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Abstract: Leaf area per unit surface (LAI—leaf area index) is a valuable parameter to assess vine
vigour in several applications, including direct mapping of vegetative–reproductive balance (VRB).
Normalized difference vegetation index (NDVI) has been successfully used to assess the spatial
variability of estimated LAI. However, sometimes NDVI is unsuitable due to its lack of sensitivity
at high LAI values. Moreover, the presence of hail protection with Grenbiule netting also affects
incident light and reflection, and consequently spectral response. This study analyses the effect of
protective netting in the LAI–NDVI relationship and, using NDVI as a reference index, compares
several indices in terms of accuracy and sensitivity using linear and logarithmic models. Among the
indices compared, results show NDVI to be the most accurate, and ratio vegetation index (RVI) to be
the most sensitive. The wide dynamic range vegetation index (WDRVI) presented a good balance
between accuracy and sensitivity. Soil-adjusted vegetation index 2 (SAVI2) appears to be the best
estimator of LAI with linear models. Logarithmic models provided higher determination coefficients,
but this has little influence over the normal range of LAI values. A similar NDVI–LAI relationship
holds for protected and unprotected canopies in initial vegetation stages, but different functions are
preferable once the canopy is fully developed, in particular, if tipping is performed.
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1. Introduction

Leaf area per unit surface (LAI—leaf area index) has long been recognised as an essential
parameter to assess net assimilation rate, growth, and primary productivity in crops, including
vines [1–3]. In vineyards, its spatial variability may be mapped for management or harvest decisions
and is closely related to vegetation indices obtained from remote sensing (RS) [4,5]. Such techniques
have also been employed to map viticulture crop status parameters such as pruning weight [4–7].
In principle, RS could be applied to asses one of the two components of the vegetative–reproductive
balance (VRB), defined as the leaf area required to carry a unit of fruit to maturity [8], which has been
shown to be a critical factor in the determination of grape quality [9].
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Significant variability in plant vigour and yield have been observed in many crops, including
vines [10]. This effect is more evident with the increasing use of yield monitors [11–13]. Both canopy
and sink size may be managed to achieve the desired vineyard balance. Within-season, RS-based
estimations of LAI [8,9], and ultimately of yield [14], have important practical applications and allow
the desired balance range to be reached everywhere within a variable block. RS appears as the only
low-cost means to achieve timely information for this purpose over farm-scale (or larger) areas [4,15].

Vertical shoot positioned (VSP) canopies, the most extensive trellis system chosen for vineyards
over the past two decades, expose an important proportion of inter-row space to nadir observation
typical of RS, where no canopy covers the soil surface (Figure 1a). With resolutions commonly
recommended and obtained from commercial satellite and aerial surveys that are similar to row
spacing [6,14], data will consist of a mix of canopy and inter-row reflectance and will be affected by both
leaf distribution and quantity, as well as row separation. Separation of canopy LAI from other surfaces
can be approached either by masking out the inter-row spacing when high spatial resolution in the
imagery is available or using a spectral discrimination procedure [16], or knowledge of the proportion
of response contributed by each cover type in those cases when spatial resolution is coarser [6].
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that is, the proportion of ground covered with canopy [27,28], LAI is the appropriate parameter to 
quantify source size. Therefore, aside from the correct choice of indices to assess LAI, canopy 
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over canopy density in the spectral data obtained from nadir-viewing acquisitions, at least in 
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Figure 1. (a) Example of a vertically shoot positioned (VSP) vineyard (cv. Malbec); (b) Tetracam ADC
multispectral camera mounted on a boom on a quadricycle in preparation for a nadir-viewing capture
on the canopy in a VSP vineyard.

Since the early days of the Landsat program, significant and sustained efforts have been directed
towards obtaining crop biophysical parameters, including LAI, from RS, especially with the use of
vegetation indices (VIs) mostly derived from red (R) and near-infrared (NIR) reflectance combinations.
Limitations in their use have been the subject of much study [17]; common issues include lack of
sensitivity at high values [18], soil noise [19,20], and background soil colour differences. Several indices
have been developed that adjust for plant biophysical variables and correct the usual shortcomings
to varying extents, and this study focuses on some of the better-known examples, including ratio
vegetation indices [18,21,22], perpendicular indices [23], soil adjusted indices [24], and a chlorophyll
index calculated using alternative spectral bands [25,26] (Table 1).
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Because equal amounts of LA can be arranged in ways that alter the vegetation fraction (VF),
that is, the proportion of ground covered with canopy [27,28], LAI is the appropriate parameter to
quantify source size. Therefore, aside from the correct choice of indices to assess LAI, canopy structure
needs to be considered and parameterised. VF dominates the contribution of vegetation over canopy
density in the spectral data obtained from nadir-viewing acquisitions, at least in minimally pruned
vines [14]. This effect is enhanced for VIs that tend to lose sensitivity as LAI increases to values
around or above three [29]. However, trellis systems such as VSPs, which constrain VF (and more
so if fitted with Grenbiule netting), will reduce its influence on integrated spectral response, so VIs
which show a close relationship to canopy density or LAI and are sensitive across its range appear as
good candidates and need to be compared for selection. In addition, the assumption that common
Grenbiule black hail netting reduces incoming and reflected light without altering its quality should be
tested. Lateral restriction of canopy extension with netting could increase LAI concerning VSPs with
no netting and equal LA. Partial shading might also induce increased shoot elongation; thus, netting
may influence canopy structure and LAI in several ways (Figure 2h).

Consequently, despite reasons to believe hail-protection netting does not affect light quality and VI
values, it is unknown whether protected and non-protected canopies have similar VI–LAI relationships.
An important consideration when addressing this issue is the growth sequence along the season: Shoot
elongation usually only proceeds until Vèraison [30], but leaf expansion may continue for some time
after that if terminal shoots are tipped. If tipping is performed when maximum crop height is reached,
leaf area in the lower part of the canopy will still increase through lateral shoot growth. In general,
tipping is performed on shoots emerging above the protective netting, and it reduces the number of
expanding leaves that compete with fruit for assimilates. It leaves a higher proportion of leaves within
the netting that would be present in an earlier growth stage with the same leaf area and has little effect
on subsequent leaf expansion inside the protection. In protected canopies, this implies that leaf area
reduced at the shoot tips may be offset by an increase within the netting. If netting affects spectral
response, then the VI–LAI relationship will be different during shoot elongation than after tipping
begins and leaf expansion within the hail protection still takes place. Therefore, along the growth
season leaf area expansion will not proceed in a steady acropetal manner and the presence of hail
netting, combined with tipping, may determine different VI–LAI relationships pre- and post-Vèraison.
In summary, because shoot tips grow out of the protection and these segments are more exposed to
nadir-viewing imagery (Figure 2h), there is a need to determine how growth or tipping affect overall
canopy reflectance in each case.

As NDVI is the most widely used VI [31], it has been picked to explore the effect of hail protection,
and as the reference index to compare accuracy and sensitivity concerning LAI against the other
VIs chosen. On account of its reputed lack of sensitivity at high LAI [25] and susceptibility to
soil noise [24], indices derived from NDVI (WDRVI—wide dynamic range vegetation indices, and
MSAVIs—modified soil-adjusted vegetation indices) have been included for comparison to overcome
both these shortcomings. The ratio vegetation index (RVI), an earlier ratio index known for its
sensitivity, has also been included. The basic perpendicular index (PVI) has been added for its possible
capacity to elude soil background noise with a different approach than the MSAVIs. All of the selected
indices have been extensively studied and are well known, but above all, they employ commonly
available R and NIR bands. Despite this, a chlorophyll index examined for corn, using different bands,
has been included, on account of its reported accuracy for LAI determination in that crop. A number
of brief but comprehensive descriptions of basic index lineages are available [13,21,32], and catalogues
listing over 500 are available (e.g., https://www.indexdatabase.de/db/i.php), a situation that is drawing
special scientific attention [33].

Regarding hail protection, despite its extended use in some countries such as Argentina, no
attention has been given to its effect on RS estimations of grapevine vegetative growth. From a practical
standpoint, viticulturists need a convenient means with which to estimate LAI from remote sensing
data adequately. In this context, convenience implies ease of calculation and the need to identify a

https://www.indexdatabase.de/db/i.php
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suitable index with which to obtain LAI with both enough accuracy and sensitivity, to be included in
a robust model that may be used under different soil and management situations. Thus, this study
aimed to determine which are the best indices to use in order to estimate LAI over the season in VSPs
with and without hail protection. The study was conducted in two phases: (i) Determination of the
accuracy of different VIs concerning LAI in unprotected VSPs and testing the sensitivity of the more
accurate ones with respect to NDVI, and (ii) comparing three VI-LAI relationships in protected and
unprotected canopies.

2. Materials and Methods

2.1. Description of the Study Sites

Field measurements were obtained shortly before the 2011 harvest from non-protected and
protected Malbec VSPs at two sites. Site 1 was a non-protected Malbec located in the “1883” vineyard
belonging to the Grupo Peñaflor in Coquimbito, Mendoza (lat.: 32◦58′43′′S, long.: 69◦45′03′′W,
770 m.a.s.l). Site 2 was a Grenbiule hail-netting protected Malbec located in the “La Colonia” vineyard
belonging to Bodega Norton in Agrelo, Mendoza (lat.: 33◦09′10′′S, long.: 68◦56′03′′W, 970 m.a.s.l).
Guided by the vineyard-managing viticulturists, four and five sampling sites with different vigour
were chosen within Site 1 and 2, respectively. The sites are situated 27 km apart in an arid region subject
to a monsoonal rain pattern with an average yearly rainfall of 265 mm, of which 150 mm falls between
December and March. The maximum average temperature is 30 ◦C (December and January), with
daily maxima often reaching over 40 ◦C. The coldest month (July) has a mean minimum temperature
of 3 ◦C. Mean thermal amplitude in January averages 12 ◦C and 5.5 ◦C in July, while the yearly mean
amplitude is 20.5 ◦C. Occasional early frost occurs in late April, and late frosts may occur until the end
of October. From budburst to harvest, solar radiation adds to around 1.14 MW/m2 and growing degree
days (GDD) over a base temperature of 10 ◦C reaches 1600.

2.2. Canopy Leaf Distributions Generated with and without Hail Protection

In the sectors with no hail-netting, successive images were taken, and between each acquisition
the canopy was partially defoliated by hand, taking one of every four or five leaves along each shoot
inside the camera IFOV, starting with the full canopy and ending with no leaves and an image of the
underlying bare soil.

In the sectors with hail-netting, defoliation was carried out by two means:
(a) At two of the sampling areas, the procedure was identical to that with no netting: The vines

were progressively defoliated, and the netting was replaced before each image capture (Figure 2a–g).
(b) At the other three sampling areas, progressive defoliation was performed on the shoot segments

growing over the netting first and only then in the canopy inside the netting (Figure 2h).
The first method (overall progressive defoliation—OPD), simulates the canopy density in vines

of different vigour as they reach maximum shoot elongation around Vèraison. The second (stepwise
progressive defoliation—SPD) reproduces the effect of tipping after full canopy development, allowing
evaluation of spectral response should the unconstrained shoots produce different reflectance values
compared to the leaf area within the netting.

In summary, reflectance values were collected for three situations: (i) VSP with no hail protection
and progressive, even defoliation (OPD); (ii) VSP with netting defoliated evenly as at the sites with no
Grenbiule hail protection (OPD); and (iii) VSP with protection, and shoot tip (shoots growing over
netting), progressively defoliated first, and the canopy inside the netting after (SPD). At each site, canes
were placed along sun orientation and with markings to allow pixel size determination (Figure 2h).
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Figure 2. Defoliation procedure: (a–g) Progressive uniform defoliation of a hail-protected VSP, removing
the netting to implement the defoliation (netting was reinstalled before each image capture); and (h)
Stepwise progressive defoliation of a hail-protected VSP; in this case, the netting remained installed
and shoot tips extending over the net were defoliated first to simulate tipping, and canopy under the
netting was defoliated later.

2.3. LAI Estimation

The leaves collected at each defoliation at all sites were stored in individual black plastic bags
and identified. They were kept in a refrigerated cooler and measurements were performed on them
within two hours of field collection. All samples were weighed, and eight bags were randomly
selected. From these bags, all leaves were distributed on the floor within an area of known size,
photographed with a standard digital RGB camera, and the LA of each of the chosen samples was
determined. LAI was then calculated dividing the accumulated LA of samples at each site by the
canopy cover area measured by carefully delineating its extension on the corresponding NIR image
using ERDAS Imagine (Hexagon Geospatial, Madison, AL, USA). A linear regression function of LA
against weight (R2 = 0.905) was calculated and used to determine the leaf area of all samples [34].
LAI was then calculated by dividing the LA of each sample by the canopy cover area measured by
carefully delineating its surface on the NIR image in each case.

2.4. Spectral Data Acquisition

A Tetracam ADC (Tetracam Inc., Chatsworth, CA, USA) with four individual cameras fitted
with spectral bandwidth filters in the green (G; 535–577 nm), red (R; 639–674nm), red edge (RE;
716–727 nm), and near-infrared (NIR; 755–900 nm) portions of the electromagnetic spectrum was used
to capture nadir-view images over the canopy at each site, prior to each defoliation, over a single day
at the beginning of March, approximately four weeks before harvest. In order to convert the digital
number values of each band to reflectance, panels were made by painting chipboard tiles with different
proportions of matt black and matt white paint, and then calculating their reflectance as a quotient of
direct solar irradiance and nadir reflected light using a spectrometer (Ocean Optics, model SD2000
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Ocean Optics, Largo, FL, USA). The multispectral camera was then set to the exposure time to be used
in the field (one millisecond), and images were captured of each panel within two hours of midday.
The digital numbers obtained for each panel were paired with the corresponding panel reflectance
and OLS regression functions established with which to convert the image digital number values to
reflectance. The camera was mounted on a boom designed to be fitted to a quadricycle (Figure 1b) and
moved successively to each sampling site, where nadir-viewing images in all bands were captured
with one-millisecond exposure time before each defoliation.

2.5. Multispectral Image Analysis

Band alignment with an affine pixel shift was performed on all individual band images at each site
to force coincidence to a visible feature near the NIR scene centre to ensure that indices were calculated
from values on matching points. Using ERDAS Imagine (Hexagon Geospatial, Madison, AL, USA),
visible marks of known length on the marking canes in every image were used to determine pixel size,
yielding average resolutions of 0.0022 m. A polygon delimiting a portion of the canopy, and another of
the adjacent sunlit soil, were then carefully hand-drawn within each NIR image, and their area and
brightness determined for all bands. LA per image averaged 1.92 m2, so spectral calculations for VIs
were performed with over 400,000 pixels per sample. As previously mentioned, the area was used to
calculate LAI. Brightness values were converted to reflectance.

2.6. Vegetation Indices

Values obtained for canopy and soil at each site were used to compute the VIs. Typically, the
VIs are calculated using commonly available R and NIR bands, with some exceptions, such as the
chlorophyll index that requires red-edge (RE) in addition to NIR. NDVI is the most widely used index
because of its robustness and insensitivity to atmospheric attenuation. However, it is susceptible to
soil noise and insensitive to change at high values of biomass [18,29]. This aspect has promoted the
development of several indices in an attempt to compensate for these shortcomings. The modified
soil-adjusted vegetation indices (MSAVI and MSAVI2) [24], soil-adjusted vegetation index 2 [35], and
the perpendicular vegetation index (PVI) [36] are examples, but with the exception of MSAVI2, they
require knowledge of the gradient of the soil line [17], so all the data collected over sunlit soil at both
vineyards were used in their determination (Figure 3). In the case of MSAVI, the determination of the
L coefficient originally developed for SAVI (soil-adjusted vegetation index) is also required [24], but
MSAVI2 calculation avoids the need for a priori soil line determination. SAVI2, MSAVI, and MSAVI2

are examples of indices developed to minimise the effect of soil reflectance, as is PVI. The wide dynamic
range vegetation index (WDRVI) [18] has been included due to its sensitivity to changes at high
biomass and is calculated with two NIR weighting coefficients (α = 0.05 and α = 0.3). The inclusion of
a chlorophyll index, CIrededge, was considered because, aside from performing as a good LAI estimator
in maize, it has been demonstrated to be a good estimator of gross primary production [25,37], and
this would make it useful for VRB assessment, particularly since the recent availability of RE bands in
several satellite-borne sensors. The VIs studied were selected among those that are widely used and
that enhance sensitivity, reduce soil noise, employ either typical or unusual spectral bands, and are
representative of different calculation procedures. The main characteristics of the VIs chosen for this
study are listed in Table 1.
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Figure 3. Soil lines for the two sites used in this study: (orange) soil line for Site 1 and (blue) soil line
for Site 2. The linear regression function gradient obtained from plotting R against NIR reflectance of
sunlit soil is used to calculate the perpendicular vegetation index (PVI), the Modified soil-adjusted
vegetation index (MSAVI), and the Soil-adjusted vegetation index 2 (SAVI2).

Table 1. List of the vegetation indices used in this study, including acronyms, means of calculation,
and salient features.

Index Formula Features

NDVI—Normalized difference
vegetation index

(NIR−R)/(NIR + R) Robust but insensitive at high leaf
area index (LAI) values

RVI—Ratio vegetation index NIR/R Sensitive over a broad range

WDRVI—Wide dynamic range
veg. index [6]

(αNIR−R)/(αNIR + R) Sensitive at high LAI

MSAVI—Modified soil-adjusted
vegetation index [24] (NIR−R)/(NIR + R + L)(1 + L) (1) Corrects influence of soil and

provides a variable value for L

MSAVI2—Second modified
soil-adjusted vegetation index [24]

1
2

[
2(NIR + 1) −

√
2(NIR + 1)2

− 8(NIR−R)
]

Corrects influence of soil and
provides and does not require L (1)

PVI —Perpendicular vegetation
index [23]

√
(Rs−Rv)2 + (NIRv−Rs)2 (2)

Affected by atmospheric
attenuation and soil dampness

CIrededge—Red edge chlorophyll
index [25]

NIR
RE − 1

Sensitive in corn, good gross
primary productivity estimator

SAVI2—Soil-adjusted vegetation
index 2 [35]

NIR
R+ b

a

(3) Sensitive in corn, good gross
primary productivity estimator

(1) L = 1− 2sNDVI(NIR− sR), where s is the slope of the soil line; (2) Subscripts s and v refer to soil and vegetation,
respectively. (3) a is the soil line slope, and b is the soil line y-intercept.

2.7. Data Analysis

Two models were selected to study each VI—LAI relationship: (i) A logarithmic model based on
the light extinction functions common for vegetation as described by [3,38], and (ii) a linear model
excluding bare soil values. The logarithmic model that considers light flux in the canopy may be
represented by

Q = Q0 e(−kL) (1)

where Q is the radiation flux at any plane of the canopy, Q0 is the incoming radiation at the top of the
canopy, k is a parameter that combines the transmission coefficient for any given wavelength and a
geometrical component accounting for leaf distribution and orientation, and L is the leaf area above the
plane. The parameter k is often considered a constant for a given crop [38], as can the Q/Q0 ratio at any
given moment. As this ratio is associated to the fraction of photosynthetically active radiation that VIs
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are known to be closely associated with, considering this assumption and the exponential/logarithmic
relationship between the dependent and independent variables, Equation (1) may be modified to

Vegetation Index = a1 ln(LAI) + a2 (2)

where, a1, and a2 are constants and ln(LAI) is the natural logarithm of the LAI.
Although the VI–LAI relationship over the full range from bare soil to maximum canopy density

is inherently nonlinear, this generalisation does not hold for all VIs or the more commonly used ones
above an LAI of 1 [25]. Above this value, the relationship is close to linear and may be expressed with
a standard linear function such as

Vegetation Index = b1(LAI) + b2 (3)

where, b1 and b2 are constants.
Logarithmic and linear OLS regressions were performed using Infostat software (Infostat v.2016,

Córdoba, Argentina). Data studied with the logarithmic model included the underlying soil data (i.e.,
no-leaf). LAI values below 1 correspond to a sparsely-leaved canopy, which is unlikely to be found in
the field unless very soon after sprouting or severe canopy damage. Therefore, linear models were
tested with no bare soil data.

All regression coefficients were studied for the unprotected canopy, and the VI exhibited the
highest coefficient of determination with the logarithmic models employing all canopy and underlying
soil data in unprotected VSPs, NDVI, was used as a benchmark reference for both the sensitivity
study and the logarithmic analysis of hail-protected canopies. Following the approach described by
Gitelson [8] for these comparisons, the first derivative of each logarithmic function with respect to
ln(LAI), and the gradient b1 of the linear functions obtained were used to compare each VI’s sensitivity,
with NDVI as the reference, using the expression

Sr = [d(VI)/d(NDVI)][∆VI/∆NDVI]−1 (4)

where Sr is the relative sensitivity, d(VI) and d(NDVI) are the first derivative of each VI and NDVI
with respect to ln(LAI) (for the logarithmic functions) and the ratio of VI to NDVI gradients (for the
linear functions), and ∆ indicates each VI’s range of values.

With the aid of dummy variables, parameter significance for the LAI–VI regressions with both
logarithmic and linear models, were tested for three canopy structures: (i) no protection, (ii) netting
with shoots emerging over protection, and (iii) canopy entirely within the netting.

Finally, a schematic view of the whole procedure used in this study is illustrated in Figure 4.
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3. Results

3.1. VI Accuracy Comparison

Table 2 shows the logarithmic, and linear regression functions with their adjusted R2 for all the
VIs tested as a function of LAI, at all sites with no hail protection. The root-mean-square error (RMSE)
for LAI prediction from each VI is also shown.

Figure 5a,b show the logarithmic and linear LAI–VI regression plots that exhibit the highest
adjusted R2 values and correspond in both cases to NDVI.



Remote Sens. 2019, 11, 1073 10 of 16

Table 2. Logarithmic and linear (with no-leaf values excluded) regression functions and their
corresponding adjusted determination coefficient (R2) and root-mean-square error (RMSE) of leaf area
index (LAI) prediction as a function of each vegetation index. Sampling areas with no hail netting.

Vegetation
Index

Logarithmic
Regression Model

Adjusted
R2 RMSE Linear Regression

Model
Adjusted

R2 RMSE

NDVI 0.069 ln(LAI) – 0.72 0.98 0.59 0.03 LAI + 0.71 0.48 0.61
WDRVI (1) 0.098 ln(LAI) + 0.33 0.97 0.87 0.06 LAI + 0.27 0.48 0.69

MSAVI2 0.064 ln(LAI) + 0.67 0.96 1.10 0.04 LAI + 0.63 0.36 0.71
WDRVI (2) 0.056 ln(LAI) – 0.47 0.91 2.71 0.05 LAI – 0.56 0.47 0.80

RVI 0.866 ln(LAI) + 7.48 0.83 5.63 1.02 LAI + 5.55 0.46 0.91
SAVI2 2.886 ln(LAI) + 21.10 0.73 10.04 4.93 LAI + 11.96 0.45 0.55

MSAVI 0.106 ln(LAI)+ 0.95 0.69 2.63 0.21 LAI + 0.58 0.33 0.80
PVI 0.027 ln(LAI) + 0.52 0.67 7.10 0.03 LAI + 0.46 0.15 0.89

CIrededge 0.056 ln(LAI) – 1.05 0.41 5.40 - - -

α is a coefficient applied to NIR values in the standard NDVI formula to reduce the ratio of NIR to R reflectance values,
thus enhancing R absorption and sensitivity with high biomass or chlorophyll contents. (1) α = 0.3; (2) α = 0.05;
RMSE, root-mean-square error; models with adjusted R2 lower than 0.10 have been omitted.
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Figure 5. Regression of NDVI as a function of LAI: (a) Logarithmic; and, (b) linear.

3.2. VI Sensitivity to LAI Changes

Based on the convenience of using linear relationships within typical canopy LAI ranges,
a comparison of the sensitivity of different indices to LAI was performed with the calculation of Sr,
using NDVI as a reference. Only indices obtained from VI–LAI linear regressions where gradient
parameter significance were used (p < 0.01). Results are detailed in Table 3.

Table 3. Relative sensitivity (Sr) of indices with respect to LAI, with NDVI used as the reference.

Vegetation Index Relative Sensitivity (Sr)

NDVI (Reference) 1.0
RVI 2.74

WDRVI (α = 0.05) 2.07
MSAVI2 1.45

WDRVI (α = 0.3) 1.42

3.3. Effect of Grenbiule Hail-Protection Netting on the VI–LAI Relationship

For illustration purposes, comparison of the effects of the Grenbiule hail protection on the
logarithmic LAI to NDVI relationship for “La Colonia” vineyard is shown in Figure 6, together with
the sample canopy NDVI dispersion represented by one standard deviation. Results for three selected
VIs (most accurate (NDVI), most sensitive (RVI), and best compromise (WDRVI)) with both linear and
logarithmic models are detailed in Tables 4 and 5.
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Figure 6. Logarithmic regressions of NDVI as a function of LAI including bare soil values, for VSPs
with and without hail protection and different defoliation strategies: (a) UOPD—unprotected overall
progressive defoliation (same curve presented in Figure 5a, this figure was included to aid with the
comparisons), (b) POPD—protected overall progressive defoliation, and (c) PSPD—protected stepwise
progressive defoliation. Bars indicate one standard deviation of the canopy NDVI values of each sample.

Table 4. Logarithmic regression parameter estimations and significance for all data, separated with
auxiliary variables and unprotected canopy values as the reference.

NDVI WDRVI (α = 0.05) RVI

Coefficient Estimation p-Value Estimation p-Value Estimation p-Value

Constant 0.72 <0.0001 −0.48 <0.0001 7.26 <0.0001
lnLAI 0.07 <0.001 0.05 <0.0001 0.83 <0.0001
POPD 0.01 0.3265 −0.02 0.3435 −0.5 0.1888
PSPD −0.06 <0.0001 −0.01 <0.0001 −1.73 <0.0001

POPD_lnLAI −0.01 0.0112 −0.01 0.2878 −0.13 0.3308
PSPD_lnLAI 0.0036 0.4518 −0.01 0.1026 −0.22 0.0874

POPD = protected, overall progressive defoliation; PSPD = protected, stepwise progressive defoliation.

Table 5. Linear regression parameter estimations and significance for all data, separated with auxiliary
variables and unprotected canopy values as the reference.

NDVI WDRVI (α = 0.05) RVI

Coefficient Estimation p-Value Estimation p-Value Estimation p-Value

Constant 0.72 <0.0001 −0.54 < 0.0001 5.78 < 0.0001
LAI 0.02 0.0212 0.05 0.0014 0.92 0.0004

POPD −0.02 0.6117 −0.02 0.7242 −0.18 0.8194
PSPD −0.19 < 0.0001 −0.21 0.0001 −3.32 0.0005

POPD_LAI 0.01 0.6887 −0.0042 0.8640 0.0045 0.9916
PSPD_LAI 0.05 0.0021 −0.05 0.0443 0.61 0.1269

POPD = Protected, Overall Progressive Defoliation; PSPD = Protected, Stepwise Progressive Defoliation.
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4. Discussion

4.1. VI Accuracy Comparison

Adjusted R2 was used as a means to estimate the accuracy of the VIs. Results shown in Table 2
indicate that ratio indices are substantially more accurate than perpendicular or chlorophyll indices,
some of which show very poor or no linear relationship whatsoever with LAI [3]. As the practical
application of these relationships aims to estimate LAI as the dependent variable, the functions were
inverted, and an RMSE for LAI was calculated, with similar results in order of accuracy (Table 2).
Exclusion of bare soil values exposes the influence that the no-leaf data has in accuracy (R2 = 0.48 for
linear regression with no soil data vs. R2 = 0.98 for the logarithmic function including soil values with
NDVI). This effect is consistent with studies that have shown that at low vegetation cover values, soil
backscattering can contribute to more signal than vegetation cover, particularly with some indices such
as NDVI [24]. Moreover, inspection of the soil lines shown in Figure 3 illustrates that bare soil data can
vary somewhat within the study region, which in turn would influence the y-intercept and regression
functions obtained for otherwise identical canopies. From a practical standpoint, if RS data available
have sufficient resolution to allow canopy values to be separated from soil values, the high LAI values
typical of VSPs should occlude soil response and VIs adjusted for soil response would be expected to
show little improvement in the accuracy of LAI estimation. In turn, this would preclude the need for
soil line determination for the index calculation. However, SAVI2 exhibits the lowest RMSE in LAI
estimation with linear models that exclude bare soil values, a result that is difficult to interpret and
needs to be addressed with further studies.

Logarithmic relationships are often accepted as a necessary consequence of extinction and other
factors affecting light interception such as leaf orientation [3,38], and the results obtained here are
strikingly similar to those obtained by Gitelson and others [15,25,39] in corn. However, the field
measurements performed show that an LAI under 1.0 would imply extreme defoliation unlikely to be
found in the field (Figure 5), or a canopy at a very early stage during the growing season [5]. In short,
as soil reflectance will influence the y-asymptote and affect the regression function without providing
added accuracy in standard canopies with LAI values above 1.0, the use of logarithmic regressions is
impractical for viticulture use, and linear models are appropriate for this purpose [40].

4.2. VI Sensitivity to LAI Changes

The lack of sensitivity over an LAI of 2.0, commonly cited for NDVI and other indices [25], must
be overcome for any useful application of VI–LAI regressions. Amongst those VIs tested, RVI exhibits
the highest sensitivity to changes in LAI, lending support to the main reason for its widespread
use in Australian viticulture. Differential harvesting and management applications using RVI block
maps (often referred to as “Plant Cell Density”) have been shown to have a significant economic
impact and to be significantly related to such crop characteristics as vine vigour, fruit sugar content,
titratable acidity, and sensory quality assessment [22]. Both WDRVIs, explicitly developed to offset
the lack of sensitivity NDVI exhibits at high LAI values, have significantly more Sr than NDVI but
vary considerably depending on the NIR correction α coefficient applied. Even MSAVI2 presents
better Sr than NDVI, an unexpected finding considering its development was aimed specifically at
correcting bias shown by NDVI with low vegetation cover. Its use has borne good results in orchard
vegetation cover estimations [41] as well as in forest biomass estimations [42] and appears promising
to estimate land cover in a sparsely vegetated area like shrubland. In summary, NDVI seems to be
the least sensitive of the studied indices, even if the most accurate. These results suggest a WDRVI
to be an adequate compromise between accuracy and sensitivity. This effect is in overall agreement
with studies showing that in situations with dense green biomass (NDVI > 0.4), the sensitivity of the
WDRVI may be 47% greater than that of the NDVI in several types of vegetation cover, including
woodlands, sub-humid to humid grasslands, and croplands [29].
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4.3. Effect of Grenbiule Hail-Protection Netting on the VI–LAI Relationship

As data were collected post-Vèraison, canopy size can be assumed to have reached full
development [30]. OPD mimics LAI evolution and LA expansion throughout the season, even
after shoots emerge over the netting, so it allows protected and unprotected canopies with similar
leaf distribution to be compared. SPD imitates the structure of already fully developed canopies with
different densities, including the leaves constrained within the netting and those that have grown
over it. With this defoliation procedure, the shoots emerging outside the protection are progressively
defoliated first, thus imitating tipping, a common management practice performed typically around
Vèraison. Once all protruding shoot leaves are removed, it is also possible to compare the effect of the
hail netting on the VIs of leaves entirely under protection and those completely exposed to sunlight.

As shown in Tables 4 and 5, results obtained using dummy variables generated to test average
VI values and the VI–LAI relationship under the three defoliation methods were similar: Average VI
as a function of LAI did not differ significantly (p-value > 0.01) between protected and unprotected
canopies with OPD. However, significant differences were found with protected canopy defoliated
with SPD. As stated previously, OPD mimics canopy evolution, which includes early growth stages
with low LAI values. Full canopy development within the hail netting may force leaf orientation, thus
modifying the relationship after removal of the canopy that emerges over the netting and covers the
protected leaves [38]. This effect may be enhanced for insensitive VIs, such as NDVI, at high canopy
densities, as shown in Table 4.

Figure 6 reveals SPD differences to be greater at lower LAI values, that is, while most of the
canopy is shaded by netting. This effect suggests that the canopy growing over the hail netting
has a dominating effect on nadir-viewing VI canopy values. Furthermore, the differences between
models may be more significant in the low LAI range, where linear regressions exhibit a poorer fit.
For this reason, Tables 4 and 5 include results for the three ratio vegetation indices of interest (NDVI
(highest accuracy), RVI (highest sensitivity), and WDRVI (α = 0.05) (best compromise)) using both
logarithmic and linear models, respectively. The VI–LAI slope, however, as shown by the test results
on interactions, shows no significant differences between models except NDVI in the logarithmic
model, plausibly for the reasons postulated above. Despite similar slopes, values under netting exhibit
a considerable offset, so use of different linear relationships may be warranted. The offset over an LAI
of 1.0 evidenced in Figure 6 suggests that hail protection netting indeed reduces VI values obtained for
a given LAI, particularly during initial growth stages. However, any difference would gain importance
as the canopy approaches its final size. Despite the existing difference, it is yet unclear whether the
netting material differentially affects light quality in the wavelengths required for index extraction,
as the results would imply, or if canopy confinement and shading affect its density, condition or leaf
orientation, and therefore its spectral response. Nevertheless, OPDs with and without protection yield
nearly identical regression functions, so the choice of the relationship to use would depend either on
overall canopy density or addressed as a situation exhibiting some form of hysteresis, depending on
whether the canopy is actively growing or has reached the final size after Vèraison.

5. Conclusions

Ratio vegetation indices such as NDVI, RVI, and the WDRVIs exhibited a closer relationship with
pure canopy LAI than the perpendicular (PVI), mixed (SAVI2 and MSAVIs) and the chlorophyll index
(CIrededge). NDVI exhibited the highest accuracy. Logarithmic models, including the no-leaf values at
each site, presented very high adjusted R2 values (over 0.80), but values above an LAI of one followed
a linear distribution. Considering that LAI values above 1 occlude direct soil reflectance and that pure
canopy field values are commonly well above this value, a linear model for the VI–LAI relationship
is acceptable above this value and avoids possible soil contribution to canopy values. This effect is
desirable because soil lines in the same area may vary.

The sensitivity of NDVI was considerably lower than those of other ratio indices, while RVI shows
the highest sensitivity. Because RVI has indicated a low accuracy, a good alternative would be to adopt
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WDRVI. This index indicates a superior sensitivity with a stronger weighting of the NIR values (i.e.,
α = 0.05 is better that α = 0.3), but the optimum weighting coefficient has not been determined.

Hail-protection Grenbiule netting reduces VI values for a given LAI. Tipping practices enhance this
effect in fully developed canopies. Results suggest the same VI–LAI relationship holds for protected
and unprotected canopies in the initial vegetation stages, but different functions are preferable once
the canopy is fully developed, in particular, if tipping is executed.
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