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Abstract

Dynamic correlations 〈ψ|O1(t1)O2(t2) |ψ〉 of quantum observables are useful quan-
tities for the study of quantum dynamics. Attempts at measuring these correlations
are however complicated, due to the measurement backaction (wave function col-
lapse) incurred during measurements at the early time t1. We propose a noninvasive
measurement protocol, based on a weak ancilla�target coupling, which reduces this
backaction at t1. We show that both real and imaginary parts of the desired corre-
lation can be extracted through appropriate choices of the initial ancilla state and
of the ancilla�target coupling Hamiltonian. The protocol is applicable to arbitrary
(pseudo)spin systems with arbitrary (non)equilibrium initial states. Errors arising
in experimental implementations are analysed, and we show that deviations from
the desired correlation can be minimised through an optimal choice of the ancilla�
target coupling time. Implementation in linear ion trap experiments is discussed.

We derive the positive-operator-valued measure which describes the noninvasive
measurement at t1. For dynamic correlations of single-site spin-1/2 observables, this
operator formalism shows that measurement backaction is of no concern. Real parts
can be obtained with projective measurements of the target at t1 and t2. Imaginary
parts are obtained by performing a local rotation of the target at t1, followed
by a projective measurement at t2. These ancilla-free protocols are theoretically
simpler than the noninvasive measurement protocol, but remain experimentally
challenging. Rotations and projections performed at t1 may be subject to noise,
which propagates into the measured correlation. We use Lieb-Robinson theory to
bound the size of the resulting error terms. An analysis of the spatio-temporal
behaviour of these errors provides guidance for experimental implementation of the
ancilla-free measurement protocols.

v
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Uittreksel

Dinamiese korrelasies 〈ψ|O1(t1)O2(t2) |ψ〉 van kwantum waarneembares is nuttig in
die studie van kwantum dinamika. Die meting van hierdie hoeveelhede word egter
gekompliseer deur die meetingsterugreaksie (gol�unksie ineenstorting), wat tydens
die meting by die vroeër tyd t1 plaasvind. Ons stel 'n nie-ingrypende metings-
protokol voor, gebaseer op 'n swak ancilla�teikenstelsel koppeling, wat die mee-
tingsterugreaksie by t1 verminder. Ons toon dat die reële en imaginêre dele van
die korrelasiefunksie deur geskikte keuses van die ancilla begintoestand en van die
ancilla�teikenstelsel koppeling bepaal kan word. Die protokol is van toepassing op
(pseudo)spin stelsels met arbitrêre nie-ewewig begintoestande. Foute wat in ekspe-
rimentele implementering ontstaan word geanaliseer. Ons toon dat afwykings van
die gewenste korrelasie geminimeer kan word deur 'n optimale ancilla�teikenstelsel
koppelingstyd. Implementering in liniêre ioonputte word bespreek.

Ons herlei die positiewe operator-waardige maat wat die nie-ingrypende meting
by t1 beskryf. Hierdie formalisme toon dat die meetingsterugreaksie van geen be-
lang is vir dinamiese korrelasies van enkelpunt spin-1/2 waarneembares nie. Die
reële deel kan deur projektiewe meetings by t1 en t2 bepaal word. Die imaginêre
deel word verkry deur 'n lokale rotasie by t1, gevolg deur 'n projektiewe meting
by t2. Hierdie ancilla-vrye protokolle is teoreties eenvoudiger as die nie-ingrypende
metingsprotokol, maar eksperimentele implementering bly uitdagend. Rotasies en
projeksies wat by t1 uitgevoer word kan onder steurings ly, wat dan ook die gemete
korrelasies a�ekteer. Ons gebruik Lieb-Robinson teorie om die grootte van die re-
sulterende foute te begrens. 'n Analise van die foute se tyd en ruimtelike gedrag
bied leiding vir die eksperimentele implementering van die ancilla-vrye metingspro-
tokolle.

vii
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Introduction

Dynamic two-point correlation functions C(t1, t2) = 〈O1(t1)O2(t2)〉 relate the state
of a system with respect to some observable O1 at an early time1 t1 ≥ 0 to the state
of a system with respect to another observable O2 at a later time t2 > t1. They play
an important role in many theoretical approaches, including �uctuation-dissipation
theorems and the Kubo formula [1], optical coherence [2], glassy dynamics and aging
[3], and many more.

In a classical (non-quantum mechanical) system, a straightforward�at least in
principle�protocol for determining dynamic correlations consists of measuring the
observable O1 at time t1 and correlating the outcome with the measured value of
O2 at time t2. In a quantum mechanical system, however, such a naive approach is
in general thwarted by the measurement backaction i.e. the disturbing e�ect that
a measurement of O1 at the earlier time t1 has on the subsequent time evolution,
due to the collapse of the wave function [4; 5; 6]. As a result of this disturbance,
correlating the eigenvalue obtained from a measurement of O1 at time t1 with
that obtained from a measurement of O2 at t2 does not yield the desired dynamic
correlation function C.

As an example, consider a lattice system consisting of two spin-1/2 degrees of
freedom, initially in a product state

|ψ〉 = (α |+〉+ β |−〉)⊗ (α |+〉+ β |−〉) = |ψ1〉 |ψ2〉 (1.0.1)

with α, β ∈ C. The subscripts 1 and 2 denote the lattice positions of the two spins
and |+〉 and |−〉 denote eigenstates of the Pauli operator σz with eigenvalues +1
and −1, respectively. Assume the dynamics of the two spins to be governed by the
Hamiltonian H = σx⊗σx. It follows from the series expansion of the corresponding
time-evolution operator that

U(t) = exp(−iHt) = cos(t)− i sin(t)(σx ⊗ σx), (1.0.2)

in units where ~ = 1. Suppose now that we wish to correlate spin observables
O1 = σz ⊗ 1 and O2 = 1 ⊗ σz at times t1 and t2 respectively. For simplicity we

1O(t) denotes the time-evolved observable U†(t)OU(t) in the Heisenberg picture where U(t)
is the time evolution generated by the system's Hamiltonian Hs.

1

Stellenbosch University  https://scholar.sun.ac.za



2 Introduction

choose t1 = 0 and t2 = t > 0, in which case one obtains

C(0, t) = 〈ψ| (σz ⊗ 1)U †(t)(1⊗ σz)U(t) |ψ〉

= cos(2t)
(
|α|2 − |β|2

)2 − i sin(2t) (α∗β − αβ∗)2
(1.0.3)

for the exact dynamic correlation function.
Following the naive (classical) approach we now attempt to measure this cor-

relation via projective measurements of either observable. The measurement at
t1 = 0 is done in the eigenbasis of σa, which we denote as {|ma〉}, and will yield an
eigenvalue ma ∈ {±1} of σa with probability

PProj
ma = 〈ψ|Πma ⊗ 1 |ψ〉 = |〈ψ1|ma〉|2 (1.0.4)

according to Born's rule. Here Πma = |ma〉 〈ma| is a projection operator and 1 is
the identity. The normalised post-measurement2 state is

|ψma〉 = Πma ⊗ 1 |ψ〉 /
√
PProj
ma (1.0.5)

according to the von Neumann projection postulate. The measurement at t2 = t
(done in the eigenbasis {|mb〉} of σb) is therefore conditioned on the eigenvalue
measured at t1, and yields an eigenvalue mb ∈ {±1} with probability

PProj

mb|ma = 〈ψ| (Πma ⊗ 1)U †(t)(1⊗ Πmb)U(t)(Πma ⊗ 1) |ψ〉 /PProj
ma . (1.0.6)

Correlating the measured outcomes as

C Proj(0, t) =
∑

ma,mb=±1

mambP
Proj
ma PProj

mb|ma (1.0.7)

we �nd that
C Proj(0, t) = cos(2t)

(
|α|2 − |β|2

)2 6= C(0, t). (1.0.8)

In general then such a naive approach to measuring dynamic correlations fails to
yield the correct dynamic correlation. The measurement backaction, or wave func-
tion collapse, inherent to projective measurements makes measurement of dynamic
correlations challenging, both theoretically and experimentally.

An alternative approach which avoids multiple temporally separated measure-
ments goes as follows: First, we notice that any operator product O1(t1)O2(t2) may
be written as a sum of two observables

O1(t1)O2(t2) = Ω1+iΩ2 where Ω1 =
1

2
{O1(t1), O2(t2)} and Ω2 =

−i
2

[O1(t1), O2(t2)].

(1.0.9)

2We require an initial state |ψ1〉 satisfying 〈±a|ψ1〉 6= 0 in order to avoid division by zero in
(1.0.5).
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From this follows that

C = 〈ψ|Ω1 |ψ〉+ i 〈ψ|Ω2 |ψ〉 , (1.0.10)

which implies that we can reconstruct C from measurements of the two expectation
values in (1.0.10). To measure these expectation values one only needs to (repeat-
edly) prepare the system state |ψ〉 and perform a projective measurement of Ω1 (or
Ω2) at a single point in time t = 0. Measurement backaction is thus not an issue.

The underlying assumptions in this approach are �rstly that we can determine
(calculate) the observables Ω1 and Ω2, and secondly that we can measure them in
a given experiment. Both assumptions turn out to be impractical for an arbitrary
many-body quantum system: Analytic calculation of Ω1 and Ω2 requires solving for
the dynamics U(t) generated by the system's Hamiltonian Hs. This is an arbitrarily
di�cult problem for a general (possibly time-dependent) Hamiltonian of a system
consisting of N particles. Even if one has solved for Ω1 and Ω2, their dependence
on U(t) implies that they will in general be global observables i.e. sums over all
possible n-particle correlations for n ∈ {1, . . . N}. To measure Ω1,2 one therefore has
to measure all of these correlations, a task which scales exponentially3 with the size
of the system. To avoid this scaling one could construct a measurement apparatus
speci�cally to measure the global observables Ω1,2, in which case again only a
single measurement is required. However, it is unclear whether constructing such
an apparatus is possible in general for an arbitrary global observable. Furthermore,
the design of the apparatus could vary with the observable considered, making this
approach undesirable.

A theoretical description of a general procedure for the measurement of dy-
namic correlations has been hard to �nd in existing literature. This is in stark
contrast to the vast number of references (some of which were mentioned at the be-
ginning of this introduction) in which dynamic correlations play an essential role in
characterising a given quantum system. A theoretical proposal for a measurement
protocol which gives access to dynamic correlations in arbitrary quantum systems
is clearly desirable. An interesting scheme, based on Ramsey interferometry and
spin-shelving, for probing thermal equilibrium values of dynamic correlations has
been put forward by Knap et al. [7]. This scheme however requires certain sym-
metries of the Hamiltonian, and gives access only to the imaginary part of certain
dynamic correlations, and to the real part of others. Another protocol for mea-
suring dynamic correlations, due to Romero-Isart et al. [8], proposes to weakly
couple photons to ultracold atoms in an optical lattice, and to store the informa-
tion imprinted on the photons in a quantum memory. Reading out the correlations
between the system and the quantum memory at a later time then gives access
to the real part of the dynamic correlation function. The imaginary component,
however, remains inaccessible within their proposal.

3For a lattice consisting of N spin-s particles the total number of n-particle correlations is
O(s2N ).
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4 Introduction

The goal of this thesis is to improve on these ideas. We will analytically de-
rive and characterise a measurement protocol which can be used to measure the
full complex dynamic correlation of any two observables. We will show this pro-
tocol's validity within quantum spin systems with arbitrary geometry, dimension,
Hamiltonian and (non)equilibrium initial states. Furthermore, our protocol does
not scale with the size N of the system which makes its implementation within
existing experimental platforms feasible.

1.1 Thesis outline and main results

Throughout this work, the setting we have in mind is a spatially extended system,
and for simplicity we focus on lattice models. When the choice of observables is
unspeci�ed, or clear from the context, we will use the symbol C to refer to dynamic
correlations C(t1, t2) = 〈ψ|O1(t1)O2(t2) |ψ〉. Our �rst main result, discussed in
Chap. 2, is a protocol for determining C by means of noninvasive measurements,
which we review below in Sec. 1.2. noninvasive measurements have been around for
some time and under various names, including non-projective, generalized, unsharp,
or weak measurements4, and these names are used for slightly di�erent concepts in
some works, and interchangeably in others; see [9] for an introduction. Noninvasive
measurements also play an important role in continuous measurements [10; 11] and
quantum control [12], and they have also been used for quantum state estimation
[13].

The key idea of our noninvasive measurement protocol (NIMP) is to indirectly
probe the target system at t1 by coupling a secondary ancilla system to it in such a
way that information about the target system's state is retrieved through a subse-
quent projective measurement of the ancilla. By choosing an appropriate coupling
unitary U (λ)�where λ is the coupling time�for the ancilla�target coupling, a
full projection of the target system's state onto an eigenstate of the measured ob-
servable can be avoided. At t2 we measure the system directly since measurement
backaction is of no concern. The ancilla�target coupling λ time must also be care-
fully chosen and we show in Sec. 2.2 that the information obtained through multiple
repetitions of this protocol can, for su�ciently small λ, be assembled to construct
a faithful estimator of the correlation C. The NIMP is versatile, but also exper-
imentally demanding in that multiple repetitions of the experiment are required,
and a high degree of control is needed to couple and decouple an ancilla to the
target system. In Sec. 2.2.1 we characterize the performance of the NIMP by de-
riving error bounds on the estimators for C. For a given number of repetitions of
the protocol, these error bounds allow us to determine the optimal coupling time
which simultaneously minimizes statistical and systematic errors. In Sec. 2.3 we

4We refrain from using the terminology �weak measurement� in order to avoid confusion with
the concept of a (post-selected) weak value, which plays no role in our protocol.
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1.1. Thesis outline and main results 5

discuss generalizations of the NIMP. The �rst is based on deferred measurements
where information about the system at an early time t1 is stored in an ancilla but
read out not before t2. We show that this deferral yields no further reduction of
the backaction. A second generalization uses multiple noninvasive measurements
at times t1, t2, t3, in order to extract multiple correlations. It turns out that such
a scheme is less e�cient than repeated applications of the NIMP.

Our second main result is discussed in Chap. 3. There we use Kraus operators�
which are also reviewed in Sec. 1.2 below�to reformulate the ancilla-based mea-
surement protocols of Chap. 2. Kraus operators capture the dynamics incurred by
a target system during an ancilla-based measurement. As a result these operators
elucidate, for speci�c cases, the equivalence of our NIMP to ancilla-free measure-
ment protocols of dynamic correlations. The most notable (and counter-intuitive)
result of Chap. 3 is speci�c to spin-1/2 systems: when using the NIMP (with a
speci�c coupling time λ) to measure ReC, the state of the target after the nonin-
vasive measurement at t1 is projected onto an eigenspace of the observable to be
correlated at t1. This implies that the real part of dynamic correlations C is not
a�ected by measurement backaction incurred at early times, and projective (von
Neumann) measurements can be used at times t1 and t2 to accurately measure
ReC. This does not mean that no collapse of the wave function takes place at the
early time t1, only that its e�ect precisely cancels out in ReC. The details of this
projective measurement protocol (PMP) are reported in Sec. 3.2.2. Similarly, the
Kraus operator formalism shows that ImC can be measured in spin-1/2 systems
by performing a localised rotation of the target system at t1, followed by a projec-
tive measurement of the target at t2. A detailed description of this rotation-based
measurement protocol (RMP) is reported in Sec. 3.2.1.

Despite the theoretical simplicity of the ancilla-free PMP and RMP, experimen-
tal challenges remain. We discuss some of these in Chap. 4 at the hand of linear
ion-trap and quantum gas microscope experiments (reviewed at the beginning of
Chap. 4). Both platforms simulate spin lattices by trapping ultra-cold ions or
atoms. Implementation of the PMP is particularly challenging since the necessary
projective measurement at t1 causes decoherence and particle loss due to heating.
This disturbs the system dynamics beyond the expected wave function collapse.
We discuss in Sec. 4.1.2 how this disturbance propagates into the measured corre-
lation and analyse the size of the resulting deviation from the desired correlation
component. The RMP is easier to implement as it only requires a unitary rota-
tion to be performed at t1. As shown in Sec. 3.2.1 the RMP yields ImC exactly
when the rotation angle is set to an optimal value (see the paragraph following
Eq. (3.2.3)). In a given experiment, it might be di�cult to precisely hit this op-
timal angle, so that the rotations are susceptible to errors. We show in Sec. 4.1.3
how these errors propagate into the measurement of ImC and characterise the size
of the resulting deviation. The main theoretical tool used in the error analysis of
Secs. 4.1.2 and 4.1.3 is the theory of Lieb-Robinson bounds, which we review in
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6 Introduction

Sec. 4.1.1. Due to the experimental challenges created by repeated projective mea-
surements, our NIMP is still relevant for spin-1/2 systems since the ancilla-based
noninvasive measurement allows one to defer all measurements to the �nal time t2.
In this way destructive e�ects due to projective measurements�such as heating
and particle loss�are avoided before t2. In Sec. 4.2 we show that the NIMP can
be readily implemented in linear ion-traps with existing experimental techniques.

We conclude on our �ndings and provide an outlook on possible avenues for
future research in Chap. 5

Parts of the work presented in this thesis have been accepted for publication
in Physical Review A (PRA) in the form of a peer-reviewed article [14] written by
P.Uhrich, M. Kastner, H. Uys and S. Castrignano. In particular Chap. 2, Sec. 3.2.1,
3.2.2, 4.2 and App. B have been adapted from [14]. The calculations presented in
those sections are a direct result of this author's e�orts, with the exception of the
Γ operator (B.0.6), as well as the related anti-Hermiticity requirement (B.0.11), of
App. B. These were derived by S. Castrignano as part of the collaboration leading
to our publication in PRA.

1.2 Quantum measurement theory

This review is based on Chapter 1 of the textbook Quantum Measurement Theory
and its Applications by Kurt Jacobs [15] and Chapter 8 of the textbook Quantum
Computation and Quantum Information by M. Nielsen and I. Chuang [16].

We begin with a reminder of what is known in quantum theory as a projective
or von Neumann measurement: Let |ψ〉 ∈ HS denote the state of some system of
interest, where for our purposes it is su�cient to consider the system's Hilbert space
HS to be of �nite dimension N . Let O be a bounded5, Hermitian operator acting
on this Hilbert space i.e. O† = O and O : HS 7→ HS. Let n ∈ {0, 1, . . . , N − 1}
denote the N (non-degenerate) eigenvalues of O, with corresponding eigenstates
{|n〉}. Assume that this eigenbasis forms a complete basis for HS. It then follows

that |ψ〉 =
N−1∑
n=0

cn |n〉 for any complex coe�cients {cn} which satisfy
∑N−1

n=0 |cn|
2 = 1.

Suppose now that we measure the observable O. The measurement basis is then
{|n〉}. The measurement postulate of quantum theory states that although the sys-
tem can be in any state |ψ〉 ∈HS before the measurement, the measurement out-
come will be exactly one of the eigenvalues n of O, and that the post-measurement
state of the system is given by the corresponding eigenstate |n〉. Which of the
eigenvalues n we obtain is random and the corresponding probability pn is given

5Here we use the usual de�nition that a bounded operator is one with �nite norm. For the
case of a Hermitian operator this is equivalent to saying that all of its eigenvalues have �nite
absolute value.
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1.2. Quantum measurement theory 7

by the expansion coe�cients as pn = |cn|2. Such a measurement, where the post-
measurement state of the system is exactly one of the states of the measurement
basis, is called a von Neumann measurement [15].

Let us denote the post-measurement state of the system as |ψn〉. We can then
express |ψn〉 in terms of the pre-measurement state |ψ〉 by means of projection op-
erators Πn�where Πn = |n〉 〈n| for non-degenerate spectra�as |ψn〉 = Πn |ψ〉 /N .
Here N is a normalisation factor which ensures that |ψn〉 = |n〉 and can be shown
to be N = |〈n|ψ〉| =

√
pn. We can also express the corresponding probability pn

as an expectation value of the projector Πn; pn = 〈ψ|Πn |ψ〉 = |〈n|ψ〉|2 = |cn|2.
This is known as Born's rule. The process whereby the pre-measurement state |ψ〉
evolves into the post-measurement state |ψn〉 by means of a projection is known as
wave function collapse [17] and constitutes a non-linear evolution of the system's
wave function (due to the necessary normalisation).

In the introductory example of a naive measurement of the dynamic correlation
〈ψ| (σz ⊗ 1)U †(t)(1⊗ σz)U(t) |ψ〉 (Eqs. (1.0.3)�(1.0.8)), we made use of a von Neu-
mann measurement at the early time t1 = 0 (and at the �nal time t2), and referred
to the resulting non-linearity in the system dynamics as measurement backaction.
To measure dynamic correlations successfully one must avoid this backaction. Our
approach in this thesis is to perform a noninvasive measurement at t1. Such a mea-
surement falls under a broader class of measurements which are typically referred to
as �generalised quantum measurements�. In the next paragraph we describe these
generalised measurements, and show how they can be used to perform noninvasive
measurements.

Generalised quantum measurements Let us refer to the system |ψ〉 ∈ HS

which is to be measured as the target system. Now we introduce an ancilla quan-
tum system whose initial state |φ〉 ∈ HA is prepared independently from that of
the target. The combined ancilla�target state6 is then |φ〉 ⊗ |ψ〉 ∈H = HA ⊗HS.
The idea is now that we can extract information about the target's state by per-
forming a von Neumann measurement of the ancilla's state, after the ancilla and
target have interacted under the action of some unitary operator U . The physical
motivation for this indirect ancilla-based measurement is that in general the inter-
action U will create correlations (i.e. entanglement) between the ancilla and target
states. The measured state of the ancilla then yields information on the state of
the target. However, due to this entanglement the state of the target system is in
general changed. This change depends on the the initial state |φ〉 of the target,
the ancilla�target interaction U and the outcome of the ancilla measurement. By
varying U and |φ〉 this dynamical change of the target can range from that of a von
Neumann measurement (wave function collapse), to arbitrarily small perturbations.

6Note that throughout this thesis we use for tensor products the convention that ancilla states
are written to the left of target system states.

Stellenbosch University  https://scholar.sun.ac.za



8 Introduction

As an example suppose that the target system consists of a single qubit. Our
target Hilbert space is thus HS = C2, and we use the computational basis {|0〉 , |1〉}
to span HS. For simplicity, we assume the qubit to be in the pure state |ψ〉 =
(|0〉+ |1〉)/

√
2 ∈HS. It will be useful to use the geometrical representation of this

state as a point on the surface of a Bloch sphere, of which the North and South
poles respectively represent basis state |0〉 and |1〉. Up to an arbitrary phase, our
choice of |ψ〉 then lies on the equator of the Bloch sphere, as shown in Fig. 1.2.1.
For the ancilla system, we introduce a second qubit, prepared in the basis state |0〉.
To perform a noninvasive measurement of the target qubit, we couple ancilla and
target with the unitary

U = |0〉 〈0| ⊗M0 + |0〉 〈1| ⊗ (−iM1) + |1〉 〈0| ⊗M1 + |1〉 〈1| ⊗ (iM0),

where M0 =
√
k |0〉 〈0|+

√
1− k |1〉 〈1|

and M1 =
√

1− k |0〉 〈0|+
√
k |1〉 〈1| for k ∈ [0, 1].

(1.2.1)

The reason for representing U in terms of operators M0,1 will become clear in the
next paragraph where Kraus operators are discussed. The post-coupling ancilla�
target state is then

U |φ, ψ〉 = |0〉 (M0 |ψ〉) + |1〉 (M1 |ψ〉). (1.2.2)

We now measure the ancilla in the computational basis. The (normalised) post-
measurement states of the target, corresponding to outcome 0 or 1 of the ancilla
measurement, are

|ψ0〉 =
√
k |0〉+

√
1− k |1〉 ,

|ψ1〉 =
√

1− k |0〉+
√
k |1〉 .

(1.2.3)

For k = 0, 1, the ancilla-based measurement has the same dynamical e�ect on the
target as a von Neumann measurement: for k = 0 the target is projected, and
is orthogonal to the ancilla qubit. For k = 1, the target is again projected, but
its post-measurement state matches that of the ancilla. In either case the post-
measurement state of the target lies at one of the poles of the Bloch sphere (see
Fig. 1.2.1), and we obtain maximal information about its state. For k = 1/2,
|ψ0〉 , |ψ1〉 = |ψ〉 i.e. the ancilla measurement leaves the target unchanged. The
target remains on the equator of the Bloch sphere, and we obtain no information
on its state. This ability to tune the dynamic change of the target is essential to
the measurement protocol developed in Chap. 2. The main idea is to choose U
and |φ〉 such that we can extract information about the target state, but reduce
the measurement backaction to an arbitrarily small perturbation of the target's
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|0〉

|1〉

k = 0
|0〉

|1〉

k = 1
|0〉

|1〉

k = 1/2
|0〉

|1〉

k = 1/2 + ε

Figure 1.2.1: Bloch sphere representation of the target system's post-measurement
state, for various values of k ∈ [0, 1] in (1.2.1). North and South poles respectively
represent the computational basis states |0〉 and |1〉. The equator represents an equal
superposition of these basis states. The black arrow indicates the initial target state
|ψ〉 = (|0〉 + |1〉)/

√
2, up to an arbitrary phase. For all values of k depicted here, blue

(red) arrows represent the post-measurement state |ψ0〉 (|ψ1〉) of (1.2.3).

dynamics. For the current example, this is achieved by choosing k = 1/2+ ε, where
ε > 0. The normalised post-measurement states of the target are then

|ψ0〉 =
√

1/2 + ε |0〉+
√

1/2− ε |1〉 ,
|ψ1〉 =

√
1/2− ε |0〉+

√
1/2 + ε |1〉 .

(1.2.4)

These states are depicted in the right panel of Fig. 1.2.1. We see that both |ψ0〉
and |ψ1〉 lie close to the original state vector |ψ〉, but have been shifted slightly
towards the North, respectively South, pole of the Bloch sphere. These shifted
states correspond, respectively, to a measured eigenvalue 0 or 1, and we can use
this information to construct a dynamic correlation, as shown in Sec. 2.1. By letting
ε→ 0, we reduce the measurement back-action on the target to an arbitrary degree
and recover the pre-measurement state |ψ〉.

Whether the unitary (1.2.1) can be implemented, depends on the experimental
set-up. In Chap. 2 our approach is to model the ancilla�target coupling unitary as
a time-evolution of the ancilla�target state, generated by a coupling Hamiltonian
Hc for some time λ. To achieve a noninvasive measurement we require the coupling
time λ to be small. Further details are given in Sec. 2.1.

Kraus operators. Within quantum measurement theory the unitary ancilla�
target coupling, followed by a projective measurement of the ancilla, is shown to
be equivalent to the action of a set of measurement operators acting directly on
the target Hilbert space HS. Measurement operators are frequently referred to as
Kraus operators, and this is the name which we will use throughout this thesis.
The utility of these Kraus operators is that they describe the same generalised
measurement as above, but do not explicitly invoke an ancilla system. We will see
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10 Introduction

in Chap. 3 that this allows us to derive protocols for the measurement of dynamic
correlations which do not require ancillas.

For a given ancilla-based measurement, the corresponding Kraus operators can
be expressed in terms of the initial ancilla state |φ〉 and the unitary interaction
U 7, as we will now show. Let M = dimHA and N = dimHS be the ancilla and
target Hilbert space dimensions, and let us denote respective bases as {|n〉} and
{|sk〉} where n = 0, 1, . . . ,M − 1 and k = 0, 1, . . . , N − 1. A corresponding basis
for the joint Hilbert space H is then {|n〉⊗ |sk〉 = |n, sk〉}, with which express the
unitary ancilla�target coupling as

U =
∑
n,n′

∑
k,k′

unk,n′k′ |n, sk〉 〈n′, sk′| , (1.2.5)

where unk,n′k′ ∈ C are the corresponding matrix elements of U . In (1.2.5), for each
pair of ancilla states n, n′ there is an N×N sub-blockMnn′ =

∑
k,k′ unk,n′k′ |sk〉 〈s

′
k|

which acts exclusively on the target Hilbert space. In terms of these sub-blocks,
U is expressed as

U =
∑
n,n′

|n〉 〈n′| ⊗Mnn′ . (1.2.6)

This is the form used in (1.2.1) of the above example. To ensure unitarity of U , as
discussed in detail in Ref. [15], it su�ces to choose the sub-blocks Mn = Mn0 such
that they satisfy ∑

n

M †
nMn = 1. (1.2.7)

We now switch to the density matrix formalism to facilitate the partial trace in
(1.2.9). We denote the combined ancilla�target state as χ = α⊗ρ where α = |φ〉 〈φ|
and ρ = |ψ〉 〈ψ|. To simplify this derivation we assume |φ〉 = |0〉, but in general
|φ〉 may be any vector in HA (or, in the language of density matrices, any pure
state). The generalised ancilla-based measurement is achieved by applying U to
χ and subsequently projecting the ancilla state. The (un-normalised) combined

7One may also proceed in the reverse direction: Given a set of Kraus operators satisfying
condition (1.2.7) we can derive a unitary operator U , which corresponds to the scenario of coupling
an ancilla to a target and then projectively measuring the ancilla. This is shown, for instance in
Box 8.1 of [16]. A more formal treatment goes under the name �Neumark's theorem�, and can be
found in section 9.-6. of [18].
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1.2. Quantum measurement theory 11

post-measurement density matrix is then

χn =(Πn ⊗ 1)U (α⊗ ρ)U †(Πn ⊗ 1)

=(|n〉 〈n| ⊗ 1)

(∑
m,m′

|m〉 〈m′| ⊗Mmm′

)
(|0〉 〈0| ⊗ ρ)

(∑
l,l′

|l〉 〈l′| ⊗M †
ll′

)
× (|n〉 〈n| ⊗ 1)

= |n〉 〈n| ⊗MnρM
†
n,

(1.2.8)

where we have used the block de�nition (1.2.6) of U in the second and third
equality.

Due to the von Neumann measurement of the ancilla, the combined post-
measurement state (1.2.8) is a product state from which we can extract (by tracing
over HA) the normalised post-measurement state of the target system as

ρn =
MnρM

†
n

Tr
[
M †

nMnρ
] . (1.2.9)

The corresponding probability of the ancilla measurement yielding outcome n is

pn = Tr
[
(Πn ⊗ 1)U (α⊗ ρ)U †] = Tr

[
M †

nMnρ
]
. (1.2.10)

We see that the set of operators {Mn}, for n = 0, 1, . . . , N�which stem from
the de�nition (1.2.6) of U �are su�cient to describe the target system's post-
measurement state (1.2.9) as well as the probability (1.2.10) of �nding it in that
state once the generalised measurement is complete. The operators Mn are the
aforementioned Kraus operators. Eqs. (1.2.9)�(1.2.10) show that the dynamic
change of the target�due to the ancilla coupling U and the subsequent von Neu-
mann measurement of the ancilla (1.2.8)�is captured by the Kraus operators. We
note also that the Kraus operators can be expressed in terms of U and |φ〉 as

Mn = 〈n|U |φ〉 = 〈n|U |0〉 , (1.2.11)

which follows from the �rst line of (1.2.8) with |φ〉 = |0〉.

Examples. The Kraus operators corresponding to the unitary U (1.2.1) of the
ancilla-based example are M0 and M1. This follows directly from (1.2.11).

Using Kraus operators to directly describe a measurement procedure is often
more useful than invoking the idea of an ancilla�target coupling. For instance,
suppose again that we wish to measure a single qubit in the computational basis.
We are given some measurement apparatus to do this. However, the apparatus may
fail with probability p. Whenever the apparatus fails, it does not interact with the
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12 Introduction

target qubit, and we gain no knowledge about its state. This cannot be described
with a von Neumann measurement procedure. Instead, the possible measurement
outcomes can be described by the following set of Kraus operators (which satisfy
(1.2.7))

M1 =
√
p1, M2 =

√
1− p |0〉 〈0| and M3 =

√
1− p |1〉 〈1| . (1.2.12)

These operators capture the fact that with probability p the system state is unaf-
fected, and is projected with probability 1− p.

For any quantum measurement we now have two ways of thinking about the
measurement procedure: Firstly, we may think of coupling an ancilla to the target
and subsequently measuring this ancilla. This may be the more physically intuitive
picture as it corresponds in many cases to the actual experimental procedure [19; 8].
We use this picture in developing the NIMP of Chap. 2. Secondly, we can use
Kraus operators to describe quantum measurements in a purely mathematical way.
In Chap. 3 we rephrase the NIMP in this mathematical picture, and show that it
provides deeper insight into what the e�ective dynamics of the target system is.

POVM As a concluding remark on general quantum measurements we note that
Kraus operators are related to positive-operator valued measures (POVM). The
meaning of this name is explained in Chapter 1 of Ref. [15]: For any given set S
of objects, a measure is a map which assigns a number to every subset of S. A
POVM is therefore a map which assigns a positive operator to every subset of S.
As an example, consider the quantum measurement above, where the relevant set
consists of all possible outcomes n of the measurement. The probability to obtain
outcome n is given by (1.2.10) as pn = Tr

[
M †

nMnρ
]
. Here the operator M †

nMn

is the positive operator (often referred to as an "e�ect") of the POVM which is
associated to the outcome n. In general, we may pick some subsetM of outcomes,
and the overall probability of measuring any outcome n ∈M is then

P (n ∈M) =
∑
n∈M

pn =
∑
n∈M

Tr
[
M †

nMnρ
]

= Tr

[(∑
n∈M

M †
nMn

)
ρ

]
. (1.2.13)

Since all the operators M †
nMn are positive, so is

∑
n∈MM †

nMn and this is then the
positive operator associated with the subset of outcomesM.
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2

Ancilla-based measurement protocols

The protocols developed in this chapter are derived and stated in the language of
lattice spin systems with spin quantum number s ∈ N/2, but generalizations to
continuum systems should be possible. Within this general spin picture, our aim
is to estimate dynamic correlations

C(t1, t2) =
〈
Sai (t1)Sbj (t2)

〉
= 〈ψ| eiHst1Sai e

−iHst1eiHst2Sbje
−iHst2 |ψ〉 , (2.0.1)

where Sai denotes the a-component of a spin-s operator at lattice site i, with a ∈
{x, y, z}. The initial system state at time t = 0 is denoted by |ψ〉. We have
assumed the system Hamiltonian Hs to be time-independent so that the system's
time-evolution1 is given by the unitary U(t) = e−iHst. We will see in the following
derivation that the explicit form of Hs plays no role, and generalisations to time-
dependent Hamiltonians (as done in Ref. [19]) would alter only the form of U(t).
Generalizations to correlations at more than two times and/or more than two lattice
sites are possible and straightforward.

We denote the possible outcomes of a projective measurement of either spin
observable in (2.0.1) as ma,mb ∈ S = {s, s− 1, . . . ,−s + 1,−s}. The correlation
between a projective measurement at time t1 and at t2 is given by

C proj :=
∑

ma,mb∈S

mambPmamb , (2.0.2)

where Pma,mb denotes the joint probability to projectively measure eigenvalue ma

and mb at times t1 and t2, respectively. This projectively measured correlation
su�ers from two di�culties (see the example in Chap. 1 for a worked example).
First, the expectation value (2.0.1) is in general complex, and can therefore not
be directly described by the real (non-complex) measurement outcomes and their
corresponding probabilities as in (2.0.2). Second, as discussed in Chap. 1, a pro-
jective measurement at the early time t1 disturbs the unitary dynamics so that
(2.0.1) and (2.0.2) di�er in general. The following protocol, based on noninvasive
measurements, successfully deals with both di�culties.

1All time evolution operators will be expressed in units with ~ = 1.

13
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14 Ancilla-based measurement protocols

2.1 Non-invasive measurement protocol (NIMP)

The basic idea of our noninvasive measurement protocol is simple: The system of
interest is allowed to evolve unitarily until the time t1. At that time, an ancil-
lary quantum system is weakly coupled to lattice site i for a short period of time,
after which a small amount of information about the system observable Sai is re-
trieved by performing a projective measurement on the ancilla. Then, with the
ancilla decoupled, the system is evolved unitarily until time t2, at which point Sbj
is measured projectively, directly on the target system. The novel technical �nding
presented in this section is to identify speci�c choices of the weak-coupling unitaries
that give access to the real and imaginary parts of the correlation function (2.0.1)
respectively.

For the noninvasive measurement of a spin-s target at time t1, we make use of an
ancillary spin-s degree of freedom (we show in Sec. 2.3.1 that the ancilla spin does, in
general, not have to match that of the target spins). The total ancilla�target Hilbert

space is therefore H = HA ⊗HS = C2s+1 ⊗ (C2s+1)
⊗N

, where N is the number of
spins (lattice sites) in the lattice system. The system Hamiltonian H = 1A ⊗Hs,
which generates the unitary evolution in the dynamic correlation function (2.0.1),
acts non-trivially on HS only. The main idea (which was introduced in the review
of Sec. 1.2) is to weakly couple (entangle) the ancilla and the target system. We
will use a Hamiltonian Hc, that acts on the total Hilbert space H , to generate this
coupling. By subsequently measuring the ancilla projectively, information about
the system can be extracted without causing a complete collapse of the system's
wave function. The noninvasive measurement protocol consists of the following
steps.

(a) Initial state preparation. We assume ancilla and system to initially be in a
product state,

|Ψ〉 = |φ〉 ⊗ |ψ〉 ≡ |φ, ψ〉 . (2.1.1)

The system initial state |ψ〉 is arbitrary and determined by the physical situ-
ation under investigation. We will determine the optimal choice of the ancilla
initial state |φ〉 in (2.1.11).

(b) Time evolution until time t1. Time-evolve the initial state |Ψ〉 up to the
time t1 with the system Hamiltonian Hs,

|Ψ(t1)〉 = |φ〉 ⊗ e−iHst1 |ψ〉 ≡ |φ, ψ(t1)〉 . (2.1.2)

The ancilla state |φ〉 is una�ected.

(c) Weak coupling of ancilla and system site i. Time evolution of |Ψ(t1)〉 with
a coupling Hamiltonian Hc := B⊗Ai has the e�ect of generating entanglement
between ancilla and target. The operator Ai acts non-trivially only on the spin
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2.1. Non-invasive measurement protocol (NIMP) 15

at lattice site i for which, according to (2.0.1), correlations at time t1 are to be
determined. This choice is expected to be most conducive towards our goal of
imprinting information speci�cally about the state of the ith system spin onto
the ancilla. We assume that the corresponding time evolution operator

U (λ) = exp(−iλB ⊗ Ai) ' 1− iλB ⊗ Ai (2.1.3)

can be approximated to linear order in |λ|‖B ⊗Ai‖. Here and in the following
we use the symbol ' to denote validity up to linear order in λ. Physically, the
required condition |λ|‖B ⊗ Ai‖ � 1 can be satis�ed either by implementing
a Hamiltonian of weak interaction strength ‖B ⊗ Ai‖, and/or by choosing the
coupling time λ su�ciently small. We will take the point of view that |λ| � 1
and choose, without loss of generality, coupling operators such that ‖Ai‖ = 1
and ‖B‖ = 1. At the end of the coupling procedure, one obtains

|Ψλ(t1)〉 ' |φ, ψ(t1)〉 − iλ |Bφ,Aiψ(t1)〉 . (2.1.4)

(d) Measuring the ancilla. The state of the ancilla is now probed by projectively
measuring the observable Sa⊗1S, i.e. for the ancilla spin, the same observable
that occurs in the correlation function (2.0.1) at time t1 is probed. We denote
the 2s + 1 eigenstates of Sa as |ma〉 with corresponding eigenvalues ma ∈ S .
According to Born's rule, one measures ma with probability

Pma ' 〈Ψλ(t1)| (|ma〉 〈ma| ⊗ 1S) |Ψλ(t1)〉
' |〈ma|φ〉|2 − iλ 〈Ai(t1)〉ψ (〈φ|ma〉 〈ma|B |φ〉 − c.c.) ,

(2.1.5)

where c.c. denotes the complex conjugate and 〈Ai(t1)〉ψ = 〈ψ|U †(t1)AiU(t1) |ψ〉.
The post-measurement state is given by the normalized (and linearised with
respect to λ) projection onto the subspace corresponding to the outcome ma

of the measurement,

|Ψma(t1)〉 ' (|ma〉 〈ma| ⊗ 1S) |Ψλ(t1)〉
‖(|ma〉 〈ma| ⊗ 1S) |Ψλ(t1)〉‖

' |ma〉 ⊗ |ψma(t1)〉 (2.1.6)

with

|ψma(t1)〉 '

[
〈ma|φ〉
|〈ma|φ〉|

− iλ

(
〈ma|B |φ〉
|〈ma|φ〉|

Ai −
〈ma|φ〉

2 |〈ma|φ〉|3

× 〈Ai(t1)〉ψ (〈φ|ma〉 〈ma|B |φ〉 − c.c.)

)]
|ψ(t1)〉 .

(2.1.7)

Ancilla and system are again in a product state.
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16 Ancilla-based measurement protocols

(e) Time evolution until time t2. Time-evolve the post-measurement state
|Ψma(t1)〉 up to the time t2 with the system Hamiltonian Hs,

|Ψma(t2)〉 ' |ma〉 ⊗ e−iHs(t2−t1) |ψma(t1)〉 . (2.1.8)

The ancilla state |ma〉 remains una�ected.

(f) Projective measurement at site j. At the �nal time t2, the disturbing
e�ect due to a measurement is not of concern, and we can projectively measure
the observable Sbj at lattice site j without compromising the accuracy of the
correlation function (2.0.1) which we wish to measure. The conditional prob-
ability of measuring the system in eigenstate |mb〉 of Sbj after having obtained
eigenvalue ma when measuring the ancilla is

Pmb|ma '〈Ψma(t2)| (1A ⊗ |mb〉 〈mb|) |Ψma(t2)〉

' |〈mb|U(t2) |ψ〉|2 − iλ

[
〈φ|ma〉 〈ma| B̂ |φ〉
|〈ma|φ〉|2

(
〈ψ|U †(t2) |mb〉

× 〈mb|U(t2 − t1)AiU(t1) |ψ〉 〈Ai(t1)〉ψ |〈mb|U(t2) |ψ〉|2
)
− c.c.

]
.

(2.1.9)

(g) Correlating the measured outcomes. We use the probabilities (2.1.5) and
(2.1.9) to calculate the correlation (2.0.2) between the measured ancilla spin at
t1 and the system spin j at t2,

C (t1, t2) =
∑

ma,mb∈S

mambPmb|maPma

'〈Sa〉φ
〈
Sbj (t2)

〉
ψ
− iλ

(
〈SaB〉φ 〈ψ|S

b
j (t2)Ai(t1) |ψ〉 − c.c.

)
,

(2.1.10)

where we have absorbed the summations via the spectral representations of Sa

and Sbj . By setting Ai = Sai , the bracketed term in (2.1.10) is made to contain
the desired correlation (2.0.1).

Isolating the bracketed term requires exact knowledge of the value 〈Sa〉φ
〈
Sbj (t2)

〉
ψ
.

Calculating
〈
Sbj (t2)

〉
ψ
is possible in principle, but can be very di�cult for general

initial states and Hamiltonians of a given many-body spin-lattice. To avoid this,
our strategy is to choose the initial ancilla state

|φ〉 =
∑
ma∈S

cma |ma〉 with cma ∈ C (2.1.11)

such that
〈Sa〉φ = 0. (2.1.12)
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2.1. Non-invasive measurement protocol (NIMP) 17

This is achieved if the coe�cients cma satisfy∑
ma∈S :ma>0

ma

(
|cma |2 − |c−ma|2

)
= 0. (2.1.13)

Physically relevant states satisfying this condition are, for instance, spin coherent
states and equal superpositions which respectively have expansion coe�cients

cma =
1

2s

√
(2s)!

(s+ma)!(s−ma)!
and cma =

1√
2s+ 1

for all ma ∈ S . (2.1.14)

We choose the latter for our derivation, noting that other choices only lead to
modi�ed prefactors f (1), f (2) in (2.1.17) and (2.1.19).

With condition (2.1.12) satis�ed by our choice of |φ〉, correlation (2.1.10) reduces
to

C (t1, t2) ' −2λ

2s+ 1

∑
ma,m′a∈S

maIm [〈ma|B |m′a〉C(t1, t2)] . (2.1.15)

We can extract the real or imaginary part of C(t1, t2) from (2.1.15) through suitable
choices of B. Choosing B Hermitian and symmetric renders (2.1.15) proportional
to Im [C(t1, t2)]. A natural choice is

B = B(1) := Sa, (2.1.16)

which yields

C (1)(t1, t2) ' −2λf (1)

2s+ 1
Im [C(t1, t2)] (2.1.17)

with f (1) =
∑

ma∈S m2
a. Choosing B Hermitian and antisymmetric makes (2.1.15)

proportional to Re [C(t1, t2)]. For Sa = Sz a convenient choice is B = Sy. Analo-
gously for general a ∈ {x, y, z} the spin component

B = B(2) := − i
2

(
S+
a − S−a

)
(2.1.18)

is convenient. Here S±a denote spin-lowering or -raising operators with respect to
the ma-eigenbasis. Then (2.1.15) reduces to

C (2)(t1, t2) ' −2λf (2)

2s+ 1
Re [C(t1, t2)] (2.1.19)

with f (2) = i
∑

ma,m′a∈S ma 〈ma|B(2) |m′a〉. Inverting Eqs. (2.1.17) and (2.1.19), we
can de�ne

Cλ(t1, t2) = −2s+ 1

2λ

(
C (2)(t1, t2)

f (2)
+ i

C (1)(t1, t2)

f (1)

)
, (2.1.20)
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18 Ancilla-based measurement protocols

which approximates the exact correlation function C(t1, t2) for su�ciently small λ.
Equation (2.1.20) is our �rst main result. It shows that the unitarily evolved cor-

relation C(t1, t2) (2.0.1) can be correctly obtained by using an ancilla system to per-
form a noninvasive measurement at the early time t1 (steps c and d). Experimental
implementation, discussed in Sec. 4.2, will require two measurement samples in or-
der to construct the complex-valued correlation function (2.1.20). The �rst sample

is obtained with ancilla�target coupling Hamiltonian H
(1)
c := B(1) ⊗ Sai , and yields

ImC (Eqs. (2.1.16)�(2.1.17)). The second sample is obtained with H
(2)
c := B(2)⊗Sai

and yields ReC (Eqs. (2.1.18)�(2.1.19)). In both cases the initial ancilla state |φ〉
must be chosen so as to satisfy condition (2.1.12). It is remarkable that the �rst-
order (in λ) approximation of the ancilla�target coupling U leads to such a succinct
relation between C(t1, t2) and C (t1, t2). The protocol can be applied to any lattice
spin model regardless of interaction type, spin number or dimensionality.

A number of measurement schemes discussed in the literature bear some su-
per�cial similarity to the above described protocol. In Ref. [20] two noninvasive
measurements are made in succession, but not in a way suitable for, nor with
the aim of, allowing for the full reconstruction of dynamical correlation functions.
Other references use noninvasive measurements to show violations of Leggett-Garg
inequalities, but the latter are inequalities for the dynamic correlations of (real)
measurement outputs, so connecting the result to the (complex) dynamic correla-
tion function (2.0.1) is not part of the agenda [21; 22]. A viable scheme for obtaining
complex dynamical correlation functions is contained in none of these references,
nor in any other we are aware of.

2.2 Finite-sample estimators and errors

The key formula (2.1.20) of the noninvasive measurement protocol contains the
ancilla�target dynamical correlation function C de�ned in (2.1.10). This in turn
requires knowledge of the outcome probabilities Pma (2.1.5) and Pmb|ma (2.1.9). An
exact calculation of these probabilities, which involve the time-evolution under the
many-body HamiltonianHs, is in almost all cases impossible. As an alternative, one
can estimate these probabilities in a given experiment by doing multiple repetitions
of the protocol of Sec. 2.1. The estimated probabilities can then be combined
according to (2.1.10) to obtain estimators C (m)

n of the ancilla�target correlation
function C (m), with m = 1, 2 [(2.1.17) and (2.1.19)]. The subscript n indicates
the use of a �nite sample of n measurements. Due to the �nite sample size, the
estimators will be error-prone and this error propagates into the estimated dynamic
correlation function

Cλ
n(t1, t2) := −2s+ 1

2λ

(
C (2)
n (t1, t2)

f (2)
+ i

C (1)
n (t1, t2)

f (1)

)
. (2.2.1)
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2.2. Finite-sample estimators and errors 19

From Eq. (2.2.1) it follows that the noise contained in signals C (m)
n will be inherited

by Cλ
n . Moreover, the 1/λ prefactor will strongly amplify this noise in the limit

λ→ 0. We will refer to this ampli�ed noise as a statistical error.
At this point an interesting optimisation problem arises: The noninvasive mea-

surement protocol of Sec. 2.1 was derived to linear order in λ, and is hence accurate
only for su�ciently weak ancilla�target couplings λ. Larger λ will lead to system-
atic errors in the estimators C (m)

n , and hence in Cλ
n . The statistical errors discussed

in the previous paragraph show the opposite tendency, becoming smaller with in-
creasing λ. The total error in Cλ

n , given by the sum of systematic and statistical
errors, is therefore expected to take on a minimum at some intermediate value λ∗

of the ancilla�target coupling. Since the systematic error is independent of the
sample size n, whereas the statistical error decreases with increasing n, we expect
λ∗ to decrease as n increases. Realistically, however, limited resources (man power
or time or money), will cap the maximum sample size n.

For the application of the NIMP, the following optimization problem is therefore
of relevance: Given a �nite sample size n, what is the optimal λ such that the sum of
systematic and statistical error becomes minimal? In the remainder of this section
we investigate this question by deriving a bound on the total error. For doing so, it
may be convenient to recapitulate the di�erent (estimators of) correlation functions
that we have introduced.

C: Exact correlation function (2.0.1); this is the quantity we would like to extract
by means of noninvasive measurements.

Cλ: Correlation function (2.1.20), de�ned in terms of the probabilities of system
and ancilla measurement outcomes as in the second line of (2.1.10). Shown
to be equal to C asymptotically in the limit of small λ. In principle, an
in�nite number of measurements would be required to determine the exact
probabilities.

Cλ
n : Correlation function (2.2.1), de�ned like C

λ in terms of system and ancilla mea-
surement outcomes, but with probabilities replaced by relative frequencies.
This is the quantity one actually obtains from a sequence of 2n measurements
(n measurements for each operator B(m), m = 1, 2).

The systematic, statistical, and total errors are then respectively given by

εsys :=
∣∣C − Cλ

∣∣ , (2.2.2a)

εstat :=
∣∣Cλ − Cλ

n

∣∣ , (2.2.2b)

εtot :=
∣∣C − Cλ

n

∣∣ ≤ |εsys|+ |εstat| . (2.2.2c)

The statistical error arises when the probabilities in the �rst line of (2.1.10) are
replaced by the corresponding relative frequencies with which the di�erent outcomes
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are measured in a sequence of n measurements. This replacement is most directly
done in the non-conditional probabilities

Pmamb = PmaPmb|ma , (2.2.3)

which denote the joint probabilities of measuring ma for the ancilla spin and mb

for the system spin at site j. In a sample of n measurements, one will observe the
(2s+1)2 possible outcome combinations (ma,mb) with relative frequencies nmamb/n,
such that ∑

ma,mb

nmamb = n and lim
n→∞

nmamb
n

= Pmamb . (2.2.4)

For su�ciently large n, one expects nmamb/n to be Poisson-distributed with mean
Pmamb and standard deviation

√
nmamb/n [23]. Making use of nmamb/n = Pmamb ±√

nmamb/n, we �nd

C n =
∑
ma,mb

mamb
nmamb
n

= C +
∑
ma,mb

mamb

±√nmamb
n

. (2.2.5)

Substituting (2.2.1) and (2.1.20) into (2.2.2b) we �nd

εstat ≤
2s+ 1

2|λ|

(
|C (2)−C (2)

n |
f (2)

+
|C (1)−C (1)

n |
f (1)

)

≤ 2s+ 1

2|λ|
∑
ma,mb

|mamb|


√
n

(2)
mamb

f (2)
+

√
n

(1)
mamb

f (1)

 ,

(2.2.6)

where (2.2.5) and the triangle inequality were used. From this estimate we ex-
pect that, for a �xed sample size n, the noise-to-signal ratio of the noninvasive
measurement protocol diverges in the limit of small λ.

Estimating the systematic error εsys is much more challenging in general, as it
involves the exact dynamic correlation function C, which is usually unknown. One
possible approach is to redo the calculations of Sec. 2.1 to next-to-leading order
in λ, from which we could estimate the linear (in λ) contribution to εsys in the
regime of small λ. In the next section we will follow a di�erent approach, trying
to obtain an understanding of the interplay between systematic and statistical
errors by discussing an exactly solvable minimal model, consisting of three spin-
1/2 particles: one ancilla and two system degrees of freedom.

2.2.1 Example: two system spins, one ancilla

As a minimal model for investigating spatio-temporal correlations in spin-1/2 sys-
tems by means of noninvasive measurements, we require a system consisting of two
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2.2. Finite-sample estimators and errors 21

lattice sites, plus a single ancilla spin. The resulting Hilbert space of three spin-1/2
degrees of freedom is eight-dimensional, and all calculations can be performed nu-
merically with little e�ort.

We choose a Hamiltonian with Ising-type spin�spin coupling,

Hs = σx1σ
x
2 , (2.2.7)

and consider dynamics starting from an initial product state

|Ψ〉 = |φ〉 ⊗ |ψ1〉 ⊗ |ψ2〉 . (2.2.8)

The system spin states are parametrized by angles αi ∈ [0, π/2] and θi ∈ [0, 2π] as

|ψi〉 = cos(αi)e
−iθi/2 |+z〉+ sin(αi)e

iθi/2 |−z〉 for i = 1, 2. (2.2.9)

The ancilla initial state |φ〉 is given by (2.1.11) as |φ〉 = (|+z〉 + |−z〉)/
√

2. Here
{|±z〉} denotes the σz eigenbasis with corresponding eigenvalues ±1. Our aim is to
apply the NIMP for estimating the dynamical zz correlation function

C(t1, t2) = 〈ψ1ψ2|σz1(t1)σz2(t2) |ψ1ψ2〉
= cos(2α1) cos(2α2) cos(2(t2 − t1))

+ i sin(2α1) sin(2α2) sin(θ1) sin(θ2) sin(2(t2 − t1)).

(2.2.10)

To obtain the systematic error εsys (2.2.2a) one needs the probabilities (2.1.5)
and (2.1.9), but without linear approximations in λ. Calculating these probabilities
for the Hamiltonian (2.2.7) and combining them according (2.1.10) we can, to all
orders in λ, construct

Cλ(t1, t2) =
1

2λ

(
cos(2α1) cos(2α2) sin(2λ) cos(2(t2 − t1))

+ i sin(2α1) sin(2α2) sin(θ1) sin(θ2) sin(2λ) sin(2(t2 − t1))
) (2.2.11)

as de�ned in (2.1.20). In (2.2.11) f (1) = f (2) = 2 since we are using mz = ±1
for this example. Substituting (2.2.10) and (2.2.11) into (2.2.2a) we obtain the
systematic error

εsys =
1

2|λ|

∣∣∣(2λ− sin(2λ))
[
cos(2(t2 − t1)) cos(2α1) cos(2α2)

+ i sin(2(t2 − t1)) sin(θ1) sin(θ2) sin(2α1) sin(2α2)
]∣∣∣. (2.2.12)

A plot of the systematic error (2.2.12), which vanishes for λ → 0, is shown in
Fig. 2.2.1 (left, red line increasing from origin) for the parameter choice α1 = α2 =
π/3. To be within the regime of small λ for which the NIMP holds (2.1.3), we plot
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Figure 2.2.1: Error analysis for the example of Sec. 2.2.1 with parameter values
(t1, t2) = (1, 10), α1 = α2 = π/3 and (θ1, θ2) = (π/7, π/5). All plots show relative
errors ε̃sys = εsys/|C|, and similarly for statistical and total errors. Left: Exact system-
atic error ε̃sys (red line, increasing from origin) and estimates (2.2.6) of ε̃stat for sample
sizes n = 102, 103, 104 (solid, dashed, dotted black curves). The functional dependence
of the bounds on the coupling time λ is as expected; The systematic error increases with
λ and the stochastic error is inversely proportional to λ. Centre: Estimate for ε̃tot (line)
together with numerically measured values for sample size n = 104 (dots). The estimated
minimum error is 33% at λ∗ = 0.42. The error estimate captures the qualitative behavior
of the numerical data and is consistently larger. Right: Log-log plot of the estimated
minimum error ε̃tot(λ

∗) and its position λ∗ as a function of sample size n. Straight lines
indicate that the performance of the noninvasive measurement protocol improves like a
power law with n.

the error for λ ∈ (0, 1]. The error is shown relative to |C(t1, t2)|, which we denote
as ε̃sys = εsys/|C|, and similarly for statistical and total errors. In the same plot the
upper bound (2.2.6) on the statistical error, which decreases with increasing λ, is
shown for various sample sizes n. For su�ciently large n the total error bound ε̃tot
shows a minimum for some λ = λ∗ (solid line in Fig. 2.2.1, centre). Hence, assuming
the error bounds to be reasonably tight, λ∗ = 0.42 should be a good choice for
the ancilla�target coupling when using a sample of n = 104 measurements. The
corresponding error estimate is fairly large (33%) due to the conservative upper
bound of the statistical error (2.2.6).

To check the tightness of the bounds, we numerically implemented the nonin-
vasive measurement protocol of Sec. 2.1, using the exact time evolution (without
expanding in λ) and drawing samples of random numbers according to the ancilla-
and system-spin outcome probabilities 2. As expected, the results of the numeri-
cal implementation (dots in Fig. 2.2.1 centre) are smaller than the conservatively
estimated analytical error bounds. The in�uence of the statistical and systematic
errors is evident in the numeric data. For λ < λ∗ the statistical error dominates,
causing �uctuations whose sizes are of the same order as the total error. For λ > λ∗

the measured errors exhibit smaller �uctuations, and follow the trend of the error

2The relative frequencies nmamb
/n needed to determine (2.2.1) were obtained by binning

2 × 104 pseudo-random numbers drawn from the unit interval, with the probabilities Pmamb

determining the bin widths.
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bound. This re�ects the increasingly dominant role of the systematic error at larger
λ. To consistently achieve good accuracies, the ancilla�target coupling at t1 should
be chosen close to, but not smaller than λ∗.

The performance of the noninvasive protocol is characterized in Fig. 2.2.1 (right),
where the minimum value ε̃tot(λ

∗) (dots) as well as the corresponding λ∗ (squares)
is shown for a range of sample sizes n. The minimum error decays like a power
law with increasing sample size, as does the corresponding optimal coupling λ∗.
This plot answers, at least on the level of error estimates, the optimization ques-
tion posed at the beginning of Sec. 2.2. The conservative error estimates assume
individual errors to not compensate each other, and experimental implementations
are therefore expected to achieve accuracies higher than those predicted above.

2.3 Generalisations

In the NIMP of Sec. 2.1 we considered correlations of single-site observables, and
used an ancilla whose spin s matched that of the individual spin degrees-of-freedom
of the target lattice. In the �rst generalisation presented in this section, we show
that the NIMP is valid for correlations of general observables 〈ψ|O1(t1)O2(t2) |ψ〉,
and that we are free to choose the spin quantum number of the ancilla spin. The
second and third generalisations aim to improve on the two key ingredients of
the NIMP: weak ancilla�target coupling to reduce measurement backaction, and
multiple repetitions of the protocol to achieve a su�cient signal-to-noise ratio.

2.3.1 General observables and ancilla spins.

Suppose that the target system is again a lattice of spin-s ∈ N/2 degrees-of-
freedom. Instead of specifying the type of observables correlated, we will allow
any observables acting on the target's Hilbert space HS, and denote them as O1,
O2. We will highlight only the pertinent di�erences in steps a�g of the NIMP.

The ancilla system is again a single spin degree-of-freedom, but we allow it
to have any spin ζ ∈ N/2, i.e. we do not require s = ζ. For the weak ancilla�
target coupling U (λ) at t1 (step c), we use Hamiltonian Hc = B ⊗ O1. Since the
observable O1 will generally not be a single-site observable, and since s 6= ζ, we
cannot measure the ancilla in the eigenbasis of O1 (step d). Instead, we measure
the ancilla in the eigenbasis {|mζ〉} of a spin-ζ observable Sα, where α ∈ {x, y, z}.

At t2 the target system is measured in the eigenbasis of observable O2. Corre-
lating the measurement outcomes as in (2.1.10) we obtain

C (t1, t2) ' 〈Sα〉φ 〈O2(t2)〉ψ − 2λIm
[
〈BSα〉φ 〈ψ|O1(t1)O2(t2) |ψ〉

]
. (2.3.1)
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We eliminate the �rst term by choosing the initial ancilla state as an equal superpo-

sition of the ancilla measurement basis |φ〉 =
∑
mα∈S

|mα〉 /
√

2ζ + 1. The resulting

correlation is formally the same as (2.1.15)

C (t1, t2) ' −2λ

2ζ + 1

∑
mα,m′α∈S

mαIm [〈m′α|B |mα〉 〈ψ|O1(t1)O2(t2) |ψ〉] , (2.3.2)

and the choices of B needed to extract ReC and ImC are analagous to those of the
original NIMP (2.1.16), (2.1.18): With B = Sα correlation (2.3.2) reduces to ImC,
and with B = −i(S+

α −S−α )/2 it reduces to ReC. Since result (2.3.2) holds for any
choice α ∈ {x, y, z}, we are free to choose which spin-polarisation of the ancilla is
to be measured at t1. Choosing α = z, for instance, ImC is obtained with B = Sz

and ReC is obtained with B = Sy.
The NIMP is therefore valid for correlations of arbitrary spin observables O1, O2,

and the noninvasive measurement at t1 does not depend on a speci�c choice for the
spin quantum number ζ of the ancilla.

2.3.2 Deferral of ancilla measurement

Motivated by the use of deferred measurements of quantum memories (ancillas)
in Ref. [19], we consider incorporating this technique into our noninvasive mea-
surement protocol. The idea is that measurement backaction could be reduced by
coupling (and then decoupling) an ancilla to the system at time t1, but measuring
the ancilla (step d in the protocol of Sec. 2.1) only at time t2 or even later.

For a full comparison of such a deferred measurement protocol with the NIMP
of Sec. 2.1 we will refrain from linearising the ancilla-system coupling unitary U (λ).
Re-evaluating the correlation (2.1.10) of the NIMP to all orders of λ we have

C = 〈φ, ψ(t1)|U †(λ)
(
Sa ⊗ e−iHst1Sbj (t2)eiHst1

)
U (λ) |φ, ψ(t1)〉 . (2.3.3)

We will compare this correlation with that derived below for the deferred measure-
ment procedure.

Up to (and including) step c of Sec. 2.1, the protocol remains unchanged, but
since we refrain from linearisation of U (λ), the coupled ancilla�target state is

|Ψλ(t1)〉 = U (λ) |φ, ψ(t1)〉 . (2.3.4)

Now, instead of projectively measuring the ancilla state at t1, we keep |Ψλ(t1)〉
unprojected, and proceed by time-evolving it with the system Hamiltonian Hs

until time t2,

|Ψ(t2)〉 = 1A ⊗ e−iHs(t2−t1) |Ψλ(t1)〉 . (2.3.5)
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This is the same time evolution as in step e of Sec. 2.1, but the ancilla state is
not necessarilly preserved: the coupling U (λ) will in general entangle ancilla and
target. Subsequent dynamics of the target (generated by Hs) will thus a�ect the
ancilla state in a non-trivial way.

The deferred measurement protocol ends at t2 with simultaneous projective
measurements of the ancilla and the jth system spin. The joint probabilities for
measurement outcomes (ma,mb) are

Pmamb = 〈Ψ(t2)| (|ma〉 〈ma| ⊗ |mb〉 〈mb|) |Ψ(t2)〉 , (2.3.6)

with the ma projector acting on the ancilla, and the mb projector only on site j of
the system. Combining these probabilities according to (2.1.10) we obtain

C =
∑

ma,mb∈S

mambPmamb

= 〈Ψ(t2)|
∑
ma

ma |ma〉 〈ma| ⊗
∑
mb

mb |mb〉 〈mb| |Ψ(t2)〉

= 〈φ, ψ(t1)|U †(λ)eiHs(t2−t1)
(
Sa ⊗ Sbj

)
e−iHs(t2−t1)U (λ) |φ, ψ(t1)〉 ,

(2.3.7)

where we have used the de�nition of |Ψ(t2)〉 in the last line. The observable Sa acts
only on the ancilla Hilbert space. Due to the trivial dynamics undergone by the
ancilla from t1 to t2 (2.3.5), we have that

[
eiHs(t2−t1), Sa

]
= 0. As a result (2.3.7) is

identical to (2.3.3), to all orders in λ. Choosing the initial ancilla state |φ〉 such that
condition (2.1.13) is satis�ed, both equations reduce to result (2.1.15) of Sec. 2.1
in the limit of |λ| � 1 where the linear expansion (2.1.3) of U is valid.

We conclude that the deferred measurement protocol described above is equiva-
lent to the NIMP of Sec. 2.1, but that deferral of the ancilla measurement to times
t ≥ t2 does not further improve the performance of the NIMP (i.e. backaction is
unchanged). Nevertheless, either protocol may have distinct advantages over the
other in experimental realisations: One may imagine experimental platforms in
which storing the ancilla state until later times is di�cult (favouring immediate
measurement), or other situations in which the immediate measurement of the an-
cilla generates unwanted noise (favouring deferred measurement). We will see in
Sec. 4.2 that the deferred measurement approach is favourable in linear ion-trap
experiments as it avoids photon scattering and thus decoherence at t1. From a
theoretical point of view, deferred measurements have the advantage that no lin-
earization of the post ancilla-measurement system state (as in (2.1.7)) is required.
We will exploit this advantage in the next section.

2.3.3 Multiple measurements

In physical applications one will frequently be interested in correlations at more
than one pair of times, or even in the functional dependence of C over a range of
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times. The NIMP however describes a procedure to noninvasively measure only a
single dynamic correlation function C(t1, t2) at one pair of times (t1, t2). To mea-
sure more than one correlation, the NIMP must be repeated many times which
translates into more time spent in the laboratory. In this section we attempt to
make better use of experimental resources by comparing two strategies for nonin-
vasively measuring multiple dynamic correlation functions. The key idea will be
to perform multiple noninvasive measurements at times t1, t2, t3, . . . with the aim
of extracting several dynamic correlation functions C(t1, t2), C(t1, t3), C(t2, t3), . . .
from the same measurement samples.

To keep the presentation simple, we will discuss these strategies with respect
to a minimal model consisting of two spin-1/2 degrees of freedom, and focus on
dynamic correlation functions

C(t1, t2) = 〈ψ|σa1(t1)σb2(t2) |ψ〉 , (2.3.8a)

C(t1, t3) = 〈ψ|σa1(t1)σb2(t3) |ψ〉 , (2.3.8b)

C(t2, t3) = 〈ψ|σb2(t2)σa1(t3) |ψ〉 , (2.3.8c)

at three points in time, t3 > t2 > t1 ≥ 0. One way of noninvasively measuring these
correlations is to repeat the NIMP of Sec. 2.1 separately for each correlation. We
refer to this procedure as the single-noninvasive measurement protocol (sNIMP),
as it involves only one noninvasive measurement before the �nal projective one.
This approach however requires six, possibly very large, data samples (one sample
per real and imaginary component). A possibly more e�cient way to measure
correlations (2.3.8a)�(2.3.8c) is to perform noninvasive measurements both at t1
and t2, followed by a projective measurement at t3. We will refer to this protocol
as the consecutive-noninvasive measurement protocol (cNIMP). The derivation of
the cNIMP estimators (for general target systems of spin s ≥ 1/2), the required
coupling operators, and associated errors is similar to that of Sec. 2.1 and can be
found in Appendix A.

While both variations of the NIMP turn out to be feasible in principle, they dif-
fer in their e�ciency. Here we assume that, like in many experiments, the number
of repetitions of the experiment is a limiting factor. We investigate in the follow-
ing whether the sNIMP or the cNIMP is more e�cient at determining all three
correlations (2.3.8a)�(2.3.8c) to a desired accuracy.

To implement the cNIMP in our minimal model we need two3 ancilla spins; One
coupled to site 1 at t1 with coupling time λ1, the other to site 2 at t2 with coupling
time λ2. Using the deferred measurement approach of the previous section, we
measure both ancillas and lattice sites i = 1 and j = 2 at the �nal time t3. Ancillas
1 and 2 are respectively measured in the eigenbasis of σa and σb, and this yields

3Choosing correlation functions other than those in Eqs. (2.3.8a)�(2.3.8c) may require more
than two ancillas, but derivations go along similar lines (see App. A for a full discussion).
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(see Eqs. (A.0.7)�(A.0.14))

Cλ(t1, t2) =
C (2)(t1, t2) + iC (1)(t1, t2)

4λ1λ2

. (2.3.9)

Lattice site j = 2 is measured in the eigenbasis of σb. Together with the measure-
ment of ancilla 1, this yields (see Eqs. (A.0.15)�(A.0.18))

Cλ(t1, t3) = −C (2)(t1, t3) + iC (1)(t1, t3)

2λ1

. (2.3.10)

Correlation Cλ(t2, t3) is obtained from the measurement of ancilla 2 and that of
site i = 1, which is done in the eigenbasis of σa (see Eqs. (A.0.19)�(A.0.20)). Its
form is

Cλ(t2, t3) = −C (4)(t2, t3) + iC (3)(t2, t3)

2λ2

. (2.3.11)

The choices of coupling Hamiltonians required to construct (2.3.9)�(2.3.11) are
summarised in table A.0.3. The table shows that the cNIMP requires only three
measurement samples to obtain all six estimators in (2.3.9)�(2.3.11) of the real and
imaginary parts of correlations (2.3.8a)�(2.3.8c).

Using these three �nite measurement samples, the probabilities used to con-
struct (2.3.9)�(2.3.11) can be approximated with relative frequencies (as in Sec. 2.2),
and we again use a subscript n to denote quantities obtained from relative frequen-
cies. Statistical, systematic and total errors (εstat, εsys, εtot) are de�ned as was done
for the NIMP in Eqs. (2.2.2a)�(2.2.2c).

The estimator Cλ
n(t1, t2) is obtained from two consecutive noninvasive measure-

ments, and involves a division by both coupling times λ1 and λ2 (see (2.3.9)). As a
consequence, the associated statistical error will be ampli�ed much stronger than
in the sNIMP in the limit λ1, λ2 → 0. Pushing this error below a certain desired
level therefore requires larger sample sizes n, as shown in Fig. 2.3.2. This is the
reason for the inferior performance of the cNIMP. The estimators Cλ

n(t1, t3) and
Cλ
n(t2, t3) involve a division by only one of the coupling parameters (λ1 or λ2), so

the statistical error is comparable to that of the sNIMP. The total error for these
two correlations is however larger than in the sNIMP due to a larger systematic
error which is incurred for non-zero λ1 and λ2.

Example: To illustrate our �ndings, and to compare the cNIMP and sNIMP,
we revisit the example of Sec. 2.2.1 with Ising-type Hamiltonian (2.2.7) and zz
correlation functions, i.e. a = b = z in (2.3.8a)�(2.3.8c). Figure 2.3.1 shows the
estimated total relative error ε̃tot = εtot/|C| for the cNIMP, as a function of both
coupling times λ1 and λ2, for C

λ
n(t1, t2) and Cλ

n(t1, t3). For Cλ
n(t1, t2) (left panel) a

clear minimum deviation of 37% is indicated by the intersection of the black curves
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at (λ∗1, λ
∗
2) = (0.40, 0.41). Beyond this optimal coupling coordinate, the accuracy of

the cNIMP estimator Cλ
n(t1, t2) is bad as the total deviation grows to be of the order

of |C(t1, t2)|. In the regime where either coupling time is small this large deviation
is due to the above mentioned ampli�cation of the statistical error brought about
by the 1/(λ1λ2) factor in (2.3.9). For larger coupling times, systematic errors
incurred from linear expansions with respect to λ1 and λ2 (A.0.9) add up to yield
a larger systematic error than in the sNIMP. The estimator Cλ

n(t1, t3) is obtained

Figure 2.3.1: Predicted upper bounds on the relative error ε̃tot for measurements of cor-
relations C(ti, tj) within the cNIMP for times (t1, t2, t3) = (0, 1, 10). The initial system
state parameters are the same as in Fig. 2.2.1. The sample sizes are n = 105. Left: Esti-
mated total relative error for measurements of Cλn(t1, t2). The black curves are included
to guide the reader's eye, and their intersection indicates the minimum error of 37% at
(λ∗1, λ

∗
2) = 0.40, 0.41). Right: Corresponding prediction for measurements of Cλn(t1, t3),

exhibiting a minimum error of 25% at (λ∗1, λ
∗
2) = (0.37, 0.00). Although measurement of

this correlation is performed in the cNIMP by measuring only the �rst ancilla (coupled
to lattice-site 1 at t1) and the spin at site 2, the additional coupling of the second ancilla
to site 2 at intermediate time t2 increases the systematic error. As a result the total error
also increases with λ2.

in the cNIMP from measurements of the �rst ancilla at t1 and of site 2 at t3. At
the intermediate time t2 the cNIMP perturbs the system dynamics by coupling
a second ancilla to site 2. This perturbation is re�ected in the error bound of
Cλ
n(t1, t3) (right panel of Fig. 2.3.1) which increases also with the coupling time λ2.

We omit the error bound of Cλ
n(t2, t3) as it re�ects a similar behaviour, only with

the roles of λ1 and λ2 interchanged.
To measure (2.3.8a)�(2.3.8c) with accuracies as in Fig. 2.3.1 one needs a total

of three samples of n = 105 measurements. In Fig. 2.2.1 we showed that the
sNIMP achieves similar accuracies for samples of n = 104 measurements per real

Stellenbosch University  https://scholar.sun.ac.za



2.3. Generalisations 29

Figure 2.3.2: Minimum total error minλε̃tot(λ) as a function of sample size n. Times
and system parameters are as in Fig. 2.3.1. Left: For Cλn(t1, t2) the minimum error of the
sNIMP decreases faster than that of the cNIMP. As a result, to construct an estimator
with a total error of 10% or less, sample sizes in the sNIMP must be at least 106. This
is about two orders of magnitude smaller than for the cNIMP. Right: For measurements
of Cλn(t1, t3) the minimum error of either protocol decreases at the same rate with the
sample size, however the errors of the cNIMP are consistently larger than those of the
sNIMP. Results for Cλn(t2, t3) are similar (not shown).

and imaginary component. This is a �rst indication that the cNIMP is less e�cient
than the sNIMP.

To test this expectation we calculated numerically, for both protocols, the min-
ima of the predicted estimator deviation ε̃tot for increasing sample sizes. The results
are shown in Fig. 2.3.2. Especially for the estimator Cλ

n(t1, t2), which requires two
noninvasive measurements in the cNIMP, the sNIMP is much more e�cient in the
large n regime (where the bound (2.2.6) is valid). The plot shows that the sNIMP
error decreases at a faster rate than the cNIMP error, and an accuracy of 10% or
less can be achieved in the sNIMP from 2×106 measurements, whilst in the cNIMP
one would require 2 × 108 measurements. The minimum errors for the other two
estimators decrease at the same rate in both protocols, but are consistently larger
in the cNIMP. This is due to the greater systematic error incurred in the cNIMP.

In summary, both the cNIMP and sNIMP are feasible. However, to measure
all correlations (2.3.8a)�(2.3.8c) with an accuracy of at least 10%, the cNIMP and
sNIMP require, respectively, a net sample size nc = 3× 108 and ns = 6× 106. This
example shows that multiple dynamic correlations are most e�ciently measured
with repeated implementations of the NIMP i.e. with the sNIMP.
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3

Ancilla-free protocols

As reviewed in Sec. 1.2, general quantum measurements involving system-ancilla
couplings and post-coupling projections of the ancilla can be described by Kraus
operators and the related positive-operator valued measure (POVM). In this chap-
ter we recast the noninvasive measurement protocol (NIMP) of Sec. 2.1 in the Kraus
operator formalism, in order to gain deeper insight about the dynamic change in-
duced by the noninvasive measurement on the target system. This insight will lead
us to the remarkable and non-intuitive result that measuring dynamic correlations
of spin-1/2 systems does not require any form of ancilla-based measurement: the
real part can be measured by direct projective measurements of the system at both
the early and �nal times. The imaginary part is obtained by performing rotations
at the early times, followed by a single projective measurement at the �nal time.

3.1 Kraus operators for spin-s ≥ 1/2 target

systems

Keeping the notation of Chap.2, let |φ〉 and |ψ〉 respectively denote the initial
ancilla and target states. The initial product state at t = 0 is then |Ψ〉 = |φ〉⊗ |ψ〉,
and the post-coupling state at t1 ≥ 0 (as follows from (2.1.4), step c of the NIMP)
is

|Ψλ(t1)〉 = U (λ) |φ, ψ(t1)〉 . (3.1.1)

Note that although the weak measurement of Sec. 2.1 requires |λ| � 1, we keep the
unitary coupling U (λ) to all orders in λ for now so that we obtain the corresponding
Kraus operators to all orders in λ too. For the subsequent ancilla measurement
in the eigenbasis of Sa we use the projectors Πma = |ma〉 〈ma| ⊗ 1S, and the (un-
normalised) post-measurement state is then ΠmaU (λ) |φ, ψ(t1)〉.

As shown in (1.2.8) and (1.2.9), we obtain the (un-normalised) reduced density
matrix of the target system in terms of the relevant Kraus operators by tracing
over the ancilla degrees of freedom

ρma(t1) = Tr¬S
[
ΠmaU (λ) |φ, ψ(t1)〉 〈φ, ψ(t1)|U †(λ)Πma

]
= Mmaρ(t1)M †

ma ,
(3.1.2)

31
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where ρ(t1) = |ψ(t1)〉 〈ψ(t1)|. The notation Tr¬S indicates that we trace over all
degrees of freedom which do not belong to the target system i.e. we trace only over
the ancilla Hilbert space HA. Using the matrix element form (1.2.11) of the Kraus
operators, the ancilla initial state (2.1.11) (subject to constraint (2.1.13)) and the
Taylor expansion of U (λ) = e−iλHc we obtain

Mma = 〈ma|U (λ) |φ〉

=
∞∑
n=0

(−iλ)n

n!
〈ma|Bn |φ〉Ani =

∞∑
n=0

(−iλ)n

n!

∑
m′a∈S

cm′a 〈ma|Bn |m′a〉Ani .

(3.1.3)

Recall that {cma} are the expansion coe�cients of the initial ancilla state (2.1.11).
Expression (3.1.3) is the most general Kraus operator which describes the non-

invasive measurement at t1 in the NIMP. For |λ| � 1 and a given choice of {cma}
and the ancilla�target coupling Hc = B ⊗Ai, it captures the dynamics induced on
the target system by the noninvasive measurement (step c and d of Sec. 2.1). The
set {Mma} for all possible outcomes ma ∈ S of the ancilla measurement forms the
corresponding POVM. We will now consider the speci�c choices of |φ〉 andHc which
were found in Sec. 2.1 to yield the dynamic correlation C = 〈ψ|Sai (t1)Sbj (t2) |ψ〉 for
a spin-s ≥ 1/2 target system. Recall, that for both the real and imaginary part we
found that Ai = Sai and used the convention that |φ〉 is an equal superposition of
the eigenstates of Sa i.e.

|φ〉 =

∑
ma∈S |ma〉√

2s+ 1
. (3.1.4)

3.1.1 Kraus operators for Im
[
〈ψ|Sai (t1)S

b
j(t2) |ψ〉

]
To extract Im

[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
we found that the coupling Hamiltonian should

be chosen as Hc = Sa⊗Sai (see (2.1.10) and (2.1.16)). Substituting this into (3.1.3)
we �nd that the Kraus operators corresponding to measurement outcomes ma ∈ S
are

Mma =
∞∑
n=0

(−iλ)n

n!
〈ma| (Sa)n |φ〉 (Sai )n

= 〈ma|φ〉
∞∑
n=0

(−iλma)
n

n!
(Sai )n

=
1√

2s+ 1
e−i(λma)Sai .

(3.1.5)

In the second line we have used that the measurement basis for the ancilla is
the eigenbasis of the operator B = Sa, and in the last line we have used our
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conventional initial ancilla state (3.1.4). We �nd that the Kraus operators reduce
to local rotations1 of the target system. The axis of rotation is parallel to the spin
component Sa which is to be correlated at t1. The rotation angle is given by the
coupling time λ scaled by the outcome ma of the ancilla measurement.

This result provides major theoretical insight into the dynamic change of the
target system's wave function when the weak measurement of the NIMP is set-up
to measure Im [C]; The net e�ect is that of a local unitary rotation of the target.
The Kraus operators (3.1.5) then suggest that we should be able to measure Im [C]
for all s ≥ 1/2 without having to make use of an ancilla at t1, but rather by means
of local rotations of the target system at this early time. The weak-measurement
condition |λ| � 1 which was necessary for the noninvasive measurement protocol
should then translate to a condition on the rotation angle. Such an ancilla-free
rotation protocol consists of the following steps:

(a) Time evolution until time t1 ≥ 0. The initial state of the target system |ψ〉
is allowed to evolve unitarily to t1 with the dynamics U(t1) generated by the
target's Hamiltonian

|ψ(t1)〉 = U(t1) |ψ〉 . (3.1.6)

(b) Local rotation of target at t1. As dictated by (3.1.5), we now apply a
rotation to the ith lattice spin with the axis of rotation parallel to the spin
component which is to be correlated at t1 i.e. parallel to the unit vector a. Sim-
ilarly, (3.1.5) suggests the rotation angle to be λma where ma is the eigenvalue
obtained from the ancilla measurement. However, since we aim to measure
Im [C] without invoking any ancilla coupling, we will denote the rotation angle
as θ and assume no dependence on ma or λ. The rotation operator is thus
R(a, θ) = exp(−i θ

2
Sai ) and the rotated system state is

|ψ(t1, θ)〉 = R(a, θ)U(t1) |ψ〉 . (3.1.7)

(c) Time evolution until time t2 > t1. In contrast to the NIMP, no measure-
ment is performed at t1. Rather, once the rotation has been completed the
target is allowed to evolve unitarily under its Hamiltonian to t2 > t1

|ψ(t2, θ)〉 = U(t2 − t1)R(a, θ)U(t1) |ψ〉 . (3.1.8)

(d) Projective measurement of site j. At t2, we projectively measure lat-
tice spin j in the eigenbasis of observable Sbj . The probability of measuring
eigenvalue mb ∈ S is

Pmb = 〈ψ(t2, θ)|Πmb
j |ψ(t2, θ)〉 , (3.1.9)

1A quick check shows that (3.1.5) satis�es the completeness condition
∑

ma∈S M†
ma
Mma

= 1

(1.2.7).
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where the projection operator Πmb
j = |mb〉 〈mb| acts non-trivially only on lattice

site j. Using these probabilities we can construct the expectation value〈
Sbj (t2, θ)

〉
=
∑
mb∈S

mbPmb = 〈ψ(t2, θ)|Sbj |ψ(t2, θ)〉 . (3.1.10)

(e) Extract Im
[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
. Analogous to the weak-coupling require-

ment of the NIMP, let us now assume that the rotation angle is small i.e.
|θ| � 1. The motivation is that C is linear in both observables Sai and Sbj ,
and this bi-linearity is achieved in the above expectation value (3.1.10) from
a linear expansion of the rotation operators. This requires |θ/2|‖Sai ‖ = s|θ/2|
to be small. For a given spin-s system this is achieved by making the rotation
angle small enough i.e. |θ| � 1. We may then use R(a, θ) ' 1 − i θ

2
Sai , from

which it follows that (3.1.10) reduces to〈
Sbj (t2, θ)

〉
'
〈
Sbj (t2)

〉
ψ
− iθ

2

〈
Sbj (t2)Sai (t1)− h.c.

〉
ψ

'
〈
Sbj (t2)

〉
ψ
− θIm

[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
.

(3.1.11)

The last term contains the imaginary component of the desired dynamic cor-
relation. Knowledge of the expectation value

〈
Sbj (t2)

〉
ψ
allows one to extract

this component by a simple subtraction

Im
[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
'
(〈
Sbj (t2, θ)

〉
−
〈
Sbj (t2)

〉
ψ

)
/(−θ). (3.1.12)

Alternatively, one could exploit the fact that the �rst term of (3.1.11) is in-
variant under a sign change of θ and thus cancels when we take the di�erence〈
Sbj (t2,−θ)

〉
−
〈
Sbj (t2, θ)

〉
Im
[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
=
(〈
Sbj (t2,−θ)

〉
−
〈
Sbj (t2, θ)

〉)
/(2θ). (3.1.13)

The Kraus operator formalism has thus allowed us to �nd a measurement proto-
col for Im [C] that does not require an ancilla system for any spin-s ≥ 1/2 target
system. All operations performed before t2 are unitary and performed directly on
the target. Repeating all the steps above n times, we obtain a sample of n mea-
surements from which we can construct an estimator of the the expectation value
(3.1.11). Im [C] can then be extracted either by using (3.1.12) (which requires
separate measurement of an estimator of

〈
Sbj (t2)

〉
ψ
), or by using (3.1.13) (which

requires separate measurement of an estimator of
〈
Sbj (t2,−θ)

〉
). Which method is

used within a given experimental platform is then a matter of convenience. Note
that either option will be subject to statistical errors incurred from �nite measure-
ment samples. These errors propagate into the extracted imaginary component and
are ampli�ed since θ is small. The analysis of these statistical errors is the same as
that presented in Sec. 2.2.
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3.1.2 Kraus operators for Re
[
〈ψ|Sai (t1)S

b
j(t2) |ψ〉

]
We now derive the Kraus operators corresponding to the measurement of Re [C]
and consider their application to ancilla-free measurement protocols. In the pre-
vious section the unitary form of the Kraus operators (3.1.5) is due to the fact
that the eigenbasis of the operator choice B = Sa (which was found to yield
Im [C], see (2.1.16) and (2.1.17)) is also the basis in which the ancilla is mea-
sured during the NIMP (step d). To obtain Re [C] with the NIMP, we found in
Sec. 2.1 that the Hamiltonian generating the weak ancilla�target coupling should
be Hc = −i(S+

a − S−a )/2⊗ Sai i.e. B = −i(S+
a − S−a )/2 6= Sa (see (2.1.18)). The

ancilla is, however, still measured in the eigenbasis of Sa (the observable to be
correlated at the early time). As a result the Kraus operators do not simplify in
an obvious way

Mma =
∞∑
n=0

(−iλ)n

n!
〈ma| (−i(S+

a − S−a )/2)n |φ〉 (Sai )n

=
1√

2s+ 1

∞∑
n=0

(−iλ)n

n!

∑
m′a∈S

〈ma| (−i(S+
a − S−a )/2)n |m′a〉 (Sai )n.

(3.1.14)

In the last line we have again used our conventional choice for the initial ancilla
state (3.1.4). Even upon considering the �rst order Taylor expansion of (3.1.14)
with respect to λ (which is necessary for the weak-measurement of the target)

Mma '
1√

2s+ 1

1− iλ ∑
m′a∈S

〈ma| (−i(S+
a − S−a )/2) |m′a〉 (Sai )

 (3.1.15)

the dynamic e�ect of the Kraus operators on the target system is not at all obvious
and so they do not provide insight towards an ancilla free measurement of Re [C].

In an attempt to replicate the unitary ancilla-free measurement protocol of
Im [C] for any s ≥ 1/2 target system, we considered changing the ancilla measure-
ment of the NIMP (step d): Let us denote the eigenstates of B as {|b〉} such that
B |b〉 = b |b〉. Observable B need not be a spin-polarised observable, but can be
any bounded hermitian operator acting on the ancilla Hilbert space HA. Suppose
now that in the NIMP we measure the ancilla in the eigenbasis of B, and not in
the eigenbasis of the observable to be correlated at the early time Sa. Keeping the
usual ancilla�target coupling Hamiltonian Hc = B ⊗ Sai , the corresponding Kraus
operators do then indeed reduce to rotations (ignoring the pre-factor) of the target
system

Mb = 〈b| e−iλB⊗Sai |φ〉 = 〈b|φ〉 e−i(λb)Sai . (3.1.16)

However, when modifying step d of the NIMP accordingly, the measured correlation
(2.1.10) becomes

C ' 〈B〉φ
〈
Sbj (t2)

〉
ψ
− 2λIm

[〈
B2
〉
φ
C
]
, (3.1.17)
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from which one can never extract the desired real component. This is due to
the hermiticity of B (which is necessary to ensure unitarity of U ) which causes
〈B2〉φ ∈ R.

We must therefore conclude that for a given spin-s target system, one does in
general require an ancilla-based noninvasive measurement at t1 in order to mea-
sure Re

[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
. In contrast, the imaginary component can always be

measured by means of a rotation-based (ancilla-free) measurement protocol if the
rotation angles are small (as was shown in Sec. 3.1.1).

3.2 Specialisation to spin-1/2 target systems

We now discuss the results of Sec. 3.1.1 and 3.1.2 in the context of spin-1/2 systems.

3.2.1 Rotation-based measurement protocol for

Im
[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
From steps a to e of Sec. 3.1.1 we know that the imaginary part of dynamic corre-
lations of any spin-s lattice system, with s ≥ 1/2, can be measured by applying a
rotation R(a, θ) locally to site i at t1. A necessary condition was that the rotation
angle θ is small (see step e). This lead to the expectation value (3.1.11) being lin-
ear in the operator Sai which is necessary for it to contain Im

[
〈ψ|Sai (t1)Sbj (t2) |ψ〉

]
.

This small angle condition is however not necessary when dealing with a spin-1/2
target system: For s = 1/2 the spin observables Sa for a ∈ {x, y, z} are given by the
Pauli matrices (~/2)σa. Here and in the following discussions of spin-1/2 systems
we will use the convention of dropping the prefactor so that the spin-1/2 observables
are given by the unscaled Pauli matrices σa with eigensystem σa |±a〉 = (±1) |±a〉.
Apart from being hermitian, the Pauli matrices are also unitary which gives them
the special2 property of being involutions i.e. σaσa = 1 for a ∈ {x, y, z}. Conse-
quently, the rotation operator

R(a, θ) = e−i
θ
2
σai = cos(θ/2)− i sin(θ/2)σai (3.2.1)

is linear in the observable σai for all rotation angles θ ∈ [−π, π). In the rotation-
based measurement protocol for Im [C], the expectation value (3.1.10) then becomes〈

Sbj (t2, θ)
〉

= cos2(θ/2)
〈
σbj(t2)

〉
ψ

+ sin2(θ/2)
〈
σai (t1)σbj(t2)σai (t1)

〉
ψ

− sin(θ)Im
[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
,

(3.2.2)

which contains Im [C] for any choice of θ. To extract Im [C] we had two options
in Sec. 3.1.1: we could separately measure either

〈
σbj(t2)

〉
ψ
(3.1.12) or

〈
Sbj (t2,−θ)

〉
2Special in the sense that spin observables for s > 1/2 are in general not involutions.
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(3.1.13). In the special case of a spin-1/2 target system, the second option is
favourable since both error terms (given in the �rst line of (3.2.2)) are cancelled so
that the imaginary component is given by

Im
[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
=
(〈
Sbj (t2,−θ)

〉
−
〈
Sbj (t2, θ)

〉)
/ sin(θ), (3.2.3)

for any θ ∈ [−π, π).

We have thus shown that the rotation-based protocol of Sec. 3.1.1 can be utilised
without any constraints on the rotation angle θ when correlating single-site spin-1/2
observables. In fact, from Eq. (3.2.3) it is clear that the optimal rotation angle is
θ = π/2 since then the denominator is 1. This has the bene�t that statistical errors,
which propagate into estimators (obtained from �nite measurement samples) of
(3.2.3), are not ampli�ed. Assuming that the rotation angle can be tuned precisely
to this value in a given experimental realisation, the only error incurred in the
measurement of Im

[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
is then due to statistical errors arising

when estimating probabilities (3.1.9) from a �nite sample of measurements. We will
refer to the above measurement procedure which leads to (3.2.3) as the rotation-
based measurement protocol (RMP).

3.2.2 Projective measurement protocol for

Re
[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
In the discussion of Sec. 3.1.2 we stated that the necessary choice of B (the operator
acting on HA in Hc = B⊗Sai ) combined with the measurement basis for the ancilla
measurement, prevented the Kraus operators (3.1.14) from describing physically
clear dynamics on the target. We now reconsider these Kraus operators within the
spin-1/2 context. To measure Re

[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
with the NIMP, we know

from (2.1.18) that the coupling Hamiltonian3 should be Hc = −i(σ+
a − σ−a ) ⊗ σai .

Using the involution property of the Pauli matrices, and the fact that for any
a ∈ {x, y, z} the operator −i(σ+

a − σ−a )/2 is also a Pauli matrix, we can write the
ancilla�target coupling U as a linear function of Hc for any λ ≥ 0,

U = cosλ− i sinλ
(
−i(σ+

a − σ−a )/2⊗ σai
)
. (3.2.4)

This linearity of the coupling operator, for all λ ≥ 0, is analogous to the linearity
of the rotation operators (3.2.1) in the RMP. This suggests that we should be
able to measure the real part without making use of an ancilla. For spin-1/2, the
initial ancilla state is |φ〉 = (|+a〉 + |−a〉)/

√
2, and U is given by (3.2.4). The

3We have dropped the factor of 1/2 from the B operator of the coupling Hamiltonian since
we are using the unscaled Pauli matrices.
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corresponding Kraus operators are thus

M±a = 〈±a| cosλ− i sinλ
(
−i(σ+

a − σ−a )⊗ σai
)
|φ〉

=
1√
2

(cosλ∓ sinλσai ) .
(3.2.5)

The dynamics described by these two operators may not be immediately clear, but
upon substituting λ = 3π/4 (which is allowed since (3.2.4) and thus (3.2.5) is valid
to all orders of λ) we �nd that they reduce to local projection operators

M±a =
1

2
(1± σai ) = Π±ai for λ = 3π/4. (3.2.6)

We may thus draw the surprising conclusion that when the NIMP is used to mea-
sure ReC for single-site spin-1/2 observables, the ancilla-based measurement at t1
induces dynamics on the target which is equivalent to performing a projective mea-
surement of the ith spin. Such a projective measurement protocol (PMP) for cor-
relations of single-site observables Re

[
〈ψ|σai (t1)σbj(t2) |ψ〉

]
would be implemented

as follows:

(a) Time evolution until time t1,

|ψ(t1)〉 = U(t1) |ψ〉 , (3.2.7)

where |ψ〉 is the initial state of the spin-1/2 target system.

(b) Projective measurement at site i. The state of the target is probed by
projectively measuring the observable σai . The probabilities of measuring eigen-
value ±1 are

PProj
±a = 〈ψ(t1)|Π±ai |ψ(t1)〉 , (3.2.8)

and the corresponding normalised post-measurement states are

|ψ±a(t1)〉 = Π±ai |ψ(t1)〉 /
√
PProj
±a . (3.2.9)

(c) Time evolution until time t2. Time-evolve the post-measurement state
|ψ±a(t1)〉 to time t2,

|ψ±a(t2)〉 = U(t2 − t1) |ψ±a(t1)〉 . (3.2.10)

(d) Projective measurement at site j. The conditional probability of measur-
ing the system in eigenstate |±b〉 of σbj at time t2 > t1 after having obtained
|±a〉 when measuring σai at time t1 is

PProj

±b|±a = 〈ψ±a(t2)|Π±bj |ψ±a(t2)〉

= 〈ψ|U †(t1)Π±ai U †(t2 − t1)Π±bj U(t2 − t1)Π±ai U(t1) |ψ〉 /PProj
±a .

(3.2.11)
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(e) Correlating the measured outcomes. Correlations are calculated accord-
ing to

C Proj =PProj
+a+b

+ PProj
−a−b − P

Proj
−a+b

− PProj
+a−b , (3.2.12)

where PProj
+a+b

= PProj
+a PProj

+b|+a denotes the joint probability to projectively mea-

sure outcome +1 for σai at time t1 and outcome +1 for σbj at t2 (and similarly for
the other indices). Inserting (3.2.8) and (3.2.11) into (3.2.12) and after some
algebraic manipulations (reported in Appendix B) we obtain the �nal result

C Proj(t1, t2) = 〈ψ|σai (t1)σbj(t2) |ψ〉+ 2iIm
[
〈ψ|Π+a

i (t1)σbj(t2)Π−ai (t1) |ψ〉
]
,

(3.2.13)
where we have abbreviated U †(t1)Π±ai U(t1) = Π±ai (t1). C Proj is real as per its
de�nition (3.2.12) and the second term on the right-hand side of (3.2.13) is
purely imaginary. Hence it follows that

C Proj(t1, t2) = Re [C(t1, t2)] where C(t1, t2) = 〈ψ|σai (t1)σbj(t2) |ψ〉 . (3.2.14)

For systems beyond spin-1/2 (as we saw from the Kraus operators of Sec. 3.1.2)
and/or for general observables, this projective measurement protocol does not yield
the real part of desired dynamic correlation functions. More precisely, we show
in Appendix B that for dynamic correlations 〈ψ|A(t1)B(t2) |ψ〉 of arbitrary spin-
s ≥ 1/2 observables A and B, Re [〈ψ|A(t1)B(t2) |ψ〉] = C Proj holds only if the
operator

Γ ≡
∑
a

a
∑
a′ 6=a

P a
A (t1)B(t2)P a′

A (t1) (3.2.15)

is anti-hermitian. Here we have used A to denote the support of A (for instance,
if s = 1/2 and A = σai then A = i). The eigenvalues of A are denoted as
{a} and the projectors onto the corresponding (possibly degenerate) eigenspaces
are given by {P a

A }, where the subscript A indicates that all lattice sites in the
support of A are projected. The anti-hermiticity condition (B.0.11) is satis�ed for
correlations where A is a local spin-1/2 observable, and also for particular multi-site
spin-1/2 observables (see (B.1.6) and (B.1.7)), but is violated in most other cases,
for example for spin-1 models (see (B.0.13)).

The noninvasive measurement protocol of Sec. 2.1, which is valid for general
spin models and observables, was developed with the aim of reducing, and essen-
tially eliminating (in the limit of small coupling times λ) the disturbing e�ect of
measurement backaction on the target system at the early measurement time t1.
In this chapter we have used the Kraus operator formalism to re-derive this NIMP.
The motivation was to gain better insight into the dynamics induced on the tar-
get system during the noninvasive measurement at t1. For the case of imaginary
dynamic correlation components of general spin systems (Sec. 3.1.1) this insight

Stellenbosch University  https://scholar.sun.ac.za



40 Ancilla-free protocols

(summarised by result (3.1.5)) lead to an ancilla-free measurement protocol based
on rotations of the lattice site whose state is to be correlated at t1. Such a rota-
tion is easily applied in experimental platforms, whereas preparation of a separate
ancilla system and generation of the ancilla�target coupling requires a high level
of control (although it is feasible as discussed in Sec. 4.2). Up to the constraint
of a small rotation angle (|θ| � 1) the rotation based protocol is thus a major
simpli�cation in our quest for measurement protocols of dynamic correlations.

Despite various e�orts (some of which were discussed in Sec. 3.1.2), we were
not able to derive a similar (or indeed any) ancilla-free measurement protocol for
the real part of dynamic correlations for general spin systems. At this point in our
research we thus conclude that noninvasive measurements are necessary in general
to measure ReC.

Nevertheless, we were able to shown in this section that spin-1/2 models present
a special and indeed very interesting case. This is the second main result of this
thesis: For general Hamiltonians, dynamic correlations of single-site observables
C(t1, t2) = 〈ψ|σai (t1)σbj(t2) |ψ〉 can be measured without any form of ancilla-based
measurements. This is achieved by combining the RMP of Sec. 3.2.1 with the PMP
of Sec. 3.2.2. Both protocols are valid for any spin-1/2 lattice model independent
of dimension, geometry or Hamiltonian and is also valid for arbitrary (in general
non-equilibrium) initial states. No ancilla systems are required at any point in the
measurement of C(t1, t2), and yet strictly no disturbance due to measurement back-
action propagates into the measured correlation components. Note that the system
does still experience measurement backaction, even of the strongest possible kind
in the case of the PMP, but these disturbances cancel out when constructing the
correlation components. We would like to stress again that this is a surprising and
counter-intuitive result. It completely contradicts the premise which motivated the
derivation of the NIMP, namely that backaction from projective measurements at
early times disturbs the system dynamics and thus prevents accurate measurement
of dynamic correlations. From a theoretical point of view, the ancilla-free RMP and
PMP are a great simpli�cation of the NIMP in the case of correlations of single-site
spin-1/2 observables. From an experimental viewpoint one may imagine scenarios
where the ancilla-based noninvasive measurement is very di�cult to achieve since
it requires a high level of control. The PMP and RMP avoid this problem. They
also require a substantially smaller number of repetitions in order to accumulate
su�cient measurement statistics: Systematic errors stemming from a weak cou-
pling expansion are absent, and statistical errors are not ampli�ed, leading to a
higher accuracy of the protocol. As a closing remark we must however mention
that projective measurements are generally challenging when it comes to exper-
imental realisation. This is the motivation for the modi�ed projective protocols
presented in the next chapter, where we discuss implementation of Sec. 2.1's NIMP
and of the ancilla-free protocols discussed in this chapter.
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Experimental Implementation

In Chaps. 2 and 3 we established a theoretical framework describing how dynamic
correlations can be measured. This is summarised by the NIMP of Sec. 2.1, the
RMP of Sec. 3.2.1 and the PMP of Sec. 3.2.2. The goal of this chapter is to discuss
implementation of these protocols in existing experimental platforms. While there
are a number of experiments based on ultra-cold atoms, polar molecules, or ions
with which quantum spin models can be simulated [24; 25; 26; 27], we will consider
only linear ion traps and quantum gas microscopes. Both platforms provide single-
site spin resolution and have been used to measure spatially resolved static spin
correlations [28; 29]. This makes them ideal candidates for implementation of our
measurement protocols to extract dynamic spin correlations.

Linear ion-traps (LIT) con�ne ions along a single axis in real-space within a
vacuum chamber and are described, for instance, in Refs. [30; 31; 32]. The ax-
ial con�nement is achieved by applying an oscillating radio-frequency voltage to
two electrode pairs, arranged parallel to the trapping axis, thereby creating an
anisotropic harmonic potential with the axial frequency much less then the two
radial frequencies. As a result the motion of ions within the trap is radially re-
stricted, but they are free to move along the trap axis. To prevent ion loss at the
trap ends, a constant voltage is applied to an additional pair of "end-cap" electrodes
situated at the trap ends. After having been su�ciently cooled [32], the trapped
ions then naturally arrange themselves into a one-dimensional lattice due to their
mutual Coulomb repulsion. Whilst this negates the need for a lattice potential,
the resulting lattice period is not constant, but becomes larger towards the chain
ends. The number of trapped ions is typically on the order of tens of ions, with
N = 53 recently reported [28]. This one-dimensional lattice can then be modelled
as a chain of N spin-1/2 particles: Designating two hyper�ne levels1 of a trapped
ion's electronic ground state (for instance) as spin states |±〉, one can drive tran-
sitions from one to the other with an oscillating �eld whose frequency is tuned to
the energy gap of the two states. State preparation is also possible [31]. Spin-spin
interactions, and thus dynamics, are mediated by collective motional modes of the

1For the possible choices of electronic states see [31].
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ions which are coupled to one-another due to their mutual Coulomb interaction. In
order to address speci�c motional modes the ions are laser cooled [32] so that their
motion is quantised. By applying external optical drive �elds for a time interval
τ , one can excite speci�c collective motional (phonon) modes of the ions, thereby
generating many-body dynamics e−iτH under a desired Hamiltonian H [33; 34].

Quantum gas microscopes. Whereas linear ion traps specialise in the control
of one-dimensional spin lattices, quantum gas microscopes (QGM) provide a plat-
form in which two dimensional spin lattices can be simulated. They are based on
high-resolution optical systems (microscopes) which are used to create a 2D trap-
ping potential as well as to detect the trapped atoms. The lattice is created by
using the microscope optics to project the periodic structure of a lithographically
produced mask onto a 2D Bose-Einstein condensate (BEC). Imposing a lattice po-
tential on a BEC allows for macroscopic ensembles, on the order of up to 104 atoms,
to be trapped with near-unity �delity (one atom per lattice site, see Ref. [35]). Ar-
bitrary lattice geometries can be generated (within the limits of the optical system)
by varying the pattern etched onto the mask. A major advantage of using such
a mask is that the resulting lattice geometries are independent of the wavelength
used to illuminate the mask, and this allows for precise control over tunnelling
rates within the lattice by varying the laser wavelength. A direct application is to
mitigate heating e�ects during projective measurements and we discuss this point
in more detail in the next paragraph. The atomic lattice is positioned between 1.5
to 3µm from the �rst (hemi-spherical) lens of the optical system. This yields a
di�raction limit well below the lattice period and thus provides single-site resolu-
tion of atomic densities within the lattice. E�ective spins are created by optical
addressing of the electronic hyper�ne structure, similar to linear ion traps [28].
Spin-resolved imaging is achieved, for instance, by applying a magnetic �eld gra-
dient which splits the trapping potential at each lattice site into a double well in
which the potential minima of the two spin states are separated due to their dif-
fering magnetic moments. An atom's spin state is thus inferred from its position
within this double-well (see Refs. [36; 29]).

Repeated projective measurements. To measure the spin state of an atom
in either experiment, lasers are used to induce �uorescence of the trapped atoms.
The emitted photons are recorded by a high resolution CCD camera (the optical
set-up in QGMs yields a resolution higher than that achieved in LITs). In linear
ion traps all ions are typically adressed simultaneously and the �uorescence is state
dependent. The relative number of photons recorded from each ion is used to infer
the spin state onto which the wave function of each individual ion has collapsed
[31]. In QGMs the �uorescence is made to be state independent since one can
infer spin states from the atom positions, as described in the previous paragraph.
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The emitted photons however pose a challenge for repeated measurements in both
experimental platforms. Each ion/atom scatters photons isotropically so that some
of them interact with neighbouring spins. This decoheres the state of the spin
chain. Scattered photons also impart momentum to the trapped particles and this
can provide enough kinetic energy for the particles to escape from the trap. Spin
densities are thus generally not preserved during measurement. Such heating e�ects
can be mitigated in QGMs due to the high level of control which one has over the
lattice geometry: Before performing a measurement the lattice depth, and thus
the on-site trapping potential, can be increased by several orders of magnitude
[35]. Nevertheless, repeated measurements of atomic densities show that a non-
negligible fraction of atoms is lost (up to 16% is reported in Ref. [37]), or move
along the lattice to be re-trapped elsewhere (hopping).

Experimental implementation of the otherwise theoretically simple PMP is a
non-trivial task since it requires two repeated projective measurements. Our non-
invasive measurement protocol is thus still relevant in spin-1/2 systems. Measure-
ment of the ancilla can be deferred to the �nal time t2 (see Sec. 2.3.2), and thus
any destructive e�ects arising from projective measurements are postponed to the
end of the protocol.

Organisation of this chapter. In Sec. 4.1 we discuss implementation of the
ancilla-free RMP and PMP, which are speci�c to spin-1/2 systems. The non-
trivial task of implementing the otherwise theoretically simple PMP is discussed
in Sec. 4.1.2 with quantum gas microscopes in mind. We show how particle loss
induced by the measurement at t1 can alter the system dynamics and how this
ultimately results in deviations of the measured correlation from the desired real
correlation component. In Sec. 4.1.3 we discuss implementation of the RMP and
consider the experimentally relevant question of how errors in the rotation angle
at t1 propagate into measurements of ImC. In both sections our main result is
a theoretical upper bound on the magnitude of the respectively incurred error.
We discuss how this bound can be minimised through appropriate choices of mea-
surement times and lattice sites. The main theoretical tool used is the theory of
Lieb-Robinson bounds, which we review in Sec. 4.1.1.

In Sec. 4.2 we discuss implementation of our non-invasive measurement protocol.
Although this ancilla based protocol is strictly speaking not necessary in spin-1/2
systems, we discuss implementation of the NIMP within linear ion traps. The mo-
tivation for doing so (beyond a proof-of-principle) is that the ancilla measurement
can be deferred to t2. As a result all projective measurements can be performed
simultaneously at the end of the experiment, at which point decoherence and par-
ticle loss is of no concern. Note that the discussion of this last section is adapted
from our publication [14] and focusses on existing techniques which can be readily
utilised to implement the NIMP in linear ion traps. As such no novel technical
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�nding is presented, and this section should be read in particular as a proposal of
how one can achieve the various coupling Hamiltonians necessary to extract real
and imaginary correlation components from the non-invasive measurement (step c
and the discussion following step g of Sec. 2.1).

4.1 Implementation of ancilla free protocols

4.1.1 Lieb-Robinson bounds

Here we provide a brief review of Lieb-Robinson theory, necessary for the derivations
of Sec. 4.1.2 and 4.1.3.

Let Λ denote the set of all lattice sites within a given lattice. Suppose that
at time t = 0 this lattice is subjected to a perturbation localised within some
�nite subset of lattice sites X ⊂ Λ. Suppose further that there is an observer who
can perform measurements on some other �nite set Y ⊂ Λ, disjoint with X i.e.
X ∩ Y = ∅. Let d(X, Y ) ≥ 1 denote the minimum separation of the two regions
X and Y . A natural question to ask is how long the observer has to wait before
he can detect in Y the perturbation which occurred in X at t = 0, if at all? The
answer lies in the speed with which perturbations propagate within the quantum
lattice. Intuitively this speed should depend on the type of interactions present in
the quantum lattice, and Lieb and Robinson formalised this idea in 1972 [38].

The main ingredient in their work is to consider the dynamical change of the
norm of a commutator of two observables: Using X ∩ Y = ∅, the lattice's Hilbert
space can be written as HΛ = HX ⊗HY ⊗HΛ\(X∪Y ). Let A be an observable
associated with the perturbation in X, and B an observable which the observer
wishes to measure in Y . We then say that A is supported by the set of lattice sites
X, denoted as supp(A) = X, and it acts non-trivially only on the Hilbert space
sector HX i.e. A = A ⊗ 1Y ⊗ 1Λ\(X∪Y ). Similarly B, with supp(B) = Y , acts
non-trivially only on HY so that B = 1X ⊗ B ⊗ 1Λ\(X∪Y ). The two observables
thus act on disjoint Hilbert space sectors at t = 0, from which follows that2

‖[A,B]‖ = 0. (4.1.1)

The converse is investigated in Lemma 3.1 of [40] which states3

Lemma 4.1.1 Let H1 and H2 be Hilbert spaces, A ∈ B(H1 ⊗H2) and suppose
there exists ε ≥ 0 such that

‖[A,1⊗B]‖ ≤ ε‖B‖ for all B ∈ B(H2). (4.1.2)

2Here ‖·‖ denotes the usual operator norm, of which a formal treatment can be found in [39],
and we summarise some useful properties at the end of this subsection.

3We use B(H ) to denote the set of bounded linear operators acting on Hilbert space H .
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Then, there exists an operator A′ ∈ B(H1) such that

‖A′ ⊗ 1− A‖ ≤ ε. (4.1.3)

For a proof see [40]. From the lemma one can conclude that if A ∈ B(HΛ) and
B ∈ B(HY ) nearly commute, A is approximately supported in Λ\Y . Commutator
norms thus quantify the extent to which the supports of two given observables
overlap.

This is applicable in our work of Sec. 4.1.2 and 4.1.3, where we will encounter
commutators in which one observable has undergone non-trivial dynamics in the
Heisenberg picture i.e. A(t) = eiHtAe−iHt whereH is the system Hamiltonian acting
on HΛ. In such cases the commutator norm ‖[A(t), B]‖ reduces to (4.1.1) for t = 0,
but is non-vanishing in general; The interactions described by H will couple lattice
sites within X to others in Xc = (Λ\X) ⊃ Y so that A(t) acts on the entire Hilbert
space HΛ for t > 0 (assuming [A,H] 6= 0). Intuition then suggests that ‖[A(t), B]‖
varies in time as the system interactions propagate the initial perturbation of X
further into the remaining lattice Xc.

The original work of Lieb and Robinson [38] showed that in lattice systems with
�nite range or exponentially decaying interactions,

‖[A(t), B]‖ ≤ bLR(t, r) = Clre
(vt−r)/ξ, (4.1.4)

where r = d(X, Y ) > 0. Clr, v, ξ > 0 are constants de�ned in terms of the norms of
operators A and B, as well as the size of their support, and the system interactions.
These constants are independent of the lattice size |Λ|, so that (4.1.4) is valid
for thermodynamically large systems. Considering coordinates (r, t) for which the
bound bLR(t, r) is larger than some value κ > 0 de�nes an e�ective causal cone,
outside of which the bound becomes negligibly small. This causal region, shown
schematically in Fig. 4.1.1, is bounded by a linear relation between space and time

vt > r + ξ ln(κ/Clr), (4.1.5)

analogous to the light-cone of relativistic theories. The gradient 1/v of the causal
region's boundary places an upper limit on the speed at which perturbations may
spread in the lattice Λ. Therefore, the bound bLR(t, r)�and hence the commutator
‖[A(t), B]‖�becomes negligible for all coordinates satisfying r > vt. Said di�er-
ently, the group velocity Vg of lattice excitations is bounded from above by the rate
v at which the bound (4.1.4) grows (exponentially) in time. The Lieb-Robinson
bound (4.1.4) then tells us that for �nite range or exponentially decaying interac-
tions, the supports of A(t) and B have negligible overlap for all times t > 0 for
which vt < r i.e. the initial perturbation, con�ned to X at t = 0, spreads with a
constant maximum (interaction dependent) velocity Vg < v and therefore reaches
Y at t = r/v at the earliest.
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The work of Lieb and Robinson was extended in 2006 by Hastings and Koma [41]
to lattices in which the interactions are long-ranged and decay only algebraically
with distance as 1/rα. Their work showed that for power laws satisfying α > D,
where D is the lattice dimension, the bound of (4.1.4) must be replaced by

bHK(t, r) = Chk
evt − 1

(1 + r)α
. (4.1.6)

This bound decays only algebraically in space, as opposed to the exponential decay
of (4.1.4). This re�ects the intuition that long-range interactions transmit per-
turbations across greater distances in smaller time intervals. Considering again
space-time coordinates (r, t) for which bHK(t, r) > κ, we �nd a causal region which
grows logarithmically for large distances r

vt > ln

[
1 +

κ

Chk
(1 + r)α

]
. (4.1.7)

A schematic plot is shown in Fig. 4.1.1. As a result of the sub-linear growth of
this logarithmic light-cone, the causal region in which bHK(t, r) is non-negligible,
cannot be bounded by a linear space-time relation t ∼ r/v. The implication is that,
at least according to the bound, excitations may spread through the lattice faster
as time t progresses i.e. (4.1.6) implies that the concept of a group velocity may
not even be well de�ned [42]. Furthermore, the shape of light cone (4.1.7) remains
logarithmic as α→∞. The Hastings-Koma bound does thus not recover the result
of Lieb and Robinson in the limit of nearest-neighbour interactions.

Foss-Feig et al. [43] recently re�ned the result of Hastings and Koma. For
interactions with an algebraic decay satisfying α > 2D, they showed that the
causal region is bounded by a power law

t = rζ ,where 1/ζ = 1 + (1 +D)/(α− 2D), (4.1.8)

in the asymptotic regime of large distances r and times t (see Fig. 4.1.1). Whilst this
polynomial light-cone still predicts an increasing group velocity, it places tighter
constraints on its growth than the logarithmic light-cone of Hastings and Koma.
Moreover, (4.1.8) recovers the linear light cone (4.1.4) of Lieb and Robinson in the
limit of �nite-range interactions α→∞.

The choice of Lieb-Robinson bound when bounding commutator norms ‖[A(t), B]‖
is thus not unique, but depends on the range of interactions present in the system
under study, and these can vary from short-range (nearest neighbour, exponentially
decaying) to long-range (algebraically decaying). Furthermore, in the case of long-
range interactions, the bounds can be optimised (decreased) for speci�c regions in
space-time, as shown by Foss-Feig and collaborators.

In Sec. 4.1.2 we deal with lattice systems fabricated in quantum gas microscopes
which exhibit long-range interactions with α = 6, and so the bound of Foss-Feig
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Figure 4.1.1: Schematic drawings of light-cone boundaries for various Lieb-Robinson
bounds. Causal regions are restricted to the area above the curves in each plot. Outside
of this causal region, for a �xed time t, the bounds decay exponentially or algebraically fast
with increasing distance r. Left: For �nite range, or exponentially decaying interactions,
the original bound of Lieb and Robinson predicts a linear light cone boundary t ∼ r
(4.1.5). Center: For long-range interactions decaying like a power law r−α with α > D,
Hastings and Koma derived a bound which results in a logarithmic light cone t ∼ log r
(4.1.7). The dashed line indicates that no linear curve can bound the resulting causal
region, so that the concept of a �nite group velocity breaks down. Right: For the same
long-range interactions, but with α > 2D, Foss-Feig et al. showed that the causal region
is bounded by a power-law t ∼ rζ (4.1.8). For increasing α (solid lines from bottom to
top), the power-law becomes increasingly linear (dashed line). In the limit α→∞, where
r−α interactions go over to nearest-neighbour interactions, the linear light-cone of Lieb
and Robinson is recovered.

et al. is applicable. However, their bound is restricted to single-site observables
A = Ai, B = Bj for lattice sites i, j ∈ Λ. In our work we deal with commutators
of multi-site observables, so that a generalisation of Foss-Feig's bound, derived by
Matsuta et al. [44], is more useful. This bound, stated in Theorem 2.1 of Ref. [44],
is as follows.

Theorem 4.1.1 Let A and B be bounded operators with respective supports X ⊂ Λ
and Y ⊂ Λ. Let R ≥ 1 and r = d(X, Y ). Then

‖[A(t), B]‖ ≤ b(t, r) =2‖A‖‖B‖|X|
(
evt−r/R + 2tg(r)f(R)

+ C2|X|R(r ∨R)Df(R)tevt−r/R
)
,

(4.1.9)

for any t ≥ 0, where r ∨ R := max{r, R}, and v and C2 are positive constants
independent of Λ, t, R,X, Y,A and B.

The assumptions under which (4.1.9) is valid are:

(a) The Hamiltonian of the quantum spin system on a lattice Λ is given by

HΛ =
∑
X⊂Λ

hX , (4.1.10)

where hX is a bounded local Hamiltonian with support X ⊂ Λ.
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(b) There is a decreasing function f on [0,∞), such that

sup
x∈Λ

∑
Z3x:

diam(Z)≥R

‖hZ‖ ≤ f(R), R ≥ 0. (4.1.11)

Here Z ⊂ Λ and diam(Z) := max{d(x, y)|x, y ∈ Z}.

(c) The interactions between any lattice site and the remaining lattice must have
�nite norm

sup
x∈Λ

∑
y∈Λ

∑
Z3x,y

‖hZ‖ <∞. (4.1.12)

(d) There is a function g which increases monotonically on [0,∞) such that

|{y ∈ Λ|d(x, y) ≤ r}| ≤ g(r) ≤ C(1 + r)D, for r ≥ 0 and x ∈ Λ. (4.1.13)

Here C > 0 is a constant and D is the lattice dimension.

The set in (4.1.13) is the neighbourhood of radius r for lattice site x, and so the
function g(r) can be thought of as an (over)estimate of the number of neighbours
of x which are not further than some distance r.

To understand the physical meaning of (4.1.11) let us assume that all inter-
actions in HΛ are pair interactions i.e. hX = 0 if |X| > 2. This is the case for
the Hamiltonian (4.1.23) used in Sec. 4.1.2 below. The summation then yields the
net strength with which a given lattice site x ∈ Λ interacts with all lattice sites y
satisfying r = d(x, y) ≥ R. The supremum selects the largest of these net interac-
tions in the lattice, and bounding this by the decreasing function f ensures that all
interactions over a distance r ≥ R decay. A given choice of the parameter R ≥ 0
thus de�nes a length scale and characterises the range of the lattice interactions.
Ref. [44] shows that the bound b(τ, r) given by (4.1.9) can be optimised for large
distances r and times τ by letting the R scale with distance r as

R = rκ with κ =
1 +D

1 + α−D
, (4.1.14)

where D is the lattice dimension and α is the exponent of the algebraic long-range
interactions 1/rα. Since α > 2D, parameter κ < 1 so that R scales sub-linearly
with distance r. Furthermore, in the case of a D-dimensional cubic lattice (i.e.
Λ ⊂ ZD) the (r ∨ R)D term of (4.1.9) can be replaced by (r ∨ R)D−1 which leads
to a tighter bound (for a proof see Appendix. B of [44]). The optimised form of
(4.1.9) for a cubic lattice is then

b(t, r) =2‖A‖‖B‖|X|
(
evt−r

η

+ 2tg(r)f(rκ) + C2|X|rκ+D−1f(rκ)tevt−r
η
)
, (4.1.15)
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where η = 1 − κ and we have used that max{r, rκ} = r. We assume from here
onwards that the target system's lattice geometry is cubic, so that we may make use
of the optimised bound (4.1.15). Due to the sub-linear scaling of R with distance
r, the dominant spatial contribution at large distances r is the exponential decay
e−r

η
. As a result this bound is minimised when r � 1 and t is small. In Sec. 4.1.2

below we use the Hamiltonian (4.1.23) in which the interactions decay like 1/r6 for
large distances r i.e. α = 6. The derivation presented there is eventually specialised
to D = 1, but it may be adapted to D = 2 since this too satis�es α > 2D. Both
cases are interesting as these are the lattice dimensions simulated in ion traps and
quantum gas microscopes, but we expect that the essential physics described by
the Lieb-Robinson bounds is the same in either case, only with di�erent prefactors.

Useful properties of operator norms. Let O1, O2 be bounded operators acting
on a Hilbert space H . We will use O = O1 when dealing with only one operator,
and we denote the set of eigenvalues of O by {oi}. Its norm is denoted by ‖O‖,
and satis�es:

|〈ψ|O |ψ〉| ≤ ‖O‖ for any |ψ〉 ∈H , (4.1.16)

‖O‖ =maxi(|oi|) if O† = O, (4.1.17)

‖O‖ =1 if O† = O−1, (4.1.18)

‖O1 +O2‖ ≤‖O1‖+ ‖O2‖, (4.1.19)

‖O1O2‖ ≤‖O1‖‖O2‖. (4.1.20)

It is useful to think of ‖O‖ as the largest possible factor by which O can rescale
any vector |ψ〉 ∈H .

4.1.2 Implementation of PMP in quantum gas microscopes

Recall that the PMP can be used to measure real correlation components
Re 〈ψ|A(t1)B(t2) |ψ〉 if the observable A has only two distinct eigenvalues of oppo-
site sign and equal magnitude (see (B.1.4) � (B.1.7)). We will consider here single-
or multi-site spin-1/2 observables with eigenvalues {±1}, and we denote their sup-
ports as supp(A) = XA and supp(B) = XB (if A = σai , for instance, XA = {i}). We
will assume in the following derivation that the supports of A and B are disjoint
i.e. XA ∩XB = ∅. The spectral representation of the two observables is then

A =
∑

ma=±1

maΠ
ma
XA

and B =
∑

mb=±1

mbΠ
mb
XB
, (4.1.21)

where, for instance, Πma
XA

is the projection operator onto supp(A) corresponding to
eigenvalue ma of A.
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In quantum gas microscopes, projectively probing a region XA of the trapped
lattice at t1 ≥ 0 can cause particle loss within XA and decoherence of lattice sites
neighbouring XA (see paragraph on repeated measurements in the introduction of
this chapter). This is not accounted for in our original PMP of Sec. 3.2.2 and will
alter the system state beyond the expected wave function collapse. In this section
we present two theoretical adaptations of the PMP which aim to mitigate these
additional disturbances of the system state. The main idea in both adaptations
is to decouple lattice region XA from the remaining lattice Xc

A = Λ \ XA at t1.
This decoupling is implemented by letting the system dynamics be generated by a
modi�ed Hamiltonian H ′�from which all interaction terms between XA and Xc

A

have been removed�in the time interval [t1, t2]. The projective correlation C Proj
H,H′

obtained with these modi�ed dynamics will, in general, di�er from the correlation
C Proj
H = ReC of the original PMP (3.2.12). To analyse the utility of either proposal,

we will bound the deviation

ε :=
∣∣∣C Proj

H −C Proj
H,H′

∣∣∣ , (4.1.22)

by making use of Lieb-Robinson theory.
For our analysis we will utilise for H a long-range Hamiltonian which has been

generated in the QGM experiments discussed in Ref. [29]. The long range inter-
actions are created by o�-resonant �Rydberg dressing": The hyper�ne state of the
trapped atoms which was chosen as the |+〉 spin state is o�-resonantly coupled to
a Rydberg state |r〉 of the atom, thereby leading to a �dressed" state |+〉 + β |r〉,
with β � 1. The large electric dipole [45] of Rydberg states facilitates long-range
interactions between dressed states of di�erent atoms in the lattice, and leads to a
long-range Ising Hamiltonian

H =
N∑
m

hmσ
z
m +

1

2

∑
m,n:m6=n

Um,nσ
z
mσ

z
n , with Um,n =

U0

1 + (d(m,n)/Rc)6
, (4.1.23)

in units where ~ = 1. The �rst sum is an on-site energy term arising from the
interaction between spins and a site-dependent longitudinal �eld hm. In the second
sum, Um,n is the long-range spin-spin interaction arising from the Rydberg inter-
actions in the QGM, and d(m,n) is the distance (in units of the lattice constant)
between sites m and n.

The parameter Rc is a length scale arising from the Rydberg-Rydberg inter-
actions; The strong interaction between Rydberg atoms blocks simultaneous exci-
tation of atoms into the dressed state if they lie within a critical distance Rc of
one-another (Ref. [29] reports Rc = 2, in units of the lattice constant). This causes
the soft-core shape of Um,n which saturates to a strength U0 when d(m,n) = 0.
The division by 2 in the second sum compensates for each pair interaction being
counted twice. An advantage of Rydberg dressing over other long-range platforms,
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such as ultra-cold polar molecules or trapped ions, is the highly tunable range and
anisotropy of the spin-spin interaction. Proving the feasibility, from a theoretical
side, of our PMP (and RMP in the next section) in QGMs would thus allow for
measurement of dynamic correlations in various magnetic phases for a large class
of magnetic Hamiltonians, such as the 2D (an)isotropic Heisenberg spin models
simulated in [46].

To model the trap lattice of the QGM we again use Λ to denote the set of all
lattice sites. Each site consists of a spin-1/2 particle so that the system Hilbert
space is HS = (C2)⊗N , where N = |Λ|. |ψ〉 ∈ HS denotes the initial many-body
spin-state of the lattice, and the initial lattice Hamiltonian H is given by (4.1.23).
Steps a to b of the PMP remain unchanged: |ψ〉 evolves to t1 under H and the
probability PProj

H (ma) of measuring eigenvalue ma ∈ {±1} of A is given by (3.2.8).
The subsequent post measurement state (3.2.9) is a product state

|ψma〉 = Πma
XA
e−iHt1 |ψ〉 /

√
PProj
H (ma) = |ψXA(t1)〉⊗

∣∣ψXc
A

(t1)
〉
∈HXA⊗HXc

A
= HS,

(4.1.24)
with Xc

A = Λ \XA being the set-theoretic complement of XA.

Adaptation 1: Locally destructive PMP

In our �rst adaptation of the PMP we assume that any disturbances of the system
state (such as decoherence and particle loss), incurred during the projective mea-
surement at t1, are restricted to a small region X centred on XA i.e. X ⊃ XA. To
mitigate the e�ect of these disturbances during the subsequent time-evolution, we
propose to decouple X from the remaining lattice at t1. For simplicity we will let
X = XA, but this does not a�ect our results beyond the size of some prefactors.

After the projective measurement at t1, no entanglement exists between regions
XA and Xc

A in state |ψma〉. These regions can thus evolve independently during the
time interval [t1, t2] under action of a �decoupled� Hamiltonian H ′ = H ′XA ⊗ 1Xc

A
+

1XA ⊗ H ′Xc
A
. Theoretically we construct H ′ by removing from H all those terms

which couple lattice sites k ∈ XA to sites l ∈ Xc
A and we assume, without loss

of generality, that the observables to be correlated are single-site observables with
XA = i and XB = j for any two lattice sites i 6= j. The modi�ed Hamiltonian is
then

H ′ = H−
∑
n6=i

Ui,nσ
z
i σ

z
n =

N∑
m

hmσ
z
m+

1

2

∑
m,n6=i:
m6=n

Um,nσ
z
mσ

z
n = H ′XA⊗1Xc

A
+1XA⊗H ′Xc

A
,

(4.1.25)
and this preserves the product structure of the post-measurement state (4.1.24)
during the time interval [t1, t2].
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Calculating C Proj

H,H′. The post measurement state (4.1.24) evolves from t1 to t2
with dynamics generated by H ′ (4.1.25). At t2 we projectively measure observable
B. The probability that this measurement yields eigenvalue mb ∈ {±1} of B is

PProj
H,H′(mb|ma) = 〈ψ| eiHt1Πma

i eiH
′(t2−t1)Πmb

j e−iH
′(t2−t1)Πma

i e−iHt1 |ψ〉 /PProj
H (ma).

(4.1.26)
This di�ers from the conditional probability of the original PMP (3.2.11) due to
the modi�ed dynamics in the time interval [t1, t2]. To distinguish the Heisenberg
time evolution of an operator O under H or H ′, we use O(t,H) = eiHtOe−iHt and
O(t,H ′) = eiH

′tOe−iH
′t. The modi�ed projective correlation can then be expressed

as

C Proj
H,H′ =

∑
ma,mb

mambP
Proj
H (ma)P

Proj
H,H′(mb|ma)

=
∑
ma

ma 〈ψ|Πma
i (t1, H)eiHt1B(∆t,H ′)e−iHt1Πma

i (t1, H) |ψ〉 ,
(4.1.27)

where ∆t = t2 − t1 and we have used the spectral representation of B (4.1.21).

Compare C Proj

H,H′ and C Proj
H . The deviation ε of the modi�ed correlation C Proj

H,H′

from C Proj
H (B.0.3) is obtained by substituting (B.0.3) and (4.1.27) into (4.1.22)

ε =

∣∣∣∣∣∑
ma

ma 〈ψ|Πma
i (t1, H)

(
eiHt1B(∆t,H)e−iHt1 − eiHt1B(∆t,H ′)e−iHt1

)
× Πma

i (t1, H) |ψ〉

∣∣∣∣∣.
(4.1.28)

Whilst an exact calculation of (4.1.28) may be possible, it requires choosing a
speci�c system state |ψ〉 so that the result would be applicable to only this state.
To obtain a result which is valid for any initial state |ψ〉, we make use of operator
norms to eliminate dependence of the bound on |ψ〉. Using the triangle inequality
and |ma| = 1 we obtain

ε ≤
∑
ma

∣∣∣〈ψ|Πma
i (t1, H)

(
eiHt1B(∆t,H)e−iHt1 − eiHt1B(∆t,H ′)e−iHt1

)
Πma
i (t1, H) |ψ〉

∣∣∣.
(4.1.29)

The operator norm properties listed at the end of Sec. 4.1.1 allows us to further
bound this as

ε ≤
∑
ma

‖Πma
i (t1, H)‖2‖eiHt1 (B(∆t,H)−B(∆t,H ′)) e−iHt1‖

≤ 2‖B(∆t,H ′)−B(∆t,H)‖.
(4.1.30)
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As desired, this error bound is independent of the initial system state. It depends
only on the di�erence of the Heisenberg representation of B�the observable to be
projectively probed at t2�under dynamics generated by H and H ′, respectively.

As shown in Eq. (11) of Ref. [47], ‖B(∆t,H)−B(∆t,H ′)‖ can be upper bounded
by a temporal integral over commutator norms

‖B(∆t,H ′)−B(∆t,H)‖ = ‖e−iH∆tB(∆t,H ′)eiH∆t −B‖

=

∥∥∥∥∫ ∆t

0

dτ
d

dτ
e−iHτB(τ,H ′)eiHτ

∥∥∥∥
=

∥∥∥∥∫ ∆t

0

dτe−iHτ [H −H ′, B(τ,H ′)] eiHτ
∥∥∥∥

≤
∫ ∆t

0

dτ ‖[H −H ′, B(τ,H ′)]‖ .

(4.1.31)

The third line results from application of the product rule, and the inequality
follows from the triangle inequality and property (4.1.18). The error ε is therefore
bounded as

ε ≤ 2

∫ ∆t

0

dτ ‖[H −H ′, B(τ,H ′)]‖ . (4.1.32)

The integration variable τ is the the time elapsed between the projective measure-
ment of observable A at t1, and of observable B at t2.

Substituting Hamiltonians H and H ′. The HamiltoniansH andH ′, occurring
in bound (4.1.32), are respectively de�ned in (4.1.23) and (4.1.25). From these
de�nitions, it follows that H −H ′ =

∑N
n6=i Ui,nσ

z
i σ

z
n and so (4.1.32) becomes

ε ≤ 2

∫ ∆t

0

dτ
∑
n6=i

‖[B(τ,H ′), Ui,nσ
z
i σ

z
n]‖ = 2U0

∫ ∆t

0

dτ
∑
n6=i

‖[B(τ,H ′), σzi σ
z
n]‖

1 + (d(i, n)/Rc)6
.

(4.1.33)
For a given elapsed time τ ∈ [0,∆t], the commutator norm ‖[B(τ,H ′), Ui,n]‖ quan-
ti�es the extent to which the decoupled dynamics have spread the support of B
throughout the lattice, to include regions which were coupled to site i at t1 via the
long-range interactions Ui,n (see the discussion of Sec. 4.1.1).

Bounding ε with Lieb-Robinson bounds. We now approximate the com-
mutator norms in error bound (4.1.33) using the Lieb-Robinson theory reviewed in
Sec. 4.1.1. For a given Lieb-Robinson bound b(τ, r), r is the minimum separation of
the supports of the operators appearing in the commutator which is to be bounded.
For the commutators in (4.1.33) we have supp(B) = {j} and supp(σzi σ

z
n) = {i, n}

so that
r = min(d(j, i), d(j, n)) = min(ρ, d(j, n)). (4.1.34)
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Those commutators for which r = ρ will be bounded by a Lieb-Robinson bound
b(τ, ρ) which is independent of the summation index n. Therefore, the spatial
summation of (4.1.33) is split into two disjoint domains

r = ρ when n ∈ D1 = {n ∈ Λ : n 6= i and d(j, n) ≥ ρ}
r = d(j, n) when n ∈ D2 = {n ∈ Λ : d(j, n) < ρ}.

(4.1.35)

Splitting the sum in (4.1.33) according to these two domains, we obtain

ε ≤ 2U0

∫ ∆t

0

dτ

(
b(τ, ρ)

∑
n∈D1

1

1 + (d(i, n)/Rc)6
+
∑
n∈D2

b(τ, r)

1 + (d(i, n)/Rc)6

)
.

(4.1.36)
To simplify our derivation we now assume that the lattice Λ is one-dimensional
(further results are therefore also applicable to linear ion traps) i.e. D = 1. Suppose
that lattice site i is situated to the left of site j, i.e. i < j. We then have ρ = |i− j|
and d(i, n) = |i − n| in units of the lattice constant. Domain D1 then lies to the
left and right of D2, and the error bound (4.1.36) can be written as

ε ≤ E(∆t, ρ) := 2U0

(
β(∆t, ρ)(

∞∑
m=1

+
∞∑

m=2ρ

)
1

1 + (m/Rc)6
+

2ρ−1∑
m=1

β(∆t, |ρ−m|)
1 + (m/Rc)6

)
,

(4.1.37)

where β(∆t, r) :=
∫ ∆t

0
dτb(τ, r). The �rst two summations stem from the sum over

D1 in (4.1.36) and the third summation is over D2. We have rewritten all distances
occurring in these summations in terms of m = |i− n|.

Using the Lieb-Robinson bound of Matsuta et al. [44]. For the long-range
interactions Ui,nσ

z
i σ

z
n of Hamiltonians H (4.1.23) and H ′ (4.1.25), an appropriate

choice for b(τ, r) is the Lieb-Robinson bound (4.1.15) of Ref. [44]. Recall that this
bound has been optimised for a cubic lattice Λ (in our case of dimensionD = 1), and
large distances r (see discussion following Eq. (4.1.8) in Sec. 4.1.1). The temporal
integral of this bound [de�ned beneath Eq. (4.1.37)] is

β(∆t, r) =2‖B‖

(
1

v

(
ev∆t − 1

)
e−r

η

+ 2g(r)f(rκ)∆t

+ C2r
κf(rκ)

1

v2

(
ev∆t (v∆t− 1) + 1

)
e−r

η

)
,

(4.1.38)

where we have used |XB| = 1, and ‖σzi σzn‖ = 1. Our choice for the functions g(r)
and f(R) is discussed in Appendix. C [see Eqs. (C.0.1) � (C.0.4)]. Substituting
this time-integrated optimised Lieb-Robinson bound into (4.1.37) we �nd that the
overall error bound becomes
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E(∆t, ρ)

4‖B‖U0

=
ev∆t − 1

v

[
e−ρ

η

(s(1) + s(2ρ)) +

ρ∑
m=1

e−(ρ−m)η

1 + (m/Rc)6
+

2ρ−1∑
m=ρ+1

e−(m−ρ)η

1 + (m/Rc)6

]

+ 2∆t

[
g(ρ)f(ρκ) (s(1) + s(2ρ)) +

ρ∑
m=1

g(ρ−m)f((ρ−m)κ)

1 + (m/Rc)6

+

2ρ−1∑
m=ρ+1

g(m− ρ)f((m− ρ)κ)

1 + (m/Rc)6

]
+
C2

v2

(
ev∆t(v∆t− 1) + 1

) [
ρκ

× f(ρκ)e−ρ
η

(s(1) + s(2ρ)) +

ρ∑
m=1

(ρ−m)κf((ρ−m)κ)e−(ρ−m)η

1 + (m/Rc)6

+

2ρ−1∑
m=ρ+1

(m− ρ)κf((m− ρ)κ)e−(m−ρ)η

1 + (m/Rc)6

]
.

(4.1.39)

Here κ = (1 + D)/(1 + α − D) = 2/6, η = 1 − κ = 4/6 since D = 1 and α = 6.
The physics of (4.1.39) is to be understood as follows: The three square brackets
correspond to the three terms of the temporally integrated Lieb-Robinson bound
(LRB) (4.1.38). The temporal dependence is captured by the prefactors of the
bracketed expressions. In the limit of large time intervals ∆t = t2 − t1, these
prefactors show that, for a �xed ρ, the overall error bound grows exponentially.
The rate of this exponential growth is determined by the constant v. The spatial
dependence of (4.1.39) is captured by the terms within the square brackets. These
terms stem from the spatial dependence of the LRB (4.1.38) and from the long-
range interactions Ui,n. The spatial contribution from the LRB is constant within
domain D1, so that the corresponding summation depends only on the algebraic
decay of the long-range interactions and is summarised in (4.1.39) by s(1) + s(2ρ),
where

s(a) =
∞∑
m=a

1

1 + (m/Rc)6
. (4.1.40)

In (4.1.39), the explicitly shown sums are those which run over domain D2 and
have been split into two physically distinct4 parts

D2 = d1 ∪ d2 satisfying d1 ∩ d2 = ∅,
with d1 = {n ∈ D2 : i < n ≤ j} and d2 = {n ∈ D2 : j < n}.

(4.1.41)

Within d1, where m = |i − n| ∈ [1, ρ], the spatial contributions of the long-range
interactions and the LRB compete: For lattice sites close to i (i.e. summation in-
dex m close to 1) the algebraic terms are large and the exponential contribution

4This is also true for higher dimensions.
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from the LRB is small. As one moves further from i and towards j, the algebraic
interaction terms decay, but the exponential term of the LRB grows. This expo-
nential contribution is large for lattice sites close to j (m close to ρ). Sub-domain
d2 contains all lattice sites in D2 which lie to the right of j, so that the summation
runs over m ∈ [ρ + 1, 2ρ − 1]. Within d2, both the algebraic and the exponential
terms decay as m increases. This re�ects the fact that one moves further from both
lattice sites i and j.

A trivial bound for ε. Instead of using Lieb-Robinson bounds to approximate
bound (4.1.33), one can derive a trivial bound as follows. Since Pauli matrices and
unitary matrices have unit norm, the commutator norm in (4.1.33) satis�es

‖[B(τ,H ′), σzi σ
z
n]‖ ≤ 2‖B‖, for all n ∈ Λ and any τ ∈ [0,∆t]. (4.1.42)

We have used operator norm properties (4.1.17) � (4.1.20). Eq. (4.1.42) is inde-
pendent of τ . The temporal integral in (4.1.33) therefore becomes trivial upon
substituting (4.1.42) into (4.1.33)

ε ≤ Ẽ(∆t) := 4U0‖B‖∆t
∑
n6=i

(1 + (d(i, n)/Rc)
6)−1. (4.1.43)

Compare E(∆t, ρ) and Ẽ(∆t). The simplicity of the trivial bound (4.1.43) for
the error ε (4.1.28) is appealing. Moreover, Ẽ(∆t) re�ects the algebraic decay
of the long-range interactions between supp(A) = {i} and the remaining lattice.
However, it neglects the temporal dependence of supp(B(τ,H ′)), and is independent
of ρ = d(XA, XB). As a result Ẽ(∆t) predicts a constant error regardless of how far
apart the supports of the correlated observables are. We thus expect that (4.1.43)
is a very loose bound of ε for large separations ρ, and some domain of ∆t values.

In contrast, error bound E(∆t, ρ) (4.1.39) is optimised for large distances ρ
and long times ∆t (since we used the optimised Lieb-Robinson bound (4.1.38) for
its derivation). Both Ẽ(∆t) and E(∆t, ρ) are suitable for numeric calculations,
and Fig. 4.1.2 shows a comparison of the two error bounds. The �gure shows
contour plots of min(E(∆t, ρ), Ẽ(∆t)) for a range of (ρ,∆t) coordinates. Plotting
this minimum value takes into account that the trivial bound Ẽ(∆t) may perform
better than E(∆t, ρ) at short times and distances. All parameters appearing in E
and Ẽ have been set to 1, so the comparison is purely qualitative5. The plots show
that in the asymptotic region of large distances and times, E(∆t, ρ) is superior to
(tighter than) the trivial error bound, whilst at early times and short distances the
trivial bound performs better.

5Moreover, for a true quantitative comparison of C Proj
H and C Proj

H,H′ one should consider the

relative errors E(∆t, ρ)/|C Proj
H | and Ẽ(∆t)/|C Proj

H |.
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Recall that ∆t = t2−t1 is the time elapsed in our projective measurement proto-
col (PMP) between measurements of site i (at t1) and j (at t2). In the modi�cation
discussed in this section, the lattice experiences modi�ed dynamics within time
interval [t1, t2], under a decoupled Hamiltonian H ′ (4.1.25). This leads to the error
ε = |C Proj

H −C Proj
H,H′ | which is bounded by (4.1.39). The plotted data shows that this

error can be suppressed by choosing to measure correlations C = 〈ψ|A(t1)B(t2) |ψ〉
which correspond to space-time coordinates (ρ,∆t) lying outside of the light cone
(white area) de�ned by the contours in Fig. 4.1.2. In a given experiment there are
two relevant scenarios: The duration of time between repeated measurements may
be bounded from below (depending on the details of the experimental set-up e.g.
response times of lasers) so that to suppress the error ε one must choose to correlate
lattice sites i and j separated by a large distance ρ. Conversely, if the number of
trapped particles does not allow for large separations ρ (as is the case in typical
ion trap experiments), the error bound (4.1.37) can be used to determine the time
durations ∆t for which the incurred error remains below a desired threshold.

Error bound (4.1.39) and the corresponding plots in Fig. 4.1.2 provide a proof of
principle. We may conclude that the correlation C Proj

H,H′ obtained from the modi�ed

projective protocol, can in principle be used to approximate C Proj
H = ReC. The

precision of this approximation is limited only by the domain of (ρ,∆t) which is
experimentally accessible. To use (4.1.39) quantitatively in a given experimental
set-up, one must use the exact values of the constants appearing in the de�nition
of the Lieb-Robinson bound (4.1.15). These are known in principle, or can be
measured separately.

Adaptation 2: PMP with decoupling and deferral of measurements

The second adaptation of the PMP seeks to delay any destructive e�ects arising
from particle loss or decoherence resulting from a projective measurement at t1. The
idea is similar to the deferred measurement approach of Sec. 2.3.2: At t1 the lattice
regionXA = supp(A) is not immediately measured (in contrast to the original PMP
and the �rst adaptation of Sec. 4.1.2). Instead, XA is decoupled from the remaining
lattice at t1 and its measurement is deferred to t2, where XB = supp(B) is probed.
Both measurements are thus performed simultaneously, and any detrimental e�ects
arising from these measurements are of no concern.

To model the decoupling of XA at t1 we again let the lattice evolve from t1 to
t2 under a decoupled Hamiltonian H ′. Since no measurement is performed at the
early times, the system state will in general not be a product state at t1 (in contrast
to the adaptation of Sec. 4.1.2). Therefore, although regions XA and Xc

A undergo
decoupled dynamics under H ′ for t > t1, there is no guarantee that the spins in XA

evolve independently from those in Xc
A for t > t1: Time evolution generated by H

during 0 ≤ t ≤ t1 will in general entangle spins in XA and Xc
A with one-another.

Dynamics of spins in Xc
A, generated by H ′ during [t1, t2], will thus in�uence spins
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Figure 4.1.2: Left: Contour plot of min(Ẽ(∆t), E(∆t, ρ)) for ∆t = t2 − t1 ∈ [0, 5] and
ρ = |i − j| ∈ [2, 100]. Right: Contour plot of min(log(Ẽ(∆t)), log((E(∆t, ρ))) over the
same domain of space-time points. All parameters were set to one, except for α = 6. The
various spatial sums of Ẽ(∆t) (4.1.43) and E(∆t, ρ) (4.1.39) were numerically evaluated.
Horizontal contours in either plot are attributed to the trivial bound Ẽ, which is constant
for varying ρ. The colour scales for either plot are not the same, but darker colours
represent smaller values in both cases. In the regime of large ∆t and ρ, the contours show
that for a given value of ∆t, the error bound decreases as ρ increases. Conversely, for a
�xed value of ρ, the error bound remains under a given threshold value (represented by
the contours) for a limited amount of time ∆t, growing exponentially thereafter.

in XA, and vice versa. We therefore expect that the deviation of C Proj
H,H′ from C Proj

H

will be larger than in the �rst adaptation of the PMP.
Much of the following error analysis is similar to that of Sec. 4.1.2 and the goal is

again to bound ε (4.1.22) by commutator norms, which can be further approximated
with Lieb-Robinson bounds. We therefore discuss only the pertinent di�erences to
the error derivation of Sec. 4.1.2 and App. C.

Since XA and XB are probed simultaneously, we deal with joint probabilities
instead of conditional ones. At t2 the probability of measuring eigenvalues ma and
mb of A and B is

PProj
H,H′(ma,mb) = 〈ψ| eiHt1eiH′(t2−t1)

(
Πma
XA
⊗ Πmb

XB

)
e−iH

′(t2−t1)e−iHt1 |ψ〉 , (4.1.44)

from which the modi�ed correlation follows

C Proj
H,H′ :=

∑
ma,mb∈{±1}

mambP
Proj
H,H′(ma,mb)

=
∑

ma∈{±1}

ma 〈ψ| eiHt1eiH
′(t2−t1)

(
Πma
XA
⊗B

)
e−iH

′(t2−t1)e−iHt1 |ψ〉 .
(4.1.45)
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At this point it is necessary to discuss how the system Hamiltonian is modi�ed at
t1. Our only requirement is that H ′ does not contain any interactions between spins
m ∈ XA with spins n ∈ Xc

A. A simple option is to impose trivial (in the theoretical
sense of the word) dynamics on XA. The corresponding modi�ed Hamiltonian is

H ′triv := 1XA ⊗HXc
A

(4.1.46)

In this case
[
eiH

′(t2−t1),Πma
XA

]
= 0, and (4.1.45) is identical to the modi�ed corre-

lation of Adaptation 1 (4.1.27). Therefore, with XA = {i} and XB = {j}, the
deviation from the desired correlation component is bounded by E(∆t, ρ) (4.1.37).

To model a more general scenario in which spins within XA still interact with
one-another and/or an external �eld, we use (4.1.25) for H ′. This leads to a non-
trivial commutator ĉ(ma,∆t) :=

[
eiH

′∆t,Πma
XA

]
, so that (4.1.45) is not equal to

(4.1.27). In this case the error ε (obtained by substituting (4.1.27) and (4.1.45)
into (4.1.22)) is bounded by

ε =|C Proj
H −C Proj

H,H′ |

≤
∑

ma∈{±1}

∥∥∥mae
iHt1Πma

XA
eiH(t2−t1)Be−iH(t2−t1)Πma

XA
e−iHt1

−mae
iHt1eiH

′(t2−t1)
(
Πma
XA
⊗B

)
e−iH

′(t2−t1)e−iHt1
∥∥∥

≤
∑

ma∈{±1}

‖Πma
XA

(t1, H)‖2‖B(∆t,H)−B(∆t,H ′)‖

+
∑

ma∈{±1}

(
‖Πma

XA
eiH

′∆tBĉ† + h.c‖+ ‖ĉBĉ†‖
)

≤E ′(∆t, ρ) := E(∆t, ρ) +
∑

ma∈{±1}

(
‖Πma

XA
eiH

′∆tBĉ† + h.c‖+ ‖ĉBĉ†‖
)
.

(4.1.47)

In the third line we have used the triangle inequality and the de�nition of ĉ. The
�rst summation matches (4.1.30) and can therefore be approximated by (4.1.37),
as indicated by the last line of (4.1.47). The additional terms in the last line show
that the error incurred in this adaptation of the PMP is in general larger than that
of the �rst adaptation discussed in Sec. 4.1.2.

Since E ′(∆t, ρ) > E(∆t, ρ) for all ∆t and ρ, we conclude that Adaptation 1
of Sec. 4.1.2 is superior to the second adaptation proposed in this section. This
is interesting because in the current adaptation no projection is performed at t1,
and intuition would suggest that decoupling XA from the remaining lattice is less
disturbing than subjecting the lattice to particle loss and/or decoherence (as is
the case in Adaptation 1). A possible reason why Adaptation 1 leads to smaller
errors ε, is that the projective measurement at the early time t1 destroys any en-
tanglement between the supports of the observables to be correlated, i.e. at t1 XA
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and Xc
A ⊃ XB are decoupled. This also occurs in the original PMP, for which

C Proj
H = ReC. Comparing the two adaptations discussed in this section, the mod-

i�ed system dynamics of Adaptation 2 therefore deviate more from those of the
original PMP.

4.1.3 Imperfect implementation of the RMP

In section 3.2.1 we showed that Im [C]�where C is a dynamic correlation of single-
site spin-1/2 observables�could be measured by replacing the ancilla-based mea-
surement of the NIMP at t1 with a rotation of the ith lattice spin. The imaginary
component was then constructed from the di�erence of two expectation values of
Sbj (t2) with respect to this rotated state [one obtained with angle θ1 = θ ∈ [−π, π)
and the other with θ2 = −θ, as shown in (3.2.3)]. In this section we will consider
the experimentally relevant question of how well this protocol works when there is
an inaccuracy in the rotation angles θ1, θ2. The following derivation is applicable to
quantum gas microscopes and linear ion traps (and any other platforms simulating
spin lattices).

Adapting our notation from (3.2.2), let us denote the two expectation values in
result (3.2.3) as

Eθm = (〈1〉 − 〈2〉) cos2(θm/2) + 〈2〉 − 1

2
Im [C] sin(θm), for m = 1, 2. (4.1.48)

Here we have used sin2 x=1−cos2 x, 〈1〉=
〈
σbj(t2)

〉
ψ
and 〈2〉=

〈
σai (t1)σbj(t2)σai (t1)

〉
ψ
.

Using this notation with θ1 = θ and θ2 = −θ, Eq. (3.2.3) becomes

∆E = Eθ2 − Eθ1 = Im [C] sin(θ) = Im [C] for θ = π/2. (4.1.49)

So we obtain Im [C] when

(θ1, θ2) = (π/2,−π/2) = (π/2, 3π/2)mod(2π). (4.1.50)

To model an inaccuracy in both rotation angles, we modify them as

θ1 = θ + δ1 and θ2 = −θ + δ2, (4.1.51)

where δ1, δ2 represent the deviations from the optimal rotation angle θ = ±π/2.
These deviations can result from a systematic inaccuracy of the experimental equip-
ment, in which case δ1, δ2 would have the same value in every implementation of
the RMP, i.e. δ1, δ2 = δ > 0. A more likely source of error could be noise in the
optical �elds used to generate qubit rotations. This noise would vary in each run
of the experiment, and follow a statistical distribution. Assuming this distribution
to have zero mean and standard deviation σ > 0, the resulting rotation angles
will follow the same distribution, only with the mean shifted to ±θ. In this case
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δ1, δ2 = σ. The following derivation is valid in either case, and we will continue to
distinguish δ1 and δ2, to keep track of the errors incurred in the forward (θ1) and
backward (θ2) rotations.

Substituting the modi�ed angles (4.1.51) into (4.1.48), we have

Eθ1 = (〈1〉 − 〈2〉) cos2(
θ + δ1

2
) + 〈2〉 − 1

2
Im [C] sin(θ + δ1),

Eθ2 = (〈1〉 − 〈2〉) cos2(
−θ + δ2

2
) + 〈2〉 − 1

2
Im [C] sin(−θ + δ2),

(4.1.52)

of which the di�erence (4.1.49) becomes

∆E = (〈1〉−〈2〉)
(

cos2(
θ−δ2

2
)− cos2(

θ+δ1

2
)

)
+

1

2
Im [C] (sin(θ−δ2) + sin(θ+δ1)) .

(4.1.53)

We now assume that deviations from the optimal rotation angles are small. We
may then Taylor-expand (4.1.53) with respect to δ1, δ2 as

∆E =
〈2〉 − 〈1〉

2

∞∑
k=0

(−1)k
[
(δ2k+1

1 + δ2k+1
2 ) sin θ − (δ2k

1 − δ2k
2 ) cos θ

]
+

1

2
Im [C]

∞∑
k=0

(−1)k
[
(δ2k

1 + δ2k
2 ) sin θ + (δ2k+1

1 − δ2k+1
2 ) cos θ

]
.

(4.1.54)

Setting θ to the optimal choice of rotation angle (4.1.50), the above reduces to

∆E(θ = π/2) =
〈2〉 − 〈1〉

2

∞∑
k=0

(−1)k(δ2k+1
1 + δ2k+1

2 ) +
1

2
Im [C]

∞∑
k=0

(−1)k(δ2k
1 + δ2k

2 )

=Im [C] + ε,

(4.1.55)

with

ε :=
Im [C]

2

∞∑
k=1

(−1)k(δ2k
1 +δ2k

2 ) +
〈2〉 − 〈1〉

2

(
(δ1+δ2) +

∞∑
k=1

(−1)k(δ2k+1
1 + δ2k+1

2 )

)
.

(4.1.56)

Equation (4.1.55) yields the desired imaginary correlation component with an over-
all error ε (4.1.56). When |δ1|, |δ2| � 1, this error reduces to

ε ' δ1 + δ2

2
(〈2〉 − 〈1〉). (4.1.57)
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If the errors in the rotation angles are systematic, δ1 + δ2 = 2δ > 0. If they are
statistical, δ1 + δ2 = 2σ > 0. In either case the prefactor δ1 + δ2 in (4.1.57) is small,
but cannot vanish. To determine the size of the error ε, it is therefore necessary to
characterise the size of the scaling term

〈2〉 − 〈1〉 = 〈ψ|σai (t1)σbj(t2)σai (t1)− σbj(t2) |ψ〉 . (4.1.58)

Within a given experimental platform one could measure the two expectation values
above in additional experimental runs. This would however cost more (time, money,
manpower). Therefore, a theoretical analysis of the size of (4.1.58) is desirable. A
straightforward calculation of these expectation values may be possible, but to
obtain a general result which is independent of the initial many-body system state
|ψ〉 we again make use of Lieb-Robinson bounds (reviewed in Sec. 4.1.1). Using
property (4.1.16) we upper bound (4.1.58) as

〈2〉 − 〈1〉 ≤‖σai (t1)σbj(t2)σai (t1)− σbj(t2)‖
≤‖σai (t1)

(
σbj(t2)σai (t1)− σai (t1)σbj(t2)

)
‖

≤‖U(t1)
(
U †(t1)σbj(t2)U(t1)σai − σai U(t1)σbj(t2)U †(t1)

)
U(t1)‖

≤
∥∥[σbj(∆t), σai ]∥∥ .

(4.1.59)

In the second line we have used that σai (t1)σai (t1) = 1. In the third and fourth line
we have used property (4.1.20) and ‖σai (t1)‖ ≤ 1 and ‖U(t1)‖ = 1. The commutator
norm in the �nal line can be upper bounded with a Lieb-Robinson bound b(∆t, ρ),
as shown in Sec. 4.1.1, and so we may upper bound the net error (4.1.57) as

ε ≤ δ1 + δ2

2
b(∆t, ρ), for δ1, δ2 � 1. (4.1.60)

We have seen in the preceding sections of this chapter that the choice of Lieb-
Robinson bound is not unique, and depends on the type of interaction given by
the system Hamiltonian as well as the space-time domain for which one wants
to minimise the error. Therefore, result (4.1.60) is the most general form of the
net error ε�applicable to any spin lattice�and should be interpreted qualitatively:
The errors δ1, δ2 in the rotation angles can be thought of as unwanted perturbations
of the system state at t1. The Lieb-Robinson bound b(∆t, ρ) de�nes a light-cone
region in the (∆t, ρ) parameter space, within which these perturbations cause a
signi�cant deviation of the measured correlation component i.e. where ε is on the
order of |ImC|. Outside of this light-cone, b(∆t, ρ) decays exponentially so that the
net error ε is suppressed.

For a quantitative characterisation of ε, the many-body interactions in a given
experimental set-up must be known, so that the optimal choice of b(∆t, ρ) can be
made. This however goes beyond the scope of what we wanted to achieve, namely
to show how errors in the rotation angles θ1, θ2 propagate into the �nal signal as a
net error ε (4.1.60) and that this error can in principle be brought below a desired
threshold value through appropriate choices of ρ and ∆t.
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4.2 Implementing the NIMP in ion-traps

The ability of linear ion traps (LITs) to simulate many-body spin dynamics under
a given Hamiltonian Hs, and the high level of control which one has over individual
ions, makes them a good candidate for implementation of the ancilla-based NIMP
of Sec. 2.1. In this section we consider simulations of spin-1/2 chains in LITs.
Although the NIMP is strictly speaking not necessary for spin-1/2 systems, there
are two reasons for considering its implementation in the spin-1/2 setting. First as
a proof of principle, and second to avoid complications which arise in the PMP due
to a projective measurement of the target system at the early time t1.

Suppose that we want to measure the dynamic correlation 〈ψ|σai (t1)σbj(t2) |ψ〉,
between the ith and jth spin6. To do so the NIMP requires an ancilla particle to
be prepared in a well-de�ned state, followed by a controlled weak coupling to the
ith system ion at t1 (step c of the protocol). Both steps can be readily achieved
in LITs with currently available techniques: Assume that N + 1 ions are trapped
in a given experiment. We propose to designate one of these ions as the spin-1/2
ancilla particle, with the remaining N ions forming the target system. The ancilla's
Hilbert space is HA = C2, and the required initial ancilla state |φ〉 ∈ HA (2.1.11)
can be prepared via single-ion laser addressing [31] if the qubit transition is in the
optical regime. The remaining N ions which form the target system will have a
collective initial state |ψ〉 ∈ HS = (C2)⊗N . Their dynamics under action of a
desired Hamiltonian Hs can be initiated and driven for some time t1 by applying
optical drive �elds. To achieve the pre-coupling product state (2.1.2) of step b, the
initial ancilla state must be excluded from these dynamics. This can be done with
a �spin-shelving� procedure [30]. This involves placing the ancilla ion in a di�erent
hyper�ne state which is o�-resonant with the dynamics-generating driving �eld.
As a result the drive �eld does not couple to the ancilla ion, thereby preserving its
state.

For the non-invasive measurement, the ancilla spin must interact with only
the ith lattice spin, and this coupling must be generated by the unitary operator
U = exp(−iλB ⊗ σai ) (step c of Sec. 2.1). In deriving the NIMP we assumed that
the system undergoes no dynamics due to Hs during this coupling. This can be
achieved in LITs by temporarily switching o� the driving �elds at t1. The coupling
between the ancilla and the target ions is mediated by collective phonon modes
of the ion lattice (see the review on LITs in this chapters introduction). Restrict-
ing these interactions to a speci�c ion pair (the ancilla and the ith spin) requires
sophisticated but well-established techniques, as described in [48; 49; 34; 50], and
we will elaborate on this point in Sec. 4.2.1 below. Note that no spatial proximity
is required between the ancilla ion and the ith lattice ion; since interactions are

6Since the trapped ions are distinguishable by their equilibrium position one can simply label
them from left to right as 1, . . . , N .
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mediated by phonons, the ancilla may be located at any site, including the ends of
the trapped ion chain. To avoid decoherence at t1, we suggest to defer measurement
of the ancilla ion to t2. This requires the ancilla to undergo trivial dynamics from
t1 to t2 (see Sec. 2.3.2), which can again be achieved through shelving techniques.
Once the ancilla�target coupling has been completed, the system dynamics must
be resumed. Time evolution of the (post-coupling) state from t1 to t2 is achieved
by applying the same optical drive �elds which generated the time evolution up to
t1.

4.2.1 Ancilla�target coupling in linear ion traps

To generate the ancilla�target coupling U (2.1.3) at t1 under HamiltonianHc = B ⊗ σai ,
a suitable technique is to use an entangling gate mediated by phonon modes trans-
verse to the trap axis [50; 51]. These transverse phonon mode (TPM) gates can,
for a chosen coupling strength λ, entangle the spin states of arbitrary ion pairs
by producing a σzσz interaction. The ancilla�target coupling is then restricted to
U (λ) = exp(−iλσz ⊗ σzi ). This is su�cient to measure Im 〈ψ|σai (t1)σbj(t2) |ψ〉 with
a = z and b ∈ {x, y, z}, but not for other spin components. We will show in this
section that the various coupling Hamiltonians (outlined in (2.1.15)�(2.1.20)) can
be implemented by augmenting the TPM coupling with rotations of the ancilla and
system spins. As a result one can measure dynamic correlations with any combina-
tion of a, b ∈ {x, y, z}. As stated above, we use the deferred measurement approach
of Sec. 2.3.2.

Let

RS(θ,n) =
N∏
k=1

Rk(θ,n) =
N∏
k=1

exp

(
−iθ

2
n · σk

)
and (4.2.1)

RA(α,m) = exp
(
−iα

2
m · σ

)
, (4.2.2)

respectively denote rotation operators acting on the system and ancilla Hilbert
spaces. Note that the system rotation is global i.e. all spins are rotated by the
same angle θ and about the same axis de�ned by the unit vector n. Consider then
the following rotated ancilla�target state, propagated to t2,

|ΨR(t2)〉 = U(t2 − t1)(RA(α,m)RS(θ,n))†U (λ)RA(α,m)RS(θ,n) |φ, ψ(t1)〉 .
(4.2.3)

Let us keep the coupling Hamiltonian general for now, so that U = exp(−iλB⊗Ai).
If this coupling satis�es the non-invasive measurement requirement λ� 1, we may
expand (4.2.3) to linear order in λ as

|ΨR(t2)〉 = |φ, ψ(t2)〉 − λB(α) |φ〉 ⊗ U(t2 − t1)Ai(θ) |ψ(t1)〉 , (4.2.4)
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where we have de�nedB(α) = R†A(α,m)BRA(α,m) andAi(θ) = R†i (θ,n)AiRi(θ,n).
From a theoretical point of view, a local rotation of only the ith spin yields the
same state as above, and the decision whether to perform a global rotation of the
system or a local rotation of only the ith spin depends on the experimental set up
at hand. Combining probabilities P±a±b for a simultaneous measurement of the
ancilla and jth spin at t2 as in (2.1.10) we get

C (t1, t2) ' 〈σa〉φ
〈
σbj(t2)

〉
ψ
− iλ

(
〈φ|σaB(α) |φ〉 〈ψ|σbj(t1)Ai(θ, t1) |ψ〉 − c.c.

)
,

(4.2.5)
where Ai(θ, t1) = U †(t1)Ai(θ)U(t1).

Recall now that the TPM coupling restricts the coupling Hamiltonian Hc to
B ⊗ Ai = σz ⊗ σzi , so that

Ai(θ, t1) =U †(t1)eiθ/2n·σiσzi e
−iθ/2n·σiU(t1) and

B(α) = eiα/2m·σσze−iα/2m·σ.
(4.2.6)

For a given choice of a, b ∈ {x, y, z} the measured correlation (4.2.5) then contains
the desired dynamic correlation 〈ψ|σai (t1)σbj(t2) |ψ〉 if n and θ can be chosen such
that Ai(θ, t1) = σai (t1). To extract the corresponding imaginary and real compo-
nents ((2.1.17) and (2.1.19)), the ancilla rotation RA(α,m) must be chosen such
that B(α) satis�es conditions (2.1.16) and (2.1.18), respectively. The appropriate
choices of n,m, θ and α are given below in Table 4.2.1, and can be summarised as
follows: Condition Ai(θ, t1) = σai (t1) is achieved for a = x, y by choosing the system
rotation axis n orthogonal to the a−z plane. If a = z no system rotation is needed
since Ai = σzi is already ful�lled by the TPM coupling. We know from (2.1.16) and
(2.1.17) that the imaginary correlation component, for any a ∈ {x, y, z}, can be
extracted by choosing B = σa. B(α) = σa is achieved by choosingm orthogonal to
the a�z plane. In contrast, to extract ReC, the NIMP requires B(α) = −i(σ+

a −σ−a ).
When a = x, y, this is achieved by rotating the ancilla parallel to the a-axis i.e.
m = a (see (2.1.18) and (2.1.19)). When a = z, a rotation around the x-axis is
necessary i.e. m = (1, 0, 0).

We have thus shown that the various ancilla�target couplings which are crucial
to the functioning of the NIMP, can be generated in linear ion traps with well-
documented techniques. Considering also the discussion of Sec. 4.2 before this
subsection, we may conclude that implementation of the NIMP is feasible in linear
ion traps.
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Table 4.2.1: Summary of rotation parameters needed to measure components of
〈ψ|σai (t1)σbj(t2) |ψ〉

a Component n θ Ai(θ) m α B(α)

x
Re
〈
σxi (t1)σbj(t2)

〉
(0, 1, 0) 3π/2 σxi

(1, 0, 0) π/2 σy

Im
〈
σxi (t1)σbj(t2)

〉
(0, 1, 0) 3π/2 σx

y
Re
〈
σyi (t1)σbj(t2)

〉
(1, 0, 0) π/2 σyi

(0, 1, 0) 3π/2 σx

Im
〈
σyi (t1)σbj(t2)

〉
(1, 0, 0) π/2 σy

z
Re
〈
σzi (t1)σbj(t2)

〉
0 σzi

(1, 0, 0) π/2 σy

Im
〈
σzi (t1)σbj(t2)

〉
0 σz
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5

Conclusion and Outlook

In this thesis we have provided a theoretical description of how dynamic two-point
correlations C = 〈ψ|O(t1)O(t2) |ψ〉 can be measured in many-body quantum sys-
tems. Measuring such correlations is challenging in general, since the system under
study must be probed at di�erent points in time. We showed in Chap. 1 that a
naive approach of directly probing the system projectively is not feasible in general,
due to the associated wave function collapse at the early measurements. Despite
the ubiquitous use of dynamic correlations in many-body quantum physics, pro-
posals of how they can be measured in experiments are few, and limited to speci�c
Hamiltonians and/or equilibrium initial states. Moreover, they do not give access
to the full complex value of the dynamic correlation.

In Chap. 2 we developed a noninvasive measurement protocol (NIMP) which
addresses these issues. It is valid for quantum lattices of arbitrary geometry, dimen-
sion, and spin-s ∈ N/2. The main technical ingredient in the NIMP is to reduce
measurement backaction at the early time t1 by using an ancilla system to perform
a noninvasive measurement. The novel achievement is that our NIMP is indepen-
dent of the target system's Hamiltonian and initial state, and allows for both the
real and imaginary parts of C to be extracted. This requires a careful choice of the
ancilla�target coupling U = e−iλHc (2.1.3), and of the initial ancilla state (2.1.11).
This was shown in Sec. 2.1. In Sec. 2.2 we characterised the accuracy of the NIMP.
We derived a theoretical upper bound on deviations from the desired correlation
components, and showed that these can be minimised through an optimal choice of
the coupling time λ∗. This was veri�ed numerically in Sec. 2.2.1. Generalisations
of the NIMP were discussed in Sec. 2.3: In Sec. 2.3.1 we showed that the NIMP can
be used to measure correlations of arbitrary (multi-site) spin observables, and that
the size of the ancilla spins can be any s ∈ N/2. We showed in Sec. 2.3.2 that the
ancilla measurement can be deferred to the end of the noninvasive protocol. This
can be useful in experiments where measuring the ancilla at early times introduces
unwanted noise such as that arising from photon scattering (parasitic light) [31].
In Sec. 2.3.3 we showed that extending the NIMP to include repeated noninvasive
measurements (cNIMP) does not improve its e�ciency.

In Chap. 3 we used Kraus operators to analyse the dynamics induced on the
target system by the noninvasive measurement at t1. The main result is speci�c
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68 Conclusion and Outlook

to spin-1/2 systems: When measuring ImC, the Kraus operators describing the
noninvasive measurement reduce to a rotation of the target. This lead to the
rotation-based measurement protocol (RMP) of Sec. 3.2.1. More surprisingly, the
Kraus operators showed that the noninvasive measurement is equivalent to a pro-
jection when measuring ReC. This counter-intuitive result lead to the projective
measurement protocol (PMP) of 3.2.2. We proved in App. B that this PMP is valid
for single-site spin-1/2 observables, as well as tensor products of these.

In Chap. 4 we have considered implementations of our measurement proto-
cols in linear ion-traps and quantum gas microscopes. Although the NIMP, PMP
and RMP are all feasible, experimental challenges modify our original theoretical
results. Particle loss and decoherence occur as side e�ects of projective measure-
ments, and this leads to errors when using the PMP to measure ReC. In Sec. 4.1.2
we approximated the size of this error using Lieb-Robinson bounds, and showed
that it can be made small through careful choices of measurement times and lattice
sites. For the RMP we discussed, in Sec. 4.1.3, how systematic errors in the rotation
operators propagate into the measured value of ImC. We again used Lieb-Robinson
bounds to prove that the net error can be brought below a desired threshold. We
concluded the chapter by showing that the ancilla-based measurements of the NIMP
can be readily implemented with existing techniques in linear ion-traps.

One avenue for future research is to simulate the NIMP when applied to a true
many-body system. Comparing the correlations �measured� with a simulation of the
NIMP to those calculated from existing numeric techniques would provide further
benchmarking, and would build on the numeric results of Sec. 2.2.1. Some work in
this direction was done during the course of this thesis. We coded a known numeric
technique (reported in Refs. [52; 53; 54]) to calculate dynamic spin correlations in
the one-dimensional transverse-�eld Ising model (TFIM). The technique consists
of an exact diagonalisation of the TFIM Hamiltonian for a �nite chain with open
boundary conditions. Coding this benchmarking tool took longer than expected,
and a numeric implementation of the NIMP for the TFIM remains to be done.

Analytic extensions of our work in Chap. 2 could seek to generalise the ancilla-
based NIMP to continuous quantum systems. Another interesting scenario to con-
sider is whether the weak-coupling requirement (|λ| � 1) can be eliminated when
the observable to be correlated at t1 is a spin-l observable, with l � 1/2. The
idea is to use a spin-1/2 ancilla and coupling Hamiltonian Hc = S · L. By ex-
pressing the initial ancilla�target product state in the coupled spin basis, one can
calculate the post-coupling state exp(−λS · L) |φ, ψ〉 to all orders in λ. Trans-
forming exp(−λS ·L) |φ, ψ〉 back to the uncoupled spin-basis would then allow one
to calculate the projective measurement of the ancilla state. The idea is that the
distribution of the target states' expansion coe�cients in this basis is not dras-
tically altered by the ancilla measurement (due to the Clebsch-Gordan selection
rules). Investigating how large l should be such that the target-state changes only
negligibly at t1 is an interesting line of inquiry.
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Recently, there has been a large interest in �out-of-time-order correlations�
(OTOCs, see for instance Refs. [55; 56; 57]). They can be used to describe the
spread of chaos in quantum lattice systems. Some schemes to measure OTOCs
have been proposed, but are di�cult to implement as they require time-reversal
[58] or interferometric techniques which yield correlators that are related to the
OTOCs only at early times [59]. The structure of OTOCs is similar to that of
the three-point correlators occurring in our RMP (see Eq. (3.2.2)), and proposals
[58] to use ancillas to achieve the necessary time-reversal exist. This motivated
us to attempt derivations of equivalent ancilla-free protocols by using Kraus op-
erators. Thus far we have not been successful, and future work could rigorously
study the use of ancillas in OTOC measurements with the ultimate goal of deriving
a measurement protocol which does not require ancillas (similar to our PMP and
RMP).

The work presented in this thesis has lead to an experimental PhD project
(at Stellenbosch University) which aims to use our NIMP to measure dynamic
correlations of spin-1/2 systems simulated in a linear ion-trap.
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A

Derivation of the cNIMP

In this appendix we present the derivation of the consecutive noninvasive mea-
surement protocol (cNIMP) of Sec. 2.3.3. As outlined there, the cNIMP consists
of multiple (ancilla based) noninvasive measurements, performed at early times
t < tf , and ends with a projective measurement of the target system at t = tf .
Our goal is to extract information on correlations of observables at multiple pairs
of times. For the sake of brevity, we will consider only three times 0 ≤ t1 < t2 < t3
and correlations C1 = C(t1, t2), C2 = C(t1, t3) and C3 = C(t2, t3). However, gen-
eralisations to more times and correlations are straightforward extensions of the
derivation presented below.

The NIMP, developed in Sec. 2.1, would require six distinct measurement sam-
ples to measure the imaginary and real components of C1, C2, C3. Our goal in
developing the cNIMP is therefore to extract these six components from less than
six measurement samples. Although the cNIMP is not restricted to any particular
choice of correlations, we will consider correlations

C1 = C(t1, t2) = 〈ψ|Sai (t1)Sbj (t2) |ψ〉 (A.0.1)

C2 = C(t1, t3) = 〈ψ|Sai (t1)Sbj (t3) |ψ〉 (A.0.2)

C3 = C(t2, t3) = 〈ψ|Sai (t3)Sbj (t2) |ψ〉 , (A.0.3)

in a spin-s lattice system with arbitrary Hamiltonian Hs and spin s ∈ N/2.
We will show that estimating correlation C1 (see (A.0.1)) requires two noninva-

sive measurements, one at t1 and one at t2, so that at least two ancilla particles are
required, coupled to sites i and j respectively. We will refer to either ancilla by the
index of the time at which they are coupled to the principle system, and denote
their initial states as |φ1〉 and |φ2〉. Together with the noninvasive measurement at
t1, a projective measurement of lattice spin j at t3 will lead to an estimator (A.0.18)
of C2. Similarly, the second noninvasive measurement, combined with a projective
measurement of lattice spin i at t3 will yield an estimator (A.0.20) of C3. The two
noninvasive measurements should therefore su�ce to estimate (A.0.1) � (A.0.3).
Note that the number of noninvasive measurements (i.e. ancillas) required to mea-
sure three correlations with the cNIMP is not unique: had we instead chosen to
consider the correlation C3 = 〈ψ|Sai (t2)Sbj (t3) |ψ〉, we would require a third nonin-
vasive measurement�namely of lattice spin i at t2�and thus require three ancilla
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particles. The number of required ancillas depends on the number n of points in
time considered, and the number of correlations which one wishes to extract. For
instance, if one is interested in exactly one correlation per distinct pair of time
points, one would require at most

(
n
2

)
ancillas.

Measuring the system. Since we require only two ancilla spins, the total ancilla�
target Hilbert space is H = HA1⊗HA2⊗HS. The Hilbert space of ancillam = 1, 2
is denoted by HAm = C2s+1. The Hilbert space for a target system of N spin-s
lattice spins is HS = (C2s+1)⊗N . As in the NIMP, we assume system and ancillas
to initially be in a product state |Ψ〉 = |φ1, φ2, ψ〉, with ancilla initial states |φm〉
to be determined.

For the cNIMP, the relevant time evolution operators on H are

U(t) = 1A1 ⊗ 1A2 ⊗ exp(−iHst), (A.0.4a)

U (λ1) = exp(−iλ1B1 ⊗ 1A2 ⊗ Ai), (A.0.4b)

U (λ2) = exp(−iλ21A1 ⊗B2 ⊗ Aj), (A.0.4c)

which describe the system dynamics, the coupling to the �rst ancilla, and the
coupling to the second ancilla, respectively. The coupling operators Ai, Aj act
nontrivially only on lattice sites i and j, respectively. In terms of the time evolution
operators (A.0.4a)�(A.0.4c), the ancilla�target state at time t3 is

|Ψ(t3)〉 = U(t3 − t2)U (λ2)U(t2 − t1)U (λ1)U(t1) |Ψ〉 . (A.0.5)

We use the deferred measurement approach1 to measure both ancillas as well
as sites i and j, at time t3. Ancilla 1 and site i are measured in the eigenbasis
Sa = {|ma〉} of Sa. Ancilla 2 and site j are measured in the eigenbasis Sb of S

b.
The joint probabilities for this 4-particle measurement are then

P = 〈Ψ(t3)|Πma
A1
⊗Πmb

A2
⊗Πma

i ⊗Πmb
j |Ψ(t3)〉 , for ma ∈ Sa and mb ∈ Sb. (A.0.6)

Extracting C1. In C1 we wish to correlate the states of sites i and j at the
early times t1 and t2. The relevant measurement outcomes are therefore those
of the ancilla measurements. The �rst step in correlating these measurements
outcomes is to marginalise the 4-particle distribution (A.0.6) over the eigenvalues
corresponding to measurements of sites i and j at the �nal time t3. This yields the
marginal distribution

P1 = 〈Ψ(t3)|Πma
A1
⊗ Πmb

A2
⊗

( ∑
ma∈Sa

Πma
i

)
⊗

( ∑
mb∈Sb

Πmb
j

)
|Ψ(t3)〉

= 〈Ψ(t3)|Πma
A1
⊗ Πmb

A2
⊗ 1S |Ψ(t3)〉 .

(A.0.7)

1Which was shown in Sec. 2.3.2 to yield the same results as immediate measurements of the
ancilla spins.
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As in (2.1.10) we now construct a correlation from this marginalised distribution

C (t1, t2) =
∑

ma∈Sa,
mb∈Sb

mambP1 = 〈Ψ(t3)|SaA1
⊗ SbA2

⊗ 1S |Ψ(t3)〉 , (A.0.8)

which, to linear order in the coupling times λ1, λ2, is equal to

C (t1, t2) '〈Sa〉φ1
〈
Sb
〉
φ2

+ 2λ1

〈
Sb
〉
φ2
〈Ai(t1)〉ψ Im

[
〈SaB1〉φ1

]
+ 2λ2 〈Sa〉φ1 〈Aj(t2)〉ψ Im

[〈
SbB2

〉
φ2

]
+ 4λ1λ2Im

[〈
B2S

b
〉
φ2

]
Im
[
〈B1S

a〉φ1 〈ψ|Ai(t1)Aj(t2) |ψ〉
]
.

(A.0.9)

By choosing Ai = Sai and Aj = Sbj the desired correlation (A.0.1) is contained in
the last line. This is a �rst condition on the coupling Hamiltonians of (A.0.4b)
and (A.0.4c). The terms of the �rst two lines can be eliminated by choosing initial
ancilla states |φ1〉 , |φ2〉 such that 〈Sa〉φ1 ,

〈
Sb
〉
φ2

= 0. As in the NIMP, we achieve

this by choosing the initial ancilla states as equal superpositions2 of the eigenbases
of Sa and Sb

|φ1〉 =
1√

2s+ 1

∑
ma∈Sa

|ma〉 and |φ2〉 =
1√

2s+ 1

∑
mb∈Sb

|mb〉 . (A.0.10)

Since we wish to use the same measurement samples for estimators of C2 and C3,
the initial ancilla states are now �xed by the above equations for the remainder of
the cNIMP.

To retain the term containing correlation C1 in (A.0.9), we require that

Im
[〈
B2S

b
〉
φ2

]
6= 0, (A.0.11)

and this must be taken into account when choosing the coupling Hamiltonian of
U (λ2) (A.0.4c). Having speci�ed |φ2〉 in (A.0.10), the condition (A.0.11) is met
when B2 = −i(S+

b − S
−
b )/2, in which case

Im
[〈
B2S

b
〉
φ2

]
=

1

2s+ 1

∑
mb,m

′
b∈Sb

mbIm
[
〈m′b| − i(S+

b − S
−
b )/2 |mb〉

]
=

g

2s+ 1
.

(A.0.12)

With Ai = Sai , Aj = Sbj , B2 = −i(S+
b −S

−
b )/2 and ancilla states (A.0.10) we obtain

C (t1, t2) ' 4λ1λ2g

(2s+ 1)2

∑
ma,m′a∈Sa

maIm [〈m′a|B1 |ma〉C1] , (A.0.13)

2See Sec. 2.1 for a discussion on viable ancilla states.
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from which we can extract imaginary and real parts of C1 by respectively choosing
B1 as B

(1)
1 (2.1.16) and B

(2)
1 (2.1.18). Finally then, we can construct the estimator

Cλ(t1, t2) =
(2s+ 1)2

4λ1λ2g

(
C (2)(t1, t2)

f (2)
+ i

C (1)(t1, t2)

f (1)

)
, (A.0.14)

which approximates C1 in the limit of weak ancilla�target couplings (i.e. small
coupling times λ1 and λ2). In (A.0.14), f (1), f (2) are de�ned as in Sec. 2.1 and the
superscripts indicate whether B(1) or B(2) has been used for B1 in the coupling of
ancilla 1 to site i (A.0.4b).

Table A.0.1 summarises the requirements for extracting C1 from the 4-particle
distribution (A.0.6). The table shows that we need at least two measurement
samples S1 and S2, corresponding to the second and third row of the table. The
initial ancilla states are given by (A.0.10) for both samples. In what follows, the
operator choices used to obtain S1 and S2 must be taken into account when we
extract estimators for C2 and C3. The hope is that we can extract these estimators
from S1 and S2 by marginalising the outcome distributions of either sample over
di�erent eigenvalues.

Correlation component B1 Ai B2 Aj Sample

Re [C1] −i(S+
a − S−a )/2 Sai −i(S+

b − S
−
b )/2 Sbj S1

Im [C1] Sa Sai −i(S+
b − S

−
b )/2 Sbj S2

Table A.0.1: Conditions on ancilla�target couplings to extract real and imaginary parts
of C1 (A.0.1).

Extracting C2. The derivation of Cλ(t1, t3) is much the same as for Cλ(t1, t2)
above. The relevant measurement outcomes are now those of ancilla 1 and site j
so that the appropriate marginalisation is over the eigenvalues corresponding to
measurements of ancilla 2 and lattice spin i

P2 = 〈Ψ(t3)|Πma
A1
⊗

( ∑
mb∈Sb

Πmb
A2

)
⊗

( ∑
ma∈Sa

Πma
i

)
⊗ Πmb

j |Ψ(t3)〉

= 〈Ψ(t3)|Πma
A1
⊗ 1A2 ⊗ Πmb

j |Ψ(t3)〉 .

(A.0.15)

We now correlate the outcomes of measurements of ancilla 1 and lattice site j, and
again linearise with respect to both coupling parameters. Taking into account the
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initial ancilla states (A.0.10), and choosing B2 such that 〈B2〉φ2 = 0, we obtain

C (t1, t3) =
∑

ma∈Sa,
mb∈Sb

mambP2 = 〈Ψ(t3)|Sa ⊗ 1A2 ⊗ Sbj |Ψ(t3)〉

' −2λ1

2s+ 1

∑
ma,m′a∈Sa

maIm [〈m′a|B1 |ma〉C2] .

(A.0.16)

Appropriate choices for ensuring 〈B2〉φ2 = 0 are

B2 = Sb or B2 = −i(S+
b − S

−
b )/2. (A.0.17)

Estimators of imaginary and real components of C2 are obtained with the same
choices of B1 as for (A.0.14) and so the overall estimator of C2 is

Cλ(t1, t3) ' −2s+ 1

2λ1

(
C (2)(t1, t3)

f (2)
+ i

C (1)(t1, t3)

f (1)

)
, (A.0.18)

where f (1), f (2) are as in (A.0.14).

Table A.0.2 compares the new conditions on coupling operators U (λ1),U (λ2)
required for (A.0.18), to those required for (A.0.14). Due to the freedom of choice
for B2 (A.0.11) when constructing Cλ(t1, t3) we require no additional measurement
sample: Re [C2] can be extracted from S1 and Im [C2] from S2 by marginalising over
measurement outcomes of ancilla 2 and site i instead of sites i and j [as was done
for (A.0.14)]. In contrast, using the NIMP would require four distinct measurement
samples, one per correlation component.

Correlation component B1 Ai B2 Aj Sample

Re [C1] −i(S+
a − S−a )/2 Sai −i(S+

b − S
−
b )/2 Sbj S1

Im [C1] Sa Sai −i(S+
b − S

−
b )/2 Sbj S2

Re [C2] −i(S+
a − S−a )/2 Sai −i(S+

b − S
−
b )/2 or Sb Sbj S1

Im [C2] Sa Sai −i(S+
b − S

−
b )/2 or Sb Sbj S2

Table A.0.2: Comparison of operator choices required to construct Cλ(t1, t2) (A.0.14)
and Cλ(t1, t3) (A.0.18).
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Extracting C3. The estimator Cλ(t2, t3) is obtained from marginalising over
eigenvalues corresponding to measurement of ancilla 1 and site j. Therefore, the
roles of B1 and B2 are reversed compared to Cλ(t1, t3), and Cλ(t2, t3) is obtained
with

B1 = Sa or B1 = −i(S+
a − S−a )/2. (A.0.19)

Estimators for the imaginary and real parts of C3 then require B2 = B(3) = Sb and
B2 = B(4) = −i(S+

b − S
−
b )/2, respectively, so that

Cλ(t2, t3) ' −2s+ 1

2λ2

(
C (4)(t2, t3)

f (4)
+ i

C (3)(t2, t3)

f (3)

)
. (A.0.20)

Here
f (3) =

∑
mb∈Sb

m2
b and f

(4) = i
∑

mb,m
′
b∈Sb

mb 〈mb|B(4) |m′b〉 , (A.0.21)

analogous to the de�nitions of f (1), f (2) in Sec. 2.1 (and above).

Conclusion. Adding the operator conditions required for construction of (A.0.20)
to Table A.0.2, we obtain a full summary of the cNIMP in Table A.0.3 (the choices
for operators Ai and Aj and initial ancilla states are constant throughout the cN-
IMP, so we only present the conditions imposed on operators B1, B2). From the
table we may conclude that the cNIMP requires three distinct measurement sam-
ples S1, S2, S3 to extract all six correlation components. S1 is obtained with B1 and
B2 as given by the second row of Table A.0.3. All three real components can be
extracted from S1 through three distinct marginalisations, as discussed above, but
none of the imaginary parts can be extracted from S1. Furthermore, the restric-
tions imposed on B2 for Im [C1] and Im [C3] are distinct, so that they cannot be
extracted from the same sample of measurements. S2 is obtained with B1 and B2

as given by the third row of Table A.0.3 and allows for extraction of Im [C1] as well
as Im [C2]. To extract Im [C3] we require a third sample S3, obtained with B1 and
B2 as given by the last row of Table A.0.3 (we can also extract Im [C2] from S3, by
a marginalising over eigenvalues corresponding to ancilla 2 and lattice site i). The
power of the cNIMP lies in the freedom of marginalising the outcome distribution
(A.0.6) of a given sample of measurements Si in various ways, retaining only that
pair of eigenvalues which corresponds to the two particles whose states are being
correlated. Mathematically these marginalisations are equivalent to measuring only
these two particles, due to the projective decomposition of the identity operator.
Physically, however, one always measures all four particles.

The ability to measure multiple estimators of real and imaginary parts simul-
taneously is a potential advantage of the cNIMP over the sNIMP (see Sec. 2.3.3),
provided that the total number of measurements nc making up samples S1, S2 and
S3 does not exceed that of the 6 samples required by the sNIMP ns.

Stellenbosch University  https://scholar.sun.ac.za



79

Correlation component B1 B2 Sample

Re [C1] −i(S+
a − S−a )/2 −i(S+

b − S
−
b )/2 S1

Im [C1] Sa −i(S+
b − S

−
b )/2 S2

Re [C2] −i(S+
a − S−a )/2 Sb or −i(S+

b − S
−
b )/2 S1

Im [C2] Sa Sb or −i(S+
b − S

−
b )/2 S2

Re [C3] Sa or −i(S+
a − S−a )/2 −i(S+

b − S
−
b )/2 S1

Im [C3] Sa or −i(S+
a − S−a )/2 Sb S3

Table A.0.3: Summary of constraints on operators B1, B2 acting, respectively, on
ancilla 1 and 2 during the noninvasive measurements at t1 and t2 in the cNIMP.

For the example of Sec. 2.3.3 where s = 1/2 and a = b = z, we can measure all
6 correlation components with 3 iterations of the cNIMP as follows: Measurement
sample S1 is obtained with B1 = σy, B2 = σy, S2 with B1 = σz, B2 = σy and S3

with B1 = σy, B2 = σz.

� Re [C1] and Im [C1] are obtained by respectively marginalising S1 and S2 over
eigenvalues corresponding to site i and site j.

� Re [C2] and Im [C2] are obtained by respectively marginalising S1 and S2 over
eigenvalues corresponding to ancilla 2 and site i. We can also extract Im [C2]
from S3 via the same marginalisation.

� Re [C3] and Im [C3] are obtained by respectively marginalising S1 and S3 over
eigenvalues corresponding to ancilla 1 and site j.

Although we require only three measurement samples�as opposed to six with
the sNIMP�the example of Sec. 2.3.3 (last paragraph) shows that nc � ns. In
terms of resources (time, money, manpower) the sNIMP is therefore superior to
the cNIMP, even though the cNIMP requires fewer measurement samples. For the
comparison of Sec. 2.3.3; statistical, systematic and total errors incurred by the
cNIMP estimators (A.0.14), (A.0.18), (A.0.20) were calculated in the same manner
as for the sNIMP (see Sec. 2.2).
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B

General Projective Measurement Protocol

Here we report details of the derivation of Eq. (3.2.15). The use of the Γ operator
below was introduced by S. Castrignano during joint work on [14]. For s ∈ N/2,
we consider dynamic correlations C = 〈ψ|Sai (t1)Sbj (t2) |ψ〉. The observables Sai , Sbj
have eigenvalues ma,mb ∈ S = {−s,−s+1, . . . , s−1, s}. The spectral decomposi-
tion of Sai is

∑
ma∈S maΠ

ma
i , where Πma

i denotes the projector onto the eigenspace
corresponding to ma. Similarly, Sbj =

∑
mb∈S mbΠ

mb
j . The projective correlation

function (3.2.12) then generalizes to

C Proj =
∑

ma,mb∈S

mambP
Proj
ma PProj

mb|ma . (B.0.1)

Upon substituting

PProj

mb|ma = 〈ψ|Πma
i (t1)Πmb

j (t2)Πma
i (t1)|ψ〉/P (ma) (B.0.2)

into (B.0.1) we obtain

C Proj =
∑

ma,mb∈S

mamb〈ψ|Πma
i (t1)Πmb

j (t2)Πma
i (t1)|ψ〉

=
∑
ma∈S

ma〈ψ|Πma
i (t1)Sbj (t2)Πma

i (t1)|ψ〉.
(B.0.3)

Using the identity

Πma
i (t1) = 1i −

∑
m′a∈S :
m′a 6=ma

Π
m′a
i (t1) (B.0.4)

to replace the rightmost projector in (B.0.3), we obtain

C Proj =
∑
ma∈S

ma

(
〈ψ|Πma

i (t1)Sbj (t2) |ψ〉 −
∑

m′a∈S :
m′a 6=ma

〈ψ|Πma
i (t1)Sbj (t2)Π

m′a
i (t1) |ψ〉

)

= 〈ψ|Sai (t1)Sbj (t2) |ψ〉 −
∑
ma∈S

ma

∑
m′a∈S :
m′a 6=ma

〈ψ|Πma
i (t1)Sbj (t2)Π

m′a
i (t1) |ψ〉 .

(B.0.5)
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At this point it is convenient to de�ne the operator

Γ ≡
∑
ma∈S

ma

∑
m′a∈S :
m′a 6=ma

Πma
i (t1)Sbj (t2)Π

m′a
i (t1), (B.0.6)

which depends on the measurement outcome at t1 via the conditional probabilities
(B.0.2). These, in turn, depend on the projection operators Πma

i which de�ne the
post-measurement state at t1. In the proof of the following section we will consider
correlations of arbitrary observables A and B (for s ≥ 1/2), which leads to a more
general form of Γ (B.1.1).

Using (B.0.6), the projectively measured correlation (B.0.5) can be expressed
in terms of the exact correlation as

C Proj = C − 〈ψ|Γ |ψ〉 . (B.0.7)

Since 〈ψ|
[
Sai (t1), Sbj (t2)

]
|ψ〉 = 2iIm [C] we can write

Re [C] = C − 1

2
〈ψ|
[
Sai (t1), Sbj (t2)

]
|ψ〉 . (B.0.8)

Therefore, equality between (B.0.7) and (B.0.8) holds when

〈ψ|
[
Sai (t1), Sbj (t2)

]
|ψ〉 = 2 〈ψ|Γ |ψ〉 . (B.0.9)

If we express Sai (t1) in the above commutator by its spectral decomposition and

introduce the identity 1 =
∑

m′a∈S Π
m′a
i (t1) at the right of Sbj (t2), we �nd that

〈ψ| [Sai (t1), Sbj (t2)] |ψ〉 = 〈ψ|Γ− Γ† |ψ〉 . (B.0.10)

Therefore, Re [C] = C Proj holds if and only if(
Γ− Γ†

)
= 2Γ, (B.0.11)

i.e. if and only if Γ is anti-hermitian. This shows that validity of Re [C] = C Proj

depends on the spectra of the observables which are to be correlated.
For dynamic correlations of local spin-1/2 observables

〈ψ|Sai (t1)Sbj (t2) |ψ〉 = 〈ψ|σai (t1)σbj(t2) |ψ〉 (as in Sec. 3.2.2) we have

2Γ1/2 = Π+a
i (t1)σbj(t2)Π−ai (t1)− Π−ai (t1)σbj(t2)Π+a

i (t1) = −2Γ†1/2, (B.0.12)

which satis�es (B.0.11) and thus con�rms (3.2.14).
In contrast, for correlations of local spin-1 observables we havema,mb ∈ {0,±1}

and

Γ1 =
(
Π+
i (t1)Sbj (t2)− Π−i (t1)Sbj (t2)

)
Π0
i (t1) +

(
Π+
i (t1)Sbj (t2)Π−i (t1)− h.c.

)
6= −Γ†1.
(B.0.13)
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Any spin observable which has a 0 eigenvalue will not satisfy (B.0.11). Thus
(B.0.11) is not satis�ed in general for s > 1/2, and is in fact not even satis�ed
by arbitrary spin-1/2 observables: Γ is anti-hermitian only when the observable A
to be correlated at t1 has exactly two eigenvalues�which may be degenerate�of
the same magnitude, but di�erent sign. The proof of this statement is given below.

B.1 Proof

Here we prove the above statement on the validity of (B.0.11). We consider dynamic
correlations 〈ψ|A(t1)B(t2) |ψ〉 of arbitrary many-body spin-s ∈ N/2 observables
A and B (not to be confused with the operators appearing in the NIMP's weak-
measurement coupling HamiltonianHc). This proof was provided by S. Castrignano
during joint work on article [14].

The observables A and B can have arbitrary supports (i.e. they need not be
single-site observables) and the system Hamiltonian generating time-evolution can
be an arbitrary many-body Hamiltonian. We denote the eigenvalues of A by {a}
and allow for arbitrary degeneracies, as they occur in multi-site observables. The
projector corresponding to the eigenspace of a given eigenvalue is denoted as P (a)
and has the same (in general multi-site) support as A. The de�nition of Γ (B.0.6)
is then

Γ ≡
∑
a,a′

(1− δa,a′)aP (a, t1)B(t2)P (a′, t1), (B.1.1)

where P (a, t1) = U †(t1)P (a)U(t1) and we rewrite (B.0.11) as

Γ + Γ† = 0. (B.1.2)

Since (B.1.2) is an operator identity it must hold that any matrix element of Γ+Γ†,
is zero. Consider then a matrix element with respect to any two eigenstates |µ〉 , |ν〉
of A(t1) with respective eigenvalues µ, ν. Then we have P (a, t1) |µ〉 = δa,µ |µ〉 for
any a, and similarly for |ν〉, so that

〈µ|Γ + Γ† |ν〉 =

(
µ+ ν − 2

∑
a

aδa,µδa,ν

)
〈µ|B(t2) |ν〉 . (B.1.3)

Eq. (B.1.3) is zero if 〈µ|B(t2) |ν〉 = 0. This will in general not be satis�ed since we
consider arbitrary many-body observables and Hamiltonians. Instead, we require(

µ+ ν − 2
∑
a

aδa,µδa,ν

)
= 0 for any eigenvalues µ, ν of A. (B.1.4)

This implies that (B.1.2) is valid only if the spectral representation of A satis�es
condition (B.1.4). This spectral condition is trivially ful�lled if µ = ν i.e. if A
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has degenerate eigenvalues. When µ 6= ν (i.e. when |µ〉 and |ν〉 live in distinct
eigenspaces of A(t1)), the summation in (B.1.4) reduces to 0, and we are left with
the condition

µ = −ν for all possible pairs of distinct eigenvalues (µ, ν) of A. (B.1.5)

We thus conclude that Γ + Γ† = 0 (B.1.2) holds only for observables A which
have exactly two eigenvalues of equal magnitude and opposite sign. These eigen-
values may be degenerate. Examples of such observables are single-site spin-1/2
observables which are linear combinations of the Pauli matrices. Multi-site ob-
servables constructed as a tensor product of these single-site observables also sat-
isfy the (B.1.4)�(B.1.5). Note that there is no restriction on the observable B
which is to be correlated at the later time t2. Therefore, we can use Sec. 3.2.2's
projective measurement protocol to measure any spin-1/2 correlation component
Re 〈ψ|A(t1)B(t2) |ψ〉, with B being an arbitrary observable and A either a single-
site observable

A = Si = ni · σi for any unit vector ni and lattice spin i, (B.1.6)

or a multi-site observable

A = SD =
∏
i∈D

Si for some subset of lattice sites D. (B.1.7)

Collective spin observables A =
∑

i∈D ni·σi have more than one eigenvalue pair and

thus Re 〈ψ|
∑
i∈D

(ni ·σi)(t1)B(t2) |ψ〉 cannot be obtained by means of the projective

measurement protocol of Sec. 3.2.2. However, one could reconstruct this correlation
component from separate implementations of the projective measurement protocol:
From the above proof we know that Re 〈ψ| (ni · σi)(t1)B(t2) |ψ〉 can be measured
with a projective measurement at t1, and we denote the corresponding projective
correlation (3.2.12) as C Proj

i . It then follows from linearity that

Re 〈ψ|
∑
i∈D

(ni · σi)(t1)B(t2) |ψ〉 =
∑
i∈D

Re 〈ψ| (ni · σi)(t1)B(t2) |ψ〉 =
∑
i∈D

C Proj
i .

(B.1.8)
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C

Details for derivation of section 4.1.2

For the spin lattice Λ considered in bound (4.1.37) of Sec. 4.1.2, the lattice dimen-
sion is D = 1 so that the neighbourhood function g(r) de�ned in Sec. 4.1.1 by
Eq. (4.1.13) becomes

g(r) = C(1 + r) for r ≥ 0. (C.0.1)

The function f(R) is de�ned in terms of a supremum over the interactions within the
lattice Λ (see (4.1.11)). For long-range interactions of Hamiltonians (4.1.23) and (4.1.25)
the left-hand-side of (4.1.11) becomes

sup
x∈Λ

∑
Z3x:

diam(Z)≥R

‖Φ(Z)‖ = sup
x∈Λ

∑
y∈Λ:

d(x,y)≥R

‖Ux,yσzxσzy‖

≤ sup
x∈Λ

∑
y∈Λ:

d(x,y)≥R

U0(1 + (d(x, y)/Rc)
6)−1

≤2U0

∑
d≥R

(1 + (d/Rc)
6)−1

≤2U0

∫ ∞
R

dx

[
1 +

(
x− 1

Rc

)6
]−1

.

(C.0.2)

In the second line we have used property (4.1.20) and ‖σa‖ = 1 for any a ∈ {x, y, z}.
In the third line we assume that the system is thermodynamically large, and the
resulting translational invariance allows us to drop the supremum. The factor 2
arises because in D = 1 dimensions there are always two lattice sites y which are
a distance d away from a given site x. In principle the sum in line three su�ces as
a de�nition of f(R), however, in order to obtain a closed form which depends only
on R, we upper bound this sum with an integral in the last line. To do so we used
that for a function y(x) which is non-increasing on x ∈ [0,∞)

∑
x≥R

y(x) =
∞∑
x=R

y(x) ≤
∫ ∞
R

dx y(x− 1). (C.0.3)
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The closed form for f(R) is then

f(R) =2U0

∫ ∞
R

dx(1 + ((x− 1)/Rc)
6)−1 = 2U0Rc

∫ ∞
R−1
Rc

du

1 + u6

=
2U0Rc

6

[
2π + arctan(

√
3− 2

R− 1

Rc

)− 2 arctan(
R− 1

Rc

)− arctan(
√

3 + 2
R− 1

Rc

)

−
√

3arctanh

 √
3R−1
Rc

1 +
(
R−1
Rc

)2

],
(C.0.4)

where the integral has been solved using partial fractions. A plot of (C.0.4) is
given in Fig. C.0.1 for various Rydberg length scales Rc. The plot veri�es that
f is decreasing on R ∈ [0,∞) and that it captures the behaviour of the long-
range interactions of Hamiltonians (4.1.23) and (4.1.25). For the contour plots in
the main text (Fig. 4.1.2) we have used Rc = 1. Note that f(R) is not unique; a
simpler function which also satis�es condition (4.1.11) is

∑∞
d=RR

6
c/d

6. This however
diverges as R tends to 0 and this leads to a loose Lieb-Robinson bound (LRB).

1 2 3 4 5 6

R

1

2

3

4

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Figure C.0.1: Function f(R) as de�ned by (C.0.4) for U0 = 1 and di�erent values of
the length scale Rc induced by the Rydberg interactions of Ref. [29]: Rc = 1, (solid line),
Rc = 2 (dashed line), Rc = 3 (dotted line). Left: Comparison of f(R) to the sum in
the third line of (C.0.2), given by blue (grey) lines for di�erent values of Rc. Black and
blue curves with the same line-style were calculated with the same value of Rc. The
function f(R) lies above the sum for all R ≥ 0 and decreases as R increases, as is required
by de�nition (4.1.11). Right: Comparison of f(R) to a single interaction strength term
U0/(1 + (d/Rc)

6) for U0 = 1. As the Rydberg length scale Rc increases, the soft-core
plateau of the interaction strength is extended, but decreases rapidly once d > Rc and
then tends to 0. This is re�ected in the function f(R) which remains large for longer as
Rc increases, but rapidly approaches 0 for R > Rc.
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