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Urban–rural inequalities in suicide 
mortality: a comparison of urbanicity indicators
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Abstract 

Background:  Urban–rural disparities in suicide mortality have received considerable attention. Varying conceptual‑
izations of urbanity may contribute to the conflicting findings. This ecological study on Germany assessed how and to 
what extent urban–rural suicide associations are affected by 14 different urban–rural indicators.

Methods:  Indicators were based on continuous or k-means classified population data, land-use data, planning 
typologies, or represented population-based accessibility indicators. Agreements between indicators were tested 
with correlation analyses. Spatial Bayesian Poisson regressions were estimated to examine urban–rural suicide associa‑
tions while adjusting for risk and protective factors.

Results:  Urban–rural differences in suicide rates per 100,000 persons were found irrespective of the indicator. Strong 
and significant correlation was observed between different urban–rural indicators. Although the effect sign consist‑
ently referred to a reduced risk in urban areas, statistical significance was not universally confirmed by all regressions. 
Goodness-of-fit statistics suggested that the population potential score performs best, and that population density 
is the second best indicator of urbanicity. Numerical indicators are favored over classified ones. Regional planning 
typologies are not supported.

Conclusions:  The strength of suicide urban–rural associations varies with respect to the applied indicator of 
urbanicity. Future studies that put urban–rural inequalities central are recommended to apply either unclassified 
population potentials or population density indicators, but sensitivity analyses are advised.
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Background
Reducing mental health disparities between urban and 
rural settings is receiving considerable attention in both 
scientific and policy debates [1–4], as is suicide mortality 
[5–9]. In industrialized nations, suicide is a major cause 
of death [10], whereas suicide rates vary greatly across 
regions [11–14].

Various factors explain geographic variations in suicide 
prevalence. Meta-analyses suggest that suicidal behavior 
is affected by, but not limited to, socio-demographics, 
access to health services, and the presence of psychiatric 
disorders [15–17]. Whereas the living environment also 
seems to have neurobiological effects that contribute to 

differences in psychiatric illness [18], research has also 
found that urbanity/rurality shapes intra-regional differ-
ences in suicide [12, 14, 19–26]. There are many possible 
explanations for an increased suicide risk in rural areas 
[9, 12, 14, 20, 26, 27]. For instance, despite popular cli-
chés about anonymous city-dwelling, rural living can lead 
to social isolation, resulting in less intimate face-to-face 
contact with family and friends, which, in turn, increases 
the risk for suicidal behavior [19]. Rural dwellers have 
easier access to lethal means, which increases their sui-
cide risk [5]. Country living is often related to a lower 
socioeconomic status as well as stigmatized attitudes 
toward visiting mental healthcare facilities (e.g., general 
practitioner (GP), psychiatrists), and long travel dis-
tances diminish the demands for specialized healthcare 
providers [14, 28]. Several empirical studies emphasized 
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an elevated vulnerability in rural areas [9, 12, 14, 26, 27], 
whereas others drew an opposite conclusion [21, 23, 29].

There are at least two reasons for these inconsist-
ent findings about urban–rural inequalities in suicide 
mortality. First, urbanicity and rurality are multifaceted 
concepts: Neither has a universally accepted definition 
[30–34]. Urbanicity/rurality is frequently represented 
through population density, either considered as a con-
tinuous variable [13] or converted into an ordinal scaled 
variable using arbitrary cut-off points or the distribution 
of the data (e.g., natural breaks) [23, 25]. Several alterna-
tives are available to demarcate territorial space [30–32, 
34]. Planning-based typologies [22] categorize munici-
pal jurisdictions into urban, suburban, and rural areas 
by means of density threshold values, morphometric 
descriptions, etc. Such approaches fail to represent the 
spatial interaction between territorial units. Accessibil-
ity-oriented urban–rural indicators such as the popula-
tion potential score [35, 36], which refers to how many 
people can be reached within certain travel times, have 
received virtually no attention in suicide epidemiology 
[21].

Second, there is no consensus on which data sources 
should be used to define urban–rural areas. National 
statistical offices often facilitate an ad hoc application 
of population-based density indicators [7, 14, 37, 38]. 
Less readily available, but equally valid for urban–rural 
demarcations, are urban form features (e.g., the amount 
of built-up area). Although this information can be 
extracted from the cadaster, advances in satellite imagery 
have resulted in datasets describing land-use at high lev-
els of spatial resolution [39, 40]. However, although sci-
entifically exact methodologies for data compilation are 
followed, the derived urban–rural indicators differ in 
granularity and scale, the minimum mapping units, and 
the level of generalization [41], which translates to differ-
ent urban–rural indicators.

Taken together, studies addressing urban–rural differ-
ences in suicide have mostly been restricted to a single 
indicator. None of them, to our knowledge, considered 
the consequences of choosing one urban–rural definition 
or another. Thus, it remains unclear whether and, if so, 
how different ways of operationalizing urbanicity affect 
urban–rural suicide associations. Inappropriate urban–
rural indicators may potentially obscure or modify “true” 
urban–rural suicide associations [3, 22] and bias conclu-
sions, leading to inappropriate health policies [32]. Our 
research questions were as follows:

1.	 To what extent do 14 different urban–rural indicators 
derived from different data sources correlate?

2.	 Do suicide mortality rates vary across different 
urban–rural typologies?

3.	 Do the nature and the strength of urban–rural sui-
cide associations differ across indicators?

In order to address these pressing questions, we con-
ducted an ecological study on Germany for the period 
2007–11. The rationale for selecting Germany is twofold. 
First, Germany experienced an increase in suicides in 
2007–11 [9, 42], despite the country’s suicide prevention 
program [43]. Second, whereas several Anglophone stud-
ies [8, 19, 21, 24, 44, 45] and Asian studies [6, 7, 27, 37] 
exist, research on intra-national differences in continen-
tal Europe is underrepresented [14, 38, 46].

Methods
Study design and data
This study was based on a cross-sectional study design 
at a district level for Germany (N = 402). These territo-
rial units permit detailed analyses while respecting data 
protection laws. For each district, suicide mortality data 
for the period 2007–11 were obtained from the Statisti-
cal State Office of the Free State of Saxony. Following the 
International Classification of Diseases (10th revision), 
suicide cases were defined as incidents of intentional self-
harm leading to death (i.e., X60–X84). The dataset com-
prised all suicides of persons residing in Germany who 
were issued a death certificate by an authorized physician 
[47]. As suicide data per district are sparse, and to cir-
cumvent stochastic annual variations, the average annual 
number of suicide cases per district was determined [11]. 
A similar procedure was employed for the population 
at risk (2007–11; German Federal Statistical Office) to 
determine the expected number of suicides (i.e., multi-
plying the German-wide suicide rate for the observation 
period by the average population size of each district).

The first urban–rural indicator reflects the population 
density (i.e., people per district; German Federal Statisti-
cal Office) for 2011. Second, we developed an indicator 
describing the proportion of built-up areas (e.g., residen-
tial, commercial, and industrial buildings) and transpor-
tation areas (e.g., roads, railroads, airports) per district 
for 2011 (in %). Input data stem from the ATKIS digital 
landscape model, which is accessible through the Leibniz 
Institute of Ecological Urban and Regional Development 
(IOER). Third, the proportion of built-up area per district 
(in %) in 2012 was computed using the Corine land-use 
inventory.1 This repository is hosted by the European 
Environmental Agency. Fourth, a regional typology 

1  Based on remote sensing images, land-use was classified into 44 classes 
at a spatial resolution of 100 ×  100  m (Copernicus, 2016). The indicator 
preparation considers the following classes: 111 (continuous urban fabric), 
112 (discontinuous urban fabric), 121 (industrial and commercial units), 122 
(road, rail networks, and associated land), 123 (ports), and 124 (airports).
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published by the Federal Institute for Research on Build-
ing, Urban Affairs and Spatial Development (BBSR) 
(2011) was considered. The indicator is based on the 
structural characteristics of settlement areas and is com-
posed of multiple features (e.g., population, population 
densities, and the proportion of people in large and mid-
sized cities). This typology comprises four areas: rural 
areas, rural areas with densification, urbanized areas, and 
urban areas (i.e., major cities). We also reduced this 
typology to three (i.e., urban, rural areas with densifica-
tion, and rural areas) and two clusters (i.e., urban and 
rural areas). Fifth, two accessibility indicators were imple-
mented [36, 48]. The cumulative population opportunity 
index2 represents the number of people reachable within 
a 60-min car drive. The higher the opportunity index, the 
better the accessibility. The population potential score,3 
in contrast, assumes a stronger influence of the nearby 
population compared with a population that is farther 
away [35]. Impedance is measured through a negative 
power function with a moderate distance decay of power 
two and automobile-based travel times [36]. The higher 
the potential score, the higher the population concentra-
tion. Both accessibility indicators are based on ESRI’s 
street network dataset 2008. Finally, we considered a 
European-wide urban–rural typology [49] grounding on 
the Geostat population grid derived through dasymetric 
modeling for the year 2011 [50]. This typology comprises 
predominantly rural areas, intermediate areas, and pre-
dominantly urban areas.

The following covariates per district were considered 
[17]. Data on the average disposable annual income per 
person (in €1000) [37] and the unemployment rate (in %) 
[38] for the year 2011 were acquired from the German 
Federal Statistical Office. Depression prevalence (in %) 
for 2011 was obtained from the Central Research Insti-
tute of Ambulatory Health Care [11]. Finally, data repre-
senting the supply of health infrastructure (i.e., number 
of general practitioners, psychiatrists, and psychothera-
pists per 100,000 persons) [51] for 2011 were acquired 
from the German Central Research Institute of Ambu-
latory Health Care. Figure 1 summarizes the underlying 
conceptual model.

2  The cumulative opportunity index CO for area i refers to the number 
of people P in reach along the street network between i and all opportu-
nities j within a relevant threshold car-based driving time t (i.e., 60  min): 
COi = ΣjPj where tij ≤ t. Higher COi scores refer to a better accessibility.
3  In contrast to the cumulative opportunity index, the potential measure Pi 
does not take any threshold distance into account but considers all oppor-
tunities j in combination with a distance decay effect (i.e., the interaction 
declines with increasing distance or travel time). Pi =  ΣjPjF(tij) where, Pj 
refers to the number of people and F(tij) represents car-based driving time 
to the negative power of 2.

Statistical analysis
Urban–rural classification
To avoid arbitrary class breaks [31], the continuous 
urban–rural indicators were further classified by k-means 
clustering [52]. Districts were assigned to mutually exclu-
sive regions through maximizing the internal similarity 
of each cluster (i.e., region). To determine an appropri-
ate number of regions, Bayesian hierarchical models (see 
below) conditioned on the covariates were estimated 
with two to 19 regions. For each model, goodness-of-fit 
criteria (i.e., the deviance information criterion (DIC) 
[53]) and the predictive performance (i.e., the conditional 
predictive ordinate (CPO) [54]) were determined. Lower 
DIC scores refer to a better fit. Higher CPO scores indi-
cate better predictive performance. The best model is 
assumed to have the most suitable number of regions.

Descriptive and bivariate analyses
Suicide rates per 100,000 people were cross-compared 
between urban and rural typologies. To quantify the 
relationships between the urban–rural indicators, Spear-
man rank correlation coefficients were computed. Cor-
relations with p  <  0.01 were considered statistically 
significant.

Multivariate regressions
To test the associations between suicide and individual 
urban–rural indicators, ecological Bayesian regressions 
were implemented [55, 56]. For suicide counts, the Pois-
son distribution is well suited and the expected num-
ber of suicides served as offset. Studies [38, 45, 55] have 
demonstrated that suicide risk explanation by covariates 
is improved by including spatial effects that otherwise 
bias model output. Thus, the models also comprised a 
spatially structured and a spatially unstructured district-
specific effect while adjusting for other risk and protec-
tive factors [57]. Districts were considered neighbors if 
they shared a common boundary [58]. Relative risk esti-
mates were obtained by exponentiating the posterior 
means together with the 95% credibility intervals (CI). A 
relative risk was considered significant if the 95% CI did 
not include one. The district-specific smoothed residual 
relative risk was obtained by exponentiating the sum of 
the structured and the unstructured spatial effect. The 
uncertainty related to the posterior means of the district-
specific effect was also visualized [59]. Model quality was 
addressed with DIC and CPO scores. The models were 
estimated with integrated nested Laplace approximation 
[54, 60]. Statistical analyses were carried out using the 
R-INLA library (17.06.20) in R-3.3.1.

A model without any urban–rural indicator (Model 
1) and 14 adjusted models with different urban–rural 
indicators were tested. Model 2–3 (“Census”) used the 
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continuous and the clustered population density, model 
4–5 (“IOER”) used continuous and clustered built-up and 
transportation areas, model 6–7 (“Corine”) used continu-
ous and clustered Corine-based build-up areas, model 
8–10 (“BBSR”) used planning typologies, model 11–12 
(“Potential”) used continuous and clustered population 
potential scores, model 13–14 (“Opportunity”) used the 
continuous and clustered cumulative opportunity index, 
and model 15 (“ESTAT”) used the European-wide urban–
rural typology. Continuous urban–rural indicators were 
log-transformed to correct for the skewness [19].

Results
Urban–rural indicators
The five continuous urban–rural indicators were clus-
tered and resulted in 14 operationalizations. With the 
exception of the opportunity indicator, both DIC and 
CPO values indicate that three clusters (i.e., regions) are 
appropriate (Additional file  1: Figure A1). Across the 
models, the potential score is competitive. Figure 2 visu-
alizes the urban–rural indicators. Further descriptive sta-
tistics are provided in the Additional file 1: Table A1.

Spearman correlations (Additional file 1: Table A2) sup-
ported the visual agreements between the urban–rural 
indicators. The highest correlations (of > 0.9 (p < 0.001)) 
are between the continuous variables, whereas the plan-
ning-based urban–rural measures (BBSR) are less, but 
still highly significantly (p < 0.001), correlated (Table 1). 

Suicide rates are further stratified by different urban–
rural typologies. Rural areas have higher suicide rates, 
namely of between 12.6 and 13.2 per 100,000 persons, 
compared to urban areas, where suicide rates range from 
11.0 to 11.6 per 100,000 persons (Table  2). Minor fluc-
tuations appear across the urban–rural indicators. To get 
more reliable insights beyond descriptive comparisons, 
the effects of the 14 urban–rural indicators on suicide 
risk were tested in multivariate models.

Multivariate regressions
Model performances of the regressions are reported in 
Fig. 3. Model 11 (i.e., numeric population potential score) 
has the highest goodness-of-fit and models 8–10 and 15 
have the poorest fit (i.e., planning typologies). With DIC 
score differences of 8.5, statistical support is evident. Less 
clear is the DIC difference between model 2 and model 
11 and between models 2–3 and model 4–5. The CPO 
values confirm these results.

Table  2 summarizes the regression results for each 
urban–rural specification. All models with continuous 
urban–rural indicators (i.e., models 2, 4, 6, 11, 13) indi-
cate strong statistical evidence of negative associations. 
The magnitudes of the coefficients are roughly compa-
rable, whereas model 11 shows the strongest negative 
effect (0.903, 95% CI 0.854–0.955). For the categorical 
urban–rural indicators, the results are less distinct. Mod-
els 3, 5, 7, and 10 support that rural areas are at higher 
risk than urban ones, but rural areas with densification 
largely remain “insignificant.” The urban–rural effects of 
these models range from 0.853 (95% CI 0.775–0.940) to 
0.887 (95% CI 0.804–0.978), with a tendency to be lower 
than the effects obtained through a continuous indica-
tor. No support for urban–rural differences in suicide 
rates is provided by models 8, 9, and 15, which represent 
planning-based typologies. Only the four-areas typology 
(Model 10) reveals differences between major cities and 
rural areas (0.883; 95% CI 0.787–0.990).

The effects of the covariates are presented in Fig. 4. The 
models indicate differences in the support and effect size 
of the covariates. Focusing on the best performing model 
(i.e., model 11) (Additional file  1: Table A3), the asso-
ciations are as follows: Unemployment rate is positively 
associated (1.017, 95% CI 1.003; 1.030), whereas income 
and depression prevalence appear not related. In con-
trast to psychiatrists and psychotherapists, who are also 
not supported through the model, the number of GPs per 

Fig. 1  Conceptual model (A “+” refers to a positive association and a “−” refers to a negative association)
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Fig. 2  Urban–rural indicators



Page 6 of 12Helbich et al. Int J Health Geogr  (2017) 16:39 

Ta
bl

e 
1 

Su
ic

id
e 

ra
te

s 
pe

r 1
00

,0
00

 p
eo

pl
e 

fo
r u

rb
an

–r
ur

al
 ty

po
lo

gi
es

#3
: C

en
su

s 
(p

op
. d

en
si

ty
 

cl
us

te
re

d 
in

 3
 

re
gi

on
s)

#5
: I

O
ER

 
(b

ui
lt-

up
 a

re
as

 
cl

us
te

re
d 

in
 3

 
re

gi
on

s)

#7
: C

or
in

e 
(b

ui
lt-

up
 a

re
as

 
cl

us
te

re
d 

in
 3

 
re

gi
on

s)

#8
: B

BS
R 

(t
yp

ol
. 

w
ith

 2
 re

gi
on

s)
#9

: B
BS

R 
(t

yp
ol

. 
w

ith
 3

 re
gi

on
s)

#1
0:

 B
BS

R 
(t

yp
ol

. 
w

ith
 4

 re
gi

on
s)

#1
2:

 P
op

. 
po

te
nt

ia
l s

co
re

s 
(c

lu
st

er
ed

 in
 3

 
re

gi
on

s)

#1
4:

 C
um

ul
at

iv
e 

op
po

rt
. i

nd
ex

 
(c

lu
st

er
ed

 in
 2

 
re

gi
on

s)

#1
5:

 E
ST

AT
 (t

yp
ol

. 
w

ith
 3

 re
gi

on
s)

Ru
ra

l a
re

as
12

.9
12

.9
12

.6
12

.8
12

.9
12

.9
13

.0
13

.0
13

.0

Ru
ra

l a
re

as
 w

ith
 

de
ns

ifi
ca

tio
n

11
.6

11
.8

12
.0

–
12

.8
12

.8
11

.6
–

12
.2

U
rb

an
 a

re
as

11
.3

11
.2

11
.3

11
.5

11
.6

11
.5

11
.0

11
.2

11
.2

M
aj

or
 c

iti
es

–
–

–
–

–
11

.5
–

–



Page 7 of 12Helbich et al. Int J Health Geogr  (2017) 16:39 

100,000 persons has a positive but weak association with 
suicide risk (1.005, 95% CI 1.000; 1.009).

The residual relative risk not explained by the covari-
ates and the corresponding posterior probability are 
shown in Fig.  5. Striking patterns following a north–
south trend are observable. Compared to the German-
wide risk, districts located in the south-eastern parts 
(e.g., Bavaria) show the highest suicide risk compared to 
more central areas (e.g., North Rhine–Westphalia).

Discussion
Principle findings
This study rigorously examined the extent to which dif-
ferent urbanicity indicators affect urban–rural suicide 
associations. Our analyses showed that urban–rural indi-
cators are significantly positively associated. For example, 
the correlation between the population potential score 
and population density is 0.902, which is higher than the 
0.620 for England and Wales [21]. These differences may 
result from the application of varying distance metrics 
and/or distance decay parameters required for the popu-
lation potential score. In contrast to Euclidean distances 
[21], which are known to underestimate actual street dis-
tances [61], we utilized the more accurate street network 
distances.

As our regressions confirmed, there is sound evidence 
that the residents of German rural areas face a higher sui-
cide risk than those in urbanized areas [9]. The observed 
urban–rural divide in suicide is consistent with other 
studies [7, 24, 45]. In Portugal, for instance, rurality is 
positively correlated with suicide mortality [38]. How-
ever, in Belgium urbanicity was not significantly associ-
ated with lower suicide risk, whereas Canadian cities 
seem to face an elevated risk [62]. A similar reverse effect 
of pronounced suicides in urbanized areas was found in 
Danish register analyses [29], ecological studies in Eng-
land and Wales [21], and among US adults [19]. These 
contradictory findings might be caused by inconsistent 
definitions of “urbanicity” [23].

Different operationalizations of urbanicity influenced 
the size of the urban–rural effect on suicide mortal-
ity and/or eliminated its significance, but not the effect 
sign. To circumvent arbitrary class breaks, we applied a 
clustering approach. A low number of regions is consist-
ently preferred, which is in contrast to other studies [19, 
22]. In keeping with others [3], dichotomous representa-
tions in urban and rural areas across Germany seem less 
suitable, although widespread. It stands out that continu-
ous urban–rural indicators perform better than those 
on an ordinal scale [3]. Rural areas with densification 

Table 2  Regression results for urban–rural indicators

The models are adjusted for risk and protective factors. A relative risk labeled as “*” refer to a significant association. Model #1 does not adjust for urban–rural 
differences

Model Urban–rural indicator Relative risk 2.5% CI 97.5% CI

#2 Census (logged pop. density) Continuous variable 0.943* 0.909 0.980

#3 Census (pop. density clustered in 3 regions) (Ref. rural area) Rural areas with densification 0.940 0.882 1.000

Urban areas 0.853* 0.775 0.940

#4 IOER (logged built-up areas %) Continuous variable 0.919* 0.864 0.979

#5 IOER (built-up areas clustered in 3 regions) (Ref. rural area) Rural areas with densification 0.958 0.902 1.017

Urban areas 0.854* 0.771 0.946

#6 Corine (logged built-up areas %) Continuous variable 0.944* 0.896 0.995

#7 Corine (built-up areas clustered in 3 regions) (Ref. rural area) Rural areas with densification 0.979 0.921 1.040

Urban areas 0.887* 0.804 0.978

#8 BBSR (typol. with 2 regions) (Ref. rural area) Urban areas 0.954 0.896 1.016

#9 BBSR (typol. with 3 regions) (Ref. rural area) Rural areas with densification 0.978 0.908 1.053

Urban areas 0.940 0.869 1.017

#10 BBSR (typol. with 4 regions) (Ref. rural area) Rural areas with densification 0.978 0.908 1.053

Urbanized areas 0.946 0.875 1.024

Urban area (major city) 0.883* 0.787 0.990

#11 Pop. potential scores (logged) Continuous variable 0.903* 0.854 0.955

#12 Pop. potential scores (clustered in 3 regions) (Ref. rural area) Rural areas with densification 0.922* 0.867 0.981

Urban areas 0.850* 0.774 0.934

#13 Cumulative opport. index (logged) Continuous variable 0.940* 0.902 0.981

#14 Cumulative opport. index (clustered in 2 regions) (Ref. rural area) Urban areas 0.928* 0.876 0.983

#15 ESTAT (typol. with 3 regions) (Ref. rural area) Rural areas with densification 0.973 0.913 1.036

Urban areas 0.943 0.865 1.028
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tendencies are not found to have suicide rates differ-
ent from those in the countryside. Only extremes of 
urbanicity levels indicate clear differences.

Our results imply that regional planning-based urban–
rural taxonomies (i.e., BBSR and ESTAT) do not capture 
suicide disparities appropriately. The model performance 
is inferior even to that of the model without an urban–
rural indicator. Planning regions are not designed to 
reflect health inequalities and they potentially mask 
internal heterogeneities [31, 32]. Thus, the application of 
planning regions raises practical concerns regarding the 
modifiable area unit problem, in that variation in zoning 
and/or spatial scales affects suicide–urbanicity relations 
[63]. Measures based on built-up areas and transpor-
tation infrastructure, consistently lead to significant 
urban–rural inequalities in suicide. The better model 
performance of the measure using the precise ATKIS 

data, rather than the Corine data, suggests that precise 
input data should be considered, even though the out-
put measure is aggregated at a district level. However, 
the slightly different timestamps of the indicators (2011 
vs. 2012) might contribute to the mismatch in the results. 
Whereas ATKIS data are available only for Germany, 
Corine data [39], even though they are limited by a spa-
tial resolution of 100 m and a minimum mapping unit of 
25 hectares [64], seem useful for transnational European 
research because they assure consistent indicators.

Our results show that modeling urban–rural differ-
ences in suicide mortality by means of population density 
is the second best choice, thus legitimating its wide-
spread application [9, 11, 12, 14, 37, 38]. An advantage 
of population-based indicators is that the data are eas-
ily accessible, annually updated, and available in most 
countries, which facilitates inter-country comparability 

Fig. 3  Model fits and predictive performance
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between studies. However, population density is a place-
based representation and does not consider interaction 
with other areas. With only average model fits, we could 
not find evidence that the cumulative population oppor-
tunity index (i.e., the number of people within a 60-min 
drive) should be preferred to population density. As this 
indicator considers a frequently used 60-min travel time 
[36], it may be that that this threshold value is less suit-
able for densely populated Germany. In contrast, the 
population potential score is more realistic, as the nearby 
population is weighted more heavily than the population 
living farther away [35], which could explain the highest 
gain in model fit [21]. However, this improved fit is at the 
expense of a less straightforward interpretation (e.g., due 
to distance decay effects).

Strengths and limitations
This study broke new ground, and several of its strengths 
need to be emphasized. It was the first study to system-
atically address the influence of 14 different urban–rural 
indicators on suicide mortality. Second, it contributes 
to the limited number of ecological studies carried out 
in continental Europe. To the best of our knowledge, we 
pioneered research on urban–rural inequalities in suicide 
mortality in Germany. Third, besides a comprehensive 
set of covariates, we controlled for depression prevalence 

[11], in contrast to most other area-based studies [7, 
12]. Fourth, due to the sample size, our statistical results 
are deemed to be robust. Fifth, we utilized the latest 
advances in statistical analyses [54] and our models suc-
cessfully integrate spatial autocorrelation [55].

Several limitations should be taken into account when 
interpreting the results. First, since the data were pooled 
over time, it was not possible to examine growing or 
shrinking urban–rural disparities [19], which would 
require the application of space–time models [9]. Second, 
when dealing with nationwide studies, the influence of 
risk and protective factors is likely to vary spatially [65]. 
Third, because the data used in this research are based on 
areal units (i.e., districts), the modifiable areal unit prob-
lem might have influenced the results [63] and inference 
at the individual level may not be valid because of ecolog-
ical fallacy [66]. Fourth, although suicide in high-income 
countries is more prevalent in elderly males [10], data 
protection issues prevented a stratification by age and 
gender, and thus the calculation of age-adjusted mortality 
rates [22, 38]. However, the impact of standardization on 
outcomes in geographical correlational studies seems to 
be minor [67]. Fifth, congruent with the majority of stud-
ies [7, 37, 46], we assumed that people are only exposed 
to the actual place of residence (i.e., their district). As 
suicide develops over the lifetime, future studies should 

Fig. 4  Relative risk of the covariates including the 95% CI across the models
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be longitudinal and put central people’s residential his-
tory over their life course. Finally, our results obtained 
for Germany may not be generalizable to other countries, 
and verification merits further research.

Conclusion
Germany faces urban–rural inequalities in suicide mor-
tality. We found that rurality is related to higher suicide 
risk. This association is consistent across several urban–
rural indicators. We also found evidence that the selected 
indicator determines whether or not inequalities in sui-
cide mortality are demonstrated. Both the effect size 
and the statistical significance varied across different 
urbanicity operationalizations, but the direction of the 
estimated urban–rural effect remained unaffected. Con-
tinuous indicators along the urban–rural continuum are 
auspicious, supporting the notion that urban areas con-
tinuously transit into rural ones. For future replication in 
other studies, the findings suggest that accessibility indi-
cators, such as the population potential, perform best and 
that population density also performs well. Dichotomous 

and ordinally scaled urban–rural indicators are of limited 
value. The majority of such urban–rural taxonomies have 
failed to show significant differences in suicide risk while 
pointing to low model fits. We encourage researchers to 
go beyond a single representation of urbanicity/rurality 
when exploring suicide inequalities spatially, and to pay 
attention to how diverse urban–rural indicators may alter 
model outputs. Further, we recommend using sensitiv-
ity analyses to investigate whether results are consistent 
across urban–rural indicators.
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