-1) 

kl is the thermal conductivity of liquid ethanol (Wm-1K-1) 

ℎ𝑓𝑔 is the latent heat of vaporization(Jkg-1) 

 
Thus, the heat transfer area and length of the pipe could be calculated using 

Equation 4.18 and 4.19 respectively. 

𝐴 =
𝑄̇𝑐𝑜𝑛

𝑈∆𝑇𝑙𝑚
 

𝐿 =
𝐴

𝜋𝑑𝑜
 

Where: L is the length of the copper pipe (m), 𝑑𝑜 and 𝐴 are defined above. 

Adsorber sizing 

The size of the adsorbent container was estimated by taking into account the 

adsorption equilibrium data and adsorption kinetics [74] of the adsorbent/ 

refrigerant pair (activated carbon/ethanol in this case) Details of these 

parameters could be found in Chapter 6 of this dissertation. With this information, 

the amount of refrigerant (ethanol) to be used, the amount of activated carbon 

needed and therefore the volume of the adsorbent container (adsorber) is 

calculated as follows 

 The total amount of ethanol to be used is 

𝑚𝑟𝑒𝑓 = 𝑚̇𝑟𝑒𝑓 × 𝜏𝑐𝑦𝑐𝑙𝑒                                                                 4. 18 
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Where: 𝑚̇𝑟𝑒𝑓 is the refrigerant flow rate (kgs-1), 𝜏𝑐𝑦𝑐𝑙𝑒 is the cycle time (s), 𝑚𝑟𝑒𝑓 is 

the mass of ethanol (kg). 

Now, the quantity of activated carbon (AC) needed is estimated as follows 

𝑚𝑎𝑑𝑠 = 𝑊𝑜 × 𝑚𝑟𝑒𝑓                                                                           4. 19 

Where: 𝑚𝑎𝑑𝑠 is the mass of adsorbent (kg), 𝑊𝑜 is the maximum equilibrium uptake 

(kgkg-1), 𝑚𝑟𝑒𝑓 is the mass of ethanol (kg). 

The volume of the adsorbent container could be calculated by taking into 

consideration the amount of activated carbon needed, and the bulk density of 

activated carbon by using the relation 

𝑉𝑎𝑑𝑠 =
𝑚𝑎𝑑𝑠

𝜌𝑎𝑑𝑠
                                                                                           4. 20 

Where: 𝑚𝑎𝑑𝑠 is the mass of adsorbent (kg), 𝜌𝑎𝑑𝑠 is the bulk density of the 

adsorbent (kgm-3), 𝑉𝑎𝑑𝑠 is the volume of the adsorbent (m3). 

Energy analysis of the adsorption process 

As explained in Section 2.3.2, an adsorption cooling system undergoes four 

processes: isosteric heating, isobaric desorption heating, isosteric cooling, and 

isobaric adsorption processes. The energy balance equation for each of the 

processes (Equations 2.20 to 2.25) has been presented in Section 2.3.2. 

Therefore, the total energy input is the sum of isosteric heating (Equation 2.20), 

isobaric desorption heating (Equation 2.21) and heat of adsorption/desorption 

(Equation 2.22). This could be expressed as [81]  

𝑄𝑡𝑜𝑡𝑎𝑙 =  𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 + 𝑄𝑙𝑎𝑡𝑒𝑛𝑡                                                   4. 21 

Where: 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 is the sum of isosteric heating, isobaric desorption heating (J), 

𝑄𝑙𝑎𝑡𝑒𝑛𝑡 is the heat desorption/adsorption (J), 𝑄𝑡𝑜𝑡𝑎𝑙 is the total energy input (J). 

The heat of desorption/adsorption is an internally generated heat which is 
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dependent on the adsorbent/refrigerant pair (details could be found in Chapter 

6). Mango seed is combusted to serve as the source of energy in this study, the 

sensible energy (𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒) could be estimated as the useful energy supplied 

(𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑) to the ACS.  Therefore, in terms of external heat supplied (desorption 

energy is excluded) Equation 4.21 could be expressed as follows [173–175]. 

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 = 𝜂1 × 𝜂2 × 𝑚𝑚𝑎𝑛𝑔𝑜 × 𝐿𝐻𝑉                             4. 22 

Where: 𝜂1 is the combustion efficiency, 𝜂2 is the fraction of combustion energy, 

𝑚mango is the mass of mango seed combusted, LHV is the lower heating value of 

mango seed (MJkg-1) (details could be found in Chapter 6). 

Furthermore, during the isosteric cooling stage, the condensed refrigerant is at a 

higher temperature and pressure than the evaporator (Figure 2.6). The refrigerant 

enters the evaporator where it absorbs heat from the storage chamber (as 

explained above) and evaporates to be adsorbed onto the adsorbent. Thus, the 

useful cooling rate could be expressed as  

𝑄̇𝑒𝑣𝑎 =  𝑚̇𝑟𝑒𝑓(ℎ𝑔 − ℎ𝑓) = 𝑚̇𝑟𝑒𝑓ℎ𝑓𝑔                                                4. 23 

Where: 𝑄̇𝑒𝑣𝑎 is the evaporator useful cooling rate (Js-1), ℎ𝑔 is the specific enthalpy 

of the refrigerant as it leaves the evaporator (Jkg-1), ℎ𝑓 is the specific enthalpy of 

the refrigerant leaving the condenser (Jkg-1), ℎ𝑓𝑔 is the specific latent heat of 

evaporation (Jkg-1), 𝑚̇𝑟𝑒𝑓 is the refrigerant mass transfer rate (kgs-1). 

Therefore, the useful evaporator cooling is the product of evaporator useful 

cooling rate and cycle time. This is presented as follows 

𝑄𝑒𝑣𝑎 = 𝜏𝑐𝑦𝑐𝑙𝑒 × 𝑄̇𝑒𝑣𝑎 =  𝜏𝑐𝑦𝑐𝑙𝑒 × 𝑚̇𝑟𝑒𝑓ℎ𝑓𝑔                                      4. 24 
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Where: 𝜏𝑐𝑦𝑐𝑙𝑒 is the cycle time (s), 𝑄𝑒𝑣𝑎 is the useful evaporator cooling (J), 𝑄̇𝑒𝑣𝑎, 

𝑚̇𝑟𝑒𝑓,  ℎ𝑓𝑔 are defined in Equation 4.23. 

Therefore, the COP and SCP of the ACS is estimated as 

𝐶𝑂𝑃 =
𝑄𝑒𝑣𝑎

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑
                                                                                     4. 25 

𝑆𝐶𝑃 =
𝑄𝑒𝑣𝑎

𝑚𝑎𝑑𝑠𝜏𝑐𝑦𝑐𝑙𝑒
                                                                                     4. 26 

Where: 𝑆𝐶𝑃 is the specific cooling power (Wkg-1), 𝐶𝑂𝑃 is the coefficient of 

performance, 𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑, 𝑚𝑎𝑑𝑠, 𝜏𝑐𝑦𝑐𝑙𝑒, and 𝑄𝑒𝑣𝑎 are defined in Equations 2.22 and 

2.24. 

4.3 Production of activated carbon  

A slow pyrolysis method was used to produce the mango seed husk AC because 

of the thermal and chemical properties of the mango seed husk under inert 

conditions. Slow pyrolysis is the thermal decomposition of biomass (e.g. mango 

seed husk) in the absence of oxygen and between 350 °C - 550 °C. The thermal 

degradation process consists of both simultaneous and successive reactions 

leading to the breakdown of long chains of carbon, hydrogen, and oxygen in the 

biomass (mango seed husk) into smaller molecules such as gases, oils, and char. 

Due to the low heating rate, slow pyrolysis takes several hours to complete. 

Mango seed husk is made up of hemicellulose, cellulose, and lignin and is known 

to decompose at temperatures between 220 °C - 315 °C, 315 °C - 400 °C, 160 °C-

900 °C, respectively [176]. Slow pyrolysis was chosen because the 

decomposition temperature of the hemicellulose, cellulose, and lignin present in 

mango seed husk is comparable to the operating temperature range of slow 
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pyrolysis. NaCl was chosen as the activation chemical because it is easily 

accessible and affordable and has high thermal conductivity. The pyrolysis 

method was used because the required carbonization temperature of the mango 

seed husk could be reached in the pyrolysis equipment. The parameters 

considered for the production of the activated carbon (AC) from mango seed husk 

were: soaking time, NaCl impregnation ratio and carbonization temperature. The 

mango seeds were opened up to separate the kernel from the husk. The kernel 

could be used as an energy source to drive the adsorption cooling system (ACS). 

The size of the mango seeds was reduced and soaked in NaCl solution at 

different concentrations and soaking times. The treated mango seeds were then 

dried in an oven. The dried mango seed husk was taken through a slow pyrolysis 

process by varying the pyrolysis temperature and held for about 1 hour upon 

attaining the desired pyrolysis temperature. The final pyrolysis product was 

washed, dried and analyzed to determine its surface area, the ash content and 

bulk density. Details of the activated carbon production process could be found 

in Chapter 6. 

4.4 Assessing the economic viability 

The economic evaluation of the scenarios was conducted based on the South 

African economic condition such as the tax rate, interest rate, insurance, and 

inflation rate. The cost of equipment was obtained from equipment suppliers 

contacted or extracted from technical reports. Where necessary, some 

equipment costs were estimated based on cost data from different years using 

chemical engineering plant cost index (CEPCI) following Equation 4.28 and the 

capacities adjusted using Equations 4.27 [177,178]. 
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                                             𝐶 = 𝐶𝑂 (
𝑀

𝑀𝑂
)

𝑛
                                                4. 27 

Where 𝐶 𝑎𝑛𝑑 𝐶𝑂 are the equipment costs at capacities 𝑀 𝑎𝑛𝑑 𝑀𝑂, respectively 

and 𝑛 is the scale index. 

              𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 (
𝐶𝐸𝐶𝑃𝐼1

𝐶𝐸𝐶𝑃𝐼𝑜
)                       4.28 

Where 𝐶𝐸𝑃𝐶𝐼1 is the plant cost index at present time and 𝐶𝐸𝑃𝐶𝐼𝑜 is the plant cost 

index of the time original cost was obtained. The variable operating costs were 

calculated based on the raw material and flow rates of utilities resulted from 

material and energy balance calculations and their market prices. The operating 

costs were also calculated based on the South African economic condition. Since 

profit is expected at the end of the project after initial investment has been made, 

some economic indicators such as net present value (NPV) and internal rate of 

return (IRR) takes into account time value of money [177,178] were evaluated 

based the calculated capital costs and operating costs, on the basis of real values 

in the cumulative cash-flow calculation. The NPV provides an indication of the 

returns on investment of a project over the project life in the present monetary 

value terms.  In addition, a sensitivity analysis was carried out in this study by 

varying the selling price of the dried mango chips to see its effect on the NPV and 

the internal rate of return (IRR).  

4.5 Assessing the environmental impacts 

The amount of energy expended by various unit operations, the fuel type used to 

supply energy under various scenarios and their respective emission factors were 

considered in the estimation of carbon dioxide (CO2), methane (CH4), and nitrous 

oxide (N2O) emissions based on IPCC (Intergovernmental Panel on Climate 
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Change) standards or procedures. Furthermore, the amount of CH4 and N2O 

emitted were converted to their equivalent CO2 by using their respective global 

warming potential (GWP) values. The GWP for CO2, CH4, and N2O are 1, 25 and 

310, respectively [179,180].  
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Chapter 5 Production and optimization of NaCl-activated carbon from 

mango seed using response surface methodology 

ABSTRACT 

Granular activated carbon (AC) produced from mango seed husk through 

chemical activation with NaCl has potential application in adsorption cooling 

system. The study investigated the relationship among process parameters and 

effects on physicochemical and functional properties of AC. Production 

conditions were optimized using response surface methodology for impregnation 

ratio (0.25, 0.5 and 0.75), soaking time (2 h, 4 h, and 6 h), and activation 

temperature (400 °C, 450 °C, and 500 °C). Surface area, ash content and bulk 

density were response variables. The AC was produced with comparable quality 

to commercial AC. Impregnation ratio, soaking time and carbonization 

temperature but not their interaction, had significant effects (p< 0.05) on AC 

surface area, ash content and bulk density. Optimum production conditions for 

soaking time, impregnation ratio and carbonization temperature were 4 h, 0.25 

and 500 °C, respectively, which gave BET surface area, ash content and bulk 

density of 415 m2g-1, 6.92%, and 243 kgm-3, respectively. 

 

Key words: activated carbon; chemical activation; optimization; response 

surface methodology 

5.1 Introduction 

Mango processing generates a variety of residues including the seed, which 

consists of a husk and a kernel. The mango seed kernel contains carbohydrates 
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(58-80%), protein (6-13%) and essential amino acids and lipids (6-16%) [181] 

and it is a good source phenolics, carotenoids, vitamin C, and dietary fiber that 

improve human health and nutrition [163,181]. As a result, there is a potential for 

biorefining of the mango seed kernel into such low volume but high value-added 

products. The mango seed husk, on the other hand, has less commercial value 

compared with the mango seed kernel and it is therefore disposed of into the 

environment, which causes pollution or used as compost [181]. One of the ways 

to add economic value to the mango seed husk is through the production of 

activated carbon. Therefore, together with biorefining of the mango seed kernel, 

it can potentially increase the economic value of the mango seed as a feedstock 

in a biorefinery.  Activated carbon is one of the commonly used adsorbents [182] 

in several applications including removal of dyes, odours, and contaminants, in 

water purification processes as well as in adsorption cooling processes [183–

185].  The functional properties of activated carbon are among other factors 

influenced by the production method. Activated carbon can be produced through 

physical and chemical means. The physical activation method, which is generally 

applied to non-renewable feedstocks such as coke, pitch, and coal [132]  involves 

carbonization in an inert atmosphere [130,186–188] followed by activation using 

steam (800°C-1000°C) or carbon dioxide [139]. Such physical activation method 

is costly due to its high carbonization temperature, high processing time, low 

carbon yield [132] and has high safety risks for small-scale applications. Unlike 

the physical activation method, the chemical activation method which is applied 

to biomass materials is economically feasible due to its shorter processing time, 
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higher activated carbon yield [132] and lower activation temperature (400°C-

500°C  [140,185,189,190]). 

Activated carbon from biomass materials such as the mango seed husk is 

produced through chemical means where carbonization and activation occur 

simultaneously [107,108,139,186,188,191]. The activation chemicals are added 

before reaching the carbonization temperature of 400 °C-500 °C 

[140,185,189,190]. Many chemicals such as CaCl2, ZnCl2, H3PO4, K2CO3, and 

KOH have been used for the production of activated carbon [139,141,185,192]. 

Each of these chemicals affects pore formation differently and have different 

safety concerns that affect the application of the activated carbon produced. For 

example, H3PO4 restricts the escape of the tar from the carbon during 

carbonization, thus, affecting the development of pore structures [193]. The KOH, 

on the other hand, is normally applied to already carbonized materials because 

lower activated carbon yield when virgin biomass is used than other activating 

chemicals such as H3PO4 and ZnCl2 [132].  Similar to ZnCl2, the NaCl is a strong 

dehydrating agent, which prevents the formation of tars, which enhances the 

release of volatile matters from the carbon, which enhances the formation of well-

developed pore structure in the carbon [132]. Furthermore, NaCl is not as toxic 

as other chemicals. The NaCl has a boiling point of 1465 °C, which is higher than 

the carbonization temperature, thus, does not decompose during carbonization 

to produce hazardous fumes [194,195]. On the other hand, the H3PO4 and ZnCl2 

with boiling points of 213 °C and 732 °C, respectively, may decompose at the 

carbonization temperature to produce toxic fumes [194,195]. Arguably, KOH has 

a boiling point of 1327 °C, which is equally higher than the typical carbonization 
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temperatures [132]. However, the presence of KOH in the effluent during the 

washing stage may be hazardous to the environment and humans [132]. 

Consequently, activated carbon produced using NaCl activation may be suitable 

for application in pharmaceutical and food industries unlike that from KOH and 

ZnCl2 activation due to safety and contamination issues [132]. The time-weighted 

average recommended airborne exposure limit for NaCl of 5-10 mgm-3 [196] while 

that of ZnCl2 and H3PO4 are 1-2 mgm-3 [194,195].  

The NaCl is considered to be an effective catalyst for activated carbon production 

from wood sources [164]. Besides, NaCl has a high thermal conductivity than 

most of the chemicals used [159], which can increase the rate of heating of the 

mango seed husk during carbonization, and thus, becomes superior to other 

activation chemicals. Furthermore, most of these activation chemicals are not 

readily available for small-scale production. NaCl can be easily accessed at a 

small-scale level. The use of NaCl as an activating agent in the production of 

activated carbon from non-wood sources has been reported for the production of 

powdered activated carbon from mango seed husk [197] but not for granular 

activated carbon. Powdered activated (<0.045 mm) carbon is normally suited as 

an adsorbent in wastewater treatment whereas, granular activated carbon is 

suited for applications such as adsorption cooling because of high diffusion rate 

through the adsorbent bed and for not being easily sucked out of the adsorber 

during vacuum creation [198]. 

The physical and functional properties of activated carbon apart from the type of 

activation chemical, are affected by, soaking time, carbonization temperature and 
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particle size [140,187]. Therefore, it is important to understand the effects of the 

impregnation ratio, soaking time, carbonization temperature would have on the 

properties of the activated carbon. This study aimed to investigate the production 

of granular activated carbon from mango seed, targeting specifically the husk, 

through NaCl activation, as a potential adsorbent in the adsorption cooling 

system. The husk is targeted instead of the whole mango seed to produce the 

activated carbon in order to allow potential integration with mango seed 

biorefinery, which would produce low volume but high value-added bioproducts. 

Specifically, the study assessed the optimum production conditions for making 

the granular activated carbon from the mango seed husk by simultaneously 

considering the effects of NaCl impregnation ratio, soaking time, carbonization 

temperature and the interaction of these parameters on the physicochemical and 

functional properties,  including surface area, ash content and bulk density using  

response surface methodology (RSM) [199].  

5.2 Materials and methodology 

5.2.1 Materials 

The NaCl (99.5% in purity) was purchased from (Kimix chemical and laboratory 

suppliers’ cc. Tommy Atkins mango kernels were kindly donated by Hoedspruit 

fruit processors (South Africa). Nitrogen gas (technical grade; 99.5% purity) 5.0 

(Afrox Ltd) was used for the pyrolysis of the mango husk, while carbon dioxide 

and liquid nitrogen baseline 5.0 (Afrox Ltd) were used in the characterization of 

the activated carbon. 
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5.2.2 Mango husk preparation and characterization 

Pre-dried Tommy Atkins mango kernels were obtained from Hoedspruit fruit 

processors (South Africa). The mango kernels were opened to separate the 

seeds from the husk. The mango husks were reduced into sizes ranging from 

1 cm to 2 cm using a pair of scissors.  The resulting mango husks were dried in 

an oven at 105°C for 24 h until a constant weight was reached. A sample of the 

mango husks was milled in a Condux-Werkbei Hanau mill. The resulting particles 

were then sieved using a Vibratory Shaker Retsch AS200. The fractions that 

retained on 425 μm and 625 μm were used for chemical analysis. The samples 

were subjected to a proximate analysis based on ASTM standards: moisture 

[200], ash content [201], volatile matter [202] and fixed carbon. The lignocellulosic 

composition of the material was determined by NREL method [203].  

5.2.3 Proximate analysis 

The fractions (425 μm and 625 μm) were subjected to proximate analysis to 

determine the moisture, ash, fixed carbon, and volatile contents, based on ASTM-

E-1131 [200] method using a Metler Toledo TGA/DSC 1 thermogravimetric 

analyzer.  About 24 ± 3 mg of each lignin sample was loaded onto a 600 μl 

alumina crucible and placed on the TGA pan. The heat was supplied in a 

sequential manner to remove moisture removal at 110 °C, volatile content 

removal at 900 °C under nitrogen, fixed carbon combustion with oxygen at 

900 °C. 
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5.2.4 Activated carbon production 

The procedure for the production of the activated carbon from mango husk is 

shown in Fig. 5.1. NaCl solutions were prepared to the required impregnation 

ratios of 0.25, 0.50 and 0.75 defined as the ratio of the dry weight of NaCl to the 

weight of the mango husk based on the similar study  [197]. Dried mango seed 

husk sample (100 g) containing sizes ranging from 1 cm to 2 cm, were mixed in 

a beaker with 250 mL of NaCl solution of a specified concentration (10% w/v, 

20% w/v, and 30% w/v). The size of the mango seed husk was chosen by taking 

into account the requirement for producing granular activated carbon, which is 

suited for application in adsorption cooling systems that involve vacuum creation. 

Notably, activated carbon produced from smaller sized mango seed would likely 

be close to a powdered form, which could easily be sucked out during vacuum 

creation. Mango husks were soaked in NaCl solution for a period of 2, 4 and 6 h 

to obtain impregnation ratios of 0.25, 0.5 and 0.75 at room temperature (25 °C). 

The impregnated husks samples were dried in an oven at 50°C for 72 h. The 

moisture content at the end of the oven drying was about 25%. Approximately 50 

g of the impregnated sample was placed in a stainless steel container, which was 

inserted into the reactor tube of the pyrolysis furnace for carbonization under 

nitrogen atmosphere, at a flow rate of 1 L/min and a heating rate of 10 °C per 

minute (Fig. 5.2). The carbonization temperatures were 400 °C, 450 °C, 500 °C, 

which was chosen based on previous studies. The optimum carbonization 

temperature for most biomass materials generally falls between 400 °C and 

500 °C [140,183,187,204]. Once the carbonization temperature was reached, the 

samples were kept constant at the carbonization temperature for 1 h. At the end 
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of this process, the flow of the nitrogen gas continued to avoid carbon reacting 

with oxygen at high temperature to produce CO2 which could lead to loss of 

carbon. After carbonization, the sample was cooled down outside the furnace at 

room temperature.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Process flow for the production of mango seed husk activated carbon 

using NaCl 

The activated carbons produced were rinsed with demineralized water several 

times to remove any excess NaCl that did not react. The activated carbon was 

dried in an oven at 105 °C for 24 h to evaporate the water until constant weight 

was reached. The dried activated carbon was placed in a sealed container and 

stored in a desiccator. 
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Figure 5.2 Set up for pyrolysis of treated mango husk for production of activated 

carbon. 

5.2.5 Experimental design and statistical analysis 

The experiments for the production of the activated carbon were carried in a 33 

Box-Behnken fractional factorial [199] designed experiment with three center 

runs for impregnation ratio, soaking time, and carbonization temperature to give 

a total of 15 runs. The Box-Behnken fractional factorial was used because the 

optimum values were expected to be within the limits set for each variable [140]. 

The dependent variables (responses) analyzed are bulk density, ash content, and 

surface area. Commercial activated carbon was used as the benchmark in this 

study.   

5.2.6 Activated carbon characterization 

The bulk density of the AC produced was determined by the standard method 

[103,204,205]. Samples of activated carbon were weighed into a known volume 

graduated cylinder and tapped gently until the volume of activated carbon 

remained constant in the cylinder. The bulk density was calculated as the ratio of 

the weight of the activated carbon to the known volume of the closely packed 

sample. Ash content was also determined by the standard method [205]. Since 
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chemical activation normally produce narrow pores [188,206,207] and nitrogen 

has the problem of diffusion of the molecules inside the narrow pores (<0.7 nm) 

[208], it was suggested to use  CO2 for the characterization of micropores to 

complement to N2 characterization [207]. Therefore, CO2 was used for the 

characterization of the activated carbon to be used in the optimization process. 

After that, N2 characterization was performed on the optimized product. The CO2 

characterization of the activated carbon was done using a 3Flex Surface 

Characterization Instrument from Micromeritics Instrument Corporation 

(Micromeritics ASAP 2020).  About 0.3-0.6 g of each activated carbon samples 

were first freed of moisture and atmospheric vapour by application of electrically 

induced heat and evacuation in a VacPrep 061 degasser (Micromeritics 

Instrument Corporation). The sample was heated to 90 °C with vacuum pump 

running and held for 1 h and thereafter heated to 250 °C and kept at this 

temperature for 20 h while the vacuum was still running. Thereafter the sample 

was transferred to the 3Flex instrument (Accelerated Surface Area and 

Porosimetry System, Micromeritics Instrument Corporation) where in-situ 

degassing was done at a temperature of 175 °C with vacuum pump running for 1 

hour. The sample temperature was then reduced to that of CO2 (273 K) at a 

relative pressure range (P/Po) of 0.00005 – 0.025. The CO2 gas was then 

admitted in an incremental dosage of 3.0 cm³g-1.  Surface area and pore volume 

were determined on CO2 adsorption isotherms measured at 273 K and the 

accumulated gas quantity adsorbed and CO2 gas pressure data at that 

temperature (273 K) were then graphed to generate an adsorption isotherm. The 

isotherm data were then treated in accordance with BET  theory [209] to arrive at 
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a specific surface area. These results were used for the optimization process 

through desirability analysis. The characterization of the activated carbon was 

done using N2 by following similar steps. However, in this case, the sample 

temperature was then reduced to that of liquid nitrogen (77 K) after degassing. 

Nitrogen gas was then admitted in an incremental dosage of 3.0 cm³g-1.  Surface 

area and pore volume were determined on N2 adsorption isotherms measured at 

77 K at a relative pressure range (P/Po) of 0.0000002-0.1026. The accumulated 

gas quantity adsorbed and N2 gas pressure data at that temperature (77 K) were 

then graphed to generate an adsorption isotherm. The isotherm data were then 

treated in accordance with BET  theory [209] to arrive at a specific surface area. 

5.2.7 Regression analysis and optimization 

Regression analysis was performed on data in order to derive the appropriate 

equation for each response. All variable parameters and their interactions were 

considered for a model for each response. Statistical analysis software 

(STATISTICA 13) was used to solve the coefficients of the second-order model 

with three variables for each response as shown below: 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 + 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3

+ 𝛽23𝑋2𝑋3                                                                                         5. 1 

where 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽11, 𝛽22, 𝛽33, 𝛽12, 𝛽13 and 𝛽23 are the regression coefficients; 

𝑋1, 𝑋2, and 𝑋3 are the coded independent variables/regressor for soaking time, 

impregnation ratio and carbonization temperature; and Y is the particular 

response evaluated. Predicted values were solved from the derived equations for 

each of the response. The relationship of each response variable to the input 

variable was evaluated for its significance at a probability value of lower than 0.05 
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(p< 0.05), and the strength of the relationship was evaluated using regression 

coefficient (R2). Subsequently, a “lack of fit test” was performed to show the 

adequacy of the model at p > 0.05. In addition, normal distributions of the 

residuals were checked to validate the assumptions made in the ANOVA analysis 

[199]. Identification of the optimal production conditions involved surface plots 

(contour plots) of the effect on two variables while holding one at a set target. In 

addition, the desirability function approach has been used to obtain the 

production conditions at which the responses exhibit the ideal optimal value 

(maximum). 

5.2.8 Fourier transform infrared spectroscopy (FTIR) analysis of surface 

functional groups on the activated carbon 

The changes in surface functional groups on the activated carbon were analyzed 

surface using Fourier transform infrared spectroscopy (FTIR) in a Thermo 

Scientific Nicolet iS10 apparatus equipped with smart ITR diamond attenuated 

total reflectance (ATR). The experiments were carried out in the wavelength 

range of 250 cm-1 to 4500 cm-1 with the resolution of 4 cm-1 and total scans of 64 

for each sample. This analysis was done to analyze the changes in the functional 

groups of the raw mango seed husk at different carbonization temperatures. 

5.3 Results and Discussion 

5.3.1 Mango seed husk characterization 

Characterization of feedstock is important for determining the functional 

properties and quality of the activated carbon that can be formed [189,210]. The 

chemical composition analysis (Table 5.1) indicates that the mango husk 
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contains about 4.24% moisture, 19.56% fixed carbon 74.43% volatile matter and 

2.73% ash (Table 5.1).  

Table 5.1 Proximate analysis and lignocellulosic composition of mango seed husk. 

Proximate analysis (wet basis) Composition (%) 

Moisture 4.24 ±0.04 

Fixed carbon 19.56 ± 0.07 

Volatile matter 73.43 ± 0.34 

Ashes 2.73 ± 0.50 

Lignocellulose analysis 

Cellulose 37.28 ± 2.58                        

Hemicellulose 19.03 ±1.11                    

Lignin 23.92 ±0.05 

The percentage of lignin, hemicellulose, and cellulose are comparable to what is 

reported in the literature of 5%-20.71%, 15.6%-16.63%, and 34.68%-39.4%, 

respectively [116,131]. Furthermore, the higher the content of volatile matter, the 

greater the porosity and subsequently higher surface area of the activated carbon 

produced [188]. According to Suhas et al. [189], materials with a greater content 

of lignin produces activated carbon with a predominantly macroporous structure, 

while raw materials with a higher content of cellulose produce activated carbon 

with a predominantly microporous structure. 

5.3.2 Effect of production conditions on characteristics of the activated 

carbon 

Varying the impregnation ratio, soaking time, and carbonization temperature 

resulted in the production of activated carbon with different characteristics in 
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terms of surface area, ash content and bulk density (Table 5.2). High 

carbonization temperature provided activated carbon with high surface area, low 

ash content and bulk density (Table 5.2).  The contour plots (Figs. 5.3a-c) show 

the trends for the effects of each parameter and interactions of the parameters 

on the specified responses for the activated carbon.  The surface area of the 

activated carbon increased with increase soaking time and carbonization 

temperature (Figs. 5.3a (i & iii)). The surface area is a measure of the porosity 

of activated carbons on which adsorption can take place. The relationship 

between the surface area and the impregnation ratio was different from that of 

carbonization temperature.  The surface area decreased with impregnation ratio 

up to a value of 0.45, thereafter the surface area increased (Figs. 5.3a (ii & iii)). 

Thus, the greater the impregnation ratio (beyond 0.45), coupled with either longer 

soaking times or high carbonization temperature, the higher the surface area for 

adsorption (Figs. 5.3a (i-iii)).  The impregnation ratio and carbonization 

temperature were the two parameters that showed significant effects (p<0.05) on 

the surface area (Fig. 5.4a). However, the carbonization temperature had the 

greatest positive impact on the surface area of the activated carbon, whereas the 

impregnation ratio had the most negative effect (Fig. 5.4a). Increase in 

carbonization temperature increased the surface area (Fig. 5. 3a ( i & ii),  which 

can be attributed to the degradation of the hemicellulose, cellulose, and lignin 

that produces volatile compounds, bio-oil and carbon [189]. The degradation of 

these compounds, similar to dissolution by NaCl, leads to further opening of pores 

in the seed husk structure. However, the degradation of these components does 

not occur at the same temperature  [176].
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Table 5.2 Characteristics of activated carbon produced using pyrolysis method at 

different process conditions 

Soaking 

time(h) 

Impregnation 

ratio 

Temperature 

(°C) 

Bulk density 

(kgm-3) 

Ash 

content 

(%) 

Surface 

area (m2g-1) 

6 0.75 450 242 9.59 223 

4 0.50 450 212 8.20 173 

4 0.50 450 207 6.47 160 

4 0.75 400 257 11.70 177 

4 0.75 500 192 9.23 215 

2 0.75 450 252 10.07 195 

4 0.25 500 232 5.94 205 

6 0.50 500 203 7.78 215 

2 0.25 450 269 5.93 158 

4 0.25 400 251 6.00 155 

4 0.50 450 238 7.57 202 

6 0.50 400 242 8.93 125 

6 0.25 450 262 7.52 201 

2 0.50 400 272 8.87 116 

2 0.50 500 208 6.38 172 

For example, thermal degradation of hemicellulose, cellulose, and lignin would 

occur between 220 °C – 315 °C, 315 °C – 400 °C, 160 °C – 900 °C, respectively 

[176]. Therefore, the higher carbonization temperature of 400 °C – 500 °C applied 

(Table 5.2) most likely degraded hemicelluloses as well as the cellulose and 

lignin. The results are similar to Adinata et al [190] where activated carbon 
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produced with both KOH and K2CO3 as activation agents, showed similar trends 

for such temperature ranges.  

 

The increase in soaking time increased the surface area of the activated carbon 

alone and also in interaction with the impregnation ratio and carbonization 

temperature. The effect suggests that during the manufacturing of activated 

carbon, these parameters may have to be monitored and controlled 

simultaneously for optimal surface area. However, since only the temperature 

(linear) and the impregnation ratio (quadratic) showed significant effects (p< 0.05) 

on the surface area (Fig. 5.4a), the desired surface area for the activated carbon 

can be tailored made by controlling the two parameters independently.  

 

Presence of ash in the activated carbon indicates the presence of inorganic 

content, which reduces its quality [211]. Similar to the surface area, the 

carbonization temperature and impregnation ratio were the most important 

factors to consider when high quality activated carbon is desirable from the 

mango seed husks. The results show that the effects of these two parameters 

were significant at p< 0.05 on the ash content (Figs. 5.3b (i-iii)). On the other 

hand, a combination of high impregnation ratio and longer soaking time is not 

desirable for high quality activated carbon because of increased ash content 

(Figs. 5.3 b (ii)) unless it is accompanied by high carbonization temperature 

above 450 °C. At the stated temperature, the ash content is less than 8% for 

soaking times and impregnation ratio of less than 6 h and 0.6, respectively (Fig. 

5.3b (i & iii)). The effect of carbonization temperature on ash content could be 
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because the sodium absorbed in the husk is reduced to metallic sodium at 

elevated temperatures and is subsequently lost during the washing stage [188]. 

Similar to the surface area, the impregnation ratio (linear) has the most negative 

effect on the quality of the activated carbon because the positive relationship with 

the ash content (Fig. 4b) whereas, the temperature has a negative relationship 

with the ash content.  

 

Bulk density is an important parameter mainly for handling of the activated carbon 

in the adsorption cooling system, in particular, the adsorbent unit.  The bulk 

density affects the volume that can be handled in the adsorbent unit per unit time.  

The bulk density was largely affected by all the three parameters, carbonization 

temperature, soaking time as well as impregnation ratio (Fig. 5.3c (i-iii)).  The 

effects of carbonization temperature (linear), impregnation ratio (quadratic) and 

soaking time (quadratic) on the bulk density were significant (p< 0.05) (Fig. 5.4c). 

Activated carbon of low bulk density from the seed husks can be obtained if the 

production is done using impregnation ratios between 0.5 and 0.6  at 

temperatures above 500°C and soaking times between 3.5 h and 5.5 h  (Fig. 5.3c 

(i & iii)). The increase in bulk density at reduced carbonization temperature may 

be related to the limited breakdown of the structural components, thus 

hemicellulose, cellulose and lignin [176], which leads to reduced porosity.    
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Figure 5.3 Effects (a) on surface area of (i) temperature vs soaking time at 0.50 impregnation ratio, (ii) impregnation ratio vs soaking 

time at 450°C & (iii) temperature vs impregnation ratio at 4 h soaking time; (b) on ash content of (i) temperature vs soaking at 0.50 

impregnation ratio, (ii) impregnation ratio vs soaking time at 450°C & (iii) temperature vs impregnation ratio at 4 h soaking time; 

(c) on bulk density of (i) temperature vs soaking time at 0.50 impregnation ratio; (ii) impregnation ratio vs soaking time at 450°C & 

(iii) temperature vs impregnation ratio at 4 h soaking time 
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Figure 5.4 Pareto charts showing size and significance of effects of activation, 

temperature, soaking time and activation temperature on properties of mango seed husk 

activated carbon produced using NaCl as an activation agent 

(b) 

(c) 

(a) 
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5.3.3 Optimal conditions for production of activated carbon from mango seed 

husk. 

The non-linear regression coefficients for the model (Equation 5.1) are shown in Table 

5.3a. The positive relationship between carbonization temperature and surface area 

is reflected by the positive coefficient whereas as the negative relationship with bulk 

density is reflected by the negative regression coefficient (Table 5.3a). The 

experimental data fitted the model for all the three outputs (surface area, ash content 

and bulk density) with adjusted R2 of at least 0.8 (Table 5.3 (b)).  The p-value from the 

lack of fit test showed that the data fitted the model at p > 0.05 (Table 5.3b). The 

optimum production conditions were identified to be 5.8 h for the soaking time, 0.25 

impregnation ratio and 500 °C carbonization temperature (Table 5.4). The optimum 

carbonization temperature is comparable to the optimum temperature of 456 °C 

obtained when ZnCl2 was used as activating chemical with optimum impregnation ratio 

of 1.08, to produce activated carbon from agave bagasse [187]. At the optimized 

conditions, the mango seed husk activated carbon had BET surface area of 415 m2g-1, 

ash content of 6.92% and bulk density of 243 kgm-3 (Table 5.4). The BET surface area 

falls within the range of 3 m2g-1  to 1718 m2g-1 reported for activated carbon produced 

from agricultural residues [185]. However, it is lower than the surface area of 

618 m2g-1- 661 m2g-1 for mango seed husk, which used NaCl as activation agent 

mainly because the activated carbon produced was in powder form whereas in this 

study it was in the granular form [197]. Similarly, activated carbon powder from coal, 

wood, and coconut, reported higher surface area of 750 m2g-1- 850 m2g-1, 900 m2g-1-

1200 m2g-1, and 590 m2g-1-1500 m2g-1, respectively [212] than the activated carbon 

from the mango seed husk produced in this study. The activated carbon for the 
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commercial activated carbon had a particle size of 3 mm compared to10 mm for this 

study.  

Table 5.3 Final regression coefficients, after discarding insignificant terms and values of 

the statistical test parameters that validate the model 

a. Final regression coefficients, after discarding insignificant terms 

 Surface area(m2g-1) Ash content (%) Bulk density(kgm-3) 

𝛽0 173.69 7.74 219.00 

𝛽1 15.37 0.32 - 6.50 

𝛽2 11.37 1.90 - 8.88 

𝛽3 29.25 - 0.77 - 23.38 

𝛽11 - - 17.75 

𝛽22 24.04 0.50 19.50 

𝛽33 -13.21 - - 5.50 

𝛽12 - - 0.52 - 

𝛽13 8.50 - 6.25 

𝛽23 - - 0.60 -11.50 

 

b. Values of the statistical test parameters that validate the model. 

 Surface area(m2g-1) Ash content (%) Bulk density(kgm-3) 

Lack of fit  0.8883 0.7998 0.9808 

R2 0.8797 0.9113 0.9309 

R2 adjusted 0.7894 0.8447 0.8387 
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Table 5.4 Optimized conditions and predicted values of responses 

Parameters Predicted value  Responses Optimum value 

Soaking time 5.8 h Surface areaa 

 BET CO2 

 

223 m2g-1 
 
 

Impregnation ratio 0.25 Ash content 6.92% 

Temperature 500 °C Bulk density 243 kgm-3 

a BET N2 = 415 m2g-1  

The ash content and bulk density of the mango seed husk activated carbon produced 

in this study was 6.92% and 243 kgm-3, respectively, which shows improved quality 

when compared with the ash content of 13.55% - 14.75% for the activated carbon 

produced by Mise & Patil [197], but is close to about 6% reported for commercial 

activated carbon [212]. The bulk density of the mango seed husk activated carbon 

produced is higher than the 204 kgm-3 - 232 kgm-3 bulk density reported by Mise & 

Patil [197]. The relatively high bulk density of the activated carbon produced in this 

study makes it a better choice for use in vapour phase applications such as adsorption 

cooling since it would not be easily sucked out during vacuum creation process. 

5.3.4 Validation of model production conditions for mango husk activated 

carbon 

Using the predicted optimum production conditions in Table 5.4 to produce activated 

carbon, the surface area, ash content and the bulk density of the activated carbon 

produced were measured to validate the model (Table 5.5). The results (Table 5.5) 

showed that the values for surface area (BET CO2), ash content and the bulk density 

of the activated carbon produced at the optimal conditions were very close to the 

predicted values deviating by 2.69%, 1.01%, and 2.06%, respectively [213]. 
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Table 5.5 Validated model production conditions for mango husk activated carbon 

Response Optimized 

Model Value 

Experimental value Percentage error 

Surface area, m2g-1 

(BET CO2) 

223 229 2.69 

Ash content,% 6.92 6.99 1.01 

Bulk density, kgm-3 243  248 2.06 

 
Furthermore, the surface area (BET N2) obtained when nitrogen gas was used to 

estimate the BET surface area of the activated carbon produced was found to be 

415 m2g-1 (Table 5.4), which falls within the surface area of 300 m2g-1 -2500 m2g-1 

reported by Campbell  et al [214] for activated carbon. 

 

5.3.5 Changes in surface functional groups on the activated carbon as 

determined by Fourier transform infrared spectroscopy (FTIR) analysis  

The infra-red spectral bands (Fig. 5.5) depicted the changing structure of the various 

mango seed husk activated carbon samples. The infra-red spectrum of the raw mango 

seed husk shows the presence of several functional groups such as alkene, aromatic, 

ketone, hydroxyl, and carboxyl functional groups (Fig. 5.5). These kinds of functional 

groups are typical of many lignocellulose raw materials. The absorbance for the 

hydroxyl stretching vibrations of the water in the raw mango seed husk is correlated 

to the band at 3281 cm-1  [188,215,216]. Other bands detected in the raw mango seed 

husk are C=C (alkene functional group) at 1617 cm-1, C=O (carbonyl functional group) 

with spectra band at 1732 cm-1, organic acid (carboxyl functional group) at 2934 cm-1, 

aromatic group (benzene) at 1443 cm-1, and C-O (ether functional group) at 1038 cm-1 

[188,217]. Several of the spectral bands in the raw mango seed husk disappeared with 
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increasing carbonization temperature due to thermal degradation of bonds of the 

lignocellulosic compounds present. The activated carbon produced at 400 °C and 

450 °C showed a small peak at 1617 cm-1 suggesting that there could be cellulose and 

lignin present. However, the activated carbon produced at 500 °C showed fewer 

remnants of lignin because the lignin is totally broken down at such high temperatures 

[176]. The result supports the optimum carbonization temperature obtained (500 °C) 

evident from the absence or reduced absorbance from volatiles initially present in the 

sample. 

 

Figure 5.5 Comparison of FTIR spectra of raw mango seed husk (A); mango seed husk 

activated carbon produced at 500°C (B); mango seed husk activated carbon produced at 

450°C (C); mango seed husk activated carbon produced at 400°C (D) 

Therefore, activated carbon was produced from mango seed husk through 

simultaneous carbonization and activation with NaCl as the activation agent, which 

falls within the quality range (in terms of BET surface area and ash content) of 

commercial activated carbon. There are some precautions to be considered when 

using NaCl. Although it is a relatively safer activation agent than most activating 
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chemicals, NaCl has some challenges because of the corrosive effect to most metals, 

therefore anti-corrosive materials should be used to protect the equipment to use for 

soaking the biomass material and for the adsorber construction. Secondly, the 

discharged NaCl water need special disposal procedures to avoid damage to the 

environment. 

5.4 Conclusion  

The optimum mango husk activated carbon production conditions determined using 

response surface methodology for impregnation ratio, soaking time, carbonization 

temperature were 0.25, 5.8 h and 500 °C, respectively, which resulted in activated 

carbon with ash content of 6.92%, bulk density of 243 kgm-3 and surface area (BET 

CO2) of 223 m2g-1, which was 415 m2g-1 (BET N2). These optimal activated carbon 

production conditions were within the surface area ranges of 300 m2g-1 -2500 m2g-1 

found in the literature for similar materials [214]. At the validated production conditions, 

the ash content (6.69%), the bulk density (248 kgm-3) and surface area (229 m2g-1 

(BET CO2)) were within 2% error (1.01, 2.06 and 2.6%, respectively) of the predicted 

values, which suggests the possibility of using the model to predict and control the 

activated carbon production process. Furthermore, the lack of interaction among the 

production conditions suggests that the production of the activated carbon from mango 

seed husks can be controlled by varying each parameter independently to tailor make 

the quality of the activated carbon in terms of surface area, bulk density and ash 

content for different applications. Notably, the NaCl is a relatively safe and potentially 

an environmentally friendly alternative activation agent for the production of granular 

activated carbon from mango seed husk of comparable quality to commercial activated 

carbon as well as to activated carbon from biomass sources. Therefore, the study has 

provided an optimized process that is not only effective in producing functional 
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activated carbon but a process that has potential to reduce the environmental impact 

of activated carbon production and at the same time provide an opportunity for the 

development of an integrated biorefinery. 
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Chapter 6 Evaluating the potential of using ethanol /water mixture as a 

refrigerant in an adsorption cooling system by using activated carbon- sodium 

chloride composite adsorbent and mango seed activated carbon 

ABSTRACT 

Thermal properties and adsorbent - refrigerants compatibility, influence heat and 

mass transfer dynamics in adsorption cooling systems (ACS). Activated carbon (AC) 

+NaCl (10-35.7% w/v) composite adsorbents were paired with either high purity 

(99.7%) or low-grade ethanol (60% ethanol/ 40% water) refrigerants to assess the 

potential of ethanol/water mixture as a refrigerant. The adsorption cooling system 

(ACS) with activated carbon-sodium chloride (AC+ NaCl) composites adsorbent had 

coefficient of performance and specific cooling power in the range of 0.075-0.091 and 

39 Wkg-1-79 Wkg-1, respectively, when paired with high purity ethanol, which 

increased to between 0.121-0.146 and 113-150 Wkg-1, respectively, when paired with 

low-grade ethanol. Between 21 MJ-25 MJ per cycle was needed for the desorption 

of refrigerants in AC+NaCl composites adsorbent when paired with the low-grade 

ethanol, whereas more energy, 27 MJ per cycle, was required to desorb low-grade 

ethanol when paired with unmodified activated carbon (AC) in ACS. The study has 

shown that the thermal and mass transfer performances of AC+NaCl composites 

adsorbents superseded that of unmodified AC providing the potential for low-grade 

ethanol to be used as a potential alternative refrigerant in ACS especially in areas 

where pure ethanol is limited. 
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6.1 Introduction 

Adsorption cooling system (ACS) has the potential for use in areas with limited or no 

electricity, water, and high-grade ethanol on condition that alternative sources of 

energy and refrigerants are made available.  However, the ACS experience low 

specific cooling power (SCP), coefficient of performance (COP) and poor adsorbent 

heat and mass transfer. Table 6.1 shows COP and SCP reported for ACS.  For 

improved performance, adsorbents physical properties have to enhance mass and 

heat transfer in the system. An adsorbent with high porosity has poor heat transfer 

and long cycle time, resulting in high energy consumption hence reduced SCP 

[6,218,219]. In addition, the adsorbent/refrigerant pairs used in ACS is critical to 

system performance[5,83] thus, their applicability in ACS targeting off-grid 

communities, water scarce and poor communities should be evaluated. Common 

adsorbent/refrigerant working pairs at commercial level include AC/ethanol, 

AC/methanol or AC/ammonia, silica gel/water, and zeolite/water pairs 

[5,6,93,220,221]. Despite its high latent heat of vaporization compared with ethanol, 

ammonia, and methanol, water has low saturation pressure than ethanol and that 

limits its evaporation [5,82].  On the other hand, methanol and ammonia have higher 

saturation pressure than water but are toxic [5,6]. In addition, ethanol is non-toxic and 

environmentally benign [8] and could easily be produced at small scale level using 

local knowledge, but with high water content [222].  A compatible adsorbent is required 

if the locally produced ethanol, with high water content (normally 60% ethanol) is to be 

used as a refrigerant.  There are a number of adsorbents that could be used such as 

Zeolite. However, the high desorption temperature of adsorbents such as zeolite 

[6,79,82] implies high desorption energy, which can affect affordability. Unlike other 

adsorbents, AC can be produced from biomass including agricultural residues which 
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are readily available in many rural/poor communities. This can lead to the development 

of small-scale AC industries and which might make it easier to adopt the adsorption 

cooling technology in many rural communities. 

 

The Ideal adsorbent is desired to be non-toxic and non-corrosive, have relatively low 

desorption temperature, adsorb large quantities of refrigerant, large latent heat of 

adsorption than sensible heat, low cost and readily available [7,223,224]. One of the 

commonly used adsorbents is the activated carbon which can be made commercially 

from many carbonaceous materials including agricultural residues such as mango 

kernel which are readily available in rural agricultural communities[225]. However, 

activated carbon used in many adsorption studies are commercially produced and are 

not affordable to many rural agricultural farmers. Therefore, there is a need to use 

locally available material for activated carbon production. The performance of these 

locally produced activated carbon needs to be evaluated and compared with the 

commercial activated carbon. In this study, mango seed husk was used to produce 

activated carbon for use in adsorption cooling. Mango seed has no economic value 

and is, therefore, a source of pollution when disposed of in the environment. The 

mango seed husk activated carbon was paired with both pure (99.7%) and impure 

(60%) ethanol as refrigerants.   

As a result of the inherent heat and mass transfer limitations associated with the 

adsorbents and refrigerant working pairs used in ACS, a lot of energy is required to 

power this technology. Therefore,  ACS targeted for areas with the absence of or 

limited electricity, high-grade ethanol and water supply could be powered either by 

direct biomass combustion or by waste heat from agro-processes [4,226]. However, 
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modifications of the AC to ensure improved heat and mass transfer would be required 

to use the low-grade ethanol as a refrigerant. 

Table 6.1 Coefficient of performance (COP) and specific cooling power (SCP) for some 

adsorption working pairs. 

Adsorption working pair COP SCP (Wkg-1) Reference 

AC/methanol 0.34  [227] 

AC/R32 0.23 250 [228] 

AC/ethanol 0.7-0.8  [81] 

CaCl2/graphite/ammonia 0.3 1000 [229] 

Strontium chloride-

expanded graphite/NH3 

0.24 291.5 [230] 

Silica gel/water 0.16-0.496  [231–233] 

AC/ammonia 0.35 520 [234] 

Zeolite/foam 

aluminium/water 

0.55 500 [82] 

Zeolite/water 0.25 7 [235] 

Zeolite/metal chips/water 0.56  [236] 

AC fiber/CaCl2/ammonia 0.6 330 [6] 

AQSOA FAM-Z02/water  0.31 436 [237] 

Note: Activated carbon = AC 

Several studies have been done to improve the thermal performance of ACS by 

increasing the heat transfer area of the adsorbent beds using fins [99,238,239], 

reducing the thermal resistance between the adsorbent wall and the adsorbent 

material through consolidating adsorbent bed [240] and reducing thermal resistance 

through the formation of composite adsorbents [79,99,121,241]. These studies 

employed pure refrigerants paired with various adsorbents (Table 5.1). For instance, 
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Tso et al. [79,242] formed AC-silica gel-CaCl2 composite adsorbent paired with pure 

water as the refrigerant while El-Sharkawy et al [81] paired AC with low-grade ethanol. 

However, studies involving the mixture of water and ethanol as the refrigerant (as is 

the case with the low-grade ethanol) have not been reported. Obviously, water/ethanol 

mixtures are miscible and cooling in the evaporator depends on the amount of 

refrigerant that is adsorbed by the adsorbent and the refrigerant latent heat of 

vaporization.  Since the latent heat of evaporation of water is about 60% higher than 

that for ethanol, the presence of water in the low-grade ethanol would facilitate cooling 

rate if paired with a suitable adsorbent with high adsorption capacity. Furthermore, 

there are technological and cost issues involved to purify or dehydrate the water-

ethanol mixture to the commercial ethanol grade  (99% ethanol) normally used in 

conventional ACS [243,244]. Thermal performance of adsorbents has been enhanced 

through the composite formation. For example, Wang et al. [241] formed consolidated 

composite adsorbent with expanded graphite and CaCl2 to improve thermal 

conductivity of CaCl2. Tanashev et al. [160,161] formed composite silica gel-CaCl2 

adsorbent which increased the thermal conductivity of silica gel bed from 0.112 

Wm-1K-1  to 0.153 Wm-1K-1. In a silica gel-CaCl2-aluminum hydroxide composite bed, 

the thermal conductivity of silica gel increased from 0.12 Wm-1K-1 to 0.227 Wm-1K-1 

[162]. Other chloride salts used  include  MgCl2, BaCl2, SrCl2 [6], MnCl2, NiCl2 and 

CoCl2 [93] and LiCl [94].  Notably, the thermal conductivity of CaCl2 is 1.09 Wm-1K-1 

[96] while the thermal conductivity of AC ranges from 0.15 Wm-1K-1 to 0.50 Wm-1K-1  

[86–89]. Therefore, utilization of chloride salts with higher thermal conductivity in the 

composites leads to improved heat transfer but may have implications on the mass 

transfer during adsorption/desorption process leading to reduced COP due to clogging 

of pores as well as causing corrosion to the adsorber [245,246]. Sodium chloride 
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(NaCl) despite its higher thermal conductivity of 7 Wm-1K-1  [159], than CaCl2, has not 

been used to improve the thermal and adsorption performance of AC.  Use of NaCl 

would be advantageous to form the composite with AC because of the potential to 

improve both the heat and mass transfer properties when paired with ethanol/water 

mixture. The high water affinity of NaCl in the AC is expected to increase the mass 

transfer of the mixture in the adsorbent bed and simultaneously increase the thermal 

conductivity and heat of adsorption of the AC.  

Furthermore, AC used in many adsorption studies are commercially produced and are 

not affordable to many rural agricultural farmers. Therefore, there is a need to use 

locally available material for activated carbon production. The performance of these 

locally produced activated carbon needs to be evaluated and compared with the 

commercial activated carbon.  Therefore, the objective of this study is to determine the 

technical performance of using the mixture of ethanol and water (low-grade ethanol 

(60% ethanol and 40% water) as refrigerants(representing likely quality of ethanol 

produced in local small-scale distilleries [222]) combined with composite AC+NaCl  

and mango seed AC as an adsorbent in ACS powered by combustion of biomass. The 

potential energy savings of using AC+NaCl composite adsorbents in a biomass waste 

(mango seeds with heating values closer to woody biomass [117,247], generated from 

mango processing plant) powered ACS was also evaluated. The results of the study 

are relevant for promoting application ACS in resource-limited (pure water or pure 

ethanol) areas.  As a whole, the study is a step towards making ACS cost effective 

and resource efficient. The technical performance of the ACS was measured based 

on three factors (1) temperature profiles in the adsorbent container during desorption, 

(2) the duration of adsorption and desorption, and (3) temperature changes in the 

evaporator [248].  
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6.2 Materials and methodology 

6.2.1 Materials 

Commercial AC was GC E612 of mesh size 12 and apparent density of 0.49 

gram/cubic centimeter (Indocarb Corporation Inc). NaCl (99.5% in purity) was 

purchased from (Kimix chemical and laboratory suppliers’ cc). Mango seed husk AC 

produced in Chapter 5 was also used.  Ethanol (99.7% purity, Merck Millipore) was 

used as the pure refrigerant. Tommy Atkins mango seeds were obtained from 

Hoedspruit fruit processors (South Africa). Liquid nitrogen baseline 5.0 (Afrox Ltd) and 

benzophenone of 99% purity (Sigma-Aldrich) were used for BET analysis and as a 

sensor material during thermal conductivity measurement of the adsorbent samples, 

respectively.  

6.2.2 Composite adsorbent preparation  

Commercial AC + NaCl composites were prepared according to procedure presented 

in Figure 6.1.   

 

 

 

 

 

 

 

Figure 6.1 Impregnation of NaCl into activated carbon 

 

Activated carbon 

Heating for evacuation (378 K for 24 hours) 

Activated carbon+ NaCl solution  

Filtration  

Drying (378K for 24 hours) 

Composite activated carbon/ NaCl produced 
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Commercial AC (1 kg) was heated at 105 °C for 24 h to remove entrapped moisture. 

Commercial AC was subsequently impregnated with 2 L of NaCl solution at varying 

concentrations of 10 w/v %, 15 w/v %, 20 w/v %, 25 w/v %, 30 w/v % and 35.7 w/v %, 

for 24 h at room temperature (24 °C) and relative humidity of 65% and thereafter, dried 

at 105 °C for 24 h. The control (Commercial AC) and as well as mango seed AC were 

also soaked in demineralized water and dried under similar conditions. 

6.2.3 Characterization of the adsorbents 

About 0.3-0.6 g of each adsorbent was analyzed in a 3Flex instrument (Accelerated 

Surface Area and Porosimetry System, Micromeritics Instrument Corporation) for 

surface area. The samples were heated to remove moisture and vapour, and 

subsequently, cooled in liquid nitrogen at incremental dosages of 3.0 cm³/g. Total 

nitrogen gas adsorbed and corresponding gas pressure at a given temperature was 

plotted to generate adsorption isotherms. Surface area, pore volume and pore area of 

the samples were calculated based on  Brunauer–Emmett–Teller (BET)  theory [209]. 

Furthermore, Scanning Electron Microscopy (SEM) was performed to confirm that the 

pores of the adsorbent were impregnated with the NaCl. 

6.2.4 Determination of adsorption capacity, kinetics and isotherm of adsorbents 

The objective of this experiment was to determine the equilibrium adsorption capacity 

of various adsorbent-refrigerant pairs at different temperatures and pressure. The 

adsorbents to be used in this experiment are the composite adsorbents produced in 

Section 6.2.2, as well as mango seed husk AC and commercial AC. The refrigerants 

are ethanol at 99.7%, and 60 % purity. The test rig for these experiments was designed 

and built as shown in Figure 6.2. It consists of a stainless steel vessel containing the 

adsorbent bed and refrigerant bottle. 60 mm and height 70mm containing 30 g of 
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adsorbents to be tested. The temperature changes in both the adsorption bed and the 

refrigerant bottle were monitored using CENTER 306 thermometer (Center 

Technology Corp.) equipped with data logger and dual input K- type thermocouples 

(temperature range -200 °C – 1370 °C, resolution 0.1 °C). The refrigerant bottle and 

the adsorption bed were connected by a non-return valve. Before the start of the 

experiment, the adsorbent bed was connected to a vacuum pump to evacuate the bed 

to about 0.01 kPa by opening valves V1 and V2 while valve V3 remained closed. The 

temperature of adsorbent bed was then gradually increased by application of heat up 

to 4 h while the evacuation process was still ongoing. This process was performed to 

get rid of all residual gases in the adsorption bed. The adsorption bed pressure 

reached at the end of the evacuation process was noted and valve V2 was closed. 

Valve V3 was then opened and the vacuum was created over the refrigerant until the 

changed into vapour. Valve 1 was then closed and valves V2 and V3 were open to 

allow the refrigerant vapour to move from the refrigerant bottle to the adsorbent to be 

adsorbed. During the adsorption runs, the temperature of the refrigerant bottle 

remained constant (24 °C) as the set-up is in the conditioned room, the same 

conditions that the actual constructed adsorption cooling system was operated. The 

accuracy of the weighing balance was ±0.01 g. The effect of the weight of the piping, 

valve, and others on the measurement would be minimal since their weight before and 

during the experimental runs was assumed to be unchanged. As the adsorption 

process continued, the valve V2 was closed every 120 seconds and the adsorbent 

bed was isolated and dismantled and weighed. The pressure and temperature 

changes in the adsorption bed and the refrigerant bottle was also recorded. This 

process continued until the bed reached its adsorption capacity and cannot adsorb 
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any more of the refrigerant. Finally, the vacuum was recreated in the adsorption bed 

to start a new adsorption run.  

 

 

 

 

 

 

 

 

 

1. Thermocouple 2. Adsorbent bed 3. Vacuum gauge 4. Refrigerant bottle 5. Hot 

water bath; V1,V2,&V3 are valves 

 

Figure 6.2 Experimental rig to study adsorption capacity of different adsorbent 

refrigerant pairs 
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This process was repeated at five different temperatures 25 °C, 30 °C, 35 °C, 40 °C and 

45 °C. The data from this experiment was fitted using Dubinin–Astakhov (D–A) 

equation discussed in Section 2.2.2 because it is widely used for adsorption of gases 

onto microporous adsorbents[249]. 

𝑊 = 𝑊0 𝑒𝑥𝑝 [(−
𝐴

𝐸
)

𝑛
]                                                     6.1 

Where A is the adsorption potential (kJkg-1) of the adsorbent/refrigerant pair that could 

be estimated using Equation 6.2 

 𝐴 = 𝑅𝑇 𝑙𝑛 (
𝑃𝑠

𝑃
)                                                                6.2 

Substituting Equation 6.2 into Equation 6.1 and linearization gives 

𝑙𝑛 𝑊 = 𝑙𝑛 𝑊0 −
1

𝐸𝑛 {𝑅𝑇 𝑙𝑛
𝑃𝑠

𝑃
}

𝑛
                                         6.3 

Where 𝑊 stands for the equilibrium capacity of the adsorbent/refrigerant pair (kgkg-1)  

𝑊0 is the maximum adsorption capacity of the adsorbent/refrigerant pair(kgkg-1). E is 

the adsorption characteristic energy (kJkg-1) which measures the adsorption strength 

between adsorbent and refrigerant. T is the adsorption temperature (K), Ps defines 

the saturation pressure of the refrigerant at the adsorption temperature (kPa) whilst P 

is the equilibrium pressure (kPa). The exponential parameter n gives the best fitting of 

ln(W) vs An . Refrigerant saturation pressure (Ps) was estimated for high-grade ethanol 

using Antoine Equation (Equation 6.4) 

𝑃𝑆 = 10𝐴−
𝐵

𝐶+𝑇                      6. 4 

The constants A, B, and C for the ethanol are 8.20417, 1642.89, and 230.03 

respectively; 𝑃𝑆 is in mmHg which could be converted to kPa. Since low-grade ethanol 

is a mixture where both water and ethanol contribute to the overall saturated pressure 

of the mixture, Raoult’s Law [77] was used to estimate the values of saturated 

pressures using the equation  
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𝑃𝑤𝑎𝑡𝑒𝑟 = 𝑥𝑤𝑎𝑡𝑒𝑟𝑃𝑆,𝑤𝑎𝑡𝑒𝑟                          6. 5 

𝑃𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 𝑥𝑒𝑡ℎ𝑎𝑛𝑜𝑙𝑃𝑆,𝑒𝑡ℎ𝑎𝑛𝑜𝑙                       6. 6 

𝑃𝑆 = 𝑃𝑆,𝑤𝑎𝑡𝑒𝑟 + 𝑃𝑆,𝑒𝑡ℎ𝑎𝑛𝑜𝑙                       6. 7 

𝑃𝑤𝑎𝑡𝑒𝑟 and 𝑃𝑒𝑡ℎ𝑎𝑛𝑜𝑙 are the partial vapour pressures (kPa) of water and ethanol in the 

mixture, 𝑥𝑤𝑎𝑡𝑒𝑟 and 𝑥𝑒𝑡ℎ𝑎𝑛𝑜𝑙 are the mole fractions of water and ethanol; 𝑃𝑆,𝑤𝑎𝑡𝑒𝑟 and 

𝑃𝑆,𝑒𝑡ℎ𝑎𝑛𝑜𝑙 are the saturated pressure (kPa) values of component water and ethanol 

component if they were on their own as pure liquids and these could be estimated 

using Antoine equation. The constants A, B, and C for the water used for the Antoine 

equation are 8.07131, 1730.63 and 233.426, respectively. 

6.2.5 Determination of mango seeds heating value  

Mango seed heating value (MJkg-1) was determined in Cal2k Eco bomb calorimeter 

(Digital Data Systems Pty Ltd). About 0.5 g of powdered whole mango seeds (250 

µm) were combusted in the crucible of the Cal2k Eco bomb calorimeter. 

6.2.6 Experimental set up of the adsorption cooling system 

The adsorption cooler system was designed to run totally on bio-resources generated 

from waste streams. The ACS was designed and built as described in Section 4.1. 

The ACS consisted of two adsorbers (A and B), condenser, evaporator, valves and a 

combustion stove (Fig 6.3).  The operation and thermodynamics of the systems are 

similar to that of a typical ACS described in Section 2.1.3. The entire set up was 

operated at 5 kPa and used commercial AC (GC E 612 Indocarb Corporation Inc) and 

the AC-NaCl composites produced following the procedure presented in Figure 6.1. 

The adsorbents were paired with pure ethanol (99.7%), Merck Millipore) and impure 

ethanol (60% by weight, as indicated earlier to mimic the quality of ethanol normally 

produced at a small-scale in many rural communities [222]) as the refrigerants.  
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a.  
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Figure 6.3 a. Schematic diagram of the adsorption refrigeration cycle b. ACS designed 

(volume of storage chamber is 0.0225 m3; condenser coil is 2.5m long; volume of 

adsorber 0.004m3) 

 
The temperature profiles in both the adsorber and the cooler were monitored using 

CENTER 306 thermometer (Center Technology Corp.) equipped with data logger and 

dual input K- type thermocouples (temperature range -200 0C – 1370 °C, resolution 

Condenser coil 

Storage 
chamber 

Vacuum gauge 

Adsorber 

To vacuum 
pump 

Vacuum pump 

Vacuum gauge 

Cold 
adsorbent 

Valve (closed) Valve (opened) 

Heat flow 

Hot adsorbent 

Refrigerant flow 
Condenser 

Evaporator 

Heat source 

Stellenbosch University https://scholar.sun.ac.za



126 
 

0.1 °C). The operation principle of an adsorption cooling cycle has been described in 

Section 2.3. 

6.2.7 Thermodynamics of the adsorption cooling system  

The operating energy of the adsorption system was generated from the combustion of 

mango seeds in the combustion stove (Fig 6.3). The energy supply to the system was 

accounted for based on the heating value of the mango seeds, determined 

experimentally using a bomb calorimeter.  The total energy requirement of the system 

was determined from the total amount of mango seeds combusted during the 

desorption process, taking into consideration of the combustion efficiency of biomass. 

Among the many ways of assessing the technical performance of a cooling technology 

such as energy efficiency ratio (EER), the coefficient of performance (COP [63,64]) 

and the specific cooling power (SCP [65,66]). COP and SCP were used in this study 

because they are the common assessment criteria used for ACS. The energy and 

performance analysis of the ACS is as follows  

𝑄𝑒𝑣𝑎 = 𝑚𝑟𝑒𝑓ℎ𝑓𝑔                                                                                     6. 8 

Where: ℎ𝑓𝑔 is the specific latent heat of vaporization of either high-grade ethanol or 

the low-grade ethanol (Jkg-1), 𝑄𝑒𝑣𝑎 is the amount of heat removed from the storage 

chamber (Jkg-1), 𝑚𝑟𝑒𝑓 is the mass of refrigerant adsorbed (kg). 

ℎ𝑓𝑔(𝑒𝑡ℎ𝑎𝑛𝑜𝑙 − 𝑤𝑎𝑡𝑒𝑟 𝑚𝑖𝑥𝑡𝑢𝑟𝑒) = 0.6ℎ𝑓𝑔(𝑒𝑡ℎ𝑎𝑛𝑜𝑙) + 0.4ℎ𝑓𝑔(𝑤𝑎𝑡𝑒𝑟)                   6. 9 

The value of specific latent heat of vaporization of high-grade ethanol used is 842 

kJkg-1 while that for the low-grade ethanol was estimated using the relation 

 

The total energy input during desorption could be expressed as 

𝑄𝑡𝑜𝑡𝑎𝑙 =  𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 + 𝑄𝑙𝑎𝑡𝑒𝑛𝑡                                                   6. 10 
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Where: 𝑄𝑡𝑜𝑡𝑎𝑙 is the total desorption energy (J). Since mango seed was combusted to 

serve as the source of energy in this study, the sensible energy supplied (𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒) 

could be estimated as the useful energy supplied (𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑) to the ACS during 

combustion. 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 and 𝑄𝑙𝑎𝑡𝑒𝑛𝑡 are expressed as follows: 

 

𝑄𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑞𝑠𝑡 ∫ 𝑑𝑊
𝑊𝑚𝑖𝑛

𝑊𝑜

                                                       6. 11 

 

𝑞𝑠𝑡 = −𝑅
𝜕 𝑙𝑛 𝑃

𝜕 (
1
𝑇

)
                                                                      6. 12 

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 = 𝜂1 × 𝜂2 × 𝑚𝑚𝑎𝑛𝑔𝑜 × 𝐿𝐻𝑉                             6. 13 

 
Where 𝑞𝑠𝑡 is the isosteric heat of adsorption (kJkg-1), 𝑄𝑙𝑎𝑡𝑒𝑛𝑡 is the latent heat released 

during desorption (kJkg-1), 𝑊𝑚𝑖𝑛 is the minimum adsorbent that remains after 

desorption (kgkg-1), 𝑊𝑜 is the maximum adsorption capacity of the refrigerant (kgkg-1), 

R is the gas constant (8.314 kJmol−1K−1) which can be converted to kJkg-1 using the 

molecular weight of the refrigerant, 𝑃 and 𝑇 are the adsorption equilibrium pressure 

(kPa) and temperature (K) respectively, 𝑚mango is the mass of mango seed 

combusted, LHV is the lower heating value of mango seed estimated in the bomb 

calorimetry to be 17.80 MJkg-1. 

The assumptions for Equation 6.13 are as follows 

1. The combustion of the mango seed was assumed to have occurred in excess 

oxygen 

2. The combustion chamber was approximated to cookstoves operating in a 

natural convection mode driven by the chimney effect of buoyant fluid forces. 

3. Wood conversion efficiency (𝜂1) of 90%  in excess oxygen, [173]. 
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4. The fraction of combustion energy from cookstoves into the cooking vessel (𝜂2)  

was 12.5% [174,175]. 

5. Steady feeding rate of the mango seeds into combustion stove  

COP is the ratio of useful cooling to the energy supplied and could be estimated as 

𝐶𝑂𝑃 =
𝑄𝑒𝑣𝑎

𝑄𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑
                                                          6. 14  

Where: 𝑄𝑒𝑣𝑎 is the evaporator useful cooling (J), 𝐶𝑂𝑃 is the coefficient of performance. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟(𝑆𝐶𝑃) =  
𝑄𝑒𝑣𝑎

𝑚𝑎𝑑𝑠𝜏𝑐𝑦𝑐𝑙𝑒

(𝑊 𝑘𝑔 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡⁄ )                              6. 15 

Where: 𝑚𝑎𝑑𝑠 is the mass of the adsorbent (kg), 𝜏𝑐𝑦𝑐𝑙𝑒 is the cycle time (s) 

6.2.8 Thermal conductivity and heating and cooling rate measurement of 

powdered adsorbents 

The thermal conductivity of powdered commercial and composite AC was measured 

using differential scanning calorimetry method [250] at a heating rate of 10 °C/min with 

a nitrogen flow rate of 100 mL/min. Benzophenone with the melting point of 48 °C was 

used as the sensor material. The process involved placing a sensor material in pellet 

form (5 mm diameter) into a 5 mm aluminium container (calorimeter), which was 

heated until the sensor material melted. A slope of the graph obtained from melting of 

the sensor material (Equation 6.16) was used to determine the thermal resistance 

between the aluminium container and the sensor material. 

𝑄̇

∆𝑇
=

1

𝑅
                                                                                                                        6. 16 

Where: 
𝑄̇

𝑑𝑇
 is the slope of the melting region of the graph, 𝑅 is thermal resistance 

between the aluminium container and the sensor material (KW-1). Subsequently, about 

0.05 g of each of the powdered commercial and composite ACs was spread uniformly 

into the aluminium container to a height of about 1 mm and the sensor material was 
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placed on top. The aluminium container and its contents were heated again until the 

sensor material melted. The slope of the graph obtained from melting of the sensor 

material was also calculated and the thermal resistance between the aluminum 

container and sensor material with the sample was calculated using Equation 6.17. 

𝑄̇

∆𝑇
=

1

𝑅′
                                                                                                                        6. 17 

where 𝑅′ is the thermal resistance (KW-1) between the aluminium container and sensor 

material with the sample. The results obtained from Equation 6.17 were used to 

determine the thermal conductivity of the AC by using Equation 6.18 

𝑘 =  
𝐿

𝐴(𝑅′ − 𝑅)
=  

𝐿

𝐴𝑅𝑠
                                                                                           6. 18 

Where L is the height of the sample (m), A is the contact area between the sample 

and the sensor material (m2), Rs is the resistance (KW-1) of the sample material 

(powdered AC), k is its thermal conductivity (Wm-1K-1). To determine the extent of 

clogging of the pores and refrigerant affinity in performance improvement of the 

composite adsorbent paired with low-grade ethanol through a heat transfer and mass 

transfer, heating rate, and cooling rate were calculated using Equation 6.19 and 6.20. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑇𝑒𝑣𝑎,𝑖𝑛𝑖𝑡𝑖𝑙𝑎𝑙 − 𝑇𝑒𝑣𝑎,𝑓𝑖𝑛𝑎𝑙

𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
                          6. 19 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑇𝑑𝑒𝑠,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑑𝑒𝑠,𝑓𝑖𝑛𝑎𝑙

𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
                           6. 20 

Where 𝑇𝑒𝑣𝑎,𝑖𝑛𝑖𝑡𝑖𝑙𝑎𝑙 is the initial evaporator temperature (°C), 𝑇𝑒𝑣𝑎,𝑓𝑖𝑛𝑎𝑙 is the initial 

evaporator temperature (°C), 𝑇𝑑𝑒𝑠,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial desorption temperature (°C), 

𝑇𝑑𝑒𝑠,𝑓𝑖𝑛𝑎𝑙 is the final desorption temperature (°C). 
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6.3 Results and discussion 

6.3.1 Effect of NaCl on thermal conductivity of the adsorbents 

Presence of NaCl in the pores of AC forming the AC + NaCl composites adsorbents 

had a significant effect (p<0.05) on the thermal conductivity of the AC + NaCl 

composite. The thermal conductivity increased with increase in the NaCl concentration 

(Table 6.2). For example, in Table 6.2 an increase of up to 2350% was achieved in 

AC composites with 25% NaCl compared to 500% with 10% NaCl. The thermal 

conductivity achieved with the mango seed husk AC was relatively higher than that for 

the untreated commercial AC (Table 6.2). This could be because the commercial AC 

was not treated. The granular form of the NaCl granule registered  5.12 Wm-1K-1 (Table 

6.2), which is not too far from the  7 Wm-1K-1 reported in the literature for granular NaCl 

[159].    

Table 6.2 Thermal conductivity of powdered adsorbents 

Adsorbent Thermal conductivity(Wm-1k-1) Improvements (%) 

NaCl 5.12  ±0.6   N.A 

Mango seed AC 2.34 × 10 -4  ± 1.12 × 10 -5 a N.A 

AC only 2.15 × 10 -4  ± 2.12 × 10 -5 a N.A 

AC +10 % NaCl 1.19 × 10 -3  ± 1.41 × 10 -5 b 500.0 

AC +15 % NaCl 1.42 × 10 -3  ± 2.12 × 10 -5 c 600.0 

AC +20 % NaCl 2.25 × 10 -3  ± 7.07 × 10 -5 d 1000.0 

AC + 25% NaCl 5.00 × 10 -3  ± 1.41 × 10 -4 e 2350.0 

AC + 30% NaCl 5.40 × 10 -3  ±  1.41 × 10 -4 f 2550.0 

AC + 35.7 % NaCl 5.95 × 10 -3  ±  7.07 × 10 -5 g 2900.0 

*Values with different superscripts are significantly different at P<0.05, Activated carbon = AC 

Despite the differences in the actual value of the NaCl thermal conductivity, the trends 

for the thermal conductivity of the composite AC  at different NaCl concentrations 

(Table 6.2) [65] were similar to what is reported in the literature [86–88] for other salts. 
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Notably, the NaCl filled up the pores in the composite AC (Figure 6.4), thus, decreasing 

the BET surface area, number of micropores and mesopores in comparison with 

commercial untreated AC (Table 6.3). During operation, as the NaCl concentration 

increases, the blockage of the pores increases, which initially limits the ethanol 

adsorption capacity of the composite adsorbents as temperature increases (Table 

6.4).  

Table 6.3 Adsorption characteristics of activated carbon before and after impregnation 

with NaCl 

Adsorbent BET 

surface 

area (m2g-1) 

Micro pore 

volume 

(m3g-1) 

Mesopore+ 

macropore 

(cm3g-1) 

Total pore 

volume 

(cm3g-1) 

AC only  1 237 0.4245 0.0104 0.4349 

Mango seed AC 415 0.14 0.0 0.14 

AC + 10% NaCl 1 129 0.3873 0.0058 0.3931 

AC + 15% NaCl 1 120 0.3676 0.023 0.3906 

AC + 20% NaCl 1 067 0.3653 0.0138 0.3791 

AC + 25% NaCl 1 069 0.3552 0.0093 0.3645 

AC + 30% NaCl 1 008 0.3078   0.0367 0.3445 

AC + 35.7% NaCl 793 0.2902   0.0407 0.3309 

Activated carbon = AC 

Similar results have been obtained when silica gel and calcium chloride were 

impregnated into the pores of AC [79]. The clogging of the pores might be overcome 

by the affinity between the NaCl and the water in the mixture, thus facilitating the 

transfer of the ethanol through the pores. The implications of the NaCl impregnation 

on heat transfer and the transfer of the refrigerant are further discussed in the 

subsequent Sections.  
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Figure 6.4 SEM of some selected adsorbent. Note: AC= Activated carbon 

6.3.2 Effect of NaCl impregnation on adsorption uptake, kinetics and heat of 

adsorption 

The adsorption uptake for the various adsorbents paired with both high-grade and low-

grade ethanol is shown in Figure 6.5. The adsorption uptake of the composite 

adsorbents decreased with increased NaCl concentration for both refrigerants as a 

result of the reduction in pore size as well as BET surface area (Fig 6.4, Table 6.3) 

when compared with commercial untreated AC. Mango seed husk AC, on the other 

hand, performed poorly in comparison with the composites adsorbents and 

commercial untreated AC due to less pore size and BET surface area. In addition, the 

adsorption uptake for all adsorbents tested paired with both low-grade and high-grade 

ethanol reduces with increase in temperature for both refrigerants.  

 

AC+10%NaCl before use AC+10%NaCl after use 

AC+20%NaCl before use AC+20%NaCl after use Mango seed husk AC 

Commercial AC 
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Table 6.4 Adsorption uptake at different temperatures for both high-grade and low-grade 

ethanol 

 

Adsorption uptake (kgkg-1) at different 

temperatures 

Adsorbent/refrigerant pairs 25°C 30 °C 35 °C 40 °C 45 °C 

AC/ethanol 0.7425 0.7332 0.6875 0.6689 0.6319 

AC+10%NaCl/ethanol 0.6425 0.6352 0.6275 0.6139 0.6019 

AC+15%NaCl/ethanol 0.6125 0.6032 0.5827 0.5689 0.5421 

AC+20%NaCl/ethanol 0.6012 0.5832 0.5612 0.5471 0.5289 

AC+25%NaCl/ethanol 0.5913 0.5762 0.5545 0.5349 0.5119 

AC+30%NaCl/ethanol 0.5385 0.5187 0.4918 0.4731 0.4419 

AC+35.7%NaCl/ethanol 0.5025 0.4912 0.4775 0.4639 0.4419 

Mango seed AC/ethanol 0.2325 0.2132 0.2045 0.1809 0.1559 

AC/impure ethanol 0.7225 0.7192 0.6975 0.6789 0.6569 

AC+20%NaCl/impure ethanol 0.6213 0.6061 0.5895 0.5699 0.5509 

AC+25%NaCl/impure ethanol 0.6075 0.5812 0.5625 0.5529 0.5209 

AC+30%NaCl/impure ethanol 0.5465 0.5192 0.5086 0.4979 0.4619 

Mango seed AC/impure ethanol 0.2375 0.2162 0.2045 0.1799 0.1579 

Note: The low-grade ethanol was tested at three points: 0, 20, 25, 30% NaCl Concentration 

 
This reduction is due to the increase in kinetic energy of the refrigerant molecules 

which weakens the van der Waals forces that attract the refrigerant to the adsorbent 

leading to the reduction in adsorption uptake [69,73]. Furthermore, comparison of the 

adsorption uptake for a particular adsorbent paired with both high-grade and low-grade 

ethanol reveals that the composite adsorbents performed slightly better when paired 

low-grade ethanol than when paired with high-grade ethanol. This is may be attributed 

to the presence of NaCl in the pores attracts the water component of the refrigerant 
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(chemisorption) which facilitates adsorption of more water component of the 

refrigerant until a critical temperature is reached [69,73]. This has led to an increase 

in adsorption rate and adsorption heat (Tables 6.5 & 6.7) of composite adsorbents 

paired with low-grade ethanol in comparison with high-grade ethanol and reduction in 

adsorption time. 

Table 6.5 Adsorption rate of the adsorbents paired with high-grade and low-grade 

ethanol 

Adsorbent/refrigerant pairs Adsorption rate (kgs-1) 

AC/ethanol 2.174 ×10-4 

AC+10% NaCl/ethanol 1.750×10-4 

AC+15% NaCl/ethanol 1.696×10-4 

AC+20% NaCl/ethanol 1.637×10-4 

AC+25% NaCl/ethanol 1.699×10-4 

AC+30% NaCl/ethanol 1.330×10-4 

AC+35.7% NaCl/ethanol 1.122×10-4 

Mango seed AC/ethanol 1.917×10-4 

AC/impure ethanol 1.840×10-4 

AC+20% NaCl/impure ethanol 2.967×10-4 

AC+25% NaCl/impure ethanol 2.500×10-4 

AC+30% NaCl/impure ethanol 3.144×10-4 

Mango seed AC/impure ethanol 1.920×10-4 

AC=Activated carbon 

Note: The low-grade ethanol was tested at three points: 0, 20, 25, 30% NaCl 

Concentrations 

 
The values in Table 6.4 were used to fit data for the adsorption capacity of the 

adsorbent paired with both high-grade and low-grade ethanol using Equations 6.1 to 
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6.7. The Dubinin-Astakhov (D-A) equation fitted parameters for the tested adsorbent 

paired with the refrigerants are shown in Table 6.6.  

Table 6.6 Adsorption isotherm parameters of the adsorbents paired with both high-grade 

and low-grade ethanol 

Adsorbent/refrigerant pairs 

E  

(kJkg-1) n 

Predicted 

Equilibrium 

uptake 

(kgkg-1) 

Wo 

Equilibrium 

uptake 

(kgkg-1) 

 W 

Uptake 

deviation 

% 

AC/ethanol 205 1.60 0.7866 0.7425 5.9 

AC+10% NaCl/ethanol 386 1.70 0.6548 0.6425 1.5 

AC+15% NaCl/ethanol 260 1.72 0.6341 0.6125 3.5 

AC+20% NaCl/ethanol 237 1.75 0.6185 0.6012 2.9 

AC+25% NaCl/ethanol 222 1.80 0.6121 0.5913 3.5 

AC+30% NaCl/ethanol 188 1.76 0.5651 0.5385 4.9 

AC+35.7% NaCl/ethanol 224 2.00 0.5164 0.5025 2.8 

Mango seed AC/ethanol 127 1.90 0.2644 0.2325 13.7 

AC/impure ethanol 304 1.65 0.7308 0.7225 1.1 

AC+20% NaCl/impure ethanol 316 1.60 0.6288 0.6213 1.2 

AC+25%NaCl/impure ethanol 316 1.60 0.6106 0.6075 0.5 

AC+30% NaCl/impure ethanol 266 1.65 0.5497 0.5465 0.6 

Mango seed AC/impure ethanol 118 1.70 0.2477 0.2375 4.3 

Note: The low-grade ethanol was tested at three points: 0, 20, 25, 30% NaCl 

Concentrations 

 
From the results, the commercial AC has the maximum predicted adsorption capacity, 

which reduce with the decrease in BET surface area as well as pore size. Furthermore, 

the values of n fall within the range of 1.6-2.0 expected for Dubinin-Astakhov (D-A) 
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model [84]. The Clausius-Clapeyron equation (Equation 6.14) was used to estimate 

the heat of adsorption for the adsorbents paired with both the high-grade and low-

grade ethanol. Using this equation (Equation 6.14), a graph of 𝜕 ln 𝑃 vs 𝜕 (
1

𝑇
) were 

generated (Fig 6.5). The values of pressure and temperature were obtained from direct 

measurement during the adsorption process described in Section 6.2.4. By multiplying 

the slope of these graphs with the gas constant of the respective refrigerant, values of 

heat of adsorption were obtained as shown in Table 6.7. The results in Table 6.7 show 

that when the BET surface area and pore size reduced, the heat of adsorption 

increases. However, the heat of adsorption is higher for adsorbents paired with low-

grade ethanol compared with high-grade ethanol. This could be due to a strong affinity 

for water in case of composite adsorbents paired with low-grade ethanol. Secondly, 

Uddin [84]suggested that reduction is pore size results in stronger interaction between 

the refrigerant and the adsorbent. Thus, adsorbents with narrower pore size produce 

higher heat of adsorption. In the case of adsorbents paired with high-grade ethanol, 

the values obtained are a bit less than those obtained in the literature (between 1026-

1104 [81,84]) obtained for commercial AC paired with high-grade ethanol.  Despite 

slightly higher literature values for the heat of adsorption of AC paired with high-grade 

ethanol than the results obtained in this study, it has been suggested that as the 

adsorption continues over time, the heat of adsorption approaches the latent heat 

vaporization of the refrigerant [84,251]. Thus, the closer the heat of adsorption values 

are to the latent heat vaporization value the better. 
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Figure 6.5 Plot of LnP vs I/T for adsorbents paired with (a) high-grade ethanol (b) low-

grade ethanol. Note: The low-grade ethanol was tested at three points: 0, 20, 25, 30% 

NaCl Concentration 
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Table 6.7 Heat of adsorption of the adsorbents paired with both high-grade and low-

grade ethanol 

Adsorbent/refrigerant pairs Heat of adsorption(kJkg-1) 

AC/ethanol 900 

AC+10% NaCl/ethanol 921 

AC+15% NaCl/ethanol 943 

AC+20% NaCl/ethanol 962 

AC+25% NaCl/ethanol 980 

AC+30% NaCl/ethanol 999 

AC+35.7% NaCl/ethanol 1017 

Mango seed AC/ethanol 886 

AC/impure ethanol 1420 

AC+20% NaCl/impure ethanol 1425 

AC+25% NaCl/impure ethanol 1428 

AC+30% NaCl/impure ethanol 1435 

Mango seed AC/impure ethanol 1415 

 

Note: The low-grade ethanol was tested at three points: 0, 20, 25, 30% NaCl 

Concentrations 

6.3.3 Effect of NaCl on activated carbon/ethanol pair cycle time in the adsorption 

cooling system 

Cycle time was measured as the sum of adsorption and desorption times. Comparison 

of the cycle times of untreated commercial AC and its composite paired with high-

grade ethanol reveals that the cycle time of the adsorption cooler reduced from about 

4000 seconds for untreated commercial AC to about 3200 seconds when AC + NaCl 

(35.7%) composite was used as adsorbents paired with high-grade ethanol as a 
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refrigerant (Fig 6.6). The reduction in the cycle time increased with increased NaCl 

concentration. Such an effect is a confirmation of increased heat transfer performance 

of the AC + NaCl composites adsorbents compared to pure AC (Fig 6.6). The results 

can be attributed to the possible reduction of intra-granular thermal resistance and 

pore size (Fig 6.4, Table 6.3) of the AC + NaCl composites formed which has led to 

the reduction in the adsorption uptake as NaCl increases (Table 6.4). Furthermore, 

the NaCl is sparingly soluble in ethanol [252] such that during the adsorption process, 

the NaCl inside the AC pores reacts with adsorbed ethanol vapour according to the 

gas-solid reaction (Equation 6.21): 

𝑁𝑎𝐶𝑙𝑠 + 𝑛𝐶2𝐻5𝑂𝐻𝑔 → 𝑁𝑎𝐶𝑙. 𝑛𝐶2𝐻5𝑂𝐻                                            6. 21 

Equation 6.21 suggests the formation of a layer containing NaCl-ethanol on the 

surface of the grain [253] with increased heat transfer properties. The reduction in the 

cycle time is in agreement with similar studies by Askalany et al [254] where metal 

filings with high thermal conductivity (iron, copper, aluminium) were added to AC to 

form composite adsorbents paired with hydro-fluorocarbon (HFC-R407C) as a 

refrigerant. Notably, the cycle time followed a similar trend to studies by Askalany et 

al [254], despite the different high heat transfer material used (NaCl) in this study. In 

the study, the cycle time for pure AC of 3000 seconds reduced to about 1600 seconds 

when the percentage of the metal filings increased to about 30% [254]. The results 

follow similar trend achieved in an optimized prototype ACS employing pure AC paired 

with pure ethanol [255], suggesting the potential of obtaining even greater reduced 

time if the current system is optimized.  
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Figure 6.6 (a) Cycle time and (b) energy supplied when adsorbents are paired with both 

high-grade and low-grade ethanol. Note: The low-grade ethanol was tested at three 

points: 0, 20, 25, 30% NaCl Concentration 
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Corresponding to the reduced cycle time, the amount of energy input during the 

desorption process reduced significantly in comparison with the pure AC (Fig 6.6b). 

About 27 MJ/cycle of thermal energy was utilized during the desorption process when 

untreated commercial AC was used as the adsorbent while about 80% of that amount 

was utilized when AC composite with 35.7 % (w/v) NaCl was used (Fig 6.6b). 

Therefore, such reduced energy use can be due to improved heat transfer ability of 

the adsorbents attributed to the reduced intra-granular thermal resistance coupled with 

the high thermal conductivity of the adsorbent. Secondly, the reduction in energy 

supplied may also be attributed to the increase in adsorption heat as NaCl increases 

which reduces the amount of refrigerant adsorbed (Table 6.4), and subsequently 

decreased the energy supplied desorb the refrigerant (Fig 6.6). 

 

Similar reasons could be used to explain the reduction in cycle time when untreated 

commercial AC and its composite were paired with low-grade ethanol.  In the case of 

mango seed husk AC, its cycle time and energy supplied is lower when compared with 

the commercial untreated AC. This may be due to its lower pore size, surface area, 

and adsorption uptake. 

6.3.4 The overall performance of adsorption cooling system using adsorbents 

paired with high-grade ethanol (99.7%) 

Evidently, the formation of AC+NaCl composite as adsorbent paired with high-grade 

ethanol refrigerant, despite improving the thermal conductivity of the AC, thus, 

increasing the heat transfer, impeded the mass transfer of the refrigerant. The results 

show that the SCP of the adsorption cooler decreased from 84.5 Wkg-1 for untreated 

commercial AC to 39.5 Wkg-1 when the AC formed a composite with NaCl (35.7 % 

w/v) (Fig 6.7b). Similarly, the COP of the ACS decreased with increasing concentration 
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of the NaCl in the composite (Figure 6.6a). The higher value of COP and SCP recorded 

for untreated commercial AC may be due to the higher adsorption uptake rate of the 

untreated commercial AC compared with the other adsorbents (Table 6.4 & 6.5). A 

similar trend was reported for untreated commercial AC where the COP of the 

adsorption system decreased from 0.67 to 0.41 with the use of the AC in a composite 

with CaCl2 [6] [6]. El-Sharkawy et al [81] also studied ACS with AC paired with ethanol 

and found out that the COP ranged between 0.7-0.8 [81]. Values of COP and SCP of 

other previous studies are shown in Table 6.1. The reduction in COP in this study is 

associated with the reduction in the number of available pores on the adsorption bed 

which lead to increase in adsorption heat (Table 6.7), consequently, reducing the 

amount of ethanol adsorbed. The presence of the NaCl most likely blocks the ethanol 

vapour from reaching the micropores of the AC or its leaching into the refrigerant 

negatively affects the amount of ethanol adsorbed. As a result, the ethanol vapour 

adsorbs onto the surface of the NaCl salt inside the micropore and condenses to form 

a layer containing NaCl and ethanol as expressed in Equation 6.21. Such a layer is 

may also contribute to reducing the transfer of ethanol to beneath the surface layer. 

The reduction in mass transfer implies the reduced amount of ethanol vapour 

absorbed, thus, decreasing the temperature drop in the evaporator and the COP (Fig 

6.7a and 6.7c). Gordeeva et al [253] found out that methanol adsorption by a LiCl-AC 

composite reduced as methanol solution began to form a layer close to the surface of 

the composite grains resulting in agglomerations [253]. Furthermore, the results from 

the experiments (Fig 6.6) showed that as the NaCl concentration increased, less 

ethanol was adsorbed. Thus, the results apply to areas where AC is easily accessible. 
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Figure 6.7 Comparison of performance of adsorption cooler using selected AC-sodium chloride (AC +NaCl) composite as adsorbent paired 

with high purity ethanol and low-grade ethanol as refrigerants (a) Coefficient of performance (b) Specific cooling power (c) Temperature 

drop. Note: The low-grade ethanol was tested at three points: 0, 20, 25, 30% NaCl Concentration 
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However, where AC is not accessible, but silica gel is readily available, using pure 

water as refrigerant paired with silica gel+ NaCl composite would eliminate the 

limitations of the AC +NaCl composites. In addition, Wang et al [241] observed the 

formation of the liquid layer on the surface of CaCl2-expanded graphite adsorbent, 

which reduced the mass transfer of ammonia to the layer beneath [121]. Therefore, 

improvements in heat transfer performance of the adsorbents of the cooler do not 

necessarily translate into an improved mass transfer of the refrigerant. An integrated 

approach that considers both the thermal and mass transfer properties of the 

adsorbent and refrigerant is necessary to achieve better overall performance for both 

heat transfer and mass transfer in the system. In addition to enhancing heat transfer 

properties, the advantage of using the AC adsorbent in a composite with chlorides is 

realized from its attraction to water as discussed in the subsequent Section. The 

performance of mango seed husk AC, on the other hand, is inferior to both the 

untreated commercial AC and the composites. The SCP and COP recorded for mango 

seed husk AC was 0.048 and 87.5 Wkg-1 respectively. This inferior performance may 

be due to the low pore size and surface area of the mango seed husk AC. 

6.3.5 Overall performance of adsorption cooling system using adsorbents 

paired with low-grade ethanol (60% ethanol and 40% water). 

The use of composite AC and low-grade ethanol was characterized by improvements 

in both heat and mass transfer and rise in heat of adsorption. Composite AC with 20%, 

25% and 30% NaCl concentration were the top three performing adsorbents with 

relatively high SCP when compared with AC with 35.7% NaCl paired with high-grade 

(99.7%) ethanol (Fig 6.7b). However, when these AC+NaCl composites were paired 

with low-grade ethanol (60% ethanol), which contained 40% water, the SCP was 

higher, 123 Wkg-1, 150 Wkg-1, and 113 Wkg-1, respectively (Figure 6.7b) than when 
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paired with high-grade ethanol, 74 Wkg-1, 76 Wkg-1 and 55 Wkg-1, respectively(Fig 

6.7b). Furthermore, the COP of the composite AC containing 20%, 25% and 30% NaCl 

paired with low-grade ethanol were 0.121, 0.160 and 0.146, respectively (Fig 6.7a), 

higher than when paired with high purity ethanol, thus 0.082, 0.080, and 0.076, 

respectively (Fig 6.7a).  

The improved performance of the ACS with carbon+NaCl composites/low ethanol 

grade pair is attributed to the ability of the NaCl to attract the water fraction from the 

low-grade ethanol in its pores [79,256] through diffusion, thereby increasing the mass 

transfer, thus enhanced adsorption of the refrigerant. Since latent heat of vaporization 

of water is about 60% higher than that of water, the more water attracted from the low-

grade ethanol the faster higher the mass transfer (see adsorption rate in Table 6.5) 

and the faster cooling effect is achieved. Consequently, higher temperature drops (Fig 

6.7c) were achieved in the adsorption cooler with ethanol/water mixture as a 

refrigerant than when the composite adsorbent was paired with high purity ethanol as 

the refrigerant (Fig 6.7c). Besides, the type of adsorption that occurs between the 

water molecules and the NaCl is chemisorption, which is enhanced when the 

adsorption heat is increased until a critical temperature is reached [69]. Thus, 

increasing NaCl concentration resulted in a corresponding increase in water 

adsorption due to the rise in the heat of adsorption and blockage of pores as NaCl 

concentration increases (Table 6.7). Furthermore, when the untreated AC is paired 

with low-grade ethanol COP value of 0.091 (Fig 6.7a) is obtained which is comparable 

to the COP of 0.099 obtained when untreated AC was paired with high purity ethanol 

(Fig 6.7a). Similar behaviour could be observed when mango seed husk AC was 

paired with both high-grade and low-grade ethanol, though mango seed husk AC 

recorded low COP values. This behaviour may be due to the dual adsorption of water 
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and ethanol from the water-ethanol mixture, which is a typical phenomenon in such 

mixture [71].  A study by Dreisbach et al [71] indicated that at reduced pressure (1 

kPa); water, although very little, is adsorbed by the AC, which condenses inside the 

micropores of the AC thus, blocking the adsorption of the ethanol. Such behaviour 

results in reduced SCP (75.5 Wkg-1) and temperature drop (4.7 °C) (Fig 6.7b&c) 

because of the longer time it takes to evaporate the refrigerant [71]. The COP values 

for the AC paired with pure ethanol is comparable to values of between 0.07 and 0.097 

obtained by Frazzica et al [255] in a prototype ACS that employed similar adsorbent- 

pure ethanol refrigerant pair. Thus, low-grade ethanol could be paired with untreated 

AC where high purity ethanol is not accessible to obtained comparable COP and about 

50% temperature drop. 

The results have shown that AC+NaCl composites paired with low-grade ethanol 

outperform the non-composite adsorbents paired with both high-grade and low-grade 

ethanol, most probably because of the dual role the NaCl play in enhancing the 

diffusion of the water through the pore and increase in thermal conductivity of the water 

though the adsorbent and the increased heat transfer. The dynamics of such a dual 

system in the adsorption system are subject to further research. Otherwise, the pairing 

of the activated + NaCl composite with low-grade ethanol as a refrigerant is a potential 

alternative adsorption-refrigerant pair that can be employed in ACSs for off-grid 

communities that produce own low-grade ethanol without the need for expensive 

upgrading. 
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6.3.6 Heat and Mass transfer dynamics in adsorption cooling using AC+NaCl 

composite adsorbents paired with low-grade ethanol (60% ethanol and 40% 

water). 

The results discussed earlier showed that the composite formation with NaCl resulted 

in performance improvement when paired with low-grade ethanol due to improvement 

in heat and mass transfer.  The result in Figure 6.8 shows that the performance 

improvement of the composite paired with low-grade ethanol is largely due to the heat 

transfer improvement brought about by clogging of some of the pores with the NaCl, 

which resulted in high heating rate in the adsorber. Cooling rate, on the other hand, 

occurred due to the affinity of the composite adsorbents and the low-grade ethanol, 

resulting in lowering of temperature in the storage chamber. Thus, the clogging of the 

pores by the NaCl contributes more to performance improvement than the affinity 

between the composite adsorbents and the low-grade ethanol (Fig 6.8). Therefore, the 

combination of the heating rate and cooling rate provides the net performance of the 

ACS. 

 

Figure 6.8 Cooling rate and heating rate of selected adsorbents paired with low-grade 

ethanol 
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6.4 Conclusion 

The improved heat and mass transfer when AC + NaCl composite enabled low-grade 

ethanol to be used as an alternative refrigerant that is tailor-made for off-grid 

conditions with limited access to high-grade refrigerants. Furthermore, the use of 

impure ethanol as refrigerant provides a viable means of promoting micro scale 

distilleries factor that can facilitate the adoption and ownership of the technology. It is 

also evident that waste biomass such as mango seeds can provide adequate energy 

to run an adsorption cooler with AC + NaCl composite adsorbents paired with ethanol, 

thus a resource efficient ACS is possible. 

 

Furthermore, the results experiments showed that as the NaCl concentration 

increased, less ethanol was adsorbed. Thus, the results apply to areas where AC is 

easily accessible. However, where AC is not accessible but silica gel is readily 

available, using pure water as refrigerant paired with silica gel+ NaCl composite would 

eliminate the limitations of the AC +NaCl composites. 

6.5 Recommendations for improvement of the adsorption cooling system using 

AC-NaCl composite adsorbents paired with low-grade ethanol  

The performance of the current systems and its practical use is subject to further 

improvements. The untreated AC/pure ethanol pair was used as the benchmark to 

assess the performance of composite adsorbents/refrigerant pairs, however, the 

system should be validated commercial chillers that use similar adsorbent/refrigerant 

pairs operating under the same conditions. In addition, the combustion chamber for 

the ACS should be enclosed to improve fuel conversion efficiency. Ultimately, 

configuring the ACS to use rejected heat from unit operations such as the drying 

process would make the system more efficient. The use of NaCl should be used with 
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caution considering that in high concentration may have adverse effects on the 

environment. Moreover, it has been observed that there was about 5-27% increase in 

weight of the AC after impregnation with NaCl.  About 1-5% decrease in weight of the 

composite AC after the experiments due to leaching. The leached NaCl (which 

remains in the adsorber as NaCl evaporation temperature is not reached during 

desorption) may cause corrosion stainless steel adsorber unit after multiple cycles. 

Although the risk of using ethanol is limited because the ACS is a closed system 

operating under vacuum, thus the pressure within the system is less than the 

atmospheric pressure, it is important to avoid any external leakage as this could affect 

system efficiency. 
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Chapter 7 An integrated strategy targeting drying and cooling unit operations to 

improve economic viability and reduce environmental impacts in a mango 

processing plant 

ABSTRACT 

An Integrated strategy of replacing boiler fuel and vapour compression cooling 

technology in dried mango chips processing plant powered on-grid and off-grid was 

investigated. Three scenarios for each power setting were studied, on-grid: coal as 

boiler fuel and conventional vapour compression chiller (CVCC) for cooling (Scenario 

1), mango seed as boiler fuel and CVCC for cooling (Scenario 2) and mango seed as  

boiler fuel and adsorption cooling system (ACS) for cooling (Scenario 3). Off-grid 

scenarios 4, 5 and 6 corresponded to on-grid scenarios 1, 2 and 3, respectively.  

Greenhouse gas (GHG) emissions and economic viability for each scenario were 

based on material and energy balances and South African economic conditions, 

respectively. On-grid scenario 3 showed the greatest potential for reducing emissions, 

emitting 7.10×105 kgCO2eq per annum and had the best internal rate of return (IRR) 

of 25.33% compared to scenarios 2 and 1 with 7.21×105 kgCO2eq and 7.89×105 

kgCO2eq emissions per annum and IRR of 20.33% and 17.48%, respectively. In off-

grid, scenario 6 emitted the least GHG of 6.90×105 kgCO2eq and had highest IRR of 

24.84% compared to scenarios 5 & 4 with 6.98×105 kgCO2eq and 7.67×105 kgCO2eq 

emissions per annum and IRR of 18.88% and 16.09%, respectively. However, 

scenarios 3 and 6 had the highest energy demand due to mango seed drying. 

Nevertheless, the integrated intervention shows a great potential of reducing 

environmental impacts and improving the economic viability of a dried mango chips 
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processing plant by using renewable biomass fuel and ACS that utilizes boiler waste 

heat.  Mango seed can be solar dried to reduce increased energy demand.  

7.1 Introduction 

Mango is one of the major tropical fruits produced worldwide [257] and a source of 

livelihood for many people [1]. The fruit provides nutrient such as Vitamins A and C, 

potassium and dietary fibre [258] and contributes towards reducing food and nutrition 

insecurity. Due to high perishability and seasonal availability, mango is processed into 

stable forms such as dried chips to extend shelf life and consumption period. Drying 

and cooling are the most energy-intensive unit operations in a dried mango chips 

processing plant. The energy may be derived from several sources such as fossil fuel 

and renewable sources.  Some of the energy sources may not be readily available in 

many mango growing communities in the required form and quantities, resulting in 

both economic and environmental implications. In addition, utilization of grid electrical 

energy as well as off-grid fossil fuel sources like diesel and petrol, contribute to carbon 

dioxide emissions [180]. The level of environmental impacts for different energy 

sources differs depending on the type and source of fuel [259]. For example, the 

amount of CO2 emitted from diesel and coal are 7.41×10-5 kgkJ-1 and 9.46×10-5 kgkJ-1 

of energy produced, respectively [259].  Renewable energy options such as solar and 

wind although with a relatively lesser damaging effect on the environment than fossil 

fuels, their availability might not be reliable [114]. Other renewable energy sources 

such as geothermal have high capital costs (between US$ 1,500 to US$ 3,000 per 

kW) [115] whereas, hydro energy is dependent on the availability of sources of water 

such as rivers [114].  Therefore, biomass energy derived from waste streams of dry 

mango processing can be considered in the energy mix for the processing plant. 

Therefore, it is imperative to assess the potential impacts the use of biomass energy 
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would have on the sustainability of the mango processing in terms of economic, 

environmental and social impacts when used a fuel boiler.  

Mango seed is a carbon-neutral energy source [260]. About 540×103 kg of seeds is 

generated as waste from processing 86.4×106 kg of mango fruits into dry chips. These 

mango seeds can be used to substitute or partially substitute coal or electricity to 

reduce the fossil fuel energy demand for the boiler and associated greenhouse gas 

emission. The mango seed  has energy content (21.74 MJkg-1) [117] that is 

comparable to coal (18.0-25.5 MJkg-1) [117]. Besides, the utilization of mango seed 

waste as a heat source can be an economical way of reducing the problem of waste 

disposal [12]. Energy demand during the mango processing can further be reduced 

through heat recovery, which can be used in other unit operations such as cold 

storage, within the process. The boiler generating power for the drying section of the 

mango processing loses about 10-30% energy from the flue gas exiting at up to 250 °C 

(it is not advisable the decrease the temperature of flue gas below 140 °C, as this will 

result in the formation of water droplets and the corrosion of the boiler ) in the form of 

waste heat  [261], which can be recovered to power the cold storage, as a strategy to 

reduce total energy demand and cost and its associated negative environmental 

impacts. Therefore, cooling and drying are two critical unit operations that can be 

integrated to reduce negative environmental impacts and improve the economic 

benefits associated with mango processing.  Considering that the conventional vapour 

compression chiller (CVCC) uses refrigerants, which contribute to the degradation of 

the environment [218], further reduction of negative environmental impacts is to use 

alternative cooling technology that does not rely on the fossil-based material to 

operate. Many studies have been done to find such alternative cooling technologies 

to replace the conventional cold storage technology [262]. One of such alternative 
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technology is the adsorption cooling system (ACS) that uses environmentally benign 

refrigerants [82] and can be powered by the waste heat generated from the boiler 

exhaust stream, thus making it a potential low-cost chiller. However, new 

environmental and social risks would emerge with such a transition. Therefore, this 

study investigates the economic and environmental benefits of replacing the CVCC 

with the low-cost adsorption cooling chiller (LCAC) as well as coal with mango seed 

as boiler fuel in the mango processing in both on-grid and off-grid power setting to 

ascertain their potential impacts on dry mango processing plant. In this study, on-grid 

power setting refers to the power situation where the electrical energy required to run 

the electrical equipment used in the processing of the mango is derived from the 

national grid while in the off-grid setting the electrical power required is provided by 

diesel electricity generator. 

7.2 Methodology 

7.2.1 Description of the dried mango chips production 

A brief description of the dried mango chips processing is as follows: Fresh matured 

mangoes are sorted out and washed in hot water at a 50°C temperature to destroy 

eggs and larvae of flies and to reduce bacteria load to help prolong the shelf life [258]. 

The treated mangoes are immediately cooled and stored at about 10-12°C to prolong 

its shelf life of the mango and to regulate the demand for the processed final product 

[258].  Depending on the demand for the dried mango chips, the mangoes are taken 

from storage and ripened at room temperature (25°C) to the level of ripening desired 

by the processor, washed to remove any dirt on the mango surface, peeled and cut 

into sizes rages 0.02-0.08 m [258], dried at 65°C using steam (at 2-3 kPa) generated 

from combustion of coal. The final product of moisture content of about 20% (wet 
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basis) is packaged for onward distribution and selling. The process flow sheet to 

produce the dried mango chips under different energy and cooling scenarios is shown 

in Figure 7.1. 

7.2.2 Scenarios description 

The approach to economic and environmental analyses comprised process modelling 

of the production of dried mango chips in both on-grid and off-grid communities. From 

these two power settings, three scenarios each were created and analyzed. A brief 

description of each scenario is shown in Table 7.1. Analysis of each scenario was 

done by following the steps in Figure 7.2. Available information from literature was 

used to synthesize the process flow sheet, followed by material and energy balance 

(performed in Microsoft Excel 2010) for each scenario. The data generated from the 

material and energy balance, as well as information from equipment manufacturers, 

were used to select and size the equipment. Equipment price quotations from 

equipment suppliers were used to estimate the fixed capital cost of the various 

processing scenarios.  

7.2.3 Material and energy balance 

In performing materials and energy balance calculations, the composition of mango 

(weight %), process conditions and mass and energy conversion efficiencies were 

adopted from literature as referenced in the subsequent sections and additional 

information is available as supplementary data (Tables C1, C2, and C3 in the 

Appendix). Where information was not available, data were collected from a 

commercial dried mango chips processor (Table C2). Only energy utilized directly in 

each process was considered and estimated.  
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Scenario 1 (grid) or scenario 4 (off-grid)                      Scenario 2 (grid) or scenario 5 (off-grid)                                    Scenario 
3 (grid) or scenario 6 (off-grid) 
Boiler fuel: Coal Boiler fuel: Mango seed Boiler fuel: Mango seed 
Chiller type: CVCC Chiller type: CVCC Chiller type: ACS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: CVCC is conventional vapour compression chiller; ACS is adsorption cooling system 

Figure 7.1 Process diagrams for dried mango chips processing for both on-grid and off-grid scenarios
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Table 7.1 Description of the scenarios for replacement of coal with mango seed as boiler 

fuel and integration of adsorption cooling system in a dried mango chips process 

Scenarios Power setting Boiler fuel Boiler waste heat 

utilization 

Chiller type 

1 On-grid Coal Rejected into environment CVCC 

2 On-grid Mango seed Rejected into environment CVCC 

3 On-grid Mango seed Recycled to the ACS  ACS 

4 Off-grid Coal Rejected into environment CVCC 

5 Off-grid Mango seed Rejected into environment CVCC 

6 Off-grid Mango seed Recycled to ACS ACS 

Note: ACS is adsorption cooling system; CVCC is conventional vapour compression chiller 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Procedure followed for the economic and environmental analysis of a process 

plant in which coal is replaced with mango seed as boiler fuel and cooling is provided 

with adsorption cooling system. Note: IPCC = Intergovernmental Panel on Climate 

Change. 
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Thus, kinetic and potential energy, which are already available in each unit operation 

and manual energy expenditure were not considered. The result from material and 

energy balance were used to perform the environmental and economic analyses of 

each scenario. 

 
7.2.3.1 Combustion to thermal energy estimation 

The conversion of mango seed or coal to thermal energy in boilers was based on 

Equation 7.1 

𝜂 =
𝑄𝑢𝑠𝑒𝑓𝑢𝑙

𝑄𝑓𝑢𝑒𝑙
 × 100                                                                           7. 1 

Where 𝑄𝑢𝑠𝑒𝑓𝑢𝑙 is the useful energy produced in the boiler  at 3 kPa and 90°C (2561 

kJkg-1), 𝑄𝑓𝑢𝑒𝑙 for coal was assumed to be 30.08 MJkg-1 [117] while that for mango 

seed was measured using bomb calorimetry to be 17.80 MJkg-1, 𝜂 is the combustion 

efficiency assumed to be 85% [263]. Since steam at 3 kPa is used to dry the mango 

chips, the total amount of coal or mango seed required to generate the steam was 

calculated using Equation 7.2 

𝑚𝑓𝑢𝑒𝑙 =  
𝑄𝑢𝑠𝑒𝑓𝑢𝑙

𝜂𝑡ℎ × 𝑄𝑓𝑢𝑒𝑙
                                                                               7. 2 

where 𝑚𝑓𝑢𝑒𝑙 is the mass of the coal or mango seed needed to generate the steam 

(kg). 

7.2.3.2 Electrical power conversion 

Energy requirements for electrical equipment were estimated using the power 

requirement of the equipment and the working hours. 

𝑄𝑒𝑙𝑒𝑐𝑡 = 3600 × 𝑃𝑒𝑙𝑒𝑐𝑡 × 𝑡                                                              7. 3 
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𝑃𝑒𝑙𝑒𝑐𝑡 is the electrical power requirement of the equipment (kW), 𝑡 is the working 

duration (hours), 3600 is the conversion factor from hours to seconds and 𝑄𝑒𝑙𝑒𝑐𝑡 is 

the electrical heat generated (kJ). 

7.2.3.3 Dryer energy balance 

The estimation of thermal energy used during drying of mango chips was based on 

Equations 7.4 to 7.7. 

𝑄𝑑𝑟𝑖𝑒𝑟 = 𝑄𝑠𝑜𝑙𝑖𝑑 + 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 + 𝑄𝑙𝑎𝑡𝑒𝑛𝑡                                           7. 4 

𝑄𝑠𝑜𝑙𝑖𝑑 = 𝑚𝑠𝑜𝑙𝑖𝑑 × 𝐶𝑝,𝑠𝑜𝑙𝑖𝑑(𝑇𝑓 − 𝑇𝑖)                                              7. 5 

𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 = 𝑚𝑤𝑎𝑡𝑒𝑟 × 𝐶𝑝,𝑤𝑎𝑡𝑒𝑟(100 − 𝑇𝑖)                                  7. 6 

𝑄𝑙𝑎𝑡𝑒𝑛𝑡 =  𝑚𝑤𝑎𝑡𝑒𝑟 × 𝜆100                                                               7. 7 

𝑄𝑑𝑟𝑦𝑒𝑟 is the total energy required for drying (kJ), 𝑄𝑠𝑜𝑙𝑖𝑑is the energy required to raise 

the temperature of mango chips from room temperature to the final product drying 

temperature (kJ), 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 is the energy required to raise temperature of water in the 

mango chips to 100°C (kJ), 𝑄𝑙𝑎𝑡𝑒𝑛𝑡 is the latent heat of vaporization of water, (kJ), 

𝑚𝑠𝑜𝑙𝑖𝑑 is the mass of final dried product (kg),  𝐶𝑝,𝑠𝑜𝑙𝑖𝑑 is the specific heat of dried product 

(2.18 kJkg-1°C -1) (Ikegwu and Ekwu 2009),  𝐶𝑝,𝑤𝑎𝑡𝑒𝑟 is the specific heat of water (4.18 

kJkg-1°C -1), 𝑚𝑤𝑎𝑡𝑒𝑟 is the mass of water evaporated product (kg), 𝑇𝑓 is the final product 

drying temperature (°C), 𝑇𝑖 is the initial drying temperature assumed to be 25°C, and 

𝜆100 is the enthalpy of vaporization of water at 100°C (2257 kJkg-1). Similar equations 

(Equations 7.4-7.7) can be used to estimate the energy required for sun drying. 

7.2.3.4 Cold storage refrigeration load 

The total refrigeration load was calculated as the sum of heat leakage through the 

wall, air change heat gain, products heat load, respiratory heat load by workers in the 

storage room, heat produced by fans, and heat produced by an electric bulb in the 

room. The following assumptions were made to estimate the total refrigeration load. 
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1. Average mass and density of mango are 0.20 kg and 1068 kgm-3 [264] 

respectively. 

2. Processing capacity was 30,000 kg of mangoes per day.  

3. The dimension of storage space was assumed to be 20 x 9.5 x 5.5 m with the 

external surface area of the storeroom of 772 m2.  

4. The storage room has Insulation (polystyrene) of thickness 0.25 m and thermal 

conductivity of 3.84 ×10-5 kWm-1K-1.  

5. The maximum ambient temperature and storage temperature was assumed to 

be 35°C and10°C, respectively.  

6. Assuming two men working in the storage room and respiratory heat per person 

is 3163 kJh-1 and heat from the light bulb is 1000 W [265], and heat transfer 

from the fan is 250 W [265] and assuming three fans working in the storage 

room. 

Heat leakage through the wall is  

𝐻𝑒𝑎𝑡 𝑙𝑒𝑎𝑘 (𝑘𝐽ℎ−1) = ) =
𝐴 × ∆𝑇 × 𝑘

∆𝑥
                                                                                         7. 8 

𝐴 is the storage room surface area (m2), ∆𝑇 is the temperature difference between the 

ambient and storage temperature (°C), ∆𝑥 is the wall thickness (m), 𝑘 is the wall 

thermal conductivity (kWm-1K-1). 

𝐴𝑖𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 ℎ𝑒𝑎𝑡 𝑔𝑎𝑖𝑛(𝑘𝐽ℎ−1)

=  
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝐴𝑖𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑣𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ℎ𝑒𝑎𝑡 𝑔𝑎𝑖𝑛

24 ℎ𝑜𝑢𝑟𝑠
      7. 9 

Volumetric heat gained as a result of air change at 35°C is 82.7 kJm-3 and air change 

factor is 2.7 [266]. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ℎ𝑒𝑎𝑡 𝑙𝑜𝑎𝑑 (𝑘𝐽ℎ−1) =  
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐶𝑝,𝑚𝑎𝑛𝑔𝑜  × ∆𝑇

24 ℎ𝑜𝑢𝑟𝑠
                       7. 10 
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𝐶𝑝,𝑚𝑎𝑛𝑔𝑜 is the specific heat of mango (3.74 kJkg-1°C -1), ∆𝑇 is the temperature 

difference between the ambient and storage temperature (°C) 

𝐻𝑢𝑚𝑎𝑛 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 ℎ𝑒𝑎𝑡(𝑘𝐽ℎ−1) = 𝑁𝑃 × 3163 𝑘𝐽ℎ−1                                              7. 11 

𝑁𝑃 is Number of persons working in the storage room, 3163 kJh-1 is the respiratory 

heat produced per person. 

𝐻𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑓𝑎𝑛(𝑘𝐽ℎ−1) = 𝑁𝑓𝑎𝑛 × 250 𝑊 × 3.6                                          7. 12 

Heat transfer from the fan is 250 W [265], 3.6 is the conversion factor to convert to per 

hour, 𝑁𝑓𝑎𝑛 is the number of fans used. 

𝐻𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑙𝑖𝑔ℎ𝑡 𝑏𝑢𝑙𝑏(𝑘𝐽ℎ−1) = 𝑁𝑏𝑢𝑙𝑏 × 1000 𝑊 × 3.6               7. 13 

Heat from the light bulb is 1000 W [265], 3.6 is the conversion factor to convert to per 

hour, 𝑁𝑏𝑢𝑙𝑏 is the number of electric bulbs used.      

Thus the total cold storage energy consumption could be estimated using 

Equation 7.14  

𝐶𝑜𝑙𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑡𝑖𝑜𝑛 =
𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡 𝑙𝑜𝑎𝑑

𝐶𝑂𝑃
                 7. 14 

Assuming the average COP (coefficient of performance) of the chiller is 3.5 [265].  

7.2.3.5 Fuel transportation 

The energy consumed to transport the boiler fuel to the mango processing plant was 

estimated by Equation 7.15. 

𝑄𝑡𝑟𝑎𝑛𝑠 = 𝜂 × 𝑚𝑓𝑢𝑒𝑙 × 𝑄𝑓𝑢𝑒𝑙                                                                        7. 15 

𝜂 is the truck engine efficiency, 𝑚𝑓𝑢𝑒𝑙 is the amount of diesel fuel used by the truck 

(kg), 𝑄𝑓𝑢𝑒𝑙 is the heating value of the diesel (MJkg-1), and 𝑄𝑡𝑟𝑎𝑛𝑠 is the energy 

consumed (MJ). 

7.2.3.6 Specific energy demand 
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The specific energy demand is the energy consumed to produce a unit mass of the 

final product. It is the ratio of the total energy required for the mango processing to the 

amount of the final product per annum. This was determined using Equation 7.16. 

𝑄𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 =  
𝑄𝑇𝑜𝑡𝑎𝑙

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡
                                                                                           7. 16 

𝑄𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 is the specific energy demand (kJ/kg), 𝑄𝑇𝑜𝑡𝑎𝑙 is the annual total energy 

consumed (kJ), 𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 is the amount of dried mango chips produced per annum. In 

this study, the total mass of the dried mango chips produced per annum is 6.51×105 kg. 

7.2.4 Economic impact assessment parameters 

Economic feasibility evaluation apprises the investors of the risks and benefits 

associated with financial investment. The economic evaluation of the scenarios was 

conducted based on the South African economic condition. The cost of equipment was 

obtained from equipment suppliers and technical reports (Tables C4 and C5 in the 

Appendix). Where necessary, some equipment costs were estimated based on cost 

data from different years using chemical engineering plant cost index (CEPCI) and the 

capacities adjusted using Equations 7.17 &7.18 [178].  

𝐶 = 𝐶𝑂 (
𝑀

𝑀𝑂
)

𝑛

                         7. 17 

𝐶 𝑎𝑛𝑑 𝐶𝑂 𝑎𝑟𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠 𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 𝑀 𝑎𝑛𝑑 𝑀𝑂; 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑖𝑛𝑑𝑒𝑥 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 (
𝐶𝐸𝑃𝐶𝐼  𝑎𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝐶𝐸𝑃𝐶𝐼 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑤𝑎𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑
)       7. 18 

The variable operating costs were calculated based on the raw material and flow rates 

of utilities resulted from material and energy balance calculations and their market 

prices (Tables S4 and S5 in the Appendix). The operating costs, the tax rate/ interest 

rate, insurance, and maintenance costs were based on the South African economic 

condition. Since profit is expected at the end of the project after initial investment has 
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been made, some economic indicators such as net present value (NPV) and internal 

rate of return (IRR) takes into account time value of money [178] were evaluated based 

the calculated capital costs and operating costs, on the basis of real values in the 

cumulative cash-flow calculation. NPV provides an indication of the returns on 

investment of a project over the project life in the present monetary value terms.  A 

positive NPV signifies the project value increases by that amount over the capital 

investment in present monetary value at the discount rate considered. An NPV of zero 

denotes the investment has made no losses or gains over the period and at the 

discount rate considered. A negative NPV indicates the project is not viable at the 

discount rate considered [177]. IRR is the discount rate at which the project break-

even with no losses or gains (the discount rate at which NPV equals zero). An IRR 

greater than the prevailing interest rate suggests positive NPV, and a viable project 

whereas an IRR less than the prevailing interest rate denote a negative NPV and 

unviable project. In addition, a sensitivity analysis of the economic performance of a 

representative scenario was carried out to study the robustness of the economic 

results in response to the fluctuation of some economic parameters. The applied 

parameters/method for the economic evaluation, are defined in Table 7.2.  

7.2.5 Environmental impact assessments 

Reduction in greenhouse gas (GHG) emissions is one of the goals of recent 

technological innovations due to the contribution of GHG emissions to climate change 

and global warming. Therefore, this study accessed the impact of intended 

interventions on carbon dioxide emissions from the dried mango processing plant.   
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Table 7.2 Economic impact assessment parameters for a mango process plant using 

mango seed as boiler fuel and adsorption cooling system  

Parameters Value Parameters Value 

Annual operating hours 2880  Start-up duration 1 year 

Loan interest (%) 8 Plant capacity (kg/day) 30000  

Loan term (years) 8 Income tax rate (%) 28 

Equity loan (%) 40:60 Inflation rate (%) 5.7 

Working capital  25% fixed capital Cost year for analysis 2018 

Depreciation period (years) 12  Minimum acceptable IRR 

(real term) (%) 

9.3 

Salvage value 0 Plant service life (years) 12  

Prices    

Currency conversion  US$1  14.51 Electricity price(US$/kWh) 1.47773 c 

Coal price(US$/kg) 0.080289 a Diesel price(US$/L) 1.4261 c 

Mango price(US$/kg) 0.758098 b  Water(US$/kg) 0.00148 d  

Dried mango chips (US$/kg) 9.50   

a Available: www.indexmundi.com [2018, January 15]; b Research Markets and Economic Centre. 2016. SA Fruit Trade Flow. 

[Online], Available: https://www.namc.co.za/wp-content/uploads/2018/03/South-African-Fruit-flow-report-Mar-2018-Issue29.pdf. 

c EIA. 2011. Annual Energy Outlook with projections to 2035.; d CoCT. 2017. Tariff structure from 1 July 2017. (July 2017). 

[Online], Available: https://resource.capetown.gov.za/cityassets/Files/Tariff_increases_from1July17.pdf. 

 

The amount of energy expended by various unit operations, the fuel type used to 

supply energy under various scenarios and their respective emission factors were 

considered in the estimation of carbon dioxide (CO2), methane (CH4), and nitrous 

oxide (N2O) emissions. Furthermore, the amount of CH4 and N2O emitted were 

converted to their equivalent CO2 by using their respective global warming potential 

(GWP) values. The GWP for CO2, CH4, and N2O are 1, 25, and 310, respectively [180]. 

To calculate the amount of GHG emitted, the following assumptions were made in the 

GHG emission estimation 

1. Intergovernmental Panel on Climate Change (IPCC) standards were used 

2. Distance from the coal source to the plant is 100 km (200 km round trip) 
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3. 25 ton-truck with a diesel consumption of 0.048 m3 per 100 km was used to 

transport the coal [267] 

4. The compost site is situated near the plant (distance from the plant to the 

compost site is assumed to be zero). 

5. All other activities within the plant other than the scenarios being considered to 

remain the same. 

7.2.5.1 Estimation of GHG emission from electrical equipment 

CO2, CH4, and N2O produced as a result of electrical energy produced using coal or 

diesel can be estimated using equations 7.19 to 7.21 [259].  

𝐶𝑂2 (𝑘𝑔𝑦𝑟−1) = 𝑃𝑒𝑙𝑒𝑐𝑡 × 𝑡 × 3600 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝐶𝑂2                7. 19 

𝐶𝐻4 (𝑘𝑔𝑦𝑟−1) = 𝑃𝑒𝑙𝑒𝑐𝑡 × 𝑡 × 3600 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝐶𝐻4             7. 20 

𝑁2𝑂 (𝑘𝑔𝑦𝑟−1) = 𝑃𝑒𝑙𝑒𝑐𝑡 × 𝑡 × 3600 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑁2𝑂            7. 21 

𝑃𝑒𝑙𝑒𝑐𝑡 is the electrical power requirement of the equipment (kW), 𝑡 is the working 

duration (hours) per annum, 3600 is the conversion factor from hours to seconds. The 

CO2 emission factor for diesel and coal are 7.41 × 10−5 kgkJ−1  and 9.46 × 10−5kgkJ−1 

[259] respectively. The CH4 emission factor for diesel and coal are 3.0 × 10−9kgkJ−1 

and 1.0 × 10−8kgkJ−1 [259] respectively. The N2O emission factor for diesel and coal 

are 6.0 × 10−10 kgkJ−1 and 1.5 × 10−9 kgkJ−1[259] respectively. 

7.2.5.2 Estimation of GHG emission from boiler fuel combustion 

The amount of CO2, CH4 and N2O produced by combustion of coal or biomass in the 

boiler can be estimated using Equations 7.22 to 7.24 [180]. 

𝐶𝑂2 (𝑘𝑔𝑦𝑟−1) = 𝑚𝑓𝑢𝑒𝑙 × 𝑄𝑓𝑢𝑒𝑙 × 𝜂𝑡ℎ × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑓𝑢𝑒𝑙 × 2880         7. 22 

𝐶𝐻4 (𝑘𝑔𝑦𝑟−1) = 𝑚𝑓𝑢𝑒𝑙 × 𝑄𝑓𝑢𝑒𝑙 × 𝜂𝑡ℎ × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑓𝑢𝑒𝑙 × 2880        7. 23 

𝑁2𝑂 (𝑘𝑔𝑦𝑟−1) = 𝑚𝑓𝑢𝑒𝑙 × 𝑄𝑓𝑢𝑒𝑙 × 𝜂𝑡ℎ × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑓𝑢𝑒𝑙 × 2880           7. 24 
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𝜂𝑡ℎ is the boiler combustion efficiency assumed to be 80% (Suntivarakorn and Treedet 

2016), 𝑚𝑓𝑢𝑒𝑙 is the amount of boiler fuel combusted (kg), 𝑄𝑓𝑢𝑒𝑙 is the heating value of 

the fuel (MJkg-1). CO2 emission factor for biomass combustion is 1.12 × 10−4 kgkJ−1, 

CO2 emission factor for coal combustion is 9.46 × 10−5 kgkJ−1 [259]. CH4 emission 

factor for biomass combustion is 3.0 × 10−8 kgkJ−1, CH4 emission factor for coal 

combustion is 1.0 × 10−8 kgkJ−1[259]; The N2O emission factor for biomass 

combustion and coal are 4.0 × 10−9 kgkJ−1 and 1.5 × 10−9 kgkJ−1 [259] respectively; 𝜂 

is the boiler combustion efficiency assumed to be 85% (Suntivarakorn and Treedet 

2016); 2880 is the total number of working hours the boiler operates. 

7.2.5.3 Estimation of GHG emission from mango seed composting  

During composting of the biomass, the amount of methane generated can be 

estimated using Equation 7.25. 

𝐶𝑂2 (𝑘𝑔𝑦𝑟−1) = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑜𝑠𝑡,𝐶𝑂2   × 𝑀𝑐𝑜𝑚𝑝𝑜𝑠𝑡  × 𝑇𝑆                  7. 25 

𝐶𝐻4 (𝑘𝑔𝑦𝑟−1) = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑜𝑠𝑡,𝐶𝐻4   × 𝑀𝑐𝑜𝑚𝑝𝑜𝑠𝑡                               7. 26 

𝑁2𝑂 (𝑘𝑔𝑦𝑟−1) = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑜𝑠𝑡,𝑁2𝑂   × 𝑀𝑐𝑜𝑚𝑝𝑜𝑠𝑡                               7. 27 

TS is the total solid assumed to be 30% [179], 𝑀𝑐𝑜𝑚𝑝𝑜𝑠𝑡 is the mass of the composted 

material on wet basis (541440 kg mango seed in case of scenarios 1 &4, and 189160 

kg mango seed in case of scenarios 2,3,5,& 6), 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑜𝑠𝑡,𝐶𝑂2 is the 

emission factor assumes to be 0.44 kg per dry matter [179]. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑜𝑠𝑡,𝐶𝐻4 and 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑜𝑠𝑡,𝑁2𝑂 assumed to be 0.004 kg 

per waste treated and 0.0003 kg per wet waste treated [179].  
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7.2.5.4 Estimation of GHG emission from coal transport  

Using equation 7.2, the total energy for drying is 5.33 TJ per year.  The total amount 

of coal required per annum for the generation of steam for drying is 209 Mg. Assuming 

25 ton truck is used to transport the coal, and the coal source is 100 km (200 km round 

trip) from the plant, then the truck would make about 8 trips.  Therefore, the total GHG 

are emitted determined by equation 7.28 to 7.30 [180]. 

𝐶𝐻4 (𝑘𝑔𝑦𝑟−1) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝐶𝐻4                                              7. 28 

𝑁2𝑂 (𝑘𝑔𝑦𝑟−1) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑁2𝑂                                              7. 29 

𝐶𝑂2 (𝑘𝑔𝑦𝑟−1) = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐹𝑢𝑒𝑙 × 𝑄𝑓𝑢𝑒𝑙 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝐶𝑂2                 7. 30 

𝑄𝑓𝑢𝑒𝑙 is 38463MJm-3, 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝐶𝑂2 is 7.0×10-5 kgCO2kJ-1; 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝐶𝐻4 

is 2.069×10-5 kgCH4 per kilometre, 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑁2𝑂 is 8.326×10-6 kgN2O per 

kilometre [180]. 

7.2.5.5 Conversion of CH4 and N2O produced into equivalent CO2  

To convert the CH4 and N2O produced into equivalent CO2, Equation 31 was used 

[180] 

𝐶𝑂2 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑓𝑜𝑟 𝐶𝐻4/𝑁2𝑂 (𝑘𝑔𝑦𝑟−1) = 𝐶𝐻4 /𝑁2𝑂(𝑘𝑔𝑦𝑟−1)  × 𝐺𝑊𝑃         7. 31 

The GWP for CH4 and N2O are 25 and 310, respectively [179,180] 

7.2.5.6 Estimation of specific CO2 emitted  

Specific CO2 emitted is the ratio of the total CO2 emitted to the amount of final product 

(dried chips) per annum. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑂2 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑖𝑒𝑑 𝑚𝑎𝑛𝑔𝑜 𝑠𝑙𝑖𝑐𝑒
                                            7. 32 

7.2.6 Sustainability analysis of dried mango chips processing 

In this study, some aspects of the three pillars defining sustainability, thus, the 

economic, environmental and social impacts, were assessed to provide an indication 
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of the sustainability of the proposed scenarios. The sustainability indicators for the 

analysis are given in Table 7.3.  

Table 7.3 Sustainability indicators for sustainability analysis of dried mango chips 

processing 

Sustainability Criteria Sustainability Indicator 

Economic Total capital Investment, internal rate of 

return  

Environmental Total Greenhouse gas emission 

Society Incidences of accidents, fire hazards  

 

The indicators were ranked from 1 to 6, with 1 being the best scenario for the indicator 

and 6 worst for the indicator.  This approach is similar to the sustainability index 

assessment method used by Evans et al. [268]. The ranking of the unquantifiable 

sustainability indicators such as the risk of fire and incidence of accidents were based 

on the main contributing factor of these indicators. For instance, since methane gas is 

produced during decomposition of the mango waste during composting or at landfills 

and the concentration of the methane gas depends on the quantity of the mango 

waste. Thus, the larger the quantity mango waste for composting, the higher the 

concentration of methane gas produced and higher the risk of fire (as a result of 

methane gas production as 5-15% [269]). Similarly, the higher the number of trips 

made to transport coal using trucks on national, regional and municipal roads the 

higher the accident risks.  
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7.3 Results and discussion 

7.3.1 The impact of integrating adsorption cooling system on process energy 

demand 

The integration of adsorption cooling technology powered by heat from the boiler 

exhaust as well as the use of mango seed as boiler fuel resulted in an increase in total 

energy demand and specific energy demand for both on-grid and off-grid scenarios 

(Fig. 7.3). The annual energy demand for the on-grid scenarios (scenarios 1, 2 & 3) 

was 6435 GJ, 6862 GJ, and 7424 GJ respectively, with the corresponding annual 

specific energy demand of 0.0099 GJkg-1, 0.0105 GJkg-1 and 0.0114 GJkg-1 (Fig 7.3 

a). Additional information is presented in Table C6 in the Appendix. Scenario 1 

recorded the least annual energy demand and specific energy demand when 

compared with scenario 2 and 3 due to the type of cooling technology and boiler fuel 

investigated. Considering that both scenario 1 & 2 used CVCC for cooling, the 

difference in the energy demand can be attributed to the replacement of the boiler fuel 

(coal) with mango seeds. The energy was spent in drying the mango seeds generated 

on site prior to combustion in the boiler, which was less than the energy required to 

transport coal to the plant. The energy for drying the mango seed was about 441 GJ 

per year while the energy expended on coal transportation was about 15 GJ per year 

(Fig. 7.3 a). This led to about 7% increase in total energy demand by scenario 2 over 

scenario 1. Furthermore, the energy demand for scenario 3 was higher than that for 

scenario 2. Both scenarios used mango seeds as the boiler fuel, thus, the difference 

in energy demand between the two scenarios (2 & 3) is due to the replacement of the 

cooling technology, which increased the cooling energy requirement. 
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Figure 7.3 Energy demand for dried mango chips processing (a) including energy for 

mango seed drying (b) excluding energy for mango seed drying  in an on-grid setting: 

scenario 1 (coal as boiler fuel and conventional vapour compression chiller(CVCC)), 

scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3(adsorption cooling 

system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal as 

boiler fuel and CVCC) scenario 5 (mango seed as boiler fuel and CVCC) and scenario 6 

(ACS and mango seed as boiler fuel) 
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4 respectively [26]. The energy consumption by CVCC was 708 GJ per year while 

energy demand by ACS was 145 GJ per year (Fig. 7.3a). Consequently, the energy 

demand by scenario 3 increased by about 8% over scenario 2. Therefore, a combined 

increase of 15% in energy consumption over scenario 1 was contributed by employing 

ACS and replacement of boiler fuel with mango seed (scenario 3). The energy demand 

can be reduced by sun drying the mango seeds. However, such mango seed 

processing would be possible in areas where solar energy is freely available. The 

sensitivity analysis showed that discounting the energy for mango seed drying, the 

energy demand for scenario 2 & 3 would reduce by 441 GJ, making  the energy 

demand for scenario 2 to be 15 GJ (0.23%) less than that for scenario 1 since the 

energy expended on coal transportation was 15 GJ. However, the energy demand for 

scenario 3 would be 564 GJ (about 9%) still more than that of scenario 2 (Figs. 7.3a 

& b) because of the high-energy demand by ACS. Similar trends were observed for 

the off-grid scenarios (scenarios 4, 5 & 6). The annual energy consumption for the off-

grid scenarios was 6435 GJ, 6861 GJ, and 7424 GJ respectively, with the 

corresponding annual specific energy demand of 0.0099 GJkg-1, 0.0105 GJkg-1 and 

0.0114 MJkg-1 (Fig. 7.3 a). Again, by sun-drying the mango seeds the energy demand 

for scenarios 5 & 6 would reduce by 441 GJ (Fig. 7.3b). Therefore, both the drying of 

the mango seed and the operation of the ACS cooling technology will require energy 

efficient power sources. Detailed amount of energy demand by each scenario can be 

found in the supplementary data in Tables C6 in the Appendix.  

7.3.2 The impact of integrating adsorption cooling system on carbon dioxide 

emission 

The integration of adsorption cooling technology into the dried mango chips 

processing and replacement of coal with mango seed as boiler fuel in both on-grid and 
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off-grid scenarios showed the potential to reduce GHG when compared with process 

scenarios that employ the conventional cooling technology. For the grid scenarios, the 

estimated annual GHG emission and specific GHG emission was highest for scenario 

1 followed by scenarios 2 & 3 thus,  7.89×105 kgCO2eq, 7.21×105 kgCO2eq and 

7.10×105 kgCO2eq, respectively and corresponding specific CO2 emission of 1.21 

kgCO2eq per kg, 1.11 kg CO2eq per kg and 1.09 kg CO2eq per kg, respectively (Fig. 

7.4). This can be attributed to both the utilization of mango seed as boiler fuel and 

replacement of the CVCC with ACS.  Evidently, the difference in emission between 

scenarios 1 & 2 is attributed to the replacement of coal with mango seed as boiler fuel 

because CVCC was used in both cases. The mango seed as the boiler fuel in scenario 

2 increased the GHG emission by about 20% in comparison with coal as boiler fuel in 

scenario 1. The boiler annual GHG emitted by scenarios 1 & 2 is 5.07×105 kgCO2eq, 

and 6.07×105 kgCO2eq respectively (Fig. 7.4).  The increase in mango seed GHG 

emission may be due to higher emission factors in mango seed than in coal. The CO2, 

CH4 and N2O emission factors for mango seed are 112000 kg/TJ, 30 kg/TJ, and 4 

kg/TJ respectively, while that for coal is 96400 kg/TJ, 1 kg/TJ and 0.6 kg/TJ  [270].  

The utilization of mango seed as boiler fuel, however, led to the reduction in the 

quantity of mango seeds sent to the compost and its associated GHG emission. The 

annual compost GHG emitted by scenario 1 & 2 was 1.76×105 kgCO2eq and 9.44×103 

kgCO2eq, respectively. Therefore, the annual compost GHG emitted by scenario 1 

was reduced by about 95% in scenarios 2 & 3 (Fig. 4).  
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Figure 7.4 Greenhouse gas emission from dried mango chips processing in an on-grid 

setting: scenario 1 (coal as boiler fuel and conventional vapour compression chiller 

(CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption 

cooling system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal 

as boiler fuel and CVCC), scenario 5 (mango seed as boiler fuel and CVCC) and scenario 6 

(ACS and mango seed as boiler fuel) 
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(in scenario 2) led to the overall annual reduction of about 9% GHG emitted by 

scenario 1. Similarly, about 1% marginal annual reduction in GHG by scenario 2 was 

estimated when CVCC was replaced with ACS in scenario 3 (more details are 

presented in supplementary data Tables C7 & C8 in the Appendix). 

 
Overall, a combined 10% reduction in annual GHG emission was estimated as a result 

of the replacement of both coal and CVCC in scenario 1 with mango seed and ACS in 

scenario 3.  Similar trends were observed for the off-grid scenarios (scenarios 4, 5 & 

6). However, the annual GHG were lower for off-grid scenarios than their on-grid 

counterparts. The estimated total annual CO2 emission was 7.67×105 kgCO2eq, 

6.98×105 kgCO2eq and 6.90×105 kgCO2eq for scenarios 4, 5 & 6 respectively with 

specific CO2 emissions of 1.19 kg CO2eq per kg, 1.07 kg CO2eq per kg and 1.06 

kgCO2eq per kg (Fig. 7.4). The lower emissions estimated for the off-grid scenarios 

may be due to the type of fuels used for the electricity generation in both on-grid and 

off-grid setting scenarios and their different respective emission factors [271]. 

Electricity generation in the on-grid-scenarios was by coal combustion while in off-grid 

scenarios was by diesel. The CO2, CH4 and N2O emission factors for diesel are 74100 

kg per TJ, 3 kg per TJ and 0.6 kg per TJ respectively, while that for coal is 96400 kg 

per TJ, 1 kg per TJ and 0.6 kg per TJ  [270].  

Similar to the on-grid scenarios, the replacement coal as boiler fuel (in scenario 4) with 

mango seed (in scenario 5) resulted in the overall annual reduction of about 9% GHG 

emitted by scenario 4. Besides, when scenarios 5 and 6 were compared, emissions 

by scenario 6 was about 1% lower than scenario 5 while GHG emission by scenario 6 

is about 10% lower than that of scenario 4 when both coal and CVCC in scenario 4 

were replaced with mango seed and ACS in scenario 6 (Fig. 7.4). Detailed amount of 

GHG emitted by each scenario can be found in the supplementary data. In conclusion, 
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the replacement of coal with mango seed as boiler fuel and CVCC with ACS is 

beneficial in reducing the negative environmental impact associated with dried mango 

chips processing. 

7.3.3 Economic impacts assessment 

The Total capital investment cost is the sum of working capital and fixed capital 

investment. The replacement of CVCC with ACS increased the total capital investment 

for the scenarios that involved ACS by about 5% in both on-grid and off-grid scenarios. 

The TCI estimated for the on-grid scenarios is US$ 847900 for scenario 1 & 2 and 

US$ 895000 for scenario while TCI for off-grid scenarios is US$ 883000 for scenarios 

4 & 5 and US$ 930000 for scenario 6 (Table 7.4). Additional information can be found 

in Table C9 in the Appendix.  These differences can be attributed to the differences in 

the cost of cooling technology employed. Consequently, the purchased equipment 

cost for scenarios that employed CVCC is lower than from scenarios that employed 

ACS. As a result, the specific capital investment for scenarios that employed CCVC is 

lower than that for scenarios that employed ACS for both on-grid and off-grid settings. 

Specific capital investment is the ratio of total capital investment to the amount of final 

product (dried mango chips) produced annually. The specific capital investment for 

on-grid scenarios is 1.30 US$ per kg scenarios 1 & 2 and 1.37 US$ per kg for scenario 

3.Similarly, the specific capital investment for off-grid scenarios is 1.36 US$ per kg for 

scenarios 4 & 5 and 1.43 US$ per kg for scenario 6 (Table 7.4).Using the estimated 

capital investment cost and operating cost, cumulative cash flow analysis was 

performed on the basis of real term monetary values.
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Table 7.4 Breakdown of total capital investment (TCI) for dried mango chips processing 

 Factor Scenarios 

  1 2 3 4 5 6 

Purchased equipment (k$) 25% FCI 169.6 169.6 179.0 176.6 176.6 186.0 

Equipment installation (k$) 10% FCI 67.8 67.8 71.6 70.6 70.6 74.4 

Installed piping (k$) 8% FCI 54.3 54.3 57.3 56.5 56.5 59.5 

Instrumentation/Control (k$) 8% FCI 54.3 54.3 57.3 56.5 56.5 59.5 

Electrical installed (k$) 5% FCI 33.9 33.9 35.8 35.3 35.3 37.2 

Utilities installed (k$) 15% FCI 101.7 101.7 107.4 106.0 106.0 111.6 

Building and construction (k$) 10% FCI 67.8 67.8 71.6 70.6 70.6 74.4 

Engineering and supervision (k$) 10% FCI 67.8 67.8 71.6 70.6 70.6 74.4 

Contractor's fee (k$) 3% FCI 20.3 20.3 21.5 21.2 21.2 22.3 

Contingency (k$) 6% FCI 40.7 40.7 43.0 42.4 42.4 44.6 
Total Fixed capital Investment(FCI) 
(k$)  678.3 678.3 716.0 706.0 706.0 744.0 

Working Capital (k$) 25% FCI 169.6 169.6 179.0 176.6 176.6 186.0 

Total Capital Investment (TCI) (k$)  847.9 847.9 895.0 883.0 883.0 930.0 

Specific capital investment ($/kg)  1.30 1.30 1.37 1.36 1.36 1.43 
Note: Scenario 1 (on-grid, coal as boiler fuel and conventional vapour compression chiller (CVCC)), scenario 2 (on-grid, mango seed as boiler fuel and CVCC) and scenario 3 

(on-grid, adsorption cooling system (ACS) and mango seed as boiler fuel) scenario 4 (off-grid, coal as boiler fuel and CVCC), scenario 5 (off-grid, mango seed as boiler fuel and 

CVCC) and scenario 6 (off-grid, ACS and mango seed as boiler fuel). 
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It was found that the on-grid scenarios are marginally more profitable than their off-

grid counterparts considering  a discount rate of 9.3% for projecting cashflows on a 

real basis, i.e. no inflation adjustments for future project years [272]. The IRR is 

17.48%, 20.33%, and 25.33% respectively for the on-grid scenarios, while 16.09%, 

18.88 and 23.84% is the IRR estimated for the off-grid scenarios (Fig. 7.5). This 

suggests that the on-grid scenarios would break even at slightly higher interest rates 

when compared with their off-grid counterparts. In addition, the net cash flow (NPV) 

are evidently higher for the on-grid scenarios than their off-grid counterparts due to the 

lower IRR values for the off-grid scenarios. The lower IRR values for the off-grid 

scenarios may be due to the extra cost incurred to acquire electricity generators. 

Subsequently, the NPV for the on-grid scenarios is higher than the off-grid scenarios 

counterparts (Fig. 7.5). Furthermore, for the on-grid scenarios, the IRR and NPV for 

scenario 2 are higher than the IRR and NPV for scenario 1. This may be due to the 

elimination of the cost of coal and coal transportation cost. Similarly, the IRR and NPV 

for scenario 3 are higher than the IRR and NPV for scenario 2. This may be due to the 

reduction in electricity cost to run the CVCC since ACS employed in scenario 3 was 

powered by waste exhaust from the boiler. Similar observations could be made for the 

off-grid scenarios. This is evident in the differences in their respective variable 

operating costs (Fig. 7.5). Furthermore, the discounted payback periods (9.3% 

discount rate) for the on-grid scenarios were found to be 9.5 years, 8.0 years and 5.9 

years respectively for scenarios 1, 2 & 3 (See supplementary data in Appendix Figs. 

C1 & C2 for more details).
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Figure 7.5 Results of economic analysis for dried mango chips production by scenarios in an on-grid setting: scenario 1 (coal as boiler fuel 

and conventional vapour compression chiller (CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption cooling 

system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal as boiler fuel and CVCC), scenario 5 (mango seed as 

boiler fuel and CVCC) and scenario 6 (ACS and mango seed as boiler fuel) 
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Similarly, the discounted payback periods (15% discount rate) for the off-grid 

scenarios were found to be 11.0 years, 8.8 years and 6 years respectively for 

scenarios 4, 5 & 6. (See supplementary data in Figs. C1 & C2 in the Appendix for 

details). The differences in the payback periods may be due to the reasons discussed 

above. 

Sensitivity analysis was performed on the economic models to ascertain their 

robustness by varying the selling price of the dried mango chips (Table 7.5). Based on 

the sensitivity analysis results, the economic performance of all the scenarios for on-

grid and off-grid settings are very sensitive to the changes in selling price of the dried 

mango chips. By reducing the selling price from 9.50 US$/kg to  9.0 US$/kg (about 

5.3% reduction) resulted in negative NPV or IRR suggesting that the scenarios are not 

economically viable at 9.0 US$/kg selling price while increasing the selling price from  

9.50 US$/kg to 10.0 US$/kg (about 5.3% increment) increased both NPV and IRR 

(Table 7.5). Thus, increasing the selling price would lead to higher net cash flow to the 

investor if the consumers are able to afford the high selling price. Therefore, the 

affordability of the product to the consumer must be taken into account when the 

selling price is being increased.  

7.3.4 Sustainability analysis of dried mango chips processing 

The sustainability of the dried mango chips processing is shown in Fig.7. 6. Scenario 

1 & 2 (on-grid scenarios) ranked the best in terms of TCI followed by scenario 4 & 5 

(off-grid scenarios), scenario 3 and then scenario 4.  In terms of the GHG emission, 

scenario 1 ranked the worst while scenario 6 ranked the best. This is in conformity 

with the values of GHG emitted by each scenario in Fig. 7.4. Furthermore, scenario 2, 

3, 5 & 6 ranked the best in terms of risk of fire and accident followed by both scenarios 

1 & 4. Overall, scenario 1 is less sustainable when compared with scenarios 2 & 3 for 
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the grid setting while scenario 4 is less sustainable compared with scenarios 4 & 5 for 

the off-grid setting. These are in conformity with the results of the environmental and 

economic impacts discussed in Section 7.3, suggesting that replacement of coal with 

a renewable source like mango seed waste, as well as using cooling technology that 

uses the waste heat from the boiler would improve the sustainability of the mango 

processing plant.  

Table 7.5 Effect of changing mango selling price on internal rate of return (IRR) and net 

present value (NPV) of dried mango chips processing 

Selling 

Price  

(US$) 

Economic  

Indices 

Scenarios 

1 2 3 4 5 6 

10.00 NPV (M$) 1.36 1.47 1.69 1.31 1.42 1.64 

 IRR (%) 47.63 50.06 53.00 45.34 47.69 50.65 

9.50 NPV (M$) 0.09 2.01 0.42 0.04 0.15 0.37 

 IRR (%) 17.48 20.33 25.33 16.09 18.88 23.84 

9.00 NPV (M$) -1.18 -1.07 -0.85 -1.23 -1.12 -0.90 

 IRR (%) -∞ -∞ -

23.72 

-∞ -∞ -27.04 

Note: Scenario 1 (on-grid, coal as boiler fuel and conventional vapour compression chiller (CVCC)), scenario 2 (on-

grid, mango seed as boiler fuel and CVCC) and scenario 3 (on-grid, adsorption cooling system (ACS) and mango 

seed as boiler fuel) scenario 4 (off-grid, coal as boiler fuel and CVCC), scenario 5 (off-grid, mango seed as boiler 

fuel and CVCC) and scenario 6 (off-grid, ACS and mango seed as boiler fuel). 
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Figure 7.6 Results of sustainability analysis of dried mango chips processing in an on-grid 

setting: scenario 1 (coal as boiler fuel and conventional vapour compression chiller 

(CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption 

cooling system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal 

as boiler fuel and CVCC), scenario 5 (mango seed as boiler fuel and CVCC) and scenario 6 

(ACS and mango seed as boiler fuel)  1 being the best scenario for that indicator and 6 

worst for the indicator 

7.4 Conclusion 

The integration of adsorption chiller along with replacement of coal with mango seed 

as boiler fuel in dried mango chips processing plant increased the energy demand for 

the intervention scenarios (scenarios that involved utilization of mango seed as boiler 

fuel and ACS). Such high energy consumption could be reduced by sun-drying of the 

mango seeds prior to utilization as boiler fuel. In addition, the utilization of mango seed 

as boiler fuel and ACS as the cooling technology could result in less GHG emission 

into the environment and improve the economic performance of the dried mango 

processing plant. Thus, replacement of boiler fuel and cooling technology that run on 

renewable resources has shown the potential to improve the sustainability of the 

mango dry chip processing. The current analysis is targeting a new mango dry chip 

processing facility, thus, transition factors are not applicable. Implementing the 
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consideration of transitional costs and environmental and social impacts associated 

with retrofitting, modification and decommissioning existing technology, the 

establishment of new or cancellation of contracts with resource suppliers and 

establishment of new environmental and safety standards.  

7.5 Limitations and transition considerations  

The mango seed waste has a low bulk density, 375 kgm-3 [273] and low heating value 

compared to coal,  bulk density 771 kgm-3 , [274]. Therefore, the current facilities for 

holding coal (which is the current practice) would have to be expanded almost two 

times in size to accommodate the handling of the mango seed to ensure enough 

supply for the same amount of thermal energy generation to power the boiler. Such a 

requirement would constitute additional costs and resource consumption.  In addition, 

space would be required for constructing drying facilities for the mango seed prior to 

combustion in the boiler. The cost and legal fees associated with the acquisition of 

such resources warrant consideration. Furthermore, to make the switch from CVCC to 

ACS, the change in the refrigerant used by CVCC to one to be used by the ACS, would 

need to cancel old and establish new supply chains with new risks and constraints, 

which may result in additional legal costs. Furthermore, the disposal, decommissioning 

or reconfiguration of the current CVCC according to legislated standards and 

procedures and the associated social and environmental impacts would increase the 

cost of transitioning into the new technology. 
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Chapter 8 General discussion, conclusion and recommendation 

8.1 General discussion 

The study has shown the potential to produce AC from mango seed husk using NaCl 

as the activation chemical. However, the production process needs some technical 

improvements to improve the quality and performance of the AC. The results (Chapter 

5) show that the AC had inferior properties compared with the commercial AC in terms 

of BET surface area and pore size and adsorption capacity for use in ACS as 

discussed in Chapters 5 and 6. The BET surface area and adsorption capacity of the 

mango seed husk AC produced in this study was 415 m2g-1 and 0.23 kgkg-1 which is 

lower than 1237 m2g-1 and 0.74 kgkg-1 for commercial AC paired with high-grade 

ethanol. The pyrolysis method used for the production of the AC from the mango seed 

husk might not be a suitable method. Pyrolysis equipment has high initial capital cost 

and it depends on the consumption of a huge amount of power that may not be 

available at the small-scale level considered in this study. Therefore, there is need to 

investigate more methods to improve the mango seed husk AC production process 

such as the use of NaOH or K2CO3  as the activation chemical and the microwave 

technology for the carbonization [132]. Such as investigations could be of economic 

and environmental benefit to the mango fruit producers, processors, and the 

environment.  

Due to the poor functional properties of the mango AC, the study focused on how the 

use low-grade ethanol as a refrigerant in ACS paired with commercial AC. Low-grade 

ethanol is a resource that can be made readily available to resource-poor communities 

because the pre-existence of the technical know-how to produce it [222]. In the study, 

the modification of the commercial activated carbon (AC) by impregnating with NaCl 
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salts (Chapter 6) improved the performance when paired with low-grade ethanol (60% 

ethanol; 40% water) than high-grade (99.7%) as refrigerants in ACS. However, the 

amount of the refrigerant adsorbed and desorbed by the composite AC + NaCl for 

each cycle was reduced, which could be a result of the salts leaching out from the 

adsorbent, which with time can affect the performance of the ACS [59,79]. Therefore, 

the regeneration of the adsorbent bed may be required. Furthermore, the increase in 

concentration of NaCl in the composite adsorbent increased the ‘compressor effect’ 

(increase in temperature and pressure) thereby increasing the heat and mass transfer 

of the refrigerant (both low-grade and high-grade ethanol) from the composite 

adsorbent. Consequently, the performance of the ACS was also affected. However, 

due to the high latent heat of evaporation of low-grade ethanol as a result of the water 

fraction present, the performance of the composite adsorbent paired with low-grade 

ethanol was slightly higher than the composite adsorbent paired with grade-ethanol. 

Moreover, increase in compressor effect (pressure and temperature) also increased 

the amount of heat of adsorption released since heat of adsorption is dependent on 

the pressure and temperature attained in the adsorber. 

The design for the ACS was made to suit off-grid users from the operation point of 

view. However, considerations should also be made on the selection of construction 

materials to ensure that the materials used, are compatible with the adsorbent and the 

refrigerant. In this study, the adsorbent vessel was made of stainless steel 304. 

Therefore, the use of AC impregnated with NaCl paired with oxygen-rich refrigerant 

(low-grade ethanol) could cause erosion of the vessel with time, consequently, 

affecting the performance of the ACS.  As part of the ACS design, selection of suitable 

material to suit the adsorbent bed and the refrigerant and at the same time withstand 

the high desorption temperatures should be integral to ensure long shelf life and safe 
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operations. Moreover, the designed adsorption cooling system (ACS) was heated with 

dry heat from open combustion of mango seeds, which is not the most efficient  (12.5% 

efficiency [174,175]) and safe process in case of leakage of the refrigerant (ethanol), 

which is highly flammable and volatile. Therefore, efficient processes for combusting 

the mango seed husks should be explored. Furthermore, such a method should be 

compatible with the operating refrigerant. The integration of the ACS to other 

processes that can use the mango seed as fuel, in the process releasing waste heat, 

as demonstrated in the dried mango chips processing (Chapter 7), could be a suitable 

model to use to avoid open combustion of the mango seed husks during the operation 

of the ACS. 

The use of low-grade ethanol as refrigeration is on the assumption that dehydrating 

the ethanol to upgrade its quality is an expensive exercise. However, cheaper ways of 

dehydrating (scrubbing) the ethanol such as the use of bio-based sorbents, can be 

explored to improve the quality of the refrigerant [70,275]. Low-grade ethanol is widely 

produced in many small-scale distilleries and its use in the ACS could facilitate the 

adsorption of this technology while exploring methods for improving the ethanol 

quality. However, in areas where silica gel is accessible, forming composite with silica 

gel + NaCl paired with pure water as refrigerant would eliminate the heat and mass 

transfer challenges associated with using AC+NaCl composites paired with ethanol. 

 

The study has shown that the mango seed husk as a waste can be used as a feedstock 

for energy production replacing expensive coal that is used in Mango processing 

plants. However, it should be recognized that the state of the mango seed husk can 

increase the energy demand for the plant because of the need to transport and dry 

them before use as demonstrated in the energy demand intervention scenarios 
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presented in Chapter 7. However, the energy demand arising from the pre-processing 

of the seed husks could be reduced through solar drying prior to combustion in the 

boiler. In this study, solar drying of the mango seed prior to combustion in the boiler 

has led to about 441 GJ reduction in annual energy demand [276]. Furthermore, the 

utilization of mango seed as boiler fuel and ACS as the cooling technology could 

reduce the waste generated during mango processing, reduce the degradation of the 

environment through GHG emission reduction and improve resource use efficiency. 

The utilization of mango seed as boiler fuel, however, led to the reduction in the 

quantity of mango seed sent to the compost and its associated GHG emission. For 

instance, the annual compost GHG emitted by scenario 1 (coal as boiler fuel and 

CVCC the cooling technology) was reduced by 95% from 1.76×105 kgCO2eq to  

9.44×103 kgCO2eq when mango seed was as boiler fuel and ACS as the cooling 

technology.  Therefore, integrating ACS and biomass waste in fruit processing could 

have an immense benefit to the environment as well as the processor. 

8.2 Overall Conclusion 

It is possible to improve the heat and mass transfer of activated carbon paired with 

low-grade ethanol. The improvement in heat and mass transfer when AC + NaCl was 

paired with low-grade ethanol suggests that low-grade ethanol can be used as an 

alternative refrigerant. Moreover, the utilization of low-grade ethanol, which is 

characteristics of the ethanol produced in many small-scale distilleries, can be used in 

ACS without the need for upgrading. This would increase the demand for this low-

grade ethanol and improve the economic benefits of this distilleries. Besides, the 

utilization of low-grade ethanol would reduce the operating cost of the ACS and 

promote small-scale distilleries which could influence the adoption of this technology. 
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Furthermore, mango seed which is a waste streams of mango processing could be 

used to produce the activated carbon needed for the adsorption cooling system as 

well as a source of renewable energy to power the cooling system. Thus, it is easy to 

adopt the adsorption cooling system in many fruit processing communities since low-

grade ethanol could be produced in many fruit processing communities and there is 

readily available biomass waste for energy and adsorbent production. Furthermore, 

integration of the adsorption cooling system in fruit processing could reduce the 

negative environmental impacts and improve economic viability in both grid and off-

grid power conditions. 

8.3 Recommendation 

The performance of the current systems and its practical use is subject to further 

improvements. The untreated AC/pure ethanol pair was used as the benchmark to 

assess the performance of composite adsorbents/refrigerant pairs. However, the 

system should be validated with other commercial chillers that use similar 

adsorbent/refrigerant pairs operating under the same conditions in areas where silica 

gel is accessible, forming a composite with silica gel + NaCl paired with pure water as 

refrigerant would eliminate the mass transfer challenges associated with using 

AC+NaCl composites paired with ethanol. 

 

The combustion chamber for the ACS should be enclosed to improve fuel conversion 

efficiency. Ultimately, configuring the ACS to use rejected heat from unit operations 

such as the drying process would make the system more efficient. The use of NaCl 

should be used with caution considering that in high concentration it may have adverse 

effects on the environment. Moreover, NaCl may cause corrosion to stainless steel 

adsorber unit. Although the risk of using ethanol is limited because the ACS is a closed 

Stellenbosch University https://scholar.sun.ac.za



188 
 

system operating under vacuum, thus the pressure within the system is less than the 

atmospheric pressure, it is imperative to ensure that there are no external leakages 

which will reduce the efficiency of the system. 

During adsorption of low-grade ethanol onto the composite adsorbent, some amount 

of leaching of NaCl from the composite adsorbent occurred during multiple adsorption 

cycles. The effect of this leaching on the overall system performance was not analyzed 

in this study. Therefore, it is recommended that a system-wide analysis is done to 

ascertain the impact of leaching on the on the overall performance of the system. 

 

At the current production capacity of mango processing facility used as a case study, 

it is possible to generate enough energy to power the entire plant using technologies 

such as CHP (combustion, heat, and power) or turbine technology to generate power. 

However, since the mango processing period is just four months it is not economically 

wise to invest in such technology for it to be lying idle for two-thirds of the year. 

Therefore, it highly recommended that further studies be done to ascertain the 

possibility of import mangoes from other mango producing countries during the 

off-season for processing and then generate energy from the waste generated to 

power the plant, and how these affect the profitability of the plant. Alternatively, during 

off-season, other fruits could also be processed, and the waste generated from this 

fruit together with the mango waste can be used to generate the renewable energy to 

power the plant. The mango processors processed other fruits and use renewable. 
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Appendix B: Heat load calculation 
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Figure B.1 Thermal resistance network 

The following equations were used to model the heat transfer into the refrigerator 

cabinet. 

𝑄̇ =
𝑇𝑎𝑚𝑏 − 𝑇𝑟𝑒𝑓

𝑅𝑡𝑜𝑡𝑎𝑙
                                                          𝐵. 1 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑖 + 𝑅𝑠 + 𝑅𝑠𝑠 + 𝑅𝑒𝑞𝑢𝑖𝑣                                 𝐵. 2 

𝑅𝑒𝑞𝑢𝑖𝑣 =
1

𝑅𝑜
+

1

𝑅𝑟𝑎𝑑
                                                         𝐵. 3   

𝑅𝑖 =
1

𝐴ℎ𝑖
                                                                         𝐵. 4  

𝑅𝑠 =
𝑋𝑠

𝐴𝑘𝑠
                                                                         𝐵. 5   

𝑅𝑠𝑠 =
𝑋𝑠𝑠

𝐴𝑘𝑠𝑠
                                                                      𝐵. 6 

𝑅𝑜 =
1

𝐴ℎ𝑜
                                                                       𝐵. 7 

Stainless steel 
Tref =  12𝑜𝐶 

  

Polystyrene 

Tamb = 30𝑜𝐶 
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𝑅𝑟𝑎𝑑 =
1

𝐴ℎ𝑟𝑎𝑑
                                                                𝐵. 8 

Where ks and k𝑠𝑠 are thermal conductivity of the Styrofoam and stainless steel 

respectively  (Wm−1K−1); X𝑠𝑠 is the thickness of the stainless steel wall (m); A is the 

heat transfer area (m2); 𝑅𝑡𝑜𝑡𝑎𝑙 is the total thermal resistance (KW−1); hi is the 

convective heat transfer coefficient between ambient air and the outer wall 

(Wm−2K−1); ho is the convective heat transfer coefficient between refrigerator air and 

the inner wall (Wm−2K−1). Since the wall storage chamber has four vertical walls and 

two horizontal walls and heat transfer is by natural convection, the following 

expression could be used to determine the heat transfer coefficient of air, ℎ𝑜, on the 

outside of the storage chamber.  

𝑅𝑎𝐿 =
𝑔𝛽(𝑇2 − 𝑇𝑎𝑚𝑏)𝐿3

𝜈2
𝑃𝑟                                                  𝐵. 9 

 

𝑁𝑢 = 0.59𝑅𝑎𝐿
1 4⁄          (𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑤𝑎𝑙𝑙)                              𝐵. 10 

 

𝑁𝑢 = 0.54 𝑅𝑎𝐿
1 4⁄                    (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑤𝑎𝑙𝑙)                  𝐵. 11 

ℎ𝑜 =
𝑘

𝐿
𝑁𝑢                                                                                      𝐵. 12 

𝑇𝑓 =
𝑇2 + 𝑇𝑎𝑚𝑏

2
                                                                        𝐵. 13 

𝛽 =
1

𝑇𝑓
                                                                                          𝐵. 14 

Where ν is the kinematic viscosity (m2s-1), 𝑃𝑟 is Prandtl number, 𝛽 is the volume 

expansion coefficient (K-1) and 𝑘 is the thermal conductivity (Wm-1K-1) which can all be 

obtained from property tables. L is the characteristic length (m), 𝑁𝑢 is Nusselt 

number, 𝑅𝑎𝐿 is Rayleigh number, 𝑇𝑓 is the absolute temperature (K).  
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The temperature of the outer surface of the storage chamber, 𝑇2 in Equation B.9 is not 

known but could be calculated by the trial-and-error method. However,𝑇2 would be 

very close to ambient temperature, 𝑇𝑎𝑚𝑏. Therefore, 𝑇2 was assumed to be 𝑇𝑎𝑚𝑏. A 

similar analysis could be made for the ℎ𝑖 calculation. Therefore, Equation B.2 above 

reduces to 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑠 + 𝑅𝑠𝑠 +
1

𝑅𝑟𝑎𝑑
                                                        𝐵. 15 

The value of ℎ𝑟𝑎𝑑 in Equation B.8 was calculated using Equation B.15 

ℎ𝑟𝑎𝑑 = 𝜀𝜎(𝑇2
2 + 𝑇𝑎𝑚𝑏

2)(𝑇2 + 𝑇𝑎𝑚𝑏)                                         𝐵. 16 

Emissivity 𝜀 of stainless steel (polished) was assumed to be 0.075, 

Stefan-Boltzmann’s constant 𝜎 is 5.670×10-8 JK-4m-2s-1. By substituting the values of 

thickness and thermal conductivity of both stainless steel and polystyrene foam into 

their respective equations, the overall heat transfer coefficient was calculated. The 

refrigerator cabinet has six heat transfer areas: the floor area, ceiling area, and 4 side 

wall areas. The heat through each heat transfer area was calculated using Equation 

B.1. 

Using the above information, heat transfer through the wall could be calculated 

as 

𝐴 = 4(0.3 × 0.4) + 2(0.4 × 0.4) = 0.8 𝑚2 

𝑅𝑠 =
0.05𝑚

(3.84 × 10−5 𝑊 𝑚𝐾⁄ ) × 0.8𝑚2
= 1.63 𝐾 𝑊⁄   

𝑅𝑠𝑠 =
0.002𝑚

(17 𝑊 𝑚𝐾⁄ ) × 0.8𝑚2
= 1.47 × 10−4 𝐾 𝑊⁄   

ℎ𝑟𝑎𝑑 = 0.075 × 5.670 × 10−8(3032 + 3032)(303 + 303) = 0.47 𝑊 𝑚2𝐾⁄  

𝑅𝑟𝑎𝑑 =
1

0.8 × 0.47 𝑊 𝑚2𝐾⁄
= 2.66 𝐾 𝑊⁄  
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𝑅𝑡𝑜𝑡𝑎𝑙 = 1.63 + 1.47 × 10−4 +
1

2.66
= 2 𝐾 𝑊⁄  

𝑄̇𝑤𝑎𝑙𝑙 =
30 − 12

2
= 9 𝑊 

Product heat load 

𝑇𝑓 =
𝑇𝑎𝑚𝑏 + 𝑇𝑒𝑣𝑎

2
=

30 + 12

2
= 21 ℃ 

𝛽 =
1

𝑇𝑓
=

1

294𝐾
= 3.40 × 10−3𝐾−1 

 

𝐺𝑟𝐿 =  
𝑔𝛽(𝑇𝑓𝑖𝑒𝑙𝑑 − 𝑇𝑟𝑒𝑓) 𝐿𝑐

3

𝜈2
                      

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑜𝑓 𝑎𝑖𝑟 𝑎𝑡 21 0𝐶  𝑎𝑟𝑒  

𝜌 = 1.20 𝑘𝑔 𝑚3⁄  

𝑘 = 0.02514 𝑊 𝑚𝐾⁄  

𝜈 = 1.516 ×  10−5 𝑚2 𝑠⁄  

𝑃𝑟 = 0.7309 

Assuming mango to spherical, the following condition must hold. 

𝑅𝑎𝐷 ≤  10 11   𝑎𝑛𝑑  𝑃𝑟 ≥ 0.7  

Thus Grashof number is evaluated  

𝐺𝑟𝐿 =  
𝑔𝛽(𝑇𝑓𝑖𝑒𝑙𝑑 − 𝑇𝑟𝑒𝑓) 𝐿𝑐

3

𝜈2
 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑐  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑛𝑔𝑜 

𝐺𝑟𝐿 =  
9.81(1 294⁄ )(30 − 12)(8.61 ×  10 −2)3

(1.516 ×  10−5 )2
 

𝐺𝑟𝐿 = 1 668 035. 287 

𝑅𝑎𝐷 = 𝐺𝑟𝐿 𝑃𝑟 =  1 668 035. 287 ×  0.7309 ≈ 1.22 × 10 6  ≤  10 11 

𝑁𝑢 = 2 + 
0.589 𝑅𝑎𝐷

1/4

[1 + (0.469 𝑃𝑟⁄ )9/16]4/9
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𝑁𝑢 = 2 +  
0.589 (1.22 × 10 6)1/4

[1 +  (0.469 0.7309⁄ )9/16]4/9
 

𝑁𝑢 = 17.1531 

𝑁𝑢 =
ℎ 𝐿𝑐

𝑘
 

ℎ =  
𝑁𝑢 × 𝑘

𝐿𝑐
=

17.1531 ×  0.02514

8.61 ×  10 −2
  

ℎ ≈ 5 𝑊 𝑚2𝐾⁄  

𝑄̇𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  5 𝑊 𝑚2𝐾⁄  × 1.64 ×  10−2 𝑚2  × (30 − 12)𝐾   

𝑄̇𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 1.476 𝑊 

Therefore for 111 mangoes, 

𝑄̇ =  1.476 𝑊 𝑚𝑎𝑛𝑔𝑜⁄  × 111 𝑚𝑎𝑛𝑔𝑜𝑒𝑠 

𝑄̇𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 163.836 𝑊 

𝐓𝐨𝐭𝐚𝐥 𝐫𝐞𝐬𝐩𝐢𝐫𝐚𝐭𝐢𝐨𝐧 𝐡𝐞𝐚𝐭 = 133.4 × 10−3  W kg⁄ × 38 kg = 5.0692 W  

Table B1: Summary of refrigerator heat load 

Component Values 

Heat transfer through walls 9 W 

Product field heat load 163.836 W 

Respiratory heat load  5.0692 W 

Total 177.9052 W 

 

𝑨𝒅𝒅𝒊𝒏𝒈 𝟏𝟎% 𝒇𝒐𝒓 𝒔𝒂𝒇𝒆𝒕𝒚, 𝒕𝒐𝒕𝒂𝒍 𝒉𝒆𝒂𝒕 𝒍𝒐𝒂𝒅 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝟏𝟗𝟓. 𝟔𝟗𝟓𝟕 𝑾  

Evaporator design calculation 

𝑄̇𝑡𝑜𝑡𝑎𝑙 = ℎ𝐴(𝑇𝑎𝑚𝑏 − 𝑇𝑒𝑣𝑎) 

𝑇𝑓 =
𝑇𝑎𝑚𝑏 + 𝑇𝑒𝑣𝑎

2
=

30 + 12

2
= 21 ℃ 
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𝛽 =
1

𝑇𝑓
=

1

294𝐾
= 3.40 × 10−3𝐾−1 

𝑅𝑎𝐿 =
𝑔𝛽(𝑇𝑎𝑚𝑏 − 𝑇𝑒𝑣𝑎)𝐿𝑐

3

𝑣2
𝑃𝑟 =

9.81 × 3.40 × 10−3(30 − 12)0.33

(1.516 × 10−5)2
× 0.7309

= 51.572 × 106 

𝑁𝑢 = 0.59 × 𝑅𝑎𝐿
1 4⁄  = 0.59 × (51.572 × 106)1 4⁄ = 50 

𝑁𝑢 =
ℎ𝐿𝑐

𝑘
 

ℎ =
𝑘 × 𝑁𝑢

𝐿𝑐
=

0.02514 × 50

0.3
= 4.189 𝑊 𝑚2𝐾⁄   

665.6428 

𝐴 =
𝑄̇𝑡𝑜𝑡𝑎𝑙

ℎ(𝑇𝑎𝑚𝑏 − 𝑇𝑒𝑣𝑎)
=

195.6957 𝑊

4.189 𝑊 𝑚2𝐾⁄ (30 − 12)
= 2.6 𝑚2 

 

Condenser design calculation 

Heat rejected by the condenser  

𝑄𝑐𝑜𝑛
̇ =  𝑚𝑟𝑒𝑓̇  ℎ𝑓𝑔 + 𝑚𝑟𝑒𝑓̇ 𝐶𝑝,𝑟𝑒𝑓 (𝑇𝑠𝑎𝑡 − 𝑇𝑐𝑜𝑛)         (14) 

𝑄𝑐𝑜𝑛
̇ =  (2.174 ×  10−4  𝑘𝑔 𝑠⁄ )[(840 ×  103 𝐽 𝑘𝑔⁄ ) +  (3.03 ×  103 𝐽 𝑘𝑔⁄ 𝐾)(80 − 35)𝐾]  

𝑄𝑐𝑜𝑛
̇ ≈ 212.3 𝑊 

∆𝑇𝑙𝑚 =
(𝑇1 − 𝑡2) − (𝑇2 − 𝑡1)

ln (
𝑇1 − 𝑡2
𝑇2 − 𝑡1

)
 

∆𝑇𝑙𝑚 =
(80 − 35) − (35 − 30)

ln
80 − 35
35 − 30

= 18.2 ℃ 

ℎ𝑖 = 0.555 [𝑔𝜌𝑙 

(𝜌𝑙 − 𝜌𝑣) 𝑘𝑙
3 ℎ𝑓𝑔

𝜇𝑙 × (𝑇𝑠𝑎𝑡 − 𝑇𝑠) × 𝑑
]

1/4

  

Ts is the pipe wall temperature taken to be equal to the final condenser air temperature 
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ℎ𝑖 = 0.555 [
9.81 × 797.25 (797.25 − 1.430) × (0.179)3  × (840 × 10 3)

1.1980 × (6.25 ×  10−3)(80 − 35)
]

1/4

 

ℎ𝑖 = 546.1876 𝑊 𝑚2𝐾⁄  

ℎ𝑖 = 0.77ℎ𝑜 

ℎ𝑜 =
ℎ𝑖

0.77
=

546.1876 𝑊 𝑚2𝐾⁄

0.77
= 709.3345 𝑊 𝑚2𝐾⁄  

The overall heat transfer coefficient could also be calculated using Equation 4.16 

1

𝑈𝑂
=

1

ℎ𝑜
+

1

ℎ𝑜𝑑
+

𝑑𝑜 ln(𝑑𝑜 𝑑𝑖⁄ )

2𝑘𝑤
+

𝑑𝑜

𝑑𝑖
×

1

ℎ𝑖𝑑
+

𝑑𝑜

𝑑𝑖
×

1

ℎ𝑖
          

1

𝑈𝑜
=

1

709.3345
+

1

5000
+

9.375 × 10−3 ln(9.375 × 10−3 6.25 × 10−3⁄ )

2 × 378

+ (
9.375 × 10−3

6.25 × 10−3 × 5000
) + (

9.375 × 10−3

6.25 × 10−3 × 546.1876
) 

𝑈𝑜 = 214.54 𝑊 𝑚2𝐾⁄  

𝑄̇𝑐𝑜𝑛 = 𝑈𝑜𝐴∆𝑇𝑙𝑚 

𝐴 =
212.3 𝑊

(214.54 𝑊 𝑚2𝐾⁄ ) × 18.2 ℃
= 0.054 𝑚2 

𝐴 = 2𝜋𝑟𝐿 

𝐿 =  
0.054

2𝜋 × (6.25 × 10 −3)
 ≈ 1.38 𝑚 

Therefore the condenser pipe should be about 1.38 m long. 
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Appendix C 
 
Table C1 Values of mango composition used in material and energy balance of the dried mango processing 

Component Value Source 

Mango seed 15% of peeled mango weight [12] 

Mango seed moisture content 45% of mango seed weight [12] 

Mango peel 9.94% of mango weight [277] 

Mango peel moisture 72.5% of mango peel weight [278] 

Ripe mango pulp moisture 80.85% of mango weight [279] 
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Table C2 Values of parameters used in material and energy balance during dried mango processing 

Parameter Values Source 

Dried mango moisture 20.5% (I. Fourie, Personal communication, October 12, 2017) 

Steam properties 3 kPa, 900C (I. Fourie, Personal communication, October 12, 2017) 

Boiler efficiency 80% [263] 

Conventional chiller Coefficient of performance 3.0 [26] 

Adsorption chiller Coefficient of performance 0.6 [101] 

Drying temperature 650C (I. Fourie, Personal communication, October 12, 2017) 

Hot water (500C) volume 20000 liters/30000 kg of mango (I. Fourie, Personal communication, October 12, 2017) 

Cold water volume 1600 liters/20000 kg of mango (I. Fourie, Personal communication, October 12, 2017) 

Storage temperature 10-140C (I. Fourie, Personal communication, October 12, 2017) 

Storage duration 4 weeks (I. Fourie, Personal communication, October 12, 2017) 
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Table C3 Estimation of capital expenditure for dried mango chips processing in an on-grid setting: scenario 1 (coal as boiler fuel and 

conventional vapour compression chiller (CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption 

cooling system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal as boiler fuel and CVCC), scenario 5 

(mango seed as boiler fuel and CVCC) and scenario 6 (ACS and mango seed as boiler fuel). 

 

 Scenarios 

 1 2 3 4 5 6 

Fixed capital ($) 678314 678314 715939 706394 706394 744019 

Working capital ($) 169578 169578 178985 176598 176598 186005 

Total capital($) 847892 847892 894924 882996 882992 930024 

Product (kg) 650880 650880 650880 650880 650880 650880 

Specific capital Investment ($/kg) 1.30 1.30 1.37 1.36 1.36 1.43 
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Table C4 Breakdown of operating cost for dried mango chips processing in an on-grid setting: scenario 1 (coal as boiler fuel and 

conventional vapour compression chiller (CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption 

cooling system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal as boiler fuel and CVCC), scenario 5 

(mango seed as boiler fuel and CVCC) and scenario 6 (ACS and mango seed as boiler fuel). 

 

Scenarios 

1 2 3 4 5 6 

Utilities ($) 313234 313234 268973 313234 313234 268973 

Raw materials ($) 2745917 2729152 2729152 2745917 2729152 2729152 

Labour ($) 451907 451907 451907 451907 451907 451907 

Maintenance ($) 47482 47482 50116 49448 49448 52081 

Insurance and Tax ($) 6783 6783 7159 7064 7064 7440 

General overhead ($) 13566 13566 14319 14128 14128 14880 

Packaging ($) 1789444 1781062 1760813 1790848 1782466 1762217 

Sales expenses ($) 298241 296844 293469 298475 297078 293703 

Research and development ($) 298241 296844 293469 298475 297078 293703 

Total ($) 5964814 5936874 5869376 5969494 5941554 5874056 

Product (kg) 650880 650880 650880 650880 650880 650880 

Specific operating cost ($/kg) 9.16 9.12 9.02 9.17 9.13 9.02 
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Table C5 Amount of boiler fuel combusted and mango seed composted per annum 

Scenarios Amount of boiler fuel Amount  of mango seed send to compost 

1  209 Mg of coal 541Mg  

2 352 Mg dried mango dried (512 fresh seed) 29 Mg 

3 352 Mg dried mango seed (512 fresh seed) 29 Mg 

4 209 Mg of coal 541Mg  

5 352 Mg dried mango seed (512 fresh seed) 29 Mg 

6 352 Mg dried mango seed (512 fresh seed) 29 Mg 
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Table C6: Energy demand for dried mango chips processing in an on-grid setting: scenario 1 (coal as boiler fuel and conventional 

vapour compression chiller (CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption cooling system 

(ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal as boiler fuel and CVCC), scenario 5 (mango seed as 

boiler fuel and CVCC) and scenario 6 (ACS and mango seed as boiler fuel). 

Unit operations   Scenarios    

 1 2 3 4 5 6 

Mango drying (GJ) 
70 70 70 70 70 70 

Mango slicing(GJ) 
19 19 19 19 19 19 

Mango Peeling (GJ) 
39 39 39 39 39 39 

Sorting and Grading (GJ) 
467 467 467 467 467 467 

Cooling (GJ) 
145 145 708 145 145 708 

Cold water washing (GJ) 
280 280 280 280 280 280 

Hot water treatment(GJ) 
70 70 70 70 70 70 

Boiler (GJ) 
5330 5330 5330 5330 5330 5330 

Sun drying (GJ) 
0 441 441 0 441 441 

Coal transportation (GJ) 
15 0 0 15 0 0 

Total (GJ) 
6435 6861 7424 6435 6861 7424 

Product (kg) 
650880 650880 650880 650880 650880 650880 

Specific Energy Intensity (GJ/kg) 
0.0099 0.0105 0.0114 0.0099 0.0105 0.0114 
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Table C7 Greenhouse gas (GHG) emission dried mango chips processing dried in an on-grid setting: scenario 1 (coal as boiler fuel 

and conventional vapour compression chiller (CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 

(adsorption cooling system (ACS) and mango seed as boiler fuel) 

  

On-grid scenarios 

1 2 3 

CO2 

(kg) 

CH4 

(kg 

CO2e) 

N2O 

(kgCO2e) 

Total 

(kgCO2e) 

CO2 

(kg) 

CH4 

(kg 

CO2e) 

N2O 

(kgCO2e) 

Total 

(kg CO2e 

) 

CO2 

(kg) 

CH4 

(kg 

CO2e) 

N2O 

(kgCO2e) 

Total 

(kg CO2e 

) 

Mango dryer 6620 2 33 6655 6620 2 33 6655 6620 2 33 6655 

Mango slicing 1839 0 9 1849 1839 0 9 1849 1839 0 9 1849 

Mango Peeling 3678 1 18 3697 3678 1 18 3697 3678 1 18 3697 

Sorting and 

Grading  44137 12 217 44365 44137 12 217 44365 44137 12 217 44365 

Cooling 13731 4 67 13803 13731 4 67 13803 3531 1 17 3549 

Cold water 

washing 26482 7 130 26619 26482 7 130 26619 26482 7 130 26619 

Hot water 

treatment 6620 2 33 6655 6620 2 33 6655 6620 2 33 6655 

Boiler 504251 133 2479 506863 59700 3998 6610 607607 597000 3998 6610 607607 

Compost 71470 54144 50354 175968 3832 2903 2700 9436 3832 2903 2700 9436 

Coal 

transportation 3174 1 6 3174 0 0 0 0 0 0 0 0 

Total 682004 54306 53346 789655 703940 2928 9817 720685 693739 6926 9766 710431 
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Table C8: Greenhouse gas (GHG) emission from dried mango chips processing in an off-grid setting: scenario 4 (coal as boiler fuel 

and conventional vapour compression chiller (CVCC)), scenario 5 (mango seed as boiler fuel and CVCC) and scenario 6 (ACS and 

mango seed as boiler fuel). 

 Off-grid scenarios 

4 5 6 

CO2 

(kg) 

CH4 

(kg 

CO2e) 

N2O 

(kgCO2e) 

Total 

(kg CO2e ) 

CO2 

(kg) 

CH4 

(kg 

CO2e) 

N2O 

(kgCO2e) 

Total 

(kg CO2e) 

CO2  

(kg) 

CH4 (kg 

CO2e) 

N2O 

(kgCO2e) 

Total 

(kg CO2e 

) 

Mango dryer 5186 5 13 5204 5186 5 13 5204 5186 5 13 5204 

Mango slicing 1441 1 4 1446 1441 1 4 1446 1441 1 4 1446 

Mango Peeling 2881 3 7 2891 2881 3 7 2891 2881 3 7 2891 

Sorting and 

Grading  34572 35 87 34694 34572 35 87 34694 34572 35 87 34694 

Cooling 10756 11 27 10794 10756 11 27 10794 2766 3 7 2776 

Cold water 

washing 20743 21 52 20816 20743 21 52 20816 20743 21 52 20816 

Hot water 

treatment 5186 5 13 5204 5186 5 13 5204 5186 5 13 5204 

Boiler 504251 133 2479 506863 597000 3998 6610 607607 597000 3998 6610 607607 

Compost 71470 54144 50354 175968 3832 2903 2700 9436 3832 2903 2700 9436 

Coal 

transportation 3174 1 6 3182 0 0 0 0 0 0 0 0 

Total 659660 54360 53042 767062 681596 6983 9512 698091 673606 6975 9492 690073 
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Table C9: Results of economic analysis of the dried mango chips processing in an on-grid setting: scenario 1 (coal as boiler fuel and 

conventional vapour compression chiller (CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and scenario 3 (adsorption 

cooling system (ACS) and mango seed as boiler fuel) and off-grid setting: scenario 4 (coal as boiler fuel and CVCC), scenario 5 

(mango seed as boiler fuel and CVCC) and scenario 6 (ACS and mango seed as boiler fuel). 

 

Parameter Scenarios 

1 2 3
  

4
  

5  6
  

TCI(M$)  0.85 
 

0.85 
 

0.89 0.88 0.88 0.93 

Variable operating cost(M$) 3.06 
 

3.04 
 

3.00 
 

3.06 
 

3.04 
 

3.00 
 

Fixed operating cost(M$) 2.91 
 

2.89 
 

2.87 
 

2.91 
 

2.90 
 

2.88 
 

Mango sales Revenue (M$) 6.18 
 

6.18 
 

6.18 
 

6.18 
 

6.18 
 

6.18 
 

IRR (%) 17.48 20.33 25.33 16.09 18.88 23.84 

NPV (M$) 0.09 2.01 0.42 0.04 0.15 0.37 
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Scenario 1                                                                                                                                      Scenario 2 

 
Scenario 3 

Figure C1: Simple payback and discounted payback periods 

dried mango chips processing in an on-grid setting: scenario 1 

(coal as boiler fuel and conventional vapour compression chiller 

(CVCC)), scenario 2 (mango seed as boiler fuel and CVCC) and 

scenario 3 (adsorption cooling system (ACS) and mango seed 

as boiler fuel)  
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Scenario 4                Scenario 5 

  
Scenario 6 

Figure C2: Simple payback and discounted payback periods dried 

mango chips processing in an off-grid setting: scenario 4 (coal as 

boiler fuel and conventional vapour compression chiller (CVCC)), 

scenario 5 (mango seed as boiler fuel and CVCC) and scenario 6 

(ACS and mango seed as boiler fuel). 
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