
30 Research Article — SACJ, No. 44., December 2009

Comparing Leaf and Root Insertion

Jaco Geldenhuys, Brink van der Merwe

Computer Science Division, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1,
7602 Matieland, SOUTH AFRICA

ABSTRACT

We consider two ways of inserting a key into a binary search tree: leaf insertion which is the standard method,

and root insertion which involves additional rotations. Although the respective cost of constructing leaf and root

insertion binary search trees trees, in terms of comparisons, are the same in the average case, we show that in

the worst case the construction of a root insertion binary search tree needs approximately 50% of the number of

comparisons required by leaf insertion.

KEYWORDS: Binary search trees, leaf insertion, root insertion.

1 INTRODUCTION

Binary search trees have been used in computer
science for about fifty years, but as Jonassen and
Knuth noted [5], even a simple question about these
data structures may require an unexpectedly non-
trivial analysis to answer. In this paper we con-
sider the relative merits of leaf insertion and root
insertion, two ways of constructing (nonbalanced)
binary search trees.

Leaf insertion is the “common” method of
adding a key to a binary search tree. The result
of inserting a key a into an empty tree, is a tree
with a root node with a as its key and empty left
and right subtrees. If a is inserted into a non-empty
tree, the result is the original tree, but with a in-
serted recursively into the left (or right) subtrees,
depending on whether it is smaller (or larger) than
the root key.

Root insertion is similar to leaf insertion, except
that after a key a has been inserted, its node n
is moved to the root of the tree through a series
of rotations. There are two kinds of rotations, as
shown in Figure 1. If n is the left child of its parent,
the parent is right rotated. Similarly, if n is the
right child of its parent, the parent is left rotated.
The construction of a four element tree is shown
in Figure 2. For each root insertion, the number
of comparisons required is equal to the number of
rotations needed to move the new key to the root.

Email: Jaco Geldenhuys jaco@cs.sun.ac.za, Brink van der
Merwe abvdm@cs.sun.ac.za

ta

JJtb

 JJ
V

T U

ta

 JJ

tb

 J
JJ

V

T

U

-right rotate a

�
left rotate b

Figure 1: Right and left rotation

A comparison moves the key, to be inserted, down
one level, while each rotation moves the key back up
one level. Rotations are of course well-known from
their use in AVL and splay trees. See for example
[1] and [8].

It is important to note that rotations preserve
the inorder numbering of a tree. In other words,
rotation in a binary search tree produces another
binary search tree.

To build an n-element tree, root insertion re-
quires precisely n − 1 comparisons (compared to
leaf insertion’s Θ(n log n)) in the best case, when
the keys are arranged in ascending or descending
order. This raises the question of whether it is pos-
sible that root insertion also has better average-case
and worst-case behaviour (at least in terms of num-
ber of comparisons). Our main goal is to obtain the
explicit value for W r

n in the following table.

Leaf Root
insertion insertion

Best 2 + blog nc(n + 1)− 2blog nc+1 n− 1
Ave. 2(n + 1)Hn+1 − 4n− 2 Ar

n

Worst n(n− 1)/2 W r
n

We denote by Hn the n-th Harmonic number
and log n is taken base 2. The average case for leaf

Research Article — SACJ, No. 44., December 2009 31
insert 1 t1
insert 4 t1

J
JJt4 -rotate left 1 t4

t1

insert 3 t4

t1
J
JJt3

-rotate left 1 t4

t3

t1

-rotate right 4 t3

J
JJt4t1

insert 2 t3

J
JJt4t1

J
JJt2

-rotate left 1 t3

J
JJt4t1

t2

-rotate right 3 t3
J
JJt4

t1
t2

J
JJ

Figure 2: Construction of a four element binary search tree by root inserting 1, 4, 3, and 2; the total number of

comparisons (or rotations) is equal to 5.

insertion is obtained from [3, p. 247], and the best
case for leaf insertion by simplifying the expression∑n
i=1blog nc. It turns out that

W r
n = n(n/4 + 1)− 2− α,

where α = 0 for n even, and α = 1/4 for n odd.
Thus the worst-case cost for root insertion is just
a little more than half the worst-case cost of leaf
insertion, for n > 249 (0.50 < W r

n/(n(n − 1)/2) <
0.51 if n > 249). For the average case we have that

Arn = 2(n+ 1)Hn+1 − 4n− 2,

just as in the case for leaf insertion.
Interestingly, the best-case input for root in-

sertion corresponds to the worst-case input for leaf
insertion. There is another interesting correspon-
dence between the trees constructed by root and
leaf insertion: The tree built by leaf insertion from
a list of keys a1, a2, . . . , an, is identical to the tree
built by root insertion of an, an−1, . . . , a1. It is in-
teresting to note that identical trees are obtained if
root insertion is used to build binary search trees
from the sequences 1, 2, 4, 3 and 1, 4, 2, 3, but that
the number of comparison required to build these
trees, are not the same. This is of course in sharp
contrast with leaf insertion where the number of
comparisons required to construct a binary search
tree, is equal to the sum of the root to node path
lengths of all the nodes in the binary tree.

It should be noted that root insertion is more
efficient than leaf insertion, in cases where tree
searches often refer to recently inserted keys. Ro-
tations may also be used to move an element to the
root after a successful search.

After introducing the necessary notation in Sec-
tion 2, we prove in Section 3 that the tree built by
leaf insertion from a1, a2, . . . , an, is identical to the
tree built by root insertion from an, an−1, . . . , a1.
The worst case performance of root insertion is
analysed in Section 4, and experimental results and
conclusions are presented in Sections 5 and 6, re-
spectively.

Our interest in the performance of root in-
sertion stems from [7, Exercise 12.85], where the
reader is asked to compute W r

10, and from [9], where
the result was verified by exhaustive search, for
sequences of length 10 and smaller. The version
of root insertion described above, may more pre-
cisely be referred to as bottom-up root insertion.
In [9], top-down root insertion is considered and it
is shown that:

1. The tree built by leaf insertion from
a1, a2, . . . , an is identical to the tree built by
top-down root insertion from an, an−1, . . . , a1;

2. Arn = 2(n+ 1)Hn+1−4n−2 for top-down root
insertion.

In Section 3 we show that the trees constructed, and
the number of comparisons required, for top-down
and bottom-up root insertion are always equal.

According to Knuth [6], leaf insertion was dis-
covered independently by several people during
the 1950s. He cites an unpublished memoran-
dum by A. I. Dumey dated August 1952, but the
first published algorithms appeared in the early
1960s [2, 4]. The rotation operation was first pro-
posed by Adelson-Velsky and Landis in their 1962
paper on balanced trees [1].

32 Research Article — SACJ, No. 44., December 2009

2 NOTATION

Let K be an arbitrary set of keys with a correspond-
ing total ordering ≺. A sequence s = a1a2 . . . an is
considered as a specific permutation of the n dis-
tinct keys a1, . . . an. The length n of s is denoted
by |s|, and the reverse sequence anan−1 . . . a1 by
rev(s).

By TK we denote the set of binary trees over K,
which are defined inductively as follows. We have
that t ∈ TK if and only if

1. t is the empty tree ⊥, or
2. t = a[u, v], where u, v ∈ TK\{a} and a ∈ K.

The following attributes will play an important role
in the remainder of this paper.

t = ⊥ t = a[u, v]

K (t) undef. a
L(t) undef. u
R(t) undef. v
H (t) 0 1 + max{H (u),H (v)}

keys(t) ∅ {a} ∪ keys(u) ∪ keys(v)
leaves(t) ∅ {a} if u = v = ⊥,

else leaves(u) ∪ leaves(v)

The set of binary search trees is a subset of TK
denoted by BK , and t ∈ BK if and only if t ∈ TK
and

1. t = ⊥, or
2. t = a[u, v] where u, v ∈ BK and b ≺ a for all
b ∈ keys(u) and a ≺ c for all c ∈ keys(v).

Since we deal exclusively with binary search
trees from now on, we shall refer to them simply
as trees. Note that we do not consider trees with
duplicate keys.

We are now ready to formally define leaf inser-
tion, bottom-up root insertion, and top-down root
insertion.

Definition 2.1 Let t ∈ BK and a ∈ K with a 6∈
keys(t). The tree that results from the leaf insertion
of a into t is

LI (t, a) =

{
a[⊥,⊥] if t = ⊥,
K (t) [LI (L(t), a), R(t)] if a ≺ K (t),
K (t) [L(t), LI (R(t), a)] otherwise.

Let s = a1a2 . . . an. The leaf insertion tree con-
structed from s is given by

LT (s) =
{
⊥ if |s| = 0,
LI (LT (a1a2 . . . an−1), an) otherwise.

Definition 2.2 Let t ∈ BK and a ∈ K with a 6∈
keys(t). The tree that results from the bottom-up

root insertion of a into t is

RI (t, a) =
a[⊥,⊥] if t = ⊥,
K (u) [L(u), K (t)[R(u),R(t)]] if a ≺ K (t),

where u = RI (L(t), a)
K (u) [K (t)[L(t),L(u)], R(u)] otherwise.

where u = RI (R(t), a)

Let s = a1a2 . . . an. The bottom-up root insertion
tree constructed from s is given by

RT (s) =
{
⊥ if |s| = 0,
RI (RT (a1a2 . . . an−1), an) otherwise.

Let l are r be symbols that are not inK. Denote
by TK [l, r] the trees in TK∪{l,r}, with K (t) ∈ K,
exactly one leaf node in L(t) labeled by l, exactly
one leaf node in R(t) labeled by r, and all other
nodes are labeled by keys inK. Let t1, t2 ∈ TK∪{l,r}
and t ∈ TK [l, r]. Then t[t1, t2] denotes the tree
obtained by replacing the node labeled by l with t1,
and the node labeled by r with t2. Using the same
notation as for trees in TK , we denote by a[t1, t2],
with a ∈ K, t1, t2 ∈ TK∪{l,r}, the tree t in TK [l, r]
with R(t) = a,L(t) = t1 and R(t) = t2. We denote
by BK [l, r] all trees t ∈ TK [l, r], such that t[⊥,⊥] ∈
BK .

Definition 2.3 Let t ∈ BK and a ∈ K with a 6∈
keys(t). The tree that results from the top-down
root insertion of a into t is given by

RI top(t, a) := RI τ (t, a[l, r]),

where RI τ (t1, t2) ∈ BK , for t1 ∈ BK and t2 ∈
BK [l, r], is defined inductively on the height of t1,
as follows.

RI τ (t1, t2) =
t2[⊥,⊥] if t1 = ⊥,
RI τ (L(t1), t2[l, v]) if K (t2) ≺ K (t1),

where v = K (t1)[r,R(t1)]
RI τ (R(t1), t2[u, r]) otherwise.

where u = K (t1)[L(t1), l]

Let s = a1a2 . . . an. The top-down root insertion
tree constructed from s is given by

RT top(s) ={
⊥ if |s| = 0,
RI top(RT top(a1 . . . an−1), an) otherwise.

To illustrate top-down root insertion, we con-
sider RI top(3[1[⊥,⊥], 4[⊥,⊥]], 2). We have that

RI top(3[1[⊥,⊥], 4[⊥,⊥]], 2)
= RI τ (3[1[⊥,⊥], 4[⊥,⊥]], 2[l, r])
= RI τ (1[⊥,⊥], 2[l, 3[r, 4[⊥,⊥]]])
= RI τ (⊥, 2[1[⊥, l], 3[r, 4[⊥,⊥]]])
= 2[1[⊥,⊥], 3[⊥, 4[⊥,⊥]]]

Research Article — SACJ, No. 44., December 2009 33

The definitions of top-down and bottom-up
root insertion, are formal versions of the pseu-
docode for root insertion as described in [7] and
[9], respectively.

The difference between leaf, and for example
top-down root insertion, looks formidable when
comparing Definitions 2.1 and 2.2, but as explained
in the introduction, for t ∈ BK and a ∈ K, LI (t, a)
and RI (t, a) require the same number of compar-
isons. From Definition 2.3, it can also be shown that
LI (t, a) and RI top(t, a) require the same number of
comparisons. From now on we denote by C (t, a)
the number of comparisons required for LI (t, a),
RI (t, a) or RI top(t, a). We can now define the
cost required to build a binary tree with leaf inser-
tion, bottom-up, and top-down root insertion re-
spectively.

Definition 2.4 For s = a1a2 . . . an, let s̄ =
a1a2 . . . an−1. The cost to construct a tree for s
with leaf insertion, is denoted by LC (s) and defined
inductively as follows.

LC (s) =
{

0 if |s| = 1,
C (LT (s̄), an) + LC (s̄) if |s| > 1.

Similarly, the cost to construct a tree for s with
bottom-up root insertion, is denoted by RC (s) and
defined inductively as follows.

RC (s) =
{

0 if |s| = 1,
C (RT (s̄), an) + RC (s̄) if |s| > 1.

Finally, the cost to construct a tree for s with top-
down root insertion, is denoted by RC top(s) and
defined inductively as follows.

RC top(s) ={
0 if |s| = 1,
C (RT top(s̄), an) + RC top(s̄) if |s| > 1.

3 PROPERTIES OF ROOT INSERTION

The main results in this section state that the leaf
insertion tree of a sequence s is identical to the
bottom-up root insertion tree of rev(s), and that
top-down and bottom-up root insertion are equiv-
alent in terms of trees constructed and number of
comparisons required. In the first result, we show
that if we use Definition 2.2, from the previous sec-
tion, for top-down root insertion, then the inserted
key do indeed end up at the root of the newly con-
structed tree.

Lemma 3.1 Let t ∈ BK and a ∈ K with a 6∈
keys(t). Then K (RI (t, a)) = a.

Proof (By strong induction over tree heights.)
Base case: Let t = ⊥ so that H (t) = 0. Then
K (RI (t, a)) = K (RI (⊥, a)) = K (a[⊥,⊥]) = a.

Induction step: Assume that the claim holds
for all trees of height less than n. In other words,
K (RI (t, a)) = a for all t ∈ BK such that H (t) < n.
Now consider t = b[u, v] ∈ BK , where H (t) = n.
This means that H (u) < n and H (v) < n. If a ≺ b,
then

K (RI (t, a))
= K (RI (b[u, v], a))
= K (K (w)[L(w), b[R(w), v]]) w = RI (u, a); a ≺ b
= K (a[L(w), b[R(w), v]]) induc., H (u) < n
= a

and similarly if b ≺ a.

The result stated in the next lemma will be used
in an inductive way in order to obtain Theorem 3.3.

Lemma 3.2 Let t ∈ BK and a, b ∈ K with a, b 6∈
keys(t), such that a 6= b. Then RI (LI (t, b), a) =
LI (RI (t, a), b).

Proof (By strong induction over tree heights.)
Base case: Let t = ⊥ and therefore H (t) = 0. If
a ≺ b, then

RI (LI (t, b), a) = RI (b[⊥,⊥], a) = a[⊥, b[⊥,⊥]]

and

LI (RI (t, a), b) = LI (a[⊥,⊥], b) = a[⊥, b[⊥,⊥]],

and similarly, if b ≺ a.
Induction step: Assume that the claim holds

for trees of height less than n. In other words,
LI (RI (t, a), b) = RI (LI (t, b), a) for all t ∈ BK such
that H (t) < n. Now consider t = c[u, v] ∈ BK
where c ∈ K and H (t) = n. This means that
H (u) < n and H (v) < n. There are six order-
ings of a, b, and c to consider. We assume that
a ≺ b ≺ c. The induction step for the other cases
can be obtained by similar arguments.

RI (LI (t, b), a)
= RI (LI (c[u, v], b), a)
= RI (c[LI (u, b), v], a) b ≺ c
= a[L(w′), c[R(w′), v]] w′ = RI (LI (u, b), a); a ≺ c

and

LI (RI (t, a), b)
= LI (RI (c[u, v], a), b)
= LI (a[L(w), c[R(w), v]], b) w = RI (u, a); a ≺ c

= a[L(w),LI (c[R(w), v], b)] a ≺ b

= a[L(w), c[LI (R(w), b), v]] b ≺ c

34 Research Article — SACJ, No. 44., December 2009

Suppose that w = RI (u, a) = d[x, y]. By Lem-
ma 3.1, K (RI (u, a)) = a, hence d = a. Thus

L(w′) = L(RI (LI (u, b), a)) def. of w′

= L(LI (RI (u, a), b)) induc., H (u) < n

= L(LI (a[x, y], b))
= L(a[x,LI (y, b)]) a ≺ b

= x
= L(w) w = d[x, y]

and

R(w′) = R(RI (LI (u, b), a)) def. of w′

= R(LI (RI (u, a), b)) induc., H (u) < n

= R(LI (a[x, y], b))
= R(a[x,LI (y, b)]) a ≺ b

= LI (y, b)
= LI (R(w), b) w = d[x, y]

So

a[L(w), c[LI (R(w), b), v]] = a[L(w′), c[R(w′), v]],

and therefore LI (RI (t, a), b) = RI (LI (t, b), a).

Theorem 3.3 Let s be a sequence over K. Then
LT (s) = RT (rev(s)).

Proof (By strong induction over sequence
lengths.) Base case: If s = a1 and therefore |s| = 1,
then LT (s) = a1[⊥,⊥] = RT (s).

Induction step: Assume that the claim holds for
all sequences s such that |s| < n. In other words,
LT (s) = RT (rev(s)) for all sequences s such that
|s| < n. Consider s = a1a2 . . . an.

LT (s)
= LI (LT (a1 . . . an−1), an)
= LI (RT (an−1 . . . a1), an) (∗)
= LI (RI (RT (an−1 . . . a2), a1), an)
= RI (LI (RT (an−1 . . . a2), an), a1) Lemma 3.2

= RI (LI (LT (a2 . . . an−1), an), a1) (∗∗)
= RI (LT (a2 . . . an), a1)
= RI (RT (an . . . a2), a1) (∗∗∗)
= RT (an . . . a1)
= RT (rev(s))

(The justification for steps (∗), (∗∗), and (∗∗∗)
is based on induction: |a1 . . . an−1| < n,
|an−1 . . . a2| < n, and |a2 . . . an| < n.)

The theorem just proven has important conse-
quences: Any tree shape possible with leaf insertion
is also possible with root insertion. Also, for a given
tree t, the number of sequences s and number of se-
quences s′ of keys, such that RT (s) = t = LT (s′),
are equal.

In the final result we show the equivalence of
top-down and bottom-up root insertion.

Theorem 3.4 Let s = a1a2 . . . an be a sequence
of distinct keys. Then RT (s) = RT top(s) and
RC (s) = RC top(s).
Proof Theorem 3.3 states that RT (s) =
LT (rev(s)), and we know from [9] that
RT top(s) = LT (rev(s)), and therefore
RT (s) = RT top(s). By Definitions 2.2 and 2.3,

RC (s) = C (RT (a1 . . . an−1), an) + RC (a1 . . . an−1)

and

RC top(s)
= C (RT top(a1 . . . an−1), an) + RC top(a1 . . . an−1)

for n ≥ 2. Since RT (a1 . . . an−1) =
RT top(a1 . . . an−1), it follows by induction that
RC (s) = RC top(s).

In the remainder of the paper we will only con-
sider bottom-up root insertion, and will simply refer
to it as root insertion.

4 WORST-CASE COST OF ROOT INSER-
TION

We define the worst-case cost of root insertion as
W r
n := max{RC (s)}|s|=n. Our analysis of the

worst-case cost of root insertion is based on ex-
pressing RC (s) in terms of RC (s̃), where we ob-
tain s̃ from s by removing two elements from s.
From this recurrence we derive an upper bound for
W r
n , and finally we construct a sequence for which

the upper bound is reached. The proof of the next
lemma contains no deep insight, but it is technical
in nature. We will in fact only provide a sketch of
the proof.
Lemma 4.1 Suppose |s| ≥ 3. Then there is a se-
quence s̃, that is obtained from s by removing two
of the keys, and keeping the other keys in s in their
respective order, such that RC (s) ≤ RC (s̃)+ |s|+1.
Proof Let s = a1a2 . . . an. We consider seven
cases that occur when considering the structure of
RT (a1 . . . an). In case 7 we consider the situation
where RT (a1 . . . an) contains a node, such that this
node has a non-empty left subtree and a non-empty
right subtree. All other scenarios are covered by
case 1 through case 6. Also, case 1 and case 2 are
symmetric cases, and similarly for cases 3 and 4,
and cases 5 and 6. In cases 1–6, we define s̃ to be
a1a2 . . . an−2.

Case 1: ai ≺ an−1 ≺ an for i = 1, . . . , n − 2.
Let s̃ = a1a2 . . . an−2. From the definition
of RC (s) we have that RC (s) = RC (s̃) +
C (RT (s̃), an−1) + C (RT (a1a2 . . . an−1), an).
But C (RT (s̃), an−1) ≤ n − 2, since

Research Article — SACJ, No. 44., December 2009 35

tak

J
J
Jt

J
JJT l

t

J
JJT r

Case 7

tan

tan−1
J
JJtan−2
J
JJt

J
JJT ′

Case 5

tan
J
JJtan−1

tan−2

t

J
JJT ′

Case 6

tan

tan−1
J
JJtan−2

t

J
JJT ′

Case 3

tan
J
JJtan−1

tan−2
J
JJt

J
JJT ′

Case 4

tan

tan−1

t

J
JJT ′

Case 1

tan
J
JJtan−1
J
JJt

J
JJT ′

Case 2

Figure 3: The possibilities for the structure of

RT (a1 . . . an) and RT (a1 . . . ak), considered in the proof

of Lemma 4.1.

|s̃| = n − 2. Also C (RT (a1a2 . . . an−1), an) =
C (LT (an−1an−2 . . . a1), an) = 1, since an is
only compared to an−1 when inserting an into
RT (a1a2 . . . an−1) = LT (an−1an−2 . . . a1). Thus,
RC (s) ≤ RC (s̃) + (n− 2) + 1 ≤ RC (s̃) + |s|+ 1.

Case 2: ai � an−1 � an for i = 1, . . . , n − 2. The
argument is similar to Case 1.

Case 3: ai ≺ an−2 for i = 1, . . . , n−3, ai � an−1 for
i = 1, . . . , n − 2, and ai ≺ an for i = 1, . . . , n − 1.
Let s̃ = a1a2 . . . an−2. From the definition
of RC (s) we have that RC (s) = RC (s̃) +
C (RT (s̃), an−1) + C (RT (a1a2 . . . an−1), an).
But C (RT (s̃), an−1) ≤ n − 2, since
|s̃| = n − 2. Also, C (RT (a1a2 . . . an−1), an) =
C (LT (an−1an−2 . . . a1), an) = 2, since an is only
compared to an−1 and an−2 when inserting an into
RT (a1a2 . . . an−1) = LT (an−1an−2 . . . a1). Thus,
RC (s) ≤ RC (s̃) + (n− 2) + 2 ≤ RC (s̃) + |s|+ 1.

Case 4: ai � an−2 for i = 1, . . . , n − 3, ai ≺ an−1

for i = 1, . . . , n−2, and ai � an for i = 1, . . . , n−1.
Similar to case 3.

Case 5: ai � an−2 � an−1 for i = 1, 2, . . . , n − 3,
and ai ≺ an for i = 1, . . . , n − 1. Let
s̃ = a1a2 . . . an−2. From the definition of
RC (s) we have that RC (s) = RC (s̃) +
C (RT (s̃), an−1) + C (RT (a1a2 . . . an−1), an).
But C (RT (s̃), an−1) = 1, since an is only
compared to an−1 when inserting an into
RT (a1a2 . . . an−1) = LT (an−1an−2 . . . a1).
Also, C (RT (a1a2 . . . an−1), an) =
C (LT (an−1an−2 . . . a1), an) ≤ n − 1. Thus,
RC (s) ≤ RC (s̃) + (n− 1) + 1 ≤ RC (s̃) + |s|+ 1.

Case 6: ai ≺ an−2 ≺ an−1 for i = 1, 2, . . . , n − 3,
and ai � an for i = 1, . . . , n− 1. Similar to case 5.

Case 7: There exists a positive integer k with 3 ≤
k ≤ n, such that al ≺ ak for some l ∈ {1, 2, . . . k −
1}, and ar � ak for some r ∈ {1, 2, . . . k − 1}. We
may assume that al and ar are leaf nodes in the
subtrees T l and T r that are indicated in case 7 in
Figure 3. In order to simplify the argument in this
case, we assume that k is as small as possible such
that the root of RT (a1 . . . ak) has a non-empty left
and right subtree. We need the following notation
in the remainder of this proof. For 1 ≤ j ≤ n,
denote by sj the sequence a1 . . . aj . Also, for j ≥ k
let s̄j be the sequence sj with al and ar deleted.

We let s̃ be the sequence s with al and
ar deleted. Let D := RC (s) − RC (s̃). We
need to show that D ≤ (n + 1). Since D =
α + β, with α := RC (sk) − RC (s̄k) and β :=∑n−1
i=k C (LT (rev(si)), ai+1)−C (LT (rev(s̄i)), ai+1),

it is enough to show that α ≤ (k + 1) and β ≤
(n − k). We show that β ≤ (n − k) and leave

36 Research Article — SACJ, No. 44., December 2009

it to the reader as an easy but tedious exercise
to verify that α ≤ (k + 1) . We show that each
term [C (LT (rev(si)), ai+1)−C (LT (rev(s̄i)), ai+1)]
in β is at most 1, and therefore that β ≤ n − k.
This follows from the following two observations on
the trees LT (rev(si)) and LT (rev(s̄i)) for k ≤ i ≤
(n− 1).
• al and ar are leave nodes in LT (rev(si)),

and once we remove these leave nodes
from LT (rev(si)), the trees LT (rev(si)) and
LT (rev(s̄i)) are identical;

• any path from the root to a leaf in LT (rev(si))
contains at most one of al or ar.

From these two observations it follows that insert-
ing ai+1 in RT (si) will be at most one comparison
more expensive than inserting ai+1 in RT (s̄i).
Lemma 4.2 Let n > 1. Then W r

n ≤ n(n/4 + 1)−
2− α where α = 0 if n is even and α = 1/4 if n is
odd.
Proof It is easy to verify that W r

1 = 0, W r
2 = 1,

and W r
3 = 3. Using these values and the previous

lemma, we have that

W r
n ≤ (n+1)+(n−1)+· · ·+5+W r

2 = n(n/4+1)−2

when n is even, and

W r
n ≤ (n+ 1) + (n− 1) + · · ·+ 6 +W r

3

= n(n/4 + 1)− 5/4

when n is odd.
Theorem 4.3 Let n > 1. Then W r

n = n(n/4 +
1)− 2− α where α = 0 if n is even and α = 1/4 if
n is odd.
Proof From Lemma 4.2 we know that n(n/4+1)−
2 − α is an upper bound for W r

n when n > 1. All
that remains is to show that the bound is reached
for every n. Consider the n keys a1 ≺ a2 ≺ · · · ≺ an
and the sequence s = amam+1 . . . an a1a2 . . . am−1

where m = bn/2c + 1. Let k = n − m + 1. The
following table shows the cost of building the root
insertion tree RT (s):

Insert nr. Key Resulting tree Cost
i a ti = RI (ti−1, a) C (ti−1, a)

1 am am[⊥,⊥] 0
2 am+1 am+1[t1,⊥] 1
3 am+2 am+2[t2,⊥] 1
...
k an an[tk−1,⊥] 1

k + 1 a1 a1[⊥, tk] k
k + 2 a2 a2[u1, tk] k + 1
k + 3 a3 a3[u2, tk] k + 1

...
n am−1 am[um−1, tk] k + 1

tam+i

tam+i−1

. . .tam

J
JJ

tai

tai−1

. . .ta1

tan

tan−1

. . .tam
Figure 4: Intermediary trees of the worst-case example

in Theorem 4.3

where t0 = ⊥ and ur =
ar[ar−1[. . . a2[a1[⊥,⊥],⊥] . . . ,⊥],⊥]. Figure 4
shows the resulting trees after the i-th insertion
for 1 ≤ i ≤ k (on the left) and after the (k + i)-th
insertion for 1 ≤ i < m (on the right). Adding
the numbers in the rightmost column of the table
yields the desired result.

Although we shall not prove it, for n = 2 both
possible sequences produce the worst-case result.
For n = 3 and n = 4 there are four such sequences,
and when n ≥ 5 there are eight sequences when n
is even, and sixteen when n is odd.

5 EXPERIMENTAL RESULTS

In this section we provide experimental results that
will provide the impetus for future investigations.
We will not state the various obvious but interest-
ing questions that can be asked by considering these
experimental results. The results for root insertion
were obtained by a brute-force approach of consid-
ering all n! sequences of length n, and counting for
each sequence the number of comparisons required
for root insertion.

Even though a brute-force approach is suffi-
cient to obtain our experimental results for leaf
insertion, we briefly describe an inductive method
that can be used to obtain the cost distribution,
in terms of number of comparisons, for inserting n
keys in a search tree by using leaf insertion. Al-
though this result is most probably well-known,
we could not find an appropriate reference. The
reasoning required to obtain the result is more or
less the same argument that is used to show that
the average cost, A`n, to construct a leave inser-
tion tree with n keys is given by the recurrence
A`n = n − 1 + 1/n

∑
1≤k≤n(A`k−1 + A`n−k). See for

example [3], section 5.7, for a discussion of this re-
sult. For each n ∈ {1, 2, 3, . . .}, let Ln(z) be the
polynomial with the coefficient of zm equal to the
number of sequences of length n for which the cost
of constructing the leaf insertion tree is equal to m.
For example, L1(z) = 1 = 1z0, since there is one
sequence of length 1 and the cost of constructing

Research Article — SACJ, No. 44., December 2009 37

the leaf insertion tree from this sequence is 0. As
a notational convenience, we define L0(z) to be 1.
We have for example that L2(z) = 2z, since we have
2 sequences of length 2 and the cost of construct-
ing a tree by leaf insertion from any of these two
sequences is equal to 1. Also, L3(z) = 2z2 + 4z3,
since we have 2 sequences of length 3 for which the
cost is 2, and 4 sequences for which the cost is 3.
Note that the sum of the coefficients of Ln(z) is
equal to n!, since we have n! sequences of length
n. The polynomials Ln(z) can also be defined re-
cursively as follows: Let n ≥ 0, then Ln+1(z) =
zn[
∑n
i=0

(
n
i

)
Li(z)Ln−i(z)]. Thus we have for ex-

ample that L4(z) = z3(L0(z)L3(z)+3L1(z)L2(z)+
3L2(Z)L1(z) + L3(z)L0(z)) = 12z4 + 4z5 + 8z6.
Therefore, if we consider the 24 sequences of length
4, for 12 sequences the cost of constructing a leaf
insertion tree is 4, for 4 sequences the cost is 5 and
for 8 sequences the cost is 6. Similarly, L5(z) =
16z10 + 8z9 + 24z8 + 32z7 + 40z6. The logic be-
hind the formula for Ln+1(z) is simple. A tree with
(n+ 1) keys, consists of a root and a left subtree of
size i and a right subtree of size (n− i), for some i
between 1 and n. For any sequence a1 . . . an+1 we
select the i positions from 2, . . . , n+1 that will con-
tain the keys of the left subtree. This can be done
in
(
n
i

)
ways. The product Li(z)Ln−i(z) has terms

czm, where c is the number of pairs of sequence
(s1, s2), where the length of s1 is i and the cost of
constructing a leaf insertion tree from s1 is j, and
the length of s2 is n− i and the cost of constructing
a leaf insertion tree from s2 is m − j. The addi-
tional term zn, preceding [

∑n
i=0

(
n
i

)
Li(z)Ln−i(z)],

is required since each key added to the left or right
subtree will require one more comparison to be in-
serted in a tree with (n + 1) keys, than if it were
simply inserted in the left or right subtree on its
own.

In the table below we list for sequence lengths
n = 2 to n = 13, the percentage of sequences for
which we need fewer comparisons (in column “L <
R”), the same number of comparisons (in column
“L = R”), and more comparisons (in column “L >
R”) for leaf insertion than for root insertion.

In Figure 5 the cost distributions of leaf and
root insertion, for sequence lengths n = 6 to n = 13,
are plotted. In each case, a point (a, b) on a graph
indicates that there are b sequences, of length n, for
which a comparisons are required to construct the
search tree. The solid and dotted lines represent
leaf and root insertion, respectively. It is interest-
ing to note that the graphs are almost smooth and
symmetric for root insertion, but jagged and not
symmetric for leaf insertion.

n L < R L = R L > R

2 0.0000 1.0000 0.0000
3 0.3333 0.3333 0.3333
4 0.4167 0.2500 0.3333
5 0.4500 0.2000 0.3500
6 0.4750 0.1333 0.3917
7 0.5099 0.1040 0.3861
8 0.5160 0.0926 0.3915
9 0.5225 0.0819 0.3956
10 0.5312 0.0691 0.3997
11 0.5342 0.0627 0.4031
12 0.5366 0.0575 0.4059
13 0.5392 0.0525 0.4083

6 CONCLUSION

The main result in this paper states that in the
worst case, n(n/4 + 1) − 2 − α (α = 0 for n even,
and α = 1/4 for n odd) comparisons are required
to build a binary search tree with n distinct keys,
using root insertion. We were rather surprised by
the fact that we could not find a proof of this result
in the literature.

REFERENCES

[1] G. M. Adelson-Velsky, E. M. Landis. An algorithm
for the organization of information. Soviet Math.,
3:1259–1263, 1962.

[2] A. D. Booth, A. J. T. Colin. On the efficiency of a
new method of dictionary construction. Informa-
tion and Control, 3:327–334, 1960.

[3] P. Flajolet, R. Sedgewick. An Introduction to the
Analysis of Algorithms. Addison-Wesley, 1996.

[4] T. N. Hibbard. Some combinatorial properties of
certain trees with applications to searching and
sorting. Journal of the ACM, 9:13–28, 1962.

[5] A. T. Jonassen, D. E. Knuth. A trivial algorithm
whose analysis isn’t. Journal of Computer and Sys-
tem Sciences, 16:301–322, 1978.

[6] D. E. Knuth. Sorting and Searching, Volume 3
of The Art of Computer Programming. Addison-
Wesley, 1973.

[7] R. Sedgewick. Algorithms in Java, Parts 1-4,
Addison-Wesley Professional, 3rd edition, 2003.

[8] D. Sleator, R. E. Tarjan. Self-adjusting binary
trees. Proc. 15th Symp. Theory of Computing, 235–
245, 1983.

[9] C. J. Stephenson. A method for constructing bi-
nary search trees by making insertions at the root.
International Journal of Computer and Informa-
tion Sciences, 9:15–29, 1980.

38 Research Article — SACJ, No. 44., December 2009

ppp
ppp
ppp
pp

ppp
ppp pp

ppppppppppppp
ppppppppppp

pp p p p p p p p pppppppppppppppppppppppppppppppppppp
2

280

5 15

n = 6

pp
pp
pp
ppp p
p p pppppppppp

ppppppppppp
ppppppppppp

ppp
2

1292

6 21

n = 7

pp
pp
pp

ppp
pp
pp ppppp

ppppppppppp
ppppppppppp

ppppppppppp
pppp p p p p ppp p p p2

8966

7 28

n = 8

ppp
ppp
pp
pp pppppppppp

ppppppppppp
ppppppppppp
pppppppppp
pp p p p p p2

71548

8 36

n = 9

ppp
pp
pp

ppp p p p p p p p p p p p p p p p ppppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppp p p p p p2

642612

9 45

n = 10

pp
pp
ppp
ppp pppppppppppp
ppppppppppp
ppppppppppp
pppppppppp
pp p p p p p p p p p2

6.5 · 106

10 55

n = 11

pp
ppp
ppp
pp

ppppppppppp
ppppppppppp
ppppppppppp
ppp2

7.1 · 107

11 66

n = 12

ppp
pp
pp
ppp p p p p p p p p p p p p ppppppppppppppppp
ppppppppppp
pppppppppp
pppppppppp
ppp p p p p p p2

8.7 · 108

12 78

n = 13

Figure 5: Cost distribution of leaf and root insertion for sequence lengths n = 6 to n = 13. The solid and dotted

lines represent leaf and root insertion, respectively.

