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Abstract 

Introduction: 

HIV/AIDS mortality is declining due to successful highly active anti-retroviral therapy (HAART). However, 

obesity, non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD) in treated HIV-infected 

populations are rising. Impaired peroxisome proliferator-activated receptor (PPARα/γ) activity is partly 

implicated. 

Aims: 

To assess the contribution of a protease inhibitor (Lopinavir/Ritonavir (LPV/r) and nucleoside reverse 

transcriptase inhibitor (Azidothymidine (AZT)/lamivudine (3TC)) HAART regimen in the development of 

NAFLD and CVD in rats with high caloric diet (HCD)-induced obesity, and to investigate dual PPARα/γ 

stimulation in limiting HAART-induced NAFLD and CVD. 

Methods: 

Wistar rats were randomised into rat chow and HCD groups (n=88/group; 16 weeks). From week 10, each 

group was further sub-divided into: vehicle/control, HAART, HAART+PPARα/γ agonist (Saroglitazar) and 

Saroglitazar only (n=22/group) administered via oral gavage. Endpoints: Daily food/water consumption, 

weekly total body mass (TBM), random+fasting blood glucose measurements (n=8/group); hearts exposed to 

either 20min global ischaemia/10min reperfusion for Western blot (WB) analysis (n=6/group) or 35min 

regional ischaemia/60min reperfusion (n=8/group) for haemodynamic and infarct size (IS) determinations. 

Liver samples were histologically assessed (n=12/group) and analysed by WB. Intraperitoneal (IP) fat was 

weighed. Fasting serum lipids, insulin and oxidative stress markers were measured (n=8/group). WB analyses 

of important signalling proteins in pre/post-cardiac ischaemia, liver and aorta tissues. Thoracic aorta 

(n=8/group) segments were subjected to isometric tension studies. 

Results: 

The HCD resulted in obesity (increased: TBM, %IP fat (HCD control 6.50±0.40% vs. lean control 3.60±0.3%; 

p<0.0001), liver mass, insulin and triglycerides (TGs). Additionally, HCD induced insulin resistance (IR). 

HAART+Saroglitazar led to reduced %IP fat in lean and HCD groups. HAART-induced IR, elevated cardiac 

mass and insulin in obese rats were limited by Saroglitazar co-treatment. HCD+HAART-induced oxidative 

stress (elevated conjugated dienes), was limited in combined HAART+Saroglitazar. 

Liver histology: HAART induced moderate hepatic steatosis in ~67% of obese rats and moderate 

inflammation in ~25% of cases. Combined HAART+Saroglitazar limited these changes and upregulated 

adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (PKB/Akt) activity, which 

were downregulated by HAART in HCD. 

Heart/aorta studies: Untreated obese rats had smaller %IS compared to lean control rats (19.1±1.6 vs. 

26.1±1.6, respectively; p<0.05). IS for HCD+HAART animals were smaller (despite poor cardiac 

performance) compared to untreated obese rats. Post-ischaemia activity of extracellular-signal-regulated 
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kinase (Erk1/2), PKB/Akt, AMPK and endothelial nitric oxide synthase (eNOS) was downregulated, whereas 

expression of p22-phox and caspase-3 was accentuated. HAART+Saroglitazar upregulated (1.5-fold) the 

expression of Erk1/2, PKB/Akt, AMPK and eNOS, and downregulated caspase-3 and p22-phox. 

Obese+HAART rats demonstrated poor aortic relaxation accompanied by downregulated eNOS and PKB/Akt, 

and upregulated p22-phox. However, Saroglitazar+HAART in obese animals improved aortic relaxation by 

~30%, accompanied by upregulation of eNOS, and PKB/Akt, and downregulated p22-phox.  

Discussion and conclusion: 

HAART-induced NAFLD and CVD in obesity were limited by PPARα/γ agonist co-administration. HAART 

treatment for six weeks was not a cardiovascular risk factor per se, but it potentiated HCD-induced 

cardiovascular effects. Monitoring cardiovascular risk factors in obese+HAART patients is crucial, and our 

findings suggest that there is therapeutic potential in co-treatment with PPARα/γ agonists. The metabolic, 

functional and signalling disturbances in the liver, heart and aorta tissues in obese+HAART rats are interlinked, 

and partially limited by co-treatment with a dual PPARα/γ agonist. 
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Opsomming 

Inleiding: 

Daar is ‘n daling in die HIV/VIGS sterftesyfer a.g.v. suksesvolle hoogs-aktiewe antiretrovirale terapie 

(HAART). Vetsug, nie-alkoholiese vetterige lewersiekte (NAFLD) en kardiovaskulêre siekte (KVS) in 

behandelde HIV-geïnfekteerde populasies is aan die styg. Ingekorte peroksisoom proliferator-geaktiveerde 

reseptor (PPARα/γ) funksie is deels hiervoor verantwoordelik. 

Doelwitte: 

Om die bydraes van ‘n protease inhibitor (Lopinavir/Ritonavir (LPV/r) en nukleosied omgekeerde 

transkriptase inhibitor (Azidothymidine (AZT)/lamivudine (3TC)) as deel van HAART in die ontwikkeling 

van NAFLD en KVS in rotte met ’n hoë kaloriedieet (HCD)-geïnduseerde vetsug te bepaal, asook tweeledige 

PPARα/γ-stimulasie in die vermindering van HAART-geïnduseerde NAFLD en KVS te bepaal. 

Metodes: 

Wistar rotte is lukraak in ‘n gewone rot-dieet en ‘n HCD groep (n=88/groep; 16 weke) ingedeel. Vanaf Week 

10 is elke groep verder onderverdeel in: oplosmiddel/kontrole, HAART, HAART+PPARα/γ agonis 

(Saroglitazar) en slegs Saroglitazar (n=22/groep) wat via ‘n gastriese buis toegedien was. 

Eindpunte: 

Daaglikse kos/water verbruik, weeklikse totale liggaamsgewig (TBM), lukrake+vastende bloedglukose 

(n=8/groep); harte wat blootgestel is aan óf 20min globale isgemie/10min herperfusie, wat vir Western blot 

(WB) ontleding aangewend is, of 35min streeksisgemie/60min herperfusie (n=8/groep), wat vir 

hemodinamiese en infarktgrootte (IS) bepalings aangewend is. Lewermonsters is histologies ondersoek 

(n=12/groep) en ontleed deur WB. Intraperitoneale (IP) vet is geweeg. Vastende serumlipiede, oksidatiewe 

spanningsmerkers en insulien is gemeet (n=8/groep). WB ontledings van belangrike seintransduksieproteïene 

in pre/post-isgemiese hart-, lewer- en aortaweefsel uitgevoer. Torakale aortasegmente (n=8/groep) is aan 

isometriese spanningstudies blootgestel. 

Resultate: 

Die HCD het tot vetsug gelei (verhoogde: TBM, %IP vet (HCD kontrole 6.50±0.40% vs. gewone-dieet 

kontrole 3.60±0.3%; p<0.0001), lewermassa, insulien en trigliseriedes). Verder het HCD tot 

insulienweerstandigheid (IR) gelei. HAART+Saroglitazar het tot verlaagde %IP vet in kontrole en HCD 

groepe gelei. HAART het IR veroorsaak, terwyl verhoogde hartmassa en insulien in vetsugtige rotte deur ko-

behandeling met Saroglitazar verlaag is. HCD+HAART het vrye-vetsuur-oksidasie (verhoogde gekonjugeerde 

diëne) geïnduseer, wat deur gekombineerde HAART+Saroglitazar verminder is. 
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Lewerhistologie: HAART het matige lewersteatose in ~67% van vetsugtige rotte en matige inflammasie in 

~25% veroorsaak. Hierdie veranderinge is deur gekombineerde HAART+Saroglitazar verlig en AMPK en 

PKB/Akt aktiwiteit is opgereguleer, wat deur HAART afgereguleer is. 

Hart/aorta studies: Onbehandelde vetsugtige rotte het kleiner IS as kontrole gehad (19.1±1.6 vs. 26.1±1.6, 

onderskeidelik; p<0.05). Die IS vir rotte op HAART+HCD was kleiner (ondanks swak hartfunksie) vs. hul 

onbehandelde eweknieë. Die post-isgemiese aktiwiteit van Erk1/2, PKB/Akt, AMPK en eNOS is afgereguleer, 

terwyl uitdrukking van p22-phox en kaspase-3 verhoog is. Die uitdrukking van Erk1/2, PKB/Akt, AMPK en 

eNOS is deur HAART+Saroglitazar opgereguleer (1.5-voudig) en PKB/Akt en p22-phox is afgereguleer.  

Vetsugtige+HAART rotte het swak aortiese verslapping getoon ~30%, wat met afgereguleerde eNOS en 

PKB/Akt en opgereguleerde p22-phox geassosieer was. Tog het Saroglitazar+HAART in vetsugtige rotte tot 

verbeterde aortiese verslapping, gepaard met opgereguleerde eNOS en PKB/Akt, asook afgereguleerde p22-

phox gelei. 

Bespreking en gevolgtrekking: 

HAART-geïnduseerde lewersteatose en KVS in vetsugtige rotte is deur ko-behandeling met ʼn PPARα/γ 

agonis verlig. HAART per se was nie ‘n kardiovaskulêre risikofaktor nie, maar het die HCD-geïnduseerde 

kardiovaskulêre effekte vererger. Dis noodsaaklik om die kardiovaskulêre risikofaktore in vetsugtige+HAART 

pasiënte te monitor, en ons bevindinge toon dat ko-behandeling met PPARα/γ agoniste terapeutiese potensiaal 

het. Die metaboliese, funksionele en seintransduksieversteurings in die lewer, hart en aortaweefsel in 

vetsugtige+HAART rotte is ineengeskakel en word gedeeltelik verlaag deur ko-behandeling met ‘n tweeledige 

PPARα/γ agonis.  
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Dedication 

This treatise is dedicated to the immunocompromised; stay strong, we are working on solutions… 
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Chapter 1 : Introduction and 

Literature Review 

1.1 General introduction 

Reports by the World Health Organisation (WHO) indicate that although over 36 million people are living 

with human immunodeficiency virus / acquired immunodeficiency syndrome (HIV/AIDS) globally, mortality 

associated with the infection has drastically dropped from 2.4 million deaths in the year 2005 to 1.5 million 

deaths in 2015 (World Health Organisation 2015). Similarly, the prevalence of non-communicable diseases 

(NCDs) such as Cardiovascular Disease (CVD) and metabolic syndrome is on the rise in the low-to-middle 

income countries (LMICs) especially in sub-Saharan Africa, a region that is already burdened with a high 

prevalence of communicable diseases such as HIV/AIDS. However, current trends indicate that the reduction 

in HIV/AIDS-associated mortality in the last decade is attributable to widespread treatment of HIV infected 

individuals with antiretroviral drugs (ARVs) (Chung et al. 2009; Mocroft et al. 2003).  

The successful use of highly active anti-retroviral therapy (HAART) has altered the natural history of this fatal 

infection into a manageable chronic medical condition, and there is strong clinical and epidemiological 

evidence that this has been associated with emergence of other non-AIDS-related adverse conditions such as 

non-alcoholic fatty liver disease (NAFLD), insulin resistance, diabetes mellitus (DM), overweight / obesity, 

hypertension and CVD (Durand et al. 2011; Guehi et al. 2016). Current developments indicate that these non-

AIDS events, attributed to chronic ARV use, also contribute to morbidity and mortality (Leite & Sampaio 

2010; Lumsden & Bloomfield 2016). For example, the rates of hospitalization due to coronary heart diseases 

have been shown to be higher in HIV-infected patients than in non-HIV-infected persons and the incidence of 

acute myocardial infarct has been shown to follow similar trends (Friis-Møller et al. 2003a; Friis-Møller et al. 

2003b). 

It is projected that by the year 2030, NCDs will account for over 75% of global mortality and CVD is estimated 

to be the number one cause of deaths (ahead of all other NCD) in the developing world population (Beaglehole 

& Bonita 2008). Recent studies indicate that the prevalence of overweight / obesity in patients on HAART is 

higher than in the general population (Gain et al. 2013; Crum-Cianflone et al. 2010; Crum-Cianflone et al. 

2011). Unpublished preliminary data from the EndoAfrica prospective cohort study currently underway in the 

Western Cape province (South Africa) show high rates of overweight / obesity (increased body mass index 

(BMI) and waist circumference) in HIV-infected study participants (with or without HAART), ranging 
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between 30% - 50% (personal communication: Prof H Strijdom, EndoAfrica project coordinator). These 

findings provide evidence that an increasing number of patients living with HIV/AIDS are overweight or 

obese, yet studies focusing on the effects of antiretroviral drugs in the context of overweight/obesity are scarce. 

Furthermore, there is no clearly defined therapy to counter these metabolic derangements.  

The intricate interplay among HIV/AIDS, HAART, metabolic derangements and CVD, however, make it 

extremely difficult to dissect out the underlying pathophysiological mechanisms. Consequently, to date, there 

is no clearly devised therapy to alleviate the complications. This study therefore, set out to address this paucity 

of knowledge by exploring HAART-associated metabolic derangements and resultant cardiac and vascular 

dysfunctions using an experimental model of high calorie diet for induction of obesity in Wistar rats treated 

with ARVs. Additionally, the study investigated the role of dual peroxisome proliferator-activated receptors 

alpha (PPARα) and peroxisome proliferator-activated receptors gamma (PPARγ) stimulation as potential 

therapeutic targets to limit HAART-induced metabolic derangements, and cardiovascular dysfunction. 

This chapter focuses on the literature demonstrating the intricate interplay among HAART, hepatic steatosis, 

obesity, CVD and offers insight into the role played by PPAR α / γ signalling, among other intracellular 

cascades, as a concrete background for this study. Although the HI-virus is implicated in these pathologies, it 

is not the focus of this study as we primarily aimed to investigate the effects of ARVs. Consequently, no 

humanized HIV-1 animal models were employed. 

1.2 Cardiovascular disease, CVD 

1.2.1 Introduction 

CVD is a broad umbrella term used for any form of disease of the heart and / or blood vessels. In this treatise, 

the term CVD will be used to define the clinical entity that results from impaired cardiac function following 

compromised perfusion. The primary cause of the impaired perfusion is narrowing of the coronary vessel / 

vessels resulting in either focal or diffuse myocardial infarction (MI) also referred to as ischaemic heart 

diseases (IHD) (Ferdinandy et al. 2007). Coronary heart disease (CHD) / coronary artery disease (CAD) refers 

to the underlying vascular pathology where a fibrofatty plaque forms in the coronary lumen narrowing the 

vessel diameter resulting in altered blood flow, i.e., reduced or complete obstruction of blood flow (Castelli 

1988). To ascertain accurate diagnosis of MI, the European Society of Cardiology (ESC) and American 

College of Cardiology joint task force drew a consensus document to redefine criteria based on 

electrocardiographic (ECG), biochemical and pathologic findings of (acute, evolving or recent MI) (Antman 

et al. 2000). However, the broad scope of CVDs is still considered by WHO 

(Http://www.who.int/cardiovascular_diseases/en/ n.d. “Accessed: 08/08/2017”) and other bodies 

encompassing various categories such as: - 

i) CHD referring to pathologies of the blood vessels responsible for myocardial perfusion. 
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ii) Cerebrovascular disease: These are disorders of the blood vessels that perfuse the brain resulting 

in either ischaemic or haemorrhagic stroke. 

iii) Peripheral arterial disease: These are disorders of blood vessels perfusing the upper and lower 

extremities 

iv) Rheumatic heart disease (RHD): Refers to disorders of the cardiac muscles and valves resulting 

from rheumatic fever. 

v) Congenital heart diseases: These are malformations of the heart valvular and vascular structures 

existing at birth.  

vi) Deep venous thrombosis and pulmonary embolism: These are disorders of coagulation in the 

venous system which can dislodge and embolise to the heart and pulmonary vessels leading to 

ischaemia. 

Of all the NCDs, CVD has the highest global cause-mortality rate and shows an upward trend in the developing 

world (Wang et al. 2016).  

1.2.2 Epidemiology 

CVD ranks as the leading single cause of mortality and loss of disability-adjusted life years (DALYs) globally 

and although studies show declining trends in high income countries, CVD mortality rates are on the rise in 

LMICs (Wang et al. 2016; Vedanthan et al. 2014). The WHO estimates that globally, CVDs account for about 

17.5 million deaths (31% of all deaths) each year with over 75% of these deaths occurring in LMICs 

(http://www.who.int/mediacentre/factsheets/fs317/en/. “Accessed: 29/08/2017”). The rising prevalence of 

NCDs in the developing world poses a double burden of health challenges because of the co-existing 

communicable diseases. Furthermore, of all CVD cases, CHD accounts for most of the cases across the various 

geographical regions (Yusuf et al. 2004; Yusuf et al. 2001). Although the lifetime risk of overall CVD for 

persons above the age of 30 years without known CVD is approaching 50%, the prevalence of CVD in low 

socio-economic settings is rising in younger age groups (Pujades-Rodriguez et al. 2014). 

1.2.2.1 Risk factors 

Extensive studies have identified and classified an array of cardiovascular risk factors (conditions that increase 

the risk of CVD development), and ardent campaigns continue to educate the public at large and those already 

diagnosed with CVD on prevention measures with an aim of mitigating the CVD burden. The Framingham 

prospective cohort study has provided invaluable data over long follow-up periods (Kannel et al. 1961). 

Moreover, studies have shown that with proper adherence to risk modifying / mitigating measures, CAD 

morbidity and mortality rates can be successfully reversed (Piepoli et al. 2016; Moran et al. 2014). 

Cardiovascular risk factors have been profiled (Kannel et al. 1976) and broadly classified into two categories: 

classical / traditional risk factors and new / emerging risk factors (Figure 1.1). The traditional risk factors are 

further sub-classified as non-modifiable (age, gender and hereditary factors) and modifiable (hypertension, 

dyslipidaemia, cigarette (tobacco) smoking, obesity, type 2 diabetes mellitus (T2DM) and sedentary life style) 

Stellenbosch University  https://scholar.sun.ac.za



4 
 

(Hackam & Anand 2003). The metabolic / lipid related factors (modifiable) that predispose to atherosclerosis 

include high apolipoprotein B / apolipoprotein A1 (ApoB / ApoA1), low-density lipoprotein (LDL), oxidised 

LDL and lipoprotein-associated phospholipase A (2) (Pai et al. 2004). The emerging risk factors are further 

classified into inflammatory markers (Blake & Ridker 2002), haemostasis / thrombosis markers such as 

fibrinogen (Kannel et al. 1987) and others as shown in Figure 1.1 below. The underlying principle here is that 

the various conditions favour development of atherosclerotic fibrous and fatty plaques and thrombosis, thus 

predisposing the coronary vessels to occlusion and subsequent reduction in myocardial perfusion. 

Metabolic derangements associated with various medical conditions have been described as a major risk factor 

to development of CVD either acting independently or accelerating already existing risk factors (Kannel & Mc 

Gee 1979). The link between overweight/obesity, diabetes and metabolic syndrome to increased risk of CVD 

is clear (Pérez Rodrigo 2013; Del Ben et al. 2012). Emerging evidence shows that HIV patients on HAART 

are also at increased risk of metabolic dysregulation, development of NAFLD and therefore are predisposed 

to higher risk of CVD compared to untreated HIV patients and the general population (Crum-Cianflone et al. 

2009; Crum-Cianflone et al. 2010; Lakey et al. 2013; Durand et al. 2011). Apart from being associated with 

liver-related morbidity and mortality, NAFLD and HAART also increase the risk of cardiomyopathy and CHD 

(Goland et al. 2006; Friis-Møller et al. 2003a). 

 

Figure 1.1 General classification of cardiovascular risk factors. Abbreviations: - Apo (Apolipoprotein), IL 

(Interleukin). (Blake & Ridker 2002), (Kannel et al. 1987). 

1.2.2.2 CVD Prevention 

The 6th Joint task force of the ESC on CVD prevention guidelines stated that addressing modifiable risk factors 

via healthy dietary practices, blood pressure monitoring, smoking cessation and body weight reduction are key 

in reducing the attributable deaths due to CVD (Piepoli et al. 2016). Therefore, mortality associated with CVD 
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-HAART	in	HIV/	AIDS
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-Inflammation
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is largely preventable. However, successful risk reduction is dependent on lifestyle modification and 

behavioural change which are major challenges to effect despite widespread health education. 

1.2.3 Pathophysiology of myocardial infarction 

Atherosclerosis of the coronary vessels results in impaired cardiomyocyte perfusion that creates an imbalance 

between substrate/ oxygen supply and energy demands. When this imbalance is severely altered, for example 

due to complete obstruction of the coronary flow, the cardiomyocytes undergo ischaemic injury (Pascual & 

Coleman 2016). Depending on the duration and extent of the obstructed flow, cardiomyocytes undergo varying 

degrees of damage that ultimately compromises the ventricular contractility resulting in failure of the heart as 

a pump (Doenst et al. 2013). This mechanical failure is largely attributed to altered cardiomyocyte 

mitochondrial metabolism (Fillmore et al. 2014) resulting in impaired energy generation. Myocardial 

ischaemia is characterised by the loss of cardiomyocytes through necrosis following prolonged durations of 

impaired perfusion. Acute myocardial ischaemia (AMI) clinically presents with the classic chest pain (angina 

pectoris), electrocardiogram (ECG) changes, and changes in biomarkers (troponin and creatine kinase-MB), 

which form the basis of the diagnostic criteria (Antman et al. 2000). 

When cardiomyocytes undergo severe (prolonged) ischaemia, their mode of death can be identified as either 

through oncosis, (coagulation or contraction band necrosis) or through apoptosis (programmed cell death). 

Accordingly, the sections that have undergone infarction are usually classified microscopically (focal necrosis) 

depending on the size of the MI. When the size of the infarct is less than 10 percent of the left ventricle (LV), 

it is classified as small, medium when the size is between 10-30% of the LV or large when it is more than 30 

percent of the LV. Also by location of the infarct either (anterior, lateral, inferior, posterior or septal) or 

combined locations (Antman et al. 2000). The injury suffered by the myocardium is twofold: first resulting 

from ischaemia, and secondly, when blood flow is re-established (reperfusion), either with or without clinical 

intervention, the myocardium undergoes an additional form of insult referred to as reperfusion injury. 

Reperfusion injury is attributed to inflammation, oxidative stress and further impaired mitochondrial function 

(Ferdinandy et al. 2007; Vilahur & Badimon 2014; Doenst et al. 2013). 

1.2.4 Role of endothelium 

The endothelium, a monolayer of specialised cells lining vascular lumen, is a crucial vascular structure that is 

strategically located between the circulating blood and vascular smooth muscle. It plays a key role in vascular 

homeostasis because it is not only a source of various mediators that are key in regulation of vascular tone and 

growth (Folkman 1995), but also is involved in the maintenance of normal platelet function, haemostasis and 

inflammation. Therefore, a complex relationship exists between the endothelium and CVD because 

atherosclerotic forms of CVD result from functional and structural changes in the coronary endothelium and 

smooth muscle layer (Lüscher & Vanhoutte 1991). 
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One of the most extensively studied endothelium-derived mediators is nitric oxide (NO). NO is a lipophilic 

gaseous signalling molecule synthesized by endothelial nitric oxide synthase (eNOS) from L-arginine, and is 

essential in mediating smooth muscle relaxation thereby regulating vascular tone (Palmer et al. 1988). 

Moreover, its release into the lumen inactivates platelets protecting against abnormal coagulation and 

thrombosis. Impaired endothelial function, and NO signalling not only predispose to vascular constriction 

(Panza et al. 1990) and coagulation, but also lead to altered vascular smooth muscle proliferation and migration 

enhancing proatherogenicity and susceptibility to hypertension, thrombosis and eventual atherosclerotic CVD 

(Badimon et al. 1993). Compromised eNOS activity is also associated with increased cardiovascular risk (Qian 

& Fulton 2013).  

The deleterious effects of endothelial damage / dysfunction manifest not only in MI, but also in, among others, 

stroke and renal vasculopathies (Félétou & Vanhoutte 2006). The endothelium is susceptible to the deleterious 

effects of various compounds either endogenously secreted or exogenously administered. Pharmacological 

agents, such as ARVs have been shown to increase susceptibility to endothelial damage and subsequent 

increased risk of CVD (Zhou et al. 2005). 

1.2.5 CVD in metabolic syndrome 

There is a growing body of clinical and epidemiological evidence that HAART and NAFLD not only increase 

the risk of liver failure, but are also associated with metabolic and cardiovascular complications. For example, 

patients who develop NAFLD from chronic use of HAART, have been shown to be at an increased risk of 

heart failure as a result of cardiomyopathy, CHD or dysrhythmias (Ballestri et al. 2014; Goland et al. 2006; 

Targher et al. 2005). Therefore, the metabolic derangements in NAFLD aggravate the traditional 

cardiovascular risk factors associated with the metabolic syndromes. Additionally, NAFLD and metabolic 

syndrome are closely associated with T2DM, obesity. NAFLD is therefore considered a reliable indicator of 

abnormal ectopic fat accumulation characterised by chronic inflammatory states (Ballestri et al. 2014; Bhatia 

et al. 2012). 

The ectopic accumulation of fat in non-adipose tissues e.g. the liver and skeletal muscle often leads to 

lipotoxicity in these tissues (Tamilarasan et al. 2012). Pathologic lipid accumulation in the liver results in 

several metabolic derangements that often have deleterious pathophysiologic consequences. These include, 

but are not limited to: - 

i) abnormal glucose metabolism characterised by increased hepatic gluconeogenesis and 

glycogenolysis which eventually lead to non-insulin-dependent DM increased oxidative stress, 

(Videla et al. 2004; Araya et al. 2004), endothelial dysfunction (Targher et al. 2005) and 

hypercoagulability (Knaapen et al. 2013). 

ii) abnormal lipid and lipoprotein metabolism leading to an accelerated rate of atherosclerosis. 
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The foregoing discussion partly explains why NAFLD ultimately leads to a dysfunctional cardiometabolic 

phenotype (Ballestri et al. 2014). In addition, cardiovascular mortality is the main cause of premature death in 

NAFLD (Bhatia et al. 2012).  

These functional changes are often accompanied by structural changes in the myocardium and precede overt 

metabolic changes or CVD (Hallsworth et al. 2013). The mechanisms leading to myocardial damage are 

therefore multifactorial and are mediated by pro-inflammatory processes, pH changes, generation of excess 

reactive oxygen species (ROS) and calcium overload (Félétou & Vanhoutte 2006). The mechanisms involved 

in risk posed by ARVs remain poorly understood (Reyskens et al. 2013). However, HAART-induced 

metabolic and cardiovascular dysfunction have also been partly attributed to reduced expression of genes 

coding for PPARs and mitochondrial proteins (Giralt et al. 2006) that ultimately impair cardiac energy 

metabolism. 

1.3 HIV/AIDS 

1.3.1 Introduction 

Great advances have been made since the first description of unusual cluster of infections, (Pneumocystis 

carinii pneumonia) and malignancies (Kaposi sarcoma) in previously healthy men who had sex with other men 

in the United States of America (USA) (Gottlieb et al. 1981). These symptoms were ascribed to immunological 

failure defined as acquired immunodeficiency syndrome abbreviated as (AIDS), that were later revised by the 

Centre for Disease Control (CDC) in USA (Centre for Disease Control 1985) for a comprehensive case 

definition. Research into the aetiology of immune deterioration led to isolation of human T-cell lymphotropic 

virus (HTLV) in AIDS patients (Gallo et al. 1983; Gallo et al. 1984) and the eventual identification of a 

cytopathic retrovirus (Barre-Sinoussi et al. 1983) that was termed as human immunodeficiency virus (HIV) 

(Gallo et al. 1984) due to its association with immunological defence shutdown leading to a plethora of 

opportunistic infections (OIs), malignancies and eventually death. Additionally, diminished levels of cluster 

of differentiation 4 (CD4) lymphocytes were shown to correlate with declining immunocompetency (Brien 

1996; Cloyd et al. 2000). 

Over the years, the infection has generated a lot of interest from various researchers, organisations and 

governments, and consequently, combined efforts have made great strides towards improving diagnostic tests, 

viral transmission prevention strategies and most importantly, availability of potent antiviral drugs. 

Although no cure for the virus has been devised to date, meaningful progress, albeit challenging, has been 

achieved using pharmacological antiviral agents. Identification of HIV was followed by the development of 

ARV drugs 4 years later and the first drug, Azidothymidine (AZT), was introduced and its efficacy 

demonstrated in patients with AIDS-related complex (Barnes 1986). AZT-treated patients had a reduction in 

the development of OIs, coupled with an increased number of CD4 cells and weight gain. In addition, the 
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overall mortality rate was significantly reduced in the AZT-treated group (Fischl et al. 1987). AZT gave the 

first ‘ray of hope’ in the fight against AIDS. 

To date, many other ARVs have been developed and subsequent studies on efficacy and effectiveness of these 

drugs against HIV have shown better response when two or more drugs are combined, thus weakening the 

viral resistance that develops with single drug use (Egger et al. 1997; Tisdale et al. 1993; Larder et al. 1995). 

Therefore, since 1996, it has become a standard practice to use different ARVs referred to as combination 

antiretroviral therapy (cART), or highly active antiretroviral therapy (HAART) for the best outcome (Mocroft 

et al. 2003). HAART has altered the natural history of HIV/AIDS because of immune recovery resulting in 

longevity in people living with HIV (PLWH).  

Another outstanding benefit of sustained immunocompetence achieved by HAART is a marked reduction in 

rates of the viral transmission (Günthard et al. 2016). Mortality during the post-HAART era dropped markedly 

compared to the pre-HAART era as evidenced in the EuroSIDA study (Mocroft et al. 2003). Today, HIV 

infection is considered a chronic medical condition when proper ART is adhered to. Furthermore, HIV infected 

adults on various HAART regimens have a life expectancy approaching that of the general population (Samji 

et al. 2013). 

Although HAART has successfully been demonstrated to reduce HIV/AIDS morbidity and mortality, chronic 

use of these drugs has led to emergence of a new burden of non-HIV/AIDS-related complications that are of 

growing concern in PLWH. To date, HIV infection has a global spread with the highest prevalence in Africa 

and particularly the sub-Saharan Africa region (World Health Organisation 2015). With epidemiological 

transition, where NCDs are on the rise in the region, the continent now faces a double burden of disease where 

both infectious and non-infectious diseases pose a huge economic burden to these struggling economies.  

1.3.2 Epidemiology of HIV/AIDS 

Since the first cases of HIV/AIDS were described, the infection has spread globally reaching a pandemic 

magnitude as the ‘most destructive microbial scourge in history’ as described by Fauci (2007). There are more 

than 35 million PLWH and since the onset of the epidemic, around 78 million people (71-87 million) people 

have become infected, with 39 million (35-43 million) people dying of HIV/AIDS-related complications. 

These infections affect people of all ages.  In the sub-Saharan Africa region, over 4.5 % of persons aged 

between 15-49 years are HIV positive; this represents the highest prevalence globally (World Health 

Organisation, World health statistics 2017). Therefore, the burden of HIV infection is grave, declining the 

quality of life among the sufferers and impacting serious socio-economic challenges to individuals and 

governments. 

In sub-Saharan Africa, AIDS-related deaths fell by 39% since 2005 and related infections declined by 33%. 

Use of HAART has also increased; with 35-39% of all people with HIV having access to ARVs. Globally, by 

mid-2016, 18.2 million PLWH were receiving ARV therapy (World Health Organisation, World health 

statistics 2017). However, the coverage is still low, with only 24% of all HIV positive children receiving the 
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lifesaving treatment (UNICEF 2004). The WHO has set a target to end the AIDS pandemic by the year 2030 

and therefore there is still a huge gap to contain the infection especially in the developing world. 

Efforts aimed at prevention of transmission of HIV, early diagnosis and initiation of HAART have yielded 

considerable gains in the reduction of transmission and mortality rate. Consequently, the advent of HAART 

has led to improved quality of life and life expectancy in those infected with the virus. ARV treatment 

significantly improved the mortality rate compared to HAART naïve patients 5.2 versus 20.9 deaths / 100 

person years in an extensive study comparing 41,213 HIV patients exposed to HAART for over 72 months 

(Bozzette et al. 2008).  Long term use of ARV has however been associated with negative health effects thus 

raising concerns about non-AIDS-related morbidity and mortality as a result of HAART-mediated metabolic 

derangements, development of liver complications and CVD.  

1.3.3 HIV structure  

HIV-1 is a single stranded positive sense ribonucleic acid (RNA) virus that belongs to the subgroup lentiviridae 

that primarily infects immune cells leading to loss of cell-mediated immunity against multiple pathogens and 

eventual susceptibility to OIs and malignancies (Barre-Sinoussi et al. 1983). It is a T-helper (CD4) tropic virus 

where it replicates, subsequently leading to loss of their vital function in the defence against pathogens (Gallo 

et al. 1984). There are two subtypes of HIV namely: HIV 1 and HIV 2. HIV 1 is highly virulent and has a 

global distribution, whereas HIV 2 is confined to west African and some parts of the Portugal region and has 

reduced pathogenicity (Gilbert et al. 2003; Reeves 2002). In this treatise, the abbreviation HIV will be used to 

refer to HIV subtype 1 unless otherwise stated. 

The outer surface of the virus is an envelope that has several glycoproteins embedded that attach to host cell 

surface receptors (Kwong et al. 1998). Additionally, it has a capsid core where the viral genetic material 

encoded in RNA is contained (Chan et al. 1997). The HIV RNA has only nine genes that code for the viral 

proteins, i.e., structural (those incorporated in the envelope and core) and enzymes (reverse transcriptase (RT), 

integrase and protease) (Amarasinghe et al. 2000). The capsid also contains key viral enzymes namely: 

integrase and protease, responsible for viral integration into host cell DNA and post-translational polypeptide 

cleavage respectively. A simplified HIV structure is shown below, Figure 1.2. A more detailed description of 

their function is given below under viral life cycle (section 1.3.4). 
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Figure 1.2 showing the structure of the HIV virion. An envelope, with glycoprotein (gp) particles, encapsulates 

a nucleocapsid which contains the viral genetic material. (Reitz & Gallo 2015). 

1.3.4 HIV life cycle and treatment targets 

For the HIV to replicate and produce infectious virions, it must be transferred from one infected individual to 

uninfected person via a medium that does not alter the viral pathogenicity. Transmission of HIV occurs 

primarily through transfer of body fluids, i.e., blood, semen, vaginal/rectal secretions and breast milk. The 

transmitting media is either directly injected into the blood stream, for example through blood transfusion 

(Moore et al. 2001), contaminated needles (Baggaley et al. 2006) or fluids encountering mucous membrane or 

damaged tissues common in penile-vaginal/ penile-rectal transmissions (Carael et al. 1988; Marks et al. 2006). 

Once the virus is introduced, it goes through various stages from the initial attachment to the new host cell 

surface receptors to the release of new infectious viruses (Maartens et al. 2014). Although outside the scope of 

this study, the HIV life cycle is described below highlighting the ARV targets. It is composed of seven stages, 

namely: binding/attachment, fusion, reverse transcription, integration, replication, assembly and budding 

(Figure 1.3). These stages are targeted by various ARV drugs to disrupt the viral life cycle, hence averting host 

cell damage and release of infectious virions as described below. 

i) Binding/attachment 

The viral glycoprotein particles (gp 120) attach to CD4 cell surface receptors and co-receptors, C-C chemokine 

receptor type 5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4) (McDougal et al. 1986). This stage 

is targeted by drugs that inhibit chemokine receptors, also known as entry inhibitors, e.g. Maraviroc, which 

acts as by negatively modulating the co-receptor (Tan et al. 2013). 

ii) Fusion 

Once the virus is attached, conformational changes occur that join the viral envelop to the CD4 cell membrane 

allowing the HIV capsid to enter the host cell. This is a critical stage and is targeted by ARV fusion inhibitors, 
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e.g., Enfuvirtide restricting the entry of viral genetic material into the host cells (Chan et al. 1997; Kwong et 

al. 1998; Wyatt & Sodroski 1998). 

iii) Reverse transcription 

Once the capsid enters the cell, the viral enzyme, RT is released and converts its genetic material, HIV RNA, 

into complementary HIV DNA (reverse transcription) to pave way for viral incorporation into the host cell 

nucleus (Charneau et al. 1994). Inhibition of reverse transcription renders the viral genetic material irrelevant 

since the viral RNA cannot be integrated into the CD4 cell nucleus to replicate (St Clair et al. 1987). There are 

two types of ARV drugs that act at this stage, Nucleoside (nucleotide) RT Inhibitors (N(t)RTIs) and non-

Nucleoside RT Inhibitors (NNRTIs). 

a) Nucleoside RT inhibitors (NRTI) and nucleotide RT inhibitors (NtRTI) are nucleoside and nucleotide 

analogues which competitively inhibit RT, e.g., Azidothymidine (AZT), abacavir, 3TC, emcitarabine, 

and tenofovir (Balzarini et al. 1998). A brief description of AZT and 3TC and their mode of action is 

given below as they formed the backbone of the HAART regimen investigated in this study.  

b) NNRTIs inhibit reverse transcription by binding to an allosteric site of RT and non-competitively 

inhibiting its activity (Hsiou et al. 1996). They are further classified into 1st generation: e.g., nevirapine 

and efavirenz and 2nd generation: etravirine and rilpivirine (Usach et al. 2013). 

iv) Integration 

Successfully reverse-transcribed complementary HIV DNA strands are then integrated (inserted) into the host 

cell DNA to form a provirus ready for transcription. This step is facilitated by the viral enzyme, integrase, 

(Esposito & Craigie 1999) that is targeted by integrase nuclear strand transfer inhibitors (INSTI) thereby 

inhibiting viral enzyme integrase annulling integration of viral DNA into the infected cell DNA (Robinson et 

al. 1996). These include: raltegravir, elvitegravir and dolutegravir. 

v) Replication (transcription and translation) 

With the viral DNA incorporated into the host cell DNA, the cell can be activated to start transcribing multiple 

copies of viral RNA that are translated into long chains of HIV proteins using the host cell machinery (Locker 

et al. 2011). 

vi) Assembly  

Newly formed long HIV polypeptides sequences containing viral proteins and RNA are assembled to form 

immature non-infectious particles (Sundquist & Kra 2012). To convert these immature particles, the long 

polypeptide chains are cleaved using the HIV-1 enzyme aspartyl protease to form individual enzymes 

responsible for production of other viruses. This enzyme can be inhibited by specific inhibitors that form a key 

component of HAART. Protease inhibitors (PIs), block the ability of the enzyme aspartyl protease to cleave 

the viral polypeptide into functional enzymes thereby interfering with continued infection since the viral 

particles are immature (Brik & Wong 2003). Examples of PIs include Lopinavir (LPV), indinavir, nelfinavir, 

amprenavir, ritonavir, darunavir and atazanavir. A brief description of LPV and ritonavir is given below 
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because they formed part of the HAART administered to the experimental animals. Once the virus is 

assembled, it undergoes the last stage of budding. 

vii) Budding 

Budding or emergence refers to the eventual release of the virus from the host cell. This occurs through the 

release of the assembled virus from the host cell surface enveloping itself with a swatch of the cell membrane 

(Sundquist & Kra 2012). The envelope contains the viral surface proteins that bind to receptors on other 

immune surface cell receptors for continued infection.  

 

Figure 1.3 showing the life cycle of the HIV and various stages targeted by different classes of ARVs (Maartens 

et al. 2014). 

1.3.5 2′-deoxy-3′-thiacytidine; (3TC) 

Lamivudine (2′-deoxy-3′-thiacytidine; 3TC) is a dideoxynucleoside analogue of cytidine that inhibits the HIV 

1 and HIV 2 RT enzyme. It is the negative isomer of a cytidine analogue where the 3’ carbon of the ribose ring 

has been replaced by a sulphur atom (Kewn et al. 1997) as shown on Figure 1.4 a and b, below.  
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Figure 1.4 Structures of (a) 3TC, and (b) the endogenous nucleoside deoxycytidine (Kewn et al. 1997). 

The drug, in its active triphosphate form, competes with corresponding endogenous nucleoside triphosphates 

for binding to RT. Once incorporated into viral DNA, chain elongation terminates due to absence of a 3’-

hydroxy group to which 3’-5’-phosphodiester linkages are made; thereby curtailing viral replication (St Clair 

et al. 1987; Mitsuya & Broder 1986). 

The use of 3TC as a monotherapy is limited by rapid high-level viral resistance to the drug arising from a 

mutation at codon 184. The mutation is a consequence of substitution of one amino acid (from methionine into 

an isoleucine) within the highly conserved motif YMDD in the catalytic site of the HIV-1 RT (Boucher et al. 

1993). However, compared to other NRTIs, 3TC has a better toxicity profile. (Bridges et al. 1996). 

Additionally, when used in combination with other nucleoside analogues, for example AZT, they produce a 

synergistic inhibitory effect to the HIV-1 RT achieving sustained lower viraemia than in single drug use 

(monotherapy) (Larder et al. 1995). For this reason, 3TC has been approved as a co-formulation with AZT as 

a fixed dose tablet. 

1.3.6 3'-azido-3'-deoxythymidine (AZT) 

AZT is a thymidine analogue 3'-azido-3'-deoxythymidine (Figure 1.5) that, as a triphosphate, competitively 

(with other endogenous nucleosides) inhibits the HIV-1 RT (Mitsuya et al. 1985). It is non-selectively 

phosphorylated by the cellular thymidine kinase to azidothymidine triphosphate and subsequently binds to the 

HIV-1 RT and once incorporated into the DNA strand, the chain elongation process is terminated (Furman et 

al. 1986). 
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Figure 1.5 Structure of 3'-azido-3'-deoxythymidine, AZT (Lin & Prusoff 1978). 

The HI-viral resistance to AZT when used as a monotherapy occurs rapidly within six to 12 months of 

treatment because of multiple mutations of the HIV-1 RT (Kellam et al. 1992). However, when used in 

combination with other nucleoside analogues (for example with 3TC), the HIV-1 does not develop any 

resistance (Tisdale et al. 1993; Larder et al. 1995), thereby achieving a synergistic inhibitory effect and 

effective viral replication control.  

1.3.7 LPV  

LPV is peptidomimetic aspartyl PI (Figure 1.6) which has been incorporated in many regimens due to its potent 

activity against HIV-1 (Sham et al. 1998). However, due to its low bioavailability resulting from rapid first-

pass biometabolism by the cytochrome P450 enzyme, it is formulated with low-dose ritonavir. Ritonavir, 

(Figure 1.7) not only inhibits HIV-1 protease, but also inhibits the cytochrome P450 3A4 enzyme thereby 

resulting in improved pharmacokinetics of LPV when co-administered (Bertz et al. 2001).  

 

Figure 1.6 Structure of LPV (Sham et al. 1998). 

 

Figure 1.7 Structure of ritonavir (Kempf et al. 1995). 

Although ritonavir has high oral bioavailability and a long plasma half-life, (Kempf et al. 1995), its clinical 

use as a monotherapy is limited due to the rapid development of mutations at valine 82 (Val 82) to alanine, 

threonine or phenylalanine resulting in drug resistance (Molla et al. 1996). When used in combination with 

LPV (LPV/r), the net result is improved HIV-1 protease inhibition against Val 82 mutation with longer serum 
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half-life (Sham et al. 1998). Furthermore, this combination has been shown to have superior antiviral activity 

compared to other HAART regimens containing nelfinavir, and is also well tolerated (Walmsley et al. 2002). 

1.3.8 Basis of ARV combination against HIV 

The foregoing discussion clearly demonstrates that treatment of HIV is complicated by the ability of the virus 

to alter its genetic makeup and therefore mount resistance against various antiretroviral agents. Furthermore, 

the development of a mutation against a specific drug may cause cross resistance against a different drug when 

used as a monotherapy (Kellam et al. 1992; Boucher et al. 1993). Therefore, combination therapy (two or more 

ARV agents) was introduced to mitigate HIV-1 resistance and the outcome was encouraging (Larder et al. 

1995; Walmsley et al. 2002).  

To date, various modifications have been made to regimens regarding when to initiate therapy (early vs late), 

the number of drugs (monotherapy vs combination therapy, with or without PIs). An array of clinical studies 

(both cohort and blinded trials) have consistently showed that intensive combined therapy results in the 

reduction of both mortality and morbidity associated with major OIs and a decline in HIV transmission rates 

(Palella Jr et al. 1998; Egger et al. 1997; Chung et al. 2009). These studies are supported by WHO data and 

national / international AIDS monitoring bodies from various regions and countries (World Health 

Organisation 2017). Consequently, use of cART has been adopted as standard therapy for HIV/AIDS 

management globally.  

In summary, HAART has achieved the following milestones in combating HIV/AIDS: -   

i) Profound suppression of viral replication leading to marked reduction of viral load / viraemia 

(reduction in viral RNA copies/ml of blood). 

ii) Repletion of CD4+ cells leading to improved immunity against multiple pathogens responsible for 

OIs in advanced AIDS. 

iii) Marked reduction in rates of HIV transmission. 

The criteria of when to initiate HAART has also undergone several revisions in the last 20 years from the 

earlier count of < 350 CD4+ cells / µL raised to <500 CD4+ cells / µL and current recommendations supported 

by the WHO and the international antiviral society instruct that all patients with detectable viraemia (HIV+) 

should be initiated on HAART regardless of the CD4+ cell count (Günthard et al. 2016). 

Various protocols have been developed but most combinations are composed of two NRTIs and one NNRTI 

(first line) or one PI and two NRTIs (second line) (Panel on antiretroviral guidelines for adults and adolescent 

2017). Other combinations consist of an INSTI or a fusion inhibitor. First line therapy refers to the regimen 

first prescribed after HIV diagnosis is made. Thereafter, these patients are followed up and monitored for 

virological, immunological or clinical failure of the regimen. If the regimen is not tolerated or fails, a switch 

is made to the second line therapy. The current recommended second line regimen for adults is a combination 

of 2NRTIs and 1 INSTI or 2 NRTIs and boosted PI/ INSTI among others. Recommendations for various 

regimens are according to protocols based on age, tolerance and other drug interactions.  
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HAART has yielded marked clinical outcomes as a result of improved immune function evidenced by increase 

in CD4 cell count, the reduction of viral load and overall decline in morbidity (Chung et al. 2009) leading to 

delayed progression of HIV infection to AIDS.  

Although the advent of HAART has been associated with positive effects on morbidity and mortality in HIV 

infected patients, its chronic use is associated with the development of metabolic derangements such as 

dyslipidaemia, increased blood pressure, and insulin resistance (Reyskens & Essop 2014; Lipshultz et al. 

2012). Prevalence of overweight and obesity in HAART populations is rising (Amorosa et al. 2005) and has 

been attributed to immune recovery and unhealthy dietary practices (Crum-Cianflone et al. 2010; Crum-

Cianflone et al. 2011).  

It is emerging that these non-AIDS-related complications contribute to the rising trends in NCDs and metabolic 

complications in HIV populations. These metabolic changes are also often accompanied by the development 

of various forms of NAFLD including hepatic steatosis, hepatic steatohepatitis and the more lethal hepatic 

fibrosis leading to portal hypertension (Vodkin & Loomba 2015; Vodkin et al. 2015). The mechanisms leading 

to these non-AIDS-related complications are still incompletely understood. 

1.3.9 CVD in HIV and HAART 

The interdependency between HIV and cardiovascular dysfunction poses a serious public health challenge 

worldwide. It has been projected that HIV/AIDS and IHD will be in the top three causes for global mortality 

and global DALYs by the year 2030 (Mathers & Loncar 2015). 

HIV-associated cardiomyopathy (HIVAC) was described in the early 1980s as one of the stage IV AIDS 

defining illnesses. Patients infected with the virus developed congestive cardiomyopathy primarily due to left 

ventricular systolic dysfunction. Consequently, HIVAC was attributed to the viral myocarditis, OIs and overt 

immunological failure (Cohen et al. 1986). Introduction of ART has led to improvement in severity of the 

systolic dysfunction in these patients but the resulting chronicity is complicated by development of left 

ventricular diastolic dysfunction convoluting the pathology (Schuster et al. 2008). HIVAC has been termed as 

‘a tale of two worlds’ (Lumsden & Bloomfield 2016) because untreated patients (low socio-economic status) 

have a more severe systolic dysfunction HIVAC with a poor prognostic course than those with well controlled 

viraemia presenting with the subacute diastolic dysfunction HIVAC. Accordingly, HIV infection is now 

considered a risk factor for heart failure (Butt et al. 2011). 

In the post-HAART era, there has been a shift towards a heightened risk of CHD that is independent of 

demographic characteristics or traditional cardiovascular risk factors. The risk is even higher in those taking 

ARVs than in HAART naïve patients (Friis-Møller et al. 2007; Durand et al. 2011). ARV’s such as PIs and 

NRTIs are associated with varying degrees of endothelial dysfunction and atherosclerosis thereby predisposing 

HIV patients to CVD (Zhou & Gurley 2006; Zhou et al. 2005; Lipshultz et al. 2012). The mechanisms involved 

include: endothelial oxidative stress (Reyskens & Essop 2014) and activation of mononuclear cell recruitment, 

an early event in the development of atherosclerosis (Dressman et al. 2003) and altered endothelial signalling, 

Stellenbosch University  https://scholar.sun.ac.za



17 
 

ERK 1/ 2, p38 phosphorylation (Chen et al. 2005; Chen et al. 2009), resulting in increased permeability to 

lipoproteins and other macromolecules (Bell et al. 1974). However, studies encompassing vascular function in 

ARV therapy in this context are limited and further studies are crucial to elucidate the mechanisms involved 

in endothelial dysfunction. 

1.3.10 HIV, HAART and overweight/obesity 

During the pre-HAART era, HIV infection was characterised by severe immunosuppression, OIs, severe 

wasting and progressive health deterioration that eventually resulted in wasting syndrome and death. However, 

when immunity is re-established by use of these drugs coupled with improved nutrition (which is a major 

component of HAART in patient management), the weight loss is reversed. In a longitudinal cohort study, 

HIV infected adults on cART for a period of one year showed an increase in the BMI after initiation of 

treatment and were classified as either being overweight or obese. HIV infected female subjects on cART 

gained more weight compared to the male counterparts in this American study (Lakey et al. 2013). Similarly, 

a Swiss cohort study reported comparable trends in weight gain among HIV patients on HAART (Egger et al. 

1997).  

Today, the timing of HAART initiation has been revised and current WHO protocols recommend onset of 

therapy when a patient is diagnosed with the infection (World Health Organisation 2016). The increase in the 

prevalence of overweight/obesity among HIV infected populations has been attributed to the early initiation 

of HAART and more widespread cART coverage. The weight gain, and similarly higher prevalence of 

dyslipidaemia is highest in those patients initiated on HAART when the CD4 cell count is low (Crum-

Cianflone et al. 2010). Furthermore, studies have established that the weight gain in PLWH on ART is directly 

proportional to the presence and severity of dyslipidaemia, hepatic steatosis, cardiovascular risk (Maia & De 

Mattos 2010) and hypertension (Crum-Cianflone et al. 2008; Crum-Cianflone et al. 2011) and therefore 

increased risk for CVD. 

1.4 Non-alcoholic fatty liver disease (NAFLD) 

1.4.1 Introduction 

NAFLD defines a large spectrum of liver conditions ranging from simple asymptomatic steatosis (fatty liver) 

to non-alcoholic steatohepatitis (NASH) and cirrhosis (Chalasani et al. 2012), and is today considered as the 

most prevalent liver disease in adults affecting up to a third of the general population worldwide (Williams et 

al. 2011). Pathogenesis of NAFLD is described by the “tale of two hits” (Day & James 1998). Firstly, 

triglycerides (TGs) and free fatty acids (FFAs) accumulate within hepatocytes due to insulin resistance, 

enhanced dietary influx and excessive lipogenesis by hepatocytes. Secondly, lipid peroxidation and 

mitochondrial damage lead to hepatocyte inflammation and eventual damage. NAFLD is attributed to the rising 

prevalence of diabetes, obesity, HIV/AIDS and the prolonged use of cARVs (McGovern et al. 2006; Siddiqui 
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et al. 2015), and is now widely recognised as forming the hepatic component of metabolic syndrome (Byrne 

2012).  

NAFLD is defined as the presence of cytoplasmic lipid droplets, either by histology or imaging, in more than 

5% of hepatocytes or TG levels exceeding the 95th percentile for lean, healthy individuals without secondary 

causes of steatosis such as significant alcohol consumption (alcohol intake < 20 grams / day for female and 30 

grams / day for male), use of steatogenic drugs, hereditary disorders and negative for viral and autoimmune 

liver disease (Hashimoto 2006; Kawano & Cohen 2013). It encompasses a wide spectrum of steatotic liver 

damage ranging from simple fat accumulation to steatohepatitis, necrosis and fibrosis (Chalasani et al. 2012). 

There are several metabolic risk factors common to both NAFLD and CVD. Accordingly, pathological lipid 

accumulation in the hepatocytes has been identified as an important cardiovascular risk factor (Bhatia et al. 

2012; Targher et al. 2005; Targher et al. 2016). NAFLD is not only a common cause of chronic liver disease/ 

liver-related mortality, but is also directly linked to development of insulin resistance and subsequent 

predisposition to T2DM (Leite et al. 2009) because of abnormal ectopic accumulation of lipids. Therefore, 

hepatic steatosis forms a key link between various metabolic risk factors and NCD disease states.  

There are two clinical manifestations of NAFLD: non-alcoholic fatty liver (NAFL) and non-alcoholic 

steatohepatitis (NASH). NAFL is defined by presence of steatosis without hepatocyte injury such as 

inflammation or ballooning and tends to have a benign course, whereas NASH has evident hepatocyte 

ballooning and necroinflammation and can progress to cirrhosis which in rare cases gives rise to hepatocellular 

carcinoma (Hashimoto et al. 2014). 

1.4.2 Epidemiology of NAFLD 

1.4.2.1 Incidence and prevalence in the general population 

Epidemiological and clinical studies on the incidence and prevalence of NAFLD across different demographics 

are limited and results indicate varying data depending on the populations studied, the diagnostic methods 

(imaging versus histology) and definitions used. A prospective cohort study from a healthy Japanese 

population set to determine the frequency and risk factors of NAFLD showed that the prevalence of 

hypertransaminasaemia (elevated serum levels of serum transaminases), used as a surrogate of NAFLD, was 

9.3% (incidence rate of 31 cases per 1000 person-years). The risk factors associated with this elevation were: 

male sex, elevated BMI, hypertension, low high-density lipoprotein cholesterol (HDL-C) and glucose 

intolerance/ DM (Suzuki et al. 2005). A similar Japanese study aiming at characterizing the longitudinal 

relationship between the metabolic syndrome and NAFLD showed a higher incidence of 86 cases of NAFLD 

per 1000 person-years, although no distinction was drawn between NAFL and NASH (Hamaguchi et al. 2005). 

The study showed metabolic syndrome as a strong predictor of NAFLD and that NAFLD was less likely to 

regress in study subjects who had metabolic syndrome. A British retrospective study reported a much lower 

incidence of 29 NAFLD cases per 100,000 person years of which, 23.5 had non-cirrhotic hepatitis and 5 had 
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cirrhotic hepatitis (Whalley et al. 2007). These discrepancies indicate that there is need for further studies to 

provide an accurate global assessment of NAFLD incidence. 

Population based studies on the prevalence of NAFLD are challenging because of the invasive nature of the 

gold standard diagnostic technique, liver biopsy and histology. Therefore, most of the studies on the prevalence 

of NAFLD are based on liver biopsies performed on potential liver transplant donors or autopsy specimens or 

imaging techniques like magnetic imaging resonance (MRI) and ultrasonography. The prevalence of NAFLD 

in developed countries also vary depending on the diagnostic modality (Angulo 2007). On average, most US 

studies report a NAFLD prevalence of 10-35%, and biopsy proven prevalence of NASH of 3-5% (Vernon et 

al. 2011). A Korean study on potential liver donors reported a NAFLD prevalence of 51.4% (steatosis >5%) 

and 10.4% (steatosis >30%). Additionally, 2.2% of participants showed features consistent with NASH (Lee 

et al. 2007). The risk factors associated with this prevalence were: age >30 years, obesity, 

hypertriglyceridaemia and diabetes. There is a paucity of NAFLD epidemiological data from developing 

countries. However, an Indian study reported a significant prevalence of NAFL in non-obese, non-affluent 

populations (Das et al. 2010). The majority of studies from developing countries have focused on viral-related 

liver pathologies. 

1.4.2.2 Incidence and prevalence in high risk groups 

There is overwhelming evidence that obesity is associated with a high incidence and prevalence of NAFLD. 

A Chilean prospective cohort study conducted on obese patients undergoing gastric bypass surgery revealed a 

NAFLD prevalence 63%, where 37% of participants had simple steatosis, 26% had NASH and 1.6% had 

cirrhosis on liver biopsy histological assessments. Furthermore, these patients had elevated aspartate 

aminotransferase (AST) levels and high homeostatic model assessment of insulin resistance (HOMA-IR) index 

(Boza et al. 2005). The prevalence of NAFLD has been reported to be as high as 90% in morbidly obese 

persons (Steatosis 91%, NASH 37%, cirrhosis 1.7%) (Machado et al. 2006). 

Other conditions associated with a high prevalence of NAFLD include DM, hypertriglyceridaemia, and 

metabolic syndrome. Leite et al. (2009) reported a NAFLD prevalence of 69.4% in T2DM patients diagnosed 

via abdominal ultrasonography. An Edinburgh study reported a NAFLD prevalence of 42.6% in patients with 

T2DM (Williamson et al. 2011). Similar findings have been reported by a wide range of other studies 

(Prashanth et al. 2009; Vernon et al. 2011). Hypertriglyceridaemia has been reported as the lipid profile 

component most often associated with fatty liver with an odds ratio of 5.9 (Assy et al. 2000). Furthermore, 

these patients also fit the criteria for metabolic syndrome. HIV patients who are on antiretroviral therapy form 

the other group at high risk of developing NAFLD (discussed below, see section 1.4.4).  

1.4.3 Pathophysiology of NAFLD 

As mentioned previously, NAFL and NASH have a multifactorial aetiology ranging from metabolic, genetic, 

environmental and gut microbial factors. The spectrum of the pathology is also wide as it can present as simple 
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non-progressive hepatic steatosis to cirrhotic hepatitis inducing hepatocellular carcinoma. It is not known why 

some patients have a progressive course and yet others remain with isolated simple steatosis for long durations. 

Studies have shown that metabolic changes in the visceral adipose tissue alter lipid metabolism that eventually 

lead to hepatic lipid alterations resulting in steatosis. Additionally, development of a pro-inflammatory milieu 

coupled with oxidative stress, and pro-apoptotic signalling predispose to hepatic necro-inflammation that 

progressively leads to fibrosis and cirrhosis, a major risk factor for hepatocellular carcinoma (Rinella 2015) as 

illustrated in the Figure 1.8 below.  

 

Figure 1.8 showing a schematic interplay of various factors that mediate hepatic changes in the spectrum of 

NAFLD. Abbreviations, ARV (antiretroviral), PI (protease inhibitors) NRTI (nucleoside reverse transcriptase 

inhibitors) (Rinella 2015).  

Hepatocyte injury in NAFLD has been explained by the ‘two hit hypothesis’ (Day & James 1998) as previously 

mentioned. The first hit occurs because of insulin resistance, which is enhanced by excessive dietary fat influx 

and increased hepatic lipogenesis resulting in accumulation of TGs and FFAs in the hepatocytes. Following 

this, the second hit occurs as lipid laden hepatocytes increase lipid peroxidation, coupled with mitochondrial 

dysfunction, accumulation of ROS and inflammation resulting in, necro-inflammation and hepatocyte damage. 

FFAs and TNF-α are potent stimuli of c-Jun N-terminal kinase (JNK) which leads to degradation of insulin 
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receptor substrate 1 (IRS 1) through direct phosphorylation ultimately resulting in insulin resistance because 

of impaired downstream insulin signalling (Hirosumi et al. 2002).  

Inflammation is induced by cytokines, hepatic interleukin 6, (IL-6), tumour necrosis factor- α (TNF-α) and 

pattern recognition toll like receptors (Wieckowska et al. 2008). Inflammatory mediators (TNF-α, FFAs and 

other cytokines) stimulate nuclear factor-κβ (NF- κβ) which leads to increased transcription of pro-

inflammatory genes aggravating hepatitis and hepatic insulin resistance. These two pathways not only 

aggravate hepatocyte inflammation, but also cause insulin resistance in the liver, muscle and adipocytes (Cai 

et al. 2005; Hirosumi et al. 2002). Furthermore, lipid-laden hepatocytes undergoing inflammation exhibit 

deranged expression of transcription factors that eventually lead to promotion of hepatic stellate cell 

proliferation and lipid peroxidation which are associated with the induction of fibrogenesis (Hazra et al. 2004; 

Lemoine et al. 2006; Diehl 2005). Another major factor that has been extensively studied in the pathogenesis 

of NAFLD, is increased oxidative stress via ROS. Excess production of ROS in damaged hepatocytes has been 

shown to be a potent factor in the induction of cytokine release and subsequently initiation of immune 

mechanisms that further damage hepatocytes (Than & Newsome 2015) as illustrated in Figure 1.8, above. 

1.4.4 The intersection: HAART, NAFLD and CVD 

As longevity in HIV patients increases due to wide use of HAART, the rise in the prevalence of other 

comorbidities has elicited special attention, especially liver-related complications (Vodkin & Loomba 2015). 

Although HIV infection is known to directly impact negatively on hepatocytes, the focus of this study will be 

on the epidemiology and pathophysiological mechanisms of HAART and ectopic lipid accumulation in the 

hepatocytes as the role of HIV in liver disease is beyond the scope of this study. 

The prevalence of liver disease in HIV-seropositive populations receiving HAART varies, but studies have 

reported over 50% mortality resulting from end-stage liver damage and the discontinuation of HAART in up 

to 31.8% of patients due to hepatotoxicity (Bica et al. 2001). Other studies have consistently shown similar 

strong associations between liver-related mortality and morbidity in HIV patients on HAART (Price et al. 

2014; Crum-Cianflone et al. 2009). NAFLD has been shown to be highly prevalent in HAART and HIV-

infected patients are at an increased risk of developing fatty liver disease due to the viral infection itself and 

the added risk of antiretroviral medications. Other factors associated with the development of NAFLD in these 

patients include elevated TGs, high BMI and hip: waist ratio, metabolic syndrome and duration of the illness 

and medication (Crum-Cianflone et al. 2009; Crum-Cianflone et al. 2008). 

Antiretroviral agents accentuate the ‘two hit’ risk factors due to increased hepatic TG accumulation and 

mitochondrial damage leading to oxidative stress and stimulation of pro-inflammatory pathways as illustrated 

below (Figure 1.9). The prevalence of NASH and fibrosis is also higher in HAART-treated patients vs.  

HAART naïve patients (Bhatia et al. 2012); additionally, they are also at higher risk of developing CVD than 

untreated patients (Cunha et al. 2017; Durand et al. 2011). Due to overt metabolic derangements and hepatic 
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damage, these patients also present with elevated amino transferases, alkaline phosphatase and serum TGs 

(Morse et al. 2015; Vodkin et al. 2015). 

The development of NAFLD can be caused by all or several members in three antiretroviral classes i.e., NRTIs 

e.g., AZT; NNRTIs e.g., Efavirenz; and PIs e.g., LPV/r (McGovern et al. 2006; Mehta et al. 2005). NRTIs 

possess a specific class effect of causing mitochondrial toxicity secondary to the depletion of mitochondrial 

RNA and this often leads to hepatic steatosis, lactic acidosis and cardiomyocyte dysfunction (Matthews et al. 

2011). These drugs are linked to hepatic mitochondrial damage through the inhibition of mitochondrial DNA 

polymerase γ leading to hepatotoxicity, lactic acidosis and steatosis (Lai et al. 1991; Olano et al. 1995; Sundar 

et al. 1997; Day et al. 2004). Since these drugs (PIs and NRTIs) are administered in combinations, the severity 

of all these hepatic derangements is aggravated and these perturbations predispose to increased cardiovascular 

risk as summarised below (Figure 1.9). 

 

Figure 1.9 showing how PIs and NRTIs alter lipid metabolism, mitochondrial damage and eventual hepatic 

damage and increased cardiovascular risk. Abbreviations: PI (protease inhibitors), NRTIS (nucleoside reverse 

transcriptase inhibitors), Mit. (mitochondria), ROS (reactive oxygen species), NFκB (nuclear factor kappa-

light-chain-enhancer of activated B cells), TNF (tumour necrosis factor), CRP (C-reactive protein), TGs 

(triglycerides), SREBP (sterol regulatory element-binding protein), LDL (low-density lipoprotein), ↑indicate 

an increase and ↓indicate a decline) (Day et al. 2004). 

There is accumulating evidence that NAFLD increases risks of several cardiovascular complications such as, 

CAD, atherosclerosis, cardiomyopathy, cardiac hypertrophy, arrhythmias and heart failure (Del Ben et al. 

2012). The pathophysiological mechanisms that underlie these interactions remain poorly understood due to 

the complex interplay with other components of the metabolic syndrome, i.e. obesity and insulin resistance 

(Ballestri et al. 2014; Gaggini et al. 2013), and therefore NAFLD has been termed as the hepatic component 

of the metabolic syndrome.  
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As a component of metabolic syndrome, NAFLD has been associated with a heightened risk of the 

development of CVD. A recent meta-analysis clearly showed that the presence of NAFLD increased the risk 

of fatal and non-fatal CVD events and this risk was proportional to the severity of the liver damage (Targher 

et al. 2016). NASH patients have been reported to develop more cardiovascular events than non-NASH 

patients, consequently, CAD is the leading cause of death (Treeprasertsuk et al. 2011) in these patients. 

NAFLD is also associated with the development of high-risk coronary plaques in patients devoid of traditional 

cardiovascular risk factors (Puchner et al. 2015). A Swedish cohort study showed that although mortality is 

not increased in patients diagnosed with steatosis, those with NASH had significantly reduced survival rates 

and the subjects often died from CVD (15%). Other causes of death were from both extrahepatic and hepatic 

malignancies (Ekstedt et al. 2006). Independent of metabolic syndrome features and other traditional risk 

factors, a clear association has been shown in NAFLD patients developing CAD, ischaemic strokes and 

cardiorespiratory failure (Targher et al. 2005; Hamaguchi et al. 2005; Treeprasertsuk et al. 2011; Chen et al. 

2010). 

The high prevalence of IHD in NAFLD patients and the associated mortality has elicited major concerns and 

new diagnostic techniques are being explored. The association between NAFLD and the development of high 

risk coronary atherosclerotic plaques has been clearly defined using computed tomographic (CT) angiography 

in the “Rule out Myocardial Infarction Using Computer Assisted Tomography” ROMICAT II trial study 

(Puchner et al. 2015). Consequently, other CT angiographic studies have shown increased coronary artery 

calcification (CAC) score (>100) independently of other cardiovascular risk factors in NAFLD (Chen et al. 

2010). 

The fatty liver secretes numerous factors that have been associated with increased risk for CVD, for example 

excess production of inflammatory cytokines, hyperglycaemia, and dyslipidaemia. The pro-inflammatory 

mediator, TNF-α, is stimulated by the accumulation of FFAs in the liver (Crespo et al. 2001). Moreover, liver 

resident macrophages, Kupffer cells, are also activated in NAFLD and they secrete and release more cytokines 

(TNF-α and IL-6) that eventually induce acute phase proteins (c-reactive protein, CRP) by hepatocytes (Diehl 

2005; Choi & Diehl 2005; Wieckowska et al. 2008; Blake & Ridker 2002) leading to hepatocyte damage. 

Other pro-inflammatory molecules that are increased in NAFLD are uric acid and homocysteine in response 

to oxidative stress (Dai et al. 2016). All these pro-inflammatory mediators are elevated systemically (Byrne & 

Targher 2015) portending increased inflammation in distant organs such as the heart, pancreas, visceral fat and 

the gastrointestinal system. NAFLD patients have significantly reduced levels of plasma adiponectin (Hui et 

al. 2004) which has been strongly associated with the severity of the hepatic histopathological changes and 

hepatic steatosis. 

The increased plasma levels of CRP, TNF-α, IL-6 and reduced adiponectin favour inflammation and pro-

atherosclerosis leading to CVD (Pearson et al. 2003; Pai et al. 2004; Lizardi-Cervera et al. 2007) (Figure 1.10). 

These cytokines also drive insulin resistance resulting from impaired hepatic insulin receptor function and 

intracellular signalling cascade. TNF-α, directly phosphorylates insulin receptor substrate-1 (IRS-1) at the 
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serine 312 residue leading to its degradation curtailing downstream signalling and therefore blunted response 

to insulin stimulation (Gupta et al. 2007; Rydén & Arner 2007). The proatherogenic nature of NAFLD is 

multifactorial. The dyslipidaemia characterised by elevated plasma levels of very low-density lipoprotein 

(VLDL), TGs, reduced HDL cholesterol (Gaggini et al. 2013) coupled with insulin resistance and subsequent 

increased generation of pro-inflammatory molecules namely uric acid, CRP, IL-6, TNF-α and homocysteine 

favour development of high risk atherosclerotic plaques. 

Patients treated with PIs show varying degrees of hepatic fatty damage and although the pathogenesis is 

multifactorial, steatosis has been ascribed to the overexpression of sterol regulatory element-binding protein -

1 (SREBP-1), and resultant lipodystrophy/hyperlipidaemia (Riddle et al. 2001). Riddle et al. (2001) showed 

that, ritonavir treatment induced increased adipose and hepatic fatty acid and cholesterol biosynthesis leading 

to hypertriglyceridaemia and hypercholesterolaemia in mice. HAART-treated HIV patients develop 

lipodystrophy and insulin resistance predisposing them to steatohepatitis and fibrosis. In these patients, use of 

PIs has been shown to decrease the expression of transcription factors regulating lipid metabolism, peroxisome 

proliferator-activated receptor γ1 (PPAR γ1) and PPAR γ2 (Lemoine et al. 2006). Since PPAR γ is pivotal in 

the induction of the reversion of activated stellate cells to a quiescent state, it follows that PPAR γ 

downregulation results in unregulated stellate cells activity leading to hepatic fibrosis (Hazra et al. 2004).  

Patients receiving PIs also develop metabolic syndrome, insulin resistance and lipodystrophy and have been 

shown to have a higher risk for development of T2DM and CVD (Troll 2011) (Figure 1.10). It has, however, 

been established that overexpression of peroxisome proliferator-activated receptor- gamma coactivator 1 alpha 

(PGC-1α) protects cardiomyocytes from NRTI-induced toxicity (Liu et al. 2015) and it was therefore 

previously suggested that combining HAART with other therapies such as the combined PPAR α / γ agonists 

(Tonstad et al. 2007) may improve atherogenic dyslipidaemia distinctive of insulin resistance and reduce the 

development of secondary cardiac dysfunction.  It therefore follows that exogenous administration of PPAR 

agonists may offer a therapeutic benefit in HIV patients on HAART and may serve to reverse or prevent these 

adipose and hepatic derangements.  

To explore this, a 12-week prospective Indian study (Deshpande et al. 2016) was conducted in HIV patients 

receiving HAART by treating them with Saroglitazar (dual PPAR α and γ agonist) and although they sampled 

only 50 patients, the clinical trial showed promising results. Saroglitazar-treated patients had significantly 

reduced serum TGs and VLDL cholesterol compared to the untreated patients (Deshpande et al. 2016). The 

present study investigates further the potential of this drug, Saroglitazar, in limiting the liver, metabolic and 

cardiovascular derangements in HAART using an animal model.  

The heightened risk of CVD in HAART-treated patients thus warrants further investigations to delineate the 

pathophysiologic mechanisms involved as well as formulate effective therapy to ameliorate the pathology. As 

clearly demonstrated above, the interplay between metabolic syndrome, antiretroviral drugs and resultant 

hepatic and CVD is complex, and remains poorly understood. The foregoing discussion highlights several 

pathways and signalling molecules implicated in the various pathophysiological conditions described. It is 
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imperative therefore, to discuss the physiological roles played by these molecules and their involvement in 

disease states.  

 

Figure 1.10 A summary of the interrelationships between ARV toxicity and major mediators of both cardiac 

and liver disease (Day et al. 2004). 

1.5 Signalling molecules in hepatic, vascular and cardiac homeostasis  

There are diverse molecules implicated in hepatic, vascular endothelial and cardiac homeostasis mediating key 

roles in cellular responses to various insults. As previously discussed, oxidative stress, inflammatory response, 

insulin signalling, transcriptional control and cell death among other cellular processes are altered to varying 

degrees in ART, fatty liver changes, and cardiovascular dysfunction. 

1.5.1 Peroxisome proliferator-activated receptors alpha / gamma (PPAR α / g)  

PPARs belong to a superfamily of nuclear steroid receptors that play a role in the transcriptional control of 

target genes encoding proteins involved in glucose, energy and lipid homeostasis (Dreyer & Krey 1992). 

Furthermore, PPARs are also key in the control of inflammation through antagonism of nuclear factor-kappa 

B (NFκB) (Delerive et al. 2001). PPAR α is highly expressed in liver, skeletal muscle, heart, and vascular 

tissues as a key mediator of fatty acid metabolism and its synthetic ligands known as fibrates e.g., fenofibrates 

are used clinically in the management of dyslipidaemia (Ziouzenkova et al. 2002). PPAR γ is expressed in 

adipose tissues and immune cells, its stimulation mediates adipocyte differentiation and enhances glucose 

uptake through insulin sensitization (Ferre 2004). This property of insulin sensitization has been exploited 

pharmacologically through use of thiazolidinediones (PPAR γ agonists) e.g., pioglitazone, in T2DM patients 
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resulting in improved glucose control. Therefore, combined effects of PPAR α and γ stimulation provide added 

benefits in the control of lipid and glucose metabolism. Consequently, development of dual PPAR α/γ receptor 

agonists has led to marked improvement in both glucose and lipid regulation in metabolic syndrome (Tonstad 

et al. 2007; Ratziu et al. 2008).  

HAART-induced metabolic and cardiovascular dysfunction have also been partly attributed to reduced 

expression of genes coding for PPARs and mitochondrial proteins (Giralt et al. 2006). PIs have been linked to 

the inhibition of the retinoid x-receptor and PPAR γ and impairment of hepatic chylomicron uptake and TG 

clearance resulting in lipodystrophy, insulin resistance and NAFLD. (Carr et al. 1998). An in vitro study 

conducted in the H9c2 cardiac cell line, originally derived from embryonic rats, showed that overexpression 

of PGC-1α protects cardiomyocytes from NRTI-induced toxicity, suggesting that a pharmacological agent 

with similar activity would potentially protect against such toxicities (Liu et al. 2015).  Consequently, 

Saroglitazar, a dual PPAR α / γ receptor agonist, improved liver function and lipid profile in patients on 

HAART from an Indian clinical study (Deshpande et al. 2016). These findings suggest that, combining 

HAART with other therapies such as PPAR α / γ agonists (Tonstad et al. 2007) may improve atherogenic 

dyslipidaemia, a hallmark of insulin resistance, and reduce the risk of development of secondary cardiac 

dysfunction.  

1.5.2 Peroxisome proliferator-activated receptors gamma co-activator 1 alpha 
(PGC1-α) 

PGC-1 α is an inducible transcriptional coactivator that promotes an array of genes responsible for the 

regulation of oxidative metabolism and mitochondrial biogenesis facilitating energy homeostasis in diverse 

physiological states. PGC-1 α belongs to a small family of transcriptional coactivators, which together with 

PGC-1 β, have the unusual feature of possessing a transcriptional activation domain and RNA processing 

motifs in the same molecule (Lin et al. 2002). There are various factors that induce expression of PGC-1 α in 

different tissues. Fasting states and hypoglycaemia induce expression of PGC-1 α in cardiomyocytes and 

hepatocytes to mobilise more energy generation.  Similarly, in skeletal muscle tissues, hypothermia and 

exercise also induce its stimulation (Lehman et al. 2000; Rhee et al. 2003).  

It is expressed in diverse mitochondria rich tissues such as skeletal muscle, adipocytes, heart, liver, kidney and 

brain (Finck & Kelly 2006; Leone et al. 2005). Below is a summary of its key roles in hepatic, cardiac and 

vascular tissues in both physiological and pathophysiological conditions. 

As a coactivator, PGC-1 α increases the rate at which transcription occurs by interacting with transcription 

factors without sequence-specificity in DNA binding. Consequently, its expression leads to increased 

stimulation of genes responsible for fatty acid oxidation in adipocytes, liver, skeletal muscle and 

cardiomyocytes (Lehman et al. 2000; Vega & Huss 2000).  PGC-1 α also induces gene expression for insulin 

sensitive glucose transporter (GLUT-4) and increases glucose uptake in skeletal muscle cells (Michael et al. 

2001). PGC-1 α gene is also induced robustly by fasting subsequently activating PPAR α target genes involved 
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in hepatic fatty acid oxidation, ketogenesis and gluconeogenesis (Yoon et al. 2001). On the other hand, 

hyperinsulinaemia, a common feature of insulin resistance, suppresses PGC-1 α expression in the liver. T1DM 

models of streptozotocin (STZ)-induced hypoinsulinaemia demonstrated high expression of PGC-1 α (Koo et 

al. 2004). 

The high-energy requirements of cardiomyocytes depend on their mitochondrial capacity to produce ATP, 

therefore, PGC-1α is highly expressed early in the developing heart tissue due to the high rate of mitochondrial 

biogenesis and oxidative metabolism (Lehman et al. 2000). Expression of PGC-1α regulates several cardiac 

genes responsible for the electron transport chain, mitochondrial biogenesis and fatty acid β oxidation via 

coactivation of PPAR α, a key fatty acid receptor regulating lipid and energy metabolism gene expression 

(Vega & Huss 2000). Another important inducer of PGC-1α expression is fasting (Lehman et al. 2000) which 

leads to fatty acid oxidation to replenish energy demands. 

Changes in PGC-1α expression have been reported in several cardiac pathologies that alter cardiomyocyte 

function. In cardiac hypertrophy, common in prolonged high pressure demands, PGC-1α expression is 

diminished leading to a shift from fatty acid oxidation to glycolytic metabolism for energy (Elly 1997). It is 

still unclear whether this shift is adaptive or maladaptive since ischaemia also significantly lowers 

mitochondrial function in cardiomyocytes. Studies on PGC-1α null (PGC-1α -/-) mice demonstrate an 

abnormal heart rate (HR) control that is associated with cardiac dysfunction (Arany et al. 2005).  

Manipulation of PGC-1α expression in animal models has offered invaluable insight into the role played by 

the co-activator in heart disease. In a swine model of chronically ischaemic myocardium, the PPAR γ agonist, 

pioglitazone increased PGC-1α signalling although no improvements were observed in either blood flow or 

infarct sizes (Butterick et al. 2016). It has, however, been established that overexpression of PGC-1α 

(transcriptional coactivator of PPARs) protects cardiomyocytes from NRTI induced toxicity (Liu et al. 2015). 

Therefore, the role of PGC-1α regulatory pathway is key as a potential therapeutic target for cardiomyocyte 

recovery. 

PGC-1α plays an important role in vascular homeostasis and loss of PGC-1α activity has been implicated in 

the pathogenesis of acute coronary syndrome resulting in impaired mitochondrial function. A recent study has 

clearly demonstrated that PGC-1α overexpression in CAD protects against increased intraluminal pressure by 

recruiting both NO and H2O2 during flow-mediated dilation (Kadlec et al. 2017). Since in acute coronary 

syndrome the mediation of dilation shifts from NO to mitochondrial hydrogen peroxide (mtH2O2), excess H2O2 

production poses a proatherogenic risk and further impaired coronary dilation. Furthermore, it has been shown 

that NO activates mitochondrial biogenesis complementing the role played by PGC-1α in the different tissues 

(Nisoli 2003). 

The role of PGC-1α as a protector or mediator in metabolic syndrome, insulin resistance and DM is still 

unclear. Genetic variations in the PGC-1α coding gene (Gly482 Ser) have been associated with increased risk 

of T2DM development and impaired glucose control (Ek et al. 2001). In an Ob/Ob mice model of T2DM, 

PGC-1α is highly induced but there are no clear associations with the profound hyperinsulinaemia and insulin 
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resistance in these mice. However, PGC-1α expression may promote insulin resistance through an indirect 

inhibition of protein kinase B / Akt (PKB / Akt) (Koo et al. 2004). PGC-1α -/- mice also demonstrate increased 

body fat, diminished hepatic fatty acid oxidation properties and hepatic steatosis ascribed to reduced 

mitochondrial capacity and an increase in lipogenic gene expression (Leone et al. 2005). 

1.5.2.1 PGC-1α and HAART 

NRTIs have been associated with mitochondrial toxicity that ultimately results in cellular pathology. In this 

regard, a study evaluating hepatic mitochondrial stress response among various NRTIs revealed that 

zidovudine, stavudine and tenofovir, led to a reduction in ATP levels, increased oxidative damage and an 

overexpression of PGC-1α in response to mitochondrial damage (Nagiah et al. 2015; Day et al. 2004). These 

drugs have been associated with various hepatic pathologies, the commonest being steatosis / steatohepatitis 

and hepatotoxicity as evidenced by elevation of hepatic aminotransferases ten times higher than the upper 

limits (Wit et al. 2002). Therefore, it follows that PGC-1α roles are interlinked in hepatic, cardiac and metabolic 

diseases and introduction of antiretroviral drugs, both PI and NRTIs, further compound its physiological role. 

1.5.3 Nuclear factor-kappa B (NFκB) 

Nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) is a protein complex belonging to a 

family which shares a Rel homology domain in their N-terminus with the retroviral oncoprotein v-Rel and thus 

classified as NF- kB/ Rel proteins. It was discovered via its interaction with the immunoglobulin light-chain 

enhancer in B-cells (Jacobs & Harrison 1998). It is expressed in almost all cell types and plays a key role in 

regulating immune response to infection and responds to various cell stressors as described below. 

NFκB is present in an inactive state in form of sequestered dimers in the cytoplasm. Upon activation, it acts as 

a rapid primary transcription factor. NFκB can be activated by several factors, including both endogenous and 

exogenous ligands as well as a plethora of physical and chemical stresses e.g. hypoxia/ anoxia, hyperoxia, 

cytokines/ chemokines (TNFα, IL-1B), ROS, protein kinase coactivators, MAPK activators, bacterial 

(lipopolysaccharides) and viral products. (Bowie & O’Neill 2000). The sequestration of NFκB dimers in 

unstimulated cells is accomplished by a family of inhibitors called inhibitors of κB (IκB) through masking of 

nuclear localization signals (Jacobs & Harrison 1998). IκBα is the major inhibitor of NFκB and the most 

extensively studied. NFκB-IκB interaction renders NFκB inactive and remains in latent form in the cytoplasm 

due to a strong nuclear export signal. 

Inducers of NFκB initiate a cascade of events that activates the IκB kinase (IKK), which phosphorylates the 2 

serine residues located in the IKK regulatory domain, leading to IκB ubiquitination by the proteasome system 

and are proteolytically degraded, freeing the NFκB to enter the nucleus and initiate transcription of appropriate 

genes (Ghosh & Baltimore 1990). Once NFκB is activated, it translocates into the nucleus binding to consensus 

sites in promoter/enhancer regions of specific genes, leading to transcription of factors that promote 

inflammation such as leucocyte adhesion molecules and cytokines (Chen et al. 2013). NFκB also induce a 

feedback loop to stimulate IκB expression thus inhibiting its own activation (Jacobs & Harrison 1998). 
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IL-1 β stimulation results in the phosphorylation and degradation of IκBα (Ghosh & Baltimore 1990) allowing 

NFκB to translocate to the nucleus and mediate inflammatory changes associated with macrophages, T cells 

and microbial bioproducts through gene transcription. Other stimulants include, IL-6, IL-8, MCP-1 and TNF-

α (Rogler et al. 1998; Schreiber et al. 1998). In obese states, the presence of excess visceral fat is characterised 

by low grade systemic inflammation mainly resulting from increased adipocyte stimulation as well as fat 

resident and recruited macrophage activity. Therefore, the pro- and anti-inflammatory effects of adipokines 

and cytokines through intracellular signalling pathways mainly involve NFκB and Jun-N-Terminal kinase 

(JNK), as well as IκB (Gil et al. 2007). 

NFκB has been implicated in the induction and development of atherosclerosis by transducing pathogenic 

stimulation to the expression of genes that promote recruitment and activation of inflammatory cells in plaques 

(Monaco et al. 2004). Furthermore, NFκB activation in cardiac ischaemia and reperfusion starts shortly after 

initiation of ischaemia and is augmented during reperfusion. The main stimulus for NFκB activation in this 

process are ROS and pro-inflammatory cytokines generated during the insult (Saini et al. 2005). Consequently, 

inhibition of NFκB in I/R studies has been shown to improve cardiac function and reduce infarct sizes. 

Therefore, NFκB is a key player in the pathophysiology of ischaemia-reperfusion injury and heart failure 

(Valen et al. 2001). 

NFκB is implicated in hepatocyte protection against ischaemia / reperfusion and TNFα induced apoptosis (Sun 

& Karin 2008). Furthermore, suppression of NFκB signalling results in susceptibility to reperfusion injury in 

the liver (Sun & Karin 2008). Various antiretroviral agents are associated with serum lipoprotein changes such 

as elevated low-density lipoproteins (LDL). They also induce generation of ROS which are potent inducers of 

NFκB, thereby indirectly implicating them in development of steatohepatitis, atherosclerosis and unstable 

CAD (Valen et al. 2001; Pereira et al. 2015). In addition, NFκB activates pro-inflammatory responses that 

elevate cytokine and chemokine expression that eventually result in fibrosis and cirrhosis. Consequently, it is 

essential to assess IκBα levels in liver, heart and aorta tissues, since it is indicative of an inflammatory response 

and NFκB sequestration status in HAART therapy. 

1.5.4 Protein kinase B (PKB) / Akt 

Akt also known as protein kinase B (PKB) is one of the key molecules activated downstream of the cell 

membrane linked enzyme, 3-phosphoinositide kinase (PI3 Kinase / PI3K) signalling pathway. Since its initial 

description as a proto-oncogene, this serine / threonine kinase has become a major focus of attention because 

of its critical role in regulating diverse cellular functions including metabolism, growth, proliferation, survival, 

transcription, and protein synthesis and its role in pathological conditions such as cancer, diabetes and 

cardiovascular disease (Lawlor & Alessi 2001). 

The PKB / Akt family comprises of 3 closely and revolutionary related isoforms Akt 1 /2 /3 or PKB α /β /γ. 

They share many substrates but also show some specificity. They belong to the AGC (protein kinase A, G and 

C) superfamily of protein kinases. All 3 isoforms share a high degree of amino acid identity and are composed 
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of 3 functionally distinct regions: - an N- terminal pleckstrin homology (PH) domain, a central catalytic domain 

and a C-terminal hydrophobic motif (HM). Together, these regions encompass a phosphoprotein of 

approximately 56 kDa (Scheid & Woodgett 2003). 

1.5.4.1 Regulation and activation of PKB /Akt 

PKB / Akt is activated by receptor tyrosine kinases such as platelet-derived growth factor receptor (PDG-R), 

insulin, epidermal growth factor (EGF), basic fibroblast GF (bFGF), and insulin like GF (IGF-1), integrins, B 

and T cell receptors, cytokine receptors, G-protein coupled receptors and others (Alessi et al. 1996; Deprez et 

al. 1997). These stimuli induce the production of phosphatidylinositol 3,4,5, triphosphate (PIP3) by PI3K. 

These lipids serve as docking sites for proteins that harbour the PH domain like Akt and its upstream activator 

protein kinase D1 (PKD1). At the membrane, PKD1 phosphorylates PKB / Akt at Thr 308 leading to its partial 

activation (Rykx et al. 2003). Consequently, phosphorylation of Akt at Ser 473 by MTORC2 stimulates its full 

enzymatic activity. Deactivation of PKB / Akt is via phosphatase 2A (PP2A) at the PH domain and 

dephosphorylation of PIP3 by tumour suppressor phosphatase (Hanada et al. 2003). 

PKB / Akt has a multiplicity of roles contributing to a variety of cellular responses ranging from cellular 

metabolism, growth and survival. PKB / Akt phosphorylation and activation of GSK3 regulates glycogen 

synthase in response to insulin stimulation. The cardiac specific isoform of 6-phosphofructose-2 kinase 

phosphorylated by PKB on Ser 466 promoting glycolysis (Deprez et al. 1997). Additionally, PKB / Akt 

phosphorylates phosphodiesterase 3B (PDE3B) subsequently leading to regulation of intracellular cyclic 

nucleotides such as, cAMP and cGMP in response to insulin stimulation (Kitamura et al. 1999). 

1.5.4.2 PKB / Akt signalling in CVD and liver disease 

PKB / Akt pathway dysregulation is implicated in many pathological conditions such as, cancer, DM, CVD 

and neurological diseases. Insulin resistance of peripheral tissues results from peripheral tissues failure to 

increase whole body glucose disposal in response to insulin. This is a common feature of metabolic 

derangements in common chronic conditions such as obesity, T2DM, and NAFLD. Akt regulates glucose 

uptake into muscle and fat cells by stimulating translocation of GLUT 4 glucose transporter to the plasma 

membrane and represses hepatic gluconeogenesis by insulin through suppression of the expression of 

phosphoenopyruvatecarboxykinase (PEPCK) and glucose-6-phosphatase (Logie et al. 2007). It therefore 

follows that, dysregulation of PKB / Akt has deleterious effects in both induction, progress and management 

of T2DM and metabolic syndrome in general. 

Different cell types, such as endothelial cells, vascular smooth muscle cells, and cardiomyocytes show 

alterations in intracellular signalling implicated in energy metabolism, growth and survival in ischaemia and 

reperfusion. Therefore, PKB / Akt signalling in these cells is key in regulating cardiac growth, contractile 

function and coronary angiogenesis. Overexpression of Akt has also been implicated in cardiac hypertrophy 

which is pathological in the long term and this leads to functional impairment such as poor contractility, 

disrupted angiogenesis and disordered growth of cells eventually resulting in heart failure (Shiojima et al. 
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2005). In genetically modified mice, the protective role of PKB / Akt has been demonstrated in endothelial 

cells of Akt 1-/- mice on APOE -/- displaying severe peripheral vascular disease, atherosclerosis, occlusive 

coronary artery disease, plaque vulnerability and cardiac dysfunction (Fernández-Hernando et al. 2007). 

Akt has been identified as a key player in mediating cardioprotection in both pre-and post-ischaemic 

conditioned heart perfusion studies. This protection has been attributed to activation of anti-apoptotic 

pathways, forming the reperfusion injury salvage kinase pathways (RISK) (Hausenloy et al. 2005; Hausenloy 

& Yellon 2007). Altered signalling in PKB / Akt and eNOS have also been linked to vasculopathies such as 

atherosclerosis and impaired vascular dilatation (Fernández-Hernando et al. 2007; Fernández-Hernando et al. 

2010). In a study investigating the roles and mechanisms of PIs and NRTIs in pulmonary artery endothelial 

cells, it was clearly demonstrated that these drugs lead to eNOS down-regulation, oxidative stress, and Erk 1 / 

2 activation. (Wang et al. 2009). However, mechanisms leading to HAART-associated vasculopathies and 

CVD remain incompletely understood. Due to the critical role played by PKB / Akt in cellular physiology, it 

forms an important therapeutic target for various medical conditions and therefore an important topic for 

current and future research. 

1.5.5 AMPK 

Adenosine monophosphate activated protein kinase (AMPK) is an enzyme present in the cytoplasm of 

eukaryotic cells where it plays a key role as a master regulator of cellular energy homeostasis by acting as a 

sensor of energy status thereby maintaining optimal cellular energy homeostasis (Hardie 2011). 

AMPK is a serine/ threonine kinase that exists as a heterodimeic complex comprising of catalytic α subunits, 

and regulatory β and γ subunits. The α subunit contains a typical serine/threonine kinase domain at the N 

terminus. The γ subunit contains the regulatory adenine nucleotide-binding site and is composed of four 

tandem repeats of sequence known as a CBS motif (Nagendran et al. 2013). The β subunit contains a c-terminal 

domain that forms the conserved core of the αβγ complex, linking the C-terminal of the α subunit to the N-

terminal region of the γ subunit (Wong & Lodish 2006). 

Binding of AMP to the α subunit allosterically activates the complex making it a more attractive substrate for 

phosphorylation on threonine 172 in the activation loop of the α subunit by its major upstream AMPK liver 

kinase B1 (LKB1) (Shackelford & Shaw 2009). Furthermore, AMPK can also be phosphorylated on the 

threonine 172 by calcium/calmodulin dependent protein kinase kinase 2 (CAMKK 2) in response to changes 

in intracellular Ca2+ that occur following stimulation by metabolic hormones including adiponectin and leptin 

(Jensen et al. 2007). 

Metabolic stressors that either interfere with the catabolic generation of ATP e.g. glucose deprivation, hypoxia 

ischaemia and treatment with metabolic poisons, or those stresses that accelerate ATP consumption such as 

muscle contraction can increase the cellular ADP:ATP ratio and activate AMPK (Nagendran et al. 2013). 

Additionally, hormones such as leptin, adiponectin, ghrelin, cannabinoids and triiodothyronine, regulate 

AMPK activity although the actual mechanisms remain unclear (Lage et al. 2008; Jensen et al. 2007).  
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AMPK positively regulates signalling pathways that replenish cellular ATP supplies and negatively regulates 

ATP consuming biosynthetic processes. It therefore switches on catabolic pathways that generate ATP while 

switching off anabolic pathways that consume ATP. This is accomplished through phosphorylation of enzymes 

directly involved in these processes as well as through transcriptional control of metabolism by 

phosphorylating transcriptional factors, co-activators and co-repressors. Examples of catabolic pathways that 

are upregulated include, glucose uptake via activation of both glucose transporter 1 and 4 (GLUT 1 and GLUT 

4) (Russell et al. 1999), glycolysis via phosphorylation and activation of 2 of 4 isoforms of 6-phosphofructose- 

2- kinase and fatty acid uptake via phosphorylation of ACC 2 isoform of acetyl-CoA carboxylate thus lowering 

malonyl-CoA levels, an inhibitor of FA uptake into mitochondria (Marsin et al. 2000). 

Activation of AMPK inhibits several energy consuming anabolic pathways through direct phosphorylation of 

key metabolic enzymes, i.e. FA synthesis inhibition by phosphorylation of ACC 1, isoprenoid synthesis 

inhibition by phosphorylation of hydroxymethylglutaryl-CoA reductase, TGs and phospholipid synthesis 

inhibited by inactivation of glycerol phosphate acyl transferase, glycogen synthesis inhibition by 

phosphorylation of glycogen synthase and ribosomal RNA synthesis inhibition by phosphorylation of the RNA 

polymerase 1 transcriptional factors (Hardie et al. 2003). Another key role played by activated AMPK is the 

up regulation of catabolism through enhancement of mitochondrial function by phosphorylating the 

transcriptional co-activator of mitochondrial biogenesis, PGC-1α. (Jäger et al. 2007). Figure 1.11 below 

summarises how activation of AMPK mediates the regulation of various metabolic processes.  

 

Figure 1.11 showing the activation and various mechanisms regulated by AMPK. Abbreviations: CAMKK 2 

(calcium/calmodulin dependent protein kinase kinase 2), LKB1 (liver kinase B1), FAO (fatty acid oxidase), 
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CRTC2 (CREB (cAMP response element-binding protein) regulated transcription coactivator 2), HGO 

(hepatic glucose output), ACC (acetyl-CoA carboxylase), Ca2+ (Calcium), GNG (gluconeogenic genes), GSK-

3β (glycogen synthase kinase 3β), ↑indicate an increase and ↓indicate a decline. Adapted with permission 

(Zhang et al. 2009). 

Therefore, AMPK plays a critical role in co-ordination of cell growth, autophagy and reprogramming cellular 

metabolism processes (Mihaylova & Shaw 2011; Takagi et al. 2007) that are implicated in cardiovascular 

dysfunction and metabolic syndrome.  

1.5.6 Role of AMPK in CVD and metabolic syndrome 

Since the myocardium relies on ATP for contraction, pathologies that interfere with the generation and 

utilization of ATP severely compromise cardiac function. Ischaemia alters energy and oxygen supply to the 

myocardium thereby leading to myocyte stress and activation of cellular mechanisms to compensate for the 

reduction in ATP levels. AMPK has been shown to be upregulated in IHD and is therefore a suitable marker 

to assess the myocardial response to stressful events such as MI (Baron et al. 2005). Activation of AMPK 

during myocardial ischaemia increases cellular glucose levels through enhanced glucose uptake and glycolysis; 

consequently, during reperfusion / post-ischaemic phase, fatty acids are increased to ensure adequate cellular 

energy supply (Sambandam & Lopaschuk 2003). Furthermore, mediation of glucose uptake and fatty acid 

oxidation ameliorates cardiac dysfunction post-ischaemia through the prevention of apoptosis and myocardial 

injury (Russell et al. 2004; Qi & Young 2015). 

There is evidence indicating that the activated form of AMPK is significantly reduced in obese mouse and rat 

models compared to lean ones. Furthermore, high fat diets have been shown to alter both the expression and 

activity of AMPK (Liu et al. 2006), which is associated with lipotoxicity characterised by hyperinsulinaemia, 

hypertriglyceridaemia and impaired fatty acid oxidation. Defects in AMPK signalling are responsible for these 

abnormalities that predispose to development of T2DM (Sriwijitkamol et al. 2006). This may explain the 

excess myocardial lipid accumulation (lipotoxicity) leading to cardiomyopathy in obese rodents (An & 

Rodrigues 2006). Reduced levels of activated, phosphorylated AMPK have been associated with increased 

myocardial lipotoxicity in obese rodents (Wang & Unger 2005). Although the downregulation of AMPK 

signalling may not be a primary defect preceding metabolic aberrations associated with metabolic syndrome, 

it is likely that suppressed AMPK signalling in severe obesity is likely to exacerbate aspects of the metabolic 

syndrome. Therefore, due to AMPK’s role as a central regulator of both lipid and glucose metabolism and 

suppression of cell proliferation, AMPK is considered a potential therapeutic target in management of obesity, 

T2DM (Zhang et al. 2009), atherosclerosis and some cancers (Motoshima et al. 2006). Furthermore, 

metformin, a major drug used in the management of T2DM has been shown to improve AMPK activity in 

metabolic syndrome thereby ameliorating hyperinsulinaemia and fatty acid oxidation in the high fat diet 

context (Liu et al. 2006). 
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NRTI-induced mitochondrial toxicity alters cellular energy production thereby leading to metabolic 

derangements (Brinkman et al. 1999; Lewis et al. 2001). Altered mitochondrial activity in various tissue targets 

results in specific pathologies such as steatosis and insulin resistance in the liver tissue (Videla et al. 2004), as 

well as endothelial dysfunction. Furthermore, there is ample evidence supporting involvement of AMPK in 

cardiac ischaemia-reperfusion injury as a potential therapeutic target (Russell et al. 2004; Qi & Young 2015). 

1.5.7 Other important signalling molecules 

1.5.7.1 NADPH oxidase subunit, p22-phox 

Nicotinamide adenine dinucleotide phosphate-oxidase (NOX) is a cell membrane bound enzyme that plays an 

important role in cellular immune responses to pathogens by generating superoxides and ROS that ultimately 

lead to bacterial eradication. The enzyme has several subunits, p22-phox is one of the key components (Regier 

et al. 2000). The oxidase is not only expressed in immune cells, such as neutrophils and macrophages, but 

NADPH components, including p22-phox, gp91-phox, p67-phox and p47-phox have also been identified in 

endothelial cells and vascular smooth muscle cells (Jones et al. 1996). Increased p22-phox mRNA expression 

coupled with the enzyme hyperactivity have been reported in aortas harvested from hypertensive male 

Sprague-Dawley rats (Fukui et al. 1997). Therefore, the oxidase has received special attention in vascular and 

cardiac physiology due to the risk posed by excessive generation of ROS in pathological states. Furthermore, 

the oxidase has been implicated in aberrant cell proliferation and migration and inflammatory responses in 

atherosclerotic vascular disorders (Griendling et al. 2000). 

Long term use of both PIs and NRTIs has been associated with increased generation of ROS which have 

detrimental effects on vascular endothelium, cardiomyocytes and hepatocytes. (Videla et al. 2004; Reyskens 

& Essop 2014; Sharma 2014). The changes in the antioxidant profile in patients on HAART have been partly 

responsible for NAFLD, increased atherogenic risk and CAD as reported in in vitro, in vivo and clinical studies 

(Sundaram et al. 2008; Bavinger et al. 2013; Videla et al. 2004). As a key component of the NADPH oxidase 

enzyme, p22-phox is an important laboratory marker of superoxide radical generation and subsequent 

oxidative stress (Dinauer et al. 1990). Furthermore, studies have clearly demonstrated that elevated levels of 

p22-phox correlate with risk and severity of atherosclerotic CHD (Azumi et al. 1999). 

1.5.7.2 Cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase 3 

Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear protein / enzyme present in abundance and plays a key 

role in sensing DNA breaks and contributes in repairing DNA to ensure that genes remain stable (Mazen et al. 

1989). However, when over activated, PARP diminishes cellular NAD+ and ATP rendering the cell 

dysfunctional or dead through necrosis. Furthermore, it is a major substrate for the apoptosis mediating 

caspases 7 and 3 (Tewari et al. 1995). The cleaved PARP fragments suppress PARP-1 activity not only 

preserving NAD+ but also mediating release of Ca2+ and Mg2+ dependent endonucleases (Herceg and Wang 

1999). Therefore, PARP is involved in both necrotic and apoptotic cell death. 
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PARP also enhances other intracellular signalling pathways such as NFκB thereby facilitating pro-

inflammatory responses that further contribute to oxidative DNA and cellular damage as seen in T2DM 

patients with microangiopathy (Adaikalakoteswari et al. 2007).  

The cellular insults described in both fatty liver and HAART induce DNA damage, genomic instability, 

mitochondrial dysfunction and eventual cell death. For example, HAART is associated with increased rates of 

cell loss in a variety of tissues as evidenced by pro-apoptotic effects of PIs (Badley 2005; Zhou et al. 2005) in 

hepatocytes, endothelial and immune cells. Furthermore, NRTIs are associated with mitochondrial toxicity 

that eventually results in cytotoxicity (Liu et al. 2015; Lewis et al. 2001). Therefore, these two enzymes, 

cleaved poly (ADP-ribose) polymerase and cleaved caspase 3, which are implicated in cell death in both 

normal and altered physiology were evaluated in this study. 

1.5.7.3 Mitogen-activated protein kinases (MAPKs); Jun N-terminal kinase (JNK), p38 and 

extracellular-signal-regulated protein kinase (ERK 1/2) 

MAPKs are involved in many facets of cellular regulation including regulating the expression of many 

inflammatory genes (Dean et al. 1999). Three major MAPK pathways, extracellular-signal-regulated protein 

kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK)/stress activated protein kinase (SAPK), are 

involved in post-transcriptional regulation of mRNAs encoding for TNF- α, IL-6 and cyclooxygenase (COX)-

2 (Ridley et al. 1997; Hitti et al. 2006). However, the possible links and hierarchical relationship between 

HAART, NAFLD, CVD and MAPK signalling pathways, remain unidentified. Activation of the P38 MAPK 

cascade is critical for HIV-1 replication in primary T lymphocytes (Cohen et al. 1997). However, drugs that 

inhibit RT also interfere with p38 signalling (Bakan & Bahar 2009) impairing survival and proliferation of 

immune and endothelial cells (Yu et al. 2004). 

Upregulation of JNK signalling in NAFLD has been postulated to modulate the phosphorylation of proteins in 

insulin signalling leading to insulin resistance (Malhi et al. 2006). Since PI-based HAART is associated with 

NAFLD and insulin resistance, investigating this pathway becomes imperative. 

1.6 Problem statement and study rationale 

Ongoing work has demonstrated that HAART greatly reduces HIV/AIDS-associated mortality and the lifespan 

of PLWH has been prolonged dramatically. This chronicity has led to the emergence of multisystemic 

undesired effects which have contributed significantly in the rising incidence of non-AIDS-related morbidity 

and mortality. CVD and liver-related complications have been identified as some of the major causes of 

morbidity and mortality associated with HAART. To date, the pathophysiological mechanisms that link 

HAART use and NAFLD with CHD, aortic valve sclerosis, myocardial dysfunction/hypertrophy and cardiac 

arrhythmias are incompletely understood.  

The complex interactions between HAART, NAFLD, insulin resistance and visceral obesity make it extremely 

difficult to dissect out the actual causal mechanisms responsible for the increased risk of these types of cardiac 
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and vascular complications. Furthermore, the rising incidence of AMI with the use of HAART has been 

reported in various clinical studies (Friis-Møller et al. 2007, Durand et al. 2011, Friis-Møller et al. 2003a, Friis-

Møller et al. 2003b), however, there is a paucity of knowledge in the literature as to how PI-based HAART 

regimens contribute to these chronic conditions. Therefore, it is justified to conduct ischaemia-reperfusion 

studies and to analyse important signalling pathways implicated in survival and damage to the cardiomyocytes. 

Additionally, analysis of lipid profile (cholesterol, TGs, LDL and HDL), blood glucose, insulin and markers 

of lipid peroxidation (conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) 

(normalized with serum phospholipids) will provide valuable information on the extent of alterations of these 

circulating metabolites in obesity and HAART. 

To date, there is no clearly defined targeted therapy to avert these adverse effects and hence a definite need for 

extensive experimental studies to have a clearer understanding of the underlying mechanisms and explore 

possible therapeutic targets to ameliorate these detrimental effects. 

By assessing the hepatic changes in HAART, the present study aims to link steatosis with cardiac changes 

observed in ischaemia-reperfusion injury and vasculopathies. This study focused on the cardiac response to 

ischaemia by assessing the haemodynamic changes in the isolated hearts before, during and after induced 

ischaemia and infarct size analysis after reperfusion. Vascular reactivity studies were also conducted in an 

isolated organ bath system with the aim of assessing endothelial and vascular contractility / relaxation of the 

thoracic aorta. Liver studies were limited to morphological / fat infiltration histological assessments, and 

enzyme function tests (transaminases and phosphatases) to assess the degree of HAART-mediated hepatic 

damage. These enzymes have been used as surrogate markers of hepatic steatosis. Furthermore, relevant 

signalling cascades in the heart, liver and aorta were assessed to delineate the various mechanisms involved. 

Therefore, this study focuses on enhancing our understanding on the contribution of HAART to the 

development of NAFLD with concomitant cardiovascular dysfunction and explores the role of dual PPAR α / 

γ stimulation as a potential therapeutic target to limit HAART-induced metabolic, and cardiovascular 

dysfunction.  

1.7 Research questions 

The study explores the following questions: - 

a. Does the treatment with HAART (LPV/r + AZT/3TC) for six weeks lead to NAFLD with 

concomitant development of cardiac and vascular dysfunction in lean / obese male Wistar rats 

compared to non-treated rats?  

b. Does co-treatment of lean / obese male Wistar rats with a dual PPAR α / γ agonist, 

Saroglitazar, for six weeks limit HAART-induced NAFLD and CVD? 
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1.7.1 Hypotheses 

1.7.1.1 Alternate hypothesis HA 

We hypothesize that the use of second line HAART (LPV/r + AZT/3TC), a PI-based regimen, leads to the 

development of NAFLD and cardiac / vascular dysfunction and that these effects can be limited by dual PPAR 

α / γ stimulation.  

1.7.1.2 Null hypothesis Ho 

The use of second line HAART regimen has no effect on the development of NAFLD and cardiac / vascular 

dysfunction and PPAR α / γ stimulation has no effects on the model rats treated with LPV/r + AZT/3TC for 

six weeks. 

1.8 Research aims and objectives 

The two-overarching aims of this study are: - 

a) To evaluate the contribution of HAART to the development of NAFLD and cardiac dysfunction in a 

rat model of high caloric diet-induced obesity (DIO). 

b) To investigate the role of PPAR α / γ stimulation as a potential therapeutic target to limit HAART 

induced hepatic, metabolic and cardiovascular dysfunction. 

The specific objectives of the study include: - 

a) To induce obesity (via high-calorie diet) in male Wistar rats by means of an established, previously 

published high-fat / calorie diet model. 

b) To investigate the effects of HAART and Saroglitazar treatment on the lipid profile, oxidative stress 

markers, liver enzymes and fasting insulin in serum obtained from high calorie diet and age-matched 

control rats. 

c) To investigate the effects of HAART and PPAR α / γ agonist (Saroglitazar) treatment on liver 

morphology as well as the expression and phosphorylation of important signalling proteins in liver 

tissue from high calorie diet and age-matched control rats. 

d) To determine the haemodynamic effects of HAART and Saroglitazar on isolated perfused hearts from 

obese and age-matched control rats exposed to cardiac ischaemia-reperfusion. 

e) To identify the effects of HAART and Saroglitazar treatment on the expression and phosphorylation 

of important cell signalling cascades in isolated and perfused hearts from obese and age-matched 

control rats exposed to ischaemia-reperfusion. 

f) To investigate the endothelial and smooth muscle function of aortic rings from obese and age-matched 

control rats treated with HAART and Saroglitazar by use of an organ bath system. 

g) To assess the effects of HAART and Saroglitazar treatment on the expression and phosphorylation of 

important cell signalling cascades in isolated aorta tissue from obese and age-matched control rats. 
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Having reviewed HAART implication in metabolic, hepatic and cardiovascular dysfunction, and having 

outlined clear aims and objectives of the present study, the next chapter (chapter 2) gives a description of the 

study activities and methods that were employed to answer the research questions. 
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Chapter 2 : Methodology 

2.1 Introduction 

This chapter describes the various methods and techniques undertaken to accomplish the aims of the study. 

The main research activities conducted in this study include: - 

i) Randomised grouping of experimental animals. 

ii) Animal care and monitoring for a duration of 16 weeks.  

iii) Treatment with the experimental drugs. 

iv) Animal sacrificing and organ/tissue harvesting. 

v) Ex vivo cardiac perfusion studies. 

vi) Liver histology studies. 

vii) Serum analyses. 

viii) Protein determination using Western blot technique. 

ix) Vascular reactivity studies. 

x) Data analysis. 

2.2 Study design 

This study employed a randomised controlled experimental design where experimental animals were randomly 

allocated into eight different groups and subsequently subjected to the various treatment and feeding 

programmes. 

2.3 Ethics clearance and protocol approval 

Ethics approval for this project was granted by the Stellenbosch University Research Ethics Committee: 

Animal Care and Use via committee review procedures; Protocol #: SU-ACUD15-00019 and animals were 

handled in accordance with international and South African standards for the care and use of animals for 

research and scientific purposes. All persons who handled the animals obtained authorization as per the South 

African National Standards (SANS 10386:2008, http://www.sun.ac.za/research, “Accessed: 22/08/2017)) and 

by the South African Veterinary Council (SAVC) (http://www.savc.org.za/, “Accessed: 22/08/2017). 

The study adhered strictly to the principles of “replacement, reduction and refinement”. Therefore, only the 

required number of animals were used in this study and the numbers were calculated to ensure that the aims of 

the study were accomplished efficiently. 
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The choice of rats as our experimental animals was after careful consideration. They were chosen because they 

are easily accessible in the accredited university animal facility and they have been used in our laboratories for 

the various research activities listed above. Furthermore, they are of great value in this study because the 

findings will generate translatable results that will provide relevant and important knowledge. At the end of 

treatment and feeding programme, animals were humanely sacrificed using a universally acceptable method 

as described below, (Section 2.5.5). 

2.4 Infrastructure 

The cardiovascular research experiments and Western blot studies were conducted under the auspices of the 

Cardiovascular Research Group housed in the Division of Medical Physiology, Faculty of Medicine and Health 

Sciences (FMHS), Stellenbosch University (SU). 

Histological experiments were conducted in collaboration with the Division of Anatomy and Histology, 

Stellenbosch University and the Biomedical Research and Innovation Platform (BRIP), South African Medical 

Research Council (SAMRC), Tygerberg, South Africa. 

Serum lipid and oxidative stress analyses were conducted in collaboration with Dr. Dee Blackhurst from the 

Division of Chemical Pathology, University of Cape Town.  

Laboratory animals were bred, housed and supplied by the animal housing facility, Faculty of Medicine and 

Health Sciences, SU. 

2.4.1 Personnel involved in the various research study activities 

a) Random allocation of animals to various study groups – candidate (Festus Kamau) and SU animal 

facility staff. 

b) Animal monitoring (daily food and water consumption and weekly total body weight measurement – 

candidate. 

c) Cleaning of animal cages and changing of animal beddings – SU animal facility staff. 

d) Drug preparations – candidate. 

e) Oral gavaging of the experimental animals – Mr Noel Markgraaf (SAVC certified). 

f) Euthanasia, blood collection and organ harvesting – candidate. 

g) Cardiac perfusion studies – candidate. 

h) Aortic ring studies – candidate assisted by Miss Imperial Emiliana (MSc.).  

i) Liver histology experiments – candidate and Mr Reggie Williams (Histology technician). 

j) Liver enzyme analysis – PathCare veterinary pathology laboratory, Western Cape, Cape Town. South 

Africa. 

k) Serum analyses (lipid analysis, oxidative stress markers analysis, fasting insulin analysis) - candidate 

and Dr Dee Blackhurst (Division of Chemical Pathology, University of Cape Town). 

l) Liver immunohistochemistry – BRIP, SAMRC. 
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m) Western blot studies – candidate. 

n) Data management and analysis - candidate in collaboration with Biostatistics Unit, SU. 

o) Supervisors – Dr Ruduwaan Salie, Dr Peter Waweru and co-supervisor Prof Hans Strijdom. Team 

advisor – Prof. Amanda Lochner. 

2.5 Research activities 

2.5.1 Experimental animal selection, housing and grouping 

Male pathogen free Wistar rats (Rattus norvegicuss) were the animals of choice in this study because they have 

been used extensively in cardiovascular experimental studies in our laboratory with reproducible and reliable 

data (Salie et al. 2014; Webster et al. 2017). They are readily available, locally bred and our laboratory has 

suitable systems for conducting the ex vivo cardiovascular experiments of interest in this study. Although we 

recognise the limitations associated with use of male rats only, this choice was carefully considered because 

combining male and female rats in this study, would have required a significantly higher sample size (and cost) 

to account for the female hormonal variations that are attended by confounding physiological changes that 

affect both the endocrine and cardiovascular systems (Moran et al. 2000).  

We obtained rats 3-4 weeks after they were weaned i.e. approximately 7 weeks of life, with an average body 

weight of 157.2 ± 5.1 g (mean ± SEM). To achieve appropriate sample sizes for the various experiments of 

interest, a total number of 176 rats were used (Figure 2.1). However, the study sought for ethics approval of 

200 rats to account for expected losses during the treatment procedures. Since all the animals could not be 

followed up simultaneously, they were staggered into 10 groups each consisting of 20 rats. Twenty rats were 

introduced every week for ease of follow-up and subsequent procedures. Allocation to various groups was 

done randomly to avoid selection bias.  

The rats were randomly assigned into different cages (5 rats per cage) and fed on a standard rat chow diet. 

Additionally, the animals had access to clean drinking water ad libitum to acclimatize for 7 days. Thereafter, 

they were fed, treated and monitored in the same room for the entire experimental study duration. During the 

one week of acclimatization, their water and food intake were monitored daily and recorded, they were housed 

under the following conditions: standard day-night cycles of 12 hours, temperatures of 22 °C and 40 % 

humidity. After a successful week of acclimatization, the rats were on average 8 weeks old and weighed 180.2 

± 2.28 g (mean ± SEM). This age corresponds to the late adolescence/ young adulthood phase in humans 

(Sengupta 2012). The age was intentionally chosen for initiation of the experimental procedures because the 

feeding programme we used, has been shown to have optimal effect at this age (Webster et al. 2017). 

Subsequently, as described below, the treatment regimen protocols were calculated to correspond to adult 

human doses. 
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2.5.2 Feeding and treatment programme 

The cages (each accommodating 5 rats) were randomly assigned into 2 groups and initiated on a feeding 

programme composed of either ad libitum standard rat chow (lean group) or ad libitum standard rat chow and 

high calorie diet (HCD group). To induce obesity, rats were fed specially formulated HCD (previously 

published) composed of 11.5% fat, 8.3% protein, 42% carbohydrate and 20% sucrose (Salie et al. 2014). 

Standard diet (rat chow) was composed of 4.8% fat, 17.1% protein, 34.6% carbohydrates and 5.3% sucrose. 

Please refer to Table 2.1 showing the composition of the diets. The diets were analysed by Microchem 

specialized laboratory services (Accredited by South African National Accreditation System, SANAS), Cape 

Town, South Africa (Addenda A 1 and A 2 Diet Analysis Certificates). Food and water were supplied ad 

libitum to all the groups throughout the study duration.  

Table 2.1 Composition of standard and high fat / calorie diet: g (grams), kJ (kilojoules). 

 

2.5.2.1 Preparation of HCD 

The HCD was prepared using normal rat chow, sucrose, cooking fat (HolsumTM), full cream, and sweetened 

condensed milk (Addendum B, HCD preparation).  

The diets were continued for a total duration of 16 weeks and for the last 6 weeks, animals were treated with 

the experimental drugs. During the entire feeding and treatment period, rats were weighed and the cage 

dressings / beddings (pine shavings / corncob) changed weekly. Additionally, animals were monitored daily 

for their general state of health and their water (ml) and food (g) intake was recorded daily. 

2.5.2.2 Treatment 

From week 11 of the diet programme, the two groups of cages (HCD versus lean) were randomised further 

into 4 subgroups and initiated on treatment as follows: - 

i) Vehicle, distilled water (control group) 

ii) HAART (LPV / Ritonavir (LPV/r) + Zidovudine / Lamivudine (AZT/3TC)  

iii) LPV/r + AZT/3TC + Saroglitazar 

iv) PPAR α / γ agonist, Saroglitazar  

Therefore, each treatment group was comprised of control lean and HCD rats as shown on the table 2.2 below. 

Fat
(g/100g)

Saturated	fat
(g/100g)

Cholesterol	
(mg/100g)

%	
Protein

%	
Carbohydrates

%	
Sucrose

kJ/	100g

Lean	/	Standard	diet	
(ordinary	rat	chow)

4.8 0.9 2.2 17.1 34.6 6.6 1272

Specially	formulated	
High	Calorie Diet	(HCD)

11.5 7.6 13 8.3 42 24.4 1354
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Table 2.2  Categorization of the eight experimental groups (1-8), LPV/r (LPV boosted with ritonavir), AZT 

(Azidothymidine), 3TC (Lamivudine), HAART (Highly active antiretroviral therapy), Saro (Saroglitazar).  

 

The drug prescriptions were obtained from a registered veterinarian as per the SAVC and SANS. The drugs 

were obtained as follows: - 

i) LPV / r (200mg /50mg) as combined film coated tablets traded as AluviaTM (AbbVie (Pty) Ltd 

South Africa). 

ii) Zidovudine / Lamivudine each tablet containing (zidovudine 300mg and lamivudine 150mg) 

traded as COMBIVIR® (GlaxoSmithKline South Africa (Pty) Ltd). 

iii) Saroglitazar, [(S)-α-ethoxy-4-{2-[2-methyl-5-(4- methylthio) phenyl)]-1H-pyrrol-1-yl]-ethoxy})-

benzenepropanoic acid magnesium salt], 4 mg tablets traded as LipaglynTM (Zydus Discovery: A 

division of Cadila Healthcare Limited, India). 

Each drug tablet was weighed, crushed and then measured to the required dose before making a suspension 

(turbid mixture) in distilled water which was used as a vehicle. The daily drug doses administered were 

68.57/17.14 mg/kg/day of LPV/r, 51.43/25.71 mg/kg/day of AZT/3TC and 0.40 mg/kg/day of Saroglitazar; 

corresponding to human doses (11.43/2.86 mg/kg/day, 8.57/4.29 mg/kg/day and 0.06 mg/kg/day, respectively) 

calculated using the body weight/ surface area normalisation formula below (Nair et al. 2016). 

 

Rat to human body weight/ surface area normalisation formula for drug dose calculations. 

The average weekly rat weight was used to calculate the drug doses (total volume 1 mL) and the administration 

was conducted daily between 0900h and 1100h via oral gavage for six weeks by a SAVC certified veterinary 

technician. The food and water intake were monitored daily for two weeks before onset of treatment and 

continued for 4 weeks during treatment to ensure that the treatment did not adversely affect food and water 

Experimental intervention Standard rat diet (normal rat 
chow) - lean

High calorie diet (HCD)

Vehicle, distilled water (Control) 1)   Lean Control 2)   HCD Control

LPV/r + AZT/3TC (HAART) 3)   Lean HAART 4)   HCD HAART

HAART + PPARα / γ agonist, 
Saroglitazar (HAART + Saro)

5)   Lean HAART + Saroglitazar 6)   HCD HAART + Saroglitazar

Saroglitazar 7)   Lean Saroglitazar 8)   HCD Saroglitazar

HED (mg / kg) = Animal does (mg / kg) × (Animal Km / Human Km)

HED is Human Equivalent Dose, Km is Correction factor 
Rat Km= 6.2, Human Km= 37
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intake in compliance with animal ethics. Below is a schematic presentation of randomization and various 

experimental interventions undertaken (Figure 2.1). 

 

Figure 2.1 Schematic representation of randomised grouping and various experimental interventions. 

Abbreviations wks: weeks, Tx: treatment, FP: feeding programme. 

2.5.3 Animal monitoring 

During the treatment phase of the study, apart from weight monitoring, rats were closely monitored for any 

adverse effects and where distress was noted, appropriate measures were taken. Food and water intake 

monitoring was done daily to ensure that the gavage procedure did not interfere with feeding and thereby 

adversely affecting the outcome of the study. Although stool and urine volumes were not quantified, their 

colour and consistency were closely monitored. The rat grimace scale shown below (Figure 2.2), was applied 

to assess the level of distress / pain following oral gavage. 

 

Figure 2.2 Rat grimace scale, (Sotocinal et al. 2011). 
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Rats that showed moderate to obvious distress were isolated and monitored closely and those that showed 

persistent distress associated with reduced feeding (> 50 %) for more than 48 hours were not gavaged and 

therefore dropped from the study.  After completion of the treatment programme, the animals were transported 

from the central animal unit to the temporary animal holding facility (for not more than 5 days) in the Division 

of Medical Physiology for subsequent experimentation. This stay was kept short to ensure that the transfer did 

not adversely affect the animal welfare. Furthermore, ad libitum food and water administration was continued 

until the rats were sacrificed. However, some rats were fasted overnight for serum lipid profile analysis as 

described below. 

2.5.4 Overnight fasting 

From each group described above, 8 rats, (n = 8 / group) were randomly selected and fasted for 10-14 hours 

before euthanasia. They were placed in special cages (metabolic cages) and supplied with water only ad 

libitum. Serum samples obtained from these rats were stored at -80 degrees Celsius (° C) and subsequently 

utilised for the measurement of fasting insulin levels, lipids (i.e., total serum cholesterol (TC), TGs, 

phospholipids (PL), high density lipoproteins (HDL-C, HDL2, HDL3)), and markers of lipid peroxidation 

(conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS)).  Heart tissue samples (n = 6 / 

group) were also harvested from these animals and snap frozen for subsequent Western blot analyses. 

2.5.5 Euthanasia 

Rats were euthanised through intraperitoneal (IP) injection of 160 mg/kg of sodium pentobarbitone (Eutha-

naze®, Bayer (Pty) Ltd. Animal Health Division, South Africa) using a sterile 26-gauge hypodermic needle. 

The site of injection was at the lower right quadrant of the abdomen to ensure that the urinary bladder, cecum, 

liver and other abdominal tissues were not damaged (Zatroch et al. 2017) as shown below (Figure 2.3). 

 

Figure 2.3 Landmarks for rat intraperitoneal injection. 

Location	of	site	of	
the	needle

Midline

Genitals	

Just	above	hip,	
level	of	2nd set	of	
nipples	

Stellenbosch University  https://scholar.sun.ac.za



46 
 

After injection, the animals were weighed and kept in a warm environment (to prevent hypothermia) away 

from bright light to minimize discomfort before the animals were in a fully (deep) anaesthetised state. To 

ascertain a state of deep anaesthesia, a pedal withdrawal reflex to pain stimuli was performed and its absence 

signalled successful euthanasia. 

2.5.6 Blood glucose measurement 

Blood glucose levels were measured in both fasted and non-fasted rats (n = 8 / group). A tail prick was done 

during anaesthesia and blood glucose levels were measured in millimoles / litre (mmol/L) using a conventional 

glucometer (GlucoPlusTM Cipla MedPro (Pty) Ltd. SouthAfrica). The fasting blood glucose and fasting serum 

insulin measurements were used to calculate the homeostasis model assessment for insulin resistance (HOMA-

IR). HOMA-IR is a validated method of assessing insulin resistance and β cell function in Wistar rats (Antunes 

et al. 2014) and was calculated using the formula: fasting serum insulin concentration (µIU / L) * blood glucose 

(mg / dl) / 405 (Mathews et al.1985). 

2.5.7 Incision, serum collection and isolation of organs 

A transverse sub-sternal incision was made and extended sub-diaphragmatically and the chest cavity was 

accessed via opening of the diaphragm and incising bilaterally towards the costochondral joints. The heart was 

rapidly excised after severing the aorta and pulmonary trunk and was submerged in fresh ice cold modified 

Ringer’s Lactate/ Krebs-Henseleit buffer (KHB) (containing NaCl 119 mM; NaHCO3 24.9 mM; KCl 4.7 mM; 

KH2PO4 1.2 mM; MgSO4.7H2O 0.59 mM; Na2SO4 0.59 mM; CaCl2 1.25 mM; glucose 10 mM) to arrest 

metabolism and stop contractions. Excess fat and connective tissue around the heart and ascending aorta were 

carefully dissected out and hearts were weighed maintaining them in ice cold KHB before they were mounted 

on the isolated rat heart perfusion system. 

After heart excision, blood collected within the chest cavity was collected using a pipette and placed into plain 

vacutainers (Serum clot activator vacuette, greiner bio-one, Germany) and left to stand for 25-35 minutes on 

dry ice before centrifugation at 3,000 revolutions / minute (3,000 rpm) for 20 minutes. Thereafter, the 

supernatant (serum) was carefully drawn and transferred into pyrogen free cryotubes (Cryo.STM, greiner bio-

one, Germany) and stored at -80 °C for subsequent serum analyses. 

Serum from non-fasted rats was analysed for liver enzymes i.e., alkaline phosphatase (ALP), alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase and gamma-glutamyl 

transferase (GGT) (Analysis done by: PathCare veterinary Pathology Laboratory, Western Cape, Cape Town 

South Africa). 

The liver tissue was carefully dissected and weighed and thereafter the right lobe was divided into three pieces: 

where one piece was immediately freeze clamped and stored in liquid nitrogen for subsequent Western blot 

analysis, the second piece was stored in liquid nitrogen for frozen section histological analysis and the third 
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piece was preserved in 10% neutral buffered formalin for standard haematoxylin and eosin (H/E) staining 

followed by histological analysis. 

The thoracic cavity was rinsed with ice cold KHB to clear blood clots and the thoracic aorta was accessed after 

meticulously dissecting out the pulmonary structures and oesophagus. The proximal part of the aorta (the point 

where the heart was severed) was identified and using non-toothed tissue dissecting forceps, the peri-aortic 

tissue (fat) was gently held and the vessel together with the perivascular tissues were dissected out from the 

vertebral bed. The entire thoracic aorta was harvested and quickly placed in ice cold Ringer’s Lactate solution 

for isometric tension studies (see section 2.5.11.2) and Western blot analyses. After performing a laparotomy 

through extension of the midline incision, the visceral / peritoneal fat was harvested and weighed as an 

indicator of fat deposition following experimental interventions.  

The left tibia was also harvested and the length measured using a Vernier calliper (150mm 530-101) to relate 

the tibial length to heart weight for accurate quantification of the cardiac hypertrophy if any. The absolute 

heart mass (mg) of each experimental animal was divided by its tibial length (mm) to obtain a normalised 

cardiac mass index (mg / mm). Thereafter, the mean indices were computed per group. This has been described 

as a more accurate index than comparing the heart mass to total body weight (Yin et al. 1982). 

2.5.8 Isolated working heart perfusion system 

The isolated hearts arrested in KHB were mounted on the Neely-Morgan perfusion system according to 

principles described by Neely and colleagues in 1967 (Liebermeister et al.1967). The system contains warm 

crystalloid solution, KHB (36° C) that is gassed with 95 % oxygen and 5 % carbon dioxide to maintain pH at 

7.4. The aorta was mounted on the aortic cannula on the system to allow retrograde perfusion at 100 cm of 

H2O for 15 minutes for stabilisation. The left atrium/pulmonary trunk was cannulated and after 15 minutes of 

retrograde flow, the flow was changed to antegrade/ working mode where the heart was perfused at a preload 

of 15 cm H2O and the left ventricle ejected against an afterload of 100 cm H2O. The temperature was monitored 

throughout the perfusion protocol using a thermometer probe placed in the coronary sinus. The myocardial 

temperature was maintained at 36.5° C during ischaemia. After 15 minutes of working mode (left ventricle 

pumping against 100 cm H2O), the flow was reversed to retrogradely perfuse the heart (Langendorff mode) 

for another 25 minutes before induction of myocardial ischaemia. Two types of ischaemia were induced as 

described below. The 25 minutes of retrograde perfusion was aimed at enhancing stabilization to achieve 

reproducible results for the infarct sizes and signalling proteins investigated (Stensløkken et al. 2009). On the 

other hand, reperfusion phases for both global and regional ischemia-reperfusion have been optimized in our laboratory 

(Marais et al. 2005; Salie et al. 2012) and were approved by experts in the field (personal communication: Professor A. 

Lochner). 

2.5.8.1 Global ischaemia 

After the stabilisation phase, a set of hearts (n = 6 / group) were randomly selected for global ischaemia / 

reperfusion studies and subsequent Western blot determinations of protein expression / activation. To induce 
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global ischaemia, perfusion to the heart was completely cut off (coronary flow rate of 0 ml/ min) by closing 

both the aortic and left atrial flows for 20 minutes (Bell et al. 2011). Temperature was monitored and kept 

constant at 36.5° C throughout the global ischaemia phase. At the end of global ischaemia, the hearts were 

retrogradely perfused for 10 minutes, snap frozen and preserved in liquid nitrogen for subsequent Western blot 

analyses (Figure 2.4).  

 

Figure 2.4 Global ischaemia / reperfusion perfusion protocol. RP: retrograde perfusion, WH: working heart, 

Min: minutes. 

2.5.8.2 Regional ischaemia-reperfusion studies 

In another set of ex vivo working heart experiments, (n = 8 / group), hearts were exposed to a regional 

ischaemia-reperfusion protocol (Figure 2.5). After stabilising the hearts for 55 minutes (15 retrograde 

perfusion, 15 working heart mode and 25 of retrograde flow), the left anterior descending coronary artery 

(LADCA) was ligated for 35 minutes using a silk surgical suture and the temperature kept constant at 36.5° C 

throughout the ischaemia phase. LADCA ligation reduced the coronary flow to approximately 1/3 of pre-

ischaemia flow rate. After 35 minutes, the ligature was loosened and hearts reperfused retrogradely for 10 

minutes and thereafter switched to working heart for 20 minutes. The perfusion protocol was completed after 

perfusing the hearts in Langendorff mode for another 30 minutes (Bell et al. 2011).  

 

Stabilization	phase

15	min	
RP

15	min
WH

10	min	
RP

25	min
RP	

20	min	of	global	
ischaemia

Freeze	clampedFlow	/	perfusion	
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Perfusion	re-
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Reperfusion	phase
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Figure 2.5 Regional ischaemia-reperfusion protocol. RP: retrograde perfusion, WH: working heart, LAD: left 

anterior descending coronary artery, Min: minutes. 

At the end of the protocol, the silk suture was securely tied (to occlude the LADCA) and 0.5 - 0.8 millilitres 

of a 0.5% Evans blue (C34H24N6Na4O14S4, Sigma, St. Louis, USA) dye suspension was slowly injected via the 

aortic cannula. Thereafter, hearts were frozen overnight (in a closed container at -10° C) before staining with 

2,3,5 triphenyltetrazolium chloride (TTC, C19H15CIN4: Merck (Pty) Ltd. Germany). 

2.5.9 TTC staining and infarct size analysis 

TTC staining salt solutions (Merck KGaA, Darmstadt, Germany) were prepared according to the protocol 

described below, (Bohl et al. 2009).  

 

Stabilization	phase

15	min	
RP

15	min	
WH

35	minutes	of	regional	
ischaemia

Reperfusion	phase

25	min	
RP

LAD	coronary	ligated	 Ligature	released	
(Perfusion	re-established)

10	min	
RP

20	min	
WH

30 min	
RP

Evans	Blue	infusion

-Solution	I: 100mM	NaH2PO42H20	(15.6	g/L	dH2O)

-Solution	II: 100mM	Na2HPO4 (14.2	g/L	dH2O)

The salt solution for staining was prepared by taking 20 ml of
Solution I and 80 ml of Solution II mixed and pH set at 7.4.

To prepare TTC staining solution.

5 ml of this solution (Solution I and II) was placed in a tube and
0.05 g of tetrazolium salt added and covered in aluminum foil
(light sensitive). This solution was used to stain one heart and
therefore, the volume of the solution was prepared according to
the number of hearts ready for staining.

Preparation	of	staining	solutions

-2,	3,	5	–triphenyltetrazoliumchloride,	C19H15CIN4

Chemicals	used:
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Each frozen heart was cut transversely into 5-6 slices, each approximately 2 mm thick using a sharp blade and 

placed in a tube containing 5 ml of the above solution (0.05 g of TTC in buffer solution I and II) and shaken a 

few times during the 30 minutes of staining. The colour development was monitored (damaged, but not 

infarcted, tissues take on a deep red colouration whereas infarcted tissue areas are not stained and have a white 

colour) and at the end of 30 minutes, the salt solution was poured off and 4 % formaldehyde solution (24.3 

ml/100 ml distilled water) was added and left to stand for an hour to fix the stain. Thereafter, the slices were 

placed between glass plates and images scanned for computerized planimetry. From these digital images, the 

areas were drawn and infarct size (pale), area at risk (bright red) and viable tissue (blue) were determined 

(Figure 2.6) using an image analysis software (Image Tool, University of Texas, Health Science Centre, San 

Antonio Texas, UTHSCSA). The infarcted area (infarct size) of the left ventricle (n = 8/group) was expressed 

as a percentage of the area at risk + infarct area as shown below, Figure 2.6. 

 

Figure 2.6 Left ventricular transverse section following TTC staining. Infarct area (pale in colour), area at 

risk (AR, bright red) and viable tissue (deep blue) from a slice of heart tissue (lean control) stained with TTC 

after undergoing ischaemia reperfusion. 

2.5.10 Cardiac haemodynamic performance data collection 

As described in the protocols above, during the isolated working heart protocol, performance of the heart was 

monitored and data collected for analysis. Coronary (Qe) and aortic (Qa) flow rates in millilitre/minute 

(ml/min) were measured manually. These two parameters were used to calculate the total cardiac output (CO) 

by obtaining their sum (Qe + Qa = CO). 

The aortic pressure (mmHg) was obtained through a side branch of the aortic cannula which was connected to 

a Viggo-spectramed pressure transducer. The peak systolic pressure (sp), diastolic pressure (dp) and heart rate 

(HR) were obtained from the recordings made by the computerized pressure transduction system. These 

measurements were recorded before (during stabilisation) and after ischaemia (during reperfusion).  

Functional recovery of the hearts was determined by expressing post-ischaemic aortic output as a percentage 

of pre-ischaemic aortic output, n = 8 / group. Furthermore, total work (Wt) performance by the left ventricle 

Infarct Area

Area at risk (AR)

Viable tissue

Infarct size (IS) = Infarct area / (Area at risk + Infarct area) x 100 
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(calculated by the transduction system) was also recorded before and after ischaemia and percentage total work 

recovery determined. Other parameters recorded include, the maximal rate at which the left ventricle pressure 

rose (dp/dT max) and fell (dp/dT min), mean left ventricular power (TW, mWatts) and kinetic power (Wk). 

2.5.11 Vascular reactivity, aortic ring studies 

2.5.11.1 Harvesting of the aorta 

After the thoracic cavity was rinsed with ice cold KHB to clear blood clots, the thoracic aorta was identified 

after meticulously dissecting out the other thoracic tissues. The proximal part of the aorta (the point where the 

heart was severed) was identified and using non-toothed tissue dissecting forceps, the peri-aortic tissue (fat) 

was gently held and the vessel was dissected out from the vertebral bed. The entire thoracic aorta was harvested 

and quickly placed in ice cold KHB in a 100-mm petri dish where all the perivascular adipose tissue (PVAT) 

was meticulously shaved off taking care not to damage the vascular wall and the endothelium. From here, a 

short segment of the aorta measuring 3.5 to 4 millimetres was cut out and mounted in an organ bath system. 

2.5.11.2 The isometric tension measurement protocol 

The vascular reactivity studies were conducted using an organ bath (25 mL) for the aortic ring segments 

(Powerlab 4/30 ADINSTUMENTS: Bella Vista, New South Wales, Australia) and a tension transduction system, 

isometric force transducer (TRI202PAD, Panlab, Cornellà, BCN, Spain). The system has two horizontal 

stainless-steel hooks; the lower hook is stationary and the upper one is attached to a force-displacement 

transducer for measuring isometric tension. The output from the force transducer was recorded on a LabChart® 

7 data acquisition and analysis software (Dunedin, New Zealand).  

The technique was based on previously published protocols (Jespersen et al. 2015 and Privett et al. 2004). 

Before mounting the aortic rings, the organ bath and the string with attached steel hook were rinsed four times 

with boiled distilled water. The organ bath was filled up with fresh KHB, warmed to 36.5° C – 37° C and 

monitored with a thermometer probe. The buffer was gassed with 95% O2 / 5% CO2 at a steady flow and the 

system was calibrated. The aortic ring was mounted between the two horizontal stainless-steel hooks and 

tension kept minimal (< 0.2 g) just adequate to hold the tissue in place, otherwise too much tension would 

stretch and destroy the ring. The ring was left for 5 minutes before the tension was gradually increased to 0.5 

g within 10 minutes. At this point the organ bath was drained and refilled cautiously with pre-warmed KHB. 

Thereafter the tension was increased to 1.5 g and buffer changed again at 20 minutes (Jespersen et al. 2015). 

After 30 minutes of equilibration, the volume of the buffer was accurately measured to 25 mL because the 

drugs were administered into the bath and their concentrations were calculated based on a final volume of 25 

mL. 100 nM of phenylephrine was added (2.5 µL of 1 mM phenylephrine stock) and the tissue was monitored 

until it achieved maximum contraction marked by a plateau (Figure 2.7) at which point 10 µM acetylcholine 

was added (25 µL of Stock A) (see Addendum C) and left to attain full relaxation. For a normal healthy rat, 

the aorta should achieve at least 70% relaxation following maximal contraction. The tissue bath was the rinsed 
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three times and refilled (25 ml) and aorta stabilised for 30 minutes at a tension of 1.5 g changing the buffer 

every 10 minutes.  

Aortic ring contraction was induced by step-wise administration of cumulative doses of phenylephrine (100 

nM; 300 nM; 500 nM; 800nM and 1 µM) (Figure 2.7). These doses were administered into the bath solution 

in single boluses after maximal tension was reached for the previous dose. Following the injection of the last 

1 µM dose (highest concentration of phenylephrine), and the aorta ring attaining maximal cumulative tension, 

induction of relaxation was commenced by administration of increasing concentrations of acetylcholine 

(30nM, 100nM, 300 nM, 1 µM and 10 µM) (Figure 2.7). Similarly, successive doses were administered 

following maximal relaxation for the previous dose. The final relaxation following the last concentration of 

acetylcholine marked the end of the protocol. For the description of the drug doses and their concentrations 

(stock preparations) see Addendum C.  

 

Figure 2.7 Recording showing the isometric tension protocol for aortic ring contraction and relaxation 

following administration of phenylephrine (Phe) and acetylcholine (Ach) respectively. 

At the end of the protocol, the graph recording was saved and analysed for vascular contractility and relaxation. 

Contraction was expressed as percentage change in gram tension of the aortic ring per dose of phenylephrine 

whereas relaxation resulting from cumulative acetylcholine administrations was expressed as percentage 

relaxation of maximum phenylephrine-induced contraction.  

To ascertain that acetylcholine-induced aortic ring relaxation via an endothelium and nitric oxide-dependent 

mechanism, another experiment was conducted using a non-selective inhibitor of nitric oxide synthase (Dodd-

o et al. 1997), L-nitroarginine methyl ester (L-NAME) (EMD Chemicals, Inc. San Diego CA, USA an affiliate 

of Merck KGaA, Darmstadt, Germany). 250 µL of 100 µM of L-NAME was added to the 25 mL of KHB (to 

30	minutes	
stabilization

Cumulative	
phenylephrine

Cumulative	
AcetylcholineEquilibration	
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make L-NAME concentration of 1 µM) 15 minutes prior to cumulative doses of phenylephrine and the effect 

was abolishment of acetylcholine mediated relaxation as shown below (Figure 2.8). 

 

Figure 2.8 . Recording showing isometric tension measurement protocol using L-nitroarginine methyl ester 

(L-NAME), phenylephrine (Phe) and acetylcholine (Ach). 

2.5.12 Analysis of fasted serum samples 

The serum samples (n = 8 / group) were analysed in the Division of Chemical Pathology, University of Cape 

Town for lipid levels, fasting insulin and markers of lipid peroxidation/ oxidative stress; CD and TBARS. 

HDL-C and its subclasses HDL2 and HDL3 (µmol / L) concentrations were analysed as per the protocol 

described by Gidez et al. (1982) whereby total HDL-C was separated from the APO-B lipoprotein through 

precipitation with sodium heparin-manganese chloride. Following this, HDL2 was precipitated from the 

supernatant using dextran sulfate leaving HDL3 in the supernatant. Consequently, HDL2 concentrations were 

determined by subtracting the HDL3 from HDL-C.  

Serum TC and TGs concentrations (mmol/L) were assessed using enzymatic colorimetric kits (LabAssayTM 

Cholesterol (catalogue number 294-65801), LabAssayTM TG (catalogue number 290-63701), and PL 

(LabAssayTM Phospholipid (catalogue number 296-63801) (Wako Chemicals, Germany) using a SPECTRA-

max Plus 384 spectrophotometer with SoftMax Pro 4.8 microplate data acquisition and analysis software 

(Molecular Devices Corporation, Labotec Industrial Technologies, South Africa). 

CD concentrations (µmol / L) were calculated at absorbance of 234 nm following cyclohexane dilution as 

described by Esterbauer et al. (1989) and Pryor and Caste (1984). TBARS concentrations (µmol / L) were 

determined with spectrophotometry at an absorbance of 532 nm after addition of thiobarbituric acid reagent 

30	minutes	stabilization
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(Sigma-Aldrich, USA) to a mixture of butylated hydroxytoluene (BHT) (Fluka Chemie-Switzerland), ethanol 

(Merck, SA) and orthophosphoric acid (Sigma-Aldrich, USA) (Jentzsch et al. 1996). 

Fasting insulin levels were analysed using the RayBio® rat insulin enzyme linked immunosorbent assay kit 

(ELISA), (RayBiotech, Norcross, USA) as per the manufacturer’s instructions and results were expressed in 

µIU/mL and used to calculate the Homeostasis Model Assessment index for Insulin Resistance (HOMA-IR). 

2.5.13 Protein expression and phosphorylation measurements - Western 
blot analysis 

Protein immunoblot techniques were employed to detect proteins of interest and determine their expression 

and phosphorylation. Gel electrophoresis was used to separate proteins per their different molecular weights 

and transferred to a polyvinylidene fluoride (PVDF) membranes where they were probed / detected using 

specific antibodies. 

The following proteins were analysed: - 

 

The tissues and specific proteins analysed (justification, see section 1.5) are summarised as follows: - 

i) Liver tissue (n = 8 / group): - Western blot analysis of (total and phosphorylated) proteins involved 

in hepatic oxidative stress (NADPH p22-phox), inflammatory/insulin signalling/ stress response 

(IκBα, AMPK, ERK 1/2, PKB/Akt, p38), transcriptional control (PGC 1α) and apoptosis (cleaved 

PARP and caspase 3). 

ii) Vascular (aorta) tissue (n = 8 / group): - Proteins involved in endothelial oxidative stress (NADPH 

p22-phox), inflammatory/ stress response (IκBα, AMPK, ERK 1/2, PKB/Akt, p38), vascular tone 

(eNOS) and apoptosis (cleaved PARP and caspase 3). 

iii) Cardiac tissue: Baseline protein analysis using hearts harvested from fasted rats (n = 8 / group, 

these hearts were rinsed in ice cold KHB before they were snap frozen and stored at -80° C), and 

protein analysis following global ischaemia-reperfusion (n = 8 / group, as described in Figure 2.4): 

- Proteins involved in oxidative stress (NADPH p22-phox), response to ischaemia-reperfusion 

(IκBα, AMPK, ERK 1/2, PKB/Akt, p38), transcriptional control (PGC 1α) and apoptosis (cleaved 

PARP and caspase 3). 

Detection of total and phosphorylated proteins
(to assess activation)

-AMPK

-eNOS

-PKB/Akt

-Erk 1 / 2

-P38

Detection of protein expression

- IκBα

- PGC-1α

- PPAR-alpha

- NADPH, P22-phox

- Caspase 3

- Cleaved PARP
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The protocol for the Western blot technique is described below. 

2.5.13.1 Lysate preparation 

To extract proteins from frozen liver, heart and aortic tissues, lysates were prepared through mechanical and 

enzymatic processes. First, lysis buffer was prepared using the ingredients listed below. 

 

From the above ingredients, the lysis buffer for liver and heart tissues was prepared per the concentrations and 

volumes shown below, Table 2.3. 

  

-Tris-Hydrochloric acid (Tris-HCl): pH buffer

-EDTA (ethylenediaminetetraacetic acid), [CH2N(CH2CO2H)2]2: it is used in lysis buffer as a protease inhibitor.

-EGTA (ethylene glycol tetraacetic acid): it is used in lysis buffer as a protease inhibitor.

-NaCl (Sodium chloride): increases osmolality to facilitate lysis and keeps proteins soluble

-ß-glycerophosphate: non-specific phosphatase inhibitor

-Tetra-Na-Pirophosphate: non-specific phosphatase inhibitor

-Na3VO4 (sodium orthovanidate): it is an inhibitor of tyrosine phosphatases, alkaline phosphatases and a number of

ATPases. The aim is to preserve the phosphorylation of proteins of interest by inhibiting endogenous phosphatases

present in cell lysate mixture.

-Triton X-100: is a non-ionic surfactant that breaks protein-protein bonds maintained by means of Van Der Waals

forces.

-Leupeptin: protease inhibitor.

-Aprotinin: inhibits serine proteases.

-PMSF (phenylmethanesulphonylfluoride or phenylmethylsulphonyl fluoride): irreversible serine protease inhibitor.

-SDS (sodium dodecyl sulphate): dissociating agent that denatures proteins to individual polypeptides.
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Table 2.3 showing different components used in preparation of lysis buffer. For abbreviations, see section 

2.5.13.1. 

 

For preparation of aortic tissue lysis buffer, 50 nM (0.0213 g/ 10 ml of buffer solution) of sodium fluoride 

(NaF) and 0.1% of sodium dodecyl sulphate (SDS) was added to the above chemicals. After preparation of the 

lysis buffer, 700 µL was transferred in 2 ml Eppendorf tubes for each sample tissue and kept in ice. 

2.5.13.2 Tissue homogenisation 

From each frozen tissue sample, a small piece was obtained and pulverized using a liquid nitrogen-precooled 

mortar and pestle. Subsequently 55-65 mg of the pulverized powder was mixed into the 700 µL lysis buffer to 

which seven stainless-steel beads (SSB16, 1.6 mm in diameter; 1 lb.) (Next Advance, USA) were added and 

then homogenised using the bullet blenderTM (Next advance, USA) at 4 °C. The bullet blender was set at 

homogenisation power of eight and one-minute duration for three cycles with five-minute intervals between 

the cycles. The homogenised samples were left to set for 20 minutes before centrifugation for 20 minutes at 

15,000 revolutions per minute (rpm) or 12074 x g (Sigma Laborzentrifugen, type 1-4 K, Germany). Thereafter, 

the supernatant was transferred to Eppendorf tubes and maintained on ice before the Bradford assay was 

performed. 

2.5.13.3 Bradford protein assay (BPA) 

The Bradford assay (Bradford, 1976) was used to determine protein concentration in the supernatant.  Bradford 

stock was prepared by dissolving 500 mg coomassie brilliant blue in 250 ml 95 % ethanol; 500 ml phosphoric 

acid was added and the final volume made up to 1L with distilled water and mixed. From this stock, Bradford 

solution was prepared by diluting 1:10 with distilled water and filtered twice using Wathman filter papers (0.4 

µm pores). 

Stock 10 ml 20 ml 30 ml 50 ml

20 mM Tris-HCl
1 mM EGTA

200 mM
10mM

1 ml 2 ml 3 ml

1 mM EDTA 100 mM 100 µl 200 µl 300 µl 500 µl

150 mM NaCl 1 M 1.5 ml 3 ml 4.5 ml 7.5 ml

1 mM β-glycerophosphate 0.002g 0.004g 0.006g 0.01g

2.5 mM tetra-Na-Pirophosphate 0.01g 0.02g 0.03g 0.05g

1 mM Na3VO4

(0.018g/10ml)
10 mM 1 ml 2 ml 3 ml 5 ml

* 50 µg/ml PMSF 100 mM 30 µl 60 µl 90 µl 150 µl

10 µg/ml Leupeptin 10 µl 20 µl 30 µl 50 µl

10 µg/ml Aprotinin 10 µl 20 µl 30 µl 50 µl

1% Triton X-100 10% 1 ml 2 ml 3 ml 5 ml
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10 µL of each sample supernatant was added to 90 µL of distilled water into sorval tubes to prepare the first 

10 times dilution. From the 10 X diluted set, another 10 µL volume was drawn and added to another set of 

duplicate tubes with 90 µL of distilled water for the second 10 x dilution. 

To prepare standards, 100 µL Bovine serum albumin (BSA) of known concentration (5 mg/ ml) was diluted 

five times (400 µL of distilled water was added) and prepared in increasing concentrations and 900 µL of 

Bradford solution added as shown below (Table 2.4). 

Table 2.4 Bovine serum albumin, (BSA) standard concentrations for BPA. 

 

900 µL of Bradford solution was added also to the duplicate set of diluted samples and mixed (using a vortex) 

and left to stand for 15 minutes before absorbance at wavelength of 595 nm was measured using a 

spectrophotometer (Cat. 4001/4, Spectronic Instruments, USA). From the absorbance, protein concentrations 

were calculated against the BSA standard curve (absorbance against concentration) using the equation y = mx 

+ c.  

From the above concentrations, the volume of supernatant to load was calculated against a standard 

concentration and total volume of 40 µg / 12 µL loaded in each agar gel well. One third of the volume of 

lysates was composed of the Laemmli sample buffer (62.5mM Tris-HCl (pH 6.8), 4 % SDS and 10 % glycerol, 

0.03 % bromophenol blue and 5 % β-mercaptoethanol) and the volume difference was topped up with the lysis 

buffer. For liver and cardiac tissues, a protein concentration of 40 µg was calculated and 12 µL of volume 

loaded whereas for aorta tissue, 20 µg of protein at 15 µL was loaded per well since the protein concentration 

was low. The prepared lysate samples were boiled in a water bath for five minutes to denature proteins and 

were preserved at -80 °C. 

2.5.13.4 Protein separation by gel electrophoresis 

The frozen lysates were boiled again for four minutes and centrifuged for five minutes before proteins were 

separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 10 % loading gel and 

4 % stacking gel were prepared using the chemicals and concentrations shown below (Table 2.5). 

  

BSA concentration 
(µ g/ml)

BSA Volume
(µL)

Distilled water 
Volume (µL)

Bradford Solution
(µL)

0 0 (blank) 100 900
1.25 5 95 900
2.5 10 90 900
5 20 80 900
10 40 60 900
15 60 40 900
20 80 20 900
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Table 2.5 showing preparation of running and stacking gels for PAGE. (Tris- HCl: Tris hydrochloric acid, 

SDS: Sodium Dodecyl Sulphate, APS: Ammonium persulphate, TEMED: 1,2 Bis (dimethylamino) ethane – 

N’N’N’N-tetramethylethylendiamine, Stain free: 2,2,2-trichloroethanol, from Sigma-Aldrich (St. Louis, MO, 

USA). 

 

Using the Bio-Rad Mini Gel Protean System (BIO-RAD laboratories, USA) the running gel was then cast 

between two glass plates 0.75 mm and left for 20-30 minutes to set before adding the stacking gel on top and 

applying the plastic combs for setting the 15 wells needed for sample loading. The gel was left for 10-15 

minutes to set before transfer into a protean system U-shaped core latch and filled with transfer buffer where 

the combs were carefully taken out filling the wells with the buffer to prevent them from collapsing. The set 

up was then placed in a tank and samples were loaded into the wells. 

The first well was loaded with five µL pre-stained protein ladder (molecular weight marker) (Thermo 

Scientific, Lithuania, European Union). Thereafter, the samples were loaded, starting with the control sample 

and subsequent experimental samples (n = 3 / group). The running buffer (composed of 250 mM Tris, 190mM 

glycine and 1 % sodium dodecyl sulphate) was added to the outer compartment and the system connected to 

electrodes (matching the anode to anode and cathode to cathode) and set to run at 100 V, 200 mA for 10 

minutes and then 200 V, 200mA for 50 minutes. After the protein separation / gel electrophoresis was 

complete, the proteins were transferred to a membrane. 

2.5.13.5 Gel to PVDF membrane protein transfer 

A Millipore transfer membrane / polyvinylidene fluoride (PVDF) microporous membrane (Immobilon®-P 

Merck KGaA, Darmstadt, Germany) was used to bind proteins from the gel through a transfer system. The 

membrane was cut to an appropriate size and was first soaked in methanol for 3 minutes and equilibrated in 

the transfer buffer (25m Tris-HCl, 192 mM glycine and 20% v/v methanol) for 15 minutes before the protein 

transfer was commenced. Thereafter, the gel was placed on top of a stack of two blotting papers and a sponge 

(presoaked in the transfer buffer) and the PVDF membrane was placed on top of the gel and rolled gently to 

Running	gel Stacking gel

Reagent Stock 10	%	running	gel	 Stock 4	%	stacking	gel

Millipore	water - 4.85	mL - 3.05	mL

Stain	free 99	% 50	µL - -

Tris-HCl (pH	8.8) 1.5	M 2.5	mL 0.5	M 1.25	mL

SDS 10	% 100 µL 10	% 50	µL

Acrylamide 40	% 2.5	mL 40	% 500	µL

APS 10 % 50	µL 10	% 50	µL

TEMED 99 % 20	µL 99	% 10	µL
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ensure that no air bubbles were trapped in between. Two blotting papers were placed on top of the membrane 

and another presoaked sponge on top and the sandwich was secured in the transfer cassette.  

The cassette was placed in the transfer tank (filled with the transfer buffer) and an ice pack placed behind the 

cassette to ensure that the transfer was at approximately < 10 °C. The system was connected to electrophoresis 

power supply (Amersham pharmacia biotech, Cape Town, South Africa) and transfer was set at 200 V and 200 

mA for an hour.  Following this, the membrane was retrieved and placed in methanol for 30 seconds and 

visualized using the ChemidocTM (Bio-Rad) imaging system to confirm that the transfer was successful. The 

image was captured and saved using the ImageLabTM 5.2.1 image acquisition and analysis software (BIO-RAD 

Inc. Hercules, California, U.S.A) for subsequent normalisation of the blots. 

The membranes were washed using 0.1% Tween® 20 in Tris buffered saline (TBS Tween) three times and 

non-specific protein binding sites were blocked with 5 % fat free milk (5 mL / 100 mL TBS tween) for two 

hours on a gentle shaker. Subsequently, they were washed three times (washing in intervals of five minutes 

while shaking them gently) before incubation with the primary antibody. 

2.5.13.6 Primary and secondary antibody incubation 

The membranes were incubated in primary antibody specific for the antigen of interest at 4 °C for 10-14 hours 

under gentle agitation. The antibodies were diluted as per the manufacturer’s instructions at a ratio of 1:1000 

(5 µL of primary antibody to 5000 µL TBS-Tween). However, eNOS and PGC-1α primary and secondary 

antibodies were diluted in signal boost (Cat:KP31812, EMD Millipore Corp., Billerica, MA USA), (see 

Addendum D for the list of all antibodies and their dilutions). 

After primary incubation period, the membranes were washed to get rid of unbound primary antibody and 

incubated for one hour (room temperatures) with a horseradish peroxidase-linked anti-rabbit secondary 

antibody (AEC Amersham, Buckinghamshire, United Kingdom) (1:4000 TBS-tween). After the incubation, the 

membranes were washed in TBS-Tween for 15 minutes under gentle agitation before incubation with enhanced 

chemiluminescence (ECL) agent (AEC Amersham, Buckinghamshire, United Kingdom) for 5 minutes. The 

principle is that the anti-rabbit antibody binds to the primary antibody and since it is linked to horseradish 

peroxidase, when exposed to a chemiluminescent agent the reaction produces luminescence in proportion to 

the amount of protein. The emitted light can then be captured by a camera for qualitative and quantitative 

analysis. 

After the incubation with ECL, the membranes were transferred to the ChemidocTM (Bio-Rad) imaging system 

and images were captured using the ImageLabTM 5.2.1 image acquisition and analysis software. The images 

were saved and the corresponding images with total proteins were used for normalisation. 

2.5.13.7 Normalisation and analysis 

To quantify the amount of specific protein contained in each Chemi-Hi blot, the images captured after ECL 

exposure were compared to the total stain free membranes, total lane protein – stain free blot and all the 
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corresponding columns were normalised using ImageLabTM 5.2.1 image analyser. Therefore, there was no 

need for the use of a house keeping antibody to control for equal protein loading since every protein blot was 

controlled by the corresponding total stain free blot lane as shown in Figure 2.9 below. The software detects 

bands and calculates normalisation volume intensities for each band using a normalisation factor (control). 

The normalised volume intensities were then recorded for analysis and interpretation. The normalised volume 

intensity for the control/ standard column was set as one (1) and all the other intensities were calculated relative 

to it. Subsequently, the mean ± SEM (densitometry units) per group were analysed. 

 

Figure 2.9 showing the normalisation of the ‘Chemi Hi sensitive blots’ to the ‘total lane protein-Stain free 

blot’ using ImageLabTM 5.2.1 image analyser. The generated normalised volume intensities were analysed for 

interpretation. 

2.5.14 Liver tissue histology 

Liver samples were harvested and one set was preserved in 10 % buffered neutral formaldehyde for standard 

haematoxylin and eosin (H & E) staining procedures and the other was snap frozen for preparation of frozen 

sections for oil red O (ORO) staining. The aim of the H & E staining was for hepatic morphological 

characterization where the cell nucleus stains blue (haematoxylin) and the cytoplasm stains pink (eosin). 

Below is a description of how the tissues were prepared, stained and the analyses interpreted.  

2.5.14.1 Tissue collection and fixation 

Liver tissues were collected immediately after the rats were euthanised and two samples were obtained for 

histological purposes. One set of samples (n = 12 / group) was fixed in 10 % buffered formaldehyde to prevent 

tissue degradation because of putrefaction and retain tissue structure. They were retained in the formalin 

solution for a minimum of two days for complete fixation. These tissues were processed for H&E staining. 
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2.5.14.2 Tissue processing 

The fixed tissues were sectioned into smaller pieces, placed in embedding cassettes and clearly labelled. They 

were processed using an automated processing system (Duplex processor, Shandon Elliot; Optolabor (Pty) 

ltd, Johannesburg, South Africa) where they were then dehydrated using increasing concentrations of alcohol, 

cleared with xylene and infiltrated with paraffin wax as shown in Table 2.6 below. 

Table 2.6 showing the standard processing protocol for H & E staining. 

 

2.5.14.3 Embedding 

After the tissues sections were processed, they were embedded in paraffin wax at 60 °C using Leica EG 1160 

embedder (Leica Biosystems, Germany; supplied by SIMM Instruments (Pty) Ltd, Cape Town, South Africa). 

The wax mold was placed on an iced surface for it to set and subsequently stored at temperatures ranging from 

20-25 °C before sectioning. 

2.5.14.4 Tissue block sectioning 

Using a Leica RM 2125 RT microtome, (Leica Biosystems, Germany; supplied by SIMM Instruments (Pty) 

Ltd, Cape Town, South Africa), uniform sections of 5 µm in thickness were sectioned from pre-cooled blocks 

and thereafter, sections were warmed in a water bath (40 °C) for the tissues to stretch before transferring on 

glass slides.  

2.5.14.5 Staining 

The slides were incubated at 60 °C for 2 minutes for the wax to melt before they were stained. Eosin solution 

and filtered haematoxylin solutions were placed into the automated stainer, Leica Auto Stainer XL (Leica 

Step Solution Time	(min) Temperature	(°C)

1 10%	Formalin 30 Room	Temperature

2 70%	Ethanol 30 Room	Temperature

3 96%	Ethanol 30 Room	Temperature

4 96%	Ethanol 30 Room	Temperature

5 99.9%	Ethanol 30 Room	Temperature

6 99.9%	Ethanol 30 Room	Temperature

7 99.9%	Ethanol 30 Room	Temperature

8 Xylene 30 Room	Temperature

9 Xylene 30 Room	Temperature

10 Paraffin 60 60

11 Paraffin 60 60

12 Paraffin 60 60
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Biosystems, Germany; supplied by SIMM Instruments (Pty) Ltd, Cape Town, South Africa). See Table 2.7 

below for the protocol. 

Table 2.7 showing a standard H & E protocol. 

 

2.5.14.6 Mounting 

To improve the visual quality of the slide under a microscope, DPX mountant (Sigma-Aldrich, USA) was used 

to apply the glass cover slip on the stained liver sections and left to dry at room temperatures for two days 

before light microscopy analysis. 

2.5.14.7 Oil red O (ORO) staining  

Another set of liver tissues was snap frozen and preserved in liquid nitrogen for ORO staining. The aim of 

staining with ORO is to stain fats/lipids within the liver tissue and characterise the hepatic fat infiltration. ORO 

(xylene-azo-xylene-azo-β-naphthol) stains neutral lipids giving them an orange-red tint and the stain is more 

stable when mixed with an isopropanol solution (Lillie 1944). 

The tissues were sectioned into smaller pieces and embedded on tissue freezing medium using a Leica CM1850 

UV Cryostat, microtome (Leica Biosystems, Germany; supplied by SIMM Instruments (Pty) Ltd, Cape Town, 

South Africa), they were trimmed and sectioned to obtain uniform 12 µm thick sections. The trimming and 

sectioning was done at temperatures of -14 °C ± 2 °C to prevent tissues from drying. The sections were 

transferred on to positively charged, coated polylysine 1.1 mm-thick microscope slides. The slides were left to 

set for 30 minutes at room temperatures before staining. The stain was prepared as shown below using ORO 

isopropyl solution and dextrin solution. 

Step Solution Time	 Repetitions

1 Oven	(60˚C) 2	min Once

2 Xylene 5	min Twice

3 Ethanol	(99%) 2	min Twice

4 Ethanol	(96%) 2	min Once

5 Ethanol	(70%) 2	min Once

6 Tap	water 2	min Once

7 Haematoxylin 8	min Once

8 Running	water 5	min Once

9 Eosin 4	min Once

10 Running	water 1	min Once

11 Ethanol	(70%) 30	sec Once

12 Ethanol	(96%) 30	sec Twice

13 Ethanol	(99%) 30	sec Once

14 Xylene 1	min Once
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Preparation of ORO-Dextrin solution. 

The slides were placed directly into the filtered 0.5 % ORO in dextrin and stained for 20 minutes before rinsing 

with running water.  Following this, they were counterstained with 0.25 % crystal violet (Kimix chemicals, 

South Africa), rinsed with running water and a coverslip was mounted using an aqueous mounting medium 

(Sigma-Aldrich, USA). This is a modified protocol from the original description of ORO in haematoxylin 

(Lillie and Ashburn 1943) because we observed that the haematoxylin counterstain faded faster and after 

application of the mounting medium the nucleus could not be characterised. 

2.5.14.8 Immunohistochemistry 

Liver sections were also prepared for immunohistochemistry. The tissues sections were probed using anti-

placental rabbit glutathione S transferase (GST-P) antibody (standard immunohistochemical staining process 

for paraffin embedded sections) (Shi et al. 2007) and counterstained with haematoxylin before mounting for 

subsequent microscopic assessment to identify presence / absence of GST-P- positive foci. 

2.5.14.9 Microscopy 

Standard light microscopy techniques were used to assess the morphology and severity of fatty changes 

(steatosis). The degree of steatosis was determined by estimating the proportion of hepatocytes containing fat 

droplets per medium power field; <1 ⁄ 3 mild, 1 ⁄ 3–2 ⁄ 3 moderate and >2 ⁄ 3 severe, (n = 12 / group). The 

morphology of the hepatocytes was assessed for any inflammatory, fibrotic and or necrotic changes.  

Nonalcoholic steatohepatitis (NASH) was defined as the presence of hepatic fat infiltration and inflammation 

with hepatocyte ballooning (indicator of hepatocyte injury) with or without fibrosis (Chalasani et al. 2012). 

A scoring criteria system for NASH was developed by adopting the key features described in the clinical 

NASH diagnostic criteria based on liver histology (Kleiner et al. 2005) as shown below (Table 2.8). The 

microscopic evaluation was done by three blinded scorers and results interpreted accordingly. A score of 0 and 

2 denoted no steatohepatitis, and borderline steatohepatitis, respectively, whereas a score of 3 revealed definite 

steatohepatitis. 

Oil red O (ORO) solution
ORO (Sigma-Aldrich) 0.9 g
Absolute isopropyl alcohol 180 mL

Stirred and left overnight

Dextrin Solution
Dextrin (Sigma-Aldrich) 1.2 g
Distilled water 120 mL

Working solution
ORO solution 180 mL
Dextrin solution 120 mL

Allowed to stand for a day and filtered before use
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Table 2.8 showing the histological features assessed during histological evaluation of NAFLD for the liver H 

& E and ORO stained liver sections and the scoring criteria used. 

 

2.6 Data management and statistical analysis 

Results were expressed as mean ± standard error of the mean (SEM); for multiple group comparisons, one-

way analysis of variance (ANOVA) was used (GraphPad Prism® Plus Version 6.0) and post-hoc testing for 

differences between selected groups was done using Bonferroni’s method. A p-value of <0.05 was considered 

statistically significant.  

Vascular reactivity data were analysed using two-way analysis of variance (two-way ANOVA) and 

Bonferroni’s post-hoc test. Relaxation response data were log transformed and phenylephrine mediated 

vascular contractility was analysed as tension (g) against the dose concentrations. The EC50 (the drug 

concentration inducing 50% of the maximal response, was determined by nonlinear regression model analysis 

following the log X (dose) vs. response transformation of the percentage relaxation (%) or tension (g) using 

an ‘agonist-dose-response-curve’ and results were expressed as mean ± SEM of the EC50.  
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Statistical analysis was done in consultation with a statistician from the Biostatistics Unit, Stellenbosch 

University.  

The subsequent chapter, (chapter 3), presents the results obtained after undertaking all the activities described 

above. 
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Chapter 3 : Results 

3.1 Introduction 

Following the introduction of the high calorie diet (HCD) and / standard (lean) diet and subsequent drug 

treatment, the findings of this randomised controlled experimental study will be based on the categorization of 

the eight experimental groups treated with vehicle (control), HAART ((Highly Active Antiretroviral Therapy), 

comprised of LPV/r (LPV boosted with ritonavir) + AZT (Azidothymidine) and 3TC (Lamivudine)), HAART 

+ Saroglitazar and Saroglitazar (Table 3.1). The results are presented as follows: feeding / treatment 

monitoring parameters, biometric data recorded after the animals were sacrificed, blood and serum analyses, 

cardiac perfusion and infarct size analyses, liver investigations, aortic reactivity studies and signalling studies 

from the three tissue types (heart, liver and aorta) as outlined below (Table 3.2). 

Table 3.1 Experimental groups treated with vehicle (control), HAART (highly active antiretroviral therapy): 

LPV/r (LPV boosted with Ritonavir), AZT (Azidothymidine / Zidovudine), 3TC (Lamivudine) and dual PPAR 

α/γ agonist, Saroglitazar. 

Standard rat diet / normal rat chow 
(lean) 

High calorie diet                               
(HCD) 

1) Lean control 2) HCD control 

3) Lean HAART 4) HCD HAART 

5) Lean HAART + Saroglitazar 6) HCD HAART + Saroglitazar 

7) Lean Saroglitazar 8) HCD Saroglitazar 
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Table 3.2 Results will be reported based on the following outline. 

 

Results Layout

Rat treatment and feeding program monitoring parameters

a) Weight at onset of study

b) Food intake
-Rat chow (g/rat/day)
-HCD (g/rat/day)
-Water intake (mL/rat/day)

c) Weekly total body weight monitoring (g)
Biometric data after sacrificing the rats

a) Total body weight (g)

b) Intraperitoneal fat mass (mg)

c) Heart mass - Total heart mass (mg)

- Heart mass normalized by tibial length (mg/mm)

d) Liver mass (mg)

Blood and serum parameters

a) Spot tail prick - Random blood sugar (mmol/L)

- Fasting blood sugar (mmol/L)

b) Fasted rat serum - Lipid profile

- TC

- HDL-C, 
- HDL2 and 
- HDL3

- Phospholipids (PL)

- Triglycerides (TGs)

- Lipid peroxidation markers - Conjugated Dienes (CD)
- TBARS

c) Non-fasted rat serum -Liver enzymes
- S-ALT     - S-LD
- S-AST     - S-GGT
- S-ALP

Cardiac parameters

a) Isolated working heart model functional data - Baseline functional parameters
- Functional recovery post ischemia

b) Infarct size analysis

c) Signaling proteins analysis

Aortic study parameters

a) Vascular reactivity studies - Contractility 
- Relaxation

b) Signaling proteins analysis

Liver studies

a) Histological data

b) Signaling proteins analysis
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3.2 Feeding and treatment programme: - food and water consumption 
monitoring 

Although the animals were group-housed (5 rats/ cage), data on food and water consumption are presented as 

g/rat/day (food) and mL/rat/day (water) because the number of rats in several cages reduced after onset of 

treatment. This was as a result of random deaths (see Addendum E) associated with gavaging-related 

complications and therefore the ideal cage comparisons were not feasible. 

3.2.1 Standard rat chow 

Consumption of standard rat chow was monitored daily during weeks 9 and 10 before the introduction of the 

drug treatment, and monitoring continued for a further 4 weeks during the treatment phase. HCD groups 

consumed significantly less chow compared to the lean groups throughout the feeding and drug treatment 

programme. Before onset of treatment, the mean standard rat chow consumption of the lean group was 

significantly higher compared to HCD group (15.75 ± 0.22 g/rat/day and 0.64 ± 0.03 g/rat/day respectively, 

p < 0.0001; n = 88 / group (Figure 3.1). Similarly, this trend continued throughout the first month of drug 

treatment. On average, all the lean treated groups consumed significantly more rat chow compared to the 

average mass of rat chow consumed by the HCD groups during treatment period (15.66 ± 0.22 g/rat/day and 

0.59 ± 0.03 g/rat/day respectively, p < 0.0001; n = 22 / group) (Figure 3.2).  
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Figure 3.1 Mean standard rat chow consumption (g/rat/day) between lean and HCD groups before onset of 

drug treatment. 
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Figure 3.2 Comparison of mean standard rat chow consumption between lean and HCD groups during the 

first four weeks of drug treatment. 

The trend in the mass of standard rat chow consumption remained constant in all the experimental groups (lean 

and HCD groups) before and during treatment. Lean control: 15.7± 0.20 g/rat/day, Lean HAART: 15.96 ± 0.18 

g/rat/day, Lean HAART + Saro: 16.61 ± 0.18 g/rat/day, Lean Saro: 16.42 ± 0.13 g/rat/day. All the HCD groups 

significantly consumed less amount of chow (HCD control: 0.62 ± 0.03 g/rat/day, HCD HAART 0.58 ± 0.04 

g/rat/day, HCD HAART + Saro 0.47 ± 0.02 g/rat/day, HCD Saro 0.54 ± 0.02 g/rat/day) compared to the lean 

groups p < 0.0001, n = 22 / group (Figure 3.3). 

However, there was a slight drop in the amount of chow consumed in all the groups (16.4 ± 1.6 % g/rat/day – 

19.3 % ± 1.8 % g/rat/day) after onset of treatment via oral gavage (shown using an arrow, Figure 3.3). This 

drop was only sustained for 3 - 5 days and study animals reverted to their pre-treatment mass of standard rat 

chow consumed. 
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Figure 3.3 Trend of mean rat chow consumption (g/rat/day) / experimental group two weeks before onset of 

drug treatment and during the first four weeks of treatment. 
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3.2.2 HCD consumption 

There were no differences in the mean mass of HCD consumed by each rat per day in the various groups for 

the first 28 days of the treatment programme, HCD control: 32.29 ± 0.35 g/rat/day, HCD HAART 33.42 ± 

0.32 g/rat/day, HCD HAART + Saro: 32.23 ± 0.47 g/rat/day, HCD Saro 31.43 ± 0.45 g/rat/day, n = 22 / group 

(Figure 3.4). 

The trend in the mass of the HCD consumption remained constant in all the experimental groups (HCD 

HAART, HCD HAART + Saroglitazar and HCD control) before and during treatment. However, there was a 

slight drop in the mass consumed in all the groups (¯22.3 ± 2.2 %) after onset of treatment via oral gavage 

(shown using an arrow, Figure 3.5). This drop was only sustained for 5 days and study animals reverted to 

their pre-treatment HCD mass. 
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Figure 3.4 Mean HCD consumption (g/rat/day) per experimental group during the first four weeks of 

treatment. 

H C D  c o n s u m p tio n

1 5 1 0 1 4 5 1 0 1 5 2 0 2 5 2 9
0

1 0

2 0

3 0

4 0

5 0

H C D  C o n tro l

H C D  H A A R T

H C D  H A A R T  +  S a ro

H C D  S A R O

D u ra tio n  o f  fo o d  m o n ito r in g  (d a y s ), 1 4  d a y s  b e fo re  o n s e t o f
tre a tm e n t a n d  d a y  1  to  d a y  2 9  a fte r  o n s e t o f  tre a tm e n t

M
e

a
n

 H
C

D
 m

a
s

s
(g

/r
a

t/
d

a
y

)

 O n s e t o f tre a tm e n t

 

Figure 3.5 Trend of mean HCD consumption (g/rat/day) / experimental group two weeks before onset of drug 

treatment and during the first four weeks of treatment. 

Stellenbosch University  https://scholar.sun.ac.za



71 
 

3.2.3 Water consumption 

Water intake of all the experimental animals was monitored daily for two weeks before onset of treatment and 

for four weeks during the treatment phase. Before onset of treatment, the lean group consumed more water 

compared to HCD group, 29.88 ± 0.27 mL/rat/day vs. 14.03 ± 0.21 mL/rat/day respectively, p < 0.0001; n = 

88 / group (Figure 3.6). Similarly, during treatment, the average water consumption per rat per day was higher 

for the lean treated groups compared to their respective HCD groups. Lean control: 28.18 ± 0.31 mL/rat/day 

vs. HCD control: 12.52 ± 0.24 mL/rat/day, lean HAART: 29.04 ± 0.40 mL/rat/day vs. HCD HAART: 13.68 ± 

0.19 mL/rat/day, lean HAART + Saro: 30.22 ± 0.23 mL/rat/day, vs. HCD HAART + Saro: 14.30 ± 0.21 

mL/rat/day, lean Saro: 29.88 ± 0.27 mL/rat/day, vs. HFD Saro: 14.72 ± 0.24 mL/rat/day; n = 22 rats / group, 

p < 0.0001 in all groups compared; n = 22 / group (Figure 3.7). 

However, there were no differences in the volume of water consumed between the respective lean groups and 

similarly all the HCD groups consumed equal volumes of water (Figure 3.8). 
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Figure 3.6 Mean volume of water consumption (mL/rat/day) / experimental group before onset of drug 

treatment. 
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Figure 3.7 Mean volume of water consumption (mL/rat/day) / experimental group during the drug treatment 

programme.  
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On average, HCD groups consumed significantly less water (¯ 48.2 ± 1.8 %) compared to the lean rats. 

Additionally, the slight drop observed in the food consumption after onset of treatment was evident too in the 

volume of water consumed in all experimental groups. However, by fifth day of treatment the volume intake 

per rat reverted to pre-treatment levels (Figure 3.8). 
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Figure 3.8 Trend of mean daily water consumption (mL/rat/day) / experimental group two weeks before onset 

of drug treatment and during the first four weeks of treatment.  

3.3 Total body mass monitoring 

3.3.1 Total body mass of the animals at the onset of the programme 

The initial total body mass (g) of all the rats included in this study (176) was 180.20 ± 2.28 g (mean ± SEM). 

There was no statistically significant difference in the mean total body mass ± SEM / group after random 

allocation of rats into either lean / standard rat chow or HCD groups at the onset of the feeding programme, 

Lean: 182.00 ± 3.22 g; HCD: 179.38 ± 3.24 g, n = 88 / group, (Figure 3.9). 
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Figure 3.9 Mean total body mass / experimental group (g) after random assignment into either lean (standard 

diet / rat chow) or HCD groups.  

3.3.2 Total body mass changes during the first 10 weeks of the feeding 
programme 

Weekly monitoring of the total body mass of each experimental animal showed that the mass increased 

gradually in both lean and HCD groups for the first 10 weeks and from the 6th week of  feeding programme, the 

HCD group recorded a significantly higher mean total body mass compared to the lean group (HCD 309.72 ± 

8.72 g vs. lean 280.76 ± 9.03 g, p < 0.05; (10.3 % difference), n = 88 / group) and this difference further 

widened by week 10 (HCD group 354.56 ± 10.51 vs. lean group 317.68 ± 8.81g, p < 0.01; (11.9 % difference), 

n = 88 / group) (Figure 3.10). The mean percentage increase in total body mass from week 1 to week 10 was 

higher for the HCD group compared to the lean group (96.17 ± 4.87 % vs.74.22 ± 5.01 %, p < 0.01, respectively; 

n = 88 / group). 
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Figure 3.10 Weekly mean total body mass (g) in lean and HCD groups during the feeding programme before 

onset of drug treatment.  
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3.3.3 Total body mass monitoring during the treatment programme 

During the drug treatment period, the differences in total body mass persisted between the HCD and lean treated 

groups. All the treated HCD groups had a significantly higher mean total body mass compared to their 

respective treated lean counterparts (Figure 3.11). Table 3.3 shows the weekly mean ± SEM (g) total body 

mass in each experimental group during the treatment programme. The p-values (Figure 3.11 and Table 3.3) 

represent weekly comparisons between HCD and the respective lean control groups, i.e. HCD control vs. lean 

control, HCD HAART vs. lean HAART, HCD HAART + Saro vs. lean HAART + Saro and HCD Saro vs. 

lean + Saro. No significant differences in the mean total body mass was observed among the lean treated 

groups and similarly, the mean total body mass among the HCD groups showed no differences (Figure 3.11). 

On average, the HCD groups were 15.7 ± 3.3 % (50 ± 8.2 g) heavier compared to the lean groups at the end 

of the full feeding and drug treatment programme of 16 weeks. 
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Figure 3.11 Weekly mean total body mass (g) / experimental group during the drug treatment phase.  
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Table 3.3 Weekly mean total body mass (g) of the eight experimental groups during the treatment phase and 

mean percentage increase in body mass from week 10-16. Each HCD group mean total body mass was 

significantly higher than their corresponding lean control group (** p < 0.01; * p < 0.05 (groups compared 

shown above); n = 22 / group). 

 Lean 

control 

HCD 

Control 

LEAN 

HAART 

HCD 

HAART 

LEAN 

HAART + 

SARO 

HCD 

HAART + 

SARO 

LEAN 

SARO 

HCD 

SARO 

week 10 326.30 ± 

8.62  

360.50 ± 

9.31 ** 

324.40 ± 

6.00 

356.22 ± 

11.21 ** 

319.83 ± 

5.82 

356.40 ± 

6.81 ** 

317.61 ± 

6.83 

354.52 ± 

7.62 ** 

week 11 329.10 ± 

8.42 

370.14 ± 

10.32 ** 

329.16 ± 

5.39 

361.13 ± 

11.58 ** 

328.42 ± 

5.72 

358.59 ± 

7.44 ** 

322.72 ± 

7.10 

364.19 ± 

7.70 ** 

week 12 339.82 ± 

9.60 

381.80 ± 

11.51 ** 

330.61 ± 

5.43 

365.20 ± 

14.00 * 

338.70 ± 

6.34 

364.50 ± 

7.18 ** 

326.80 ± 

7.44 

370.34 ± 

7.91 ** 

week 13 344.31 ± 

10.94 

393.34 ± 

11.82 ** 

335.82 ± 

5.48 

373.24 ± 

14.62 ** 

343.42 ± 

6.00 

372.2 ± 

7.42 ** 

333.80 ± 

7.58 

379.52 ± 

8.10** 

week 14 345.54 ± 

10.9 

401.70 ± 

12.14 ** 

340.32 ± 

5.43 

379.80 ± 

15.24 ** 

344.44 ± 

6.00 

378.4 ± 

7.66 ** 

340.59 ± 

7.82 

384.39 ± 

8.32 ** 

week 15 351.78 ± 

8.91  

411.32 ± 

13.30 ** 

346.00 ± 

6.00 

389.64 ± 

16.51 ** 

349.39 ± 

6.11 

382.28 ± 

8.20 ** 

348.80 ± 

7.91 

395.72 ± 

9.01 ** 

week 16 355.14 ± 

9.60 

420.39 ± 

13.10 ** 

354.66 ± 

7.00 

395.31 ± 

17.00 ** 

354.55 ± 

5.64 

390.38 ± 

8.22 ** 

351.41 ± 

8.00 

400.33 ± 

8.94 ** 

% change 

(week 10-

16) 

8.87 ± 

0.48 

16.24 ± 

0.66 

10.42 ± 

0.49 

12.86 ± 

1.02 

9.84 ± 

0.52 

10.24 ± 

0.62 

9.78 ± 

0.64 

13.21 ± 

0.74 

 

3.4 Biometric data on the day animals were sacrificed 

3.4.1 Mean total body mass during euthanasia 

The total body mass (g) was recorded for each animal before they were sacrificed. The mean body mass (mean 

± SEM, g) recorded for each experimental group (rats that were not fasted) is shown in Figure 3.12. All the 

HCD groups had significantly higher mean total body mass compared to their corresponding lean groups. HCD 

Control: 418.62 ± 9.61 g, vs. Lean Control: 356.00 ± 8.00 g, p < 0.01; HCD HAART: 411.84 ± 8.21 g, vs. 

Lean HAART: 356.90 ± 6.72 g, p < 0.01; HCD HAART + Saro: 392.41 ± 8.92 g, vs. Lean HAART + Saro: 

364.89 ± 7.33 g, p < 0.05; HCD Saro 415.3 ± 10.92 g, vs. Lean Saro: 348.11 ± 10.48 g, p < 0.01. n = 14 / group 

(Figure 3.12). 
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Figure 3.12 Mean total body mass (g) per experimental group during euthanasia.  

3.4.2 Visceral / intra-peritoneal (IP) fat mass 

The mean visceral fat mass in relation to the total body mass (%) (adiposity index) per group was higher in all 

the HCD experimental groups compared to the lean groups: HCD control: 6.50 ± 0.40 % vs. lean control: 3.60 

± 0.3%, p < 0.0001; HCD HAART: 5.70 ± 0.40 % vs. lean HAART 3.70 ± 0.30 %, p < 0.001; HCD HAART 

+ Saro: 4.30 ± 0.50 % vs. lean HAART + Saro: 2.30 ± 0.2 %, p < 0.01; HFD Saro: 5.30 ± 0.41 % vs. lean Saro: 

2.70 ± 0.20 %, p < 0.0001, n = 14 / group.  

Furthermore, the HCD HAART (5.70 ± 0.40 %) group registered significantly higher percentage IP fat mass 

compared to the HCD HAART + Saroglitazar group (4.30 ± 0.50 %, p < 0.01). It was also observed that the 

adiposity index of lean HAART + Saro: 2.30 ± 0.20 % was significantly lower compared to lean HAART 

group 3.70 ± 0.30 %, p < 0.01 (Figure 3.13). 
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Figure 3.13 Mean percentage intraperitoneal fat (IP) mass / experimental group. 

3.4.3 Cardiac mass 

3.4.3.1 Absolute cardiac mass 

The mean absolute cardiac mass (g) differed significantly between HCD HAART 1.50 ± 0.07 g and Lean 

HAART 1.33 ± 0.03 g, p < 0.05; HCD HAART + Saro 1.34 ± 0.03 g vs. lean HAART + Saro 1.24 ± 0.02 g, p 

< 0.05 and HCD Saro 1.43 ± 0.06 g vs. lean Saro 1.16 ± 0.04 g, p < 0.05. Interestingly, HCD HAART group 

mean absolute cardiac mass (1.50 ± 0.07 g) was significantly higher compared to the HCD HAART + Saro 

group (1.34 ± 0.03 g), p < 0.05, n = 13-16 / group. However, no significant differences were observed between 

the lean control group and the HCD control group mean absolute cardiac mass (Figure 3.14). 
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Figure 3.14 Mean absolute cardiac mass (g) / experimental group. 

3.4.3.2 Normalised cardiac mass by tibial length 

The absolute cardiac mass (mg) of each animal was divided by the length of its tibia (mm) to obtain a 

normalised cardiac mass index (mg / mm), after which the means of these indices were computed per group. 

This index has been proposed as a better indicator of cardiac mass changes than relating the cardiac mass to 

total body weight (Yin et al. 1982). The findings confirmed the mean absolute mass observations i.e., 

normalised cardiac mass was significantly higher in the HCD HAART group 41.05 ± 1.91 mg / mm compared 

to lean HAART group 35.18 ± 0.77 mg / mm,  p < 0.05; HCD HAART + Saro 36.62 ± 0.84 mg / mm higher 

compared to lean HAART + Saro 33.55 ± 0.72 mg / mm, p < 0.05; HCD Saro 36.11 ± 1.49 mg / mm higher 

compared to lean Saro 31.48 ± 1.04 mg / mm, p < 0.05 and HCD HAART 41.05 ± 1.92 mg / mm higher than 

HCD HAART + Saro 36.62 ± 0.84 mg / mm, p < 0.05, n = 13 – 16 / group. No differences were observed in 

the normalised cardiac mass between the HCD and the lean control groups (Figure 3.15). 
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Figure 3.15 Mean normalised heart mass by tibial length (mg / mm) / experimental group. 

3.4.4 Liver mass 

The mean absolute liver mass (g) and mean normalised liver mass by tibial length (mg / mm) were 

only significantly increased in the HCD control group compared to the lean control: HCD control (12.04 ± 0.53 

g) vs. lean control (10.34 ± 0.28 g), p < 0.05, n = 16 (Figure 3.16 A). There were no differences observed 

between any of the other groups. Similarly, after normalisation by tibial length, the differences between the 

mean HCD control group, 323.00 ± 13.73 mg / mm, was higher than lean control 277.32 ±7.47 mg / mm, p < 

0.05, n = 16 / group. No differences were observed in the normalised liver mass between the HCD and the lean 

control groups (Figure 3.16 B).  
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Figure 3.16 A) Mean absolute liver mass (g) / experimental group. B) Mean normalised liver mass by tibial 

length (mg /mm) / experimental group.  

3.5 Blood and serum parameters 

3.5.1 Blood glucose levels 

Blood glucose was determined for both fasted animals (fasting blood glucose) and non-fasted animals (random 

blood glucose). No inter-group differences were observed in the mean fasting blood glucose levels, n = 8 

/ group (Figure 3.17). 

Similarly, there were no significant differences observed among any of the experimental groups in the mean 

random blood glucose, n = 14 / group (Figure 3.18). However, a comparison of the mean random and fasting 

blood glucose / group revealed that the mean random blood glucose was significantly higher in all the 

experimental groups compared to the mean fasting blood glucose:  mean random blood glucose 7.19 ± 0.31 

mmol/L, n = 14 / group vs.  mean fasting blood glucose levels 5.19 ± 0.29 mmol/L, n = 8 / group; p <0.0001 

(Figure 3.19). 
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Figure 3.17 Mean fasting blood glucose (mmol/L) / experimental group.  
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Figure 3.18 Mean random blood glucose (mmol/L) / group.  
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Figure 3.19 Mean fasting blood glucose (mmol/L) and mean random blood glucose (mmol/L) / experimental 

group. 

3.5.2 Lipid profile  

3.5.2.1 Serum total cholesterol (TC) 

There were no differences noted in the mean serum TC levels between any of the fasted experimental groups. 

The mean serum TC ± SEM (mmol / L), n = 7-9 / group are shown below (Figure 3.20). 
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Figure 3.20 Mean fasting serum total cholesterol (TC) (mmol / L) / experimental group. 
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3.5.2.2 Serum TGs 

The mean serum TGs ± SEM concentrations were significantly elevated in the HCD control group compared 

to the lean control group (0.95 ± 0.1 mmol / L vs. 0.72 ± 0.08 mmol/L, p < 0.05, respectively). However, no 

other differences were observed among other experimental groups, n = 7-9 / group (Figure 3.21). 
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Figure 3.21 Mean fasting serum triglycerides (TGs) (mmol / L) / experimental group. 

3.5.2.3 Serum total high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein 

cholesterol (LDL-C) 

The mean total HDL-C was significantly higher in the HCD control group: 0.49 ± 0.05 mmol / L compared to 

lean control: 0.37 ± 0.03, p < 0.05, HCD control group: 0.49 ± 0.05 mmol / L compared to HCD Saro group: 

0.31 ± 0.02 mmol / L, p < 0.05, lean HAART group: 0.44 ± 0.04 mmol / L compared to lean HAART + Saro 

group: 0.29 ± 0.04 mmol / L, p < 0.05, and HCD HAART group: 0.43 ± 0.05  mmol / L compared to HCD 

HAART + Saroglitazar group: 0.24 ± 0.04 mmol / L, p < 0.05, n = 7 - 9 / group (Figure 3.22 A). 

LDL-C (mmol / L) was calculated using the Friedewald formula: LDL-C (mmol / L) = TC (mmol / L) – HDL 

-C (mmol / L) – (TG (mmol / L)/2.17). The mean LDL-C was significantly higher in the HCD HAART + Saro 

group: 2.18 ± 0.12 mmol / L compared to HCD HAART group: 1.80 ± 0.11 mmol / L, p < 0.05, n = 7 - 9 / 

group (Figure 3.22 B). 
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Figure 3.22 A) Mean high-density lipoprotein cholesterol (HDL-C) (mmol / L) / experimental group. B) Mean 

low-density lipoprotein cholesterol (LDL-C) (mmol / L) / experimental group. 

3.5.2.4 Serum phospholipids (PL) + TGs 

There were no significant differences in the mean PL + TGs levels in any of the experimental groups as shown 

on Figure 3.23. 
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Figure 3.23 Mean fasting serum PL and TGs levels (mmol/L) / experimental group. 

3.5.2.5 Serum PL levels 

There were no significant differences in the mean serum PL levels among the experimental groups (Figure 

3.24). 
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Figure 3.24 Mean fasting serum PL levels (mmol/L) / experimental group. 

3.5.2.6 Serum high density lipoprotein subclass 3 (HDL 3) 

The mean fasting serum HDL3 levels (µmol / L) were significantly higher in the HCD control group 0.33 ± 

0.02 compared to lean control group 0.26 ± 0.03, p < 0.05; HCD control group 0.33 ± 0.02 compared to HCD 

HAART group 0.23 ± 0.03, p < 0.05; HCD control group 0.33 ± 0.02 compared to HCD Saro group 0.25 ± 

0.02, p < 0.05; HCD Saro 0.25 ± 0.02 compared to lean Saro group 0.18 ± 0.02, p < 0.05; HCD HAART group 

0.23 ± 0.03 compared to HCD HAART + Saro group 0.17 ± 0.02, p < 0.05 and lean control group 0.26 ± 0.03 

compared to lean Saro group 0.18 ± 0.02, p < 0.05 (Figure 3.25). 
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Figure 3.25 Mean fasting serum HDL3 levels (µmol / L) / experimental group. 

3.5.2.7 Serum high density lipoprotein subclass 2 (HDL 2) 

The mean fasting serum HDL2 levels (µmol / L) were lower in: lean HAART saroglitazar group (0.07 ± 0.03) 

compared to lean HAART group (0.17 ± 0.04, p < 0.05) and HCD HAART Saroglitazar group (0.07 ± 0.02) 

compared to HCD HAART group (0.19 ± 0.04, P < 0.05). Similarly, the mean HCD Saroglitazar group HDL2 

levels were lower (0.06 ± 0.02) compared to lean Saroglitazar group (0.17 ± 0.05, p < 0.05) (Figure 3.26). 
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Figure 3.26 Mean fasting serum HDL2 levels (mmol/L) / experimental group.  

3.5.3 Serum markers of lipid peroxidation  

The total and normalised conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) were 

analysed in all the experimental groups as indicators of lipid peroxidation. The mean absolute concentrations 
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were expressed as µmol/L and after normalisation with respective fasting serum TGs + PL concentrations, the 

mean normalised values were expressed as µmol / mmol. 

3.5.3.1 Mean fasting serum conjugated dienes (CD) 

A comparison of the mean serum CD levels (µmol/L) from the experimental groups revealed that treatment of 

the lean animals with Saroglitazar led to reduced serum CD (46 ± 2.23 µmol/L) compared to the lean control 

(76.15 ± 6.25 µmol/L), p < 0.001. HCD animals treated with Saroglitazar mean serum CD concentrations were 

significantly lower (56.6 ± 5.39 µmol/L) compared to the HFD control rats, 79.1 ± 6.51, p < 0.05. Additionally, 

the mean serum CD in the HCD HAART group was significantly higher compared to the HCD HAART group 

(63.46 ± 3.94 µmol/L vs. 52.04 ± 2.44 µmol/L, p < 0.05, respectively, n = 7-8, (Figure 3.27). 
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Figure 3.27 Mean fasting serum CD levels (µmol/L) / experimental group.  

3.5.3.2 Mean normalised serum CD 

After normalisation of the serum CD concentrations to PL + TGs, it was observed that, the mean normalised 

CD was significantly higher in the lean control group compared to the lean Saro group (35.65 ± 2.72 µmol / 

mmol vs. 20.19 ± 2.10 µmol / mmol, p < 0.01). The HCD control group mean CD was significantly higher 

than the HCD Saro group (32.06 ± 2.59 µmol / mmol vs. 23.36 ± 2.45 µmol / mmol, p < 0.01). Combined 

treatment of the HCD animals with HAART and Saroglitazar induced significantly lower mean serum CD 

compared to HAART treatment in the HCD group (23.91 ± 2.12 µmol / mmol vs. 29.09 ± 2.58 µmol / mmol, 

p < 0.05, n = 7-8) (Figure 3.28). 
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Figure 3.28 Mean normalised serum CD levels (µmol / mmol) / experimental group. 

3.5.3.3 Mean fasting serum TBARS 

The mean serum TBARS concentrations (µmol/L) were also analysed in all the experimental groups and it 

was observed that the HCD control mean TBARS was higher compared to HCD Saro group (3.48 ± 0.20 

µmol/L vs. 2.76 ± 0.27 µmol/L, p < 0.05) and the lean Saro group mean serum TBARS was also significantly 

higher than the HCD Saro group (4.04 ± 0.20 µmol/L vs. 2.76 ± 0.27 µmol/L, p < 0.05, respectively, n = 7-9) 

(Figure 3.29). 
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Figure 3.29 Mean fasting serum TBARS levels (µmol/L) / experimental group. 
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3.5.3.4 Mean normalised serum TBARS 

After normalisation of the serum TBARS concentrations to fasting serum PL + TGs, the observations made in 

serum TBARS before normalisation were replicated. The HCD control mean normalised TBARS was higher 

compared to HCD Saro group (1.55 ± 0.18 vs. 1.13 ± 0.11 µmol / mmol, p < 0.05, respectively) and the lean 

Saro group mean serum TBARS was also significantly higher than the HCD Saro group (1.71 ± 0.14 µmol/L 

vs. 1.13 ± 0.11 µmol / mmol, p < 0.05, respectively, n = 7-9) (Figure 3.30). 
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Figure 3.30 Mean normalised serum TBARS levels (µmol / mmol) / experimental group. 

3.6 Liver enzymes assays 

To assess liver function in the experimental animals, serum alanine aminotransferase (S-ALT), serum aspartate 

aminotransferase (S-AST), serum alkaline phosphatase (S-ALP), serum lactate dehydrogenase (S-LD) and 

serum gamma-glutamyltransferase (S-GGT) were analysed in non-fasted serum samples obtained from all the 

experimental groups, n = 6 / group. 

There were no significant differences in the mean S-LD, S-GGT, S-AST and S-ALT among the experimental 

groups as shown below (Table 3.4).  
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Table 3.4 Mean serum ALT, AST, LD and GGT enzymes (IU / L) / experimental group. 

 

3.6.1 Serum alkaline phosphatase (S-ALP) 

S-ALP concentrations were significantly lower in the HCD HAART + Saroglitazar group compared to HCD 

Saroglitazar groups (95.0 ± 11.4 IU / L vs. 144.7 ± 23.5 IU / L respectively, p < 0.05). Additionally, the mean 

serum S-ALP was significantly lower in the HCD HAART group compared to the HCD Saro group (88.8 ± 

10.9 IU / L vs 144.7 ± 23.5 IU / L, p < 0.05 (Figure 3.31). No significant differences were observed in the lean 

and HCD control and HAART-treated groups, n = 6 / group. 
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Figure 3.31 Mean serum alkaline phosphatase (S-ALP) levels / experimental group. 

Experimental	
group Lean	

Control
HCD	
Control

Lean	
HAART

HCD	
HAART

Lean	
HAART	
+	Saro

HCD	
HAART	
+	Saro

Lean	
Saro

HCD	
Saro

Group	Mean ± SEM	
(IU/L)
Serum	assay	

S	- ALT 104.8 ±
28.4

67.2 ±
22.1

88.3 ±
20.7

55.2 ±
10.2

60.3 ±
14.7

69.67 ±
11.8

113.8 ±
34.9

70.7 ±
16.0

S	- AST 212.3 ±
55.7

129.0 ±
28.8

161.2 ±
29.3

113.0 ±
13.5

111.7 ±
21.5

118.7 ±
14.5

198.7 ±
46.4

139.2 ±
29.6

S	- LD 451.5 ±
104.4

406.0 ±
147.7

394.7 ±
82.7

279.0 ±
43.3

246 ±
47.3

268.3 ±
48.4

460.7 ±
96.0

356.7 ±
86.9

S	- GGT <	5 <	5 <	5 <	5 <	5 <	5 <	5 <	5

n 6 6 6 6 6 6 6 6
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3.7 Fasting serum insulin concentrations 

The fasting serum insulin concentrations of all the experimental groups were analysed, (n = 7-8 /group) and it 

was observed that the mean insulin concentrations were higher in the HCD control group compared to the lean 

control group (70.2 ± 11.0 µIU / L vs 20.6 ± 6.5 µIU / L respectively, p < 0.05). HCD HAART insulin 

concentrations were higher compared to lean HAART and HCD HAART + Saroglitazar (79.6 ± 15.8 µIU / L 

vs. 22.1 ± 7.4 µIU / L and 32.2 ± 7.5 µIU / L respectively, p < 0.05. The HCD Saro group mean serum insulin 

was also higher compared to the lean Saro group (48.8 ± 11.2 µIU / L vs. 22.3 ± 3.2 µIU / L respectively, p < 

0.05), n = 7-8 (Figure 3.32). 

 

 

Figure 3.32 Mean fasting serum insulin concentration (µIU / L) / experimental group. 

3.8 Homeostasis model assessment for insulin resistance (HOMA-IR) 

HOMA-IR is a validated method of assessing insulin resistance and β cell function in Wistar rats (Antunes et 

al. 2014) and was calculated using the formula: fasting serum insulin concentration (µIU / L) X blood glucose 

(mg / dl) / 405 (Mathews et al. 1985). The mean HOMA-IR was higher in the HCD control compared to the 

lean control (17.6 ± 3.4 vs. 4.9 ± 1.8 respectively, p < 0.05). Similarly, the HOMA-IR was elevated in the 

HCD HAART group compared to both lean HAART and HCD HAART + Saroglitazar group (17.1 ± 3.6 vs. 

4.7 ± 1.7 and 7.6 ± 2.0 respectively, p < 0.05). The mean HOMA-IR was also higher in the HCD Saro group, 

compared to the lean Saro (11.3 ± 3.1 vs. 4.6 ± 0.5 respectively, p < 0.05), n = 7-8 (Figure 3.33). 
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Figure 3.33 Mean HOMA-IR / experimental group. 

3.9 Isolated working rat heart perfusion data 

The HR (beats per minute), coronary flow rate (Qe, in mL / min), aortic output (Qa, in mL / min), total 

cardiac output, CO (mL / min), systolic pressure, sp (mmHg), diastolic pressure, dp (mmHg), and total work 

(wt), mW), recorded during the stabilisation phase and reperfusion following regional ischaemia, as well as 

the percentage recovery for each parameter, are summarised in Table 3.5. Detailed results are shown in the 

subsequent Figures. 
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Table 3.5 Mean ± SEM / experimental group of HR: heart rate (bpm), Qa: aortic outflow (mL / min), Qe: 

coronary flow rate (mL / min), Wt: work total (mW), sp: systolic pressure (mmHg), dp: diastolic pressure 

mmHg and percentage (%) recovery of each parameter, * p <0.05 (group comparisons with significant 

differences are shown in the subsequent Figures). The various parameters are presented from section 3.9.1.  

 

 

3.9.1 Heart rate (HR) (beats per minute, bpm) 

The HR remained constant during both pre-and post-ischaemic phases in all the groups and there were no 

significant differences in the mean HR among the experimental groups (Figure 3.34). 

Parameter
Perfusion  phase 
& n value

Lean 
Control

HCD 
Control

 Lean  
HAART

HCD 
HAART

Lean HAART 
+Saro

HCD 
HAART + 
Saro Lean Saro HCD Saro

 pre-ischaemia 282.3 ± 6.7 280.8 ± 5.6 287.3 ± 11.1 273.6 ± 12.9 267.1 ± 6.0 280.1 ± 7.6 271.1 ± 6.9 279.0 ± 4.9

n 9 10 8 8 8 7 8 8

post-ischaemia 271.3 ± 10.4 280.7 ± 8.9 282.7 ± 22.76 278.3 ± 18.0 266.0 ± 6.5 281.9 ± 7.2 267.3 ± 12.3 265.8 ± 6.8

n 9 10 6 7 8 7 8 8

% HR recovery 96.1 100.0 98.4 101.7 99.6 100.6 98.6 95.3

 pre-ischaemia 37.0 ± 0.9 37.6 ± 0.8 40.3 ± 1.2 * 33.3 ± 2.4 * 38.8 ± 2.1 40.9 ± 2.0 * 40.0 ± 3.0 42.3 ± 1.3

n 10 10 8 8 8 7 8 8

post-ischaemia 7.5 ± 2.2 6.5 ± 1.7 7.4 ± 2.5 2.3 ± 1.5 * 5.7 ± 2.3 7.1 ± 1.6 * 5.8 ± 3.0 4.2 ± 1.0

n 9 9 8 8 8 7 8 8

% Qa recovery 16.3 13.6 15.4 5.5 * 12.2 17.0* 12.4 10.0

 pre-ischaemia 16.6 ± 0.6 16.2 ± 0.4 16.6 ± 0.4 15.9 ± 0.5 15.5 ± 0.3 16.9 ± 0.4 16.3 ± 0.5 16.8 ± 0.4

n 10 10 8 8 8 7 8 8

post-ischaemia 14 ± 0.9 13.8 ± 0.8 13.5 ± 1.5 12.3 ± 1.4 13 ± 0.4 13.4 ± 0.6 13.3 ± 1.2 14.0 ± 0.5

n 9 10 8 8 8 7 8 8

% Qe recovery 84.3 85.2 80.6 77.1 83.9 79.7 81.5 83.6

 pre-ischaemia 53.4 ± 1.4 53.8 ± 1.1 57.0 ± 1.6 * 49.2 ± 2.3 * 54.3 ± 2.3 57.7 ± 2.1 * 56.3 ± 3.2 59.0 ± 1.3 *

n 10 10 8 8 8 7 8 8

post-ischaemia 20.7 ± 2.3 19.0 ± 1.9 20.0 ± 3.4 14.5 ± 2.0 * 18.0 ± 2.2 20.6 ± 1.7 * 19.0 ± 2.8 17.3 ± 1.4

n 9 10 8 8 8 7 8 8

% CO recovery 39.0 36.1 34.4 29.6 33.0 35.7 33.4 29.3

 pre-ischaemia 11.7 ± 0.5 12.0 ± 0.4 12.5 ± 0.5 * 10.5 ± 0.7 * 12.3 ± 0.7 12.5 ± 0.8 12.2 ± 0.9 12.6 ± 0.5

n 10 10 8 8 8 7 8 8

post-ischaemia 4.0 ± 0.5 3.7 ± 0.4 3.3 ± 0.9 2.5 ± 0.5 * 3.5 ± 0.5 4.0 ± 0.4 * 3.5 ± 0.6 3.6 ± 0.4

n 9 10 8 8 8 7 8 8

% Wt recovery 35.1 30.8 25.3 23.7 28.5 31.6 28.6 27.9

 pre-ischaemia 96.3 ± 2.5 97.7 ± 1.6 96.3 ± 1.8 93.6 ± 2.3 100.5 ± 2.2 96.9 ± 2.5 95.5 ± 3.1 96.3 ± 2.4

n 10 10 8 8 8 7 8 8

post-ischaemia 85.9 ± 1.4 87.4 ± 1.9 66.4 ± 14.5 71.0 ± 10.9 87.6 ± 2.4 85.9 ± 1.8 79.9 ± 3.6 86.5 ± 2.8

n 9 10 8 8 8 7 8 8

% sp recovery 89.2 89.5 69.0 75.8 87.2 88.6 83.6 89.9

 pre-ischaemia 79.6 ± 1.3 80.5 ± 1.6 80.6 ± 1.5 77.4 ± 2.3 80.5 ± 1.6 78.7 ± 2.0 79.1 ± 2.5 77.5 ± 1.9

n 10 10 8 8 8 7 8 8

post-ischaemia 75.3 ± 1.3 74.8 ± 2.0 57.4 ± 122.6 60.4 ± 9.2 76.0 ± 2.1 72.1 ± 2.4 66.6 ± 3.3 73.8 ± 2.7

n 9 10 8 8 8 7 8 8

% dp recovery 94.6 92.9 71.2 78.0 94.4 91.7 84.2 95.2

Wt (mW) 
Mean ± SEM

sp (mmHg) 
Mean ± SEM

dp (mmHg) 
Mean ± SEM

Pre-and post-regional ischaemia-reperfusion working heart data 

HR (bpm) 
Mean ± SEM 

Qa (mL / 
min) Mean ± 

SEM

Qe (mL / 
min) Mean ± 

SEM

CO (mL / 
min) Mean ± 

SEM
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Figure 3.34 Mean pre-and post-ischaemia heart rate (bpm) / experimental group. 

3.9.2 Qa: aortic outflow (mL / min), 

Pre-ischaemia Qa in the HCD HAART group was significantly lower than lean HAART (33.3 ± 2.1 mL/min 

vs. 40.3 ± 1.2 mL / min respectively, p < 0.03). Concomitant treatment with Saroglitazar in the HCD HAART 

group improved mean Qa compared to HCD HAART treatment only (33.3 ± 2.1 mL/min vs. 40.9 ± 2.0 mL / 

min respectively, p < 0.05). HCD HAART post-ischaemia Qa recovery was poorer compared to HCD HAART 

+ Saroglitazar (2.3 ± 1.5 mL / min vs. 7.1 ± 1.6 mL / min respectively, p < 0.04). Percentage Qa recovery was 

higher in the HCD HAART + Saroglitazar group compared to HCD HAART group (17.0 ± 3.5 % vs 5.5 ± 

3.6 %; p = 0.04), n = 8 / group (Figure 3.35). 
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Figure 3.35 Mean pre-and post-ischaemia aortic outflow (Qa), (mL / min) and percentage Qa recovery. 
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3.9.3 Qe: coronary flow rate (mL / min) 

There were no differences in the mean pre-ischaemia Qe in all the groups and similarly, the mean Qe post 

ischaemia remained equal in all the experimental groups (Figure 3.36). 
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Figure 3.36 Mean pre-and post-ischaemia coronary outflow (Qe), (mL / min) and percentage Qe recovery. 

3.9.4 Total CO (mL / min) 

The pre-ischaemia CO was lower in HCD HAART compared to lean HAART, HCD HAART + Saroglitazar 

and HCD Saroglitazar groups (49.1 ± 2.3 mL / min vs. 57.0 ± 1.6 mL / min, 57.7 ± 2.1 mL / min and 59. 0 ± 

1.3 mL / min, respectively; p < 0.05). During reperfusion, (post regional ischaemia) the only significant 

difference was between HCD HAART + Saroglitazar and HCD HAART (20.5 ± 1.67 mL / min (36 %) vs. 

14.5 ± 2.0 mL / min (29 %), respectively; p < 0.05). No other differences were observed in the percentage CO 

recovery (Figure 3.37). 
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Figure 3.37 Mean pre-and post-ischaemia total cardiac output (CO), (mL / min) and percentage CO recovery 

/ experimental group. 

3.9.5 Wt: work total (mW) 

Pre-ischaemia Wt was decreased significantly in HCD HAART compared to Lean HAART (10.5 ± 0.7 mW 

vs. 12.5 ± 0.5 mW, respectively; p < 0.05). However, no other differences were observed among the other 

experimental groups. Post-ischaemia Wt was significantly higher in the HCD HAART + Saroglitazar 

compared to the HCD HAART (4.0 ± 0.3 mW vs. 2.5 ± 0.5 mW, respectively; p < 0.05). Percentage Wt 

recovery was the same in all the groups (Figure 3.38). 
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Figure 3.38 Mean pre-and post-ischaemia total work (mW) and percentage Wt recovery. 
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3.9.6 sp (mmHg) and dp (mmHg) 

No differences were observed in the aortic pre-ischaemia and post-ischaemia sp among the experimental 

groups (Figure 3.39). Similarly, no significant differences were observed in both pre-and post-ischaemia dp 

(Figure 3.40). 
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Figure 3.39 Mean pre-and post-ischaemia sp (mmHg) and percentage sp recovery. 

Pre-and post-ischaemia dp and
percentage recovery
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Figure 3.40 Mean pre-and post-ischaemia dp (mmHg) and percentage dp recovery. 

3.10 Myocardial infarct size analysis 

As described under section 2.5.9, the stained heart tissues were analysed for the left ventricular infarct size 

following regional ischaemia / reperfusion and results are displayed below (Figure 3.42) as percentage mean 
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± SEM of the infarct area which was calculated using this formula: Infarct size (IS) = infarct area (IA) / (area 

at risk (AR)+ IA) * 100.  

The mean percentage infarct size in the lean control group was significantly greater than in the HCD control 

(26.1 ± 2.2 % vs 19.1 ± 1.6 % respectively, p < 0.05; n = 7-9 / group). Similarly, HCD HAART group infarct 

sizes were significantly smaller compared to the HCD control group (13.2 ± 2.1 % vs. 19.1 ± 1.6 % 

respectively, p < 0.05, n = 7-9 / group). In addition, treatment with HAART led to a significant reduction in 

the mean infarct size in lean animals compared to their untreated counterparts (lean control, 26.1 ± 2.2 % vs. 

lean HAART 16.7 ± 1.7, p < 0.05, n = 7-9 / group). However, although infarcts were reduced in size in 

Saroglitazar-treated groups (lean and obese) compared to the lean control group, no differences were noted 

when compared to HAART-treated groups (lean and obese) as shown below (Figure 3.42). There were no 

differences noted in the percentage viable area ((viable area / total area of the left ventricle slice) * 100) and 

percentage area at risk + IA ((AR + IA) * 100) (Table 3.6 and Figure 3.43). 

The mean percentage infarct sizes in comparison to mean IA (infarct Area) + AR (area at risk) in all the 

experimental groups are shown below (Figure 3.43). The mean IA + AR was in the range of 48.4 ± 1.9 % – 

52.6 ± 1.5 % and no significant differences were observed among the experimental groups (Table 3.6). 

Table 3.6 Mean left ventricular % viable area and % area at risk + infarct area / experimental group. 

 

Figure 3.41 

Group
Lean	
Control

HCD	
Control

Lean	HAART HCD	
HAART

Lean	HAART	
+	Saro

HCD	HAART	
+	Saro

Lean	Saro HCD	Saro

Left	ventricular	area	
(Mean	+	SEM)

%	Viable	Area
51.0	±
2.1	

48.4	±
2.6	

48.4	±
1.8	

48.6	±
2.2	

50.8	±
1.4	

50.0	±
1.9	

47.1	±
2.8

51.3	±
2.1

%	Area	at	Risk	+	IA
49.7	±
1.8

50.1	±
1.4

51.2	±
3.0

51.8	±
2.0

48.4	±
1.9

49.7	±
2.8

52.6	±
1.5

48.9	±
1.4

n 8 8 7 8 8 7 8 9
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Figure 3.42 Mean left ventricular infarct sizes (%) / experimental group. 

Post- regional ischaemia / reperfusion
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Figure 3.43 Mean percentage infarct size in comparison to IA (infarct Area) + AR (area at risk) / experimental 

group. 

3.11 Liver tissue histology results 

As described previously (section 2.5.14.8), the liver tissue samples were analysed histologically and scored 

based on a validated system described by Kleiner et al. (2005). The results are displayed below (Table 3.7). 

Fifty percent of the HCD animals treated with HAART were categorised as having histological features 

consistent with mild steatosis whereas 16.67 % of the samples in this group had moderate fat infiltration. No 

samples were categorised as grade three (severe steatosis). On the other hand, HAART co-treatment with 

Saroglitazar showed that only 16.67 % of the samples presented with mild steatosis, and no samples from this 
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group displayed features consistent with moderate or severe steatosis. Figures 3.44 and 3.45 show stained liver 

tissue photo micrographs in various pathological states observed from the different experimental groups. 

25.00 % of the HCD HAART liver samples demonstrated features consistent with mild and moderate 

inflammation, 16.67 % and 8.33 % respectively. Additionally, 8.33 % presented with few balloon cells and 

another 8.33 % with prominent ballooning indicating varying hepatocyte injury (Figure 3.45). Therefore, the 

steatotic changes seen in HCD animals treated with HAART were accompanied by mild-moderate 

inflammation in 25.00 % of the cases. 

Liver tissue immunohistochemical studies with anti-placental glutathione S-transferase (GST-P) antibody, did 

not reveal any GST-P binding (negative for GST-P-positive foci) in any of the experimental groups (Figure 

3.44). 
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Table 3.7 Results of liver tissue histology using a modified scoring criterion for NAFLD, * denotes percentage 

of animals (liver tissues with fat infiltration (steatosis) and # denotes inflammatory changes (steatohepatitis), 

@ was an incidental finding of an intrahepatic cyst (6 mm by 4 mm) during laparotomy. 

 

 

Percentage	of	study	animals	in	each	experimental	group	with	a	particular	score

Histological	description

Steatosis
Low-medium	–power	parenchymal	

fat	infiltration

Lean	
Control

n	=	12

HCD	
Control

n	=	12

Lean	
HAART

n	=	12

HCD	
HAART

n	=	12

Lean	HAART	
+	Saro

n	=	12

HCD	HAART	
+	Saro

n	=	12

Lean	
Saro

n	=	12

HCD
Saro

n	=	12Item Score

No	Steatosis - 100	% 83.33	% 100	% 33.33 % 100 83.33 % 100	% 91.67	%

<5	% 0 - 16.77	%	* - 50	%	* - 16.77	% * - 8.36	%	*

5	%	- 33	% 1 - - - 16.77	%	* - - - -

33	%	- 66	% 2 - - - - - - - -

>	66	% 3 - - - - - - - -

Microvesicular steatosis

Not	present 0 100	% 100	% 100	% 91.77	% 100 % 100	% 100	% 100	%

Present 1 - - - 8.33	%	* - - - -

Fibrosis

None 0 100	% 100	% 100 % 100	% 100	% 100 % 100	% 100	%

Mild-to-moderate 1-2 - - - - - - - -

Bridging 3 - - - - - - - -

Inflammation	(overall	assessment	
of	all	inflammatory	foci)

No foci 0 100	% 100	% 100	% 75	% 100	% 100	% 100	% 100	%

<	2	foci/	200	x	field 1 - - - 16.67	% # - - - -

2-4	foci/	200	x	field 2 - - - 8.33	% # - - - -

>	4	foci/	200	x	field 3 - - - - - - - -

Hepatocyte injury	-ballooning

None 0 100	% 100	% 100	% 91.77 % 100	% 100	% 100	% 100	%

Few	balloon	cells 1 - - - 8.33	% # - - - -

Prominent	ballooning 2 - - - - - - - -

Other changes	(specified) - - - - - - @ -
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Figure 3.44 Representative liver tissue photomicrographs demonstrating, (A) H & E stain from a lean control 

liver tissue – no fat infiltration observed, (B) ORO stain from a HCD HAART-treated experimental animal 

liver tissue with demonstrable fat infiltration, (C) Immunohistochemical stain with anti-(GST-P) antibody 

(from a HCD control liver tissue, however all the experimental groups showed similar features) – no positive 

foci and (D) A positive control (not from the experimental groups) - showing a positive GST-P focus. All 

photomicrographs original magnification, X 100; scale bars shown. 

A B

50	µm____
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Figure 3.45 Representative liver tissue photomicrographs demonstrating steatosis and steatohepatitis. (A) This 

field was obtained from HCD HAART-treated liver tissue and shows moderate steatosis but intact hepatocytes. 

Field (B) was also obtained from the HCD HAART group and demonstrates steatotic cells with foci of 

inflammation (shown by arrows) and hepatocytes that have undergone ballooning injury. Both 

photomicrographs: H & E; original magnification, A X 200, B X 400; scale bars shown. 
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3.12 Vascular reactivity / aortic ring study results 

Induction of maximal contractility on aortic rings using cumulative doses of phenylephrine and subsequent 

stimulation of relaxation using cumulative doses of acetylcholine (described in section 2.5.11) generated 

results described below. 

Table 3.8 below summarises the mean maximal tension (Emax) (g) induced by maximal dose of phenylephrine 

(following successive doses in increasing concentration) and EC50 (concentration of the drug inducing half 

maximal response) determined after log (dose) vs. response transformation. Also, the % maximal relaxation 

(Rmax) induced by the maximal dose of acetylcholine and EC50 is indicated. Nonlinear regression analysis was 

performed on the log transformed data using an ‘agonist-dose-response curve’ and results expressed as mean 

± SEM of the EC50. 

Table 3.8 Phenylephrine-induced maximal aortic contraction, (Emax) (mean ± SEM (g)) and acetylcholine-

induced % maximal aortic relaxation (Rmax) (Mean ± SEM (%)). -Log EC50. is also indicated per drug in each 

experimental group. (* p < 0.05, ** p < 0.01, *** p < 0.001, ‡ p = 0.0018, HCD HAART + Saro vs HCD 

HAART, † p = 0.0031 HCD Control vs HCD HAART, П p = 0.0303 HCD control vs. HCD Saro, Ф p = 0.024 

HCD HAART + Saro vs. HCD Saro); two-way ANOVA. 

  Phenylephrine-induced 

contraction 

Acetylcholine-induced relaxation 

Experimental group n 
Mean ± SEM 

Emax Tension (g) 

Mean ± 
SEM 

(-Log EC50) 

Mean ± SEM 

Rmax relaxation 
(%) 

Mean ± SEM 

(-Log EC50) 

Lean Control 9 2.29 ± 0.17 0.84 ± 0.75 81.44 ± 5.26 * 6.91 ± 0.12 

HCD Control 8 2.20 ± 0.16 ** 0.83 ± 0.60 101.40 ± 4.75 * 7.10 ± 0.10 † 

Lean HAART 9 2.24 ± 0.16 ** 0.96 ± 0.71  84.46 ± 6.88 6.84 ± 0.15 

HCD HAART 9 2.28 ± 0.17 0.52 ± 0.38 76.10 ± 3.58** 6.66 ± 0.10 

Lean HAART + Saro 8 2.24 ±0.18 0.68 ± 0.49 92.77 ± 6.54 6.87 ± 0.18 

HCD HAART+Saro 8 2.13 ± 0.15 0.84 ± 0.45 101.00 ± 3.12 ** 7.09 ± 0.08 ‡ Ф 

Lean Saro 8 2.45 ± 0.21 *** 0.92 ± 0.83  91.16 ± 5.13 6.80 ± 0.12 

HCD Saro 8 2.28 ± 0.18 0.80 ± 0.31 92.58 ± 3.24 6.81 ± 0.09 П 
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3.12.1 Phenylephrine-induced aortic contraction 

The aortic response following cumulatively increasing doses of phenylephrine is shown below (Figure 3.46) 

as mean ± SEM tension (g) / drug concentration in each group. The curves represent tension generated by the 

aortic ring from the stabilisation tension (1.5 g) at zero dosage to the maximum tension (plateau, Emax) at 1µM 

phenylephrine concentration. The five experimental groups that showed significant differences in the mean 

Emax are also presented separately (Figure 3.47). 

phenylephrine-induced a significantly higher maximal mean tension (Emax,) in the lean Saroglitazar-treated 

group (2.45 ± 0.21 g) compared to lean HAART, HCD control and HCD HAART + Saro (2.24 ± 0.16 g: p < 

0.01, 2.20 ± 0.16 g: p < 0.01 and 2.13 ± 0.15 p < 0.01) respectively (Figure 3.47). After log transformation of 

the phenylephrine aortic-induced contraction, there were no differences noted in the mean ± SEM of the Log 

EC50 among the experimental groups (Table 3.8 above). 
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Figure 3.46 Mean phenylephrine cumulative dose-induced aortic tension (g) response curves / experimental 

group. 
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Figure 3.47 Mean phenylephrine cumulative dose-induced aortic tension (g) in the experimental groups with 

significant differences in the Emax (HCD Control, lean HAART, HCD HAART, HCD HAART + Saro and Lean 

Saro). 

3.12.2 Acetylcholine-induced aortic relaxation 

Acetylcholine cumulative dose-induced mean aortic relaxation response curves for all eight experimental 

groups are shown on Figure 3.48 A and the following observations were made: the mean maximal percentage 

acetylcholine-induced aortic relaxation, Rmax (%) was significantly higher in the HCD control group (101.40 

± 4.75 %) compared to the lean control (81.44 ± 5.26 %, p < 0.05) and HCD HAART (76.10 ± 3.58 %, p < 

0.01). Similarly, HCD HAART + Saro group mean Rmax (101.00 ± 3.12 %) was higher compared to HCD 

HAART group (76.10 ± 3.58 %, p < 0.001) and lean control group (81.44 ± 5.26 %, p < 0.01) (Figure 3.48 B 

and Figure 3.49). 

The log (X) transformed acetylcholine-induced aortic contraction curve revealed that the mean Log EC50 was 

significantly higher in the HCD HAART + Saro group (7.09 ± 0.08) compared to HCD HAART group (6.66 

± 0.10, p < 0.0018). Similarly, mean Log EC50 was also higher in the HCD control group (7.10 ± 0.10) 

compared to the HCD HAART group (6.66 ± 0.10, p < 0.003) and HCD Saro group (6.81 ± 0.09, p < 0.0303). 

The nonlinear regression (curve fits) for the acetylcholine-induced aortic relaxation transform are shown in 

Figures 3.50 and 3.51. 
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The aortic responses (induced relaxation) following cumulative increasing doses of acetylcholine are shown 

below as mean ± SEM (%) / drug concentration in each group (Figure 3.48). The curves represent mean 

percentage relaxation of the aortic ring (per group) from the maximum tension induced following cumulative 

doses of phenylephrine (when 30nM acetylcholine was injected) to the maximum relaxation (Rmax) achieved 

following cumulative doses of acetylcholine administration. 
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Figure 3.48 (A) Mean acetylcholine cumulative dose-induced aortic relaxation (%) response curves per 

experimental group. (B) Mean acetylcholine cumulative dose-induced aortic relaxation (%) in the 

experimental groups with significant differences in the Rmax (lean control, HCD Control, HCD HAART, HCD 

HAART + Saro). 
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Figure 3.49 Mean acetylcholine-induced maximal aortic relaxation Rmax (%) / experimental group.  

3.12.3 Nonlinear regression for log transformation of acetylcholine dose 
vs. percentage aortic relaxation 

To determine the EC50 for acetylcholine, nonlinear regression analysis was performed on the log transformed 

percentage aortic relaxation data using an ‘agonist-dose-response curve’ and results expressed as mean of the 

EC50 / group as shown below (Figure 3.50). 
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Figure 3.50 Nonlinear regression curves of all the eight experimental groups generated from the log (X) 

transform of acetylcholine-induced aortic relaxation (%). 

After nonlinear regression analysis, it was observed that, the mean ± SEM of the Log EC50 in the HCD HAART 

group was higher than HCD HAART + Saro group (6.66 ± 0.10 vs. 7.09 ± 0.08: p = 0.0018), HCD HAART 
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was higher than HCD control (6.66 ± 0.10, vs. 7.10 ± 0.10: p = 0.0031), HCD Saro was higher than HCD 

Control (6.81 ± 0.09 vs. 7.10 ± 0.10: p = 0.03) and HCD Saro was higher than HCD HAART + Saro (6.81 ± 

0.09 vs.7.09 ± 0.08, p < 0.024) (Figure 3.51 A-D). 
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Figure 3.51 Nonlinear regression (curve fit) for log transform of mean acetylcholine-induced aortic relaxation 

(EC50) (A) HCD HAART vs. HCD HAART + Saro group (B) HCD HAART vs. HCD control, (C) HCD Saro 

vs. HCD Control and (D) HCD Saro vs. HCD HAART + Saro. 
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3.13 Protein expression and phosphorylation measurements - Western blot 
analysis results 

The proteins of interest that were analysed in liver, heart (non-perfused heart tissue harvested from fasted 

animals for baseline (pre-ischaemia) protein determination and snap frozen heart tissue following 20 minutes 

of global ischaemia and reperfusion), and aortic tissue samples are described in this section. The following 

proteins were measured: - 

i) Total and phosphorylated AMPK 

ii) Total and phosphorylated eNOS 

iii) Total and phosphorylated PKB/Akt 

iv) Total and phosphorylated Erk 1 / 2 

v) Total and phosphorylated p38 

vi) Expression of IκBα 

vii) Expression of PGC-1α 

viii) Expression of PPAR α 

ix) Expression of NADPH, p22-phox 

x) Expression of cleaved caspase 3 

xi) Expression of cleaved PARP 

Total and phosphorylated AMPK, eNOS, PKB/Akt, Erk 1 / 2 and p38 were analysed and the ratio of the 

phosphorylated to total protein (phospho / total ratio) determined to assess activation of the proteins. The 

results are presented below, categorised per tissue i.e., heart (baseline and post-ischaemia-reperfusion), aorta 

and liver. For each experimental group, three biological sample replicates (n = 3 / group) were loaded onto the 

gels and analysed except for the standard control (only one sample loaded) as indicated on the blots displayed. 

The standard controls were prepared from untreated rats: liver samples were harvested and snap frozen, aorta 

segments were rinsed in ice cold KHB and snap frozen and hearts were exposed to stabilisation protocol of ex-

vivo perfusion before snap freezing and subsequent storage at -80° C.  The y axis represents arbitrary 

densitometry units calculated after normalisation of the Chemi-Hi-sensitivity blots to the stain-free-blots which 

are also displayed for every set of samples analysed. 

3.13.1 Heart tissue protein determination 

3.13.1.1 AMPK 

3.13.1.1.1 AMPK: baseline / pre-ischaemia-reperfusion 

No significant differences were observed in the mean total AMPK from the heart tissues analysed in the pre-

ischaemic phase. n = 1 / group (standard Control) and n = 3 / group for the experimental groups (Figure 3.52). 
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Figure 3.52 A and B- Mean pre-ischaemia cardiac total AMPK / experimental group. 

The mean activated AMPK (phospho-AMPK) levels were significantly lower in the HCD control group (0.82 

± 0.05) and HCD HAART group (0.69 ± 0.08) compared to the lean control (1.07 ± 0.10, p < 0.05) and lean 

HAART (0.94 ± 0.01, p <0.05 respectively) (Figure 3.53 A). However, the mean phospho-AMPK levels in the 

Saroglitazar-treated groups did not differ (Figure 3.53 B). 

The phospho-AMPK / total AMPK ratios were calculated / group and no significant differences were observed 

between any experimental groups (Figure 3.54 A). 
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Figure 3.53 A and B. Mean pre-ischaemia phospho-AMPK / experimental group. 
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Figure 3.54 A and B. Mean pre-ischaemia phospho-AMPK / total AMPK ratio / experimental group. 

3.13.1.1.2 AMPK: post-ischaemia-reperfusion 

No differences were observed in the mean post-ischaemia total AMPK / group (blots not displayed). However, 

the mean phospho-AMPK was significantly higher in the lean Saro group (1.49 ± 0.1) compared to lean 

HAART + Saro (1.07 ± 0.20, p < 0.05) (Figure 3.55 B). Similarly, the mean phospho-AMPK was significantly 

higher in the HCD Saro group (1.59 ± 0.10) compared to the HCD HAART + Saro group (1.18 ± 0.10, p < 

0.01). No other significant differences were observed (Figure 3.55 B). The mean post-ischaemia phospho-

AMPK / total AMPK ratios were higher in the Saroglitazar (only) treated groups: HCD Saro (0.58 ± 0.03) and 

lean Saro (0.61 ± 0.03) compared to HCD HAART + Saro group (0.49 ± 0.05, p < 0.01) and lean HAART + 

Saro (0.43 ± 0.03, p < 0. 05) respectively. There were no significant differences observed between the lean 

and HCD control and the HAART-treated groups (Figure 3.56). 
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Figure 3.55 A and B. Mean post-ischaemia phospho-AMPK / experimental group. 
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Figure 3.56 A and B Mean post-ischaemia phospho-AMPK / total AMPK ratio / experimental group. 

3.13.1.2 eNOS 

3.13.1.2.1 Baseline / pre-ischaemia and post-ischaemia-reperfusion 

There were no significant differences observed in the total and phosphorylated eNOS levels before induction 

of ischaemia (results not shown). However, marked differences in the mean phospho-eNOS were observed 

during the post-ischaemia-reperfusion phase as described below. 

3.13.1.2.2 Post-ischaemia-reperfusion 

The mean post-ischaemia total and phospho-eNOS / experimental group data are shown below (Figure 3.57 

and 3.58). The total expression did not differ significantly among the experimental groups (Figure 3.57). 

The mean post-ischaemia phospho-eNOS was significantly lower in the HCD HAART (0.62 ± 0.06) compared 

to the lean HAART (0.89 ± 0.05, p < 0.05) and HCD control (0.98 ± 0.02, p < 0.01) (Figure 3.58 A).  

The mean post-ischaemia phospho-eNOS was higher in the lean HAART + Saro group (1.08 ± 0.08) compared 

to lean Saro (0.61 ± 0.03, p < 0.01). Similarly, the mean post-ischaemia phospho-eNOS was higher in the HCD 

HAART + Saro group (0.91 ± 0.03) compared to HCD Saro (0.61 ± 0.05, p < 0.01) (Figure 3.58 B). 

The mean ratio of the phosphorylated eNOS to total eNOS was significantly lower in the HCD HAART group 

(0.56 ± 0.06) compared to HCD control (0.99 ± 0.02, p < 0.01) (Figure 3.59 A). However, the mean ratio was 

higher in the HCD HAART + Saro group (0.99 ± 0.02) compared to HCD Saro (0.59 ± 0.02, p < 0.01). 

Similarly, the lean HAART + Saro group mean phospho-eNOS / total eNOS ratio (1.06 ± 0.20) was higher 

compared to lean Saro (0.76 ± 0.02, p < 0.01) (Figure 3.59 B). 

The mean phospho-eNOS was significantly decreased in the HCD HAART group (0.76 ± 0.04) compared to 

the HCD HAART + Saro group (1.03 ± 0.02, p < 0.01) (Figure 3.59 C). The subsequent mean ratios of the 

phosphorylated eNOS to total eNOS levels in the HAART-treated groups were significantly lower in the lean 

HAART group (0.59 ± 0.01) compared to lean HAART + Saroglitazar group (0.85 ± 0.03, p < 0.01). Similarly, 
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HCD HAART group mean ratio (0.62 ± 0.07) was lower compared to HCD HAART + Saro group (0.84 ± 

0.03, p < 0.01) (Figure 3.59 D). 
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Figure 3.57 A and B. Mean post-ischaemia total eNOS / experimental group. 
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Figure 3.58 A. and B. Mean post-ischaemia phospho-eNOS / experimental group. 
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Figure 3.59 A, B and D Mean post-ischaemia phospho-eNOS / total eNOS ratio / experimental group. C. Mean 

post-ischaemia phospho-eNOS / experimental group. 

3.13.1.3 PKB / Akt 

3.13.1.3.1 Baseline / before induction of ischaemia 

Analysis of the total and phosphorylated PKB /Akt in the heart tissue before induction of ischaemia and 

reperfusion revealed no significant differences among the experimental groups. However, following induction 

of ischaemia and subsequent reperfusion, significant differences were observed in PKB /Akt activation as 

described below. 
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3.13.1.3.2 Post-ischaemia-reperfusion 

The mean post-ischaemia PKB / Akt expression and activation finding are presented below; (Figures 3.60 and 

Figure 3.61). No significant differences were observed in the mean total PKB expression / experimental group 

in heart tissues processed after ischaemia-reperfusion (Figure 3.60 A and B). 

The mean post-ischaemia phospho-PKB / Akt showed significant decreases in the lean HAART group (0.51 

± 0.05) and HCD HAART group (0.44 ± 0.07) compared to the lean control (0.83 ± 0.1, p < 0.05) and HCD 

control (0.78 ± 0.15, p < 0.05) respectively (Figure 3.61 A). The mean post-ischaemia phospho-PKB / Akt 

levels in the Saroglitazar-treated groups did not differ.  

A comparison of the post-ischaemia mean values for phospho-PKB / Akt in the HAART-treated groups 

showed that, the mean phospho-PKB / Akt was higher in the lean HAART + Saro group (1.14 ± 0.02) compared 

to the lean HAART group (0.90 ± 0.06, p < 0.01) and the mean phospho-PKB / Akt was higher in the HCD 

HAART + Saro group (1.09 ± 0.03) compared to the HCD HAART group (0.92 ± 0.05, p < 0.01) (Figure 3.61 

C). 

The mean phospho-PKB / Akt / total PKB / Akt ratios were significantly higher in the HAART + Saro treated 

groups (lean HAART + Saro 0.85 ± 0.06, HCD HAART + Saro 0.75 ± 0.04) compared to the HAART (only) 

treated groups (lean HAART 0.52 ± 0.07, p < 0.01 HCD HAART 0.05 ± 0.02, p < 0.01 respectively (Figure 

3.61 D). 
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Figure 3.60 A and B. Mean total post ischaemia total PKB / experimental group. 
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Figure 3.61 A-C Mean post-ischaemia phospho-PKB / experimental group and D mean post-ischaemia 

phospho-PKB / total PKB ratio / experimental group. 

3.13.1.4 Erk 1 / 2 

3.13.1.4.1 Baseline / pre-ischaemia-reperfusion 

The mean pre-ischaemia total and phosphorylated Erk 1 / 2 levels showed no significant differences between 

any of the experimental groups. The mean phospho / total Erk ratio / experimental group are shown below 

(Figure 3.62). 
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Figure 3.62 A and B. Mean pre-ischaemia phospho-Erk 1 / 2: total Erk 1 / 2 ratio / experimental group. 

3.13.1.4.2 Post-ischaemia-reperfusion 

Following 35 minutes of regional ischaemia, the total Erk expression remained equal in all the experimental 

groups (Figure 3.63 A and B). 
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Figure 3.63 Mean post-ischaemia total expression of Erk 1 / 2 / experimental group. 

The mean phospho-Erk 1/ 2 expression was higher in the HCD control group compared to the HCD HAART 

group (Figure 3.64). However, the mean phospho-Erk 1 / 2 : total Erk 1 / 2 ratios were not statistically different 

following ischaemia-reperfusion. 

The mean post-ischaemia phospho-Erk 1 / 2 was higher in the HCD control group compared to the HCD 

HAART group (1.28 ± 0.04 vs. 0.72 ± 0.01, p < 0.01, respectively) and higher than lean control (1.28 ± 0.04 

vs. 0.79 ± 0.01, p < 0.01) (Figure 3.64 A). However, no significant differences were observed among lean 
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HAART + Saro, HCD HAART + Saro, Lean Saro and HCD Saro groups although the trend indicated an 

increase in the HCD HAART + Saro group and lean Saro group compared to their respective controls (Figure 

3.64 B). 
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Figure 3.64 A and B-mean post-ischaemia phospho-Erk1 / 2 / experimental group. 

3.13.1.5 p38 

3.13.1.5.1 Pre-and post-ischaemia-reperfusion 

No differences were observed in the expression and activation of p38 in heart tissue lysates before induction 

of ischaemia and subsequent reperfusion. Similarly, following 20 minutes of global ischaemia and 10 minutes 

of reperfusion, the total and phosphorylated forms of p38 remained constant in all the experimental groups 

(Figure 3.65 A and B). Although the trend indicated an increase in the phosphorylated forms in the treated 

groups, (Figure 3.66 A), there were no significant differences between the HAART-treated groups and the 

untreated control groups.  
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Figure 3.65 A and B Mean post-ischaemia-reperfusion total p38 / experimental group.  
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Figure 3.66 A and B Mean post-ischaemia-reperfusion total phospho-p38 / experimental group. 

3.13.1.6 Pre-and post-ischaemia IκBα, PGC-1α and PPAR α expression 

Tissue lysates from non-perfused and post-ischaemia-reperfused hearts did not show any differences in the 

mean IκBα, PGC-1α and PPAR α expression / experimental group. However, all groups had increased mean 

IκBα expression following induction of ischaemia compared to the pre-ischaemia IκBα, expression. This trend 

was also observed in the PGC-1α expression but in contrast, PPAR α expression was higher in the non-perfused 

tissues compared to the post-ischaemia-reperfused PPAR α expression (Table 3.9). 
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The mean percentage change (increase) in the mean post-ischaemia IκBα was higher in the HCD HAART + 

Saro (62.62 ± 2.62 %) compared to HCD control (34.47 ± 2.40 %, # p < 0.05); HCD HAART (37.44 ± 3.13 

%, # p < 0.05) and HCD Saro (38.22 ± 3.24 %, # p < 0.05). Similarly, the mean percentage change (increase) 

in the mean post-ischaemia PGC-1α was higher in the HCD HAART (72.35 ± 4.21 %) compared to HCD 

control (37.56 ± 2.31 %, * p < 0.05); HCD HAART + Saro (49.43 ± 3.20 %, * p < 0.05) and HCD Saro (54.62 

± 3.51 %, * p < 0.05) (Table 3.9). 

The mean percentage change (decrease) in the mean post-ischaemia PPAR α was higher in the HCD control 

(-40.58 ± 4.50 %) compared to HCD HAART (-29.24 ± 3.62 %, φ p < 0.05) and HCD HAART + Saro (-23.66 

± 3.45 %, φ p < 0.05). On the other hand, the mean percentage change (decrease) in the mean post-ischaemia 

PPAR α was lower in the lean Saro group (-10.32 ± 5.43 %) compared to lean control (30.92 ± 3.22, ‡ p < 

0.05) lean HAART (29.71 ± 4.62, ‡ p < 0.05) and Lean HAART + Saro (24.34 ± 2.92, ‡ p < 0.05) (Table 3.9). 

Table 3.9. Mean expression of pre-and post-ischaemia IκBα, PGC-1α and PPAR α (mean ± SEM of normalised 

volume intensities, densitometry units relative to control) and their mean percentage change in pre-ischaemia 

expression following ischaemia-reperfusion. Symbols: # p < 0.05, ‡ p < 0.05 and * p < 0.05 (significant group 

differences are specified above).  

Protein 
Expression 

Lean 
Control 

HCD 
Control 

Lean 
HAART 

HCD 
HAART 

Lean 
HAART + 
Saro 

HCD 
HAART + 
Saro 

Lean Saro HCD Saro 

IκBα,  

Pre-ischaemia 

0.71 ± 
0.06 

0.77 ± 
0.02 

0.69 ± 
0.07 

0.70 ± 
0.02 

0.73 ± 
0.04 

0.63 ± 
0.05 

0.72 ± 
0.04 

0.75 ± 
0.03 

 

Post-
ischaemia 

1.02 ± 
0.05 

1.03 ± 
0.02 

1.00 ± 
0.05 

0.97 ± 
0.05 

1.02 ± 
0.05 

1.03 ± 
0.06 

1.01 ± 
0.02 

1.02 ± 
0.03 

% change 41.36 ± 
2.23  

34.97 ± 
2.40 

42.22 ± 
3.62 

37.44 ± 
3.13 

40.62 ± 
2.13 

62.62 ± 
5.62 # 

41.66 ± 
3.51 

38.22 ± 
3.24 

PGC-1α 

Pre-ischaemia 

0.87 ± 
0.04 

0.85 ± 
0.04 

0.78 ± 
0.03 

0.77 ± 
0.03 

0.87 ± 
0.05 

0.95 ± 
0.07 

0.64 ± 
0.04 

0.82 ± 
0.04 

 

Post-
ischaemia 

1.25 ± 
0.08 

1.16 ± 
0.10 

1.31 ± 
0.07 

1.34 ± 
0.05 

1.50 ± 
0.06 

1.41 ± 
0.06 

1.22 ± 
0.05 

1.26 ± 
0.05 

% change 42.33 ± 
2.22 

37.56 ± 
2.31 

65.69 ± 
4.3 

72.35 ± 
4.21* 

71.23 ± 
3.92 

49.43 ± 
3.20 

87.34 ± 
3.31 

54.62 ± 
3.51 

PPAR α 

Pre-ischaemia 

0.97 ± 
0.05 

1.01 ± 
0.04 

0.92 ± 
0.04 

0.95 ± 
0.05 

1.03 ± 
0.08 

0.97 ± 
0.05 

0.87 ± 
0.03 

0.94 ± 
0.05 

 

Post-
ischaemia 

0.67 ± 
0.03 

0.59 ± 
0.03 

0.67 ± 
0.04 

0.68 ± 
0.03 

0.77 ± 
0.04 

0.76 ± 
0.02 

0.79 ± 
0.03 

0.61 ± 
0.02 

% change -30.92 ± 
3.22 

-40.58 ± 
4.50 φ 

-29.71 ± 
4.62 

-29.24 ± 
3.62 

-24.34 ± 
2.92 

-23.66 ± 
3.45 

-10.32 ± 
5.43 ‡ 

36.83 ± 
3.74 
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3.13.1.7 NADPH, p22-phox 

3.13.1.7.1 Pre-and post-ischaemia expression of p22-phox 

No differences were observed in the mean p22-phox expression among the experimental groups before 

induction of ischaemia (Figure 3.67 A). However, the mean expression of p22-phox subunit was significantly 

lower in the HCD HAART + Saroglitazar group (0.75 ± 0.03) compared to the HCD HAART (0.98 ± 0.02, p 

< 0.01). Similarly, the mean expression was also reduced in the lean HAART Saro group (0.87 ± 0.05) 

compared to the lean HAART group (1.00 ± 0.02, p < 0.01) (Figure 3.67 B). 

Pre-ischaemia p22-phox
 expression

Stan
dard

 Contro
l

Lea
n HAART

HCD HAART

Lea
n HAART + 

Saro

HCD HAART + 
Saro

0.0

0.5

1.0

1.5

D
en

si
to

m
et

ry
un

its

Stain
Free
Blot

Chemi Hi
sentitivity Blot

A) Post-ischaemia p22-Phox
expression

Stan
dard

 Contro
l

Lea
n HAART

HCD HAART

Lea
n HAART + 

Saro

HCD HAART + 
Saro

0.0

0.5

1.0

1.5

D
en

si
to

m
et

ry
un

its

Stain
Free
Blot

Chemi Hi
sentitivity Blot

** **

** p < 0.01

B)

 

Figure 3.67 A Mean pre-ischaemia p22-phox expression / experimental group and B, mean post-ischaemia 

expression of p22-phox / experimental group. 

3.13.1.8 Cleaved caspase 3 

No significant differences were observed in the mean pre-ischaemic expression of caspase 3 / experimental 

group. However, following ischaemia-reperfusion, the HCD HAART group had significantly higher 

expression (1.55 ± 0.04) compared to lean HAART (1.17 ± 0.12, p < 0.01) and HCD control group (0.90 + 

0.2, p < 0.01) (Figure 3.68 A). Subsequently, following ischaemia-reperfusion, a comparison of the HAART-

treated groups showed that, the mean expression of caspase 3 in the HCD HAART group (1.20 ± 0.11) and 

lean HAART group (1.06 ± 0.08) were significantly higher compared to HCD HAART + Saroglitazar group 

(0.35 ± 0.14, p < 0.05) and lean HAART + Saroglitazar group (0.39 ± 0.16, p < 0.05) respectively (Figure 3.68 

B). 
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Figure 3.68 A and B. Mean post -ischaemia cleaved caspase 3 expression / experimental group.  
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3.13.1.9 Cleaved PARP 

Although no differences were observed in the expression of cleaved PARP before induction of ischaemia, 

following ischaemia-reperfusion, the mean cleaved PARP expression was significantly higher in the HCD 

control (1.68 ± 0.18) compared to the lean control (1.06 ± 0.09, p < 0.01). Also, the mean post-ischaemia 

expression of cleaved PARP in the HCD HAART group (2.17 ± 0.06) was significantly higher compared to 

the HCD control group (1.68 ± 0.18, p < 0.05). On the other hand, the lean HAART group mean expression of 

cleaved PARP (1.73 ± 0.03) was significantly higher than the lean control group (1.06 ± 0.09, p < 0.01) (Figure 

3.69 A).  

Following induction of ischaemia and reperfusion, the mean cleaved PARP for the HCD HAART + Saro group 

(1.55 ± 0.11) was significantly lower than lean HAART + Saro group (2.34 ± 0.08, p < 0.0001) and HCD Saro 

(2.72 ± 0.13, p < 0.0001) (Figure 3.69 B). 
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Figure 3.69 A and B. Mean post-ischaemia expression of cleaved PARP / experimental group. 

3.13.2 Aortic tissue protein determination 

3.13.2.1 eNOS 

No significant differences were observed in the mean total eNOS expression / experimental group. However, 

phosphorylated eNOS levels were significantly higher in the Saroglitazar-treated groups compared to the 

HAART-treated groups and similar trends were observed with the phospho-eNOS / total eNOS ratios. 

Subsequently, the mean phospho-eNOS / total eNOS ratios were significantly higher in: the lean control group 

(0.74 ± 0.02) compared to the lean HAART group (0.52 ± 0.04, p < 0.05), lean HAART + Saroglitazar (0.73 

± 0.02) compared to lean HAART group (0.52 ± 0.04, p < 0.05), HCD control (0.71 ± 0.01) compared to HCD 

HAART (0.56 ± 0.02, p < 0.05), HCD HAART + Saro (0.75 ± 0.03) compared to HCD HAART (0.56 ± 0.02, 
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p < 0.05), lean Saro (0.83 ± 0.09) compared to lean HAART (0.52 ± 0.04, p <0.01) and HCD Saro (0.85 ± 

0.08) compared to HCD HAART (0.56 ± 0.02, p < 0.01) (Figure 3.70). 
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Figure 3.70 Mean aortic phospho-eNOS / total eNOS ratio / experimental group.  

3.13.2.2 PKB / Akt 

No differences were observed in the mean total PKB / Akt / experimental group (Figure 3.71). 

The mean phospho-PKB / Akt was higher in the following groups: - HCD control vs. lean control (1.010 ± 

0.001 vs. 0.900 ± 0.010, p < 0.01 respectively), HCD control vs. HCD HAART (1.010 ± 0.001 vs.  0.960 ± 

0.010 respectively, p < 0.01), lean HAART Saro vs. lean HAART (1.000 ± 0.003 vs. 0.930 ± 0.002 

respectively, p < 0.01), HCD HAART + Saro vs. HCD HAART (0.990 ± 0.005 vs. 0.960 ± 0.008 respectively, 

p < 0.01) and lean Saro vs. HCD Saro (0.980 ± 0.005 vs. 0.903 ± 0.005 respectively, p < 0.01) (Figure 3.72). 

The mean phospho-PKB / Akt / total PKB / Akt was significantly higher in the:  HCD control group (1.030 ± 

0.006)  compared to lean control group (0.900 ± 0.150, p < 0.001), HCD HAART + Saro (0.950 ± 0.010) 

compared to HCD HAART (0.900 ± 0.009, p < 0.01), lean HAART + Saro (0.970 ± 0.004) compared to lean 

HAART (0.910 ± 0.010, p < 0.01) and lean Saro (0.950 ± 0.011) compared to HCD Saro (0.910 ± 0.006, p < 

0.01) (Figure 3.73). 
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Figure 3.71 Mean aortic total PKB / Akt expression / experimental group. 
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Figure 3.72 Mean aortic phospho-PKB / Akt expression / experimental group. 
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Figure 3.73 Mean aortic phospho-PKB / Akt : total PKB / Akt ratio / experimental group. 

3.13.2.3 Erk 1 / 2 

The mean aortic total and phospho-Erk 1/ 2 did not differ among the experimental groups (Figure 3.74) 
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Figure 3.74 Mean aortic phospho-Erk 1 / 2 / total Erk 1 / 2 / experimental group. 

3.13.2.4 IκBα 

The mean aortic IκBα expression / experimental group was only significantly lower in the lean Saroglitazar-

treated group compared to the lean control (0.74 ± 0.03 vs. 1.05 ± 0.04; p < 0.04) (Figure 3.75). 
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Figure 3.75 Mean aortic IκBα / experimental group. 

3.13.2.5 PGC-1α 

Mean aortic PGC-1α was significantly higher in the lean HAART + Saro group (1.16 ± 0.01) compared to the 

lean HAART group (0.90 ± 0.01, p < 0.05). Also, the mean PGC 1 α expression was higher in the HCD 

Saroglitazar-treated group compared to the lean Saroglitazar-treated group (1.25 ± 0.09 vs. 0.79 ± 0.05 (39 %), 

p < 0.05). No other significant differences were observed among the other experimental groups (Figure 3.76). 
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Figure 3.76 Mean aortic PGC 1 α expression / experimental group. 
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3.13.2.6 p22-phox 

The mean aortic p22-phox levels were significantly higher in the HCD and lean HAART-treated groups (3.27 

± 0.19, 2.92 ± 0.10) compared to the HCD and lean controls (1.6 ± 0.03, p < 0.0001; 1.5 ± 0.05, p < 0.0001), 

respectively (Figure 3.77 A). The increase in the mean p22-phox of the HCD HAART group represented 

a 2-fold increase compared to the HCD control group and lean HAART increase represented a 1.8- fold 

increase compared to the lean control. The mean aortic p22-phox / group in the Saroglitazar-treated groups did 

not differ significantly with the control (Figure 3.77 B). 
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Figure 3.77 Mean aortic p22-phox expression / experimental group. 

No significant differences were observed in the mean aortic expression of cleaved caspase 3 and cleaved PARP 

among the experimental groups. Similarly, the mean total AMPK and phospho-AMPK levels were not 

statistically different among the experimental groups. 
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3.13.3 Liver tissue protein determination 

The proteins analysed from the experimental animals’ liver tissues are presented in this section. The expression 

of PGC-1α, IκBα and PPAR α in the liver did not show any significant differences among the experimental 

groups and results are tabulated below as mean ± SEM of the densitometry units per group (Table 3.10). 

Table 3.10 Mean hepatic expression of PGC-1α, IκBα and PPAR α (mean ± SEM of normalised volume 

intensities, densitometry units relative to control) / experimental group. 

Protein 
Expression 

Lean 
Control 

HCD 
Control 

Lean 
HAART 

HCD 
HAART 

Lean 
HAART + 
Saro 

HCD 
HAART + 
Saro 

Lean Saro HCD Saro 

IκBα,  

 

0.53 ± 
0.05 

0.55 ± 
0.05 

0.50 ± 
0.04 

0.60 ± 
0.06 

0.54 ± 
0.04 

0.53 ± 
0.03 

0.48 ± 
0.04 

0.55 ± 
0.06 

PGC-1α 0.34 ± 
0.03 

0.36 ± 
0.03 

0.38 ± 
0.06 

0.28 ± 
0.02 

0.40 ± 
0.05 

0.44 ± 
0.03 

0.36 ± 
0.08 

0.43 ± 
0.03 

PPAR α 0.52 ± 
0.07 

0.50 ± 
0.06 

0.52 ± 
0.04 

0.55 ± 
0.06 

0.48 ± 
0.03 

0.47 ± 
0.04 

0.50 ± 
0.05 

0.54 ± 
0.05 

 

3.13.3.1 PKB / Akt 

There were no differences observed in the mean hepatic total PKB / Akt among the experimental groups 

(Figure 3.78 A and B). The mean phospho-PKB / Akt levels were significantly decreased in the HCD control 

group compared to lean control (0.57 ± 0.02 vs. 0.87 ± 0.03, p < 0.01). Similarly, the HCD HAART-treated 

group mean phospho-PKB / Akt level was lower compared to the lean HAART group (0.51 ± 0.03 vs. 1.01 ± 

0.06 vs. p < 0.01) (Figure 3.79 A). No significant differences were observed in the Saroglitazar-treated groups 

(Figure 3.79 B). Additionally, the mean phospho-PKB/ Akt / total PKB ratios followed similar trend as shown 

below (Figure 3.79 C and D). 

A further comparison of the HAART-treated groups showed that, the mean phospho-PKB/ Akt / total PKB/ 

Akt ratios were significantly reduced in the HCD HAART (only) treated groups compared to the HAART + 

Saroglitazar-treated groups: HCD HAART group (0.38 ± 0.03) lower compared to HCD HAART + Saro group 

(0.65 ± 0.02, p <0.01) and lean HAART group (0.36 ± 0.03) lower compared to lean HAART + Saro (0.64 ± 

0.03, p <0.01). No other significant differences were observed (Figure 3.80). 
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Figure 3.78. A and B Mean hepatic total PKB / Akt / experimental group. 
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Figure 3.79 A and B. Mean hepatic phospho-PKB / Akt : total PKB / Akt ratio / experimental group. 
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Figure 3.80 Mean hepatic phospho-PKB / Akt : total PKB / Akt ratio / experimental group.  

3.13.3.2 Erk 1 / 2 

The mean hepatic total Erk 1 / 2 did not differ significantly among the experimental groups. However, the 

mean phospho-Erk 1 / 2 was higher in the HCD HAART group compared to HCD control (0.97 ± 0.02 vs. 

0.73 ± 0.02 respectively, p < 0.01). Similarly, the mean hepatic total Erk 1 / 2 in the lean HAART group was 

significantly higher compared to lean control (0.95 ± 0.01 vs. 0.71 ± 0.06 respectively, p < 0.01) (Figure 3.81 

A). No significant differences were observed in the Saroglitazar-treated groups (Figure 3.81 B). 

The mean phospho-Erk 1 / 2: total Erk 1 / 2 ratios were also significantly higher in the lean and HCD HAART-

treated groups (0.62 ± 0.03, 0.60 ± 0.08) compared to the lean and HCD control groups (0.40 ± 0.01, 0.36 ± 

0.03, p < 0.01) respectively (Figure 3.82 A). No significant differences were observed between any of the 

Saroglitazar-treated groups (Figure 3.82 B). 

Following a further comparison of the HAART-treated groups, it was observed that the mean level of phospho-

Erk 1 / 2 in HCD HAART + Saro group (1.17 ± 0.19) was significantly lower compared to the HCD HAART 

(1.68 ±0.10, p < 0.05) (Figure 3.83 A). Similarly, the mean phospho-Erk 1 / 2: total Erk 1 / 2 ratio in the HCD 

HAART + Saro group (1.27 ± 0.25) was significantly lower compared to the HCD HAART (1.84 ± 0.10, p < 

0.05) (Figure 3.83 B). 
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Figure 3.81 A and B. Mean hepatic phospho-Erk1 / 2 / experimental group. 
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Figure 3.82 A and B Mean phospho-Erk 1 / 2 : total Erk 1 / 2 ratio / experimental groups. 
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Figure 3.83 Mean phospho-Erk 1 / 2 /experimental group. 

3.13.3.3 p22-phox 

The mean expression of p22-phox did not show any significant differences among the experimental groups as 

shown below (Figure 3.84). 

p 2 2  -  P h o x

S ta
n d a rd

 C
o n tro

l

L e a n  C
o n tro

l

H C D  C
o n tro

l

L e a n  H
A A R T

H C D  H
A A R T

0 .0

0 .5

1 .0

1 .5

D
e

n
s

it
o

m
e

tr
y

u
n

it
s

S ta in  F re e
 B lo t

C h e m i H i
S e n s it iv ity

A ) p 2 2  -  P h o x

S ta
n d a rd

 C
o n tro

l

L e a n  H
A A R T  +

 S
a ro

H C D  H
A A R T  +

 S
a ro

L e a n  S
a ro

H C D  S
a ro

0 .0

0 .5

1 .0

1 .5

D
e

n
s

it
o

m
e

tr
y

u
n

it
s

S ta in  F re e
T o ta l B lo t

C h e m i H i
S e n s it iv ity

B )

 

Figure 3.84 Mean hepatic expression of p22-phox / experimental group. 
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3.13.3.4  Cleaved caspase 3 

There were no differences in the mean hepatic expression of caspase 3 among the experimental groups (Figure 

3.85). 
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Figure 3.85 A and B. Mean hepatic expression of caspase 3 / experimental group. 

3.13.3.5 AMPK 

The mean hepatic total AMPK / group showed no significant differences. However, the mean phospho-AMPK 

level was significantly lower in the HCD HAART group (0.62 ± 0.04) compared to the lean HAART and HCD 

HAART + Saro group (1.60 ± 0.18, p < 0.01 and 1.64 ± 0.11, p < 0.01 respectively). Subsequently, the mean 

phospho-AMPK / total AMPK ratio in the HCD HAART group (0.59 ± 0.06) was significantly lower compared 

to the lean HAART and HCD HAART + Saro group (1.56 ± 0.20, p < 0.01 and 1.56 ± 0.16, p < 0.01 

respectively) (Figure 3.86). The reduction in the mean phospho-AMPK / total AMPK ratio in the HCD 

HAART group represented a 2-fold difference in expression compared to the HCD HAART + Saro group.  
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Figure 3.86 Mean hepatic phospho-AMPK / total AMPK ratio / experimental group. 

Having presented all the results from the study activities previously highlighted, the subsequent chapter 

(chapter 4) formulates a discussion, draws conclusions based on the study findings and highlights the study 

limitations and future directions on this research topic. 
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Chapter 4 : Discussion 

4.1 Introduction 

In this chapter, the results previously presented (chapter 3) are discussed focusing on answering the research 

study questions i.e., whether treatment with HAART (LPV/r + AZT / 3TC) for six weeks led to development 

of NAFLD with concomitant development of cardiac and vascular dysfunction in lean and obese male Wistar 

rats compared to their age-matched controls. Furthermore, results obtained from the dual PPAR α / γ agonist, 

Saroglitazar, treatment for a period of six weeks are discussed hinging on its potential to limit the metabolic 

derangements associated with use of ARVs. 

4.2 Feeding programme 

The present study conducted an evaluation of two diets (normal rat chow and high calorie diet) that were 

supplied ad libitum for a period of 16 weeks to male Wistar rats from the age of eight weeks based on 

previously published diet models (Webster et al. 2017; Salie et al. 2014; Pickavance et al. 1999). We have 

presented data based on both food and water consumption monitoring and below are the inferences drawn. 

4.2.1 Food intake 

The vast majority of overweight and obesity cases in humans are associated with Westernized lifestyle where 

people not only consume readily available highly palatable food, but also consume it in large quantity. Dietary 

practices have been implicated greatly in causation and prevention of various diseases to name a few, cancer, 

T2DM and CVD (Willett 1994). Therefore, dietary monitoring was essential in this present study due to the 

implication in metabolic syndrome and CVD. 

Before onset of drug treatment, animals that were fed the HCD and normal rat chow combination preferred the 

highly palatable HCD and barely consumed the rat chow (see Figure 3.1 and Figure 3.4). This trend persisted 

after the onset of drug treatment in all the groups (HCD HAART, HCD HAART + Saro, HCD Saro and the 

HCD Control) throughout the programme (Figure 3.5). There were no differences noted in the mass of food 

consumed in the various experimental groups among the HCD-fed animals. Similarly, consumption of normal 

rat chow was fairly constant in all the diet control experimental groups.  

Furthermore, perhaps the most intriguing finding in the feeding behaviours of the two groups (chow-fed and 

HCD-fed) was that the HCD group not only had preference for the sweeter diet but consumed more compared 

to the mass ingested by the chow-fed group (Figure 3.2 and Figure 3.4). The mass ingested per rat per day by 

the HCD groups was more than double that consumed by the chow group. 

The present study findings are consistent with previous studies, since it has been established that Wistar rats 

and other rodents prefer the more palatable diet than chow (Pickavance et al. 1999; Avena et al. 2008; La Fleur 

Stellenbosch University  https://scholar.sun.ac.za



138 
 

et al. 2014). Using a high fat diet (45 % energy from fat), Hafizur et al. (2015) demonstrated an increase in the 

mass of food consumed by young Wistar rats compared to the standard rat chow fed control rats. The diet 

programme was extended for a period of six months and resulted in weight gain, insulin resistance (as 

evidenced by elevated serum insulin) and pancreatic islet hypertrophy features consistent with rodent pre-

diabetes. Therefore, the diet model in the present study fits the criterion of hyperphagia inducing diet model 

(Corbit et al. 1964) and forms the basis of translatable findings to some human conditions as discussed in 

subsequent sections. 

Treatment with HAART or Saroglitazar or combined treatment did not alter the mass of HCD or normal rat 

chow intake. However, it was observed that when the rats were initiated on the oral gavaging procedure, their 

average food intake (in all groups including the vehicle – control group) dropped temporarily, and we ascribe 

this to the initial discomfort of the procedure since after three to five days of continued oral gavage, their food 

intake resumed to the pre-gavage mass. 

4.2.2 Water consumption 

Water consumption in the normal chow fed groups before and during treatment was significantly higher 

compared to the HCD group (Figure 3.8). On average, water intake for the chow-fed animals was double that 

of the HCD-fed animals. There is paucity in the literature of reports on water consumption in this diet model, 

but the findings in this present study suggest that the intake was lower in the HCD groups because their food 

was prepared by mixing the different components in water and therefore the moisture content was higher than 

that present in commercially available chow pellets. However, this difference could not be ignored because 

increased water consumption has been associated with several factors in humans. For example, a study by Kant 

et al. (2009) in a USA population reported that higher water intake is directly associated with diet quality (a 

key factor being dietary fibre), and inversely related to energy from fat and energy dense foods supporting the 

findings in the Wistar rat HCD model. 

Treatment with HAART, Saroglitazar or combination of HAART and Saroglitazar had no effect on volume of 

water consumed in either the chow-fed or HCD-fed rats. Although both water and food intake alterations are 

observed in patients treated with PIs + NRTIs, the effects are attributed to direct gastrointestinal adverse effects 

like nausea vomiting and diarrhoea (Hill et al. 2009). However, neither lean nor HCD rats suffered from such 

effects and no features of dehydration were observed. 

4.3 Body mass monitoring 

Monitoring of body weight is a simple but effective tool in assessing the general status of health in humans 

and experimental animals. Since a relationship exists between dietary energy (fat) intake, metabolic syndrome 

and body weight (Melanson et al. 2009), it was imperative for us to monitor animal weight gain / changes in 

the various experimental groups. After randomly assigning the rats into two groups and introducing two 

different diets, it was clear that by the sixth week, the HCD group had started to gain more weight than the 
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chow-fed control group (Figure 3.10). This trend was maintained and by the tenth week when the treatment 

was commenced, the difference was even more pronounced as indicted by the fact that the HCD group had on 

average gained over 30 g / rat (12 %) more compared to the chow control group (Table 3.3). 

After drug treatment was commenced, the difference in total body mass between HCD and lean treated groups 

persisted. However, the various treatment regimens exerted no additional effects, since the mean body mass 

for all HCD groups remained unaltered and similarly for the lean treated groups. Perhaps, continued treatment 

beyond 16 weeks would have produced different results since the trend as shown on Figure 3.11 indicated that 

the HCD control group rate of mean body mass increase was higher (although not statistically significant) in 

comparison to the other HCD-treated groups. On the day the animals were sacrificed, the HCD control group 

registered 15.6 % greater total body weight compared to the control and this finding was observed in all the 

experimental groups (Figure 3.12). 

At this point, the present study has demonstrated that the HCD led to increased weight gain compared to the 

normal chow diet. Consequently, the findings corroborate those of previous studies (Salie et al. 2014; Webster 

et al. 2017; Pickavance et al. 1999) exploring body mass changes in Wistar rats using a similar diet, although 

some of these studies reported greater weight gains (30 % more) compared to the lean controls. The increase 

in body mass has been reported to be as high as 60 % in HFD (45 % dietary fat) in a period of nine weeks. 

(Hafizur et al. 2015). Unfortunately, literature on rat body mass with ART is limited.  

Perhaps, what was expected was that the different drugs would induce body mass changes. Use of a 

thiazolidinedione (TZD, (PPAR γ agonist)), rosiglitazone did not show any weight alterations in dietary obese 

rats (Pickavance et al. 1999) a similar finding to the present study where Saroglitazar did not induce any weight 

changes. However, TZDs are known to induce weight gain despite improving insulin sensitivity in diabetic 

human subjects (Fonseca 2003). The mechanisms leading to PPAR γ mediated weight gain remain 

incompletely understood but is postulated to be as a result of enhanced adipocyte fat storage in the 

subcutaneous tissue because of the associated reduction in visceral fat accumulation (Kelly et al. 1999). In the 

present study, the serum drug concentrations were not assessed. Because the rate of metabolism is high in 

rodents, future studies should consider evaluation of serum drug concentrations to correlate with body mass 

changes. Perhaps higher serum Saroglitazar concentrations are required. 

Studies on body mass in HAART often produce contradictory findings. However, there is adequate evidence 

suggesting that when the initiation of HAART is coupled with proper nutritional supplementation, the net 

result is an increase in total body mass. This finding was clearly illustrated by Banerjee and colleagues (2013) 

who evaluated over 180 children from a resource-constrained Indian population and found significant weight 

gain following HAART initiation and nutritional supplementation. To date, the situation has changed because, 

as demonstrated earlier (section 1.3.8), the onset of HAART has been revised and introduction of these drugs 

in patients who are already in the overweight / obese category has been referred to as “the latest epidemic” 

(Crum-Cianflone et al. 2008). Furthermore, it is now emerging that weight gain in HIV patients on HAART is 
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becoming more prevalent and is often associated with other cardiovascular risk factors such as hypertension 

and dyslipidaemia (Leite et al. 2010).  

Riddle et al. (2001), using ritonavir on male C57BL/6 mice that were fed HFD, reported significant weight 

gains in the treated animals compared to the control, and the increase in body mass was also associated with 

dyslipidaemia as discussed below. 

4.4 Visceral fat 

Weight gain per se may not indicate accurately the risk it poses on health in general and therefore better 

indicators of body fat have been devised. Although the use of BMI remains a useful indicator for assessing 

body fat, its usefulness is of limited accuracy in adults. Other indicators of body fat like body adiposity index 

(BAI) (Bergman et al. 2011) and waist: hip circumference ratio have been suggested as more accurate indices. 

However, in our experimental study although we monitored only the total body mass during the treatment and 

feeding programme, after the animals were sacrificed, IP fat was harvested, weighed and expressed as a 

percentage to total body mass. The results are shown in Figure 3.13. The HCD control group had a significantly 

higher percentage IP fat mass compared to lean control. Additionally, the percentage IP fat mass of all the 

treated HCD groups was significantly higher than their lean control counterparts. 

Intriguingly, co-treatment with HAART + Saro led to significant reduction in percentage IP fat mass in both 

lean and HCD groups. Although stimulation of the PPAR γ has been documented to lead to increased body 

mass (Fonseca 2003) the present study shows that dual PPAR α / γ stimulation in vivo led to a significant 

reduction in percentage IP mass in both chow-fed and HCD-fed Wistar rats. There were no differences 

observed between lean HAART vs. lean control and HCD HAART vs. HCD control. 

There is supporting evidence that PIs predispose individuals to development of lipodystrophy which is 

characterised by changes in body fat distribution with peripheral wasting and central obesity (Williamson et 

al. 1999; Carr et al. 1998). However, this has not been demonstrated in rats. A combination of PIs with NRTIs 

has also been shown to increase the risk to development of peripheral lipodystrophy as described by Van der 

Valk et al. (2001). The present study did not demonstrate any changes in fat deposition within the peritoneum 

between the LPV / r + AZT / 3TC-treated lean and obese groups and therefore future studies ought to evaluate 

the entire fat profile including peripheral fat depots (subcutaneous). 

Dietary factors also play a critical role in both deposition and distribution of body fat. In HIV patients on 

HAART, it has been reported that those who consume lipids excessively are at an increased risk of developing 

central obesity (odds ratio: 1.28) (Jaime et al. 2006). On the other hand, in a nested case-control study, HIV 

patients who consumed more fibre and proteins in their diet presented with less fat deposition compared to 

those who ingested less fibre and more fat (Hendricks et al. 2003). 

From the foregoing discussion, it is clear that the first objective of the present study has been successfully 

achieved because by using these two markers of obesity / adiposity, the HCD was shown to induce an increase 

in net total body mass and percentage IP fat mass compared to the chow diet group. This finding can be 
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attributed to hyperphagia and high calorie intake because, the HCD contained more fat, carbohydrates and 

sucrose compared to chow (6 g / 100 g fat, 10.8 mg / 100 g cholesterol, 7.4 % carbohydrate and 18 % sucrose) 

respectively. However, the HCD did not differ significantly in the composition of micronutrients as shown on 

Addenda A 1 and A 2. 

Furthermore, addition of Saroglitazar to the HAART regimen (LPV / r + AZT / 3TC) led to a significant 

reduction in the percentage IP fat compared to the lean HAART and HCD groups. Since visceral obesity has 

been implicated in various types of organ damage and dysfunction (Tchernof and Després 2013), we evaluated 

the liver and heart mass changes. 

4.5 Organ mass 

Determination of organ mass, especially the liver and the heart, is essential in experimental diet and treatment 

programmes because this provides an indication of the drug and dietary effects on tissues and organs. Although 

an ideal monitoring method would be to track changes in organ and tissue mass during the programme for 

example through use of high-resolution magnetic resonance imaging techniques (Tang et al. 2002), these 

techniques are expensive, not readily available and therefore in the present study, organs were harvested and 

weighed at the end of the programme after the animals were sacrificed. 

4.5.1 Heart mass 

Heart mass assessment is important because an increase, not only portends cardiomegaly resulting from cardiac 

hypertrophy but could also indicate abnormal fat deposition. The absolute (total) cardiac mass and normalised 

cardiac mass to tibial length were not significantly different between the HCD control and lean control groups. 

However, significant differences were observed among HAART, HAART + Saro and Saro treated groups 

compared to their respective lean controls (see Figure 3.14 and Figure 3.15).  

Various HFD compositions have been shown to exert different effects on heart mass. Although the specific 

diet composition investigated in this study has not been reported to induce an increase in heart mass, (Pancani 

et al. 2013; Salie et al 2014), a HFD containing 25 % fat, 32 % protein and 25 % carbohydrate, as well as more 

palmitate (91.12 g/kg) and oleate (100.24 g/kg) was reported to induce an increase in cardiac mass compared 

to lean control animals, and the increase in mass was associated with an increase in the TG content within the 

heart tissue (Ouwens et al. 2005). 

Tibial length has been proposed to be a good normalizing parameter for quantifying cardiac hypertrophy (Yin 

et al. 1982). Although the HCD control rats did not show any difference compared to the lean control rats, the 

cardiac mass normalised by tibial length was significantly greater in HCD treated groups compared to their 

respective lean control groups. Since this has not been reported before, we consider it a novel finding in this 

study.  

Clinical studies have reported on the existence of cardiomegaly and dilated cardiomyopathy in patients on 

HAART especially those on NRTIs. Tanuma and colleagues (2003) described a case of a middle-aged woman 
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who developed cardiomegaly following 20 months of treatment for HIV with nelfinavir, 3TC and AZT. The 

cardiomyopathy was associated with histological features of hypertrophied cardiomyocytes and intra-

mitochondrial myelin-like figures. These are features associated with AZT mitochondrial damage and 

following withdrawal of AZT from the HAART regimen, the clinical features of cardiomyopathy-induced 

heart failure all but disappeared. Other clinical studies have reported similar findings (Akinbami et al. 2012; 

Oberdorfer et al. 2008). 

Metabolic derangements associated with both NRTIs and PIs that lead to lipodystrophy and dyslipidaemia also 

explain the high incidences of elevated heart mass in HIV / AIDS patients as a result of ectopic fat deposition 

in the heart tissue (Leite et al. 2008; Lake et al. 2010). Since the lean HAART group did not show any 

significant difference compared to the lean untreated group, we therefore ascribe the increase in heart mass to 

the combined effects of both diet and PIs + NRTIs treatment and therefore emphasizing the importance of diet 

in body fat distribution as previously reported (Hendricks et al. 2011; Jaime et al. 2006). 

In the HCD HAART + Saro group, both the absolute and normalised mean cardiac mass were lower compared 

to the HCD HAART. Since this has not been reported before, it is a novel finding and we ascribe this to dual 

PPAR α / γ stimulation leading to not only a reduction in the % IP fat (in obese rats on HAART) but also 

possibly to improved fat distribution with reduced ectopic cardiac lipid deposition.  

Treatment with Saroglitazar did not alter heart mass when compared to HAART treatment in both lean and 

HCD groups, a finding that is consistent with other TZDs. Gavrilova and colleagues (2003) demonstrated that 

PPAR γ stimulation with rosiglitazone protected other tissues from TG accumulation although it was 

associated with increased TGs in the liver. However, no significant differences in heart mass were observed. 

Future studies should consider evaluating the heart tissue histology since the present study did not. 

4.5.2 Liver mass 

Liver mass was only significantly elevated in the HCD compared to the lean control and no other differences 

were observed. Treatment with a combination of LPV/r and AZT + 3TC did not significantly increase liver 

mass and neither did combination with Saroglitazar or Saroglitazar monotherapy (Figure 3.16). Although there 

are no previous studies we can cite that have demonstrated increased liver mass using this specific diet 

composition, it is already established that HFD induces increased liver mass through deposition of lipids and 

also by inducing varying degrees of liver damage. For example, a high fat emulsion administered via oral 

gavage to male Sprague-Dawley was used to establish a model of NASH that was characterised by elevated 

aminotransferase, hyperglycaemia, hyperlipidaemia and overt obesity (Zou et al. 2016).  

The finding that combined LPV/r and AZT + 3TC therapy did not alter liver mass was unexpected since there 

is ample evidence that PIs are associated with the development of lipodystrophy, hepatic steatosis and 

hepatomegaly (Riddle et al. 2001; Williamson et al. 1999; Carr et al. 1998). However, since no experimental 

studies using combined PIs and NRTIs have evaluated liver mass in this context, we suggest that NRTIs may 
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offer an antagonistic effect to the PI-induced liver enlargement. Another possible explanation is that six weeks 

of therapy were not long enough to induce demonstrable liver mass changes. 

Additionally, the failure of Saroglitazar treatment to impact liver mass was unexpected since as already alluded 

to, TZDs have previously been implicated in hepatic steatosis due to increased TG deposition (Gavrilova et al. 

2003). However, since Saroglitazar not only stimulates PPAR γ but also PPAR α, this may mediate the 

protection since a rat HFD-induced NASH model was shown to have diminished expression of PPAR α activity 

(Zou et al. 2006). We therefore propose that a longer HCD follow-up and treatment with PI and NRTIs beyond 

16 weeks, may produce obvious changes in liver mass.  

4.6 Food intake, body mass and IP mass 

Intake of excessive amounts of unhealthy foods (high fat diet) leads to excess energy in the body and if this 

excess energy is not utilised, an imbalance occurs leading to storage of the extra energy in the body in form of 

fat by the adipocytes. This results in the clinical syndrome referred to as obesity. Although adipocytes are 

present in the subcutaneous tissues and in the viscera, the most significant partition of adipose tissue is present 

within the viscera and particularly within the abdominal cavity. In the present study, we have shown that HCD 

intake led to increased percentage IP fat mass compared to standard chow. Therefore, since both groups 

engaged in equal level of activity (energy expenditure was the same, although this was not analysed, it is an 

assumption that stands since these animals were housed under similar conditions and daily observations did 

not reveal any altered level of activity in both groups), we infer that excess energy contained in the HCD was 

stored within the IP fat compartment in the HCD animals.  

In order to handle the excess fat in the body, the adipocytes undergo both hypertrophy (enlargement) and 

hyperplasia (multiply in number) (Goedecke et al. 2006). These adipocytes show both structural and functional 

impairments affecting their secretory and humoral properties. It has been established that hypertrophied 

adipocytes secrete several inflammatory mediators (Virtue 2010) which are associated with the chronic low-

grade inflammation that characterises obesity. Unfortunately, the present study did not evaluate this effect. 

Increased visceral fat has been associated with several deleterious health effects. For example, fat laden 

adipocytes have been shown to respond poorly to insulin stimulation through mechanisms that have already 

been discussed (section 1.4.3) (Hirani 2013). This leads to increased concentrations of insulin in the circulation 

(insulin resistance) as clearly demonstrated in the present study (Figure 3.32 and Figure 3.33) and high glucose 

levels in blood (not observed in the present study). The impaired insulin response does not only occur in the 

adipocytes, but has also been shown to occur in other tissues such as the skeletal muscle tissues and liver 

(Gaggini et al. 2013; An & Rodrigues 2006), thus aggravating glucose homeostasis. Another pathology 

associated with visceral obesity is excess release of FFAs into the circulation and alteration of serum lipid 

profile as described in the subsequent section. 
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4.7 Biochemical Analyses 

Assessment of blood and serum biochemistry is vital in the evaluation of drug and dietary effects. This is 

because altered levels of biochemical markers not only offer insight into the organ function / dysfunction, but 

also to a greater degree determine how the organs respond to both the exogenously administered compounds 

and secreted circulating compounds. This section discusses the implications of the findings from the 

biochemical analyses performed on blood and serum from the experimental animals. 

4.7.1 Blood glucose levels 

The present study analysed both fasting and random blood glucose levels and as shown on Figures 3.17 and 

3.18; no differences were observed between lean and obese animals. However, as expected, fasting blood 

glucose levels were lower compared to the random glucose levels (Figure 3.19). These results have been 

replicated in previous studies using similar diet (Ouwens et al. 2011; Nduhirabandi et al. 2011 and Pickavance 

et al. 1999). Although higher dietary fat composition has been shown to induce hyperglycaemia in both rats 

and mice (Zou et al. 2006, Riddle et al. 2001, Hafizur et al. 2015), a HCD composed of 11.5 g / 100 g (fat), 

7.6 g / 100 g (saturated fats) and 13 mg / 100 g cholesterol diet for 16 weeks consistently showed no effect on 

blood glucose. Perhaps regular monitoring of glucose levels (for example every two weeks) or oral glucose 

tolerance testing would have provided greater insights, since the present study only evaluated glucose levels 

on the last day during euthanasia. 

Unexpectedly, treatment with HAART, HAART + Saro or Saroglitazar did not produce any differences in 

either fasting or random blood glucose levels. PIs have been shown to induce hyperglycaemia in both 

experimental and clinical studies. A five-year cohort study on 221 HIV patients on PI therapy reported a strong 

association between use of PIs and development of hyperglycaemia with an adjusted incidence rate ratio of 

5.0. In the said study, 11 % of the patients registered > 7.8 mmol / L of fasting blood glucose and 5 % of the 

patients were diagnosed with new-onset hyperglycaemia (Tsiodras et al. 2000). Similar findings were reported 

by Riddle et al. (2001) while evaluating ritonavir in mice. The degree of hyperglycaemia was even greater 

when ritonavir was combined with Western type HFD. It is possible that since the present study evaluated the 

combined effect of LPV / r and AZT + 3TC, no hyperglycaemic effects were elucidated. 

In vivo PPAR α / γ stimulation did not significantly decrease blood glucose levels when administered alone or 

in combination with antiretroviral drugs. Saroglitazar has been reported to reduce serum glucose in both mice 

(12 days treatment) and rats (14 days treatment) although these animals were not on a HFD programme (Jain 

et al. 2015). Pickavance et al. (1999), also observed similar declines in blood glucose levels following 21 days 

of treatment with rosiglitazone in HFD-fed Wistar rats for eleven weeks. These findings have been replicated 

in clinical studies using Saroglitazar (Jani et al. 2014). However, in the present study, even the lean rats treated 

with Saroglitazar did not show any significant differences in either fasting or random blood glucose levels. 

Serial blood glucose measurements could have offered a better insight. However, this was out of the scope of 
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the present study and we also did not want to introduce confounding factors (such as frequent bleeding) to the 

cardiovascular system (Teilmann et al. 2014). 

4.7.2 Fasting serum insulin and HOMA-IR 

Fasting serum insulin concentrations and HOMA-IR are shown in Figures 3.32 and 3.33. HCD groups had 

significantly higher fasting insulin concentrations and HOMA-IR compared to their respective lean controls.  

An increase in fasting insulin in HCD has been previously reported (Nduhirabandi et al. 2011; Pickavance et 

al. 1999; Salie et al. 2014). The increase in serum insulin concentration was as a result of diet-induced insulin 

resistance as confirmed by an increase in HOMA-IR. HOMA-IR is a method of assessing both insulin 

resistance and β cell function and has been validated for assessment in the Wistar rat model (Antunes et al. 

2014). Therefore, the diet used in the present study successfully induced insulin resistance in the HCD control, 

HCD HAART and HCD Saro experimental groups. However, no differences were noted between the HCD 

HAART group and the HCD control group.  

HAART, and in particular, PIs, have been associated with the development of insulin resistance which is 

characterised by hyperglycaemia and hyperinsulinaemia (Walli et al. 1998; Carr et al. 1998; Riddle et al. 2001). 

PIs bind to the hepatic lipoprotein-receptor-related protein (LRP) and interfere with PPAR γ activity, thus 

impairing lipid (TG) clearance leading to central fat deposition and insulin resistance (Carr et al. 1998). 

Furthermore, PIs also impair peripheral adipocyte differentiation and stimulate apoptosis thereby facilitating 

lipodystrophy as illustrated below (Figure 4.1). 

 

Figure 4.1 Mechanisms of HIV-1 protease inhibitor-induced insulin resistance and other lipodystrophies. 

Abbreviations: CRABP-1 – cytoplasmic retinoic-acid binding protein 1, RA - retinoic acid, RXR – retinoid x 

receptor, PPAR γ – peroxisome proliferator-activated receptor type gamma, LPR – lipoprotein receptor-

related protein, LPL – lipoprotein lipase. (Adapted with permission from Carr et al. 1998). 

Stellenbosch University  https://scholar.sun.ac.za



146 
 

NRTIs have also been associated with the development of insulin resistance and subsequently disturbed 

insulin-mediated glucose disposal. Although the actual mechanisms responsible for this dysregulation have 

not been elucidated, there is evidence that insulin resistance is accompanied by disturbances in lipid 

metabolism and changes in body composition. In a randomised clinical trial investigating the metabolic effects 

of 3TC + AZT and LPV / r, Blümer and colleagues (2008) demonstrated that although glucose levels were not 

altered in these 50 HIV 1-infected men followed up over a period of three months, their fasting insulin 

concentrations were elevated and there was a marked increase in lipolysis and suppressed glycerol turnover. 

These patients, however, did not present with any features of limb lipoatrophy or truncal obesity. In the study 

by Blümer et al. (2008), patients on LPV /r + NRTI-sparing ART, (nevirapine) did not present with features 

of insulin resistance or disturbances in insulin-mediated glucose disposal. These findings have also been 

reported in similar clinical studies (Meininger et al. 2002; Brown et al. 2005). 

HCD HAART + Saro treated animals demonstrated lower insulin levels and a lower HOMA-IR index 

compared to the HCD HAART animals. Experimental studies have demonstrated that stimulation of PPAR γ 

not only improves serum glucose levels, but also improves insulin sensitivity and consequently the HOMA-IR 

index (Pickavance et al. 1999). Saroglitazar has been shown to exert modest reductions in glucose and insulin 

concentrations in both mice and rats at 3 mg / kg / day (Jain et al. 2015). The mechanisms of PPAR regulation 

of lipid, glucose and insulin homeostasis are discussed below and illustrated on Figure 4.2. A clinical study 

evaluating the efficacy and safety of Saroglitazar in HIV-associated lipodystrophy, however, reported an 

increase in fasting serum insulin levels compared to the control group (Deshpande et al. 2016). 

The present study therefore provides new evidence that co-administration of Saroglitazar with HAART 

reduces serum insulin concentration and thereby improves insulin sensitivity as evidenced by a reduction in 

the HOMA-IR index. 

4.7.3 Mechanisms of PPAR α and PPAR γ that mediate their biological effects 

The mechanisms that mediate the biological effects of PPAR α and PPAR γ are as a result of gene transcription. 

PPAR binds to its retinoid X receptor and dimerizes to bind to the peroxisome proliferator response element 

(PPRE) and subsequently activates genes that mediate their various biological effects as shown below (Figure 

4.2) (IJpenberg et al. 1997; Kota et al. 2005).  
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Figure 4.2 showing biological effects of (A) PPAR γ, (B) PPAR α and (C) PPAR β stimulation leading to insulin 

sensitization, serum glucose concentration reduction and anti-atherosclerosis through reduction in VLDL and 

increased HDL. Abbreviations: PPAR (peroxisome proliferator-activated receptors, PPRE (peroxisome-

proliferator response element), RXR (retinoid X receptors), FFA (free fatty acids), TG (triglyceride) HDL 

(high-density lipoprotein), VLDL (very low-density Lipoprotein), NFkB (Nuclear factor kappa B), UCP 

(uncoupling protein), ApoC (apolipoprotein C), LPL (lipoprotein lipase), ABCA1(ATP-binding cassette 

transporter 1). ↑ indicates an increase and ↓ indicates a decline. (Adapted with permission from Kota et al. 

2005). 

4.8 Serum lipid profile 

The effects of a high calorie / fat diet on the serum lipid profile are well documented and the clinical condition 

that is characterised by the excess weight gain and deranged serum lipid parameters (obesity) remains a major 

health concern due to its high prevalence, high economic burden and associated cardiovascular risk and 

mortality (Wolf et al. 1998; James et al. 2001; Wilson et al. 2002). Excess intake of dietary lipids not only 

leads to fat deposition within the adipocytes, but also is associated with fat accumulation and damage to the 

liver that is accompanied by insulin resistance and excess circulating LDL, TC, TGs, FFAs and reduced HDL 

(Grundy and Denke 1990; Pelkonen et al. 1977). Therefore, it was of vital importance to assess the serum lipid 

profile of the experimental animals in the present study. 
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4.8.1 Serum total cholesterol, TC 

Total serum cholesterol refers to the sum all the cholesterol in circulation that is carried by the three major 

lipoproteins, namely: - very low-density lipoprotein (VLDL-C), low-density lipoprotein (LDL) and high-

density lipoprotein (HDL) (Kwiterovich 2000). Therefore, measurement of TC offers an insight into the overall 

load of cholesterol in a biological system. 

The HCD did not induce any significant differences compared to the standard diet and similarly, no changes 

were observed among the treated groups compared to their respective lean controls (Figure 3.20). This finding 

is supported by similar studies (Nduhirabandi et al. 2011; Salie et al. 2014). Clinical studies have consistently 

demonstrated elevated total serum cholesterol in visceral obesity (Fujioka et al. 1987). Excess visceral fat 

accumulation (omental and mesenteric fat) has been associated with greater glucose and lipid metabolism 

alterations compared to subcutaneous obesity. 

Although the present study did not find any changes in TC, PIs and NRTIs are known to increase serum TC in 

lipodystrophy (Carr et al. 1998; Bogner et al. 2001). Although this particular combination of ART has not been 

studied before in experimental animals, six weeks of treatment did not impact negatively on visceral fat mass, 

liver mass and TC and therefore future studies should consider extending the treatment period or introducing 

the drugs at the onset of diet programme. 

4.8.2 HDL-C 

One of the major carriers of cholesterol is the high-density lipoprotein. It has several subtypes that have 

different associations with CAD, namely: - 

i) HDL2- C with several subclasses H5, H4 and H3.  

ii) HDL3- C with subclass H2 and H1. 

HDL2- C was previously referred to as a cardioprotective lipoprotein (Salonen et al. 1991) because it is 

involved in reverse cholesterol transport (Ramaley et al. 1999) (transportation of cholesterol from peripheral 

tissues and cells such as macrophages back to plasma). Furthermore, it was thought to play an important role 

in mediating against factors which aggravate atherosclerosis and thrombosis by the inhibition of LDL-C 

oxidation in atherosclerotic plaques, reduction in the levels of vascular endothelial cell adhesion molecule 

(VCAM) and degradation of fibrin clots (Kwitervonich 2000). However, recent studies propose that HDL3-C 

is the cardioprotective subtype (Woudberg et al. 2016) due to its association with antioxidant enzymes and the 

cardioprotective lipid, sphingosine-1-phosphate. 

The HDL-C concentrations were higher in the HCD group compared to the lean control (Figure 3.22 A). This 

finding has been replicated in previous studies in our laboratory using a similar diet programme (Nduhirabandi 

et al. 2011). The reason why the HCD diet led to elevated levels of HDL- C has not been explained since Zou 

and colleagues (2006) using a high fat emulsion diet reported a reduction in HDL in their diet model compared 

to the control. However, we went further and analysed the two subtypes (HDL3- C and HDL2- C) and the 

Stellenbosch University  https://scholar.sun.ac.za



149 
 

present study presents new evidence that HCD led to increased HDL3- C, but not HDL2- C, in the diet group 

compared to the lean control (Figures 3.25 and 3.26). 

There were no changes noted in the HAART-treated groups compared to the controls (both lean and HCD). 

Although the combination of LPV / r and AZT + 3TC has not been investigated using experimental animals 

(to the best of our knowledge), Riddle and colleagues (2001) using Ritonavir in HFD mice demonstrated 

increased concentrations of serum HDL compared to the control. Clinical studies have reported reduced serum 

concentrations of HDL in patients on PI-based HAART regimen (Carpentier et al. 2005; Asztalos et al. 2006). 

Serum HDL3- C concentrations in the HCD HAART group were significantly lower compared to HCD control 

group, however, no differences were observed in lean HAART treatment group. No differences were observed 

in the serum HDL2- C concentrations in the HAART-treated groups compared to the controls. 

Both lean and HCD HAART + Saro groups had reduced serum HDL- C levels compared to the HAART-

treated groups (Figure 3.22 A), a finding that was also observed in the serum HDL3- C and HDL2- C 

concentrations. Serum HDL- C and HDL3- C concentrations were also lower in the HCD Saroglitazar group 

compared to the HCD control group. Serum HDL3- C concentrations were higher in HCD rats compared to 

lean Saroglitazar-treated animals and serum HDL2- C concentrations were higher in lean Saro group compared 

to the HCD Saro group. These findings are difficult to explain since studies for comparison are limited but the 

mechanisms via which PPAR α and PPAR γ mediate their actions are illustrated above (section 4.7.3). 

4.8.3 LDL-C 

Serum LDL-C concentrations were elevated in the HCD HAART + Saro group compared to the HCD HAART 

group and no other differences were observed (Figure 3.22 B). We do not know the mechanism behind this 

observation because this finding is in contrast with previous studies that have investigated the effects of PIs on 

LDL and reported higher concentrations in the PI-treated obese groups compared to the lean controls (Riddle 

et al. 2001). Furthermore, clinical studies have reported elevations in LDL levels in various HAART regimens 

(Carpentier et al. 2005). Deshpande et al. (2016) demonstrated a significant reduction in serum LDL 

concentrations in HIV / AIDS patients on HAART co-treated with Saroglitazar for a period of 12 weeks. 

However, these patients had features of lipodystrophy with marked hypertriglyceridaemia at the onset of 

therapy. 

4.8.4 Serum phospholipids 

The present study did not observe any significant differences in serum phospholipids, either in HCD or treated 

animals compared to their respective controls. However, lipodystrophic changes associated with HAART 

(especially PI-based regimen) have been linked to increased concentrations of serum phospholipids in 

lipodystrophic syndrome (McComsey et al. 2016). We suggest that the treatment period of the present study 

(six weeks) was not long enough to induce significant changes in serum phospholipids. 
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4.8.5 TGs 

High concentrations of serum TGs have been positively correlated with both a high incidence and severity of 

atherosclerosis, a major risk factor for CAD (Patsch et al. 1992). Serum TG concentrations were significantly 

increased in the HCD group compared to the lean control (Figure 3.21). Studies in rodent models of DIO have 

reported similar findings (Pickavance et al. 1999; Riddle et al. 2001; Salie et al. 2014; Nduhirabandi et al. 

2011). Sources of serum TGs are from both exogenous intake (excess dietary intake of highly saturated fats) 

and endogenous secretion from the liver (Kwitervonich 2000). 

Both HAART and Saroglitazar failed to significantly alter the serum TG concentrations. This was unexpected, 

because PIs and NRTIs have previously been shown to induce lipodystrophy that is accompanied by steatosis 

and excess release of both FFAs and TGs into the circulation (Carpentier et al. 2005). On the other hand, use 

of PPAR α / γ stimulants in reduction of serum TGs has been established (Deshpande et al. 2016; Pickavance 

et al. 1999). It is possible that prolonged exposure to these two treatments would have produced different 

effects. 

Although the present study did not evaluate organ TG quantities, previous studies have associated high 

concentrations of circulating TGs to increased ectopic deposition into the heart, blood vessels and the kidneys 

(Kopelman 2007). This correlates with the liver mass assessment findings in this study where HCD animals 

recorded higher liver mass compared to the lean controls. Furthermore, increased heart mass in the HCD-

treated groups (HCD HAART, HCD HAART + Saro and HCD SARO) compared to the lean control groups 

could partly be explained by this alteration. 

4.8.6 Serum lipids and atherosclerosis 

High serum concentrations of VLDL, LDL and IDL have been associated with proatherogenicity. When the 

endothelium is dysfunctional and lipoproteins cross the barrier into the vessel wall, they are oxidised and are 

ingested by macrophages to form foam cells. Together with activated endothelial cells, they secrete growth 

factors that drive smooth muscle migration and proliferation leading to atherosclerosis as shown in the Figure 

4.3 below (Price & Loscalzo 1999; Kwiterovich 2000). 
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Figure 4.3 Mechanisms of atherosclerosis as a result of LDL deposition and oxidation. Also showing how 

HDL inhibits LDL oxidation and promotes reverse cholesterol transport. Abbreviations: HDL (high-density 

lipoprotein, LDL (low-density lipoprotein), VLDL (very low-density lipoprotein) LP (a), (lipoprotein a) 

(Kwiterovich 2000). 

4.9 Serum markers of lipid peroxidation 

4.9.1 CD and TBARS 

Results of the CD analyses are presented on section 3.5.3. Lipid peroxidation is the process via which oxidants 

attack unsaturated FA and lipids. Early stages of FFA, TG and PL oxidation are detected using serum analyses 

of CDs and serve as a marker of lipid and FA metabolism. However, TBARS assay is a useful marker of final 

products of decomposition of larger polyunsaturated fatty acids (PUFA) (Ayala et al. 2014). There were no 

differences observed between the HCD and the lean control rats contrary to reports in the literature that DIO 

contributes to increased FA oxidation (Logani & Davies 1980; Clarkson & Thompson 2000). However, both 

mean absolute and normalised CD levels were higher in both lean and HCD HAART-treated animals compared 

to the lean and HCD HAART and Saroglitazar-treated animals. This finding supports literature (Section 1.4) 

that PIs and NRTIs alter the lipid and FA metabolism (Matthews et al. 2011; Day and James 1998) that 

eventually results not only in serum lipid profile changes but also hepatic steatosis which is attended by both 

local and systemic inflammation.  

Although adipose tissue histology was not performed, it would have shed light on structural changes that occur 

in excess fat intake (DIO) and aggravated by PIs and NRTIs. Use of a dual PPAR α, γ agonist effectively 

reduced the CD in all the groups that received Saroglitazar i.e., lean Saro, HCD Saro, lean HAART + Saro and 

HCD HAART + Saro. We consider this a novel finding because, although Saroglitazar has been shown to 

reduce serum TGs and cholesterol in patients on HAART (Deshpande et al. 2016), CD concentrations have 

not been evaluated especially in the context of HAART use in HCD / DIO. TBARS were only significantly 
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reduced in the HCD Saroglitazar-treated group compared to the lean Saroglitazar-treated group (Figure 3.30). 

There were no differences noted between the HCD and lean control and the HAART-treated groups. This 

finding was unexpected because we have elaborated on the role played by both diet and PIs and NRTIs in 

mediating lipid metabolic changes that are accompanied by lipid peroxidation (Section 1.4). TBARS as a by-

product of peroxidation of lipids has been used as a biomarker of both lipid peroxidation and oxidative stress 

(Trevisan et al. 2001). Although we cannot dismiss oxidative stress mediated role in the HCD HAART cardiac 

dysfunction during ischaemia-reperfusion based on reduced Qa, CO and Qt, and HCD HAART poor aortic 

relaxation, the biomarker we targeted in the present study (TBARS), did not reveal such changes in this group. 

However, Schisterman et al. (2001) having assessed TBARS in a cross-sectional study showed that even with 

elevated serum TBARS concentrations, association with increased risk of CVD prevalence was lost after 

adjusting for blood glucose variations. Therefore, better indicators of oxidative stress would provide clearer 

answers. 

In summary, we have demonstrated that in support of the clinical studies that have shown a reduction in 

cholesterol and TG with use of Saroglitazar in patients on HAART, the human equivalent Saroglitazar dose of 

4 mg/ 70 kg/ day administered orally for six weeks to obese Wistar rats, reduced serum CD significantly 

compared to obese rats on HAART without Saroglitazar. Although Saroglitazar is well known to impact 

substantially on blood glucose levels, cholesterol and TG levels (Agrawal 2014), it has a relatively short serum 

terminal half-life 5.6 hours and its maximum plasma concentration is in the range of 3.98 to 7,461 ng / mL 

(achieved in less than one hour) in humans (Jani et al. 2013). Considering the high rate of metabolism in 

rodents, it is possible that the drug bioavailability was low and may have limited its effectiveness in the present 

study as evidenced by lack of change in TC and blood glucose. As previously stated, evaluation of the serum 

drug concentrations during the treatment period should be considered in future studies in the context of 

HAART. 

4.10 Working heart perfusion studies 

4.10.1 HR 

There were no differences noted in the baseline HR among the experimental groups (Table 3.5). Therefore, 

there were no dietary or drug effects that led to HR variation prior to ischaemia. Similarly, following 35 

minutes of regional ischaemia and one hour of reperfusion, no HR changes were observed. These findings 

have been reported in previous studies evaluating cardiac performance using the same diet composition (n = 

5–6) (Salie et al. 2014; Webster et al. 2017). Therefore, HAART with or without Saroglitazar treatment in 

obese and lean Wistar rats has no effect on cardiac rate of contraction in the pre-and post-ischaemic phase. 

4.10.2 Coronary flow rate (Qe) and aortic diastolic / systolic pressure 

There were no significant differences noted in the Qe pre-and post-ischaemia in any of the experimental groups 

(Table 3.5). Although studies have not been conducted on HAART (LPV / r and AZT/3TC), Reyskens et al. 
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(2013) using LPV/r did not observe any alterations in Qe despite attenuation of the cardiac performance. No 

changes have been reported on Qe in obese rats following ischaemia-reperfusion without preconditioning 

(Salie et al. 2014; Mazumder et al. 2004). Furthermore, no changes were observed in pre-and post-ischaemia 

systolic pressure (sp) and diastolic pressure (dp) among the experimental groups (Figures 3.39 and 3.40). 

Although no studies (to the best of our knowledge) have been performed on DIO rats treated with Saroglitazar 

and HAART, we report no observable differences in comparison to the lean treated and untreated Wistar rats. 

4.10.3 Aortic output (Qa), total cardiac output (CO) and total work (Wt) 

There were no significant differences in Qa between the lean and HCD animals before induction of ischaemia, 

and similarly, no significant differences in post-ischaemia Qa recovery were observed between the two groups 

(Table 3.5 and Figure 3.35). Salie and colleagues (2014) did not observe any significant differences (pre-

ischaemia) between the lean control and the obese animals (n = 4-6 / group), although the post-ischaemia 

reduction in Qa was significantly higher in the obese group compared to the control group. Other studies have 

reported similar findings to the present study using an insulin resistant obese mouse model (Buchanan et al. 

2005). 

The HCD HAART group had lower baseline Qa compared to the lean HAART and HCD HAART + 

Saroglitazar groups. Following induction of ischaemia, the percentage recovery in Qa and Wt was improved 

in the HCD HAART + Saro group compared to the HCD HAART group. Similarly, the CO was improved in 

the HCD HAART + Saro group. We consider this finding novel because the HAART combination (LPV / r + 

AZT / 3TC) that we investigated has not been evaluated previously in this context. However, the reduction in 

Qa in the HCD HAART group may be attributable to the known mitochondrial damage and oxidative stress 

induced by NRTIs and PIs (Friis-Moller et al. 2007). These factors have been shown to contribute to impaired 

myocardial function in non-ischaemic heart and are aggravated in ischaemia-reperfusion (Doenst et al. 2013; 

Ferdinandy et al. 2007). Although Pickavance et al. (1999) using a highly palatable diet noted improvement in 

insulin resistance with rosiglitazone (a TZD) treatment, this improvement has not been demonstrated to 

translate in improved cardiac performance in obese rats.  

The present study has also presented evidence (section 4.13.2.1) that HCD HAART cardiac tissues showed 

reduced activation of PKB / Akt, a major component of the RISK pathway (Hausenloy and Yellon 2007; 

Hausenloy and Yellon 2004), that partly explains the reduction in post-ischaemia Qa and general cardiac 

performance. Activation of this pathway mediated by (PI3K - PKB / Akt and Erk 1 /2) improves survival 

through activation of anti-apoptotic mechanisms following ischaemia-reperfusion. Other protective signalling 

proteins whose levels were reduced in the HCD HAART group include phospho-AMPK and phospho-eNOS. 

All these proteins were however, upregulated when HAART was co-administered with dual PPAR α/γ agonist, 

Saroglitazar, suggesting that the mechanism of the improved Qa, CO and cardiac performance (Wt) was 

mediated by activation of these protective / survival signalling pathways. Work in this research area is currently 

ongoing in our laboratory where cardio-protection in ischaemia-reperfusion is being investigated, targeting the 

PPAR α/γ stimulation in pre-and post-conditioned hearts. 
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Poor post-ischaemia functional recovery in HCD HAART (reduced Qa, CO and Wt) could also be indicative 

of the effects of impaired lipid and insulin metabolism in MI, having demonstrated increased CD and 

hyperinsulinaemia in this experimental group. We have also demonstrated that these animals were insulin 

resistant based on an increased HOMA-IR index (despite normal blood glucose levels) and had increased 

visceral fat (IP). Buchanan and colleagues (2005), using a mouse model of insulin resistance and obesity, 

demonstrated that cardiomyocytes show altered substrate metabolism before the onset of increased blood 

glucose levels and impaired myocardial contractility. Therefore, the role of altered cardiac metabolism is 

critical in both pre-and post-ischaemia performance. Other studies have implicated fatty acid oxidation 

disruptions in poor cardiac performance (contractility) (Wilson et al. 2007). Therefore, PIs and NRTIs 

alterations in both metabolic disturbances (fatty acids, glucose / insulin metabolism) and mitochondrial 

function aggravate the ischaemic insult resulting in poor recovery post-MI. In addition, Reyskens et al. (2013) 

described disruption of the cardiac ubiquitin proteasome system leading to accumulation of calcineurin and 

impaired myocardial contractility in rats treated with LPV / r. This further supports the findings of the present 

study and suggests that the mechanisms involved in HAART-induced cardiac dysfunction are diverse. 

Therefore, although the HCD was not associated with obvious alterations in cardiac contractile function before 

and after ischaemia, treatment with HAART reduced both baseline performance and post ischaemia recovery 

as evidenced by reduction in Qa, CO and Wt. All these parameters were, however, improved upon 

administration of a PPAR α, γ agonist together with HAART in the HCD group. This demonstrates that 

treatment with Saroglitazar has potential to limit HAART-induced cardiac dysfunction. In retrospect, perhaps 

use of a global ischaemia-reperfusion model for assessment of cardiac performance would have shown obvious 

alterations in the HCD animals and various treatment groups because of a larger area of the left ventricle 

undergoing ischaemic changes. Unfortunately, induction of global ischaemia does not reflect the true clinical 

picture and therefore the findings are not as translatable as those of regional ischaemia model. 

4.10.4 Left ventricular infarct size analysis 

Section 3.10 outlines findings on the infarct size analyses shown in Figure 3.42. The HCD control animals 

showed a reduction in the left ventricular infarct size compared to the untreated lean control animals. 

Additionally, the infarct sizes in the HCD HAART group were smaller compared to the HCD control. No other 

differences were observed. 

Previous studies have observed a reduction in infarct sizes in diet-induced obese insulin resistant rats compared 

to control rats (Salie et al. 2014; Webster et al. 2017). Although the exact mechanisms mediating this protection 

are not completely understood, hyperinsulinaemia in insulin resistance could confer a possible preconditioning 

state as described by (Hausenloy and Yellon 2007; Hausenloy and Yellon 2004). This observation is supported 

by du Toit and colleagues (2008) who observed that in the absence of insulin, (the pre-diabetic model of DIO) 

the myocardium was more susceptible to both poor contractility and myocardial ischaemia. However, the 

finding that the HCD HAART group infarct sizes were smaller compared to the control and HCD HAART + 

Saro groups has not been described before (to the best of our knowledge). Although it has been reported that 
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infarct sizes are not correlated to post-ischaemia mechanical / haemodynamic performance in the working 

heart perfusion model (Lochner et al. 2003), it is startling to find that the experimental animals (HCD HAART 

group) that showed poor percentage post-ischaemia recovery (reduced Qa, CO and Wt) and downregulation 

of phosphorylated PKB/Akt and eNOS, were not at increased risk of developing larger myocardial infarcts.  

We ascribe this finding to a possible stunning effect, which is one of the factors that complicate this model of 

ex vivo working heart perfusion studies. Furthermore, since the perfusion buffer only supplied the 

cardiomyocytes with glucose (no fatty acids were added), it is possible that there was an alteration in the main 

fuel supply and consequently hearts would have increased the breakdown of glycogen and TG stores to 

compensate. This compensatory mechanism we speculate is altered (during perfusion) especially in the lean 

untreated rats. However, as already explained, increased concentrations of serum insulin (insulin resistance) is 

a plausible mechanism explaining the permanent preconditioning state in the cardiac tissue resulting in reduced 

infarct sizes.  

4.11 Aortic ring isometric tension studies 

Aortic ring isometric studies have been extensively employed in experimental studies to investigate vascular 

reactivity to various compounds administered either in vivo or ex vivo (Durante et al. 1988; Razali et al. 2013). 

The aortic contraction studies are studied through use of a contractile agonist (phenylephrine) while endothelial 

dependent relaxation properties are evaluated through administration of a pro-relaxant agent (acetylcholine) 

(Furchgott 1983; Furchgott & Zawadzki 1980). However, relaxing substances / agents can also mediate 

vascular relaxation through endothelial-independent mechanisms such as nitroprusside and adenosine by 

directly acting on vascular smooth muscles (Durante et al. 1988; Furchgott 1955). Phenylephrine mediates its 

pro-contractile properties to the rat thoracic aorta through the agonistic effect of α1 adrenoceptors (Hussain 

and Marshal 1997). The present study investigated the aortic relaxation response to endothelial-dependent 

acetylcholine stimulation following phenylephrine cumulative dose induced maximal contraction and the 

discussion below is based on the findings from the eight experimental groups. 

4.11.1 Phenylephrine-induced aortic contraction 

Phenylephrine-induced maximal aortic contraction (Emax) and log EC50 findings are shown in Table 3.8. There 

were no significant differences observed in (Emax) and log EC50 between the HCD and lean control groups in 

the present study. Vascular reactivity studies in obese experimental animal models have produced 

contradicting results where some studies have demonstrated that aortic rings from obese animals contract sub-

maximally compared to lean controls. For example, Tesfamariam and colleagues (1989), using a rabbit obese 

model demonstrated that, aortas extracted from obese rabbits had poorer contractility compared to normal 

control rabbits. Similarly, diabetic rabbits also demonstrated submaximal phenylephrine contractility 

compared to controls. Phenylephrine-induced aortic contractility studies on obese Zucker rat models reported 

similar findings where endothelial intact aortas did not differ in contractility (tension per aorta tissue weight) 

compared to the controls (Auouet et al. 1989). 
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On the other hand, some researchers have demonstrated and argued that obesity promotes both vascular smooth 

muscle and endothelial dependent contractility through stimulatory effects of various pressor agents. Troupe 

at al. (2002) demonstrated this using C57BL/6J mice (obese model) ascribing the effect to increased 

prostanoid-mediated vasoconstriction. The pro-contractility properties of the obese and diabetic vessels 

mediated by pressor agents have been postulated as some of the causes of hypertension (Scarborough and 

Carrier1983). Clinical studies however, show clear association between obesity and hypertension (Rahmouni 

et al. 2005). 

Although our HCD control animals were not diabetic, it seems that the findings from phenylephrine-mediated 

aortic contractility compares with other studies that have evaluated this property using diabetic models. Chang 

et al. (1992) using a streptozotocin diabetic rat model aorta observed that 12 weeks after induction of diabetes 

did not produce any demonstrable changes in phenylephrine sensitivity and contractility to rings with intact 

endothelium. However, in long term metabolic studies (52 weeks), the rings demonstrated both increased 

sensitivity and contractility induced by phenylephrine. We therefore base our finding to the duration of 

exposure to the dietary effects and suggest that future studies should evaluate longer term effects (beyond the 

present study duration of 16 weeks). 

It is worth mentioning that since our HCD (obese) model induced insulin resistance compared to the lean 

controls, previous studies have reported enhanced response to phenylephrine in Zucker obese and insulin 

resistant rats compared to controls (Ouchi et al. 1996). However, this finding was not reproduced in our model. 

Among the treated groups, the lean Saroglitazar animals had a significantly higher Emax compared to lean 

HAART, HCD control and HCD HAART + Saro groups. There are limited studies to compare this finding to. 

However, Chakrabarti et al. (2014) using DRF 2519 (a compound with dual PPAR α and γ agonist activity 

similar to Saroglitazar) did not report any significant differences in phenylephrine-mediated pro-contractile 

effects in lean treated animals compared to the obese. The response of the obese treated animals was a reduction 

in maximal contractility by 70 % compared to the controls. However, the diet model was different from the 

one used in the present study. They used a hyperlipidaemic male Sprague–Dawley rat model fed on a high-fat 

diet containing 2% cholesterol and 1% sodium cholate.  

Although the relaxation of the lean Saroglitazar-treated animals was not altered, (discussed below section 

4.11.2) we suggest that stimulation of PPAR α and γ in lean animals may have detrimental effects not only on 

the vasculature but also on other tissues, for example elevation of TBARS (shown on Figure 3.30) could 

suggest increased oxidative stress. Furthermore, the lean Saroglitazar-treated group also had significantly 

elevated serum ALP (Figure 3.31). It is possible that treatment with a dual PPAR α and γ agonist in the lean 

animals could enhance vascular contractile response to vasopressor agents (such as phenylephrine) as shown 

on Figure 3.47 resulting from voltage gated dependent Ca2+ channels in vascular smooth muscles and therefore 

predispose to hypertension. This area needs to be investigated further. 

Treatment with HAART did not show any significant differences in phenylephrine log EC50 between HCD 

and lean controls or HCD HAART + Saro and HCD HAART. Although there are no vascular reactivity studies 
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(to the best of our knowledge) to compare this finding to, it was unexpected since use of PIs and NRTIs has 

previously been associated with metabolic disturbances therefore increasing the risk of atherosclerosis (Friis-

Møller et al. 2007; Durand et al. 2011). Additionally, the endothelial dysfunction in PI and NRTI use is well 

documented in both clinical and experimental studies (Zhou et al. 2005; Lipshultz et al. 2012; Reyskens & 

Essop 2014). Possibly, the duration of therapy in the present study was not long enough to induce demonstrable 

altered contractility, but we also suggest that HI-viral effects cannot be overlooked especially when relating 

clinical studies (HIV patients on HAART) with experimental animals where effects are studied in non-HIV 

models. 

4.11.2 Acetylcholine-induced aortic relaxation 

Investigation of acetylcholine-induced aortic relaxation generated interesting findings. As shown in Figures 

3.48 A and B, and 3.51 A – D, the maximal relaxation (Rmax) was significantly higher in the HCD control 

group compared to lean control group. Similarly, the Rmax was also significantly higher in the HCD HAART + 

Saroglitazar group compared to the HCD HAART group. 

The log EC50 (Figure 3.51) was lower for the HCD HAART + Saro group compared to HCD HAART; HCD 

control group lower compared to HCD HAART group; HCD control group lower compared to HCD Saro 

group and HCD HAART + Saro group was lower compared to HCD Saro group. 

From the above findings, the HCD control group clearly demonstrated enhanced endothelium-dependent 

acetylcholine-induced aortic relaxation compared to the lean controls. From the principles described by 

Furchgott and Zawadzki (1980) on “The obligatory role of endothelial cells in the relaxation of arterial smooth 

muscle by acetylcholine” we can state that the HCD induced improved endothelial-dependent vascular 

relaxation since use of the NOS-inhibitor, L-NAME, abolished the acetylcholine relaxation in the present 

study. This advances the “obesity paradox” reported by researchers who have reported improved 

cardiovascular performance in our HCD formula compared to the lean control animals (Salie at al. 2014; 

Webster et al. 2017). This finding from experimental studies is supported by many clinical studies that have 

reported improved cardiovascular outcomes in either obese patients or those categorised as overweight based 

on their BMI.  

For example, a longitudinal clinical study (61,835 patient years) over 24 months by Uretsky et al. (2007) 

reported that hypertensive patients with a history of CAD diagnosed as having obesity class 1 (BMI 30-35 kg 

/ m2), showed improved outcomes (reduced mortality rate, reduced incidence of non-fatal MIs and non-fatal 

strokes) compared to those with normal weight (BMI 20 – 25 kg / m2). Since hypertension, MI and stroke are 

all vascular related pathologies (aetiologically), it follows that obesity seems to offer some protection against 

vasculopathies. Other studies have supported these findings (Fonarow et al. 2007; Lavie et al. 2003). 

However, some experimental studies have reported on the contrary pertaining to the effect of HFD on aortic 

response to acetylcholine compared to lean controls. For example, Jayakody et al. (1985) reported significant 

reduction in endothelial-dependent acetylcholine relaxation in aorta rings harvested from New Zealand white 
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rabbits that were fed on 2 % cholesterol for four to eight weeks. Verbeuren et al. (1986), using a 0.3 % 

cholesterol diet for 16 weeks, described reduced endothelial-dependent acetylcholine-induced relaxation in 

rabbits and further described an increased risk of aortic atherosclerotic lesions.  Therefore, the diet composition 

and duration of diet administration produce varying degrees of both functional and structural aortic damage. 

Our diet model did not induce overt DM, but resulted in marginal induction of insulin resistance. Although we 

still support the paradoxical vascular / endothelial protection by obesity, it is important to note that the obese 

animals in the present study had normal blood glucose levels, were only approximately 15 % heavier than 

controls and did not present with elevated total serum cholesterol and LDL levels. We therefore agree with the 

findings by other researchers investigating vascular response in obese / diabetic models, such as Tesfamariam 

et al. (1989); Durante et al. (1988) who demonstrated that diabetic / obese endothelial-dependent relaxation 

via acetylcholine is depressed in rats and rabbits. 

Treatment of HCD rats with HAART was associated with an increased EC50 compared to the HCD control. 

This further supports findings from clinical studies that have linked the use of PI and AZT / 3TC with the 

development of endothelial dysfunction and vasculopathies (Reyskens & Essop 2014; Lipshultz et al. 2012). 

Although the HCD HAART-exposed animals did not show classic features of metabolic syndrome (no definite 

dyslipidaemia), we have demonstrated that this group of experimental animals developed insulin resistance, 

had increased % IP fat, increased normalised heart mass, and presented with features consistent with hepatic 

steatosis / steatohepatitis and therefore, this milieu may explain the poor vascular response. It has been shown 

that these factors contribute to a reduction in endothelium-derived NO, impaired diffusion of the NO from the 

endothelial cells to smooth muscles, and disturbed acetylcholine receptor density and transduction mechanism 

(Durante et al. 1988), thereby resulting in poor endothelial-dependent acetylcholine-mediated relaxation (Chen 

et al. 2005). Perhaps the observation by Scarborough & Carrier (1983) that in diabetes these alterations lead 

to hypertension may explain the higher incidences of hypertension in PI and NRTI therapy (Zhou & Gurley 

2006). 

When HCD HAART animals were co-treated with Saroglitazar (HCD HAART + Saro), both the EC50 and 

Rmax were significantly improved (Figure 3.48 B and 3.51 A) This finding, to the best of our knowledge, is 

novel since no studies have investigated this in the context of LPV/r + AZT/3TC in combination with dual 

PPAR α and γ stimulation. Section 4.7.3 above describes the various mechanisms via which PPAR α and γ 

stimulation mediate their biological effects. In reference to the vascular / endothelial physiology, the present 

study provides new evidence that, apart from improved insulin sensitivity (Figure 3.33) in HCD rats treated 

with HAART + Saroglitazar, Saroglitazar also improved endothelial-dependent acetylcholine-induced 

relaxation compared to the HCD HAART group. In contrast, Saroglitazar co-treatment with HAART in obese 

animals showed a reduction in serum HDL3 and HDL2 compared to the HCD HAART-exposed animals 

(Figures 3.25 and 3.26, respectively). 

The HCD Saro-treated group showed mixed results: there were no significant differences in the Rmax in 

comparison to the lean Saro and lean control group. However, the EC50 was significantly increased compared 
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to the HCD control and HCD HAART + Saro groups. This finding is intriguing since dual PPAR α and γ 

stimulation has been shown to induce improved relaxation in obese rats compared to controls (Chakrabarti et 

al. 2014). However, the said study investigated aortic smooth muscle response to insulin-induced relaxation 

and therefore comparing these findings with the present study would be misleading. Since Saroglitazar has 

been shown to mediate an improved lipid profile in clinical studies compared to untreated dyslipidaemic 

patients, it was expected that these improvements will manifest with improved endothelial-dependent 

acetylcholine-induced aortic relaxation, which was not observed. This warrants further investigations. 

In summary, from the aortic ring isometric tension studies we infer that treatment of lean animals with 

Saroglitazar results in enhanced phenylephrine-induced vascular smooth muscle contraction compared to HCD 

control, lean HAART and HCD HAART (Saro) treated groups and this observation is consistent with the 

elevation of serum TBARS (i.e. development of oxidative stress) in these animals. Additionally, HCD induced 

increased relaxation in the untreated animals compared to the lean control animals, which is an observation 

consistent with the obesity paradox as reported by other researchers. Lastly, addition of Saroglitazar to HAART 

therapy in HCD significantly improved endothelium-dependent aortic relaxation induced by acetylcholine, an 

observation that the present study considers to be of potential therapeutic value in HAART-induced endothelial 

dysfunction in obese patients. 

4.12 Liver tissue histology 

The gold standard technique for liver assessment in the diagnosis of structurally related pathology is tissue 

biopsy followed by histological assessment. This is widely used in both clinical and experimental studies. 

Section 1.4 of this treatise has already supplied a concrete background on NAFLD and how HAART is 

associated with both the induction and aggravation of liver fatty changes and its sequelae. 

Results from the present study (Table 3.7) demonstrate clearly that six weeks of treatment with a combination 

of LPV / r and 3TC + AZT led to the development of mild-moderate hepatic steatosis in over 66 % of the HCD 

animals (50 % grade (score) 1 and 16.7 % grade 2). Furthermore, 25 % of the HCD HAART-treated animals 

showed features consistent with mild to moderate inflammation (16.7 % mild steatohepatitis, 8.3 % moderate 

steatohepatitis) and 17 % with hepatocyte injury. This contrasted with the lean HAART-treated animals that 

did not show any features of steatosis or hepatic inflammation (100 %, score 0). Only 16.7 % of untreated 

HCD animals developed mild steatosis. Combined therapy Saroglitazar with HAART significantly reduced 

the incidence of steatosis, with only 16.7 % of the animals scoring grade 1 without any features of inflammation 

or hepatocyte damage. Only 8.3 % of HCD Saroglitazar-treated animals developed mild steatosis, and no 

features of inflammation or hepatocyte damage were observed. 

Development of fatty liver in the HCD HAART animals was accompanied by metabolic derangements as 

demonstrated by hyperinsulinaemia, insulin resistance and visceral obesity. In addition, these animals 

demonstrated features of dysregulated intracellular signalling protein cascades (discussed on section 4.13), not 

only in the liver, but also in the heart and aortic tissue. Co-administration of Saroglitazar with HAART 
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improved the hepatic fat accumulation in the HCD animals and this protection was accompanied by 

improvement in insulin levels and intracellular signalling as discussed in the subsequent sections. We therefore 

present this as another milestone in the present study because this is new evidence that dual stimulation of 

PPAR α / γ receptors improve HAART-induced hepatic steatosis and insulin resistance. 

4.12.1 Diet and NAFLD 

As already stated (section 1.4.2.2), unhealthy dietary practices have been greatly implicated in the development 

of liver steatosis and in fact, DIO in humans has been classified in the high-risk category for both simple 

steatosis and steatosis-induced liver complications such as steatohepatitis and cirrhosis (Boza et al. 2005; 

Machado et al.2006). Experimental studies have shown similar results where rats or mice fed with a Western 

type diet develop hepatic fat infiltration and ultimately steatohepatitis (Riddle et al. 2001; Zou et al. 2006; 

Oakes et al. 1997; Aragno et al. 2009). Excessive dietary intake of fat results in hepatic accumulation of TGs 

and stimulates hepatic lipogenesis culminating in the ‘first hit’ as described by Day & James (1998) as a result 

of insulin resistance. Following this, the second hit comes into play when the lipid laden hepatocytes show 

increased lipid peroxidation, and this is coupled with the generation of pro-inflammatory mediators (TNF-α, 

IL-6) and mitochondrial dysfunction (ROS generation) resulting in hepatocyte damage. Additionally, FFAs 

and TNF-α through JNK stimulation inhibit IRS-1, and this is associated with impaired insulin mediated 

glucose homeostasis and insulin resistance (Hirosumi et al. 2002). 

Although the present study did not report any evidence of hepatic fibrosis (cirrhosis), steatohepatitis has 

previously been implicated in the induction of stellate cell proliferation and fibrogenesis (Lemoine et al. 2006). 

We suggest that perhaps a longer treatment duration could produce similar findings. 

4.12.2 HAART and NAFLD 

A combination of PIs and NRTIs has been implicated in development of body fat composition changes i.e., 

lipodystrophy, and visceral obesity which are associated with hypertriglyceridaemia, hyperinsulinaemia and 

low HDL (Crum-Cianflone et al. 2009; Crum-Cianflone et al. 2008). These are known triggers of NAFLD. 

Although the HI-virus is also implicated in viral-induced hepatic changes, treatment with PIs and NRTIs has 

not only led to an increased prevalence of steatohepatitis, but also fibrosis (Bhatia et al. 2012). The risk of 

excessive lipid deposition within the liver is greater in this combination because PIs cause dyslipidaemia, 

increased lipolysis and insulin resistance, and on the other hand, NRTIs lead to hepatic mitochondria toxicity 

as a result of mitochondrial RNA depletion (Matthews et al. 2011; Lai et al. 1999; Olano et al. 1995). 

These findings have been replicated in previous experimental studies using ARVs. For example, Riddle et al. 

(2001) reported excess fat deposition in the liver tissue of mice treated with ritonavir (10 days) and fed on a 

HFD (21 % (w/w) anhydrous milk, 0.15 % (w/w) cholesterol, n = 4/ group. However, to the best of our 

knowledge, there are no previous reports of combined LPV/r and AZT / 3TC therapy (6 weeks) on rats fed on 

HFD / HCD (4 months) and therefore, the present study supports these findings and provides new evidence 
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that PIs and NRTIS combined with HFD result in the development of both steatosis and steatohepatitis in 

Wistar rats. 

Co-administration of a PPAR α / γ agonist with HAART resulted in reduction in the number of rats that 

developed steatosis compared to the HAART only-treated animals. PIs have previously been implicated in 

decreased expression of transcription factors that regulate lipid metabolism (PPAR γ) (Lemoine et al. 2006). 

PPAR γ is also involved in the inhibition of activated stellate cells and therefore reducing fibrogenesis (Hezra 

et al. 2004). Furthermore, impaired PPAR α activity in dyslipidaemia and lipodystrophy associated with PIs 

and other metabolic conditions (obesity and DM) may explain the higher prevalence of NAFLD in these 

conditions. Therefore, by combining PPAR α and γ stimulation in HAART, our findings show a successful 

reduction of lipid deposition in the liver, which subsequently protected the hepatocytes from inflammatory and 

cytotoxic effects. Although a previous study has established that overexpression of PGC-1 α protected 

cardiomyocytes from NRTI-induced toxicity (Liu et al. 2015), to the best of our knowledge, no other studies 

have evaluated the effects of dual PPAR α and γ stimulation in the setting of a combined PI + NRTI-HAART 

regimen. Therefore, we consider this finding novel. Treatment of HCD rats with Saroglitazar similarly showed 

protection from steatosis and inflammation. 

Liver immmunohistochemical studies with anti-glutathione S-transferase placental form (GST-P) antibody did 

not show any positive GST-P foci in any of the experimental groups. HAART has altered the natural history 

of HIV / AIDS and has led to chronicity that is now associated with rising prevalence of hepatic neoplasia, 

among other malignancies (Maso et al. 2009). We therefore included this marker in the present study with the 

aim to detect any drug-induced liver hyperplastic nodules, pre-neoplasia or even hepatic carcinoma. GST-P 

has been used as a reliable marker for pre-neoplasia in rat chemical hepatic neoplasia (Sato et al. 1984; Sugioka 

et al. 1985). The detoxification enzyme is hardly detectable in normal liver and therefore, since the present 

study did not detect any foci suggestive of hyperplasia or neoplasia, we can conclude that neither the HCD nor 

the treatment with HAART with / without Saroglitazar induced detectable hepatic neoplasia. This finding is 

congruent with our previous findings since no fibrosis was detected as a sequel to steatosis. 

4.13  Signalling proteins 

In this section, results from proteins of interest that were analysed in the cardiac, aortic and liver tissues are 

discussed.  

4.13.1 AMPK 

As a master regulator of cellular energy homeostasis, AMPK senses the energy status in the cells and responds 

by stimulating or upregulating energy generating processes and at the same time switching off or negatively 

controlling energy consuming processes (Hardie 2011) (See section 1.5.5). The expression of total AMPK and 

its activated form, phosphorylated AMPK (Phospho-AMPK), were analysed in the heart (before and after 

ischaemia-reperfusion), aorta and liver tissues. 
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4.13.1.1 Cardiac AMPK 

The baseline (pre-ischaemia) analysis of AMPK showed no changes in the total AMPK expression, but the 

phospho-AMPK levels were significantly lower in the HCD control group compared to the lean control and 

similarly, lower in the HCD HAART group compared to the lean HAART group. Treatment with Saroglitazar 

was not accompanied by any significant changes in AMPK expression or activation (Figures 3.52 and 3.53). 

However, following 10 minutes of reperfusion after 20 minutes of global ischaemia, activation of AMPK was 

enhanced in both lean and HCD Saroglitazar-treated groups as evidenced by significantly higher levels of both 

phospho-AMPK and phospho/total ratios in these two groups compared to combined HAART and Saroglitazar 

treatment in lean and obese experimental animals (Figure 3.55 and Figure 3.56). 

Studies on the activity of AMPK in HC/FD have generated contradicting findings with some reporting a 

reduction in obesity (Pang et al. 2008; Liu et al. 2006) and others an increase (Cao et al. 2011). In the present 

study, no differences were observed between untreated HCD animals and lean control animals. We ascribe 

this finding to the fact that, our obese model did not present with overt dyslipidaemia, while the percentage 

visceral (IP) fat was only 3 % higher compared to the control. The control animals also presented with 

substantial IP fat of 3.6 % / total body mass and therefore the difference in AMPK activation in the heart tissue 

may not have differed. Altered expression of AMPK activity (reduced activation) has previously been 

associated with several deleterious outcomes, such as impaired fatty acid oxidation leading to deranged serum 

lipid profile that is characterised by hypertriglyceridaemia and organs / tissue lipid accumulation (Liu et al. 

2006; Sriwijitkamol et al. 2006). In fact, some researchers have argued that although AMPK activity 

suppression is not the primary abnormality preceding T2DM and metabolic syndrome, it plays a critical role 

in exacerbating these pathologies (Zhang et al. 2009).  

Before ischaemia, no upregulation of AMPK was observed in the Saroglitazar lean and HCD groups, which 

was unexpected since previous studies have demonstrated activation of AMPK by compounds that stimulate 

PPARs and PGC 1 α (Tu et al. 2013; Leopardine et al. 2010; Hardie 2008). However, upon induction of 

ischaemia and reperfusion, Saroglitazar monotherapy in both lean and HCD was associated with significantly 

higher phosphorylated AMPK levels compared to other treatment groups. This finding is in concurrence with 

previous studies that have shown improved insulin sensitivity via upregulation of AMPK activity (Figure 4.4) 

in overweight and obesity by drugs such as metformin and TZDs (Liu et al. 2006; Leonardini et al. 2009). 

Although we anticipated that combining HAART with Saroglitazar would induce cardiac AMPK activation 

before ischaemia, this was neither observed in lean nor obese animals. 

The finding that obese animals treated with HAART had reduced activation of AMPK was anticipated since 

it has previously been established that NRTI-induced mitochondrial toxicity and PI-induced lipid metabolism 

dysregulation lead to altered cellular energy production with subsequent tissue steatosis and insulin resistance 

(Videla et al. 2004; Lewis et al. 2001). Since a reduction in AMPK activity has also been associated with 

myocardial lipid accumulation / cardiac lipotoxicity which leads to cardiomyopathy in obese rodents (An & 

Rodrigues 2006; Wang and Unger 2005), the present study’s finding that the normalised heart masses were 
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significantly elevated in all HCD HAART-treated animals (compared to the respective lean controls) is another 

pointer to a probable link to the reduction in AMPK activity. Interestingly, the HOMA-IR index reflected the 

same observation that the HCD control and HCD HAART groups developed insulin resistance with a reduction 

in AMPK activity. The increase in cardiac mass and HOMA-IR were significantly reduced in the HCD 

HAART + Saroglitazar-treated animals compared to the HCD HAART-treated animals, and similarly this 

combination therapy with Saroglitazar resulted in improved AMPK activity.  

Although it was expected that the addition of Saroglitazar to the HAART regimen would improve the AMPK 

activity following the ischaemic-reperfusion insult, the present study did not observe such improvement. 

Interestingly, both lean and obese Saroglitazar-treated animals demonstrated significantly higher activation of 

AMPK compared to the respective HAART + Saroglitazar-treated groups. Of importance to note is that all the 

Saroglitazar-treated groups had improved HOMA-IR indices, which has previously been linked to both PPAR 

α and γ activation leading to PGC-1α and AMPK activation and subsequent increased FA oxidation as shown 

below (Figure 4.4). These observations support findings by Qi & Young (2015) and Russell et al. (2004), who 

suggested that pharmacological interventions that upregulate AMPK activity may offer therapeutic benefit in 

metabolic syndrome. 

 

Figure 4.4 Mechanisms via which PPAR γ activation by thiazolidinediones (TZDs) lead to improved systemic 

insulin sensitivity through AMPK mediated signalling. Abbreviations: TNF-α (tumour necrosis factor), FFA 

(free fatty acids), IL-6 (interleukin 6) PPAR γ (peroxisome proliferator-activated receptor gamma), LPL 

(lipoprotein lipase) CD36 (cluster of differentiation 36), PGC-1 α (peroxisome proliferator-activated receptor 

gamma co-activator alpha), FATP (long-chain fatty acid transport protein), ↑ (increase), ↓ (decrease). 

Adapted from Leonardini et al. (2009). (Creative commons attribution license _ unrestricted use). 
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4.13.1.2 Aortic AMPK 

Although impaired activity of endothelial AMPK has been implicated in endothelial dysfunction (Russell et 

al. 2004; Qi & Young 2015), the present study did not observe any significant changes in AMPK activation 

among the various treatment groups. This was unexpected because, as already discussed (section 4.11), HCD 

HAART animals showed marked impaired relaxation and the lean Saroglitazar-treated animals also 

demonstrated marked hypercontractility. All these changes were expected to have an association with 

endothelial AMPK-mediated energy regulation and subsequently changes in AMPK expression. However, 

since we only conducted baseline AMPK analyses and no analyses were performed following the aortic 

isometric tension studies, this is an area that should be further investigated. In addition, we only evaluated 

vascular AMPK activity (i.e. including smooth muscle and connective tissue AMPK) and therefore 

measurement of the specific endothelial AMPK should be considered in future vascular studies. 

Chronic use of PIs and NRTIs has been associated with endothelial dysfunction as a result of increased 

generation of ROS, increased endothelial inflammation and dyslipidaemia leading to atherosclerosis 

(Dressman et al. 2003; Stein et al. 2001). Although the exact mechanisms have not been clearly elucidated, 

Dressman and colleagues (2003), established that ritonavir administered to mice for a period of eight weeks 

led to development of atherosclerotic lesions in the ascending and descending thoracic aortic segments and 

subsequent in vitro studies confirmed upregulation of CD36 (sterol scavenger receptor), leading to increased 

sterol uptake by macrophages. Li et al. (2011) further reported that AMPK activation, through the inhibition 

of the SREBP, ameliorates liver fat accumulation and atherosclerosis in diet-induced insulin resistance. 

Therefore, AMPK has been suggested to be a therapeutic target for anti-atherosclerosis treatment, 

malignancies and hepatic steatosis (Motoshima et al. 2006). The present study therefore, did not observe any 

effects of dual PPAR α and γ stimulation using Saroglitazar on aortic tissue expression and activation of AMPK 

in either lean or obese Wistar rats treated with PIs and NRTIs, despite improved aortic relaxation in the HCD 

HAART + Saroglitazar group. 

4.13.1.3 Hepatic AMPK 

The role of AMPK in both normal liver physiology and liver pathology has been reviewed (Section 1.5.6) and 

it is well established that AMPK activity plays a critical role in the regulation of hepatocyte lipid homeostasis. 

Results from the AMPK measurements in the experimental animals are presented in section 3.13.3.5. Although 

no changes were observed in AMPK expression and activation in the lean and HCD control groups (results 

not displayed), there was a clear reduction in AMPK activation in the HCD HAART group compared to lean 

HAART group and HCD HAART + Saro group (Figure 3.86). Additionally, the lean and HCD HAART + 

Saroglitazar-treated groups showed marked increase (2-fold increase) in the activation of AMPK compared to 

the HCD HAART. 

Obese rats treated with PIs and NRTIs presented with features of steatosis and steatohepatitis (section 4.12) 

and with a marked reduction in AMPK activation contrary to the observations made in the HCD rats treated 
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with both HAART and PPAR α and γ agonist. Therefore, we have demonstrated that the hepatic effects of 

HCD and LPV / r in combination with AZT / 3TC are marked by both structural and signalling abnormalities. 

To the best of our knowledge, this is new evidence because no studies have described the above findings in 

the context of PIs and NRTIs with concomitant PPAR α, γ agonist therapy, even though previous studies have 

been conducted on PIs (ritonavir) (Li et al. 2001; Dressman et al. 2003). Use of Saroglitazar in HIV patients 

on HAART has been reported to improve the lipid profile (reduction in serum cholesterol and TGs) 

(Deshpande et al. 2016). Although these findings were not reflected in the present study, there is now evidence 

that at signalling level, AMPK plays a major role in ameliorating the hepatic HAART and diet-induced 

steatosis. 

4.13.2 PKB/Akt 

PKB /Akt (from diverse stimuli such as, IGF-1, bFGF, EGF and platelet-derived growth factor receptor 

(PDGF-R) regulates a variety of cellular responses ranging from metabolism, growth, cell survival and intra-

cellular signal transduction (Barnett et al. 2005; Kitamura et al. 1999). The metabolic derangements observed 

in the HCD and HAART are known to interfere with cardiac, aortic and hepatic PKB/Akt activity and below 

are the inferences we make from this study. 

4.13.2.1 Cardiac PKB/Akt 

Implications of PKB/Akt pathway disturbances in cardiac pathology have been reviewed (section 1.5.4.2). 

PKB/Akt activation is critical in cardioprotection in both pre-and post-ischaemic conditioned heart perfusion 

(Hausenloy et al. 2005). Before induction of ischaemia (baseline), the present did not observe any significant 

differences in either the expression (total PKB/Akt) or phosphorylation of PKB/Akt (phospho-PKB/Akt) 

(section 3.13.1.3.1). Although previous studies have reported on a reduction in the phosphorylation of 

PKB/Akt in HFD compared to lean controls, the expression of total PKB/Akt remained the same (Ouwens et 

al. 2005). The changes observed in PKB/Akt phosphorylation by Ouwens et al. (2005), are explained by the 

differences in diet composition. The diet model they employed contained palmitate (91.12 g/kg) and oleate 

(100.24 g/kg); furthermore, the rats were heavier (302 g) at the onset of the programme, indicating that they 

were older (age not indicated), n = 34 / group. Furthermore, the diet-induced hyperglycaemia and insulin 

resistance (T2DM) model resulted in overt hyperglycaemia and cardiac ultrastructural changes marked with 

degenerative changes (mitochondriopathic changes) and dilated cardiomyopathy. In the present study, systolic 

/ diastolic pressures and HR did not differ significantly among the experimental animals and therefore a 

possible explanation for the unaltered PKB/Akt levels. 

Following the induction of ischaemia and subsequent reperfusion, the total expression of PKB/Akt did not 

differ significantly among the different experimental groups. However, the PKB/Akt phosphorylation was 

markedly reduced in the HAART-treated groups (lean and HCD) compared to untreated control and 

Saroglitazar combined with HAART groups (lean and HCD) (Figure 3.61 A-C). Similarly, the ratio of 

phospho-PKB/Akt / total PKB/Akt was also significantly reduced in the HCD and lean HAART groups 
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compared to the lean and HCD HAART + Saroglitazar groups (Figure 3.61 D). From these findings, it appears 

that the effect of diet was not reflected in the expression and phosphorylation of PKB/Akt as previously stated 

and we ascribe this observation to the fact that, although the HCD induced insulin resistance in the HCD groups 

compared to the controls, there were no significant differences in the circulating blood glucose.  

Previous studies that have reported reduced PKB/Akt phosphorylation in HCD animals, did demonstrate 

hyperglycaemia and hypertrophic-like changes in the heart tissue (Ouwens et al. 2005; Coa et al. 2011). 

Although Salie and colleagues (2014) reported cardiac protection against ischaemia-reperfusion using a similar 

DIO model, the present study did not observe a correlation between reduced infarct sizes and PKB/Akt 

activation. In fact, phosphorylation of PKB/Akt was not increased following preconditioning with the β2 

adrenergic receptor stimulating drug, formoterol, which supports the findings of the present study. Therefore, 

the diet was not associated with alterations sufficient to induce cardiac PKB/Akt expression and activation. 

However, following administration of PIs an NRTIs, it was evident that phosphorylation of PKB/Akt was 

decreased during the 20 minutes of global ischaemia and 10 minutes of reperfusion. 

As previously discussed, ritonavir is associated with the induction of lipodystrophies that also manifest with 

an accumulation of tissue lipids, which is further compounded by AZT / 3TC-induced mitochondrial damage. 

Although the present study did not evaluate cardiac lipid / glycogen load, we deduce from the above findings 

that hearts from HAART-treated animals subjected to an ischaemic insult are unable to competently activate 

protective/ survival mechanisms as observed in the animals treated with Saroglitazar and HAART. Poor 

phosphorylation of PKB/Akt was observed in both lean and HCD animals treated with LPV / r and AZT / 3TC. 

It is well documented that PKB/Akt activation following ischaemia mediates cardioprotection through 

activation of anti-apoptotic pathways, such as the RISK pathway (Hausenloy et al. 2005; Hausenloy & Yellon 

2007; Tsang et al. 2004). However, the mechanisms underlying PI and NRTI-mediated cardiac damage remain 

incompletely understood. Therefore, the present study contributes new knowledge in this area since we have 

demonstrated that treatment with a dual PPAR α, γ agonist, improves PKB/Akt activation in both lean and 

HCD Wistar rats, treated with LPV / r and AZT / 3TC. This discussion is advanced in the subsequent sections 

on the role played by PKB/Akt in eNOS signalling. 

4.13.2.2 Aortic PKB/Akt 

Activation of PKB/Akt in vascular tissue plays a critical role in the maintenance of homeostasis and 

angiogenesis (Shiojima & Walsh 2002). PKB/Akt mediates many vascular processes such as cell migration, 

glucose metabolism, protein synthesis, cell attachment, survival and NO production. The function that will be 

highlighted in the present study is the PKB/Akt-mediated eNOS phosphorylation leading to increased NO 

production through vascular endothelial growth factors (VEGF) activation of PKB/Akt. PI3K and PKB/Akt-

mediated vascular effects are summarised below (Figure 4.5). 
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Figure 4.5 PI3K and PKB/Akt mediated vascular effects. Abbreviations (NO - nitric oxide, PI3K- 3-

phosphoinositide kinase, Ang-1 angiotensin 1, S1P - sphingosine-1-phosphate, VEGF - vascular endothelial 

growth factors. Adapted with permission (Shiojima & Walsh 2002). 

The findings from the present study (Figure 3.71) indicate that, the total PKB/Akt was not altered in any of the 

experimental groups; however, phosphorylation of PKB/Akt was higher in the HCD group compared to the 

lean control and the HCD HAART groups (Figure 3.72). Therefore, HAART appeared to downregulate 

PKB/Akt activation in both obese and lean animals. A very interesting finding was that this downregulation 

was limited when Saroglitazar was co-administered with HAART to both lean and obese animals. 

We have already shown that the HCD control aortic rings demonstrated improved endothelial-mediated 

acetylcholine-induced aortic relaxation and this may be explained by the activation of PKB/Akt in the HCD 

group. Phosphorylation of PKB/Akt has previously been shown to increase phosphorylation of eNOS and 

therefore increased production of NO that explains the improved relaxation following acetylcholine 

stimulation (Figure 4.5). The factors that lead to improved modulation of the endothelium in the HCD remain 

incompletely understood, but the role of VEGF has been shown to play a major role in PKB/Akt-mediated 

endothelial /vascular survival (Fujio & Walsh 1999; Gerber et al. 1998). 

PIs and NRTIs are implicated in endothelial damage and vasculopathies. eNOS down-regulation and increased 

oxidative stress have been suggested as some of the underlying causes (Wang et al. 2009). Since PKB/Akt is 

intricately involved in vascular endothelial survival, the present study investigated the activation of PKB/Akt 

in LPV / r and 3TC / AZT and the role played by dual PPAR α, γ stimulation. The findings were intriguing 

because the down-regulation of phospho- PKB/Akt and phospho- PKB/Akt / total ratio observed in both lean 

and obese HAART-treated animals were upregulated upon combining Saroglitazar with HAART (Figure 

3.72). Additionally, this was reflected in the isometric aortic tension studies where the HCD HAART + Saro-

treated group had significantly improved endothelial-mediated acetylcholine-induced aortic relaxation 

compared to the HCD HAART-treated animals. This is a novel finding because a combination of PIs and 

NRTIs with dual PPAR α, γ stimulation has not been investigated before. Our experimental model of HCD-
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induced obesity in male Wistar rats has demonstrated clear improvements in both functional (relaxation) and 

signalling (PKB/Akt) upon combining PPAR α, γ agonist (Saroglitazar) with a PI-based regimen (LPV / r + 

AZT / 3TC). 

4.13.2.3 Hepatic PKB/Akt 

PKB/Akt plays a central role in both hepatocyte survival and regulation of hepatocyte insulin / glucose and 

protein synthesis (Cichy et al. 1998). Therefore, metabolic derangement in disease states or in drug therapy 

impact greatly on PKB/Akt activity. PKB/Akt pathway dysregulation has been implicated in impaired insulin 

signalling and subsequent glucose metabolism (Leclercq et al. 2007; Hanada et al. 2004). Figure 4.6 below 

illustrates how downstream PKB/Akt signalling mediates insulin receptor stimulation via PI3K and PDK1,2 

pathway (see section 1.5.4.1 for more details). 

Following the binding of insulin to its receptor, a conformational change is triggered which leads to the 

phosphorylation of three intracellular pathways, namely: -  

i) PI3K pathway: PI3K activation in-turn activates PDK1, 2 which phosphorylates PKB/Akt at Thr 

308 leading to its protein and glucose metabolism mediated regulation. 

ii) MAPK: Mediates insulin-induced mitogenic, growth and cell differentiation processes. 

iii) CAP/CbI/TC10 pathway: Mediates GLUT 4 translocation to the membrane (in GLUT 4 

expressing tissues such as adipose and skeletal / cardiac muscle). 

 

Figure 4.6 PKB/Akt-mediated intracellular insulin signalling. Abbreviations: PKB/ Akt (protein kinase B), 

PKC (protein kinase C), GLUT- 4 (glucose transporter 4), MAPK (mitogen-activated protein kinase), IRS 

(insulin receptor substrate), PI3K (3-phosphoinositide kinase), PDK1,2 (protein D kinase 1, 2), GSK-3 

(glycogen synthase kinase-3). Adapted with permission (Leclercq et al. 2007). 

The present study observed that the hepatic total PKB/Akt levels were constant in all the experimental groups 

and remained unchanged (Figure 3.78). However, PKB/Akt phosphorylation was significantly depressed in 
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the HCD control group and HCD HAART-treated groups compared to their respective controls (Figure 3.79). 

This observation is intriguing, because dietary effects seemed to impact negatively on hepatocyte PKB/Akt 

activation. No differences in phosphorylated PKB/Akt were observed in the Saroglitazar groups. However, 

when the phospho- PKB/Akt / total PKB/Akt ratio was evaluated, it was observed that the HAART-treated 

groups (lean and obese) had significantly lower ratios compared to the HAART + Saroglitazar-treated groups 

(Figure 3.80). This finding contradicts the earlier observation that PIs and NRTIs did not alter phosphorylation 

of PKB/Akt in the lean groups. Furthermore, no functional derangements (based on biochemical analysis of 

liver enzymes, serum glucose and insulin concentrations) were observed that could explain this finding. 

Therefore, this is an area that future studies ought to investigate further. The reduction in PKB/Akt 

phosphorylation in the HCD HAART group supports the observations made earlier that these experimental 

animals also manifested with insulin resistance and histologically with features of steatosis and hepatitis. 

Improved phosphorylation of PKB/Akt in the Saroglitazar-treated groups explains the reversal or protection 

from HAART-induced hepatic steatosis and insulin resistance (based on HOMA-IR). This observation was 

also made in the aortic phosphorylation of PKB/Akt. 

In summary, the present study presents evidence that aortic phosphorylation of PKB/Akt is depressed in 

HAART therapy (both lean and HCD rats). Similarly, hepatic phosphorylation of PKB/Akt is depressed in 

HCD control and HCD HAART-treated animals. However, this downregulation is limited by co-administration 

of HAART (LPV / r and AZT / 3TC) with Saroglitazar and was associated with improved endothelial-mediated 

acetylcholine-induced aortic relaxation and improvement in insulin resistance (lowering of HOMA-IR) with 

improved liver histology. In the cardiac tissue, similar observations were made following ischaemia 

reperfusion, although baseline phosphorylation of PKB/Akt was not altered. 

4.13.3 eNOS 

4.13.3.1 Cardiac eNOS 

Reduced expression of cardiac eNOS has been implicated in CVD and cardiac hypertrophy (Brede et al. 2003). 

Additionally, disturbances in insulin signalling have been implicated in altered cardiac eNOS signalling 

(Koricanac et al. 2011). The role of PIs and NRTIs in eNOS signalling derangements has been reviewed (see 

sections 1.5.4.2 and 1.2.4). The present study did not observe any differences in either total or phosphorylated 

eNOS before induction of ischaemia. However, following ischaemia and subsequent reperfusion, the phospho-

eNOS was significantly reduced in the HCD HAART-treated animals compared to the HCD control animals 

(Figure 3.58 A). The lean and HCD HAART + Saroglitazar-treated groups also showed increased eNOS 

phosphorylation compared to the lean and HCD Saroglitazar-treated groups (Figure 3.58 B). The phospho-

eNOS / total eNOS ratio was significantly higher in the HCD group compared to the HCD HAART group. 

Also, both lean and HCD HAART-treated animals showed reduced phospho-eNOS / total eNOS ratios 

compared to lean and HCD HAART + Saroglitazar-treated animals (Figure 3.59). 
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Ischaemia interferes with cardiac substrates required for energy metabolism and therefore activates protective 

mechanisms that aim to improve cardiac function and blood flow in the strained state. An increase in eNOS 

activity is one of the ways in which the cardiac endothelium responds to increase NO production and improve 

not only blood flow but also inhibit apoptosis and promote other proliferative pathways (see section 1.2.4). 

Therefore, from the above findings, we infer that, as suggested by other studies (Zhou & Gurley 2006; Zhou 

et al. 2005; Lipshultz et al. 2012), LPV/ r and AZT /3TC therapy impairs the cardiac eNOS response to 

ischaemic insult and this was improved when animals on HAART were co-treated with a dual PPAR agonist, 

Saroglitazar. To the best of our knowledge, this is a novel finding.  

Possible mechanisms that have been postulated to interfere with eNOS activity in HAART include increased 

oxidative stress as a result of NRTI-mediated mitochondrial damage (Zhou et al. 2005) and activation of 

mononuclear cell recruitment (Dressman et al. 2003). Observations made on the PKB/Akt signalling in cardiac, 

aortic and liver tissues indicate that there is consistent upregulation of PKB/Akt activity when Saroglitazar is 

combined with HAART. PKB/Akt is a well-documented inducer of eNOS phosphorylation (Shiojima & Walsh 

2002) and therefore, this may explain eNOS upregulation following ischaemia-reperfusion. 

4.13.3.2 Aortic eNOS 

The aortic expression of total eNOS and phosphorylation are shown in Figure 3.70. The phospho-eNOS / total 

eNOS ratio shows a clear reduction in the HAART groups (lean and HCD) and increased ratios in the 

Saroglitazar-treated groups (lean and HCD HAART + Saro and, lean and HCD Saroglitazar) compared to the 

HAART-treated groups. Therefore, HAART-mediated reduction in eNOS activation was ameliorated by co-

therapy with Saroglitazar (HAART + Saro). Perhaps the most striking observation in terms of both eNOS 

activation and endothelial performance is the downregulation of phospho-eNOS in the HCD HAART group 

that was accompanied by poor endothelial-mediated acetylcholine-induced aortic relaxation. In addition, the 

HCD HAART + Saroglitazar-treated animals showed an increase in phosphorylation of eNOS that may explain 

the improved endothelial-mediated acetylcholine-induced aortic relaxation (Figure 3.48 B).  

The eNOS phosphorylation findings correspond to the phosphorylation of PKB/Akt (discussed 4.13.2.2) 

thereby underscoring the interplay between PKB/Akt and eNOS in both cardiac and aortic tissues protection. 

We therefore postulate that the dual PPAR α, γ-mediated upregulation of these signalling proteins (PKB / Akt 

and eNOS) in HAART, is a possible mechanism underlying the functional and structural amelioration of 

HAART-induced NAFLD and cardiac / vascular dysfunction. 

4.13.4 MAPKs: p38 and Erk 1 / 2 

The roles played by these important intracellular signalling proteins are reviewed in section 1.5.7.3. 
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4.13.4.1 Cardiac Erk 1 / 2 

There were no changes observed in the baseline cardiac expression of total and phosphorylated Erk 1 / 2 

(Figure 3.62). This finding was unexpected because previous studies using the same HCD have demonstrated 

increased Erk 1 / 2 activation in diet-induced obese animals compared to the lean control animals (Salie et al. 

2014). However, although the diet compositions were similar, the DIO rats were 21 % heavier than the control 

rats in the aforementioned study by Salie et al. (2014) compared to the present study mass difference of 15 %.  

Following 20 minutes of global ischaemia and 10 minutes of reperfusion, the total Erk 1 / 2 expression 

remained the same across the experimental groups. However, phosphorylation of Erk 1 / 2 was significantly 

higher in the HCD control group compared to the lean control and HCD HAART groups (Figure 3.64 A). This 

observation is consistent with previous studies that have evaluated the role of Erk 1 / 2 in ischaemia-reperfusion 

and in preconditioned hearts (Salie et al. 2014); however, we are not aware of any studies conducted in the 

context of HAART. This is in support of the obesity paradox in cardiovascular protection, and possible 

mechanisms of this observation are the insulin-mediated pre-conditioning since the animals were 

hyperinsulinaemic (Hausenloy and Yellon 2007).  

We did not observe changes in Erk 1 / 2 expression or activation following dual PPAR stimulation in either 

lean or obese rats, and similarly, no changes were observed in the HAART-treated animals. Although no 

previous studies have focused on this area, it is interesting to note, that despite marked phosphorylation in 

PKB/Akt and eNOS in these Saroglitazar-treated animals, no impact was observed on Erk 1 / 2 activity. The 

role of activated Erk 1 / 2 has previously been demonstrated in cardioprotection and it is a key player in the 

RISK pathway (Hausenloy et al. 2005; Hausenloy & Yellon 2007; Tsang et al. 2004), which mediates the 

antiapoptotic and reduction of ROS-mediated damage during reperfusion. 

4.13.4.2 Aortic Erk 1 / 2 

The aortic Erk 1 / 2 expression and activation findings were surprising because, although the aortic tissues in 

the HCD HAART + Saroglitazar group were associated with marked activation of PKB/Akt and eNOS, no 

significant differences were observed in Erk 1 / 2 activity. The reason for this observation remains unclear 

because there is ample evidence to support the protective role of Erk 1 / 2 activation in the vascular endothelium 

and promotion of angiogenesis and endothelial proliferation which go hand in hand with PKB/Akt activation 

(Secchiero et al. 2003; Mavria et al. 2006). 

4.13.4.3 Hepatic Erk 1 / 2 

Erk 1 / 2 MAPK signalling in the liver is involved in diverse cellular processes. Previous studies have 

documented both protective and detrimental effects of Erk 1 / 2 activation. Through activation by stress and 

inflammatory stimuli, JNK and Erk 1 / 2 activation has been shown to induce insulin resistance in NAFLD 

(Malhi et al. 2006; Tarantino & Caputi 2011). On the other hand, Erk 1 / 2 activation has been implicated in 

mediating an anti-apoptotic role in ROS-induced caspase activation by JNK (de la Rosa et al. 2006). In the 
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present study, it was observed that phosphorylation of Erk 1 / 2 was increased in both lean and HCD HAART-

treated groups compared to the lean and HCD control groups, and no differences were observed in the 

Saroglitazar-treated groups (Figure 3.81). The ratio of phospho-Erk 1 / 2 : total Erk 1 / 2 was also increased in 

the lean and HCD HAART-treated animals compared to their respective controls (Figure 3.82). The phospho-

Erk 1 / 2 : total Erk 1 / 2 ratio was higher in the HCD HAART group compared to the HCD HAART + Saro 

and no other differences were observed. These findings are corroborated by a previous study by Fatani et al. 

(2011) where it was observed that despite induction of obesity in Wistar rats (marked with increased body 

weight, IP fat and TGs) using a highly palatable (fat) diet, no differences in activation of Erk 1 / 2 in the liver 

were observed. However, the animals developed insulin resistance as observed in the present study. No 

previous studies have explored the role of HAART in this context (to the best of our knowledge). 

Activation of Erk 1 / 2 by LPV + AZT / 3TC in both lean and obese animals is a novel observation and 

although it correlates with steatosis in the HCD HAART-treated group, the lean HAART group did not 

develop such features. 

4.13.4.4 Cardiac p38 MAPK 

No changes were observed in the pre-and post-ischaemia cardiac activation of p38 MAPK. Both total p38 

expression and phosphorylation were equal in all the experimental groups. This finding was unexpected 

because previous studies have demonstrated that the induction of ischaemia activates p38 MAPK. A study by 

Ma et al. (1999) clearly showed that 10 minutes-reperfused rabbit hearts following 30 mins of global ischaemia 

showed increased activation of p38 MAPK and was associated with increased apoptosis. Subsequently, 

apoptosis was reduced following p38 MAPK inhibition. Although our protocol only induced global ischaemia 

for 20 mins, no changes in p38 MAPK activation were observed after 10 minutes of reperfusion in either 

control or HCD treated and untreated animals. Data on the effects HAART on p38 MAPK expression in 

ischaemia-reperfusion is limited and therefore comparisons with other findings were not feasible. However, 

we are of the opinion that this signalling protein may not be implicated in the diet and HAART-mediated 

effects on isolated perfused rat hearts. 

4.13.5 PGC 1 α and PPAR α 

Cardiac PGC-1α and PPAR α expressions were not altered by either diet, HAART or in vivo PPAR α and γ 

stimulation before induction of ischaemia (Table 3.9). Additionally, no changes were observed in the hepatic 

expression of PGC-1 α and PPAR α (Table 3.10). Although there is a paucity of data from previous studies to 

make comparisons in this context, this finding was unexpected because as already stated (section 1.5.1 and 

section 1.5.2), PGC-1α and PPAR α play a major role in glucose and lipid regulation in metabolic syndrome 

(Tonstad et al. 2007; Ratziu et al. 2008).  

Although cardiac post-ischaemia PGC-1α and PPAR α expression was not significantly different among the 

experimental groups, PGC-1α expression was higher following ischaemia-reperfusion compared to the pre-

ischaemia expression levels. This has been demonstrated before (Butterick et al. 2016) where pioglitazone (a 
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TZD) improved PGC-1 α signalling, although no improvements in infarct sizes or blood flow were observed 

in this swine model of MI. Interestingly, the HCD HAART group showed the highest percentage increase in 

the expression of PGC-1α following ischaemia compared to the pre-ischaemia levels.  

Involvement of PIs and NRTIs in both cardiovascular and metabolic abnormalities is linked to PGC-1α and 

PPAR α / γ downregulation leading to insulin resistance, NAFLD and lipodystrophy (Carr et al. 1998; Giralt 

et al. 2006). The present study has also demonstrated the induction of insulin resistance in HCD and HAART-

treated animals despite normal blood glucose concentrations. Furthermore, there was demonstrable steatosis 

in the liver that was also associated with mild inflammatory changes in the HCD HAART-exposed animals. 

Aortic PGC-1α expression was higher in the lean HAART + Saroglitazar-treated group compared to the lean 

HAART group. In addition, PGC-1α expression was higher in the HCD Saroglitazar-treated group compared 

to lean Saroglitazar group. No differences were observed between the HCD control and lean control group. No 

significant differences were observed between HCD HAART + Saro and HCD HAART-treated groups. The 

findings are difficult to explain because it has been observed that overexpression of PGC-1α is associated with 

increased NO levels, which activate mitochondrial biogenesis complementing the role played by PGC-1α 

(Nisoli 2003; Kodlec et al. 2017). Therefore, when comparing the aortic reactivity and PGC-1α signalling, the 

expectation was that the HCD HAART + Saroglitazar-treated group which showed improved relaxation 

compared to HCD HAART would have displayed better PGC-1α expression. However, the hyper-contractile 

response of the aortic rings from the lean Saroglitazar group demonstrates a possible link to the observed 

reduced PGC-1α expression. However, the aortic rings from the HCD HAART group with poor relaxation 

values did not show significant reduction in PGC-1α expression compared to HCD HAART + Saro. 

4.13.6 IκBα 

A review on the implications of IκBα in the present study has been supplied in section 1.5.3. Cardiac expression 

of IκBα did not differ among the experimental groups before ischaemia-reperfusion. Following 20 minutes of 

global ischaemia and 10 minutes of retrograde reperfusion, it was observed that all groups had increased IκBα 

expression compared to the pre-ischaemia expression. The percentage change was highest in the HCD HAART 

+ Saro group (Table 3.9). Although the post-ischaemia mean IκBα expressions did not differ, we infer that the 

increased percentage change in the HCD HAART + Saro group was an indication of increased inhibition of 

NFκB which has been shown to offer protection during ischaemia-reperfusion (Valen et al. 2001). Although 

this inhibition has been shown to improve cardiac function and reduce infarct sizes (Saini et al. 2005), the 

present study only observed a reduction in infarct sizes in HCD control and HCD HAART groups in 

comparison to the control group without demonstrable improvement in cardiac function.  

Although hepatic NFκB expression has previously been shown to be high in steatohepatitis, the hepatic 

changes in the present study did not result in demonstrable changes in the hepatic IκBα expression. This finding 

warrants further investigation into the inflammatory mediators (serum markers) in the liver tissue. This was 

outside the scope of the present study. 
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Aortic IκBα expression was only significantly decreased in the lean Saroglitazar-treated group compared to 

the lean control (Figure 3.75). This finding is consistent with the aortic reactivity studies which indicated that 

the lean Saro group had increased phenylephrine-induced aortic contraction compared to the other groups. 

Furthermore, this group also showed marked reduction in the expression of PGC-1α. The effects of LPV/r + 

AZT / 3TC were not reflected in the aortic IκBα expression. The combination of ARVs used in the present 

study has not been previously investigated in this context; however, since it is known that PIs and NRTIs are 

associated with endothelial dysfunction and atherosclerosis (Zhou & Gurley 2006; Zhou et al. 2005), the 

anticipated effect was a reflection of increased aortic inflammatory processes which are stimulated in IκBα 

and NFκB signalling pathways. This was not observed in the present study. 

4.13.7 NADPH p22-phox, cleaved caspase 3 and cleaved PARP 

4.13.7.1 p22-phox 

The role of p22-phox in the induction of aberrant cell proliferation, generation of ROS, migration and 

inflammatory responses (Griendling et al. 2000) is of great interest in hepatic, cardiac and endothelial / vascular 

physiology (Section 1.5.7.1). In the present study, it was observed that the pre-ischaemia expression of p22-

phox did not differ among the experimental groups. However, following ischaemia-reperfusion, p22-phox was 

significantly decreased in the lean and HCD HAART + Saroglitazar-treated groups compared to the lean and 

HCD HAART-treated groups (Figure 3.67). Similarly, the expression of aortic p22-phox was significantly 

elevated in the HCD HAART and lean HAART groups compared to the respective untreated control groups 

(Figure 3.77). Aortic p22-phox expression in the HAART + Saroglitazar-treated groups remained unchanged. 

No changes were observed in hepatic p22-phox expression in any of the experimental groups. 

The above findings are consistent with the increased oxidative stress in vascular endothelium and 

cardiomyocytes posed by chronic use of LPV / r and NRTIs (Videla et al. 2004; Reyskens & Essop 2014). 

Additionally, previous studies have observed a clear correlation between the risk / severity of atherosclerotic 

disease (CAD) and elevated levels of p22-phox. Therefore, the above findings accurately reflect the 

observation made on the poor endothelial-mediated acetylcholine-induced aortic relaxation in the HCD 

animals treated with HAART (increased p22-phox) and improved endothelial-mediated acetylcholine-induced 

aortic relaxation in Saroglitazar co-administration with PI and NRTIs (reduced p22-phox). The lack of altered 

hepatic p22-phox expression is explained by the observation that the steatosis was mild-moderate and was 

associated with only mild-moderate inflammation. Increased p22-phox expression has been associated with 

advanced NASH (Videla et al. 2004). 

4.13.7.2 Cleaved PARP and cleaved caspase 3 

The roles played by these two proteins in both normal and altered physiology are described in section (1.5.7.2). 

Although they are important in mediating effective DNA repair (PARP) and apoptosis (caspase 3), their 

uncontrolled activation is implicated in cell death and impaired mitochondrial biogenesis.  
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The present study did not observe any significant differences in the aortic and hepatic expression of either 

cleaved PARP or cleaved caspase 3 expression. However, post-ischaemic cardiac expression of cleaved 

caspase 3 was significantly higher in the HCD HAART group compared to the HCD control and HCD HAART 

+ Saro groups (Figure 3.68 A and B). Similarly, the expression of caspase 3 was significantly higher in lean 

HAART-treated animals compared to the lean HAART + Saro group (Figure 3.68 B). Following ischaemia 

and reperfusion cleaved PARP expression was higher in the HCD control group compared to the lean control, 

and treatment with HAART in both lean and HCD groups significantly increased the expression of cleaved 

PARP. The increase was more pronounced in the HCD HAART-treated group (Figure 3.69 A). Also, the 

expression of cleaved PARP was significantly lower in the HCD HAART + Saro group compared to the lean 

HAART + Saro and HCD Saro groups (Figure 3.69 B). It is important to note that infarct sizes measured in 

these experimental groups did not correlate well with PARP activation, hence raising more questions on the 

role of PARP. 

High fat feeding has been shown to increase PARP activity, and although the short-term consequences protect 

the cells, long-term effects lead to cell death and mitochondrial dysfunction (Bai & Cantó 2012). Figure 4.7 

below illustrates the short-and long-term effects of activation and inhibition of PARP.  

 

Figure 4.7 Showing short-term and long-term consequences of PARP activation (by high-fat feeding, aging 

and oxidative stress) and PARP inhibition by (fasting, PARP inhibitors, genetic deletion. Abbreviations: 

NAD+ (Nicotinamide adenine dinucleotide), PARP (poly (ADP)-ribose polymerase), PAR (poly (ADP-ribose) 

polymers), SIRT1 (Sirtuin 1). Adapted with permission from Bai & Cantó (2012). 

Stellenbosch University  https://scholar.sun.ac.za



176 
 

The role of HAART in the induction of DNA damage, genomic instability, mitochondrial dysfunction and 

eventual cell loss through increased apoptosis has been described in numerous cells, such as hepatocytes, 

endothelial cells and immune cells (Lewis et al. 2001; Badley 2005; Zhou et al. 2005). Furthermore, the 

mitochondrial damage induced by NRTIs further drives cellular oxidative damage rendering the cell 

dysfunctional (Liu et al. 2015). All these factors activate PARP and caspase-mediated pathways that lead to 

eventual cell death through necrosis (PARP), apoptosis (PARP and cleaved caspase 3) or both (Tewari et al. 

1995; Adaikalakoteswari et al. 2007). Although this HAART combination (LPV / r and AZT / 3TC) has not 

previously been investigated in this context, our findings concur with studies that have implicated PIs and 

NRTIs in aggravating cardiomyocyte damage following ischaemia-reperfusion (increase in apoptosis possibly 

driven by upregulation of PARP and caspase pathways). We propose that the mechanisms involved are similar 

to the long-term effects of HFD and oxidative stress on PARP activation (Figure 4.7). Furthermore, the present 

study provides new evidence that combining PIs +NRTIs with a dual PPAR α, γ agonist (Saroglitazar) leads 

to a decrease in both cleaved PARP and cleaved caspase 3 expression, which are more pronounced in HCD 

treated groups. 

4.14 Summary 

The highly palatable HCD induced visceral obesity as evidenced by increased weight gain (from the 6th week 

of feeding programme) and increased % IP fat as a result of consumption of more food (hyperphagia). Obesity 

in this HCD model was also accompanied by hyperinsulinaemia and insulin resistance, hypertriglyceridaemia 

and elevated liver mass as opposed to the standard rat chow. Treatment with HAART or Saroglitazar did not 

have any effects on water and food consumption in either the lean or obese animals and similarly no effects 

were observed in total body mass. However, co-treatment of HAART + Saroglitazar led to a reduction in the 

percentage IP fat content in both lean and HCD groups. Although the HCD diet did not induce any changes in 

the cardiac mass, HAART induced an increase in cardiac mass in the obese animals and this was limited by 

co-treatment with Saroglitazar.  

HAART-induced hyperinsulinaemia and insulin resistance in obese rats was improved with Saroglitazar co-

treatment. Saroglitazar treatment with or without HAART did not alter serum TGs. Similarly, HAART 

treatment in both lean and obese animals was not associated with altered serum TG concentrations. HAART 

treatment in obese animals induced FFA oxidation as evidenced by elevated levels of serum CD in obese rats 

treated with HAART. However, this effect was limited in combined HAART and Saroglitazar therapy. 

Untreated obese animals also presented with mild steatosis, however, six-weeks of LP V / r + 3TC / AZT 

treatment in obese rats led to the development of moderate steatosis that was associated with moderate 

inflammation but no fibrotic, necrotic or neoplastic changes. Combined Saroglitazar with HAART limited 

these hepatic changes, but did not translate into improvement in the liver transaminases and aminotransferases 

levels.  
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HCD did not impair cardiac functional performance before and after ischaemia reperfusion. Untreated obese 

rats had smaller infarct sizes compared to the lean animals and intriguingly, infarct sizes in HAART-treated 

obese rats were smaller compared to the untreated obese animals. The cardiac functional performance in the 

HCD HAART group was poor (reduced cardiac output and total work) compared to lean animals treated with 

HAART. Additionally, post ischaemia expression of Erk1/2, PKB / Akt, AMPK and eNOS signalling proteins 

was downregulated whereas expression of p22-phox and caspase 3 was accentuated. Combination of HAART 

with Saroglitazar, however, upregulated the expression of Erk1/2, PKB / Akt, AMPK and eNOS signalling 

proteins and downregulated caspase 3 and p22-phox expression. 

Obese rats treated with HAART demonstrated poor endothelial-dependent acetylcholine-induced aortic 

relaxation, whereas combination of Saroglitazar with HAART improved the aortic relaxation. HAART 

treatment in obese rats reduced aortic activation of eNOS, PKB / Akt and was associated with high expression 

of p22-phox. However, Saroglitazar combined with HAART in HCD rats led to upregulation of eNOS, PKB / 

Akt and downregulation of p22-phox expression.  

Although we have shown clear association between the modulation of these signalling proteins and the various 

pathophysiological states investigated, future studies should use specific inhibitors of these proteins to show 

that there is effectively a role of a specific protein in the effect observed with different treatments. In addition, 

we recognise the limitation of using neither an in vivo model of ischemia-reperfusion nor an animal model 

infected with the virus. These factors should be considered in future studies. 

Table 4.1 A and B Summary of the main study findings (corresponding colour codes indicate comparisons 

made between two experimental groups and ↑ and ↓ refer to increase or decrease following comparisons 

between paired groups). 
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Table	4.1 A)		Summary	of	the	main	findings
176	Wistar	rats	randomized	 into	2	groups	 (n	=	88	/	group)

Parameters	assessed Standard	diet	(lean	group) High	calorie	diet	(HCD)	group
Water	intake	(mL/rat/day) ↑ ¯

Food	 intake	(g/rat/day) ¯ ↑
Total	body	mass	(g) - ↑

After	10	weeks, standard	diet	and	HCD	groups	further	randomized	into	4	groups	and	started	on	drug	treatment
Experimental	groups

(n =	22	/	group)
Lean	control
(Vehicle,	H2O)

Lean	
HAART

LeanHAART	
+	Saro

Lean	Saro HCD	control
(Vehicle,	H2O)

HCD HAART HCD	HAART	+	
Saro

HCD	SARO

Food	 intake	(g/rat/day) - - - - ↑ ↑ ↑ ↑
Water intake	(mL/rat/day) ↑ ↑ ↑ ↑ ¯ ¯ ¯ ¯

Total	body mass	(g) ¯ ¯ ¯ ¯ ↑ ↑ ↑ ↑
End	of	16	weeks	of	feeding	program	and	(last	6	weeks)	of	drug	treatment	biometric parameters

Total	body mass	(g) ¯ ¯ ¯ ¯ ↑ ↑ ↑ ↑

IP	fat	(%	of	total	
body mass)

¯ ¯ ¯ ¯ ↑ ↑ ↑ ↑

↑ ¯ ↑ ¯

Normalised	cardiac	
mass	(mg/mm)

¯ ¯ ↑ ↑

↑ ¯

Normalised	liver	mass	
(mg/mm)

¯ ↑

Blood	and	serum parameters

Random	>	Fasting	
blood	glucose

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Fasting	insulin
(µIU/L)

¯ ¯ ¯ ↑ ↑ ↑
↑ ¯

HOMA-IR ¯ ¯ ¯ ↑ ↑ ↑
↑ ¯

TGs	(mmol	 /	L) ¯ ↑
Normalised	CD	

(µmol/mmol)
↑ ↑ ¯ ↑ ↑ ↑ ¯ ¯

Normalised TBARS	
(µmol/mmol)

↑ ¯

S-ALP	(IU/L) ¯ ↑
Cardiac performance

Qa	(ml/min) ↑ ¯

¯ ↑

%	Qa	recovery ¯ ↑

CO
(ml/min)

↑ ¯

¯ ↑

¯ ↑

%	CO	recovery ¯ ↑

Wt	(mW) ↑ ¯

%	Wt	recovery ¯ ↑

Infarct	sizes

%	infarct	size
↑ ¯

↑ ¯

Liver	tissue	histology

Steatosis

¯ ↑
¯ ↑

↑ ¯

↑ ¯

Steatohepatitis - - - - - ↑ ¯
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Table	4.1 B)		Summary	of	the	main	findings

Experimental	 groups Lean	
control

Lean	
HAART

Lean
HAART	+	
Saro

Lean	Saro HCD	control HCD
HAART

HCD	
HAART	+	
Saro

HCD	SARO

Parameter

Vascular	reactivity

Contraction	Emax ¯ ↑ ¯ ¯ ¯ ¯

RelaxationRmax

¯ ↑
↑ ¯

¯ ↑

Relaxation	Log	EC50

↑ ¯

¯ ↑ ¯ ↑
¯ ↑

Protein	Expression	and	Activation	
AMPK	activation

Cardiac (Pre-
ischaemia)

↑ ¯

↑ ¯

Cardiac (post-
ischaemia)

¯ ↑
¯ ↑

Liver
↑ ¯

¯ ↑
eNOS activation	

Cardiac (Post-
ischaemia)

↑ ¯ ↑ ¯

↑ ↑ ¯ ¯

¯ ↑ ¯ ↑

Aorta
↑ ¯ ↑ ¯

¯ ↑ ¯ ↑
PKB/Akt activation

Cardiac
(post-

ischaemia)
↑ ¯ ↑ ¯

¯ ↑ ¯ ↑

Aorta
¯ ¯ ↑ ↑ ¯ ↑

↑ ↑ ¯ ¯

Liver	PKB/Akt ↑ ¯ ↑ ¯ ¯ ↑

IκBα expression

Aorta ↑ ¯

PGC-1α expression

Aorta ¯ ↑ ¯ ↑

Erk 1/2		activation

Cardiac
(post-

ischaemia)
↑ ↑

↑ ¯

Liver
¯ ↑ ¯ ↑

↑ ¯

p22-phox	expression

Cardiac (Post-
ischaemia)

¯ ↑ ↑ ¯

Aorta ¯ ↑ ¯ ↑

Caspase	3	expression

Cardiac (Post-
ischaemia)

¯ ↑
¯ ↑
↑ ¯ ↑ ¯

Cleaved	PARP	expression

Cardiac	
(Post-

ischaemia)
¯ ↑ ↑ ¯

¯ ↑ ¯ ↑
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Having discussed the present study findings, the subsequent chapter (chapter 5) draws conclusions based on 

the research question and study hypotheses. Also, the present study limitations and future directions on this 

research topic are indicated. 
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Chapter 5 : Final Conclusion 

5.1 Conclusion 

In this controlled experimental study, we set out to answer two questions: (i), whether treatment with HAART 

(LPV / r + AZT / 3TC) for six weeks would lead to NAFLD with concomitant development of cardiac and 

vascular dysfunction in lean / obese male Wistar rats compared to non-treated rats and (ii), whether co-

treatment with a dual PPAR α and γ agonist, Saroglitazar, for the same duration of time, would limit HAART-

induced NAFLD and subsequent cardiovascular outcomes. In addition, we aimed to test whether the null 

hypothesis would hold true i.e., that HAART has no effects on the development of NAFLD and CVD and that 

co-treatment with Saroglitazar has no effects on liver and cardiovascular system. Based on the study findings, 

we have made several conclusions according to the experimental objectives. 

The high calorie diet model we employed successfully induced visceral obesity in male Wistar rats through 

hyperphagia and was marked with insulin resistance, hypertriglyceridaemia, increased IP fat, and increased 

CD. Following HAART therapy for six weeks, these derangements persisted and were limited when 

Saroglitazar was co-administered with HAART in the obese animals. Obesity also presented with mild features 

of steatosis, however, six-weeks of LP V / r+3TC / AZT treatment in obese rats led to development of moderate 

steatosis that was associated with moderate inflammation but not fibrotic, necrotic or neoplastic changes. 

Therefore, this combination of PIs and NRTIs led to the development NAFLD. 

Combined Saroglitazar with HAART limited these hepatic changes, but did not translate into an improvement 

in the liver transaminases and aminotransferases levels. Therefore, we infer that the Saroglitazar-mediated 

protection from steatosis and steatohepatitis is via improved fat distribution (↓ IP fat) and amelioration of 

insulin resistance through upregulation of hepatic AMPK, PKB / AKT activity.  

Despite the metabolic alterations induced by obesity, the findings of the present study failed to provide 

evidence of adverse effects by the high calorie diet on cardiac functional performance before and after 

ischaemia reperfusion. In fact, obese rats presented with smaller infarct sizes compared to the lean animals. 

Furthermore, HAART-treated obese rats developed smaller left ventricular infarct sizes following ischaemia 

and reperfusion, compared to the untreated obese animals. Therefore, we infer that the high serum insulin 

concentrations appeared to protect the treated and untreated obese rats from developing increased large infarct 

sizes, possibly through the insulin preconditioning phenomenon. However, obese animals treated with 

HAART presented with reduced cardiac output and total work compared to lean animals treated with HAART 

and this decline in function was associated with downregulation of protective signalling cascades i.e., Erk1/2, 

and PKB / Akt (RISK pathway), AMPK and eNOS signalling proteins and high oxidative stress as evidenced 

by increased expression of p22-phox. In support of our alternate hypothesis, co-administration of Saroglitazar 

with HAART limited this derangement (HAART-induced cardiac dysfunction) and lead to upregulation of 
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post-ischaemia Erk1/2, and PKB / Akt (RISK), AMPK and eNOS signalling proteins. These proteins are 

known to mediate improved cardiomyocyte efficiency and protection against reperfusion injury following an 

ischaemic insult. Additionally, post-ischaemia expression of p22-phox was downregulated when Saroglitazar 

was co-administered with HAART in obese animals indicating protection from oxidative stress posed by LPV 

/ r + 3TC / AZT. 

Therefore, we have presented novel evidence that a combination of LPV / r + AZT / 3TC impairs the 

myocardial response to an ischaemic insult in obese rats but co-treatment with Saroglitazar offers protection. 

We deduce that patients on HAART after an acute MI event, may be unable to competently activate cardio-

protective mechanisms and therefore dual PPAR α / γ stimulation may have clinical potential in ameliorating 

this dysfunction. 

Vascular reactivity studies indicated that obesity improved endothelial performance (better endothelial-

mediated acetylcholine-induced aortic relaxation compared to lean animals). Therefore, the present study has 

provided more evidence supporting the ‘obesity paradox’ in cardiovascular protection, whereas obese rats 

treated with HAART demonstrated poor endothelial-mediated relaxation. However, combination of 

Saroglitazar with HAART improved this dysfunction and we consider this to be of novel potential therapeutic 

value for HAART-induced endothelial dysfunction in obese patients. We have established that HAART 

treatment in obese rats downregulates aortic activation of eNOS, PKB / Akt and upregulates expression of 

p22-phox thereby indicating reduced NO and increased oxidative stress that is associated with poor 

endothelial-mediated acetylcholine-induced aortic relaxation. However, these effects were ameliorated in 

Saroglitazar and HAART co-therapy through upregulation of eNOS, PKB / Akt and downregulation of p22-

phox expression.  

From the present study findings, we conclude that treatment of male Wistar rats with LPV / r (68.57/17.14 

mg/kg/day) + AZT/3TC (51.43/25.71 mg/kg/day) for six weeks is not by itself a major risk factor for CVD, 

but that it potentiates the risks associated with high caloric diet-induced obesity.  The PIs and NRTIs 

combination did not by itself induce altered cardiac functional performance or vascular reactivity, but 

aggravated the HCD effects. These findings suggest that the monitoring of cardiovascular risk factors in obese 

patients on HAART therapy is important, and that the introduction of appropriate mitigating measures such as 

co-treatment with a dual PPAR α and γ agonist, Saroglitazar, be investigated further for potential clinical use. 

We have demonstrated that the metabolic, functional and signalling disturbances in the liver, heart and aorta 

in obese Wistar rats treated with HAART are interlinked and are partially limited by co-treatment with a dual 

PPAR α and γ agonist, Saroglitazar (0.4 mg/kg/day). 

5.2 Study limitations 

Although the study was largely a success, there are a few things that would have improved the overall success. 

Suffice it to say, all the activities set out in this controlled experimental study were undertaken and all the 

objectives achieved. 
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As frequently stated in our discussion, there is a paucity of knowledge in this topic, especially on the 

mechanisms that mediate the HAART-induced liver, aorta and cardiac abnormalities in the setting of obesity. 

Although epidemiological studies and clinical trials have provided strong evidence linking these conditions, 

the surface is barely scratched when it comes to the pathophysiological mechanisms. 

Although the ex vivo working heart is an excellent technique of assessing cardiac contractility and AMI, we 

are of the opinion that it would have been more valuable to assess the cardiac structure and performance 

periodically (every 4 weeks) for example through echocardiography in an in vivo ischemia-reperfusion model 

to generate more translatable findings. This is an area that future studies should focus on. 

Due to budgetary constraints, the Western blot experiments had to be conducted in different sets (four 

experimental groups per 15-well gel plates (n = 3 / group), for the liver and heart tissues. Although the aims 

we set out were all accomplished, this took a long period of time compared to the aorta Western blot 

experiments which were conducted using 26-well pre-cast gel plates. We prioritized (with the limited funds) 

the aorta tissue Western blot analysis (26-well pre-cast gel plates) because the amount of protein concentration 

is low in aorta tissue without perivascular adipose tissue and therefore separating the groups would have 

demanded duplicating the limited tissue lysates which was not feasible. 

As already stated, we only conducted our experiments on male Wistar rats due to time and budgetary 

restrictions since inclusion of female rats would have demanded larger sample sizes to account for the 

hormonal variations. Obesity, metabolic and CVD complications are also prevalent in female patients on 

HAART therapy and therefore understanding of the underlying pathophysiological mechanisms is important. 

Perhaps, this is an area that should be evaluated in future studies. 

The present protocol evaluated HAART effects on young rats. Although this did not limit what we set out to 

achieve, we are of the opinion that extension of this protocol would have led to development of overt liver 

changes such as severe steatohepatitis and fibrosis based on our findings. Effects of HAART on older obese 

rats (to represent the ageing human population) have not been studied. In addition, use of HIV animal model 

would have provided more insight in this context and should be considered in the future. 

Because only limited serum volumes could be collected, the type and number of serum analyses conducted 

had to be determined carefully. This is because, the animals could not be bled periodically so as not to introduce 

confounding effects in cardiovascular physiology. Additionally, analysis of circulating drug concentrations 

would have provided crucial data to correlate with the metabolites assessed. Therefore, larger sample sizes 

could have offered more options although this would have come at a cost to an already restricted budget. 

No fatty acids were included in the perfusion buffer. Although this important factor was considered during the 

formulation of this protocol, inclusion of fatty acids would have required a significant addition of study animals 

and cost to the already restricted budgetary allocation. Inclusion of a fatty acid buffer should be considered in 

future studies. 
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5.3 Future directions 

As mentioned, the surface is barely scratched in this topic area and the present study focused only on 

parameters relevant in assessment of NAFLD, CVD and aortic reactivity studies. For example, an in vivo 

model of MI – reperfusion would generate interesting results to corroborate our findings. Additionally, 

radiological cardiac performance monitoring through echocardiography and electrocardiography would be 

another venture in this topic. 

Other parameters that should be considered in future studies include: investigation of histology of the heart 

and determination of cardiac lipids and glycogen. Adipose tissue histology should also be investigated in PI-

based HAART regimen. Since HAART has been shown to interfere with the inflammatory pathways, serum 

inflammatory markers should be evaluated. Additionally, the present study investigated HAART effects 

following six weeks of therapy. Future studies should focus also on longer treatment protocols because the 

human population on HAART is ageing and the effects in obesity therefore differ. 

Investigations on vascular reactivity should also investigate signalling cascades following induction of 

contraction and relaxation to have clearer understanding on changes that occur following drug phenylephrine-

induced aortic contraction and acetylcholine-induced aortic relaxation. In addition, the endothelial (without 

the other vascular components) measurements of AMPK. PKB / Akt and eNOS ought to be evaluated because 

this area was outside the scope present study. Future experiments should also consider evaluation of these 

physiological processes on female rats. 

As previously stated, evaluation of the serum drug concentrations during the treatment period should be 

considered in future studies in the context of HAART because the high rate of metabolism in rodents may 

greatly impact their effectiveness. 

Future studies should also evaluate the role of dual PPAR α / γ stimulation in cardio-protection following AMI. 

This research area is currently ongoing in our laboratory where cardio-protection in ischaemia-reperfusion is 

being investigated targeting the PPAR α, γ stimulation in pre-and post-conditioned hearts. 
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5.4 Research outputs so far 

Conference and science meetings contribution 

Year: 2016 

Authors: F. Kamau, H. Strijdom, D. Blackhurst, P. Waweru, R. Salie. 

Reference: Peroxisome proliferator-activated receptors α /γ stimulation is beneficial in combined antiretroviral 

therapy. 

(Oral presentation) 

Physiology Society of Southern Africa, 44th Conference, Cape Town, South Africa. 2016. 

Year: 2016 

Authors: F. Kamau, H. Strijdom, D. Blackhurst, P. Waweru, R. Salie. 

Reference: Peroxisome proliferator-activated receptors α /γ stimulation is beneficial in combined antiretroviral 

therapy. 

(Oral presentation) 

Annual Research Day, Faculty of Health Sciences, Stellenbosch University, 2016. 

Year: 2016 

Authors: F. Kamau, H. Strijdom, D Blackhurst, P. Waweru, R. Salie. 

Reference: PPAR α /γ agonist, Ameliorates Metabolic Derangements in Obese rats on HAART. 

(Oral presentation) 

Biomedical Research and Innovation Platform (BRIP), SAMRC Annual Science Symposium. 2016. 
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Addenda 

Addendum A, Rat chow and HCD certificates of analysis. 

Addendum A, 1 Certificate of rat chow analysis. 
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Addendum A, 2 Certificate of HCD analysis. 
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Addendum B HCD preparation. 

To prepare HCD, standard rat chow (300 g) was mixed in 125 mL of warm water with 70 g of household sugar. 

The chow was left to soak for about an hour and then mixed with melted vegetable fat, HolsumTM (2 X 125 g) 

and four cans of full cream condensed milk (4 X 385 g / can) then preserved at 4 degrees. Below are the 

nutritional values of HolsumTM butter and condensed milk. 

 

 

  

Nutritional	value	of	HolsumTM /	100	g

-Energy	(kJ) 3700
-Protein	 0
-Glycaemic Carbohydrates	 (g) 0
-Total	fat	(g) 100

-of	which	saturated	fat	(g) 67.8
-trans	fat	(g) <1
-Monosaturated fat	(g) 26.4

-Dietary	fibre (g) 0
-Total	Sodium	 (mg) 0
-Vitamin	A	(µg) 1380
-Vitamin	D	(µg) 15

Nutritional	value	of	Condensed	milk	/	100	g

-Energy	(kJ) 1381
-Protein	 6.5
-Glycaemic Carbohydrates	 (g) 54

of	which	total	sugar	(g) 54
-Total	fat	(g) 8.7

-of	which	saturated	fat	(g) 5.5
-trans	fat	(g) -
-Monosaturated fat	(g) -

-Dietary	fibre (g) 0
-Total	Sodium	 (mg) 125
-Calcium	 (mg) 284
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Addendum C Description of phenylephrine and acetylcholine drug preparation for organ (aorta) bath 

perfusion system. 

 

 

Phenylephrine and acetylcholine stock preparation. 

 

 

 

 

Phenylephrine and acetylcholine cumulative doses preparation. 

 

  

Phenylephrine

0.002	g	Phenylephrine	in	10	ml	of	0.9	%	saline	=	1	mM stock

Acetylcholine

0.0182	g	acetylcholine	in	10	ml	of	0.9	%	saline	=	10	mM (Stock	A)

Dilution:

1	ml	of		Stock	A	in	9	ml	0.9	%	saline	=	1	mM (Stock	B)

1	ml	of		Stock	B	in	9	ml	0.9	%	saline	=	1	mM (Stock	C)

Phenylephrine:

- 2.5 µL of stock (100nM Phe)

- 5 µL of stock (300nM Phe)

- 5 µL of stock (500nM Phe)

- 7.5 µL of stock (800nM Phe)

- 5 µL of stock (1 µM Phe)

(Total volume = 25 µL)

Acetylcholine:

- 7.5 µL of Stock C (30nMAch)

- 17.5 µL of Stock C (100nMAch)

- 42.5 µL of Stock C (300nMAch)

- 14.3 µL of Stock B (1 µMAch)

- 220 µL of Stock B (10 µMAch)

(Total volume = 301.8 µL)
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Addendum D Antibodies (Ab). 

Antibody Manufacturer Dilutions 

IκBα Cell Signalling Technology® 1:1000 (TBS-tween) 

PGC-1α Cell Signalling Technology® 1:1000 (Signal boost) 

PPAR α Abcam Biotechnology® 1:1000 (1 % fat free milk in TBS-tween) 

Cleaved PARP Cell Signalling Technology® 1:500 (TBS-tween) 

Cleaved caspase 3 Cell Signalling Technology® 1:1000 (TBS-tween) 

p22-Phox Santa Cruz Biotechnology® 1:1000 (1 % fat free milk in TBS-tween) 

eNOS (total and 
phosphorylated Ab) 

Cell Signalling Technology® 1:1000 (Signal boost) 

Erk 1 / 2 (total and 
phosphorylated Ab) 

Cell Signalling Technology® 1:1000 (TBS-tween) 

p38 (total and 
phosphorylated Ab) 

Cell Signalling Technology® 1:1000 (TBS-tween) 

PKB/Akt (total and 
phosphorylated Ab) 

Cell Signalling Technology® 1:1000 (TBS-tween) 

AMPK (total and 
phosphorylated Ab) 

Cell Signalling Technology® 1:1000 (TBS-tween) 

 

 

Antibodies distributed by Anatech Instruments (pty) limited, South Africa (Cell signalling 
Biotechnology, Inc., Massachusetts, USA and Santa Cruz Biotechnology, Inc., Texas, USA) and 
Biocom biotech (pty) limited, South Africa (Abcam Biotechnology®, Cambridge, UK). 

Secondary antibody (AEC Amersham, Buckinghamshire, United Kingdom) (Dilution 1:4000 TBS-
tween for all primary antibodies except for PGC-1α and total and phosphorylated eNOS which were 
diluted in signal boost (1:4000) as previously described. 
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Addendum E Rat mortality report. 

 

Following the oral gavage procedure, the following 12 deaths categorized as per the 
experimental groups (shown below) were reported. Post-mortem examinations revealed that 
the cause of death was because of aspiration of the turbid drug mixture as evidenced by 
presence of the drug concoction along the respiratory tract. Deaths were random and occurred 
within 1-4 hours following gavage except for 2 cases where rats were isolated following 
development of dyspnoea after gavage and died after 8 hours. 

 

 

 

Group Lean 
Control 

HCD 
Control 

Lean 
HAART 

HCD 
HAART 

Lean 
HAART + 
Saro 

HCD 
HAART + 
Saro 

Lean Saro HCD 
Saro 

 

Deaths 

 

0 

 

0 

 

4 

 

2 

 

2 

 

4 

 

0 

 

0 
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