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Abstract

Verifying Android Applications Using Java PathFinder

H. Botha

Department of Computer Science
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD (Computer Science)

November 2017

Current dynamic analysis tools for Android applications do not achieve
acceptable code coverage since they can only explore a subset of the behav-
iors of the applications and do not have full control over the environment
in which they execute. In this work model checking is used to systemati-
cally and more effectively explore application execution paths using state
matching and backtracking. In particular, we extend the Java PathFinder
(JPF) model checking environment for Android. We describe the difficul-
ties one needs to overcome as well as our current approaches to handling
these issues. We obtain significantly higher coverage using shorter event
sequences on a representative sample of Android apps, when compared
to Dynodroid and Sapienz, the current state-of-the-art dynamic analysis
tools for Android applications.
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Chapter 1

Introduction

Android applications (apps) are used for banking, shopping and access-
ing/storing personal information. They contain bugs and errors like all
software applications, but since they operate in a safety critical environ-
ment, errors and bugs can have serious effects. Therefore, these apps need
to be thoroughly tested and analyzed.

Android applications can be tested manually on a device/emulator.
In this case a user interacts with the device by tapping on the screen,
pressing buttons and changing the settings or configurations of the device
to expose hidden or unexpected erroneous behavior of the application.
Manual testing is expensive and not scalable since it relies on human
testers. Additionally, applications must be tested on many different de-
vices, device configurations and Android versions to ensure reliability.
Without utilizing record-and-replay functionality, one cannot ensure the
application still works after fixing a bug or for previous/future releases.

The process of manual testing is automated using dynamic analysis
tools. They perform an under-approximated analysis of the application’s
behavior because only a subset of possible event sequences and device
configurations are tested. The most basic dynamic analysis tools for
Android typically exercise the application running on a device/emulator
by blindly firing events (monkey testing) [20]. Random and heuristic
event generation strategies are then used to optimize the analysis [17, 19,

1
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CHAPTER 1. INTRODUCTION 2

22, 52, 54, 55, 57]. In order to bound the analysis, heuristics such as event
sequence length or runtime are used. The effectiveness of these tools are
widely measured using statement code coverage. Statement coverage
measures the percentage of the program statements executed during the
analysis and gives an indication of how thoroughly the code was tested.

Although these tools obtain high coverage for certain apps, they strug-
gle to achieve sufficient coverage for applications critically dependent
on their environment for large parts of the application code [28]. The
environment of the System-Under-Test (SUT) consists of the application
dependencies without which an application cannot run and an event
generator to drive its execution. More specifically, there are two main
challenges dynamic analysis tools face:

Environment Configuration Environment configurations include the bat-
tery level, network state, apps installed on the device, database and
content providers’ state, the file system contents and even the state
of a remote web server with which an app communicates. Android
only exposes limited functionality to configure its environment.
Tools struggle to detect configurations used by applications and at
which point to change the configuration to effectively explore the
maximum number of application paths.

Event Generation Android applications require particular events at spe-
cific points in their execution to enable certain application code,
for example, firing an incoming call from an exact number when
the service is running. Detecting these events is hard since they
might be hidden in the implementation. Apps also require spe-
cific event sequences to reach certain areas in the application code.
Detecting valid event sequences and reducing them to a bounded,
representative set is also a non-trivial problem due to the influence
of environment configurations and the limited access to the state of
the application and its environment provided to tools.
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CHAPTER 1. INTRODUCTION 3

In this work we apply model checking to improve the effectiveness
(measured using code coverage) and efficiency (measured using number
and length of event sequences) of current dynamic analysis tools. Model
checking is a mature verification technique used to prove the absence
of property violations in a system with a finite (and small enough) state
space. However, it is often used as a bug-finding tool. It systematically
performs a depth-first search (or breath-first search) over the state space
of the SUT represented as a graph. The search is optimized using state
matching which ends exploration of a path when a previously seen state
is reached, and backtracking which uses caching of previously explored
states to continue the search from a branch point without having to re-
execute the path leading up to the state. Model checking also provides
fine-grained control over the application’s execution to verify property
specifications.

Software applications are model checked using program model check-
ers such as Java PathFinder (JPF) [63]. JPF is a powerful and established
Java application model checker and analysis engine. Since Android ap-
plications are written in Java, we investigate how JPF can be applied to
analyze Android applications. JPF provides mechanisms to override and
control inflexible environment behavior. This enables coverage of hard-to-
reach areas in the application code current Android analysis tools struggle
to reach due to the application’s reliance on an external environment.
State matching and backtracking capabilities allow effective exploration
of shorter and more influential event sequences. It also provides a prop-
erty listener framework to monitor the execution of an application at
byte-code level. Furthermore, if a property violation is reached, it can
trace back the execution leading to the violation. JPF has many extensions
that can be applied to Android applications (such as Symbolic PathFinder)
once they run on JPF.

Our extension to JPF is called JPF-Android (Figure 1.1.) Since An-
droid applications are executed instead of analyzed statically, the tool
faces challenges similar to other dynamic analysis tools. To model check
Android applications extensive environment modeling of missing, too
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CHAPTER 1. INTRODUCTION 4

Android app

Environment 
Model

Non-
deterministic 

choices

State 
matching Listeners

Event 
Generator Listeners

JPF-Android

JPF

Figure 1.1: Overview of JPF-Android

large and unavailable dependencies is required. JPF-Android provides
an environment model (Chapter 3) implementing the functionality required
by applications to run. This model is based on an abstracted version
of the actual application framework and provides full control over the
environment behavior. The environment model also includes generated
application specific models returning default/runtime/statically collected
values to improve coverage. Although creating such a model requires a
lot of effort, it provides full control over the environment configuration
and event generation that is not possible using dynamic analysis tools.

To generate valid events and event sequences to obtain good coverage
of the application code, JPF-Android provides an event generator (Sec-
tion 4) that detects enabled entry-points and generates events to drive the
execution of the application.

Although model checking optimizes the search with state matching
and backtracking, it suffers from the state-space explosion problem. Addi-
tionally, Java as well as Android applications are not finite state by design.
To reduce the environment models of JPF-Android, we implemented a
tool to detect unbounded variables in the SUT. We also implemented
ways to optimize state matching and reduce the number of branches in
the state-transition graph to obtain a more manageable analysis size.
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CHAPTER 1. INTRODUCTION 5

Lastly, JPF-Android includes a set of listeners to record the coverage,
event sequences and environment configurations explored during the
analysis (Section 5). To evaluate the effectiveness and efficiency of our
approach we ran the tool on a set of representative apps and showed a
significant increase in the code coverage using shorter event sequences in
comparison to Dynodroid [52] and Sapienz [55], the current state-of-the-
art dynamic analysis tools (Section 6).

1.1 Motivating Example

The two main challenges for dynamic analysis tools causing low state-
ment coverage for Android applications are environment configuration
and event generation. These challenges can be illustrated using an app
from the Google Play Store: AutoAnswer [4]. AutoAnswer automatically
answers incoming calls in certain configured scenarios. It is enabled in the
app’s main preference screen and can be configured to answer calls from
all numbers, only contacts or only starred contacts. Additionally, a delay
can be set before answering a call and whether calls should be answered
using the speaker or a Bluetooth headset. Lastly, the user can configure it
to answer a second incoming call.

To get notified of incoming calls the application registers a Broadcast
Receiver (BR) (shown in Listing 1.1) for PHONE_STATE events. If the
phone-state changes to STATE_RINGING and the service is enabled (lines
10 – 11), the contact restrictions are checked (lines 15 – 22). If the call should
be answered, the AutoAnswerIntentService is started to answer the
call (line 25).

1.1.1 Environment Configuration

Dynamic analysis tools have limited control over the environment of the
application on an Android device. They can miss important behavior
because relevant configurations cannot be detected, specific environment
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CHAPTER 1. INTRODUCTION 6

1 public class AutoAnswerReceiver extends BroadcastReceiver {
2 @Override
3 public void onReceive(Context context, Intent intent) {
4 // Load preferences
5 SharedPreferences prefs = PreferenceManager.

getDefaultSharedPreferences(context);
6
7 // Check phone state
8 String phone_state = intent.getStringExtra(TelephonyManager.

EXTRA_STATE);
9 String number = intent.getStringExtra(TelephonyManager.

EXTRA_INCOMING_NUMBER);
10 if (phone_state.equals(TelephonyManager.EXTRA_STATE_RINGING)
11 && prefs.getBoolean("enabled", false)) {
12 ...
13 // Check for contact restrictions
14 String which_contacts = prefs.getString("which_contacts", "

all");
15 if (!which_contacts.equals("all")) {
16 int is_starred = isStarred(context, number);
17 if (which_contacts.equals("contacts") && is_starred < 0) {
18 return;
19 } else if (which_contacts.equals("starred") && is_starred <

1) {
20 return;
21 }
22 }
23
24 // Call a service, since this could take a few seconds
25 context.startService(new Intent(context,

AutoAnswerIntentService.class));
26 }
27 ...
28 }

Listing 1.1: Code extract from AutoAnswerReceiver

configurations cannot be set or when there are too many configurations to
consider.

The AutoAnswer application depends on external services/libraries
including the contacts Content Provider (CP) that allows the application
to query the list of contacts on the phone, the Bluetooth service used
to check if a headset is connected and the audio manager used to play
audio through the speaker. Configuring these environment dependencies
can be challenging. For the application to exercise its behavior related
to the Bluetooth service, for example, we need to run the application
while physically connecting and disconnecting a Bluetooth headset. On
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CHAPTER 1. INTRODUCTION 7

the emulator this is not even possible since Bluetooth support is not
emulated.

The return values of these dependencies directly influence the applica-
tion’s code coverage but are often hidden in the implementation of the
application. The contacts CP, for example, should contain starred and
not-starred contacts matching the incoming call’s number to enable lines
15 – 22 in Listing 1.1.

Dependencies can return many different values but the input space
should be limited to representative return values. The application only
responds to two values returned from the Bluetooth service: headset
connected or headset not connected. If the Bluetooth service returns any
other value, it will not enable any new application behavior.

1.1.2 Event Generation

Another challenge for dynamic analysis tools is generating event se-
quences for Android applications because of the many possible events
and event combinations (especially when combined with different envi-
ronment configurations). The events that can be fired for AutoAnswer
include changing each of the settings on the preference screen as well as
firing the onReceive() method of the BR with PHONE_STATE events.
Dynamic tools cannot detect that an incoming call event should be fired
for each environment configuration (all preference combinations). They
might fire the BR multiple times for the same configuration, but miss firing
it for important configurations or stop analysis before all configurations
have been explored.

Secondly, the parameters with which entry-points are called, have a
big influence on the application’s code coverage. Although the event
generator can detect that the BR is registered for PHONE_STATE events,
there are many different such events: STATE_RINGING, STATE_PHONE_
OFFHOOK and STATE_PHONE_IDLE. Each of these events have different
parameters. The STATE_RINGING event, for example, has an EXTRA_

INCOMING_NUMBER parameter (lines 8 – 9). In this example this param-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 8

eter is crucial. If the number is null, the app throws a NullPointer

Exception in the isStarred() method. To enable lines 16 – 21 in List-
ing 1.1, the incoming number must match a contact, a starred contact and
no contacts.

1.2 Contributions

The contributions of this work include:

1. Environment modeling of missing, too large and unavailable/un-
configurable dependencies

• Identification of what components need to be modeled

• Investigation of available tools to automate modeling

• Identification of where tools can be applied for modeling the
Android environment

• Development of an Android environment model and modeling
strategy

2. Generating valid events and short, bounded and representative
event sequences

• Design and create driver based on Android event-driven message-
passing design to collect, and non-deterministically fire events

• Improvement of coverage by extension of driver to automat-
ically use runtime/statically collected parameters for entry-
points

• Provide mechanism to implement custom event generation
strategies

• Implementation of random, dynamic and heuristic event gen-
erators

• Tracking of explored event sequences using an event tree
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CHAPTER 1. INTRODUCTION 9

3. Optimizing model checking to enable analysis of Android appli-
cations

• Detection of unbounded variables

• Reduced number of classes in state

• Pre-load all application classes

• Customize exploration of non-deterministic choices

• Track and verify execution per thread using Checklist

4. Evaluation of the effectiveness of these techniques and a compar-
ison to state-of-the-art dynamic analysis tools

1.3 Overview

The thesis is divided into six chapters. Following Chapter 1, the intro-
duction, Chapter 2 provides background information on the Android
environment and describes model checking as a verification technique.
It then continues to discuss related work. Chapter 3 outlines the chal-
lenges of environment modeling for Android applications and discusses
our approaches to overcome these challenges. Chapter 4 explains how
events are generated to drive the execution of the Android application
under analysis. Chapter 5 describes the optimizations and extensions
made to JPF in order to effectively analyze Android applications. The
tool is evaluated in Chapter 6 by comparing it to state-of-the-art dynamic
analysis tools: Dynodroid and Sapienz. Chapter 7 concludes the thesis by
providing a summary of the research and suggesting future refinements
and extensions to the tool.
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Chapter 2

Background

This chapter gives background information on Android application design
and model checking followed by a discussion on related work. Firstly, the
Android software stack and Android application internals are described to
understand application behavior. Section 2.2 gives an overview of model
checking and the capabilities of Java PathFinder (JPF). Next, approaches
to environment modeling are given before concluding with a discussion
on current Android application analysis tools and their strengths and
weaknesses.

2.1 The Android Software Stack

Android is an open source software stack (Figure 2.1) developed to run on
mobile devices with resource and energy constraints. It is designed to
support a range of device configurations and capabilities [31].

The Android software stack is built on top of a modified Linux kernel
and includes modules such as the Binder Interprocess Communication
(IPC) driver and a power manager to satisfy the specific needs of mobile
devices. The kernel is responsible for efficient memory, process, user and
thread management. It includes and supports several configurable native
libraries and drivers such as the web browser engine (webkit), libc library,
camera driver, audio manager, media framework, database engine and

10
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Figure 2.1: The Android software stack

the graphics engine [18]. For security reasons, each Android application
runs as a separate process. 1 This allows Linux’s built-in process and user
management to keep applications from modifying the data and code of
other applications.

Android applications, the system services as well as the application
framework that provides the base implementation for applications are
implemented in Java. The application framework simplifies application
implementation and communication with native libraries, drivers, other
applications and external services. The Java code is compiled using the
standard Java compiler and converted to a compacted, optimized version
of the Java byte-code called Dalvik Executable (DEX) byte-code. DEX is
executed on the Dalvik Virtual Machine (DVM) which runs in the applica-
tion’s process. The DVM resembles the Java Virtual Machine (JVM), but
has a register-based design compared to the JVM’s stack-based design.
The DVM provides an abstract environment and hides the complexity
and variability (inconsistency) of the environment on a device.

System services run in their own process and perform Operating Sys-
1There are ways to run multiple applications in the same process, but this is not

common and will not be discussed here.
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Figure 2.2: The Android application environment

tem (OS) level tasks. There are three main services shared by all appli-
cations. The ActivityManager service is responsible for managing
the state and interaction between application components across all run-
ning applications. The PackageManager service keeps information on
installed packages. The WindowManager service stores the window cur-
rently on the screen and maps Graphical User Interface (GUI) events to
the correct application and listener.

At the top of the stack is the stock Android applications shipped with
the Android platform as well as custom Android applications created by
third party vendors.

2.1.1 Android Applications

Android applications consist of a collection of application components that
run on top of the extensive Android application framework (Figure 2.2.)
The framework provides four base components that can be extended to
implement a basic application. An Activity is used to instantiate and
control a GUI, a Service performs background tasks, a Broadcast Receiver
(BR) is used to subscribe to specific events and lastly a Content Provider
(CP) manages data access. These components provide specific callback
methods fired by the framework to transition them between states. The
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life-cycle of each component defines the different states of the component
and the sequence of callback methods called for each transition. These
base components are extended by Android applications and their callback
methods are overwritten in order to extend the behavior of a component.

Android applications have a single-threaded event-based design. Each
application has one main event handling thread that drives its execution
by processing messages (containing events and callbacks) on the main
message queue of the application [15]. This design is commonly used by
GUI frameworks since it is too complex and inefficient to make all User
Interface (UI) classes thread safe.

Application entry-points include listeners and callbacks registered in
the application framework. These callbacks are fired by events. Events
can be triggered by user interaction with the application such as clicking a
button on the UI, key presses on the keyboard, as well as physical button
presses such as the volume, back or home button. Events are also triggered
by the environment due to a change in the state of the underlying system.
This includes the location changing, battery level notifications, network
connectivity changes and alarms. Life-cycle methods of the application
components are called implicitly by the framework.

Due to the fact that Android applications have a single main thread to
handle all application events, most applications use some form of concur-
rency to avoid the main thread from blocking and becoming unresponsive.
All long running operations, including common operations such as net-
work and database operations, are required to execute in a new thread.
Android introduces the AsyncThread object as a way to simplify concur-
rency. The AsyncThread object stores a static thread pool of Java threads
per application. It is used to schedule tasks that need to execute in a new
thread. The AsyncThread object provides the functionality to schedule
messages on the message queue of the main thread to provide feedback
on the status of the task.

Android application components interact asynchronously with other
components and external services by using Android’s Binder IPC mech-
anism to pass messages. These messages are called Intents. Intents
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are used to notify application components of certain events. They can
contain a description of an operation to be performed or, in the case of
broadcasts, a description of something that has happened and is being
announced. Application components follow the observer design pattern
by registering for specific broadcast messages. IntentFilters are used
to register components for specific types of events to be forwarded to a
component.

Applications do not have direct access to external services but instead
use locally running service managers to facilitate the IPC. These managers
are responsible for serializing method calls, parameters and return values
and storing and firing callbacks of the application in response to the
remote service’s behavior.

Local services are implemented as part of the application framework
and run in the application process. They are used to access local files
and data and to give access to native libraries. These services include the
LayoutManager, ResourceManager and camera.

2.2 Model Checking

Model checking is a formal verification technique that automatically
proves the correctness of a System-Under-Test (SUT), given a logical for-
mula describing a property specification [29]. Correctness is determined
by extracting a finite-state, directed, state-transition graph from the SUT
and performing a path-sensitive analysis of the graph to determine if it
satisfies the logical formula (i.e., determine if the graph is a model of the
formula) [29, 44]. A path-sensitive analysis tracks variable values and
evaluates conditional expressions to only explore valid, feasible program
paths. If a formula is not satisfied, the model checking engine can trace
back the path in the state-transition graph as a counterexample leading to
the violation.

These logical formula specifications can describe safety properties
such as unchecked exceptions and liveness properties. They enable model
checking to search for and detect concurrency errors in multi-threaded
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programs which are difficult to detect using program testing [29] such as
deadlock and race-conditions. Property specifications can also be used to
verify that the implementation conforms to its design requirements.

2.2.1 Explicit-State Model Checking

Explicit-state model checking generates states explicitly, on-the-fly while
performing a depth-first search of the state-transition graph (but it can
also perform a breadth-first search). Its goal is to find property violations.
When the search ends without finding a property violation in a finite-
state system where all states are explored, the system does not violate the
property.

Each path in the state-transition graph represents a possible execu-
tion of the application. A state represents the state of the SUT and a
transition represents the list of program instructions executed between
two states. The SUT is executed deterministically until multiple paths
are possible due to different choices in the environment. These choices
include, for example, different user inputs, thread schedulings or random
number values [44]. At these choice points the transition is ended and
the current state of the system stored. The different choices are explored
non-deterministically, originating from the same saved state. Backtrack-
ing enables model checking to restore a previously saved state to explore
all of its non-deterministic transitions without having to re-execute the
path leading to the saved state. Exploration is stopped when an end state
(termination of the program) or a previously visited state (in which case
the following execution was already explored) is reached.

Explicit-state model checking is exponential in the size of the graph.
Therefore, state matching stores and matches states to previously visited
states. This ensures that each state is only explored once — the first time
it is reached — reducing the search to be linear in the size of the graph.

The SPIN model checker [40] is an example of an automata-theoretic
explicit-state model checker that uses Linear Temporal Logic (LTL) formu-
las to describe property specifications. These formulas are then converted
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to Büchi automata which accept if the execution does not violate the spe-
cific property specification. In this case the search is linear in the number
of states, but exponential in the number of properties.

2.2.2 Java PathFinder (JPF)

JPF is a mature, open-source, analysis engine for Java applications [63].
It is implemented as an explicit-state model checker that works directly
on Java class files. JPF provides a custom, abstracted JVM that is im-
plemented in Java and runs on the Oracle JVM. It includes callbacks to
notify subscribed listeners of certain JVM and JPF events. The application
is executed on JPF while being verified against property specifications
implemented as JPF listeners. By default, JPF provides listeners to de-
tect errors such as deadlocks, race conditions, infinite loops, track object
allocations and can inject exceptions into the application.

A transition in JPF consists of the list of byte-code instructions leading
from one state to another. A state consists of the values of all variables in
the system and includes [48] a:

Thread List Stores a list of the threads and their current states. The
state includes a thread’s unique id and stack trace. The stack trace
contains a list of stack frames — one for each method call storing
the location in the method (program counter), its local variables and
operands.

Static Area Stores a list of all loaded classes and the values of their static
variables.

Dynamic Area Stores a list of all reference (dynamic) objects in the heap.
Each entry contains the type of the object, its unique reference id
and a map of its fields and/or list items and their values. Reference
ids represent memory locations in the heap and are stored as integer
values.

Variables can either store primitive or complex data types. Primitive
data types include boolean, integer and char, for example, and store
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their value directly in the variable. Complex data types are a composite of
primitive and other complex data types. Variables storing complex data
types only store a reference to the actual object in the dynamic area.

When a new state is saved by JPF, the current thread list, classes (static
area) and objects in the heap (dynamic area) are serialized into a hash
value. To retain heap symmetry, object entries are serialized in the order
in which they were created. This hash value is then used to detect state
matches by comparing it to previously visited states’ hash values. To
improve state matching, garbage collection is run before a state is stored
to filter out unreferenced objects.

Java applications are not finite state by design because they depend on
a (possibly) unbounded environment. We can create a finite-state system
by abstracting environment behavior (and sometimes the application
itself) and by limiting the search depth in the case where the abstraction is
not enough or the application state space is unbounded. JPF allows classes
to be modeled/abstracted by replacing any Java class in the application,
its libraries or even the Java class library with a modeled version.

JPF includes an option for state debugging. When enabled, a serialized
version of each state is stored in a file. These files can be compared by
using a diff tool in order to identify changes in the state.

JPF separates the process of state matching and state storage for back-
tracking. The serialization of the state into a hash value is only used for
state matching. In order to restore the state of the system, JPF stores a
memento of the kernel state (thread list, heap, classloaders and listeners)
from which the state is restored.

JPF simplifies specifying properties by providing property listeners
to track byte-code execution. These listeners can be extended and imple-
mented in Java to verify all kinds of properties including liveness and
safety properties. Although JPF does not natively support specifications
in the form of logical formulas, an extension to the tool, JPF-LTL provides
this functionality [1].

JPF’s design enables developers to easily create extensions to the
framework. Currently, there exist many extensions to JPF including a
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1 $imageFileNameEdit.setText("sunset.png")
2
3 // select a transformation
4 REPEAT 2 {
5 ANY { NONE, $<greyScale|resize>Button.doClick() }
6 }

Listing 2.1: Example of an JPF-AWT input script

symbolic execution extension (JPF-SYMBC) [58], data race detector (JPF-
RACEFINDER) [45] and an Abstract Window Toolkit (AWT) extension
(JPF-AWT) [56].

JPF-AWT enables the model checking of AWT applications. AWT ap-
plications, similar to Android applications, are based on a single-threaded,
message queue design. All application events are put in a message queue
and then processed by the main thread of the application, called the
EventDispatchThread.

As AWT applications are event-driven, JPF-AWT introduced the idea
of using a simple event script to write sequences of user inputs to drive
the application execution. This is done by modeling the EventDispatch
Thread class to request events from the script file simulating the event
occurring, when the message queue is empty. As model checking is
usually done on a closed system, the script drives the application to
execute specific functionally of the application to be verified.

Since multiple events can be fired at a specific point in time, the AWT
input script introduces the Alternative (Any) script element to explore a
set of event choices non-deterministically (see Listing 2.1). JPF-AWT only
supports one level of non-determinism so does not support Any elements
inside other Any elements.

JPF-AWT has the advantage that AWT applications make use of the
Java library classes for operating system functions such as network ser-
vices and file managing, whereas Android applications use custom An-
droid libraries implemented for the Android platform.
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2.3 Environment Modeling

In testing and analysis the SUT consists of two components: the unit
under test and its environment [30]. The environment includes all libraries
and components with which the unit interacts. The environment can be
broken down into the driver and the dependencies. The driver executes the
unit by making calls into the application code whereas the dependencies
represent classes referenced from the unit. Note that in reality dependen-
cies can contain callbacks to the application or to the driver. Models (also
called mocks or stubs) are used to abstract dependencies such as external
libraries or services that are unavailable, inflexible or irrelevant to the
analysis. Figure 2.3 shows a simplified view of an environment model
used to create a closed system, without external references, to analyze the
unit in isolation.

Driver Unit

Stub

Stub

Stub

Figure 2.3: Structure of an environment model

JPF allows developers to specify an environment model to simulate
the behavior of the actual environment. JPF, together with its many exten-
sions2 including jpf-concurrent, jpf-awt, net-io-cache, provide models for
many of the Java library classes. NetIO [49] and NetStub [25], for exam-
ple, model the network library for Java applications. NetStub provides
manually created stubs for distributed Java applications and supports
capturing the interaction between the applications for use as a driver
during unit verification. NetIO allows a single Java application (either
client or server) to run on JPF and interact with its counterparts running

2http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects
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external to the verification tool. This interaction is cached to allow JPF to
backtrack during analysis.

Dependency models can be created by hand, or generated automati-
cally using static or runtime techniques. Environment generation is aimed
towards the automatic generation of environment models. Static analy-
sis tools geared towards environment generation such as OCSEGen and
ModGen produce over-approximated models whereas runtime analysis
tools under-approximate the behavior being modeled.

OCSEGen [61] can generate both drivers and dependency models for
the unit. The driver generation is configured by user specifications given
in LTL or regular expressions. For model generation the tool makes use of
side-effect analysis. The tool has many configurations for model genera-
tion. It can either analyze the classes in the unit or in the environment. For
both of these configurations the user can specify fields, inside or outside
of the unit, to track using side-effect analysis. When the tool is run, it
builds a call graph of all reachable methods from the component under
analysis. This graph is searched for statements that change the values of
these fields. The changes are percolated up to the first class reachable from
the unit to retain side-effects to the fields being tracked. The changes are
stored in method summaries of each reachable method. The summaries
are used to generate code for models.

The tool can generate models returning three types of values: default,
choice or symbolic values. Returning default values can miss interesting
behavior of the application, but it works well for cases where the appli-
cation component calling the model does not rely on the content of the
return value. Alternatively, generated methods can return a set of all
possible return values, but this results in too many possibilities to verify.
Symbolic objects can also be returned by the models when the application
is run on a symbolic execution tool such as Symbolic PathFinder (SPF) [58].
OCSEGen has limitations typical to static analysis: it may produce over-
approximation of side-effects and cannot analyze native code or code
using reflection.
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OSGEGen has been applied to Java applications making use of the
Swing GUI framework [30]. Since the work was focused on analyzing
interaction orderings for the applications, the environment generation is
localized to modeling the environment around the code implementing
the GUI. OCSEGen was used to analyze the interaction between the ap-
plication code and the Swing library to identify classes in the framework
reachable from the application. Side-effects to the state of the GUI are then
preserved. The authors define the state of GUI components as enabled-
ness, visibility, containment and listener registration. For the application
to run, the driver also needs to be smart in the sense that it needs to gen-
erate valid sequences of input events. A disadvantage of this approach
is that it generates application specific stubs that need to be expanded
manually by running OCSEGen on multiple applications to create more
general stubs.

Modgen [26] is an environment generation tool focused on optimiza-
tion of library classes by reducing their complexity. The tool has two
modes: In the first mode, it generates an empty stub of a given class by
returning default values from its methods. In the second mode, it makes
use of program slicing to generate an abstract model of a class. It allows
the user to specify fields of a class that store values important to its func-
tionality. The class is then “sliced” in the sense that methods, fields and
statements with no reference to these fields are removed or stubbed out
so that the class only includes statements relevant to these specific fields.
After the slicing is complete, decompilation of the sliced code is required
to get the Java source code.

Another tool, nHandler [60], automatically models methods of li-
braries/applications on JPF. It delegates the unavailable method’s ex-
ecution to an instance of the object in its actual environment on the JVM
and then converts and returns the result from the modeled method in
the JPF environment. This approach assumes that the method and the
library it belongs to can be instantiated and run directly on the JVM. This
is not the case for Android applications since their external libraries have
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dependencies on native services and services not available outside of the
Android environment.

Work has been done to model external code for static analysis using
data flow summaries [23]. The requirements for models used for static
analysis are less complex since the application code is not executed.

The Android Standard Development Kit (SDK) includes a few models
for unit testing and mocking frameworks, such as Mockito [13], can gen-
erate models for classes/methods referenced from the unit. These models
return default values or can be extended manually to return expected
values. For unit and functional testing smaller parts of the application are
tested such as a method or component. The models are therefore smaller
and less complex. To enable non-determinism, state matching, component
interaction and correct life-cycle management of components, we require
a more complex model of the environment.

Recent work [43] has started to use design pattern recognition to
classify and automatically model dependencies using predefined imple-
mentation of these patterns. Although very promising work, we found
that in a large framework such as Android, design patterns are blurred
and dependencies and object hierarchies severely complicate automatic
modeling.

2.4 Runtime Verification

Runtime verification verifies the correctness of an application by monitoring
an execution trace of the application and comparing it to user-defined
property specifications. These property specifications are typically de-
scribed using formalisms such as LTL and extended regular expressions.
Techniques such as logic-based monitoring and error pattern analysis are
then used to verify the application’s execution trace against these specifi-
cations to detect violations of safety and liveness properties [27, 46, 39].

Runtime verification is designed to fill the gap between formal verifi-
cation methods and testing. It avoids the complexity of formal methods
such as model checking and theorem proving, but utilizes their temporal
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logic specifications to describe the execution of the application. Test-
ing on the other hand is very scalable. Runtime verification merges the
expressiveness of logic specifications with the scalability of testing [39].

Runtime verification allows applications to be monitored either inline
or offline. Inline monitoring requires modification of the application’s code
to insert annotations/comments describing the property specifications of
the program. During a precompilation stage, these comments/annota-
tions are used to dynamically generate code verifying the properties. The
disadvantage of using inline monitoring is that the monitoring operations
influence the application’s execution. Offline monitoring entails instru-
menting the code/byte-code of the application to emit events indicating
changes in the program state. These event traces are processed by an
external system, independent of the application, to detect errors.

Chen and Roşu [27] developed a Monitor Oriented Programming
(MoP) paradigm to verify that application execution conforms to logic
based specifications. Their system aims at providing a language and logic
independent solution to runtime verification and to provide both inline
and offline monitoring. They implemented an environment to verify Java
applications using past time and future time LTL as well as extended
regular expressions by using logic plug-ins to their system.

Runtime Verification is often used in mobile application analysis [64,
54]. Applications are instrumented to print logs while running on a
device. These logs are then monitored for exceptions or other properties
by an external component. The advantages of this approach include
that it is mostly platform independent, does not require modeling of the
application environment, and is scalable.

2.5 Android Analysis Tools

There is a whole body of work using static analysis for detecting secu-
rity and privacy violations in Android applications [24, 32, 51, 33, 50].
Two drawbacks of using static analysis are that it reports false positives
and does not provide an event sequence or environment configuration
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to dynamically verify that errors exist. It also requires modeling of un-
available and native code. Our work, however, focuses on performing
path-sensitive dynamic analysis.

Roboelectric [16] and JUnit testing make use of mocks to test the unit
or functionality locally — outside of a device. Tools such as UIAutoma-
tor [19], Espresso [9], Robotium [5], Calabash [8], Appium [7] and the
Android Instrumented JUnit framework [17] are dynamic analysis tools
that allow the user to write tests executed on the emulator. Running
them on the emulator reduces modeling since the applications run in their
actual environment.

Automated dynamic analysis tools generate events to drive the execu-
tion of the application. Monkey [20], for example, is a random testing tool
shipped with Android and fires random events to exercise application
code. It detects errors in the form of exceptions. Dynodroid [52] is built
on the Monkey Application Programming Interface (API) and focuses
on improving coverage by using a heuristic event generation approach.
Sapienz [55] makes use of multiple emulators to generate event sequences
and identifies an optimal set of sequences using the Pareto-optimal ge-
netic search algorithm to maximize the coverage and minimize event
sequences.

Tools such as Evodroid [53] and Trimdroid [57] generate Android JUnit
or Robotium [5] test cases to exercise the application code. Trimdroid [57]
minimizes test sequences statically using dependency analysis between
event handlers to reduce test cases. In contrast, JPF-Android implicitly
performs dependency analysis using state matching and supports system
events and environment configuration not supported by Trimdroid.

Other tools analyze logs generated by instrumented applications run-
ning on the emulator to identify bugs [41], resource leaks or race condi-
tions [54].

All of these tools require environment modeling to some degree to
achieve satisfactory coverage. This may include modeling an HTTP con-
nection, connecting to a remote service or simulating a certain environ-
ment configuration. They also need to generate event sequences and
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specific event parameters to improve code coverage. Dynamic analysis
tools need to be run several times to obtain sufficient results.

Research has been done on collecting events at runtime and building
GUI models that can be used to generate valid event sequences for An-
droid applications [65]. The main problem these tools face is that Android
applications’ entry-points are enabled and disabled dynamically as the
application runs which makes it hard to determine valid sequences. They
also face the problem that applications respond to events that can be fired
at any time while the application is running resulting in complex models.

GreenDroid [67] makes use of JPF to detect energy problems by track-
ing API usages. It models dependencies manually and randomly gener-
ates events to fire entry-points. The code coverage they obtain is low –
less than 39% for all but one small application. JPF-Android focuses on
improving coverage for Android applications while reducing the search
space. The techniques we employ to optimize our tool could easily by
used to improve its effectiveness and efficiency of this tool.

More advanced techniques such as symbolic execution [58] is com-
putationally very expensive and require more extensive modeling. The
complexity increases as the number of symbolic variables and number
of paths increase. For this reason the analysis is optimized for GUI and
event-driven applications which have many different program behaviors:
by reducing the number of possible user/environment inputs [66, 42],
randomly choosing a thread schedule [59], bounding the depth of event
sequences [34, 22] or analyzing event handlers in isolation [35]. Note
that these optimizations can have a negative impact on the code coverage
achieved by the tool. Symbolic analysis tools also struggle to analyze
behavior dependent on complex objects or that performs complex compu-
tations.

2.6 Summary

This chapter started with a discussion on the complexities of the Android
software stack and the internals of the Android platform. Next, model
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checking and the advantages and challenges to this verification technique
were presented — focusing in particularly on JPF, a model checker for
Java applications. Environment modeling was then introduced followed
by a discussion on the current event generation techniques and tools
available. An overview of runtime verification followed, highlighting its
similarities to model checking. Lastly, an overview of current Android
analysis tools was given describing their advantages and shortcomings.
In the next chapter, environment modeling for Android applications is
discussed including the challenges faced by JPF-Android in this regard
and the approaches used to create an environment model.
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Environment Modeling

Android applications have many dependencies. In order to run them
on the Java PathFinder (JPF) Java Virtual Machine (JVM), broken, un-
available and complex dependencies are modeled to form an abstracted,
closed environment model. In this chapter we start by presenting our
modeling approach. Next we describe the different types of dependencies
of Android applications as well as the tools used to create an environment
model suitable for model checking.

3.1 Overview

As discussed in Chapter 2, the System-Under-Test (SUT) can be divided
into the unit and its environment consisting of a driver and dependencies (see
Figure 2.3). For this project, the unit is an Android application. The driver
fires events to trigger the entry-points of the application and is discussed
further in Chapter 4. The dependencies include classes referenced from the
application and components required to properly execute the application.

Dependency modeling for model checking has three main goals: (1)
create a closed system by modeling unavailable dependencies, (2) abstract
the original, complex environment to reduce analysis size and (3) model
inflexible dependencies to improve the code coverage.

Modeling dependencies is a complex process. They can implement

27
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complex class hierarchies, design patterns and can be interdependent.
Dependencies can also behave differently for different environment con-
figurations and different applications. Therefore, modeling is usually
done manually. For manual modeling, the application and its environ-
ment are inspected manually and models created by hand. Before mod-
eling a class, its dependencies and related class hierarchies need to be
understood. Dependencies have references to other parts of the system
and native libraries without which they cannot run or be set up correctly.
The methods and fields of a dependency, referenced from applications,
should then be identified and modeled. A class is modeled by abstracting
its original behavior. The model should reduce dependencies on other
external components and only include behavior essential to running an
application.

Manual modeling can be automated using environment generation
techniques. These techniques use static analysis to automatically identify
all classes referenced from a unit and then generate models for these
dependencies.

There are two main strategies for modeling class dependencies. A
complete stub models all public methods of a class and can be reused by
many apps. An application specific stub only includes methods and fields
of a class referenced from a specific application. They are more concise,
but cannot usually be reused by other applications.

These simplest way to generate implementations for these stubs is
to return default values from their methods. For example if a method
returns a boolean, it is modeled to always return “false”. These models
are called empty-stubs. Empty-stubs are simple to generate, but do not
always achieve good coverage results. Instead of returning default values,
symbolic execution can be used to detect application entry-point param-
eters or dependency return values, but cannot always be run due to the
complex nature of the objects involved. To improve on the default values
returned from empty-stubs, we use runtime collected values. Returning
specific values from dependencies works well in cases where the appli-
cation depends on specific values and dependencies have no side-effects
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the application itself.
In some cases, however, side effects to fields in the application or its

environment must be retained for proper execution of the application.
These fields include listeners registered in the environment to be fired
for certain events, the hierarchy of GUI elements passed to the window
manager and the state of the media player. Side-effect analysis can detect
and retain modifications to fields of interest in the application and its
environment. It generates a call graph for the system and then performs
inter-procedural analysis of methods to detect side-effects to these fields.
Object references are tracked using points-to analysis and method sum-
maries are generated retaining updates to these fields. Relevant fields are
selected manually by mapping them to properties the application requires
to function properly.

Slicing is a modeling technique used to optimize classes for which not
all behavior is relevant to the verification of the application. Slicing has the
advantage that it preserves all functionality in the original dependency in
a sound way by removing unused behavior. For small classes this works
well but for larger, more complex components, slicing usually includes
too much of the original implementation.

For this work we combine these approaches to build on each other’s
strengths.

3.2 The Android Application Environment

Android applications are notoriously difficult to test and verify due to
their many dependencies. There are four main dependency types in the
Android environment:

The Application Framework The base implementation of Android ap-
plications on which they are heavily dependent. This code runs as
part of the application process.

External System Services Operating system services running in their
own process controlling the global device state for example the
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ActivityManagerService and WindowManagerService.

Libraries Native and Java libraries referenced from the application for
example Gson and commons-io.

Other Android Applications Other applications installed on the device
for example the camera or browser applications.

Model checking Android applications outside of their original environ-
ment on an Android device and on JPF presents the following challenges:

Native Code The application framework depends on many native li-
braries and drivers. These native libraries are not available and cannot
directly run outside of the emulator since available drivers, kernel mod-
ules, CPU architecture and hardware differ. This results in broken native
methods in framework classes and affects commonly used XML resource
parsers (used for Graphical User Interface (GUI) inflation, resource pars-
ing, preferences) and local services such as SQLiteDB and the camera.
Interaction between application components and external services, facili-
tated by the framework, is also broken since it is implemented as a native
Binder kernel module.

System Services External system services run in their own process and
Dalvik Virtual Machine (DVM). Due to their complexity and size, it is
infeasible to analyze their execution together with the application. The
application framework depends on these services to control application
state and the state of the device. Therefore, carefully constructed models
are required to abstract their behavior for a single application.

Applications Android applications interact with each other using the
application framework, Binder Interprocess Communication (IPC) and
the ActivityManagerService which resolves messages to the rele-
vant components and apps. Interaction with external applications is
therefore modeled because external applications are not available and
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the native Binder library and external system services (including the
ActivityManagerService) are modeled.

Libraries Libraries referenced from the application are not part of the
unit and should also be modeled. This is especially hard for complex
libraries performing Network I/O and file operations.

3.3 Automating Modeling

In order to automate model generation we investigated two static analysis
tools: OCSEGen [61] and Modgen [26]. Both tools can generate models
automatically using static analysis, but OCSEGen can also detect the
dependencies of a specific unit. Since dependencies are not detected
automatically by Modgen we focused on OCSEGen.

OCSEGen is very efficient at generating empty-stubs. We use the stub
generation capabilities of the tool to generate complete and application
specific stubs. Existing models and classes reused from the framework
are excluded from the analysis.

Complete stubs are generated by analyzing the dependency class itself
and generating an empty-stub. These stubs are useful when the current
implementation of a dependency cannot run outside of the Android soft-
ware stack. It can also abstract dependencies not important to the analysis
or with no side-effects on the analysis. Complete stubs are used as base
implementations for service managers or local services with native code
as well as for abstracting graphical or accessibility classes.

Application specific stubs are generated by statically analyzing the
dependencies of the application classes. OCSEGen then generates empty-
stubs for classes referenced from the application. The generated models
only include methods and fields called from the application. This func-
tionality is used to create a closed environment for a new application by
modeling classes not yet modeled by JPF-Android. It is also used to create
custom models that can be configured to improve coverage or reduce

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ENVIRONMENT MODELING 32

1 public final class Rect implements android.os.Parcelable {
2 public int bottom;
3 public int left;
4 public int right;
5 public int top;
6 public static Rect TOP = new Rect();
7
8 public Rect() {}
9

10 public Rect(int param0, int param1, int param2, int param3) {}
11
12 @Override
13 public boolean equals(java.lang.Object param0) {
14 return Abstraction.TOP_BOOL;
15 }
16
17 @Override
18 public int hashCode() {
19 return Abstraction.TOP_INT;
20 }
21
22 @Override
23 public java.lang.String toString() {
24 return Abstraction.TOP_STRING;
25 }
26
27 public static android.graphics.Rect unflattenFromString(java.lang.

String param0) {
28 return android.graphics.Rect.TOP;
29 }
30 ...
31 }

Listing 3.1: Stub of the Rect class

analysis size for a specific application. These models can be changed
manually to extend their behavior for a specific application.

Figure 3.1 shows an extract of a complete stub for the Rect.java class.
Its methods return default values configured in the Abstraction class (0
for int, false for boolean and a configured string). The tool is configured to
generate a default constructor and TOP static variable storing an instance
of the class to use as a return value. We extended OCSEGen to include
all public fields and constants and their values in generated complete
stubs since these values are used by other application/framework models.
Inner classes have to be manually copied into their parent class. The stub
was generated in a few seconds.
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3.4 Retaining Side Effects

Modgen can retain behavior of the original class by slicing the byte-code
when given a set of fields to retain. It risks generating invalid byte-
code that cannot be decompiled/run. OCSEGen can retain side-effects
to configured fields using side-effect analysis. The capabilities of the
tools are illustrated using two examples from the Android application
framework.

The first example for which we applied side-effect analysis is a stub
generated for the MediaPlayer class shown in Listing 3.2. The Media
Player class contains many native methods. In order to execute applica-
tions referencing the class, an empty-stub is generated for it. But, listeners
registered in this class by the application must be retained in models.
These listeners are entry-points of the application and must be fired by
the driver.

In order to retain them in the MediaPlayer class, we configured
OCSEGen to retain all side-effects to fields names ending in “listener” and
to analyze all methods starting with “set”.

When run on the MediaPlayer class as the unit, OCSEGen retained
the listener fields, their assignment in the set methods and their release in
the release method. It could not, however, retain in which method they
were fired since this happens in an inner class of the MediaPlayer. The
final static variables assigned primitive values have also been retained
successfully.

Modgen was also used to generate a model for the MediaPlayer class.
It also retained the listener fields and their assignment, but generated 923
Lines of Code (LOC) with 144 lines that could not be decompiled from
byte-code compared to OCSEGen’s model of 480 LOC that could compile
and run. It retained all fields and lines of code related to the listeners.
Additionally, each field to retain had to be specified manually and changes
could not be retained across classes.

The next example is the TextView class that represents a widget
displaying text. All widgets such as the Button and EditText objects,
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1 public class MediaPlayer {
2 private OnCompletionListener mOnCompletionListener;
3 private OnErrorListener mOnErrorListener;
4 private OnPreparedListener mOnPreparedListener;
5
6 public static final java.lang.String MEDIA_MIMETYPE_TEXT_VTT = "

text/vtt";
7 public static final int MEDIA_ERROR_UNKNOWN = 1;
8 public static final int MEDIA_ERROR_SERVER_DIED = 100;
9 public static final int

MEDIA_ERROR_NOT_VALID_FOR_PROGRESSIVE_PLAYBACK = 200;
10 public static final int MEDIA_ERROR_IO = -1004;
11
12 public static MediaPlayer TOP = new MediaPlayer();
13
14 public void release(){
15 this.mOnCompletionListener=null;
16 this.mOnErrorListener=null;
17 this.mOnPreparedListener=null;
18 ...
19 }
20
21 public void setOnCompletionListener(OnCompletionListener param0){
22 this.mOnCompletionListener=param0;
23 }
24
25 public void setOnErrorListener(OnErrorListener param0){
26 this.mOnErrorListener=param0;
27 }
28
29 public void setOnPreparedListener(OnPreparedListener param0){
30 this.mOnPreparedListener=param0;
31 }
32
33 static bOnCompletionListener access$800(MediaPlayer param0){
34 return param0.mOnCompletionListener;
35 }
36 ...
37 }

Listing 3.2: Extract from the MediaPlayer class
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1 public java.lang.CharSequence getText(){
2 return this.mText;
3 }
4
5 private void setText(java.lang.CharSequence param0, android.widget.

TextView.BufferType param1, boolean param2, int param3){
6 java.lang.CharSequence r0 = null;
7 r0=param0;
8 if(Verify.randomBool()) {
9 this.mText=r0;

10 }
11 }

Listing 3.3: Extract from the TextView Stub created by OCSEGen

extend the TextView class since they also display text. The mText field
declared in the TextView class is used to store this text internally. This is
important for applications like a calculator application where the text on
the buttons are used in the logic of application implementation. Since the
mText field is an important field in the TextView class, OCSEGen was
used to identify side-effects to this field. Listing 3.3 presents two methods
that side-effect analysis could clearly identify.

This stub is generated using may side-effect analysis which shows
changes that might be made to the fields. The Verify.randomBool()
statements indicate a non-deterministic choice and are used when verify-
ing the application on JPF. They are used here to indicate that for some
execution paths of the method, this side-effect might not happen.

Analyzing this class using OCSEGen shows us: (1) which methods
have no side-effects on this field and can be stubbed and (2) which meth-
ods have effects on this field, such as the getText and setTextmethods,
and have to be inspected.

To preserve all references to the mText field, Modgen was also used to
slice the TextView class given only the mText field. Modgen reduced the
TextView class from 9476 to 5827 LOC but the model that was generated
was over-approximated. Its slicing algorithm kept references to all the
variables and code affecting this field which resulted in the tool preserving
too much of the original code in the model to yield any insight at this
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stage. The reduction in size can mainly be attributed to the removal of
code in methods not referencing the mText field which can be done more
effectively using OCSEGen.

Modgen can also not retain call hierarchies since it only performs intra-
procedural analysis on a single class at a time. The generated stub of the
setText method, for example, was not reduced in size by the slicing
and other methods that call the setText method was stubbed out since
the tool could not detect changes further down in the call hierarchy. The
biggest issue with using the slicer is the decompilation of the generated
Java byte-code back to Java source code. Java Decompiler (JAD)1 and
Procyon2 were used but both of these tools are still in development and
could not completely decompile the byte-code into compilable Java source-
code. Fixing the code manually does not scale to large classes therefore it
was not used in the JPF-Android environment model.

3.4.1 Discussion

By investigating these two static analysis tools, we found that both side-
effect analysis and slicing can be useful in generating environment models.
Side-effect analysis can detect modifications to the fields of interest, but
may not be able to detect what kind of modification was made. For
example storing or removing from an array is detected as a modification,
but side-effect analysis cannot distinguish between them whereas slicing
can. We still need to inspect each side-effect manually to identify and
preserve its effect. Slicing on the other hand is used to optimize classes
for which not all behavior is relevant to the verification of the unit. Slicing
preserves all functionality in the original class in a sound way by removing
unused behavior. But in practice it includes too much of the original
behavior of the class to be useful. Another problem with slicing is the
capabilities of the slicer and decompilation of the sliced byte-code.

1http://jd.benow.ca
2https://bitbucket.org/mstrobel/procyon
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1 public class MusicReceiver extends BroadcastReceiver {
2
3 @Override
4 public void onReceive(Context ctx, Intent intent) {
5
6 String action = intent.getAction();
7 if (action.equals(Intent.ACTION_MEDIA_BUTTON)){
8
9 Bundle bundle = intent.getExtras();

10 KeyEvent key = (KeyEvent) bundle.get(Intent.EXTRA_KEY_EVENT);
11
12 switch (key.getKeyCode()) {
13 case KeyEvent.KEYCODE_MEDIA_PLAY_PAUSE:
14 ctx.startService(new Intent(...));
15 break;
16 case KeyEvent.KEYCODE_MEDIA_PLAY:
17 ctx.startService(new Intent(...));
18 break;
19 case KeyEvent.KEYCODE_MEDIA_PAUSE:
20 ctx.startService(new Intent(...));
21 break;
22 }
23 }
24 }
25 }

Listing 3.4: Extract from RandomMusicPlayer

3.5 Improving Models with Runtime Values

To improve the code coverage achieved by automatically generated mod-
els, we introduce an approach to generate drivers and stubs based on
values collected during runtime instead of using default values. The
approach is motivated by the low code coverage and the number of appli-
cation crashes when using default stubs for JPF-Android. The following
example taken from the RandomMusicPlayer application illustrates the
problems with using default stubs. Listing 3.4 is the MusicReceiver
Broadcast Receiver (BR) implemented to respond to media button presses
on the physical device.

BRs are registered for specific Intent objects using IntentFilters. These
filters are specified in the AndroidManifest.xml file (Listing 3.5) or they
can be specified when registering a BR dynamically in the code. IntentFil-
ters specify the action, categories and data that an Intent has to match to
be forwarded to the BR. Intents can also contain any number of extra Java
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1 <receiver android:name=".MusicReceiver" >
2 <intent-filter>
3 <action android:name="android.intent.action.MEDIA_BUTTON" />
4 </intent-filter>
5 </receiver>

Listing 3.5: Extract from AndroidManifest.xml

1 public class Intent implements Parcelable, ... {
2 private String mAction;
3 private ArraySet<String> mCategories;
4 private Bundle mExtras; // map of extra objects
5 ...
6 }

Listing 3.6: Extract from Intent.java

objects stored in the Bundle object of the Intent. The Bundle stores a map
of String-Object pairs containing extra information about the event (see
Listing 3.6).

The MusicReceiver’s onReceive() method is an entry-point of the
application and is called by the JPF-Android driver (Listing 3.4). JPF-
Android parses the AndroidManifest file to determine the action and
categories of Intents that must be fired. To fire the BR in the above example,
the action of the Intent must be set to MEDIA_BUTTON.

JPF-Android has no way of determining what objects should be in the
Bundle of the Intent and so null is returned on line 10 of Listing 3.4. The
code then crashes on line 12 due to a null-pointer dereferencing exception.

Symbolic execution can be used to analyze methods to determine
possible input values, but symbolic execution tools such as Symbolic
PathFinder (SPF) have difficulty analyzing this code because of the com-
plex structure of the Intent and Bundle objects.

In Listing 3.7, our next example, VERSION.SDK_INT is a static field
of the android.os.Build class set by calling a native method in the
android.os.SystemProperties class. The model of the SystemProp-
erties class needs to return an Android SDK version of 8 as well as some
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1 if (android.os.Build.VERSION.SDK_INT >= 8) {
2 mAudioFocusHelper = new AudioFocusHelper(getApplicationContext

(), this);
3 } else {
4 mAudioFocus = AudioFocus.Focused;
5 }

Listing 3.7: Extract from RandomMusicPlayer

other version to ensure that both branches of this if-statement are ex-
plored. Our current model of the SystemProperties is an empty-stub and
returns an empty String for String properties requested. Instead of re-
turning default values, we want to automatically look up possible return
values for native methods and then execute the code in Listing 3.7 non-
deterministically for build version “8” as well as another valid Android
SDK version. Symbolic execution can detect these values, but it requires
environment generation to analyze the method and stub generation to
generate a model using the values it detects.

3.5.1 Collecting and Using Runtime Values

The goal of this approach is to generate events and models using dynami-
cally collected method parameters and return values for testing/analysis.
To collect these values, methods in the application (and its libraries) are
instrumented to log their input parameters and return values when run in
their original environment. More specifically, the following information is
recorded for each method:

Application Name By storing the application name, logs can be collected
over many runs of the application and their inputs/results com-
bined.

Unique Run Number The run number allows us to filter the logs printed
during a specific run of the application.

The Class Signature The class information allows us to distinguish meth-
ods with the same name.
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The Method Signature This is used to identify the method that printed
the log entry.

Input Parameters Input parameters are used as “extra information” to
filter the results of a method. The input parameters are also used to
generate more accurate input values for entry-points.

Return Value These values are used in method stubs.

Java code is injected at the start of a method as well as before each of
its return statements to record these values. The code injected at the start
of a method copies/caches the state of the parameters. It is necessary to
record them before they are updated in the method. Before each return
statement, a statement is injected to log the information collected about
the method.

The parameters and return objects of a Java method need to be serial-
ized to binary, XML or JSON representations. This enables us to record
the state of a object and de-serialize the state back into a new object at a
later stage.

The instrumented application is run in its original environment using
a driver or test cases. The logs from multiple runs are collected, parsed
and stored in a database where they can be searched and queried. Since
the logs are structured, a regular expression matcher parses the logs into
objects stored in an object store or database. These logs can then be
queried for the parameters or return values of a specific method. If more
than one return value is stored for the same input parameters, they can
be returned non-deterministically by the stub. Otherwise, if no values
have been stored, a default value is returned. These values are used to
improve the driver and stubs to obtain higher coverage of the application
code during a follow-up analysis with JPF-Android.

3.5.2 Implementation

Android applications’ entry-points are instrumented to collect input pa-
rameters for event generation and dependencies’ methods are instru-
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Figure 3.1: Collecting and using runtime values

mented to collect parameters and return values for creating stubs. The
main purpose of implementing this approach is to enable the execution
of code that could previously not be executed with JPF-Android. The
approach is illustrated in Figure 3.1 and each step is described below.

Logging Using Flowlogger We created Flowlogger [10] to simplify log-
ging from the application. Flowlogger contains static methods called from
the injected code to serialize the parameters and return values and to log
method information using the Android logging framework. The applica-
tion name, class signature and method signature are passed to Flowlogger
from the application as String values. XStream [21] is used to serialize
the input parameters and return values. XStream allows serialization/de-
serialization of Java objects into XML, JSON or binary data. It can access
and set all public, protected and private fields of a class or inner class.
Additionally, the user can create custom converters for objects that con-
tain context specific-fields that should not be stored or used for matching.
Flowlogger and XStream are injected into the libs folder of the application
and transformed into Dalvik Executable (DEX) byte-code during the build
process.
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Instrumenting the Byte-Code The most popular approach to instru-
ment Android applications is to use tools such as SOOT [47] and Andro-
guard [3] to instrument the DEX byte-code. But since DEX byte-code
differs from Java byte-code, we used the established SOOT static analysis
tool to instrument the Java byte-code generated at an intermediate phase
of the application build process.

The application methods are instrumented to perform three tasks.
Firstly, invoke a static method call on Flowlogger at the start of the method
to serialize its parameters and store it in a String variable. Secondly, inject
byte-code at the position of each return statement to serialize the return
value. Lastly, send the method information to Flowlogger to log and
return.

Instrumenting native methods is hard since they have no Java imple-
mentation. Their method signatures must also be kept intact because
it is used to automatically map native method definitions to their C++
implementation. To instrument these methods, a shadow method is injected
for each native method in Java. A shadow method calls its native method
but also logs the input and return values of the native method. All calls to
the original native method are then updated to call the shadow method.

Collecting and Parsing Logs The instrumented application is run on
the emulator and exercised by a user to collect useful values. The log
statements generated by Flowlogger are retrieved from the device using
Logcat. Logcat is a command-line utility which is part of the Android
SDK. The logs collected for different runs and for different applications
are parsed and stored in a MongoDB [14] document store. A Python
script is used to parse and filter the logs with specified patterns into JSON
objects and store them in a MongoDB. The JSON objects should not be
confused with the values of their returnValue and params keys that
store Java objects as XML. MongoDB is a highly scalable and fast JSON
object store with an extensive RESTFul API.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ENVIRONMENT MODELING 43

Using the Values The logs stored in the MongoDB are retrieved using
our custom MongoWrapper library implemented in Java to wrap calls
to the DB. XStream, also used by Flowlogger, is then used to deserialize
the XML back into Java objects. If there are no recorded results for a
method/entry-point, it returns a default value.

We extended OCSEGen to look up runtime values during its code-
generation phase to generate more effective stubs. For each method
it models, OCSGen looks up a set of unique return objects using the
MongoWrapper and XStream. Code is then generated for the method
that return these values non-deterministically. In the case of complex
objects the tool must be supplied with code to construct an instance of the
specific object type given an instance of the object, but primitive values’
toString() methods are used.

Runtime values collected for entry-points are used in the event gener-
ation component of JPF-Android. In this case, events are expanded to a
set of events for all observed parameters.

3.5.3 Examples

The first example is from the RandomMusicPlayer Android application
shipped with the Android SDK. The RandomMusicPlayer application
obtains high coverage results using dynamic testing tools such as monkey
and Dynodroid [52], which ensures that we can collect a good set of input
parameters and result values.

Listing 3.4 shows the MusicReceiver of RandomMusicPlayer contain-
ing the onReceive() method. When the application is compiled, the
MusicReceiver is instrumented to log its input parameters (see Listing 3.8).
We created a custom converter that excludes Context objects, since the
Context is highly dependent on the application and its environment.

The application was executed on the emulator using monkey for 5000
events and we collected 11 log entries generated by the method. An
extract from a log entry containing the input parameters is shown in
Listing 3.9. The map of extras in the Intent object contains a KeyEvent
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1 public class MusicReceiver extends BroadcastReceiver{
2
3 public void onReceive(Context ctx, Intent intent) {
4
5 Object[] array = { ctx, intent };
6 String paramStr = FlowLogger.getParamString("(Landroid/content/

Context;Landroid/content/Intent;)V", array);
7
8 // original method body
9

10 FlowLogger.logMethod("com.example.android.musicplayer.
MusicReceiver", "onReceive", "(Landroid/content/Context;Landroid
/content/Intent;)V", paramStr, null);

11 }
12 }

Listing 3.8: Instrumented MusicReceiver

1 <android.content.Intent>
2 <mAction>android.intent.action.MEDIA_BUTTON</mAction>
3 <mExtras>
4 <mMap>
5 <mArray>
6 <string>android.intent.extra.KEY_EVENT</string>
7 <android.view.KeyEvent>
8 <mDeviceId>-1</mDeviceId>
9 <mKeyCode>126</mKeyCode>

10 ...
11 </android.view.KeyEvent>
12 </mArray>
13 <mSize>1</mSize>
14 </mMap>
15 </mExtras>
16 ...
17 </android.content.Intent>

Listing 3.9: XML generated by XStream for an Intent object
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object with key code 126 which maps to a KEYCODE_MEDIA_PLAY event.
The event generator uses the MongoWrapper to look up the set of

entry-point parameters given a method signature. The parameters are
then converted into Java objects using XStream. When the driver uses of
the Intent object generated from the XML in Listing 3.9 as the parameter,
the MusicReceiver fires without crashing on line 12 and covers line 16 in
Listing 3.4. The more dynamically fired events can be collected, the better
coverage can be obtained for this example.

Two examples for which runtime values make a big difference are
SharedPreferences and Cursors since these classes only return primitive
values and applications are highly dependent on their return values.

SharedPreferences allow Android applications to store key-value pairs
of application settings in XML. The values of these preferences can be
changed in a menu or dialog but are most commonly updated using
a PreferenceActivity displaying all options to the user and allow-
ing them to update their preferences. Instead of allowing the user to
change these settings throughout the application at random times, JPF-
Android ignores changes to the preferences. Instead it uses a model
generated by OCSEGen returning runtime observed preference values
non-deterministically. This allows the tool to explore application behavior
systematically for all preferences.

An extract from the SharedPreferences stub generated for the GP-
SLogger application is given in Listing 3.10. In this example each pa-
rameter is only mapped to a single return value. Listing 3.11 taken
from the SharedPreference stub generated for the Ringdroid applica-
tion, however, returns different values non-deterministically using the
AndroidVerify.getValues(...) API of JPF-Android.

Cursors are used by most Android applications to traverse data re-
trieved from a Content Provider (CP) or database. Neither JPF nor JPF-
Android attempts to store the state or backtrack the content in a database.
To support the use of cursors, we use a default cursor implementation
traversing a data set with a single entry. We then use models generated
by OCSEGen mapping specific parameters to runtime return values to im-
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1 public java.lang.String getString(java.lang.String param0, java.
lang.String param1) {

2 String var = param1;
3 if (param0.equals("locale_override")) {
4 var = "";
5 }
6 if (param0.equals("distance_before_logging")) {
7 var = "1";
8 }
9 if (param0.equals("time_before_logging")) {

10 var = "1";
11 }
12 if (param0.equals("new_file_creation")) {
13 var = "onceaday";
14 }
15 if (param0.equals("autoemail_frequency")) {
16 var = "0.08";
17 }
18 if (param0.equals("smtp_server")) {
19 var = "smtp.mail.yahoo.com";
20 }
21 if (param0.equals("smtp_port")) {
22 var = "465";
23 }
24 if (param0.equals("smtp_username")) {
25 var = "testemail";
26 }
27 if (param0.equals("smtp_password")) {
28 var = "1234567";
29 }
30 if (param0.equals("autoemail_target")) {
31 var = "testemail@yahoo.com";
32 }
33 if (param0.equals("osm_accesstoken")) {
34 var = "";
35 }
36 return var;
37 }

Listing 3.10: getString() method generated with OCSEGen
using runtime values
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1 public int getInt(java.lang.String param0, int param1) {
2 int var = param1;
3 if (param0.equals("success_count")) {
4 var = (int) AndroidVerify.getValues(new Object[] { 1, 2 },
5 "android.content.SharedPreferences.getInt(
6 success_count)");
7 }
8 if (param0.equals("stats_server_allowed")) {
9 var = 0;

10 }
11 if (param0.equals("stats_server_check")) {
12 var = 2;
13 }
14 if (param0.equals("err_server_allowed")) {
15 var = (int) AndroidVerify.getValues(new Object[] { 1, 2 },
16 "android.content.SharedPreferences.getInt(
17 err_server_allowed)");
18 }
19 if (param0.equals("err_server_check")) {
20 var = 2;
21 }
22 if (param0.equals("stats_server_check")) {
23 var = 2;
24 }
25 return var;
26 }

Listing 3.11: getInt() method generated with OCSEGen using
runtime values

prove the coverage. Listing 3.12 shows a stub generated for the Ringdroid
application.

In both of these components the models can be edited manually to
throw exceptions or return unobserved values to increase coverage even
further.

3.5.4 Discussion and Limitations

This approach only takes into account the input parameters of a method to
determine and filter its return values. If the return value or input param-
eters of the method are dependent on the global state of the application
or environment, we may return incorrect values. The approach can be
extended to record more of the environment state in a log entry to allow
us to return more accurate values.
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1 public class CursorRingdroid extends DefaultCursor {
2 public int getColumnIndexOrThrow(java.lang.String param0) {
3 int var = 0;
4 if (param0.equals("title")) {
5 var = 1;
6 }
7 if (param0.equals("artist")) {
8 var = 2;
9 }

10 if (param0.equals("album")) {
11 var = 3;
12 }
13 if (param0.equals("year")) {
14 var = 4;
15 }
16 if (param0.equals("_data")) {
17 var = 5;
18 }
19 return var;
20 }
21
22 public java.lang.String getString(int param0) {
23 String var = "";
24 if (param0 == 0) {
25 var = "1";
26 }
27 if (param0 == 1) {
28 var = "/storage/sdcard/media/audio/ringtones/bensound-cute-

cut.mp3";
29 }
30 return var;
31 }
32
33 public int getInt(int param0) {
34 int var = 0;
35 if (param0 == 4) {
36 var = (int) AndroidVerify.getValues(new Object[] { 2012, 2010

}, "android.database.Cursor.getInt(4)");
37 }
38 return var;
39 }
40
41 }

Listing 3.12: Cursor stub generated with OCSEGen using runtime
values
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The effectiveness of the approach depends on the ability of dynamic
analysis tools to reach specific areas in the code where we want to observe
runtime values. The main idea is not to focus on getting good coverage
with dynamic tools but recording and then optimizing observed values
in specific cases. If the dynamic analysis obtains good coverage results
for the application in the process, why would one want to verify the
application? The advantage of verifying Android applications on a tool
like JPF is that we have fine-grained analysis capabilities that enable us to
run more complex analyses on applications.

3.6 Manual Modeling

The Android Open Source Project (AOSP) consists of a large collection of
sub-projects. The size, complexity and interdependence of these projects
limits the tools that can be used to analyze and understand the platform.
We made use of tools such as “grep” and the type and call hierarchy
views in Eclipse to navigate the code. Some of the dependencies modeled
manually are discussed below.

The Graphical User Interface Each Activity and dialog has a Window
object storing its GUI as a hierarchy of View and ViewGroup objects.
The hierarchy is usually inflated from XML layout files using the local
LayoutInflator service in the application framework. Windows are
managed by the external WindowManager system service. This service
stores all windows and tracks the current window to be drawn on the
screen. It also maps input events, generated by hardware drivers in
response to user events, to the correct Window and View listeners.

As discussed in Dwyer et al. [30] the physical drawing of a GUI on the
screen and the visual properties of a GUI do not influence the execution of
most applications. For this reason and the fact that JPF-Android uses a cus-
tom event generator, the WindowManagerService, Window and View

classes can be greatly simplified. Therefore, a local WindowManager
is implemented manually to store the history of windows for when an
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Activity finishes and it needs to move back to the previous Window. JPF-
Android also includes a custom layout inflater inflating views using only
properties required to execute the application correctly, namely: enabled-
ness, visibility, input values and listeners. GUI component stubs are
generated using OCSEGen [61] and extended manually to collect and fire
the entry-points of the component.

Certain widgets require inputs entered by a user during execution.
To reduce the number of possibilities of these inputs and to reduce the
number of events fired by the driver, widgets return predefined config-
urable values by default. Inputs are either selected randomly or non-
deterministically from a list depending on JPF-Android’s configuration.

Component Life-cycle Management And Interaction Android applica-
tion components can interact with each other or with external components.
The ActivityManagerService is responsible for storing all running
application components and facilitating interactions between components
across and within applications. Since we only verify a single application,
this service is modeled as a local service that keeps track of all the running
components of the SUT to enable component interaction and to detect
events for running components during event generation. Requests to
other applications are modeled by returning configured Intents.

Resource Management The Resources class is also modeled manually
to parse the actual resource values (Strings, int, float, layout files, images)
stored in XML in order for the application to function correctly.

File Management JPF-Android is run in a Docker [6, 11] container
which allows us to set up the file system structure the same as on a
device. We then use JPF’s file models to access and create files. We should
note, however, that files that should exist must be added to the file system
manually or in some cases we use custom file models to return specific
results such as FileNotFoundException or IOException.
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3.7 The Android Environment Model

The original Android application framework, excluding native and op-
erating system services, exposes 1402 classes. Therefore, we approached
building an environment model for Android applications as an iterative
process that will continuously improve as models are reused and extended
to support new behavior required by applications. We started with 50
models in order to run a basic Android application. Over the course of
the last few years we created 417 models totaling around 32kLOC. JPF-
Android is open-source and the models are available on Bitbucket 3. These
models can be adapted to be used for JUnit testing.

Table 3.1 lists other commonly used dependencies in the Android
environment and how they are modeled.

3.8 Summary

In this chapter we discussed the challenges to environment modeling
for Android applications and presented the different approaches used
to create an environment model for Android applications. In the next
chapter, we discuss how to drive the execution of Android applications
using event generation.

3Available at: https://bitbucket.org/heila/jpf-android/src and
https://bitbucket.org/heila/jpf-android-examples/src
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Chapter 4

Event Generation

Android applications have an event-driven design. Applications register
entry-points in their environment triggered by events to drive the execu-
tion of the application. These events can be combined into millions of
different event sequences of potentially unbounded lengths. Each of these
sequences may trigger erroneous application behavior. In this chapter we
discuss how entry-points are detected and events generated and fired by
JPF-Android as well as the different strategies employed by JPF-Android
to generate event sequences.

4.1 Generating and Processing Events

Android applications contain entry-points in the form of listeners and
callbacks registered in local/external services in the application frame-
work. These entry-points include Graphical User Interface (GUI) listeners,
component life-cycle callbacks as well as more specific callbacks registered
for location updates, incoming calls, phone state changes or sensor up-
dates. Applications are executed by firing their entry-point methods with
specific parameters. Local and external services, in which the entry-points
are registered, are modeled in JPF-Android. In order to generate and fire
events to execute these entry-points, JPF-Android requires the services to
store registered application callbacks and listeners and provide methods

53
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External + Local 
Services

Main Thread

EventProducerEvent 
Generator

1. produceNextEvent()

2. getEntrypoints()

4. processEvent()

3. getNextEvent()

Figure 4.1: Event generation architecture

in order to retrieve and process events. The services are then registered to
receive specific event types.

Events generated by JPF-Android consist of a type to look up the
services that can process the event, a set of parameters to identify the entry-
point and its arguments and the window name for verification purposes.
JPF-Android supports the following event types:

UIEvent Fires View listeners: onClick, onItemSelected, onLongClick, etc.
for GUI components

SystemEvent Events that start/send Intents to application components

KeyPressEvent Fires onKeyDown and onKeyUp listeners in Activities/GUI

MenuItemEvent Fires menu item selected callbacks in Activity

SharedPreferencesEvent Fires preference change listeners

LocationEvent Fires callbacks registered for location updates

In the Android application framework the main event processing
thread of the application (the Looper) retrieves events from its message
queue. The message queue contains callbacks added by other threads or
asynchronous method calls of the application itself.

In order to produce events JPF-Android extends the Looper to also
request events from the EventProducer (Step 1 in Figure 4.1). Events
can be produced at any time, but to reduce scheduling possibilities, the
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EventProducer is only called when the message queue is empty, and
other application threads are waiting. At this point, the application
usually waits for events from the Android system or from the user to
continue executing, but instead it now processes the next event from
the EventProducer. The EventProducer is started together with the
other system services.

The EventProducer produces a new event by looping through all
registered services and collecting a list of enabled entry-points and their
default parameters (Step 2). These entry-points are then passed to the con-
figured event generator to generate a set of next events (Step 3). The set of
returned events are fired non-deterministically by the EventProducer.
This functionality branches the execution for each of the possible events
and visit each of them in turn using state matching and backtracking. The
current event being processed is forwarded to all services registered for
the specific event type (Step 4).

When no more events can be generated, and all application threads
have completed, the application’s state is expected to match and the search
ended in this path.

4.2 Event Generation Strategies

JPF-Android supports custom event generators enabling it to use different
event generation strategies. By default the tool implements the follow-
ing event generation strategies: default, heuristic and scripting.The next
sections describe the three different event generators.

4.2.1 Default Event Generator

The default event generator generates event sequences dynamically, at
runtime. JPF-Android can reduce the number and length of the discovered
sequences using state matching to stop execution if a previous state that
has already been explored is reached again. The default event generator
explores all possible events with default parameters for a given set of
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entry-points. It provides a simple way to explore/discover events and
hard-to-reach code of an unknown application.

4.2.2 Heuristic Event Generator

In theory we want to explore all possible event sequences, but in practice
— even with state matching — this is not always possible in an acceptable
time or with the given resource limitations. The heuristic event generation
strategy extends the default strategy but limits the number of times an
event can occur per path. By default it filters events by allowing only a
single instance of an event to be fired per branch. Events with different
parameters are seen as different events. This generator reduces the length
and number of explored event sequences.

4.2.3 Script Event Generator

The script event generator allows users to write scripts containing se-
quences of events [62]. Scripting event sequences is useful to analyze
specific application behavior that might be hard to reach or may require
specific environment configurations. This approach limits the environ-
ment and application behavior to allow a more exhaustive exploration of
the application. Writing scripts, however, requires in-depth knowledge of
the application and its environment.

JPF-Android’s scripts are based on the scripting language introduced
by JPF-AWT. The scripting language is a dynamically typed, interpreted
language. JPF-Android introduces two new constructs: Sections and
Groups and expands the functionality of the Any and Repeat constructs.
The syntax of this language is described in the next section. JPF-Android
provides its own parser and interpreter for the language as part of the
script event generator to support this new behavior.
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4.2.3.1 Model Checking Considerations

The previous two event generators generate events on-the-fly depending
on the state of the System-Under-Test (SUT). When using a script we
need to keep a consistent state when backtracking. Therefore, the current
position in the script is included in the state. The current iteration of
repeat elements and the current choice selected in an Any element are also
included in the state. The state can only match when events scheduled
non-deterministically lead to the same state after the Repeat/Any script
element. In the case of an infinite Repeat the state can match after two or
more repetitions since JPF-Android does not keep a counter of the number
of loop iterations as part of the state.

4.2.4 Configurable Properties of Event Generators

The event generators can be configured in the follow ways:

Filtering Events can be excluded/included using lists of regular expres-
sions. This allows filtering certain events.

Depth Bound The maximum length of generated event sequences can be
specified.

Dynamic Event Parameters Using correct parameters for events is im-
portant since incorrect parameters can lead to false positives (crashes
that should not occur in the entry-point code). Service models de-
fine default parameters of entry-points, but these values can be
improved by enabling dynamic event generation where generated
events are refined using pre-collected runtime (as discussed in 3.5),
manually or statically collected values stored in a database. The
user can configure the event generator to expand each event to a set
of events returning different runtime collected parameters. In this
case the database is queried for the entry-point method of the event
and a new event is generated for each unique set of parameters
observed. This option quickly explodes the state space and should
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not be used for all entry-points but only to improve coverage for
selected entry-points.

4.3 The Input Script

The grammar for the scripting language used by input scripts is given in
Figure 4.2. JPF-Android divides the input script into Sections. Each
Section in the script groups together the input events of a specific Win-
dow. The reason for this is that Android applications contain many
Windows, at least one for each Activity. A script, which contains non-
deterministic input events, can non-deterministically switch between
Windows. If the script continues to execute sequentially after a possible
Window switch, the next events might not necessarily be relevant to the
current Window on the screen. The JPF-AWT project only verifies a single
Window so this problem was not considered at that time.

A Section defines a unique name identifying the Window to which
its input events are bound. The main Window of an Activity needs to
be identified by the name of the Activity. If multiple Activities in the
application have the same name, the name needs to be prefixed by the
package name of the Activity. The name of the initial Section where the
script starts executing is set to “default”.

The Repeat construct simplifies the script by allowing a user to script
a sequence of events that is repeated automatically a certain number of
times. Listing 4.1 shows an example of the Repeat construct together
with the event sequence generated by the scripting environment in List-
ing 4.2.

1 REPEAT 2 {

2 eventA()

3 eventB()

4 }

Listing 4.1: Repeat example

eventA()

eventB()

eventA()

eventB()

Listing 4.2: Generated events

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. EVENT GENERATION 59

〈script〉 = ‘SCRIPT’ { 〈section〉 }.

〈section〉 = ‘SECTION’ ( ‘default’ | 〈id〉 ) ‘{’ { 〈sequence〉 } ‘}’.

〈sequence〉 = 〈iteration〉 | 〈selection〉 | 〈event〉.

〈iteration〉 = ‘REPEAT’ 〈num〉 ‘{’ 〈sequence〉 ‘}’.

〈selection〉 = ‘ANY’ ‘{’ 〈group〉 { ‘,’ 〈group〉 } ‘}’.

〈group〉 = { 〈sequence〉 }.

〈event〉 = 〈uievent〉 | 〈sysevent〉

〈uievent〉 = ‘$’ 〈target〉 ‘.’ 〈action〉 ‘(’ 〈params〉 ‘)’.

〈sysevent〉 = [‘@’ 〈target〉 ‘.’ | ‘device’ ‘.’ ] 〈action〉 ‘(’ 〈params〉 ‘)’.

〈target〉 = 〈id〉.

〈action〉 = 〈id〉.

〈params〉 = [ 〈param〉 {, 〈param〉 } ].

〈param〉 = ‘@’ 〈target〉 | 〈target〉 | 〈string〉 | 〈float〉.

〈id〉 = 〈letter〉 { 〈letter〉 | 〈digit〉 | ‘_’ }.

〈num〉 = ‘*’ | 〈digit〉 { 〈digit〉 }.

〈string〉 = ‘"’ 〈char〉 { 〈char〉 } ‘"’.

〈float〉 = 〈digit〉 { ‘.’ | 〈digit〉 }.

Figure 4.2: EBNF of the scripting language

JPF-Android extends the Repeat construct to allow infinite repeats by
specifying a “*” as the number of repetitions. In this case the execution of
the application is only stopped if a state match occurs in each branch of the
application or the maximum search depth is reached. Repeat constructs
can now contain Any script elements.

In JPF-AWT the Any construct contains a list of events scheduled to
execute non-deterministically. JPF-Android extends the Any construct to
contain a list of Group objects, each containing a list of events. Instead
of only scheduling the events non-deterministically, JPF-Android now
schedules the Groups to execute non-deterministically. JPF-Android also
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extends these Groups to contain cascaded Any and Repeat constructs.
Figure 4.3 shows an example of using the Any construct together with

the event sequence generated by the scripting environment.

1 eventZ()
2
3 ANY {
4 GROUP {
5 eventA()
6 eventB()
7 }
8 GROUP {
9 eventC()

10 }
11 }
12
13 eventD()

eventZ

eventA

eventB

eventD

eventC

eventD

Figure 4.3: Example of an Any script element

The script supports two types of events: user events and system events.

4.3.1 User Events

User or User Interface (UI) events are triggered by a user interacting with
GUI elements on the screen or with the physical buttons on the device. The
input script allows the user to simulate UI events with specific parameters.
The syntax for scripting UI events is given in Figure 4.2 and consists of
three main parts:

target the name of a specific widget at which this action is targeted for
example a button, checkbox, textbox

action the action to perform on the target for example click, enter text,
select item in a list

params optional, comma separated list of parameters

$buttonOK.onClick(), for example, describes a click action on the
OK button and $list.selectItem(5) describes selecting the fifth item
in list.
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1 device.setWifi("OFF")
2 device.setBattery("LOW")
3 device.sendSMS("084 123 1234", "Test")
4 device.setGPS("-33.928806","18.415106")

Listing 4.3: Examples of changing the system state

1 @WifiOffIntent.setAction("android.net.conn.CONNECTION_CHANGE")
2 @WifiOffIntent.putExtraString("type", "WIFI")
3 @WifiOffIntent.putExtraString("state", "DISCONNECTED")
4 @WifiOffIntent.putExtraString("reason", "NO SIGNAL")

Listing 4.4: Creating a @WifiOffIntent in the script

4.3.2 System Events

Android applications are also driven by system events. System events are
fired by the Android system in response to a change in the system state
or by other applications interacting with this application. They include
notifications such as the state of the WiFi connection changing when the
WiFi signal drops. The syntax of system events is given in Figure 4.2.

The script event generator enables the user to change the state of the
system to induces system events. Examples of these state change events
are given in Listing 4.3.

State changes can also be induced from the script by constructing
custom Intents. Intent objects are identified in the script by starting with
an “@” symbol. The properties of the Intent object are set by using the
EBNF definition of an event to call the setter methods of the Intent. In
Listing 4.4 a custom Intent, @WifiOffIntent is constructed to disable
the WiFi radio.

Intents constructed in the script have to contain all the necessary
information the application expects from the specific type of Intent. The
Intent is then broadcast to the Android system using the sendBroadcast
system event in the script. Listing 4.5 shows how the Intent is sent to the
system.
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1 sendBroadcast(@WifiOffIntent)

Listing 4.5: Sending a WifiOffIntent Intent from the script

The script event generator also predefines common Intents that are
used frequently to simplify the script. These Intent objects include Intents
used to start an Activity, disable/enable the WiFi and setting the battery
status. Custom Intents allow the user to provide more details on the
action/event.

4.4 The Calculator Example

One of the Android applications verified on JPF-Android is a scientific
calculator. The calculator has two Activities: a simple Activity that dis-
plays basic arithmetic operations and a scientific Activity that displays
more complex arithmetic operations (Figure 4.4.) We use this example to
illustrate the functionality of the script event generator.

Figure 4.4: The two Activities of the Calculator application. The Sim-
pleActivity is shown on the left and the ScientificActivity is on the
right.

The user can switch between these Activities using the “=>” button on
the interface. When the user switches Activities, the current expression
the user entered into the input box, has to be sent to the next Activity. This
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information is sent using an Intent object transfered between Activities
when starting the next Activity.

The calculator makes use of an expression evaluator1 to evaluate the
mathematical expressions entered by users when the equals button is
pressed. When the user divides a value by zero, an ArithmeticException
is thrown by the expressions evaluator.

Two runtime errors are injected into the application code. The first
error is injected into the code by removing the try-catch block for this
runtime exception. The Arithmetic exception then causes the application
to crash (See Figure 4.5).

Figure 4.5: The calculator application crashing

The second error injected into the application is neglecting to attach the
state information to the Intent object passed to the next Activity. When
the user switches to the other Activity, a NullPointerException is
thrown when the application tries to read the state information from the
Intent.

Both of these errors are difficult to detect with unit testing. The
ArithmeticException is challenging due to the many possible input
sequence combinations. If a test case did not specifically identify this as a
point of interest, unit testing would not have detected this error. The sec-
ond error is challenging since it only occurs when the interaction between
Activities is tested.

1Available at https://github.com/uklimaschewski/EvalEx
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1 #--- dependencies on other JPF projects
2 @using = jpf-android
3
4 #--- target setup
5 target = com.example.calculator.SimpleActivity
6 classpath+=${jpf-android}/../Examples/Calculator/bin/classes/;
7 sourcepath=${jpf-android}/../Examples/Calculator/src;
8
9 #--- android setup

10 android.script=${config_path}/Test1.es
11
12 #--- listeners
13 vm.halt_on_throw=java.lang.ArithmeticException

Listing 4.6: Properties file of the Calculator

1 SECTION default {
2 @startIntent.setComponent("com.example.calculator.SimpleActivity

")
3 startActivity(@startIntent)
4 }
5
6 SECTION com.example.calculator.SimpleActivity {
7 $button[0-9].onClick()
8 $button<Plus|Minus|Mul|Div>.onClick()
9 $button[0-9].onClick()

10 $buttonEquals.onClick()
11 }

Listing 4.7: Input script for Test 1 of the Calculator application

4.4.0.1 Test 1: Detecting the Arithmetic Exception

The JPF properties file for detecting the ArithmeticException is given
in Listing 4.6. The target property is set to the launcher Activity of the
application, the SimpleActivity. Scripts are stored in files with “.es” ex-
tensions in the project directory. The name of the currently in-use script
is configured in the Java PathFinder (JPF) property file of the SUT as the
“android.script” property. The input script is set to Test1.es on Line
10. On Line 13, JPF is set to stop execution if an arithmetic exception is
thrown by the application.

The script is shown in Listing 4.7. It uses a shorthand syntax on Line
7-9 to more compactly create Any constructs across a range of buttons
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($button[0− 9] and $button < Plus|Minus|Mul|Div >). The execution
starts in the default section of the script. In the default section the compo-
nent of the startIntent is set to “SimpleActivity” indicating that this
is where JPF must start the execution. This Intent is then sent to the Ac-
tivityManager of the system by using the startActivity system event.
After the SimpleActivity has been started by JPF-Android, the application
requests the next input event in the message queue. At this point the
message queue is empty and an event is requested from the script event
generator. Since the current Activity is the SimpleActivity, the next event
in the SimpleActivity Section of the script is returned. This event is a
compacted version of the Any construct: $button[0-9].onClick().
This event is parsed into an Any construct containing ten Groups. Each
Group contains an onClick event for one of the buttons 0-9. As none of
the events in the SimpleActivity section switches between Windows of the
application, the input events in the SimpleActivity section of the script is
executed one-by-one until the last event $buttonEquals.onClick()
is processed. After this event, JPF’s state matches since no more events
are available.

When the application is run on JPF-Android using this script, it detects
the ArithmeticException due to the division by zero. The results
printed out by JPF-Android is given in Figure 4.6. Firstly, JPF-Android
gives the execution trace to where the error occurred in the application
code. It then also gives the list of input events that lead to the error.

4.4.0.2 Test 2: Detecting the NullPointerException

Next, a NullPointerException was introduced into the application.
The property file for this example is similar to the one shown in Listing 4.7
except that the vm.halt_on_throw property is set to detect null pointer
exceptions (see Listing 4.8).

Since this test verifies the transition between the Activities, the script
contains an additional section for the ScientificActivity. The script for this
example is shown in Listing 4.9.
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====================================================== error 1
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.ArithmeticException: Division undefined
at java.math.BigDecimal.divide(BigDecimal.java:1668)
at com.udojava.evalex.Expression$4.eval(Expression.java:490)
at com.udojava.evalex.Expression.eval(Expression.java:849)
at com.example.calculator.CalculatorActivity.calculate(CalculatorActivity.java:137)
at com.example.calculator.CalculatorActivity.onClick(CalculatorActivity.java:98)
at android.view.View.onClick(View.java:463)
at java.lang.reflect.Method.invoke(gov.nasa.jpf.vm.JPF_java_lang_reflect_Method)
at android.view.Window.handleViewAction(Window.java:208)
at android.view.WindowManager.handleViewAction(WindowManager.java:50)
at android.os.MessageQueue.getNextScriptAction(...)
at android.os.MessageQueue.next(MessageQueue.java:59)
at android.os.Looper.loop(Looper.java:88)
at android.app.ActivityThread.main(ActivityThread.java:2197)
at android.os.ServiceManager.start(ServiceManager.java:73)
at com.example.calculator.SimpleActivity.main(SimpleActivity.java:0)
====================================================== error input sequence

@startIntent.setComponent("com.example.calculator.SimpleActivity")
startActivity("@startIntent")
$button0.onClick()
$buttonDiv.onClick()
$button0.onClick()
$buttonEquals.onClick()

====================================================== results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

"java.lang.ArithmeticException: Division undefined ..."

====================================================== statistics
elapsed time: 00:00:12
states: new=1287, visited=0, backtracked=1286, end=30
search: maxDepth=12, constraints hit=0
choice generators: thread=837 (signal=0, lock=1, shared ref=0), data=51
heap: new=310959, released=42303, max live=2931, gc-cycles=1286
instructions: 12654542
max memory: 300MB
loaded code: classes=231, methods=4140

====================================================== search finished

Figure 4.6: Test 1 results

When this example is run, the SimpleActivity is started and then a
“1 – ” is entered into the input box. The nextButton is then pressed to
switch to the ScientificActivity. At this point the SimpleActivity normally
bundles the expression in the input box, “1 – ”, with the Intent to start the
ScientificActivity. When the ScientificActivity is started, it tries to retrieve
this information from the Intent. An uncaught NullPointerException
is then thrown as this information is not attached to the Intent. JPF-
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1 #--- listeners
2 vm.halt_on_throw=java.lang.NullPointerException

Listing 4.8: Property file of Test 2

1 SECTION default {
2 @startIntent.setComponent("com.example.calculator.SimpleActivity"

)
3 startActivity(@startIntent)
4 }
5
6 SECTION com.example.calculator.SimpleActivity {
7 $button1.onClick()
8 $buttonMinus.onClick()
9 $buttonNext.onClick()

10 }
11
12 SECTION com.example.calculator.ScientificActivity {
13 $button<Sin|Cos|Tan>.onClick()
14 $buttonOpenParenthesis.onClick()
15 $buttonPI.onClick()
16 $buttonCloseParenthesis.onClick()
17 $buttonEquals.onClick()
18 }

Listing 4.9: Script for Test 2

Android’s results are shown in Figure 4.7.

4.4.1 The Deadlock Example

The next case study is a very simple application demonstrating how JPF-
Android detects a deadlock in an Android application. When the Looper
thread of an application is caught in a deadlock, the Android OS kills the
application and displays an Application Not Responding (ANR) dialog.
However, Android does not detect a deadlock when it occurs among other
asynchronous threads. This sample application spawns two asynchronous
threads that deadlock. The application has one Activity with two buttons.
The first button spawns the first thread and the second button spawns
the second thread. After a while these two threads deadlock and are then
blocked forever, waiting for each other. The script for the application is
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====================================================== error 1
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.NullPointerException:
Calling ’getString(Ljava/lang/String;)Ljava/lang/String;’ on null object
at com.example.calculator.CalculatorActivity.restoreState(CalculatorActivity.java:70)
at com.example.calculator.ScientificActivity.onCreate(ScientificActivity.java:17)
at android.app.Activity.performCreate(Activity.java:1838)
at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:361)
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1186)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:1243)
at android.app.ActivityThread.access$400(ActivityThread.java:97)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:642)
at android.os.Handler.dispatchMessage(Handler.java:53)
at android.os.Looper.loop(Looper.java:103)
at android.app.ActivityThread.main(ActivityThread.java:2197)
at android.os.ServiceManager.start(ServiceManager.java:73)
at com.example.calculator.SimpleActivity.main(SimpleActivity.java:0)

====================================================== error input sequence

@startIntent.setComponent("com.example.calculator.SimpleActivity")
startActivity("@startIntent")
$button1.onClick()
$buttonMinus.onClick()
$buttonNext.onClick()

====================================================== results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

"java.lang.NullPointerException: Calling ’getString..."

====================================================== statistics
elapsed time: 00:00:01
states: new=10, visited=0, backtracked=0, end=0
search: maxDepth=10, constraints hit=0
choice generators: thread=10 (signal=0, lock=1, shared ref=0), data=0
heap: new=4743, released=2288, max live=2438, gc-cycles=9
instructions: 95826
max memory: 61MB
loaded code: classes=189, methods=3723

====================================================== search finished

Figure 4.7: Test 2 results

given in Listing 4.10. JPF is configured to listen for deadlocks and sched-
ules the threads in all possible ways to detect the deadlock. The results
returned by JPF-Android are given in Figure 4.8.
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1 SECTION default {
2 @startIntent.setComponent("com.example.jpf.DeadlockActivity")
3 startActivity(@startIntent)
4 }
5
6 SECTION DeadlockActivity {
7 $button1.onClick()
8 $button2.onClick()
9 }

Listing 4.10: Script for deadlock application

====================================================== thread ops #1
1 1 trans loc : stmt

------- ------- ---------------------------------------------------
B:1003 | 54 DeadlockActivity.java:82 : bower.bowBack(this);
| B:1000 54 DeadlockActivity.java:82 : bower.bowBack(this);

L:1000 | 54 DeadlockActivity.java:56 : friend[0].bow(friend[1]);
| L:1003 18 DeadlockActivity.java:56 : friend[0].bow(friend[1]);
S | 6
| S 3

====================================================== results
error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty
"deadlock encountered: thread java.lang.Thread:{i..."

====================================================== statistics
elapsed time: 00:00:01
states: new=55, visited=13, backtracked=67, end=1
search: maxDepth=10, constraints hit=0
choice generators: thread=26 (signal=0, lock=11, shared ref=0), data=7
heap: new=1430, released=375, max live=1040, gc-cycles=67
instructions: 12661
max memory: 117MB
loaded code: classes=140, methods=1792
======================================================

Figure 4.8: Results of the Deadlock Activity

4.5 Summary

This section discussed how JPF-Android generates and processes events
to drive the execution of Android applications. The next section looks at
how to apply model checking to Android applications effectively.
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Model Checking

Android applications have a multi-threaded, event-driven, asynchronous
message-passing design which causes them to have too many paths to
explore. Explicit-state model checking with Java PathFinder (JPF) al-
lows more efficient exploration of Android applications. JPF supports
non-deterministic exploration of choices and implements state matching and
backtracking to bound and reduce the search space. It also exposes a prop-
erty and listener Application Programming Interface (API) to track the
execution of the application at the byte-code level. In this chapter we
describe how JPF is optimized and extended in JPF-Android to improve
the coverage and reduce the analysis size for Android applications.

5.1 Non-deterministic Choices

Android applications have many environment dependencies and respond
to many different event parameters that determine which path the applica-
tion’s execution follows. JPF can explore multiple paths of an application
non-deterministically using state storage and backtracking. When the
execution reaches a point with multiple paths forward, the set of possible
choices are recorded in a ChoiceGenerator and the state of the application
is stored. The different paths are then explored one-by-one, backtracking
the application state to the stored version for each choice.

70
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By default JPF uses choices to explore multiple thread interleavings.
For JPF-Android, however, we utilized this behavior to explore three
types of choices: thread choices, event choices and environment data choices.

5.1.1 Thread Choices

Thread choices are used to explore different thread interleavings to find
deadlocks and race conditions. These choices are managed by JPF and
used to detect race conditions and deadlocks. JPF explores all thread inter-
leavings to ensure the application does not reach a state where threads are
waiting, blocked or cause a race condition. Exploring all possible thread
paths is a resource intensive process.

JPF-Android includes custom thread synchronization policies that only
explore a single thread interleaving. This reduces thread choices when
not searching for concurrency errors. JPF-Android provides the following
policies:

Random Randomly chooses a single thread schedule,

Priority Chooses the thread with the highest priority, started last. The
main event handling thread is given a low priority to ensure other
threads complete or wait before continuing with it.

Although random scheduling can achieve better coverage, the ap-
plication must be run multiple times to achieve a consistent coverage
percentage. For this reason the tool uses Priority scheduling by default
returning the last started thread until it is done or waiting after which it
continues to the previous thread.

5.1.2 Event Choices

When the main message queue is empty and the application is idle, the
main thread collects a set of next events from the event producer. These
events are scheduled non-deterministically introducing an event choice
point in the execution. Each of these events is explored in its own path.
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5.1.3 Environment Data Choices

Environment data choices enable systematic exploration of different return
values in environment models. Choices are explored non-deterministically
instead of selecting one randomly. This enables obtaining higher coverage
with shorter event sequences. The number of states, however, increases
with each additional choice point reached in the path. To improve the
scalability of the analysis for large applications with many choices, JPF-
Android can be configured to explore each unique choice point only the
first time it is reached in a path whereafter the value is cached for the rest
of the path. When the choice point is reached again, the cached value is
returned and the path is not branched. All choice combinations are not
explored in this case, but the analysis scales much better and JPF-Android
analyzes all choices at least once.

Listing 5.1 shows how environment data choice points can be created
using JPF-Android’s AndroidVerify API. The AndroidVerify API
contains a set of methods to create labeled choice points that schedule a
set of choices non-deterministically. The getBoolean method on line 5
in Listing 5.1, for example, non-deterministically returns true and false.
The parameter given to the API method is the ID that uniquely identifies
the choice point and is used to cache and retrieve its value.

5.2 State Matching

State matching bounds the execution of a System-Under-Test (SUT) by
stopping exploration of paths when reaching a previously visited state.
Software model checkers, such as JPF, apply model checking to programs
written in modern languages with a large number of potentially complex
states. Android applications contain many different choices which lead to
an increased number of states. Therefore, JPF-Android adds optimizations
to reduce the state space explored by JPF. We identified two main areas
that cause unnecessary state explosion: class loading and serialization and
unbounded variables. In the next two sections the problems and proposed
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1 @Override
2 public boolean getBoolean(String key, boolean defValue) {
3
4 if (key.equals("sort_key")) {
5 return AndroidVerify.getBoolean("Pref(" + "sort_key" + ")");
6
7 } else if (key.equals("omitbackup")) {
8 return AndroidVerify.getBoolean("Pref(" + "omitbackup" + ")");
9

10 } else if (key.equals("keyfile")) {
11 return AndroidVerify.getBoolean("Pref(" + "keyfile" + ")");
12
13 } else if (key.equals("maskpass")) {
14 return AndroidVerify.getBoolean("Pref(" + "maskpass" + ")");
15 }
16
17 return defValue;
18 }
19
20 public URL getNextUrl() throws MalformedURLException {
21
22 boolean b = AndroidVerify.getBoolean(
23 "FacebookLogin.getFullLoginUrl()?");
24 if (b) {
25 return new URL("http://www.facebook.com/cancel");
26 } else {
27 return new URL("http://www.facebook.com/login");
28 }
29
30 }

Listing 5.1: AndroidVerify API example

solutions to optimize state matching are discussed.

5.2.1 Class Loading and Serialization

JPF-Android breaks the current transition before each event and environ-
ment data choice to trigger checking for a state match. This enables it
to stop exploration when a choice has no side-effects on the state of the
system or matches a previously visited state. The application state used
for state matching includes a static area storing the list of loaded classes
and the values of their static variables. When a new class is loaded, the
length of this list increases, which in turn changes the state of the SUT —
even if the class has no static fields.

The disadvantage of storing the list of loaded classes in the state is
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that the state can change just because a new class was loaded — even if
the class has no static fields. This results in JPF-Android exploring events
twice before state matching.

An example of such a case is a button that shows a toast in an Android
application (Listing 5.2.) A user cannot interact with a toast. It is a message
displayed for a few seconds on the screen and does not change the state.
Before and after the button is pressed the state of the application is the
same, but since the Toast class was loaded, the state changed so the
button needs to be pressed again for a state match to occur. This results in
an explosion in the number and length of event sequences.

1 Button b = ...;
2 b.setOnClickListener(new OnClickListener() {
3 public onClick() {
4 if (!networkConnected()) {
5 Toast.makeText(getActivity(), "Error updating: no network

connection.", Toast.LENGTH_LONG).show();
6 return;
7 }
8 // update
9 }

10 }

Listing 5.2: Toast example

Ideally, the state should not change when classes are loaded, but only
when their static fields are changed from their default values set at class
initialization. To overcome this problem, JPF-Android preloads classes
before the application executes. In this case the default values of static
fields are already set and will only influence the state when updated.
Preloading classes that contain choices in their static initialization code,
however, causes the entire application to be executed multiple times for
each choice. We minimize choices in this area by using fields instead of
static variables in the model environment.

Preloading classes causes the number of classes serialized for state
comparison to sharply increase. We noticed that only a small subset
of loaded classes in the Android environment contain non-final static
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fields (or any static fields) that can be updated. Therefore, to reduce
the number of classes in the state, we created the OptimizedState-

Serializer. This serializer marks classes that should be serialized at
load time. Classes with no static fields or only static final fields with
constant values (that cannot change) are then not serialized as part of
the state. The OptimizedStateSerializer also filters out final static
fields for classes included in the state.

5.2.2 Unbounded Variables

Software applications are not inherently finite state by design which leads
to non-termination during model checking. To model check programs,
the application and its environment must be abstracted to form a finite-
state system. Counters and variables keeping track of history, or that
continuously change, prevents state matching. Their values should be
bound or excluded from the state to form a finite state system. Often in-
depth knowledge of a software system is required to identify and abstract
variables causing a state-space explosion. Abstracting an SUT to form a
finite-state system has been studied before, but software tools developed
for this purpose typically require the user to manually identify fields to
be abstracted [38, 61].

Listing 5.3 illustrates this problem using the driver of a binary tree
that contains an implicit counter. The driver adds an integer to the tree
and then removes the integer again and asserts that the tree is empty.
This code is placed in a while-loop and the transition is ended and the
state stored after each iteration for state matching. When running this
application on JPF one expects the application to match states after the
second iteration of the loop. At this point the binary tree contains no
elements — the same state it was in after the first iteration.

This example, however, does not terminate. This indicates that the
state changed for each iteration of the loop. Using manual state com-
parison one can see that the reason for this is the unbounded modCount

field in the BTree class. This field is a modification counter used to catch
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1 public static void main(String[] args) {
2 BTree<Integer> bt = new BTree<Integer>();
3 while (true) {
4 bt.push(5);
5 bt.remove(5);
6 assert bt.size == 0;
7 Verify.breakTransition();
8 }
9 }

Listing 5.3: Binary tree driver

modifications to the tree while iterating over its nodes using an Iterator.
The modification counter is increased each time an integer is added or
removed from the tree. If modCount is removed from the state using
JPF’s @FilterField annotation, the system executes as expected and
the state matches after the second iteration of the loop. modCount is used
so often in data structures in Java (Lists or Maps) that JPF automatically
filters the field from the state for the java.util package.

Counters may be simple to identify manually in small examples but the
Android framework and the Android environment model contain many
of these variables causing a state explosion and leading to the analysis
never completing in JPF-Android. We implemented State Comparator to
identify variables that cause the SUT to have too many states for the
model checker to explore. Removing these variables from the state, or
abstracting/bounding their values can reduce path lengths and the size of
the state space to a more tractable size. Our approach tracks how the state
changes along a path in the state-transition graph. These variables’ values
continuously change causing states that would normally match to differ.

5.2.2.1 Identifying States

Applications have many states created at different locations in the code
and on different paths. States only match when the execution is in the
same location in the code since the thread state is included in the ap-
plication state. There are too many states to compare them all to each
other. The number of changes reported when comparing all states are also
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too many for the user to identify variables causing the state explosion.
To highlight changing variables, we therefore limit state comparison to
subsequent states stored at the same location in the code and on the same
path in the state-transition graph.

To mark states for comparison, the user inserts a markState state-
ment into the source code:

StateComparator.markState(String tagName, int

startAfter, int stopAfter);

The tag name distinguishes between different locations in the code
to compare. Currently we only use a single location (mark-statement)
in our examples. To reduce the reported changes and to ensure that the
analysis terminates, the user can also specify the number of marked states
after which to start recoding states and the number of marked states after
which to stop the analysis. Each time the mark statement is reached, the
current transition is ended and a new state is stored.

5.2.2.2 Serializing States

The tool serializes each marked state using a custom state serializer and
caches it until the next marked state is reached. Our state serializer extends
JPF’s state serializer that is run each time a new state is reached by JPF. Our
serializer caches all variable values of the state during the serialization
phase when the entire state is traversed to calculate a hash value used
for state matching. This saves execution time by reusing the serialization
traversal of each state variable. Because the user can specify the number
of marked states to record and when to start recording, only a few marked
states are stored in order to detect changing variables. Therefore the tool
does not greatly influence the performance of JPF.

Cached states created by JPF-Android’s serializer store separate maps
for static variables, stack frames and heap objects. A cached state stores
the unique object/class id and names of variables mapped to their values.
For stack frames it stores the local variables, the thread id and depth of
the stack frame in order to compare variables across states. A variable can
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either have a primitive value or store a reference to another object in the
heap. References are stored as Strings starting with an ’@’ character to
distinguish them from normal integers or Strings.

5.2.2.3 Comparing States

Two states are equal when all their variables (local, static and dynamic)
match. Since marked states are expected to match, we are interested in
the changes in their variables.

Variables with primitive values are compared using the normal Java
equals operator. Variables with reference values, however, are more com-
plex. To ensure that two objects are truly equal, their fields are compared
recursively following references to other heap objects. Variable changes
are recorded together with the path of objects from the root object to the
changed object.

Corresponding local variables are matched across states using the
unique id of its stack frame, the thread id to which the stack frame belongs
and the name of the variable. Static variables can be compared directly
using their class’s id and the name of the variable, since a class is loaded
only once.

Matching corresponding dynamic objects in the heap, however, is not
directly possible. A simple example of this is the immutable Integer
wrapper class in Java that cannot be modified. Each time the variable is
changed, a new Integer object with a different reference is placed on the
heap. Although the references differ, it might be the same variable in the
program. To match dynamic objects we use an algorithm similar to the
mark-and-sweep algorithm used during garbage collection to compare all
reference objects in the heap and ensure each object is only visited once.
Variables are compared by starting from the roots of the object graphs (the
local and static variables) and then recursively comparing their fields until
reaching primitive variables. In this way all referenced objects in the heap
are compared. This graph of object references can contain cycles when
objects reference each other. To avoid cycles during analysis, reference
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objects are marked as visited when compared and skipped when reached
again. The algorithm finds all changes in the object graph.

Changes are recorded and the new state cached replacing the previous
state that is no longer needed. To enable the tool to work with multiple
execution paths, the cached state is stored and backtracked with the
application state.

5.2.2.4 Interpreting and Using Output

State Comparator prints the ids of compared states and all variable differ-
ences. It also prints the object trace from the root object to the mismatching
variable in order to provide context to the variable. This allows the user
to identify which variables keep on changing for each state comparison.
Each marked state is printed to a file for manual inspection. If a field
causing the state space explosion does not influence the property being
checked, it can be removed from the state. Otherwise the field must be
abstracted to a finite set of values to limit the behavior of the system to
reduce the state space.

Variables can be abstracted in several ways using JPF. For example,
they can be removed from the state using a @FilterField annotation.
Filtering values from the state in this way removes the entire object hier-
archy of the field from the state used for state matching. The variable still
exists within the heap and its state is backtracked by the model checker,
but it has no effect on state matching. The annotation also supports spec-
ifying a condition for when the annotated field should be filtered. The
@FilterField annotation can be used on static and instance fields but
not on local variables. The @FilterFrame annotation can filter method
stack frames, their program counter and their local variables from the
state. Annotations cannot always be added to libraries or application code.
To overcome this issue, JPF-Android allows them to be configured in the
JPF properties file. JPF also provides AbstractionAdapters so that
fields can be abstracted using a custom method executed when the field
is updated. In this case the user implements an adapter for each primitive
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variable that needs abstraction: local, static or instance variable. When
the value of the variable is set, the adapter is fired to ensure that its value
stays within the bounds.

5.2.2.5 Examples

The usefulness of the StateComparator is illustrated using the binary
tree example above and three other examples. Applications that have
unbounded variables cause non-termination of the model checker. To
detect these variables, the search is bounded using a search depth or by
specifying the number of marked states after which to terminate the model
checker. We also reduce all thread choices in the application to a single
choice to reduce the detected changes using a custom thread scheduling
strategy implemented by our tool. Lastly, a markState statement is
added to the application at a point where the user expects state matching
to occur.

A simple example with an unbounded number of states is shown in
Listing 5.4. It contains an infinite while-loop that continues to increase the
iTest local variable for each iteration of the loop. In this example, the
model checker does not terminate since iTest will never have the same
value and so state matching cannot occur.

1 public class SimpleExample {
2 public static void main (String[] args) {
3 int iTest = 1000;
4
5 while (true) {
6 iTest++;
7 System.out.println("iTest=" + iTest);
8 StateComparator.markState("TAG1");
9 }

10 }
11 }

Listing 5.4: SimpleExample application

To find the variable causing an unbounded state space using our tool,
we inserted a markState statement on line 8. This statement breaks the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. MODEL CHECKING 81

transition and marks the new state for comparison. We bound the search
space to depth 10 in order to limit the results. The output of the tool is
given in Listing 5.5. It shows the results of comparing marked states (0,
1), (1, 2), ..., (8, 9). These comparisons show that iTest is incremented for
each state which causes the states to never match. We limit the iTest field
to a maximum value of 1002 by extending JPF’s AbstractionAdapter
and re-run the application. Now the loop executed twice before the model
checker terminated — the second time the marked state matched the
previous marked state and the exploration was stopped.

=== COMPARING STATE 1 TO STATE 0 ===
SimpleExample.main(...)V.iTest: (1001 ==> 1002)

=== COMPARING STATE 2 TO STATE 1 ===
SimpleExample.main(...)V.iTest: (1002 ==> 1003)

...

=== COMPARING STATE 9 TO STATE 8 ===
SimpleExample.main(...)V.iTest: (1009 ==> 1010)

Listing 5.5: Tool output for SimpleExample

Our second application is the “oldclassic” example in jpf-core, inspired
by a concurrency defect found on a space craft controller [63]. The ap-
plication consists of two threads (FirstTask and SecondTask) that
interact by exchanging events. An extract from the code is shown in
Listing 5.6. The SecondTask starts by signaling event1 that wakes up
the FirstTask waiting on event1. When FirstTask is notified of
event1 it signals event2 notifying the SecondTask of event2. A task
can be notified of a new event before performing a costly wait opera-
tion. To optimize the application, each thread caches a copy of the event
counter associated with the event on which it waits. If the event counter
is increased before it starts to wait, it skips the waiting operation and
instead processes the event.

The model checker never terminates on this example so we added a
markState statement in the while-loop of the FirstTask. We expect

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. MODEL CHECKING 82

1 class Event {
2 int count = 0;
3 public synchronized void signal_event () {
4 count++; notifyAll();
5 }
6 public synchronized void wait_for_event () {
7 try { wait(); } catch (InterruptedException e) {}
8 }}
9

10 class FirstTask extends Thread {
11 Event event1; Event event2;
12 int count = 0;
13 ...
14 @Override
15 public void run () {
16 count = event1.count; // caches counter
17 while (true) {
18 StateComparator.markState("TAG1");
19
20 // waits if no event1 has been received
21 if (count == event1.count) {
22 event1.wait_for_event();
23 }
24 count = event1.count;
25 event2.signal_event(); // updates event2.count
26 }}}
27
28 class SecondTask extends Thread {... }

Listing 5.6: “oldclassic” example of jpf-core

states to match after a few iterations of this loop since no new behavior
will be explored. The State Comparator detects four variables changing
for each state comparison: the count variables. The changes recorded
for the last two states are shown in Listing 5.7. These variables can be
bounded to a maximum value, in the same way as the previous example,
in order to enable state matching.

To detect the unbounded modCount variable in the binary tree ex-
ample, we replace Line 8 with a markState statement. To bound the
application we set a search depth of 10 and run the application through
JPF with the State Comparator enabled. The changes detected by com-
paring the first two states are given in Listing 5.8. Here we can see that
the modCount field of the binary tree object, defined as a local variable
in the main method, is incremented by two for each loop iteration (once
for adding an integer value and once for removing it). To reduce the state
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FirstTask.count: (11 ==> 12)
Object trace:
@163 object FirstTask, mFields={count=12, event1=@15e, event2=@15f

,...}
@1 frame FirstTask.run(...) locals={this=@163}

Event.count: (11 ==> 12)
Object trace:
@15f object Event mFields={count=12}
@163 object FirstTask mFields={count=12, event1=@15e, event2=@15f

,...}
@1 frame FirstTask.run(...) locals={this=@163}

SecondTask.count: (11 ==> 12)
Object trace:
@175 object SecondTask mFields={count=12, event1=@15e, event2=@15f

,...}
@1 frame SecondTask.run(...) locals={this=@175}

Event.count: (12 ==> 13)
Object trace:
@15e object Event mFields={count=13}
@1 frame oldclassic.main(...) locals={args=@bb, new_event1=@15e,

new_event2=@15f, task1=@163, task2=@175}

Listing 5.7: Changes detected for the last state comparison in
oldclassic example

space we use JPF’s @FilterField annotation to remove this field from
state matching. When run again, the application state matches after the
second iteration of the loop.

==== COMPARING STATE 1 TO STATE 0 ====
BTree.modCount: (2 ==> 4)
Object trace:
@15b object BTree mFields={elements=@15f, modCount=4, size=0}
@1 frame BTree.main(...)V: locals:{args=@bb, bt=@15b}

=== COMPARING STATE 2 TO STATE 1 ===
BTree.modCount: (4 ==> 6)
Object trace:
@15b object BTree mFields={elements=@15f, modCount=6, size=0}
@1 frame BTree.main(...)V: locals={args=@bb, bt=@15b}
...

Listing 5.8: Changes detected for BinaryTree example

The last example is a RSSReader Android application displaying the
RSS feed entries to the user. The environment of the application is mod-
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eled in JPF-Android. JPF-Android always returns the same set of feed
items when the update button is pressed. These items are shown in a list
displaying the name and the elapsed time since an item was posted. We
expect the application to match after a few presses of the update button,
but instead the model checker does not terminate. To identify the problem
we analyze a single path in the application and compare the application
state after each update button press using State Comparator. The changes
detected for each state comparison are shown in Listing 5.9. We see that
the char[] representing the text in the mText field of the TextField
object is changing continuously. On further inspection we found that this
TextField stores the elapsed time since the feed item was posted and
thus will never be the same since the current time changes — even in JPF.
We excluded this field from the state using a @FilterField annotation.
Afterwards the application state matched after two presses of the update
button.

mList: [-,1,4,7,0,0,6,2,1,9,5,5,7,3,]
==> [-,1,4,7,0,0,6,2,1,9,6,9,1,8,]

Object trace:
@5d0a object char[] mList=[-,1,4,7,0,0,6,2,1,9,6,9,1,8,]
@5d09 object java.lang.String, mFields={value=@5d0a,...}
@5cb8 object android.widget.TextView, mFields={mText=@5d09,...}
...

Listing 5.9: Results for RSSReader example

These examples show how our tool can detect state changes and report
them to the user. The last example highlights the usefulness of the tool in
identifying unbounded variables in a large system that contain hundreds
of variables.

5.2.2.6 Discussion

Previous work has been done on abstracting the environment of Java
applications for analysis purposes [61, 38]. Our work focuses only on
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detecting and bounding fields causing an infinite or too large state space.
These fields are hard-to-find in large systems with thousands of variables.

VarTracker, a listener in jpf-core’s [12] gov.nasa.jpf.listener
package, counts the number of states for which fields, local variables
and static variables change. Variables that change often can indicate that
they are unbounded or have too many possible values. Although this
tool can identify that iTest, the local variable in the SimpleExample
(Listing 5.10), is changing, it cannot distinguish when a variable changes
back to previous value — not hindering state matching. If we assign
iTest = (iTest + 1) mod 3, for example, the same changes will be
detected for each iteration if state matching does not occur.

change variable
---------------------------------------
1000 SimpleExample.iTest
1 sun.misc.Unsafe.theUnsafe
1 SimpleExample.main([Ljava/lang/String;)V.se
...

Listing 5.10: Results of VarTracker for SimpleExample

Changes to fields are recorded for all instances of a class. If the appli-
cation contains many of the same objects, the changes will accumulate
fast for these fields, even though they may be bounded variables. Lastly,
the larger the program is, the more variables change continuously which
makes it hard to distinguish which variables should be bounded — es-
pecially when variables depend on each other. In the case of the binary
tree, for example, the tool detects that modCount is modified, but it also
detects that size and many other variables also change (see Listing 5.11).

False positives can be reported by State Comparator when the applica-
tion contains variables preventing state matching as well as variables alter-
nating between a set of values that would normally allow state matching.
Additionally, it cannot detect indirect dependencies between variables.
Abstracting one of the detected variable in this case may lead to multiple
variable abstractions.
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change variable
---------------------------------------
10 BTree.remove(Ljava/lang/Object;)V.ii
10 BTree.ensureCapacity(I)V.ii
10 BTree.modCount
10 BTree.size
10 BTree.remove(Ljava/lang/Object;)V.found
1 sun.misc.Unsafe.theUnsafe
...

Listing 5.11: Results of VarTracker for BinaryTree

5.3 Listener Extensions

JPF listeners have access to the application and the JPF VM’s state. They
are not part of the application state and are not backtracked by default.
JPF-Android implements listeners to track the execution of the applica-
tion and to record discovered event sequences. It also provides its own
property specification mechanism Checklists to ensure the application’s
execution meets requirements set by the user.

5.3.1 Coverage Calculation

JPF-Android’s goal is to improve the code coverage of traditional dy-
namic analysis tools. In order to perform a fair coverage comparison,
JPF-Android includes a listener to calculate coverage in the same way as
the other dynamic tools using EMMA [2]. The listener calculates the code
coverage across all paths explored in the application. Android applica-
tions are instrumented using EMMA during compilation. The Android
Ant/Gradle build scripts include options to build and instrument the Java
source code using EMMA before converting it to DALVIK byte-code.

During instrumentation, EMMA inserts fields into classes to collect
the coverage data for each class, method and basic block. JPF-Android
excludes these fields from state matching but they are backtracked to-
gether with the application to ensure the correct coverage is recorded.
These fields are registered in the RT.java class in the EMMA library and
dumped to a file at the end of each path. These files are merged to find
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the cumulative coverage across all paths.

5.3.2 Recording Event Sequences

JPF-Android generates a set of events to fire non-deterministically each
time the application is idle. These events form event sequences which JPF-
Android stores as an event tree. The nodes of the tree are processed events
and the edges connect events executed after each other to form event
sequences. The root of the tree is the fist event starting the application.
The leaves of the tree are events after which the exploration of the event
sequence was stopped due to state matching, no more available events
were detected or a depth bound was reached.

The tree keeps a pointer (cursor) to the node of the current event
processed by the framework model. When a property violation is found
in an application, the event tree enables JPF-Android to trace back the
sequence of events leading to the error using the current path. But if no
errors are found, it is useful to retrieve statistics of the sequences explored
by JPF-Android. The event tree wrapper listener stores the event tree as
well as a list of all unique events fired for each Activity (can be used for
script writing). It prints out a summary of the number of detected event
sequences and a histogram of the lengths of the sequences. Since the event
tree is stored in a listener, it is excluded from the application state. We do
however backtrack the pointer to the current event in the tree to ensure it
correctly records event sequences.

The detected sequences can be refined and reused to run sequences
on JPF-Android or on an actual device to verify that they exist. This
allows users to verify errors detected by JPF-Android on an actual device.
We developed a basic tool to enable JPF-Android event sequences to be
executed on the Android emulator. The tool serializes event sequences
and can execute an event sequence on the emulator using a custom python
script. The script is built on a low level monkeyrunner [36] API that allows
scripts to search for specific views and fire UI and system events. Our
script makes use of a telnet connection to the running device to set the
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state of certain services such as the connection status. The main problem
encountered by this approach is the limitation to configure the device due
to built-in security of the device. Shared preferences and the state of the
databases, for example, cannot be set from outside of the app.

5.3.3 Property Specification with Checklists

Model checkers detect errors in concurrent applications using Linear Tem-
poral Logic (LTL) property specifications verified for each path, across all
execution threads. Using LTL formulas to define property specifications
has the disadvantage of easily becoming complex for certain proper-
ties [29].

Android applications have a multi-threaded, event-driven and asyn-
chronous message-passing design which makes it hard to specify prop-
erties using only LTL formulas. JPF-Android introduces Checklists as
succinct logical specifications designed to simplify verifying the execution
of Android applications on JPF.

Checklists automatically verify the execution triggered by an event,
during runtime, to ensure that the application executes as expected.
Checklists are verified for each thread of execution compared to LTL
formulas which are verified across all threads. In order to track execution
in these multi-threaded, asynchronous applications, copies of the current
Checklists and their states are passed to newly spawned threads and to
threads during message passing.

Checklist are not designed to detect liveness properties, but to validate
that applications follow requirement specifications. They cannot represent
all property types specified with LTL or regular expression formulas.
This functionality is sacrificed for the sake of clarity and simplicity of
representation.

5.3.3.1 Checklists

Checklists consist of an ordered sequence of Checkpoints that represent
methods invoked by specific threads. During execution, Checkpoints are
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matched one-by-one, in order, to marked methods (Checkpoint methods)
in the application code. Although a Checklist is matched in sequence,
Checkpoint methods may be reached in the code that are not relevant
to the Checklists. Methods that do not advance a Checklist are simply
ignored.

〈checklist〉 = 〈id〉 ‘:’ 〈guard〉 ‘=>’ 〈checkpoints〉 ‘;’.

〈guard〉 = [ 〈checkpoint〉 { ‘,’ 〈checkpoint〉 } ].

〈checkpoints〉 = 〈checkpoint〉 [ { ‘,’ 〈checkpoint〉 } ].

〈checkpoint〉 = [ ‘!’ ] 〈id〉.

〈id〉 = letter { letter | digit | ‘_’ }.

Figure 5.1: EBNF for Checklists

Checklists are defined using the syntax in Figure 5.1. Checklist def-
initions consist of three parts. The id of a Checklist is used to uniquely
identify the Checklist. A Checklist definition also contains a list of Check-
points, separated into the guard and the checkpoints by the implication
symbol (“=>”). The guard acts as a condition to identify the paths and
threads for which to match the Checklist. If the Checklist is matched past
the implication symbol, the Checklist reports violations; otherwise, the
Checklist was not meant for this thread. A Checklist can have an empty
guard, but, not an empty list of Checkpoints.

Each time the first positive Checkpoint or a negative Checkpoint pre-
ceding it is matched, a new instance of the Checklist is created. Multiple
instances of a Checklist can be verified at the same time. All Checklist
instances are added to the collection of active Checklists verified for an
event.

A negative Checkpoint is indicated by placing a “!” symbol in front of
the Checkpoint’s name in the Checklist definition. A negative Checkpoint
signifies that this Checkpoint may not be reached before the next positive
Checkpoint is reached or before the end of the path.
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1 class UpdaterThread extends Thread {
2
3 @Checkpoint(value = "runUpdate", threadname = "UpdaterThread")
4 public void run(){...}
5
6 }

Listing 5.12: Example of a Checkpoint annotation

1 [Mappings]
2 runUpdate : com.android.vdm.UpdaterThread.run()V, UpdaterThread;

Listing 5.13: Example of a Checkpoint Mapping

Checklist can be violated in two ways: when a negative Checkpoint is
reached in its checkpoints or when all positive Checkpoints in its check-
points are not reached before the path ends. When a violation occurs in
the checkpoints of the Checklist, JPF-Android stops execution and outputs
the violation details.

5.3.3.2 Defining Checkpoints in the Application

JPF-Android makes use of method calls to represent Checkpoints in the
application code. A method can only be bound to a single Checkpoint.
Java allows methods in the same class to have the same name but different
parameters (polymorphism) and methods in different classes to have the
same signature. To clearly distinguish between methods, Checkpoints can
be created by either adding a Checkpoint Java annotation to the method
(see Listing 5.12) or by mapping the full signature of a specific method to a
Checkpoint in the Checklists definition file (see Listing 5.13). The mapping
functionality is useful when the code of the SUT cannot be changed.

If a class extends another class, it inherits all methods of the superclass.
Checkpoints are inherited together with the superclass’s methods. If a
class overrides methods from its superclass, the Checkpoint annotations
on these methods are not inherited. The overridden method’s Checkpoint
will only fire if its supermethod is called.
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update:
!batteryLow, !WifiDown
=> runUpdate, displayResults;

Listing 5.14: Specifies that an update should happen when the
battery is not low and the WiFi is connected.

Checkpoint definitions allow the user to specify the name of the thread
that should reach the Checkpoint. It allows the Checklist to distinguish
between, for example, the main thread calling a method which may also
be called from another thread spawned from the main thread.

5.3.3.3 Negative Checkpoints

As discussed above, a Checklist’s guard and checkpoints support negative
Checkpoints. Although negative Checkpoints are useful in verifying that
a specific event does not occur before or after another, their meaning
becomes ambiguous in some cases. Let us look at such an example.

The Checklist in Listing 5.14 verifies that when an update is started,
the Wifi is connected and the battery is not low, the update completes
successfully by displaying the results. When a positive Checkpoint is
preceded by one or more negative Checkpoints (shown in Listing 5.14), it
means that neither of the negative Checkpoints may be reached before the
next positive Checkpoint (the runUpdate Checkpoint in this case). The
order of these negative Checkpoints is insignificant. The !WifiDown and
!batteryLow Checkpoints are used to only select paths where the Wifi
is configured to be connected and battery level to high. Therefore, if either
the WifiDown or batteryLow Checkpoint is reached, this Checklist
accepts and is removed from the list of active Checklists since it is not
relevant for this path.
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5.3.3.4 Implementing Checklists as Deterministic Finite
Automata (DFA)

Checklist are implemented as DFAs. The guard and the checkpoints of
the Checklist are represented by a single DFA. Each Checklist instance
stores a pointer to the last Checkpoint matched. When a violation occurs,
the Checklist instance checks whether the pointer has matched past the
guard before reporting a violation. Checklists can be converted to DFAs
by following the steps below.

1. Start the DFA as an accept state with a transition to itself for all
Checkpoints in its alphabet.

2. For each positive Checkpoint, add a transition from the current state
to a new state. Edit the transition from the former state to itself to
exclude this Checkpoint. Change the former state to a normal state
and update the new state to an accept state. Add a transition from
the new state to itself for all Checkpoints in its alphabet

3. For each negative Checkpoint, change the Checkpoint to a positive
Checkpoint. If the Checkpoint is in the guard, add a transition from
the current state to an accept state for this positive Checkpoint. If the
Checkpoint is in the checkpoints of the Checklist, add a transition
from the current state to a non-accept, sink state for the positive
Checkpoint. Edit the transition of the former state to itself to exclude
this Checkpoint.

Four basic Checklist examples are given in Figure 5.2.
The DFA can either reject or accept the input depending on its current

state. If it reaches a sink state or the path ends without reaching all positive
checkpoints, the Checklist is reported as violated. If a Checklist is in its
guard, the violation is ignored since the guard is only used to select a
specific path and execution thread.
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Figure 5.2: Basic Checklists translated to DFA

5.3.3.5 Examples of Checklists as DFAs

These steps are used to construct a DFA that represents the Checklist in
Listing 5.14. The DFA is shown in Figure 5.3.

A new instance of the update Checklist is created when the wifiDown,
batteryLow or the runUpdate Checkpoint is reached in the application
code. If the wifiDown Checkpoint is reached, the Checklist moves to
an accept. Since the runUpdate Checkpoint can never be reached from
there, the Checklist instance cannot be matched passed the guard so it
is discarded. If the runUpdate Checkpoint is matched, the Checklist in-
stance continues to match the displayResults Checkpoint after which
it accepts.

In another example, presented in Listing 5.15, the guard is empty and
the negative Checkpoint is part of the checkpoints of the Checklist and
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Figure 5.3: DFA representing Checklist update

not in the guard of the Checklist. A Checklist instance is only created
when the update Checkpoint is matched. This Checklist verifies that a
cancelUpdate Checkpoint is never reached after an update and before
a runUpdate Checkpoint. The Checklist will fail if the cancelUpdate
Checkpoint is reached after the update because the guard is empty. In Fig-
ure 5.4 we can see that when the cancelUpdate Checkpoint is matched,
the DFA goes into a sink state from which it will never be able to transition
to an accept state.

runUpdate3:

update, !cancelupdate, runUpdate;

Listing 5.15: Defining runUpdate3 Checklists

5.3.3.6 Multi-Threaded Applications

Android applications are multi-threaded. When a new thread is started,
the execution splits into two concurrently running threads. JPF-Android
creates a copy of all Checklist instances for each thread. It records the
thread on which a Checklist instance is created and on which Checkpoints
are reached. Checklists can only be advanced by Checkpoints reached on
the same thread (or on one of its offspring). Android applications also
makes use of message passing between threads to make asynchronous
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Figure 5.4: Illustration of Checklist runUpdate3

calls to application components and threads. For this reason JPF-Android
also copies Checklists across threads together with messages to allow
following the execution across threads. Tracking the execution in this
way is computationally expensive. Therefore Checklists only verify the
execution triggered by a single event generated by the event producer.

Figure 5.5 illustrates the execution across threads when the update
button is pressed until the display is updated. The two threads are dis-
played on the y-axis (Main thread and Update thread) and the execution
time is shown on the x-axis. The black lines show the application execu-
tion as time progresses. The black points indicate when Checkpoints are
reached by a thread. We can see that when the Update thread is started
by the Main thread (dotted arrow pointing upwards) the execution splits.
The same happens when a message is posted asynchronously back to
the Main thread from the Update thread (indicated by a dotted arrow
pointing downwards). The blue line indicates how the Checkpoints are
matched on different threads.

5.3.3.7 RSSFeedReader Example

The RSSFeedReader app downloads and stores RSS feed items in a database.
The most recent items are displayed in a list combining items of all the
RSS feeds. When an item in the list is selected, a web page is shown
containing the item’s content.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. MODEL CHECKING 96

updateDisplayrunUpdate

time

threads

Main
Thread

Update
Thread

update

Figure 5.5: Execution flow over two threads

JPF-Android aims to provide the user with as much freedom as pos-
sible to configure external input to the application. This input can be
non-deterministically changed by using an Any script element. The net-
work connection is modeled by allowing the user to associate a URL with
a filename containing the data sent over the network from within the input
script. In Listing 5.16, lines 2–3 a specific predefined Intent object, called
an urlInputStreamIntent, is constructed and sent to the system from
the script. When a network connection is made to this URL, JPF-Android
returns the specified file’s contents. This input stream is then sent to the
XML parser to be parsed.

When the user clicks on the refresh button in the TimelineActivity, the
application starts a new thread to retrieve the newest items from each
registered RSS feed and updates the list to reflect these changes. For the
sake of simplicity, downloading updates are only allowed over an active
WiFi connection. If the user clicks the refresh button and either the WiFi
is not connected, the battery is too low or an update is already running,
the application should not attempt to update (refresh) the feeds but notify
the user of the error. To verify that the application correctly handles each
of these situations, the script in Listing 5.16 is used to simulate each of
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1 SECTION default {
2 @urlInputStreamIntent.putString("url","http://feed.rss")
3 @urlInputStreamIntent.putString("file","src/input.rss")
4
5 sendBroadcast(@urlInputStreamIntent)
6
7 @startIntent.setComponent("TimelineActivity")
8 startActivity(@startIntent)
9 }

10
11 SECTION TimelineActivity {
12 ANY{
13 GROUP{
14 device.setWifi("ON")
15 device.setBattery("100%")
16 },
17 GROUP {
18 device.setWifi("OFF")
19 device.setBattery("100%")
20 },
21 GROUP {
22 device.setWifi("ON")
23 device.setBattery("1%")
24 }
25 }
26 $buttonRefresh.onClick()
27 }

Listing 5.16: Input Script

these situations non-deterministically. The Checklists in Listing 5.17 are
registered to verify this behavior.

A Checklist can be violated in two ways: firstly, when a negative Check-
point is reached or when all Checkpoints in a checkpoints of the Checklist
are not reached by the end of a path (if the guard was matched). Checklists
are matched during runtime and violating Checklists are reported at the
end of execution. To illustrate how Checklists are reported, two violations
have been introduced into the RSSFeedReader application. Figures 5.6
and 5.7 display the violations as reported by JPF-Android. In Figure 5.6
the getFeedUpdates Checklist failed because the storeInDB Check-
point was not being reached. In Figure 5.7 the application tried to update
although the WiFi was not connected, which violated the !runUpdate
Checkpoint in the updateWifiDown Checklist.
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1 // alreadyRunning, WifiDown or batteryLow not allowed just
2 // before running the update
3 update:
4 update, !alreadyRunning,
5 !WifiDown, !batteryLow
6 => runUpdate;
7
8 // after parsing the Feed the items must be stored in the DB,
9 // re-loaded from the DB and the listview updated

10 getFeedUpdates:
11 => parseFeed storeInDB, loadFromDB, updateListView;
12
13 // if an update is attempted while the WiFi is down, the
14 // update must not run but be canceled an the user notified.
15 updateWifiDown:
16 update, WifiDown
17 => !runUpdate, cancelUpdate, notifyWifiDown;
18
19 // if an update is attempted while the battery is low, the
20 // update must not run but be canceled an the user notified.
21 updateBatteryLow:
22 update, batteryLow
23 => !runUpdate, cancelUpdate, notifyBatteryLow;
24
25 // if an update is attempted while running an update the
26 // update must not run but be canceled an the user notified.
27 updateRunning:
28 update, alreadyRunning
29 => !runUpdate, cancelUpdate, notifyAlreadyRunning;

Listing 5.17: Checklist Definitions

==================================== violations
Checklist Name: getFeedUpdates
EventID: 8
Reason: Checkpoint storeInDB not visited before
the search ended.
Script Events:
1. @urlInputStreamIntent.putExtraString("url"...
2. @urlInputStreamIntent.putExtraString("file"...
3. sendBroadcast(@urlInputStreamIntent)
4. @startIntent.setComponent("TimelineActivity")
5. startActivity(@startIntent)
6. device.setWifi(‘‘ON’’)
7. device.setBattery(‘‘100%’’)
8. $buttonUpdate.click()
==================================== results

Figure 5.6: Violation 1
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==================================== violations
Checklist Name: updateWifiDown
EventID: 8
Reason: Failed because checkpoint reached runUpdate
did not match checkpoint !runUpdate.
Script Events:
1. @urlInputStreamIntent.putExtraString("url",...
2. @urlInputStreamIntent.putExtraString("file",...
3. sendBroadcast(@urlInputStreamIntent)
4. @startIntent.setComponent("TimelineActivity")
5. startActivity(@startIntent)
6. device.setWifi(‘‘OFF’’)
7. device.setBattery(‘‘100%’’)
8. $buttonUpdate.click()
===================================== results

Figure 5.7: Violation 2
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Evaluation

We evaluate the effectiveness and efficiency of our approach by analyzing
a set of representative applications. Most of the apps selected for the
benchmark come from the paper entitled “Automated Test Input Genera-
tion for Android: Are We There Yet?” [28]. Only a subset of these apps are
used since it is time consuming to understand the behavior of each app
to optimize models and to ensure the app is running as expected. This is
also necessary to verify crashes/errors. The Calculator and RSSReader
apps are test applications we developed to test a range of functionality
provided by the Android framework.

The apps used for the experiments are selected to have different at-
tributes, dependencies and require different configurations from their
environment. K9Mail, for example, is a very large app whereas Calcu-
lator is a very small app. The apps have different number and types of
external dependencies. Some apps require very specific user input or
system configurations whereas other apps only require very basic input.
The RSSReader app, for example, requires very little and simple user
input but relies on complex environment configurations to achieve high
code coverage. SyncMyPix, on the other hand, requires the user to log
in with a valid Facebook account before exposing the bulk of the app’s
behavior. We also included apps such as tippy tipper that are heavily
dependent on preference values to achieve good coverage whereas the

100
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Table 6.1: The apps used for evaluation. Their size is given in
LOC and number of components: Activity (A), Service (S), Broad-
castReceiver (BR), ContentProvider (CP). The number of models and
events (E) show the size of their environment.

Version LOC A S BR CP Models E

Calculator 2.0 114 2 0 0 0 2 40
AutoAnswer 1.5 140 1 1 2 0 8 10
RMP 1 315 1 1 1 0 4 11
AnyCut 0.5 692 4 0 0 0 5 18
RSSReader 2.0 774 2 1 1 0 6 6
aGrep 0.2.1 1505 5 0 0 0 3 24
Tippy Tipper 1.1.3 1771 5 0 0 0 10 52
PasswordMaker 1.1.7 2310 3 0 0 0 8 30
SyncMyPix 0.15 4081 8 1 2 1 53 31
Keepassdroid 1.9.8 4972 14 1 3 0 56 69
Ringdroid 2.6 5394 3 0 0 0 37 40
K9mail 3.512 47931 25 5 5 2 114 33

Calculator app does not make use of preferences. The same goes for
using a database or cursor and relying on different types of files on the
file system. The applications vary in terms of Lines of Code (LOC) and
number of components.

Table 6.1 shows the number of application-specific models created per
app and the number of unique events used to explore each app using
JPF-Android. These metrics give an indication of the size and complexity
of the applications. Tippy Tipper, K9Mail and Keepassdroid, for example,
respond to many events, so they have many possible event sequences.

For the first experiment we compare the statement coverage and the
number of paths explored by JPF-Android to two state-of-the-art dynamic
analysis tools for Android: Dynodroid [52] and Sapienz [55]. Dynodroid
and Sapienz currently achieve the best results in terms of code coverage
for automated input generation dynamic analysis tools.

Experiment 2 compares the different optimizations implemented by
JPF-Android and the effect they have on the coverage and the number of
paths and states explored.
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Statement code coverage records what portion of the application state-
ments are executed during analysis. It does not take into account that
defects and risk are not distributed uniformly across the application code
or tell us anything about the correctness of the analysis [37], but it gives
us a measure of the confidence we can put in the analysis results. If
the code coverage obtained by an analysis is low, the tool’s results and
run times are unreliable and skewed since only a small portion of the
application code was analyzed. In these experiments we measure the
statement coverage of the application code using EMMA [2]. All external
libraries are excluded from coverage calculation since we assume these
can be analyzed separately. We also excluded code injected into apps by
the dynamic tools to dump the code coverage during runtime because
JPF-Android’s EMMA listener does not require this code.

6.1 Experiment 1: Code Coverage

We evaluate Dynodroid and Sapienz by running the applications on the
emulator:

Dynodroid makes use of a biased-random input generation approach,
firing events more often if they are relevant in more contexts. It employs
a single, customized emulator to execute one long event sequence per
run, either bounded by time or the number of fired events. Since it
makes use of a random input generation approach, the tool needs to be
run multiple times on each app and the results merged to collect more
accurate coverage results obtainable by the tool. Therefore, we repeated
the experiment as performed by Choudhary et al. [28] running each app
on the tool for ten runs of an hour which should be more that sufficient
since their paper showed that the apps reached maximum code coverage
within five to ten minutes.

Sapienz uses a multi-objective, Pareto-optimal, genetic search-based
algorithm that systematically evolves test scripts to minimize event se-
quence length and maximize code coverage [55]. It generates a set of 50
test scripts which are evolved into new generations up to 100 times to
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optimize their results. Sapienz employs multiple concurrently running
emulators to exercise event sequences and collect the coverage data. We
recreated the experiment as performed by Mao et al. [55] and ran each ap-
plication on the tool for an hour (the same as Dynodroid) using the default
setting of 5 emulators. The tool generates test suits and coverage reports
for each test sequence which we merge to obtain the final coverage.

Before the applications can run on JPF-Android, application-specific
models were generated using OCSEGen (using a combination of runtime
and default values). In some cases these models needed to be optimized
manually to enable the applications to run. 1 This process takes a day
or two depending on the user’s knowledge of the application and its
complexity. The number of these application-specific models generated
for each app is given in column “Models” in Table 6.1. Once set up, these
models can be reused for future runs and can be adapted for JUnit Testing.

For this experiment we configure JPF-Android to:

• perform a heuristic search (limiting events to be executed only once
per path),

• bound event sequences to length 20 and limit the search depth to
1000 states (so that the analysis is guaranteed to complete), and

• explore all environment choices only once (the first time they are
reached),

• use the default JPF-Android thread policy that only explores a single
thread interleaving.

Table 6.2 shows the coverage achieved for each application. The high-
est coverage achieved for each app is highlighted.

Ten of the apps in Table 6.2 were previously analyzed by Dynodroid
and Sapienz in papers by Choudhary et al. [28] and Mao et al. [55]. For
eight of the ten apps we achieved higher coverage in this experiment using

1The models generated for the applications in these experiments are available at
https://bitbucket.org/heila/jpf-android-examples/src.
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Table 6.2: Shows the statement coverage for Sapienz (S), Dynodroid (D)
and JPF-Android (J). For JPF-Android we also show the number of new
states (#S), paths (#P) and environment choice points (#C) explored and
the runtime (t).

Coverage % JPF-Android
S D J #S #P #C t

Calculator 97 97 96 17 128 3 4s
AutoAnswer 31 67 98 57 87 37 4s
RMP 62 93 95 372 484 65 14s
AnyCut 72 69 88 98 74 21 4s
RSSReader 34 - 87 36 20 9 2s
aGrep 63 67 54 21 322 0 17s
Tippy Tipper 86 79 88 1182 2947 363 2s
PasswordMaker 80 48 66 156k 178k 163 3h29m43s
SyncMyPix 20 20 45 12k 4518 516 6m49s
Keepassdroid 15 22 47 31k 67k 95k 2h42m15s
Ringdroid 44 - 53 179k 150k 2590 2h28m38s
K9mail 6 4 17 1290 1222 0 5m54s

Dynodroid when compared to previous papers. Two of the applications
achieved nearly similar coverage. For Sapienz we also saw an increase in
coverage in seven of the apps from its paper’s results while the other three
apps obtained very similar coverage results. We attribute this coverage
increase to the fact that we excluded external libraries and instrumentation
code from code coverage calculation.

In this experiment Dynodroid and Sapienz achieve low coverage with
Sapienz obtaining less that 80% coverage on nine of the twelfth apps it
analyzed, while Dynodroid obtained less that 80% coverage for seven of
the ten apps it could analyze. This is due to the fact that they both run
on an emulator with restrictions. Sapienz runs on a newer emulator with
more behavior which can achieve better coverage in some cases. Sapienz
could analyze all the applications where Dynodroid crashed on RSSReader
and Ringdroid. JPF-Android, however, obtained code coverage of above
85% in six of the twelfth apps. It also achieved higher or similar coverage
in all but two applications: PasswordMaker and aGrep. aGrep contains a
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large amount of GUI code to construct custom widgets. Since JPF-Android
does not model GUI measurements and drawing, it could not cover this
code. PasswordMaker requires firing an event multiple times which was
not enabled in this run to limit the search space.

Sapienz explored event sequences of length between 20 and 500 where-
as Dynodroid explored event sequences with between 197 and 754 events
per path with an average of 400 events per app per run. JPF-Android
explores sequences systematically bounding event sequences to length
20. It analyzed all but one application, Keepassdroid, before reaching
this bound. On further inspection we saw that this application has 14
Activities and 69 unique events were fired to exercise the application
so sequences of length 20 were just not sufficient to reach all application
behavior. Please note that since JPF-Android does not use events to change
the device configuration but non-deterministically returns a subset of the
configurations, its event sequences are shorter.

Since JPF-Android non-deterministically explores different environ-
ment configurations, we count the number of paths explored by JPF-
Android. Each path encodes a single event sequences and environment
configuration (since environment data choices are only made once.) The
total number of paths explored by JPF-Android is given in Column 5 of
Table 6.2. Dynodroid and Sapienz explore event sequences deterministi-
cally, updating the configuration of the emulator using events. Dynodroid
explored 10 event sequences (one per emulator) and Sapienz explored be-
tween 38 and 327 event sequences per app. JPF-Android explores between
20 and 178k paths through the application. Although these dynamic tools
explore only a small number of paths on paper, one cannot directly com-
pare these longer sequences to the shorter paths of JPF-Android. The
shorter paths might be subsumed under the longer sequences.

JPF-Android’s analysis time was between 2s and 7 minutes for nine of
the apps, but increased to over two hours for the three more complex and
larger apps Ringdroid, Keepassdroid and PasswordMaker. The problem
with all three tools is that there is no way to know when to kill the analysis.
JPF-Android stops when all paths have been explored and the system
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is finite state. The main problem comes in when JPF-Android does not
complete in a given time limit. In this case the user must bound the
analysis using either event sequence length, search depth or runtime. JPF-
Android, however, completes its analysis without reaching the bounds of
event sequence length of 20 or search depth 1000 for all but one application
in this experiment.

6.2 Experiment 2: Optimizations

This experiment evaluates the different optimizations implemented by
JPF-Android to decrease the analysis size without influencing the code
coverage. In order to observe the influence of each optimization, we
analyze the applications on JPF-Android using a configuration similar to
Experiment 1:

• perform a heuristic search (limiting events to only be executed once
per path),

• bound event sequences at length 4 and limit the search depth to 1000
states (to ensure the analysis terminates),

• explore all environment choices only once (the first time they are
reached),

• use the default JPF-Android thread policy that only explores a single
thread interleaving.

We then disable each of the optimizations and compare the number of
states, number of paths, the code coverage and the runtime for each run.
Since we expect that disabling the optimizations increases the analysis
size, we bound the event sequences to length 4 in order to complete the
runs on JPF-Android. Table 6.3 shows the results.
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6.2.1 Event Generation

The “Heuristic” column shows the results of using JPF-Android’s heuristic
event generator (also used in Experiment 1), but bounding the analysis
to event sequences of maximum length 4 instead of 20. We found that
for most applications the coverage is very close to that of Experiment 1.
This means that for most apps all entry-points are fired at least once
using sequences of length 4, although all paths of the application are
not necessarily explored at this point. We can also see that applications
that respond to many types of events require longer event sequences.
Keepassdroid has 14 Activities and responds to 69 events so its coverage
deceased by 14% when shortening the sequences to length 4.

For the “Default” column we used the default event generator to see
the impact on coverage when allowing events to occur multiple times
within an event sequence. The default event generator in JPF-Android
fires all possible events whereas the heuristic event generator fires each
event once per path. The results show that the number of states and paths
increase while improving the coverage of the apps by less than 5% each.

6.2.2 State Matching

State matching bounds the state space by stopping exploration in a path
when it reaches a previously visited state. The column entitled “No state
matching” shows the results of disabling state matching. The number of
states explode in this case with three of the twelfth apps not completing
and hitting the state depth of 1000 within five hours. These have been
marked as “t/o” (timed out). This shows how large the actual state space
of these applications are and the immense reduction in the number of
states when using state matching.

6.2.3 Runtime Values

JPF-Android makes use of runtime values in models for preferences and
cursors as well as for parameters for generated events. In the “No RV” col-
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umn we show the decrease in coverage when runtime values are disabled.
The coverage reduces drastically for apps utilizing these runtime values
such as AutoAnswer, RSSReader and Ringdroid. Additionally removing
runtime values and using default values caused 8 of the 12 apps to crash
during the analysis.

6.3 Discussion

6.3.1 Coverage

Although JPF-Android achieved higher coverage for most of the applica-
tions, it could not fully cover all application code in Experiment 1. The
challenges JPF-Android as well as the other tools face include:

Dead Code All applications contain dead code. Dead code can be
left over from a previous version of the application and is now unused.
Covering this code is impossible for all tools including JPF-Android.

Exceptions Java applications contain many try-catch blocks. JPF-
Android could be modeled to throw exceptions and return invalid values
to cover all exceptional code. Enabling this behavior while verifying the
entire application, however, explodes the already large state space.

File system Certain applications such as Keepassdroid, Password-
Maker and Ringdroid execute differently depending on the files on the
file system. JPF-Android does not backtrack file creation, deletion or state
since it requires too much memory and storage to keep a copy of the files
for each state. JPF-Android does, however, allow the application to create
and delete files to enable this code. Although writing to and reading
from the file system can be modeled, apps often expect very specific files
and file content which becomes complex to model to enable different
application behavior.

Database Backtracking the state of a DB is not feasible when using JPF.
We found that stubs returning runtime and default values for cursors are
simple to generate and achieve acceptable coverage for many applications.
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When a cursor is used to traverse different data sets, however, runtime
values become less effective.

GUI Measurements and Drawing JPF-Android abstracts the GUI
heavily and does not fire onDraw or onMeasure callbacks. This lim-
its the coverage of custom views that utilize these methods or rely on the
values of the physical dimensions of the applications.

Thread Scheduling JPF-Android only explores a single thread inter-
leaving. The main problem with this approach is that certain applica-
tions like SyncMyPix execute different code depending on when exter-
nal threads finish. When run a few times with random thread choices
SyncMyPix achieves a coverage of 56% compared to its 45% reported for
the default JPF-Android thread policy.

Event Generation The heuristics we use to reduce the event sequences
are not always effective enough to reach all paths in the application. Also,
we may not fire events with all possible parameters since they have not
been observed during runtime.

6.3.2 Comparison to Other Tools

An important consideration when comparing dynamic analysis tools is
how to compare the events/event sequences generated by the tools. In
the case of Dynodroid, the longer the tool runs, the longer sequences are
generated and the number of runs determine the number of sequences
explored. Sapienz limits the event sequences generated to between 20-
500 events. Another consideration before comparing event sequences
is whether device configuration changes are counted as events. In JPF-
Android the number of event sequences and number of paths explored
differs since a sequence can non-deterministically be executed for different
environment configurations. For this reason we report the number of
paths explored by JPF-Android. Dynodroid and Sapienz change the
environment configuration deterministically by firing events. This leads
to many unnecessary events being fired that do not influence the execution
triggered by the event sequence.
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6.3.3 Environment Modeling

The environment model enables JPF-Android to explore event sequences
and environment configurations in a controlled environment and enable
behavior difficult or impossible to trigger on a device or emulator. We
manually checked component life-cycle method traces of applications
running on the tool against the traces generated on the emulator. We do
not, however, try to prove the soundness or completeness of the models
and leave this as future work.

Other dynamic analysis tools run Android applications on an emula-
tor/device. The configuration and capabilities of the device (set implicitly
in some cases) determine what application functionality can be triggered.
For example, test devices connected to the Internet can make connections
to web services. Devices can have specific files on their file system, an
emulated/actual SD Card inserted, the language set to English and run
a specific Android version. Dynodroid and Sapienz also both specifi-
cally add a music file to the file system of test devices to enable code of
music player/audio applications to execute. They also choose String/in-
teger values to use for input widgets because empty values can crash
applications.

In order to run the application on JPF-Android we perform automatic
(runtime values) or manual optimizations to models to enable Android
application code. In cases such as the SyncMyPix application we manually
optimization to get past the Facebook Login screen. In this case the
interaction with the Facebook library was too complex to use runtime
values. Optimizations were also made to the Url class for the RSSReader
application to use a specific file as input instead of connecting to an on-line
service to retrieve the XML of RSS updates. These optimizations might
not be necessary on a physical device/emulator since the environment
already supports a specific configuration. In our case modeling allow
us to achieve better coverage for Android applications. Additionally,
creating a model that can be reused can be much simpler to test different
environment configurations than, for example, running an application on
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devices with different Android versions, files on the file system or even
states of external web services. Experiment 2 measures the effectiveness
of using these types of optimizations by disabling all runtime values in
generated and manual optimization of models.

6.3.4 Bug Reporting

Although JPF-Android did not report any bugs, in two of the applications,
SyncMyPix and AnyCut, it reported that application threads were still
waiting (blocked) and never killed by the application before terminating.
Sapienz reported a unique crash in four of the twelve apps. In Ringdroid
and PasswordMaker JPF-Android did not cover the lines of code where
the exception occurred. The exception in K9mail was a crash in the
framework code which is modeled by JPF-Android. The last error was
found in Ringdroid where a cursor was accessed after it had already been
closed. We stubbed the cursor in such a way that we could not detect this
error.
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Conclusion

We conclude this thesis by presenting an overview of the project, results
and contributions and by discussing limitations and future extensions of
this work.

7.1 Verifying Android Applications

Android applications are hard to analyze due to their many entry-points
and the number of configurations of their environment. Static analysis
over-approximates the behavior of applications which can lead to false
positives that are difficult to prove since they do not provide event se-
quences and environment configurations leading to errors. Dynamic
analysis tools under-approximate the behavior of applications since they
only explore a limited number of event sequences of a specific length in
a given time. These tools can also unknowingly re-explore events/se-
quences leading to the same application behavior and give no indication
of what percentage of the application’s behavior was explored. Addition-
ally, dynamic and static analysis tools require modeling of unavailable
dependencies in order to explore certain application behavior.

In this work we investigated how model checking can improve the
effectiveness (measured in code coverage) and efficiency (number and
length of event sequences) when compared to current dynamic analysis

113
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tools for Android applications. These tools currently obtain low code
coverage for applications that depend on many external components.
Model checking supports non-deterministic choices in application execu-
tion that allows systematic exploration of the application paths. Android
applications include non-deterministic choices as a result of different
thread interleavings, alternative event sequences and different environ-
ment configurations. Model checking also provides state matching and
backtracking functionality that reduces the number of explored states and
the length of execution paths of the application. Lastly, model checking
provides verification of properties specified as listeners that can track and
analyze the execution of the application during runtime.

We implemented our approach as an extension to Java PathFinder
(JPF), called JPF-Android, to verify Android applications. JPF is a pro-
gram model checker and analysis tool for Java applications and Android
applications are written in Java. In order to run Android applications on
the tool, outside of their original environment in an emulator, an extensive
environment model is required to execute applications. The environment
model consists of two components: dependency modeling and driver
(event) generation. Modeling dependencies is a complex and error-prone
task that requires in-depth knowledge of the application and its environ-
ment. Dependencies are usually part of a larger component and work
together to perform important tasks. As a result they have complex class
hierarchies and may depend on other classes and components to set up
the component. We investigated tools to generate dependency models
automatically. A lot of work has been done on the topic and we found that
dependencies typically require a combination of techniques to be mod-
eled. To improve code coverage we extended OCSEGen, an environment
generation tool, to use runtime collected environment data for model
generation. In certain cases more involved models were required and
therefore classes were modeled manually. We used the tools to generate
skeletons of the classes retaining side-effects to reduce manual work.

A driver is required to generate and process events to execute the
entry-points of the applications. JPF-Android’s driver is built from the
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original Android application framework code using a message-queue
and a single main thread to serialize incoming events for the application.
When the queue is empty, a set of events is retrieved from the new JPF-
Android event producer and processed non-deterministically. The event
producer collects events by exploring enabled entry-points and filtering
events using different event generation strategies. The tool implements
three strategies: script, default and heuristic. The script event generator
allows the user to write scripts containing non-deterministic event se-
quences. Scripts are useful to explore hard-to-reach application behavior
but are tedious to write. For this reason we implemented the default event
generator to automatically explore all event sequences systematically.
This generator is especially useful to explore the behavior of an unknown
application. For large applications, however, the number and length of
event sequences are too many and too long. The heuristic event generator
limits the number of times an event can be processed in a branch to reduce
analysis size. Although not all paths of the application are explored in
this case, the approach achieves code coverage comparable to the default
event generator while exploring fewer event sequences.

Adjustments, optimizations and extensions were made to JPF to effec-
tively apply non-determinism and state matching to Android applications.
Firstly, we add functionality to configure how each choice type (thread,
environment or event choices) is explored. The different choice types can
be configured independently to be explored non-deterministically, heuris-
tically or randomly. This functionality allows us to reduce the analysis
size for applications with too many environment data choices by only
exploring a choice once and then reusing the value. We also use this func-
tionality to only explore a single thread interleaving that always processes
the last started thread before continuing back to the previous thread. We
use this as our default thread policy since combining thread choices with
environment and event choices results in a too big state space to process
for applications with many threads.

We also found the current approach to state matching of JPF too conser-
vative, resulting in many unnecessary states being explored. To optimize
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state matching, we preload application and environment classes and ex-
clude classes from the state with none or only final static fields to improve
state matching. We also create an extension to JPF called State Comparator
to detect constantly changing fields and to remove them from the state to
ensure a closed, finite state environment.

We implemented listeners to track all explored event sequences and
environment configurations. They are used to present statistics on the
explored sequences and print out the event sequence leading to an error.
Erroneous sequences can be executed on the emulator, assuming it is
possible to set the specific device configuration (not always supported by
the emulator/device).

Android application have a multi-threaded, event-driven and asyn-
chronous message-passing design which makes it hard to specify prop-
erties using only LTL formulas. To simplify property specification, we
implement a framework to verify the execution of the application using
Checklists. Checklists consist of a sequence of Checkpoints that represent
methods invocations by specific threads. Checklists are verified per thread
and limited to the execution triggered by processing a single event. A
copy of the current Checklists is passed to newly spawned threads as well
as sent with messages passed between threads to follow execution.

We evaluated the tool by comparing it to two state-of-art dynamic
analysis tools for Android applications: Dynodroid and Sapienz. We
found that although Dynodroid and Sapienz require less manual effort
to set up, JPF-Android’s flexibility allows it to cover code that is hard-to-
reach with traditional dynamic analysis tools. For most applications we
achieve higher code coverage using much shorter sequences. We then
compared different tool configurations and found that our optimizations
to JPF reduced the number of explored states while only having a small
influence on the code coverage achieved by the tool.
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7.2 Limitations and Future Work

JPF-Android is designed to support the testing of only a single Android
application. This allows the simplification of the models of the Android
software stack. JPF supports multiple processes and can be extended
to support multiple applications. Since Android applications have a
component-based design, they frequently make use of components of
other applications to perform certain tasks. The biggest challenge with this
extension will be to extend the system services and Binder Interprocess
Communication (IPC).

Currently, we can run a discovered event sequence on the emulator
or device if the environment can be configured accordingly. A next step
would be to extend the currently available behavior of the emulator to
allow better configuration of its environment and generate JUnit test suites
from event sequences discovered on JPF-Android to run on the emulator.

Model checking suffers from the state explosion problem. We can
reduce the number of possible states by using partial-order-reduction
or dependency analysis to reduce the number of explored event and
environment choice combinations before they are explored. Although
JPF implements partial-order-reduction, this is hindered by the fact that
events are generated at runtime.

This work did not focus on bug detection or detecting Android-specific
errors such as resource leaks but on investigating how modeling checking
can be applied effectively to Android applications. Future work can look
into bug-seeding to evaluate the effectiveness of the tool.

In terms of environment generation there are three improvements to
the tools that can be investigated. The first improvement is adding support
to OCSEGen to not only identify methods called from a set of classes, but
to identify all callers of a specific class or method. This will enhance the
driver generation capabilities of OCSEGen. The second improvement is to
extend OCSEGen to merge results of the different runs of stub generation
and side-effect analysis instead of inspecting them manually. Another
improvement is to extend and refine the slicing capabilities of Modgen to
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generate more efficient models. Symbolic execution can also be used as
a complementary approach to identify entry-point parameters or return
values for models to improve coverage.

Currently, dependency models can be stubbed too much, contain
errors or could be modeled incorrectly. This can result in missed bugs
or false positives being reported by the tool. In future work, models
can be verified by comparing method traces of an application on the
emulator to traces generated by JPF-Android. This might not be so simple,
however, since the emulator does not have control over all environment
dependencies.

New event generation strategies can be implemented, for example, to
explore exceptional code.

Checklist can be recorded automatically for a specific application re-
lease and then be reused to verify the application’s correctness in future
releases. They can also be detected while running the application on the
emulator and verify the behavior of the application on JPF-Android.

7.3 Summary

This work has shown that model checking can be effectively applied to
Android applications. This approach, however, requires a lot of work
to implement and presents many challenges due to Android’s design.
Android applications depend heavily on their environment. The envi-
ronment, consisting of interdependent components, can be configured in
many different ways and can be changed dynamically during runtime. It
is clear that only a subset of all possible configuration combinations and
event sequences are required to exercise application behavior, but, the
challenge lies in choosing which combinations to explore.

Evaluation of the tool showed that our model checking approach
achieved higher code coverage and explored fewer event sequences than
two state-of-the-art dynamic analysis tools. It also showed that state
matching and our heuristic search was effective in reducing the analysis
size while not influencing the code coverage of the analysis. In our experi-
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ence, however, we found that directly comparing different approaches,
such as search-based, dynamic or symbolic execution, can be imprecise;
each tool executes differently, support different application functionality
and has to cut its own corners in order to run the applications. Some
of these corners are described in the related papers, but some are not
discussed, making it hard for researchers new to the field to interpret and
improve on current results.
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[39] Havelund, K. and Roşu, G. (2001). Monitoring Java Programs with Java

PathExplorer. Electronic Notes in Theoretical Computer Science, 55(2), pp.

200–217.

[40] Holzmann, G. (1997). The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5), pp. 279–295.

[41] Hu, G., Yuan, X., Tang, Y. and Yang, J. (2014). Proceedings of the Ninth
European Conference on Computer Systems. Efficiently, effectively detecting

mobile app bugs with AppDoctor. Amsterdam, The Netherlands. ACM

ACM New York, NY, USA, pp. 1–15.

[42] (2012). Symdroid: Symbolic execution for dalvik bytecode. Jeon, J., Micinski,

K. K. and Foster, J. S. (online). Available at: www.cs.umd.edu/~jfoster/

papers/cs-tr-5022.pdf [Accessed: 2017-05-17].

[43] Jeon, J., Qiu, X., Fetter-Degges, J., Foster, J. S. and Solar-Lezama, A. (2016).

Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). Synthesizing framework models for symbolic execution. Austin, Texas.

ACM New York, NY, USA, pp. 156–167.

[44] Jhala, R. and Majumdar, R. (2009). Software model checking. ACM Comput-
ing Surveys (CSUR), 41(4), pp. 1–54.

[45] Kim, K., Yavuz-Kahveci, T. and Sanders, B. A. (2009). 2009 IEEE/ACM
International Conference on Automated Software Engineering. Precise data race

detection in a relaxed memory model using heuristic-based model checking.

pp. 495–499.

Stellenbosch University  https://scholar.sun.ac.za

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
www.cs.umd.edu/~jfoster/papers/cs-tr-5022.pdf
www.cs.umd.edu/~jfoster/papers/cs-tr-5022.pdf


LIST OF REFERENCES 127

[46] Kim, M., Kannan, S., Lee, I., Sokolsky, O. and Viswanathan, M. (2001). Java-

MaC: a Run-time Assurance Tool for Java Programs. Electronic Notes in
Theoretical Computer Science, 55(2), pp. 218–235.

[47] Lam, P., Bodden, E., Lhoták, O. and Hendren, L. (2001). The Soot framework

for Java program analysis: a retrospective. (online). Available at: https:

//sable.github.io/soot.

[48] Lerda, F. and Visser, W. (2001). Proceedings of the 8th International SPIN Work-
shop on Model Checking of Software. Addressing Dynamic Issues of Program

Model Checking. Toronto, Ontario, Canada. Springer-Verlag New York, pp.

80–102.

[49] Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M. and

Takahashi, K. (2014). Modular Software Model Checking for Distributed

Systems. IEEE Transactions on Software Engineering, 40(5), pp. 483–501.

[50] Li, L., Bartel, A., Bissyande, T. F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,

Bodden, E., Octeau, D. and McDaniel, P. (2015). IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering. IccTA: Detecting Inter-Component

Privacy Leaks in Android Apps. Florence, Italy. IEEE, vol. 1, pp. 280–291.

[51] Lu, L., Li, Z., Wu, Z., Lee, W. and Jiang, G. (2012). Proceedings of the 2012
ACM conference on Computer and communications security (CCS ’12). CHEX.

Raleigh, North Carolina, USA. ACM New York, NY, USA, p. 229.

[52] Machiry, A., Tahiliani, R. and Naik, M. (2013). Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. Dynodroid: An Input

Generation System for Android Apps. Saint Petersburg, Russia. ACM New

York, NY, USA, ESEC/FSE 2013, p. 224.

[53] Mahmood, R., Mirzaei, N. and Malek, S. (2014). Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering.

Evodroid: Segmented evolutionary testing of android apps. Hong Kong,

China. ACM New York, NY, USA, pp. 599–609.

[54] Maiya, P., Kanade, A. and Majumdar, R. (2013). Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation.

Stellenbosch University  https://scholar.sun.ac.za

https://sable.github.io/soot
https://sable.github.io/soot


LIST OF REFERENCES 128

Race detection for Android applications. Edinburgh, United Kingdom. ACM

New York, NY, USA, vol. 49, pp. 316–325.

[55] Mao, K., Harman, M. and Jia, Y. (2016). Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA ’16). Sapienz: multi-

objective automated testing for Android applications. Saarbrücken, Ger-

many. ACM New York, NY, USA, pp. 94–105.

[56] Mehlitz, P., Tkachuk, O. and Ujma, M. (2011). 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’11). JPF-AWT: Model

checking GUI applications. Lawrence, KS, USA. IEEE, pp. 584–587.

[57] Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A. and Malek, S. (2016). Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE ’16).
Reducing Combinatorics in GUI Testing of Android Applications. Austin,

Texas. ACM New York, NY, USA, pp. 559–570.
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