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FOREWORD
 
 
The theory of structural reliability becomes a powerful tool when used for the development of 
new standards or, alternatively, for the direct verification of both new and existing structures. 
Recently revised national and international standards for structural design are systematically 
based on probabilistic concepts, mathematical statistics and the theory of structural reliability. 
This approach has also been used by the European Committee for Standardization (CEN) in 
developing the new European standards for structural design, called Eurocodes [1], and by the 
International Standard Organisation (ISO) in developing recent International Standards [2, 3]. 
While the ISO documents are of a general nature, the Eurocodes provide more specific 
operational provisions based on the partial factor method. The submitted textbook explains 
the basis of reliability theory and attempts to clarify the links between the reliability principles 
and the partial factor method accepted in the newly developed standards. 

The Eurocodes and the International Standards (ISO) are important basic documents 
for subsequent international standardisation and revision of national codes of practice. It is 
foreseen that in the near future a number of countries across the world will design civil 
structures using significantly unified methodical principles and harmonised operational 
provisions. The reliability verification of buildings and other civil engineering works may 
then differ only by numerical values of some reliability elements, such as the characteristic 
values of climatic actions and partial factors. It is well recognised that this remarkable 
achievement would not be possible without the recent progress made with the reliability 
theory and the development of relevant software products, which is why the theory of 
structural reliability is becoming a progressively more important scientific branch that is 
thoroughly investigated and applied by many specialists.  

The development of both the European standards and the ISO documents is, however, 
a long process (dating back to 1970), which was accelerated in 1989 when CEN established 
the Technical Committee 250 (TC 250), now liable for developing the Eurocodes. The 
TC 250 is directly responsible for the fundamental standard “Basis of structural design” 
denoted by the alphanumeric denomination EN 1990 [1]. The Committee has nine 
subcommittees (SC1 to SC9) that are responsible for an additional nine Eurocodes denoted as 
EN 1991 to EN 1999, each having several specific parts. At present, individual parts of the 
Eurocodes are being transformed from the previously published prestandards, prefixed ENV, 
to operational Eurocodes with the prefix EN.  

It should be noted that the work of TC 250 is based on the principles provided in the 
Construction Products Directives 89/106/EEC (the European Economic Community) from 
1989 and in the subsequent Interpretative Documents, ID 1 “Mechanical Resistance and 
Stability”, ID 2 “Safety in case of fire”, and partly on other Interpretative Documents 
(published in the Official Journal of the European Communities 94/C 62/01). It is a 
requirement that the structural reliability be guaranteed during the whole economically 
reasonable working life. In particular, the construction works must be designed and built in 
such a way that the loading liable to action during its construction and usage do not cause: 

a) collapse of the whole or a part of the work; 
b) major deformations to an inadmissible degree; 
c) damage to other parts of the works, equipment or installed devices; and 
d) damage by an event to an extent disproportionate to the original cause. 

Similar fundamental concepts are provided in the International Standards developed by ISO 
[2, 6], as well. 

The verification of the structural reliability is based on the concept of design situations 
and relevant limit states in conjunction with the partial factor method [1, 2]. The design 
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situations should encompass all conditions that can be reasonably expected to occur during 
the execution and use of the structure. In general, four types of design situations are 
recognised: 

� persistent situations, which refers to the conditions of normal use; 
� transient situations, which refers to temporary conditions; 
� accidental situations, which refers to exceptional conditions; and 
� seismic situations, which refers to seismic events. 

The limit states denote particular circumstances beyond which the structural 
performance requirements are no longer satisfied. A distinction is made between ultimate 
limit states and serviceability limit states. The ultimate limit states are those associated with 
the various forms of structural failure or states close to structural failure. In particular the 
ultimate limit states may require consideration of 

 � loss of equilibrium of the structure considered as a rigid body; and 
� excessive deformation or settlement, rupture, or loss of stability.  

The serviceability limit states are those associated with the criteria for the structure 
related to its use or function. In particular, the serviceability limit states may require 
consideration of: 

 � deformation or deflection; 
 � vibration which limits the structural use; and 
 � detrimental cracking.  
The Interpretative Document ID 1 states that the design rules may be based on the 

partial safety factor format and a desired reliability level may be established by using 
probabilistic reliability methods. To ensure reliability the following can be used: 

a) representative values of actions; 
b) values of partial safety factors; 
c) requirements on ultimate limit states and serviceability limit states; 
d) durability requirements; 
e) measures that exclude damage disproportionate to the original cause; 
f) accurate mechanical models; 
g) consistent application of constructional rules; and 
h) various procedures of quality provision. 

Individual states may modify some of the above-listed measures in respect of the local 
territorial conditions. However, to implement and apply the newly developed standards 
effectively, a basic knowledge of the theory of probability, mathematical statistics and the 
theory of reliability needs to be used by a wide technical community including practising 
engineers. The new concepts and techniques including unusual terms (for example 
characteristic value, representative value, probability, fractile, reliability index, safety and 
serviceability) become frequently used key words that might not be always well understood. 
Obviously, without the correct interpretation of these terms by all potential users (designers, 
practising engineers and technicians, representatives of public authorities) the new design 
concepts could hardly be effectively applied.  

Moreover, the newly developed European and International Standards allow the 
design of structures directly by probabilistic methods of structural reliability as an alternative 
procedure to the partial factor method [1, 2]. The direct use of reliability methods is becoming 
an important tool for the design and assessment of an increasing number of civil engineering 
works. It refers primarily to complex and large technical systems including bridges, tunnels 
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and power stations. Over the next decade the direct use of the reliability theory will very 
likely be on the increase. Furthermore, structural reliability forms the basis of contemporary 
systems of quality control and their operational techniques [4, 5, 6]. Obviously, these new 
concepts in the design of new and existing structures require adequate tools and techniques to 
be provided in the theory of structural reliability. 

At present, however, only a limited number of specialists are acquainted with the 
theory of structural reliability. It would appear that a need exists for a basic and user-friendly 
textbook such as this one that demonstrates the practical significance of the reliability theory. 
The main purpose of this textbook is to provide an introductory text on the reliability analysis 
applied to structural design. It is aimed at a broad spectrum of technicians that includes 
practising engineers, authorities responsible for regulation and quality control, and university 
students.  

The principle objective is to clarify the basic concepts of the theory of probability, 
mathematical statistics and the general theory of structural reliability which are applied in the 
new international and European documents for verifications of structural reliability. Emphasis 
is given to practical applications in the development of the partial factor method and the direct 
verification of structural reliability. The examples and guidance given in the book also 
recognise the role of computers and software products now available to the professions. 

Basic terms and concepts concerning uncertainties and the reliability of civil structures 
are introduced in chapter 1. Chapter 2 deals with the necessary fundamental knowledge of the 
theory of probability. Selected theoretical models of continuous random variables are 
summarised in chapter 3. One of the keywords of the new documents, used in the assessment 
of characteristic, representative and design values, is the fractile; this notion is therefore 
described in detail in chapter 4. The basic concepts and procedures of the theory of reliability, 
which are accepted as the basic principles for the development of the partial factor method in 
the new ISO and CEN documents, are covered in chapter 5. The following chapter 6 is 
devoted to time-dependent phenomena, which are becoming more and more important aspects 
of structural reliability. Chapter 7 describes applications of the reliability analysis under time 
variant loads with intermittencies. Chapter 8 provides reliability backgrounds and an 
operational technique for the specification of partial factors accepted in the new documents of 
ISO and CEN. System reliability is shortly described in chapter 9. The last chapter 
(chapter 10) describes the basic concepts and procedures of risk assessment. The main text is 
supplemented by 10 annexes providing additional techniques and useful practical tools 
facilitating the effective use of the reliability analysis in structural design.  

The textbook is written in simple language with the aim of providing a self-contained 
handbook or reference document. On the other hand, the size of the textbook has been 
deliberately limited and, consequently, some procedures are introduced without the usual 
detailed theoretical development. In such cases a reference to specialised literature is 
provided. In order to make the text understandable, the theoretical procedures are often 
illustrated by examples, which extend the main text and propose further possible applications 
of the reliability theory to structural design. 

The author expresses his gratitude to Dr Jana Marková and Ms Jana Pallierová from 
the Klokner Institute of the Czech Technical University in Prague, Professor Johan Retief and 
Dr Juliet Dymond from the University of Stellenbosch, and language editors of SUN MEDIA 
for their help in the preparation of the manuscript. 
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1 BASIC CONCEPTS

1.1 Uncertainties
 
It is well recognised that construction works are complicated technical systems that 

suffer from a number of significant uncertainties at all stages of execution and use. Some 
uncertainties can never be eliminated absolutely and must therefore be taken into account 
when designing or verifying construction works. Depending on the nature of the structure, 
environmental conditions and applied actions some types of uncertainties may become 
critical. The following types of uncertainties can usually be identified: 
 

– natural randomness of actions, material properties and geometric data;  
– statistical uncertainties due to limited available data; 
– uncertainties of theoretical models owing to the simplification of actual conditions; 
– vagueness due to inaccurate definitions of performance requirements; 
– gross errors in design, execution and operation of the structure; 
– lack of knowledge of the behaviour of new materials in real conditions. 
 
Note that the order of the listed uncertainties corresponds approximately to the 

decreasing amount of current knowledge and availability of theoretical tools with which to 
analyse them and take them into account in design. 

The natural randomness and statistical uncertainties may be relatively well described 
by available methods of the theory of probability and mathematical statistics. In fact the 
Eurocode [1] and the International Standard [2] provide some guidance on how to proceed. 
However, lack of reliable experimental data, i.e. statistical uncertainty, particularly in the case 
of new materials, some actions, including environmental influences, and also some 
geometrical data, causes significant problems. Moreover, the available data are often 
inhomogeneous and obtained under different conditions (for example for material properties, 
imposed loads, environmental influences but also for internal dimensions of reinforced 
concrete cross-sections). Then, it may be difficult if not impossible to analyse such data and 
to use them in design.  

Uncertainties of theoretical models may be to a certain extent assessed on the basis of 
theoretical and experimental research. Again the Standards [1, 2] provide some guidance on 
how to proceed. The vagueness caused by inaccurate definitions (in particular of 
serviceability and other performance requirements) may be partially described by the theory 
of fuzzy sets. Up to now, however, these methods have been of little practical significance, as 
suitable experimental data are rarely available. Knowledge about the behaviour of new 
materials and structures may well gradually increase thanks to newly developed theoretical 
tools, and experimental research. 

The lack of available theoretical tools is obvious in the instances of gross error and 
lack of knowledge, which are nevertheless often the decisive causes of structural failure. In 
order to limit the gross errors caused by human activity a quality management system, 
including the methods of statistical inspection and control, may be effectively applied.  

Several design methods and operational techniques have been proposed and used 
world-wide to control the unfavourable effects of various uncertainties during a specified 
working life. Simultaneously, the theory of structural reliability has been developed to 
describe and analyse the above-mentioned uncertainties in a rational way and to take them 
into account in design and verification of structural performance. In fact, the development of 
the whole theory was initiated by observed insufficiencies and structural failures caused by 
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various uncertainties. At present the theory of structural reliability is extensively used to 
calibrate reliability elements of newly proposed standards (partial and various reduction 
factors). The term “reliability” itself is, however, often used in a very broad sense and may 
need some clarification.  

 
 

1.2 Definition of reliability

The term reliability is often oversimplified and used very vaguely and inaccurately. 
The concept of reliability is sometimes approached in an absolute (black and white) way – the 
structure either is or isn’t reliable. In accordance with this approach the positive statement is 
understood as “the failure of the structure will never occur”. This is, of course, an incorrect 
oversimplification, as failure may occur even when the structure has been correctly declared 
to be reliable. The interpretation of the complementary (negative) statement is usually 
understood more correctly: failures are admitted and the probability or frequency of their 
occurrence is then discussed. Thus, according to this simplified approach there should be a 
certain set of structural conditions determining an area of “absolute reliability” where any 
possibility of failure occurring is excluded. Only when exceeding this limit would the 
emergence of failure be admitted. 

In general such a simplified interpretation is incorrect. Although it may be unpleasant, 
and for many perhaps unacceptable, the hypothetical area of “absolute reliability” for most 
structures (apart from exceptional cases) simply does not exist. On the contrary, it is 
necessary at the design stage to acknowledge the certain, small probability that failure may 
occur within the intended life span of the structure. Otherwise it would not be at all possible 
to design civil structures. What is then the correct interpretation of the keyword “reliability” 
and what meaning does the generally used statement “the structure is safe” have? 

In structural design a number of similar definitions of the term reliability, or their 
interpretations, are used in literature and in national and international documents. ISO 2394 
[2] provides a definition of reliability which is similar to the approach of other national and 
international standards: reliability is the ability of a structure to comply with given 
requirements under specified conditions during the intended life for which it was designed. 

In Eurocode [1] no definition is offered and it is noted that reliability covers only the 
load-bearing capacity, serviceability as well as the durability of a structure. In the 
Fundamental requirements it is then stated that “a structure shall be designed and executed in 
such a way that it will, during its intended life with appropriate degrees of reliability and in an 
economic way: 

 
– remain fit for the use for which it is required; and 
– sustain all actions and influences likely to occur during execution and use.” 

 
Generally, a different level of reliability for load-bearing capacity and for 

serviceability may be accepted. In document [1] the probability of failure pf and the reliability 
index � are related to failure consequences. 

Note that the above definition of reliability includes four important elements: 
 

- given (performance) requirements – the definition of structural failure; 
- time period – the assessment of the required service-life T; 
- reliability level – the assessment of the probability of failure pf ; and 
- conditions of use – limiting input uncertainties. 
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An accurate determination of performance requirements and thus an accurate 
specification of the term failure is of primary importance. In many cases, mainly when 
considering the requirements for the stability and collapse of a structure, the specification of 
this term is not very complicated, although in many other cases, in particular when dealing 
with various requirements of occupants’ comfort, and the appearance and characteristics of 
the environment, the appropriate definitions of failure are dependent on vagueness and 
inaccuracies. The translation of these occupants’ requirements into appropriate technical 
quantities and precise criteria can be very difficult and often leads to very vague conditions. 
In the following the term failure is used in a very general sense denoting simply any 
undesirable state of a structure (for example collapse or excessive deformation) which has 
been unambiguously given by structural conditions. 

 
 

1.3 Historical development of design methods
 
During their developmental stages those design methods that took into account 

recognised uncertainties and ensured structural reliability have been closely linked to the 
available empirical, experimental, as well as theoretical knowledge of mechanics and the 
theory of probability. The development of various empirical methods for structural design 
gradually stabilised in the twentieth century according to three generally used methods which 
are, with various modifications, being applied in standards for structural design to this day. In 
the context of efforts to simplify the computational procedures some of these methods are 
sometimes modified or rehabilitated. That is why it is useful to briefly mention these three 
basic design methods and to indicate the explicit measures that might affect the probability 
factors of failure and structural reliability.  

The first universally-accepted design method for civil structures is the method of 
permissible stresses. It is based on the condition 

�max < �per, where �per = �crit / k (1.1) 
where the coefficient k is assessed with regard to uncertainties in the determination of local 
load effect �max and of resistance �per and therefore may ensure with an appropriate level of 
security the reliability of the structure. The main insufficiency of this method is perhaps the 
local verification of reliability (in the elastic range) and the impossibility to consider 
separately the uncertainties of basic quantities and the uncertainties of computational models 
for the assessment of action effects and structural resistance. In this method, the probability of 
failure is controlled by one quantity only, the coefficient k. 

The second widely-accepted method of structural design is the method of global safety 
factor. It is based on the condition 

 s = Xresist / Xact > s0 (1.2) 

according to which the calculated safety factor s must be greater than its specified 
value s0. It is a method which attempts mainly to give a truer picture of the behaviour of 
elements and their cross-sections, in particular through the aggregate quantities of structural 
resistance Xresist and action effect Xact. As in the case of the permissible stresses method the 
main insufficiency of this method remains the impossibility to consider the uncertainties of 
particular basic quantities and theoretical models. The probability of failure can, again, be 
controlled by one quantity only, i.e. by the global safety factor s. 

At present, the most advanced operational method of structural design [1, 2] is the 
partial factor format (often inaccurately denoted as the limit states method). This method is 
based on the condition 
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 Ed (Fd, fd, ad, �d) < Rd (Fd, fd, ad, �d) (1.3) 
where the action effect Ed and the structural resistance Rd are assessed according to the 

design values of basic quantities describing the action Fd, material properties fd, dimensions ad 
and model uncertainties �d. The design values of these quantities are determined (taking into 
account their uncertainties as well as the uncertainties of computational models) using their 
characteristic values (Fk, fk, ak, �k), partial safety factors �, combination factors � and other 
measures of reliability [1, 2, 6]. Thus, a whole system of various partial factors and other 
reliability elements may be used to control the probability of structural failure. 

Obviously, the greatest possibility of harmonising structural reliability of different 
structures made of different materials is offered by the partial factor method. However, in any 
of the listed methods the probability of failure is not applied directly. Among standards for 
structural design the recent document ISO [2] was the first one to include probabilistic 
methods. 

Probabilistic design methods [2] are based on the condition that the probability of 
failure pf does not exceed a specified target value pt during the service life of a structure T  
 pf ≤ pt (1.4) 

It is usually possible to assess the probability of failure pf using a computational 
structural model, defined through basic quantities X [X1, X2, ... , Xn] for actions, mechanical 
properties and geometrical data. The limit state of a structure is defined by the limit state 
function (the performance function) g(X) for which, according to the definition, in case of a 
favourable (safe) state of the structure the limit state function is positive; it holds that 

 g(X) ≥ 0 (1.5) 

and the unfavourable state (failure) of the structure occurs when the limit state 
function is negative, i.e. when g(X) < 0 (a more detailed explanation is given in chapter 5). 

Basic quantities are generally time-dependent (stochastic) functions. Even so, in most 
cases it is sufficient to describe them by time-independent models having, however, their 
characteristics deduced for extreme (maximal or minimal) values of the appropriate quantity 
(action or resistance) during the specified design life T. 

For most ultimate limit states and serviceability limit states the probability of failure 
can be expressed by the equation 

 pf = P{g(X) < 0} (1.6) 

More complicated procedures need to be used when some of the quantities are time-
dependent. Some details concerning theoretical models for time-dependent quantities (mainly 
actions) and their use for structural reliability analysis are given in chapter 6. However, in 
many cases the problem may be transformed to a time-independent one, for example by 
considering in equation (1.6) a minimum of the function g(X) over the time period T. 

The assessment of various reliability measures (characteristic values, partial and 
combination factors) in the new structural design standards [1, 2] is partially based on 
probabilistic considerations but to a great extent they are based on historical and empirical 
experience. Moreover, the choice of these reliability measures is, in Eurocode 1 [1], affected 
by the intention to simplify the calculation in practical design. This intention, however, leads 
sometimes to oversimplification and, consequently, to the increase of material consumption. 

In this connection there is an obvious question how to harmonise the new design codes 
for various structures on the basis of general principles of the theory of reliability if the 
current intention to simplify computational procedures suppresses the advantages of the 
partial factors method. This question is hard to answer [41]. Material consumption is only one 
criterion of evaluation and need not be the most important. A broad discussion by experts has 
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shown clearly that in order to make a critical analysis of the new codes there are other criteria 
that should also be taken into consideration. Besides the material consumption, they include 
laboriousness of design and construction, maintenance and repairs, service life, insurance, 
material recycling, possibility of changing the occupancy and others. Analysis of these criteria 
will surely be the subject of many investigations and optimisation studies. 

Today, one thing already seems to be clear. A further improvement of current methods 
will be based on calibration procedures, optimisation methods and other rational approaches 
including the use of the methods of the theory of probability, mathematical statistics and the 
theory of reliability. The keyword of all these procedures is the probability of failure pf, and 
although it has a limited informative ability, it remains the most general, common measure of 
structural reliability. Methods of the theory of reliability then provide the most important tool 
for the gradual improvement and harmonisation of design for various structures from different 
materials. The theory of structural reliability also makes it possible to extend the general 
methodology for new structures and materials. 

Annex A to this chapter shows a simple example of reinforced concrete slab designed 
in accordance with the above-mentioned techniques. This example will also be used in the 
following chapters to illustrate the application of more advanced probabilistic approaches.  
 
 
1.4 Design working life and design situation

 
  The design working life denotes the period for which a structure or part thereof is to be 
used for its intended purpose with anticipated maintenance but without major repair being 
necessary. Table 1.1 taken from EN 1990 [1] gives categories together with the indicated design 
working life for a number of common types of construction works.  
 
Table 1.1. Indicative design working life 

Design 
Working 
Life 
Category 

Notional 
Design 
Working 
Life (years) 

  

Examples 

1  10 Temporary structures (e.g. scaffolding) 

2  10-25 Replaceable structural parts, e.g. gantry girders, bearings (see 
appropriate standards) 

3  15-30 Agricultural  and  similar structures (e.g. buildings for animals 
where people do not normally enter) 

4  50 Building structures and other  common structures (e.g. 
hospitals, schools etc)  

5  100 Monumental building structures, bridges and other civil 
engineering structures (e.g. churches) 

 
  The present state of knowledge is insufficient to enable precise prediction of the life of a 
structure. The behaviour of materials and structures over extended periods of time can only be 
estimated. The likely period of maintenance of the structure or time of replacements of the 
various components of a structure can, nevertheless, be determined.   
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  However, the notion of a design working life is useful for: 
� the selection of design actions (for example imposed, wind, earthquake etc.) and the 

consideration of material property deterioration (for example fatigue, creep) in 
reliability verification;  

� the comparison of different design solutions and choice of materials, each of which 
will give a different balance between the initial cost and cost over an agreed period – 
life cycle costing will need to be undertaken to evaluate the relative economics of the 
various solutions;  

� the evolving of management procedures and strategies for systematic maintenance and 
renovation of structures. 

In design the variation of actions, environmental influences and structural properties, 
which occur throughout the design working life of a structure, should be considered by 
selecting distinct situations representing a certain time interval with associated hazards  

Four design situations are classified in EN 1990 [1] as follows: 
 (a) Persistent situations refer to conditions of normal use. These are generally 

related to the design working life of the structure. Normal use can include possible extreme 
loading conditions from wind, snow, imposed loads, etc. 

 (b) Transient situations refer to temporary conditions of the structure, in terms of 
its use or its exposure, for example during construction or repair. This implies the use of a 
time period much shorter than the design working life; one year may be adopted in most 
cases.  

 (c) Accidental situations refer to exceptional conditions of the structure or of its 
exposure, for example due to fire, explosion, impact, local failure. This implies the use of a 
relatively short period, but not for those situations where a local failure may remain 
undetected. 

 (d) Seismic situations refer to exceptional conditions applicable to the structure 
when subjected to seismic events. 

These design situations should be selected so as to encompass all conditions that are 
reasonably foreseeable as occurring during the execution and use of the structure. For 
example a structure after an accidental design situation due to actions such as  fire or impact 
may need a repair (short time period of about one year), for which the transient design 
situation should be considered. In general a lower reliability level and lower partial factors 
than those used for persistent design situation might be applicable for this period of time. 
However, it should be mentioned that the repair should be designed taking into consideration 
of all the other foreseeable design situations.  

 
 

1.5 Limit states
 
Traditionally, according to the fundamental concept of limit states it is considered that 

the states of any structure may be classified as either satisfactory (safe, serviceable) or 
unsatisfactory (failed, unserviceable). Distinct conditions separating satisfactory and 
unsatisfactory states of a structure are called limit states. Thus, the limit states are those 
beyond which the structure no longer satisfies the design criteria. Each limit state is therefore 
associated with a certain performance requirement imposed on a structure. Often, however, 
these requirements are not formulated sufficiently clearly so as to allow for precise (sharp) 
definition of appropriate limit states.   

Generally, it may be difficult to express the performance requirements qualitatively and 
to define the limit states unambiguously (particularly the ultimate limit states of structures made 
of ductile materials, and also the serviceability limit states, typically those affecting user 
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comfort). In these cases, only a suitable approximation is available (for example the conventional 
yield point of metals, or a limiting value for vertical deflection). The principles of this are 
indicated in Figure 1.1 and provided here as a background to the uncertainties of the limit state 
concept. 

According to the traditional (sharp) concept of limit states described above, a given 
structure is assumed to be fully satisfactory up to a certain value of the load effect E0 and beyond 
this value the structure is assumed to be fully unsatisfactory (see Figure 1.1 (a)). However, it may 
be very difficult to define precisely such a distinct value E0, separating the desired and undesired 
structural conditions, and the simplification in Fig. 3.1 (a) may not be adequate. In these cases a 
transition region <E1, E2>, in which a structure is gradually losing its ability to perform 
satisfactorily, provides a more realistic (vague) concept (see Fig. 3.1 (b)). Uncertainties in the 
vague concept of limit states may be taken into account only in reliability analyses using special 
mathematical techniques which are not covered in the present generation of Eurocodes. 

 

Figure 1.1. Sharp and vague definition of a limit state 
 
In order to simplify the design procedure two fundamentally different types of limit states 

are generally recognised: 
(a) ultimate limit states; and  
(b) serviceability limit states.  
Ultimate limit states are associated with collapse or other similar forms of structural 

failure. Serviceability limit states correspond to conditions of normal use (deflections, vibration, 
cracks, etc.). In general the design should include both safety and serviceability, including 
durability in both cases. The nature of ultimate limit states is essentially different from the nature 
of serviceability limit states and should be taken into account in reliability verification. There are 
two main reasons for this distinction: 
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(a) While the infringement of ultimate limit states leads almost always to the overall loss 
of structural reliability and to the removal or fundamental repair of the structure, the 
infringement of serviceability limit states does not usually lead to such fatal consequences for the 
structure, and the structure may normally be used after the removal of those actions which 
caused the infringement. 

(b) While the criteria of ultimate limit states involve parameters of the structure and 
appropriate actions only, the criteria of serviceability limit states are also dependent on the 
requirements of the client and users (sometimes very subjective), and on the characteristics of the 
installed equipment or non-structural elements. 

The differences between the ultimate limit states and serviceability limit states result in a 
separate formulation of reliability conditions, and in dissimilar reliability levels assumed in the 
verification of both types of limit states. However, verification of one of the two limit states may 
be omitted if sufficient information is available to ensure that the requirements of the one limit 
state are met by the other limit state. For example in the case of reinforced concrete beams 
designed for an ultimate limit state it is allowed to omit verification of deflection provided that 
span/effective depth ratio is less than 18 for highly stressed concrete or less than 25 in case of 
lightly stressed concrete. 

Variation of actions, environmental influences and structural properties, which occur 
throughout the life of the structure, should be considered in design by selecting distinct situations 
(persistent, transient, accidental and seismic) representing a certain time interval with associated 
hazards. The ultimate and serviceability limit states should be considered in all these design 
situations, which should be selected so as to encompass all conditions which are reasonably 
foreseeable or occurring during the execution and use of the structure. Within each load case, a 
number of realistic arrangements should be assumed to establish the envelope of action effects, 
and which should be considered in the design. 

If the limit states considered in design are dependent on time-variant effects (described 
by action and/or resistance variables), the reliability verification of a structure should be related 
to the design working life. It should be mentioned that most time-dependent effects (for example 
fatigue) have a cumulative character that should be taken into account. 

 
 

1.6 Ultimate limit states
 
The ultimate limit states are associated with collapse and other similar forms of structural 

failure and directly concern the safety of the structure and the safety of people. However, in 
some cases the ultimate limit states may concern also the protection of the contents, for example 
of some chemicals or nuclear or other waste materials. 

In almost all cases which concern the ultimate limit states the first passage of the limit 
state is equivalent to failure. In some cases, for example when excessive deformations are 
decisive, states prior to structural collapse can, for simplicity, be considered in place of the 
collapse itself and treated as ultimate limit states. These important circumstances should be taken 
into account when specifying the reliability parameters of structural design and quality 
assurance. For example in the case of foundations of rotating machinery used in power plants 
excessive deformation is decisive and entirely governs the design.  

The following list provides the most typical ultimate limit states that may require 
consideration in the design: 

(a) loss of equilibrium of the structure or any part of it, considered as a rigid body; 
(b) failure of the structure or part of it due to rupture, fatigue or excessive deformation; 
(c) instability of the structure or one of its parts; 
(d) transformation of the structure or part of it into a mechanism; and 
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(e) sudden change of the structural system to a new system (for example snap through). 
Time-dependent structural properties, such as fatigue and other time-dependent 

deterioration mechanisms reduce the strength of a structure and can initiate one of the above-
mentioned ultimate limit states. In this respect it is useful to distinguish two types of structures: 
damage tolerant (i.e. robust) and damage intolerant (sensitive to minor disturbance or 
construction imperfections). Effects of various deteriorating mechanisms on the ultimate limit 
states should then be taken into account according to the type of structure.  

An adequate reliability level of damage intolerant structures can also be assured by an 
appropriate quality control programme. In the case of damage tolerant structures, fatigue damage 
may be regarded as a serviceability limit state. Note that different sets of partial factors may be 
associated with the various ultimate limit states.  

1.7 Serviceability limit states
 
The serviceability limit states are associated with conditions of normal use. In particular 

they concern the functioning of the structure or structural members, the comfort of people and 
appearance of the construction works.  

Taking into account the time-dependency of load effects it is useful to distinguish two 
types of serviceability limit states which are illustrated in Figure 1.2. 

(a) Irreversible serviceability limit states (see Figure 1.2(a)), which are those limit states 
that remain permanently exceeded even when the actions which caused the infringement are 
removed (for example a permanent local damage, permanent unacceptable deformations); 

(b) Reversible serviceability limit states (see Figure 1.2(b)), which are those limit states 
that will not be exceeded when the actions that caused the infringement are removed (for 
example cracks of prestressed components, temporary deflections, excessive vibration). 
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Figure 1.2. Irreversible and reversible limit states 
 
For irreversible limit states the design criteria are similar to those of ultimate limit states. 

The first passage of the limit state is decisive (see Figure 3.2). This important aspect of 
irreversible limit states should be taken into account when determining the serviceability 
requirements in the contract or design documentation. For reversible limit states the first 
infringement (first passage) does not necessarily lead to failure and the loss of serviceability. 

Various serviceability requirements can be formulated taking into account the acceptance 
of infringements, their frequency and their duration. Generally, three types of serviceability limit 
states are applicable as follows:  

(a) no infringement is accepted; 
(b) specified duration and frequency of infringements are accepted; and 
(c) specified long-term infringement is accepted.    
The correct serviceability criteria are then associated as appropriate with the 

characteristic, frequent and quasi-permanent values of variable actions. The following 
combinations of actions corresponding to the above three types of limit states are generally used 
in verification of serviceability limit states for different design situations: 

(a) the rare (characteristic) combination if no infringement is accepted; 
(b) the frequent combination if the specified time period and frequency of infringements 

are accepted; and 
(c) the quasi permanent combination if the specified long-term infringement is accepted. 
The list of serviceability limit states affecting the appearance or effective use of the 

structure, which may require consideration in the design, may be summarised as follows: 
(a) excessive deformation, displacement, sag and inclination which can affect, for 

example, the appearance of the structure, comfort of users, functioning of the structure 
and can cause damages of finishes and non-structural members; 
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(b) excessive vibration (acceleration, amplitude, frequency) which can, for example, 
cause discomfort to people and limit the functioning of the structure; and 

(c) damage that is likely to adversely affect the appearance (local damage and cracking), 
durability or functioning of the structure. 

Depending on the type of structure additional requirements related to serviceability limit 
states may be found in material-oriented codes. For example in the case of concrete structures the 
ultimate limit states may be induced by structural deformation.  

 
 

1.8 Reliability differentiation
 
For the purpose of reliability differentiation EN 1990 [1] establishes reliability classes 

RC (also called consequence classes (CCs)). Three classes are defined in accordance with 
consequences of failure or malfunction of the structure as follows: 

 
Reliability Class, RC3 
High consequence for loss of human life, or economic, social or environmental 

consequences very great 
Reliability Class, RC2 
Medium consequence for loss of human life, economic, social or environmental 

consequences considerable 
Reliability Class, RC1 
Low consequences for loss of human life, and economic, social or environmental 

consequences small or negligible 
 
Table 1.2 gives the recommended minimum values for the reliability index �

associated with reliability classes (RC) for ultimate limit states only, fatigue and serviceability 
limit states as indicated in EN 1990 [1].   

 
 

Table 1.2. Reliability classes and recommended minimum values for reliability index �  

Reliability 
Class 

Minimum values for � 

 Ultimate limit states Fatigue Serviceability 
 1-year 

reference 
period 

50-year 
reference 

period 

1-year 
reference 

period 

50-year 
reference 

period 

1-year 
reference 

period 

50-year 
reference 

period 
RC3 5,2 4,3     

RC2 4,7 3,8  1,5 to 3,8 2,9 1,5 
RC1 4,2 3,3     

 
Typically, reliability class RC 2 is considered for residential and office buildings (� =

3,8 for a 50-year reference period). However, it should be noted that a design using Eurocodes 
with the recommended values of partial factors leads to a structure with a different � value 
from those indicated in Table 1.1. The probability of failure and its corresponding � index are 
only notional values that do not necessarily represent actual failure rates (which depend 
mainly on human error). They are used as operational values for code calibration purposes 
and comparison of reliability levels of structures. 

Note that a slightly different Table 1.3 is provided in ISO 2394 [2].  
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Table 1.3 Target � values for life time 

Relative cost of 
safety measures 

Consequences of failure 
small some moderate Great 

High 0 1,5 2,3 3,1 
Moderate 1,3 2,3 3,1 3,8 
Low 2,3 3,1 3,8 4,3 

 
It is further suggested to use: 
A: for serviceability limit state � = 0 for reversible and � = 1,5 for irreversible states  
B: for fatigue limit states � = 2,3 to � = 3,1 depending on the possibility of inspection 
C: for ultimate limit states the safety classes � = 3,1, � = 3,8 and � = 4,3.   
Thus ISO 2394 (1) recommends similar target � values for the ultimate limit states 

(the shaded part of the Table 1.3) as those indicated in EN 1990 [1].  
The values given in Table 1.3 have been derived assuming log-normal or Weibul 

distribution for resistance, normal distribution for permanent load and Gumbel distribution for 
variable loads. It is emphasised that these or similar theoretical models should be used in 
probabilistic analysis.  
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Appendix A: Reinforced concrete slab – various design concepts
 
 
A.1 Introduction

 
Various design methods used in history may be well illustrated by considering a 

simple reinforced concrete slab in an office building. Without going into technical details the 
example also indicates the advantages of the reliability-based partial factor method and the 
significance of the reliability theory in structural design compared to other design methods.  

 
 

A.2 A reinforced concrete slab
 
A simply supported slab having the span of 6 m is exposed to a permanent load (the 

self-weight of the slab and other fixed parts of the building), which is estimated by the 
characteristic value (equal to the mean value) gk=7 kN/m2. In accordance with the EN 1990 
[1] the imposed load in an office area may be considered by the characteristic value qk=3 
kN/m2. It is, however, well known that the mean value of this imposed load is much lower, 
about 0,8 kN/m2. 

Further, the concrete C20/25 having the characteristic strength fck=20 MPa (the mean 
30 MPa) and reinforcement bars having the characteristic strength fyk=500 MPa (the mean 
560 MPa) are to be used. Using previous experience the height of the slab 0,2 m has been 
estimated in advance. Given the above data concerning the preliminary specifications an 
estimate should be done of the necessary reinforcement of the slab.  

 
 

A.3 Design and reliability consideration
 
To simplify computational procedures it is assumed that the same assumption 

concerning stress distribution in the slab, shown in Figure A.1, can be accepted for all design 
methods. Note that the design methods based on permissible stresses assumes the linear stress 
distribution in the compression zone of the slab but the accepted assumption of the 
rectangular stress distribution (indicated in Figure A.1) is an acceptable approximation for 
illustration of the main features of the design methods. 

The basic variables are defined as follows: d denotes the effective depth, x the depth of 
the compression zone, b the width of the slab (considered as 1 m), As the area of the 
reinforcement, fc the concrete strength and fy the reinforcement strength (yield point). 

Figure A.1. Slab cross-section. 
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The following equilibrium conditions follow from Figure A.1:  

fc x b = As fy (A.1) 

As fy(d–x/2) = M (A.2)

Here M = (g+q)L2/8 denotes the bending moment due to the permanent and imposed 
loads g and q. Using conditions (A.1) and (A.2) the engineer derived the following formula 
for the area As: 
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�  (A.3) 

Up to now all the variables have been considered as deterministic quantities without 
taking into account uncertainties that may potentially affect their actual values. The engineer 
realised that the basic variables entering equation (A.3) may have a considerable scatter, but 
he could not remember how to take this into account. So, to get a first estimation of the area 
As he took the mean (average) values of all the basic variables involved in Figure A.1. The 
results of this attempt together with outcomes of various code methods are summarised in 
Table A.1. Note that equation (A.3) may be used generally for any design method indicated in 
Table A.1. 
 
 
Table A.1. A reinforced concrete slab specified by different design methods for the span L = 6 
m, the height h = 0,2 m (d = 0,17 m) and the loads gk= 7 kN/m2, qk= 3 kN/m2 (the mean 0,8 
kN/m2), C25/20 (fck = 20MPa, the mean 30 MPa), fyk=500 MPa (the mean 560 MPa).   

Design method M [kNm] As [m2] �MR [kNm] � Pf 
The mean value (absurd) 351 0,000376 351 0 0,5 
The permissible stresses (CP114) 450 0,001161 1036 5,76 0,42�10–8 

The global safety factor (� =1,9) 450 0,001094 977 5,51 0,18�10–7 
The partial factors method (CEN) 628 0,000933 841 4,82 0,70�10–6 
 
 
Table A.2. Design values of the loads and material strengths. 

Basic variable The mean Permissible 
stresses 

Global 
safety factor 

Partial 
factors 

Permanent load g [kN/m2] 7 7 7 9,45 
Imposed load q [kN/m2] 0,8 3 3 4,5 
Concrete strength fc [MPa] 30 5,5 20 13,3 
Reinforcement strength fy [MPa] 560 275 500 435 

Table A.1 clearly indicates that “the mean values method”, used by the engineer to get 
a first approximation, is foolish. It leads to a low reinforcement area As = 0,000376 m2 (the 
reinforcement ratio 0.0022 only) corresponding to an unacceptably high probability of failure 
of 0,5. It is well recognised that instead of the mean values other, more “safe” values of the 
basic variables should be used in design calculations. Without going into technical details 
(that are offered later in the book) Table A.2 indicates the design values of loads and material 



 19 

strengths used in accordance with the design methods indicated in Table A.1. All details 
necessary to determine the data given in Table A.1 and A.2 will be explained in the following 
text.

A.4 Concluding remarks
 
It follows from Table A.1 that the permissible stresses method (CP 114) seems to lead 

to rather conservative (and perhaps uneconomical) results, as does the method of the global 
safety factor. The partial safety factors method, accepted in the recent EN documents, seems 
to provide the most suitable design format. The reliability index � = 4,8 obtained by this 
method is close to the target value � = 3,8. 

However, the most important advantage of the partial safety factors method is the 
possibility of taking into account the uncertainty of individual basic variables by adjusting 
(calibrating) relevant partial factors and other reliability elements. It is the aim of this book to 
explain the fundamental principles of this method and to show how appropriate design values 
of basic variables could be specified in order to achieve an adequate reliability level. 
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2 PROBABILITY THEORY IN STRUCTURAL RELIABILITY 
 
 

2.1 Experiment, random event, sample space 
 
This chapter gives a concise overview of the most important concepts and terms of the 

theory of probability, which are frequently used in the reliability analysis of civil engineering 
works and systems. The presentation of some concepts and laws is rather intuitive without 
rigorous mathematical proofs. More detailed explanations of all the presented concepts, 
theorems and rules may be found in specialised literature [11, 12, 14, 18, 19]. 

The most significant fundamental concepts of the theory of probability applied in 
structural reliability include 

– experiment;  
– random event; and 
– sample space (space of events). 
These terms are used by the classical probability theory, but are also applicable in the 

contemporary theory of probability based on the theory of sets.  
 
Experiment

An experiment in the theory of probability is understood as a realization of a certain 
set of conditions �. In the classical approach to the theory of probability it is often assumed 
that the experiments can be repeated arbitrarily (e.g. tossing a dice, testing a concrete cube) 
and the result of each experiment can be unambiguously used to declare whether a certain 
event occurred or did not occur (e.g. when tossing a dice obtaining or not obtaining a 
predetermined number, or when a concrete cube exceeds or does not exceed a specified 
value). 

However, in practical applications of the theory of probability the assumption of 
arbitrary repeatable experiments, each of which leads to an unequivocal result (even though 
not known beforehand), is not always realistic (e.g. in construction usually only a very limited 
number of experiments can be performed). Currently, when using the theory of probability 
more general concepts are accepted, where terms such as an experiment, event and sequence 
of events are related to the general theory of sets. 

The concept of an experiment remains applicable in general. However, specification of 
the conditions � is of utmost importance irrespective of whether the experiment can be 
realistically carried out. In some cases the experiment can be carried out only hypothetically. 
In any case the specification of the conditions � needs to be as accurate and complete as 
possible. The results of any experiment and its practical interpretation should to always be 
related to these conditions. The comparison of experiments carried out under different 
conditions may lead to serious mistakes and misunderstandings. A description of the 
appropriate set of conditions and their verification should therefore become an indispensable 
part of every probabilistic analysis. 
 
Random event

The probability theory deals with the results of experiments that are not unequivocally 
determined in advance by the appropriate set of conditions �, or with experiments for which a 
set of conditions that would lead to an unequivocal result either cannot be provided during an 
experiment, or is not known at all (or partly unknown). An experiment of this kind is called a 
random experiment. The result of a random experiment is described by events that could, but 
will not necessarily, occur when the conditions � are realized. Such events are called random 
events and are usually denoted by a capital letter from the beginning of the alphabet, e.g. A or 
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B (possibly with an index). An event that will necessarily occur every time conditions � are 
realized is called a certain event – denoted usually as U; an event that can never occur is 
called an impossible event – usually denoted as V. 
 
Sample space

The sample space � of a certain random experiment denotes all events, which can 
occur by the realization of a specified set of conditions �, i.e. which can be outcomes of the 
considered experiment. The sample space can be finite (tossing a dice) or infinite (testing a 
concrete cube in a testing machine). In some cases a system of elementary events can be 
found, i.e. a system of events that cannot be divided any further (e.g. tossing a dice numbers 1 
to 6 represents elementary events). In other cases the system of elementary events is not 
obvious or does not exist (testing a cube in a testing machine). 

All the fundamental terms that have been introduced, experiment, set of conditions �, 
event and sample space � are clarified by the following three simple examples, which 
constitute an integral part of this summary. Besides a complementary explanation of the 
relevant terms, the following examples provide further information on the general principles 
and mathematical tools used to describe real conditions and accepted simplifying 
assumptions. 
 
Example 2.1

Tossing a dice is a traditional (and from an educational viewpoint a very useful) 
example of a random experiment. In this case the set of conditions � is trivial. The dice is 
balanced and symmetrical and cast in a correct way that will not affect the number obtained 
when the dice is tossed.  

The certain event U denotes the event where any of the numbers 1, 2, 3, 4, 5 or 6 
occur.  

The impossible event V denotes the event when other numbers appear (e.g. 0, 7, 9 
etc.).  

Elementary events Ei, i = 1, 2 to 6, which cannot be further divided, denote the 
number i = 1, 2 to 6. If the given set of conditions � is satisfied, the occurrence of every 
elementary event is equally possible. In this case we say that it is a system of equally possible 
elementary events.  

Random events Ai, for example appearance of the number 1, can be denoted as A1 = 
E1, appearance of the even numbers A2 = E2 � E4 � E6, appearance of the numbers divisible 
by three, A3 = E3 � E6, numbers divisible by two or three A4 = E2 � E3 � E4 � E6, etc. The 
sample space � (i.e. the total of all possible events which may occur at a toss) is, in this case, 
obviously finite. 

 
Example 2.2 

The cylinder strength of a specific concrete is examined. The random experiment is 
the loading of a test cylinder in a testing machine. The set of conditions � includes the 
composition, treatment and age of concrete, dimensions of the cube, speed of the loading, etc. 
The investigated random event is the failure of the concrete cylinder at a certain level of 
loading. If the loading is sufficiently high, the cylinder always fails, at sufficiently low levels 
of loading the failure will never occur. At the loading level corresponding to the characteristic 
cylinder strength of concrete the failure may occur (e.g. 5% of all cases on average) or may 
not (e.g. 95% of all cases). 

Elementary events can be defined in many ways, e.g. by a system of intervals of equal 
width within a certain loading range. Consider concrete of the grade C 20 having the 
characteristic cylinder strength 20 MPa. The possible range of loading from 10 to 50 MPa is 
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split into the intervals of 4 MPa and elementary events are defined as a failure of a cylinder at 
the loading level within each interval. Figure 2.1 shows the results of 50 experiments under 
specified conditions �. Solid bars in each interval indicate the number of failed cylinders. It 
follows from Figure 2.1 that two cylinders failed at the loading level from 18 to 22 MPa, nine 
cylinders failed in the next interval from 22 to 26 MPa, seventeen cylinders failed in the 
interval from 24 to 30 MPa, etc. Without a doubt it is not a system of equally possible events 
(see Figure 2.1). The sample space � consists of any one-sided or two-sided interval and is 
obviously infinite.  

Figure 2.1. The number of failed cylinders versus the loading level. 
 
Figure 2.1 shows a frequently used graphical representation of experimental results, 

which is referred to as a histogram, and which is commonly used for the development of 
probabilistic models describing basic variables.  

Example 2.3 
Consider throwing a dart onto a board indicated in Figure 2.2. Each throw represents 

one realization of a random experiment. The set of conditions � includes the distance of the 
board from the throwing point, the size of the board, the type of dart and other conditions for 
throwing.  

 

 
Figure 2.2. An example of throwing a dart onto a board – Venn diagram. 
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It is assumed that every point of the board can be hit with equal likelihood and that the 

board is always hit (these are, undoubtedly, questionable assumptions). 
The hitting of the whole board is therefore a certain event U. 
An impossible event V is a throw that misses the board. 
A random event, though, may be the hitting of any smaller area A or B drawn on the 

board (Figure 2.2) or of any combination of such areas. The system of all the possible areas 
on the board represents an infinite sample space �. 
 
 
2.2 Relations between random events

 
The Example 2.3 indicates a common representation of random events (see Figure 2.2) 

using oval figures illustrating the mutual relations between the random events A, B, C,... (such 
a representation is called a Venn diagram). In Figure 2.2 the certain event U is represented by 
the whole rectangle, two random events A and B are symbolized by the ovals. Let us consider 
some basic relations between events A and B, which lead to the definition of other important 
terms and to the derivation of some general relationships between the random events. Other 
diagrams similar to Figure 2.2 may illustrate all the following relationships and combinations 
of random events. A detailed explanation including formal mathematical proofs of all rules 
may be found in specialised literature [11, 12]. 

If an event B occurs every time the conditions � are realized, as a result of which an 
event A occurs, we say that event A implies event B, which is usually symbolically denoted as 
A � B. If the events A and B occur simultaneously every time the conditions � are realized, 
we say that an intersection of the two events occurs. An intersection of the events A and B is 
denoted as A � B. If at least one of the events A and B occur at every realization of the 
conditions �, a union of the two events occurs. This is denoted by A � B. If event A occurs 
but event B does not, then the difference A–B of the two events occurs. Events A and Ā are 
complementary events (we also say that event Ā is the opposite of event A) if it holds 
simultaneously that A � Ā = U and A � Ā = V. It can be shown that the following simple rules 
(the commutative, associative and distributive laws) hold for the intersection and union of 
random events: 

 A � B = B � A, A � B = B � A (2.1) 

 (A � B) � C = A � (B � C), (A � B) � C = A � (B � C) (2.2) 

 (A � B) � C = (A � C) � (B � C), A � (B � C) = (A � B) � (A � C) (2.3) 
These basic rules lead to the definition of more complicated relations of the 

intersection and union of a system of events Ai: 

 �
i

Ai = A1 � A2 � A3 � ... � An  

 �
i

Ai = A1 � A2 � A3 � ... � An  

The following rules (so-called de Morgan rules), the validity of which follows from 
the above relations, are sometimes effectively applied in practical computations of 
probabilities of complex events 
  
  
   

 

(2.4) 

(2.5) 
n

i
i AAAA ���� ...21�

ni
i

i AAAA ���� ...2�
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The use of these rules is evident from the two following examples. 
 

Example 2.4
A simple serial system loaded by forces P consists of two elements as shown in Figure 

2.3. Failure F of the system may occur due to failure F1 of the element 1 or due to failure F2 
of the element 2: 
 F = F1 � F2  

The complementary event F  (no failure) is, according to relation (2.5), described by 
an event for which it holds 

 FFFFF 2121 ����   

 

 

Figure 2.3. A serial system. 

 
 
Example 2.5 

A town C is supplied with water from two sources A and B by a pipeline, which 
consists of three independent branches 1, 2 and 3 (see the scheme in Figure 2.4). Let us 
denote F1 as the failure of the branch 1, F2 the failure of the branch 2 and F3 the failure of the 
branch 3. In the case where the sources A and B have sufficient capacity to supply the town C, 
the lack of water in that town is described by the event (F1 � F2) � F3; here, either the branch 
3 fails or the branches 1 and 2 fail. For the analysis of this event, however, it may be 
expedient to study a complementary event describing the sufficiency of water in the town C. 
According to de Morgan’s rules the complementary event of the sufficiency of water in the 
town C, is described by the event 

321321 F)FF(F)F(F �����  
where the event )21( FF �  represents sufficient water in the join of the branches 1 and 2, 
which is at the same time the beginning of the branch 3. 

 

Figure 2.3. Water supply system of a town C from sources A and B.

P P1 2 

 A 

C 

B  

1 

3 

2 
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Example 2.6 

Let us consider a statically determinate truss structure shown in Figure 2.4 consisting 
of seven members and loaded by forces P. The aim is to describe event F as that in which a 
structural failure occurred. Let Fi denote the event that a failure of the element i = 1, 2, ..., 7 
occurred.  

 
Figure 2.4. Statically determinate truss structure. 

 
The failure of the whole structure (event F) occurs if a failure of at least one of the 

members occurs. Therefore it holds that 

 �
7

1�
�

i
iFF   

With regard to the conditions of manufacture of the individual members the events Fi 
may be mutually dependent and thus are not exclusive. In the computation of the probability 
of failure it may then be expedient to consider the complementary event F for which it holds, 
according to de Morgan’s rules (2.5) 

 ��
7

1

7

1 ��

��
i

i
i

i FFF   

Similar relationships may be effectively used when analysing complex technical 
systems. 
 

The following additional terms are often used. We say that a system of events Ai forms 
a complete system of events if the union of these events is a certain event U. In that case at 
least one event, Ai, always occurs. A complete system of mutually exclusive events is another 
term that is sometimes used when analysing complex events. In that case only one event Ai 
always occurs. 

 
 

2.3 Definitions of Probability

Classical definition
Probability describes the occurrence of random events. The definition of probability 

is, however, a mathematically intricate problem. Historically it experienced an interesting 
evolution, reflecting the remarkable development of the theory of probability and its practical 
applications. The classical definition of probability is based on a complete system of 
elementary events. Let an event A consist of m out of n equally likely elementary events 
where the total number n is formed by a complete system of mutually exclusive events. The 
probability of the event A is then given by the quotient 

 P P 

1 

2 

3 

4   

5 

6 

7 

���
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 P(A) = m / n  (2.6) 

For probability defined in this way it obviously holds that 

 0 � P(A) = m / n � 1 (2.7) 
 P(U) = n / n = 1, P(V) = 0 / n = 0 (2.8) 

It can also be shown for a system of mutually exclusive events Ai that the probability 
of the union of these events is given by the relation 

 P[�
�

�1i
iA ] = �

�

�1i
P[Ai] (2.9) 

The classical definition of probability is fully acceptable for many elementary cases 
such as the tossing of a dice in Example 2.1. However, if the dice is not symmetrical, the 
classical definition obviously fails. Examples 2.2 and 2.3 further indicate that a finite system 
of elementary events is not sufficient for fundamental problems of civil engineering. In the 
attempt to deal with these insufficiencies other definitions of probability gradually emerged. 

Geometric definition 
The geometrical definition of probability is related to the throwing of a dart in 

Example 2.3. According to this definition the probability of an event A is equal to the quotient 
of the surface area of event A, denoted area(A), and of the surface area of the certain event U 
denoted area(U), i.e. by the quotient 

 P(A) = area(A) / area(U) (2.10) 
Thus, the geometric definition attempts to eliminate one insufficiency of the classical 
definition, which lies in the finite number of elementary events. However, this definition still 
does not take into account the reality that not all the points on the board (event U) have the 
same possibility of occurrence. Obviously, the “surface area” is not an appropriate measure of 
occurrence; this difficulty is still to be solved. 

 
Statistical definition 

The statistical definition of probability is based on results of an experiment repeated 
many times. Let us consider a sequence of n realizations of an experiment. Assume that a 
certain event A comes up m(A) times out of these n experiments. It appears that the relative 
frequency of the occurrence of the event A, i.e. the fraction m(A)/n, attains an almost constant 
value; with an increasing number of realisations n. This phenomenon is called the statistical 
stability of relative frequencies, i.e. of the fraction m(A)/n. The value to which the relative 
frequency m(A)/n approaches as n increases (n � �) is accepted as an objective measure of 
the occurrence of the event A and is called the probability P(A) of the event A: 

 P(A) =
n
Am

n

)(lim
��

 (2.11) 

However, the assumption of statistical stability and convergence indicated in equation 
(2.11) (i.e. the limit of the quantity derived from the results of experiments) causes some 
mathematical difficulties.  

 
Axiomatic definition 

The classical, geometrical as well as statistical definitions of probability attempt to 
define not only the probability, but also to propose a rule of its computation. Such 
requirement is evidently too hard to meet (if not impossible). 



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

28 
 

The long-term effort to define the basic terms of the theory of probability seems to be 
completed by the so-called axiomatic system, which is accepted all over the world. The 
axiomatic system defines only the term of probability and its fundamental properties without 
providing any practical instructions for its determination. 

Note that equations (2.7) to (2.9) characterize the common properties of the classical, 
geometrical as well as statistical definition of probability: 

1. the probability of a certain event is equal to 1; 
2. the probability of an impossible event is equal to 0; and 
3. if an event A is a union of partial and mutually exclusive events A1, A2, ..., An, then 

the probability of event A is equal to the sum of probabilities of the partial events. 
The axiomatic definition of probability introduces these general properties as axioms. 

Probability P is a real function, defined in a sample space � above the certain event U with 
these properties: 

1. If A � �, then 

 P(A) = � 0 (2.12) 
2. For the certain event U, it holds that 

 P(U) = 1 (2.13) 

3. If Ai � �, i = 1, 2, ... and if for arbitrary i and j Ai � Aj = V, then 

 P 		



�
��



� �

�
�

1i
iA =�

�

�1
)(P

i
iA  (2.14) 

It can be shown that the above-mentioned three axioms are satisfied by the classical, 
geometric and statistical definitions. Moreover, the axiomatic definition of probability also 
fits the new concept of probability as a measure of the fulfilment of a statement or 
requirement, often assessed only by intuition and a subjective view (an expert judgment). 
Thus, in such cases the concept of reproducible (repeatable) random events, which forms the 
basis for the probability determination of an event, is completely impossible.  

Note that using the above axioms the modern theory of probability transfers into the 
general theory of sets. Probability is then defined as a non-negative additive function of sets, 
which can be interpreted as a generalization of the term “surface area” in the geometric 
definition of probability. 

 
 

2.4 Basic rules for the computation of probabilities
 
Using equations (2.6) to (2.9) or axioms (2.12) to (2.14) other rules, which can be 

useful in computations of probabilities, can be derived. If Ai, i = 1, 2, ... n, form a complete 
system of events, then it evidently holds that 
 P( �

n

i 1�
Ai) = P(U) = 1 (2.15) 

If an event A is a union of partial and mutually exclusive events, Ai, i = 1, 2, ..., n, we 
can write 
 P(A) = P( �

n

i 1�
Ai) = �

�

n

i 1
P(Ai) (2.16) 

For the probability of the union of two arbitrary events A and B (which do not have to 
be exclusive) the principle of summation of probabilities holds 

 P(A � B) = P(A) + P(B) – P(A � B) (2.17) 



2. Probability Theory in Structural Reliability

29 

which follows from (2.16) for mutually exclusive events A and B – (A � B), of which the 
union is the studied event A � B. 

If Ai, i = 1, 2, ... , n, is a complete system of mutually exclusive events, then we obtain 
from equation (2.15) 

 P( �
n

i 1�
Ai) = �

�

n

i 1
 P(Ai) = P(U) = 1 (2.18) 

From equation (2.18) for complementary events A and Ā it follows that  

 P(Ā) = 1 – P(A) (2.19) 

 
Example 2.7

Let us determine the probability that a serial system described in Example 2.4 will fail. 
Let P(F1) = 0,05, P(F2) = 0,05 and P(F1 � F2) = 0,02. Then, considering the relation (2.17) we 
find that 
 P(F1 � F2) = P(F1) + P(F2) – P(F1 � F2) = 0,05 + 0,05 – 0.02 = 0,08  

Note that the events F1 and F2 are not exclusive (failures of both elements can occur 
simultaneously). If they were exclusive, the probability of failure would be 0,10. Other details 
concerning this example will be provided in the next section by the principle of multiplication 
of probabilities. 

 
 

2.5 Conditional probability
 
Conditional probability P(A�B) of the event A under a complementary condition that 

another event B has occurred simultaneously (or before), and has a non-zero probability, is an 
important concept in the contemporary theory of probability which is often used in the theory 
of structural reliability. The conditional probability P(A�B) is defined as the fraction 

 P(A�B) = P(A � B) / P(B) (2.20) 
This relation is the basis of the so-called Bayes concept of the theory of probability 

(Thomas Bayes (1702 to 1761)). For two special cases important simplifications of relation 
(2.20) are valid. If events A and B are exclusive, i.e. A � B = V, then P(A�B) = 0; if an event A 
implies an event B, i.e. it holds that A � B, then P(A�B) = P(A) / P(B). If B � A, then P(A�B) = 
1. These rules follow directly from the basic properties of probability described in sections 2.2 
and 2.3. 

A general rule for the multiplication of probabilities follows from equation (2.20) 

 P(A � B) = P(B) P(A�B) (2.21) 

Consider again the special cases. If the events A and B are exclusive, i.e. A � B = V, 
then P(A�B) = 0 and also P(A � B) = 0; if A � B, then P(A�B) = P(A) / P(B) and P(A � B) = 
P(B); if, conversely, B � A, then P(A�B) = 1 and P(A � B) = P(B). 

We say that events A and B are independent (the occurrence of event B does not 
influence the probability of the occurrence of event A) if it holds that P(A�B) = P(A). Consider 
the special cases introduced above. If events A and B are exclusive, then they are dependent 
because P(A�B) = 0 � P(A) (if A is not an impossible event). If A � B, then A and B are 
dependent events, because P(A�B) = P(A) / P(B) � P(A), if conversely B � A, then the events A 
and B are dependent, because P(A�B) = 1 � P(A). Therefore independent events A and B must 
not be exclusive, i.e. A � B � V, and satisfy the trivial relations A � B and B � A. 
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If two events A and B are independent (and therefore it holds that A � B � V, A � B 
and B � A), then it follows from equation (2.21) 

 P(A � B) = P(A) P(B) (2.22) 
Relation (2.22) is the principle of the multiplication of probabilities, according to 

which the probability of intersection (a simultaneous occurrence of two independent random 
events) is given by the product of their probabilities. This fundamental rule is needed for 
probability integration in the theory of reliability.  
 
Example 2.8

Taking into account relation (2.21) the following relation can be written for the 
probability of failure of a serial system described in Example 2.7 

 P(F)=P(F1�F2)=P(F1)+P(F2)–P(F1�F2)=P(F1)+P(F2)–P(F1)P(F2�F1)=0,10–0,05P(F2�F1)  

If the events F1 and F2 are independent, then P(F2�F1) = P(F2) and the failure 
probability is given as  

P(F) = P(F1 � F2) = P(F1) + P(F2) – P(F1) P(F2) = 0,10 – 0,0025 = 0,0975 

If the events F1 and F2 are perfectly dependent (F1 � F2), i.e. P(F2�F1) = 1, then 

 P(F) = P(F1 � F2) = P(F1) + P(F2) – P(F1) = 0,10 – 0,05 = 0,05  

The serial system acts in this case as a single element. Thus, in general, the probability of 
failure of the considered serial system fluctuates from 0,05 to 0,0975 depending on the degree 
of dependence of the events F1 and F2. 

 
Assume that an event A can occur only by the realization of one of the mutually 

exclusive events Bi, i = 1, 2, ..., n (n = 5 in Figure 2.5), for which the probabilities P(Bi) are 
known. If the conditional probabilities P(A�Bi) are also known (obviously P(A�B5) = 0 in 
Figure 2.5), then the probability of the event A can be assessed using the relation 

 P(A) = �
�

n

i 1
P(Bi) P(A�Bi) (2.23) 

which is called the theorem of the total probability. 
 

 
Figure 2.5. An event A and mutually exclusive events Bi 

 
 

A

B1 B2 B3 B5 B4 
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2.6 Bayes’ theorem
 
When an event A occurs, it is natural to investigate which of the events Bi caused A, 

i.e. what is the probability of the individual hypotheses Bi assuming that A occurred (see 
Figure 2.5), which is denoted as the probability P(Bi�A). A very important relation follows 
from relations (2.20), (2.21) and (2.23) 

 P(Bi�A) = 
)(P)(P

)(P)(P

1
jj

ii

BAB

BAB
n

i
�
�

 (2.24) 

which is often referred to as the Bayes rule or theorem. 
The following important task of the theory of structural reliability illustrates the 

general procedure of practical application of the Bayes rule. If a failure of a structure, denoted 
as the event A, can be caused by one of the hypotheses Bi whose probabilities of occurrence 
P(Bi) are known from previous experience, and if the conditional probabilities P(A�Bi), that 
the failure A occurred in consequence of a hypothesis Bi, are also known, then the probability 
of failure P(A) can be determined from the principle of the total probability described by 
equation (2.23).  

If, however, the failure A did occur, i.e. the event A occurred, then the probabilities of 
the individual hypotheses, which could have caused the failure, are of importance. We are 
therefore interested in the conditional probabilities P(Bi�A), which can be determined using 
the Bayes rule (2.24). 

Practical use of relations (2.23) and (2.24) is illustrated by the following examples. 
 

Example 2.9
For the assessment of an existing reinforced concrete structure control tests are 

available, which indicate that the actual strength is lower than the characteristic value 20 MPa 
(event B1) with the probability p1’ = P(B1) = 0,05 and greater than 20 MPa (event B2) with the 
probability p2’ = P(B2) = 0,95. For the subsequent verification of the concrete strength an 
inaccurate non-destructive method was used. Let A denote the event that the concrete strength 
assessed by the non-destructive method is greater than 20 MPa. Assume that errors of the 
non-destructive method can be expressed by conditional probabilities 

 P(A�B1) = 0,30, P(A�B2) = 0,90  

Thus, due to the inaccuracy of the non-destructive method a concrete with a strength 
lower than 20 MPa can be considered as a concrete with a strength greater than 20 MPa with a 
the probability of 0,30 and a concrete of a strength greater than 20 MPa is considered as such 
only with the probability of 0,90. 

The probability of the occurrence of the event A (a non-destructive strength is greater 
than 20 MPa) follows from the principle of complete probability (2.23) 

 P(A) =�
�

2

1
P

i
(Bi)P(A�Bi) = 0,05*0,30 + 0,95*0,90 = 0,87  

This means that using the inaccurate non-destructive method, the concrete strength 
greater than 20 MPa will be predicted with the probability 0,87. Note that if the non-
destructive tests were absolutely accurate, e.g. the conditional probabilities were  

 P(A�B1) = 0, P(A�B2) = 1  

it would follow from equation (2.23) 
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 P(A) =�
�

2

1
P

i
(Bi)P(A�Bi) = 0,05*0 + 0,95*1 = 0,95  

However, from a practical point of view another question is more important; what is 
the probability P(B2�A) of the hypothesis B2, that a concrete for which the non destructive test 
indicated the strength greater than 20 MPa (and thus the event A occurred) really does have a 
strength greater than 20 MPa (and thus the event B2 occurs)? This probability can be assessed 
directly from the Bayes rule (2.24) for the probability of hypotheses 

 P(B2�A) �
 

�
�

�

�

90,0*95,030,0*05,0
90,0*95,0

)(P)(P

)(P)(P
2

1

22

jj BAB

BAB

i

 0,98  

Thus, if the strength is greater than 20 MPa according to the non-destructive test, then 
the probability that the concrete has really the strength greater than 20 MPa increases from the 
original value of 0,95 to 0,98. 

 
Bayes’ rule is widely applied in many other practical situations in engineering 

practice, e.g. in situations where prior (previous) information about the distribution of 
probabilities is updated with regard to newly acquired knowledge. This important procedure 
of probability updating is described in the following section. 

 
 

2.7 Updating of probabilities
 
Bayes’ rule (2.24) is often applied in the so-called updating of the distribution of 

probabilities, which is based on random experiments (often repeated) isolated in time. 
Similarly, as in section 2.5, it is assumed that probabilities P(Bi) are known from previous 
experience (sometimes remote, vague or merely subjective). That is why they are called 
original (a priori) probabilities and they are denoted simply as pi’ = P(Bi). 

At present, after some time, experiments are carried out to determine the conditional 
probabilities P(A�Bi) of the studied event A under the condition that the event Bi occurred, 
which can be considered as the measures of likelihood that the cause of the event A was the 
very event Bi. These conditional probabilities, or values proportional to them, are therefore 
called likelihoods li ! P(A�Bi); the symbol ! means “proportional to” (likelihoods li thus need 
not be necessarily normalized to the conventional interval < 0, 1 >). We are inquiring about 
updated (a posteriori) probabilities p”i  = P(Bi�A) of the event (i.e. hypothesis) Bi updated in 
respect of the result of a new experiment (of the event A). An important relation for p”i 
follows directly from the Bayes rule (2.24): 

 
� "

"
�""

j
jj

ii
i lp

lpp  (2.25) 

Formula (2.25) obviously holds generally for likelihoods which, unlike probabilities, 
are not normalized to the interval < 0, 1 > and only express the relative contribution of the 
events (hypotheses) Bi on the observed event A. 

Relation (2.25) is a basis for updating of probabilities, which is often applied in many 
engineering procedures, particularly in the assessment of existing structures. It is in these 
cases that present information is combined with previous (often subjective) information, i.e. 
with information about a structure at various points in time, usually quite remote. This is the 
reason it is necessary to verify the conditions under which the previous information was 
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obtained and to resist the temptation to apply inhomogeneous data, which may be misleading 
and could lead to serious mistakes and misunderstandings. 

 
Example 2.10

Consider again the reinforced concrete structure described in Example 2.9. We 
observe that from previous control tests original (a priori) probabilities are known: p1’ = 
P(B1) = 0,05 (the probability that the real strength is lower than the characteristic value of 20 
MPa, which is event B1) and p2’ = P(B2) = 0,95 (the probability that the real strength is greater 
than 20 MPa, event B2). 

In the subsequent assessment of the structure supplementary tests of concrete strength 
were carried out using core samples, which is sufficiently accurate (unlike the non-destructive 
tests from previous Example 2.9). Thus in analysing the results it is not necessary to consider 
the inaccuracies. These tests suggest that the likelihood of the event B1 is l1 ! P(A�B1) = 0,2 
and the likelihood of the event B2 is l2 ! P(A�B2) = 0,8 (the introduced likelihoods are already 
normalized). Updated (a posteriori) probabilities follow from relation (2.25) 

 

 �
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lpp  0,99  

Thus the updated (a posteriori) distribution of probabilities pi” is more favourable than 
the original (a priori) distribution of probabilities pi’. 

Note that when the supplementary tests suggest that the likelihoods of both the events 
B1 and B2 are equal, e.g. l1 = P(A�B1) = l2 = P(A�B2) = 0,5, the updated probabilities equal the 
original ones (pi’ = pi”). If, however, the analysis of the event A showed that the likelihood of 
the event B1 is greater than the likelihood of the event B2, e.g. l1 ! P(A�B1) = 0,7 and l2 ! 
P(A�B2) = 0,3, the a posteriori probabilities change significantly: 

 �
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The updated (a posteriori) distribution of probabilities pi” is then less favourable than 
the original (a priori) distribution pi’. However, the influence of the a priori distribution still 
seems to prevail; it disappears only in the case of an extreme distribution of likelihoods, e.g. 
when l1 approaches one (l1 ! P(A�B1) � 1) and at the same time l2 approaches zero (l2 ! 
P(A�B2) � 0). But, in practice, the distribution of likelihoods is usually similar to the 
distribution of a priori probabilities. 

 
Example 2.11 

Tensile components of an existing structure were designed for the load of 2 kN. After 
a reconstruction, the load on each of these components is increased up to 2,5 kN. Prior 
experience shows that the elements are able to resist the load of 2,5 kN (an event B) with a 
probability p1’ = P(B) = 0,8 and they fail with a probability p2’ = P( B ) = 0,2. Furthermore, it 
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is known from prior experience that half of these components cannot resist the load of 2,5 N 
and are able to bear a lower load of 2,3 kN (an event A). Knowing this, the probability p1’ = 
P(B) = 0,8 can be updated by testing one of these components up to 2,3 kN. 

Let us suppose that the test was successful, i.e. the element did not fail with the 2,3 kN 
load. The likelihood of the event B, i.e. l1 ! P(A�B) = 1, and of the event B , i.e. l2 ! P(A� B ) 
= 0,5, were estimated from the result of this test. Then an a posteriori probability follows 
from relation (2.25), 

 �
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Thus the a priori probability p1’ = 0,8 is updated to the value p1” = 0,89. The updating of 
probabilities can now be repeated by another test where the a posteriori probability obtained 
in the previous step will be considered as a priori information. If the other test was also 
successful, then the new a posteriori probability would be  

 �
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This repetitive procedure of updating probabilities is quite characteristic in practical 
applications. 

However, what happens when the first test is not successful? If the likelihoods l1 and l2 
are estimated in this case as l1 ! P(A�B) = 0,5 and l2 ! P(A�B ) = 1,0, it follows for the a
posteriori probability p”1 

 �
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which is an unfavourable reduction of the original (a priori) value p1’= 0,8. In that case it may 
be useful to execute additional tests and repeat the updating. 
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3 SELECTED MODELS OF RANDOM VARIABLES
 
 
This chapter provides a concise description of the most important probabilistic models 

of random variables with regard to their applications in structural reliability. A detailed 
description of these and other less frequently used theoretical models of random variables can 
be found in the International Standards ISO [3, 4, 5] and specialised literature [11, 12, 14, 17, 
18]. 

 
 

3.1 Random variable
 
A random variable X is defined as a variable that attains one and only one value x, 

which is unknown in advance, when a set of conditions � is realised, i.e. when a certain 
random event occurs (see section 2.1). Thus the random variable may also be defined as an 
indicator of random events caused by specified experiments.  

An example of the random variable is a force at the failure of a concrete cylinder 
loaded under given conditions in a testing machine (see Example 2.2). Random variables are 
usually denoted by upper-case letters, e.g. X, Y, ..., and their particular values (realisations, 
e.g. a given force at the failure of a concrete cylinder) by lower-case letters, e.g. x, y, .... In 
practical applications this notation rule may become cumbersome and is not always 
convenient.  

In structural reliability both continuous random variables (attaining any values of a 
given interval or domain) and discrete random variables (attaining distinct values only) are 
used. The following summary is focused on the most important continuous variables, which 
are commonly applied to describe actions, material properties, and geometric data. 
Information about discrete random variables and their application can be found in specialised 
literature [11, 12]. 

The totality of all the possible realisations x of a considered random variable X is 
called a population. It is described by a distribution of probabilities, i.e. by a function 
determining the probability that a random variable X attains a given set of values (in the case 
of continuous variables, e.g. strength of concrete cylinders) or attains a distinct value (in the 
case of discrete variables, e.g. a number on dice).  

The distribution function #(x) (sometimes denoted as #X(x)) gives for each value x a 
probability that the random variable X will be less than or equal to x, thus  

 #(x) = P(X � x) (3.1) 

The probability density function $(x) of a continuous random variable x is the 
derivative (if it exists) of the distribution function 

 $(x) =
x
x

d
)(d#  (3.2) 

The following example illustrates a mutual relation between the distribution function #(x) 
and the probabilistic density function $(x). 
 
Example 3.1

A continuous random variable X, which may attain any point x within an interval <a, 
b> with equal likelihood (each point x has the same probability density $(x)) is described by a 
so-called uniform distribution shown in Figure 3.1. The uniform distribution is a basic type of 
distribution of great theoretical significance applicable also as a theoretical model for some 
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specific actions (for example the weight of subway car) or geometric data. In addition, the 
uniform distribution is used as an auxiliary tool in simulation of continuous random variables 
having a certain type of distribution function.  

The distribution function #(x) and the probability density function $(x) for the 
uniform distribution are shown in Figure 3.1. 

Figure 3.1. Uniform distribution. 

 
Figure 3.1 clearly illustrates the mutual relation of the distribution function #(x) and 

probability density function $(x) defined by equations (3.1) and (3.2). It also indicates the 
general property of the probability density function $(x) following from equations (3.1) and 
(3.2): the integral of the probability density function $(x) within its definition domain is equal 
to 1  

 %
�

��

$(x)dx = %
b

a

$(x)dx = 1  

In other words, the probability of all the possible values of a random variable (given by the 
above integral) is 1. Thus the surface surrounded by the horizontal axis x and the density 
function $(x) within the definition domain has a unit area. 

In addition to the distribution function #(x) and probability density function $(x), the 
random variable X may also be described by various parameters. The most frequently used are 
so-called moment parameters. The fundamental moment parameter, which describes the 
location of a population, is the mean � (also called the expectation, expected value or in 
common technical terminology the average). The mean � is defined by the moment of the first 
order about the origin, thus 

 � = % x$(x)dx (3.3) 

Geometrically, the mean � coincides with the x coordinate of the centre of gravity of 
the surface surrounded by the horizontal axis x and the density function $(x). Figure 3.2 
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shows an example of a bell-shaped probability density function (of a log-normal distribution 
LN(1;0,2;1) having the mean � = 1,0, the standard deviation � = 0,2, and the skewness + = 
1,0 described in the following sections) illustrating the geometric interpretation of the mean �. 

The measure of dispersion of a random variable X relative to the mean � is given by 
the central moment of the second order (the moment of inertia of the area bounded by the 
horizontal axis x and the curve of probability density function $(x)), which is called the 
variance �2 and is  

 �2 = % (x � �)2 $(x)dx (3.4) 

 
Figure 3.2. Geometric illustration of the mean � = 1,0 and the standard deviation � = 0,2. 

 
The square root of the variance �� �2  denotes the standard deviation of the 

random variable (radius of inertia, of the area bounded by the horizontal axis x and the curve 
of probability density function $(x)). Figure 3.2 illustrates the geometric interpretation of the 
standard deviation � =0,2.  

The measure of asymmetry of a population is the skewness (also called the coefficient 
of skewness or asymmetry) defined on the basis of the central moment of the third order as  

 + = %� 3

1 (x � �)3 $(x)dx (3.5) 

Note that Figure 3.2 shows the log-normal distribution with a positive skewness + = 1. 
The measure of steepness (concentration of values around the mean) is the kurtosis 

defined on the basis of the central moment of the fourth order as 

 , = %� 4

1 (x � �)4 $(x)dx � 3 (3.6) 

The kurtosis defined by equation (3.6) (with subtraction of the number 3) is zero for 
normal distributions (see section 3.3). Note that the kurtosis of the log-normal distribution 
shown in Figure 3.2 is 1,83. 
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Another dimensionless parameter of a population is the coefficient of variation defined 
as the ratio of the standard deviation to the mean 

 w =
�
�  (3.7) 

The coefficient of variation is an important measure of relative dispersion. However, it 
fails in the case of variables having the mean � close to zero, then the standard deviation 
should be used as a measure of dispersion. Note that the coefficient of variation of common 
material properties (strength) may be expected to be within the interval from 0,03 to 0,30, for 
actions from 0,05 (permanent load) to 1,00 (short-term variable load) and even more. 

Besides the moment parameters, other parameters are also used to describe a 
population, e.g. the minimum and maximum values of a population xmin, xmax, the range of a 
population xmax – xmin, the modus xmod (defined as the value x, for which the probability 
density function $(x) has its maximum) and other parameters. A detailed description of these 
parameters can be found in the International Standards [3, 4, 5] and in specialised literature 
[11, 12, 14]. 

 
Example 3.2 

Parameters of the uniform distribution described in Example 3.1 may be derived using 
equations (3.3) to (3.7) as  

 � = (a+b)/2, � = (b�a) / 12 , + = 0, , = �1.2, w = (b�a)/((a+b) 3 )  

The skewness and kurtosis of a uniform distribution are independent of the bounds a 
and b; the skewness is zero (the distribution is symmetrical) but the kurtosis is negative –1.2, 
the distribution is peaked in an opposite way from the normal distribution (values of the 
random variable are distributed uniformly and not concentrated around the mean as in the 
case of the normal distribution, see the following section 3.3). If the lower bound a = 0 (which 
is sometimes assumed in practice), then  

 � = 0,5 b, � = 0,289 b, + = 0, , = �1.2, w = 0,577  

Note that the coefficient of variation w in this case (when a = 0) is independent of b 
and is relatively high (w = 0,577). 

 
 

3.2 Sample characteristics
 
A sample (also called a random sample) xi, i = 1, 2, ... n, of a size n is obtained by 

repeated execution of given conditions � (the testing of a concrete cube under specified 
conditions). Three categories of the sample size n are usually distinguished: very small 
samples (n � 10), small samples (10 - n � 30) and large samples (30 - n). A sample is a set of 
units taken from a certain population (all concrete cylinders of a specified mixture), which is 
intended to provide information about the population. If the population is not considered (or 
does not exist at all), a sample is called a statistical (or numerical) sample. 

The first step of analysing any sample should consist of its graphical representation by 
a histogram or other diagrams, examination of extreme values (outliers) and correction 
(withdrawal) of erroneous values. This is a very important and often hard and laborious step, 
which should, however, precede a further numerical treatment of the sample and an 
application of statistical technique for assessing the parameters of the population. 

Adjusted (corrected) samples can be used for the computation of characteristics 
(statistics) which describe the location, dispersion, skewness, kurtosis, and other properties of 
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the sample. For technical practice the most important characteristics are so-called moment 
characteristics, which provide the best information about the sample properties. The moment 
characteristics are defined analogically to the moment parameters of the population. In fact, 
sample characteristics are used to estimate parameters of the population. In general, however, 
the parameters of a population and the characteristics (statistics) assessed from a sample 
should be distinguished.  

The important task of estimating population parameters using information obtained 
from a sample is a broad field of mathematical statistics, which is touched in this book only 
very briefly. The sample characteristics described in this section are the unbiased point 
estimators (“the best” point estimators) of the relevant parameters of the population. A more 
accurate meaning of the term “unbiased estimator” and other methods of statistical 
interference (e.g. interval estimators for a given confidence) are described in detail in the 
International Standards ISO [3, 4, 5] and in other specialised literature [11, 12, 14]. 

The basic characteristic describing the sample’s location, is the sample mean (also 
called the arithmetic mean), which is defined by the first moment about the origin 

 ��
i

ixn
m 1  (3.8) 

The sample mean m is an unbiased point estimator of the population mean � (which 
usually remains unknown). 

The basic characteristic describing the measure of dispersion is the sample variance s2, 
the definition of which is based on the second central moment  

 s2 = �� in 1
1 (xi – m)2 (3.9) 

The sample variance s2 is an unbiased point estimator of the population variance �2. 
The second central moment is given by the right-hand side of equation (3.9) if the 
denominator n – 1 is replaced by n (the denominator n – 1 follows from the requirement of 
unbiased estimation of the variance �2). The square root of the variance s2  = s denotes the 
sample standard deviation. Note that the sample standard deviation s is not an unbiased 
estimator of the population’s standard deviation � [11].  

The sample skewness a (also called the coefficient of skewness or asymmetry) is a 
dimensionless quantity which describes the asymmetry of the sample. The unbiased point 
estimator of the population’s skewness + is defined on the basis of the third central moment 
as 

 a = � ��� i
i mx

snn
n )( 3

3)2)(1(
 (3.10) 

Note that the fraction on the right-hand side of relation (3.10) follows from the 
requirement of an unbiased estimator of the population’s skewness +. 

It should be emphasised that the skewness a is very sensitive to extreme values of a 
sample (to extreme deviations xi – m) and may easily be affected by gross errors (outliers). In 
any case, a large sample (n . 30) should be used preferably for estimating the skewness. If a 
dubious value is obtained (in particular a negative value or a value /a/ . 1), it is strongly 
recommended to verify the outliers and to eliminate possible erroneous values and outliers. 

The sample kurtosis e (also the coefficient of kurtosis) is a dimensionless quantity 
characterising the peakness of the sample (the concentration of sample values around the 
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average). The definition of the unbiased point estimator of the population kurtosis , is based 
on the fourth central moment 

 e =
)3)(2(

)1(3)(
)3)(2)(1(

)1( 2
4

4 ��
�

��
���

 � nn
nmx

snnn
nn

i
i  (3.11) 

The complicated fractions on the right-hand side of equation (3.11) follow from the 
requirement of the unbiased estimator of the population kurtosis ,. The sample kurtosis 
defined by equation (3.11) may be significantly affected by erroneous sample values and that 
is why it is rarely used in practice. 

In technical practice, particularly in the construction industry, another dimensionless 
characteristic is used as a measure of relative dispersion. It is the ratio of the sample standard 
deviation s to the mean m, called the sample coefficient of variation 

 v = 
m
s  (3.12) 

Obviously the sample coefficient of variation v defined by equation (3.12) is an 
analogous quantity to the coefficient of variation of a population w defined similarly by 
equation (3.7). 

 
 

3.3 Normal distribution
 
From a theoretical and practical point of view the most important type of distribution 

of a continuous random variable is the normal (Laplace-Gauss) distribution. A symmetric 
normal distribution of a variable X is defined on an unlimited interval – � - x - � (which can 
be undesirable in some practical applications) and depends on two parameters only – on the 
mean � and standard deviation �. Symbolically it is often denoted as N(�,�). This distribution 
is frequently used as a theoretical model of various types of random variables describing some 
loads (self-weight), mechanical properties (strengths), and geometrical properties (outer 
dimensions). It is convenient for a symmetric random variable with a relatively low variance 
(a coefficient of variation w - 0,3). It may fail for asymmetric variables with great variance 
and a skewness + . 0,5.  

The probability density function of a normal random variable X with the mean �X and 
standard deviation �X is given by the exponential expression  

 $(x) =
0
0
1

2

3
3
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The skewness and kurtosis defined by equations (3.5) and (3.6) are zero for any 
normal distribution.  

No analytical expression is available for the distribution function #(x). Nevertheless, 
numerical tables are commonly available [11, 12, 14] for the probability density function as 
well as for the distribution function. These tables give the probability density function $(u) 
and the distribution function #(u) of the standardized variable U that is derived from the 
actual variable X using the formula (applicable for any distribution) 

 U = 
X

XX
�
��  (3.14) 
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Here μX and σX denote the mean and standard deviation of the actual variable X. The 
standardized random variable U has a zero mean and a standard deviation equal to one; the 
normal standardized distribution is often symbolically denoted as N(0, 1).  

The probability density function of the standardized random variable U having a 
normal distribution follows from equation (3.13) and (3,14) as  

 $(u) = 	



�
�



�
�

2
exp

2
1 2u
�

 (3.15) 

The probability density function of a normal and a log-normal distribution (described 
in the next section 3.4) having a coefficient of skewness + = 1,0 for the standardized random 
variable U is shown in Figure 3.3. Note that the probability density function of the 
standardized normal distribution is plotted for u within the interval -–3,+3. that covers a high 
occurrence probability (0,9973) of the variable U (in technical practice such an interval of the 
actual variable is sometimes denoted as ±3� interval). 

 
 

3.4 Log-normal distribution
 
A general log-normal distribution is defined on a one-sided limited interval x0 - x - � 

or –� - x - x0. It is an asymmetric distribution that partly eliminates one of the undesirable 
properties of the normal distribution, i.e. the infinite definition domain. A general log-normal 
distribution is dependent on three parameters and for that reason is often called the three-
parameter log-normal distribution. Commonly, the moment parameters can be applied to 
define the distribution: the mean �X, the standard deviation �X and the skewness +X. Instead of 
the skewness +X (when it is unknown or uncertain), the lower or upper bounds x0 may be 
used. 

Figure 3.3. Normal and log-normal distribution (skewness + = 1,0) 
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A random variable X has a log-normal (general three-parameter) distribution if the 
transformed random variable  

 Y = ln /X – x0/ (3.16) 
has a normal distribution. In this relation x0 denotes the lower or upper bound of the variable 
X, which depends on the skewness +X. If the variable has a mean �X and standard deviation 
�X, then the lower or upper bound can be expressed as  

 x0 = �X � �X /c (3.17) 

where the coefficient c is given by the value of skewness +X according to the relation  

 +X = c3 + 3c (3.18) 

from which follows an explicit relation for c  

 & ' & ' 244 31
31

2
31

2 �

01
2

34
5 � �  � ++++ XXXXc  (3.19) 

The dependence of the limit x0 on the coefficient + is apparent from Table 3.1, where 
the lower bound u0= �1/c of the standardized random variable U = (X–� X)/�X is given for 
selected values of the coefficient of skewness +X � 0. For +X � 0 values of u0 with the inverse 
sign (i.e. positive) are considered. A log-normal distribution with the skewness +X = 0 
becomes a normal distribution (u0=�1/c → ± �).  

 
Table 3.1. The coefficient u0 for selected values of the coefficient of skewness +X � 0.  

+X 0 0,5 1,0 1,5 2,0 

u0= �1/c �� �6,05 �3,10 �2,14 �1,68 

 
When specifying a theoretical model, it is therefore possible to consider the skewness 

+X or alternatively the lower or upper bound of the distribution x0 (besides the mean �X and 
standard deviation �X). Generally, the former possibility is preferable because more credible 
information is usually available about the coefficient of skewness than about the lower or 
upper bound. In general, the skewness provides better characteristic of the overall distribution 
of the population (particularly of large populations) than the lower or upper bounds. 

The probability density function and distribution function of the general three-
parameter log-normal distribution may be obtained from the well known normal distribution 
using a modified (transformed) standardized variable u’ obtained from the original 
standardized random variable u = (x−�X)/�X as  
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Here sign(αX) equals +1 for αX>0 and −1 for αX<0. The probability density function $LN,U(u) 
and the distribution function #LN,U(u) = #LN,X(x) of the log-normal distribution are given as  

 $LN,U(u) =
)1ln(1

)(
2c

c
u

u
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 #LN,X(x) = #LN,U(u) = #(u’) (3.22) 

where $(u’) and #(u’) denote the probability density and distribution function of the 
standardized normal variable. 

A special case of the three-parameter log-normal distribution is the popular log-normal 
distribution with the lower bound at zero (x0 = 0). This distribution depends on two 
parameters only – the mean �X and standard deviation �X (a symbolic notation LN(�, �) is 
then used). In such a case it follows from equations (3.17) that the coefficient c is equal to the 
coefficient of variation wX. It further follows from equation (3.18) that the skewness +X of the 
log-normal distribution with the lower bound at zero is given by the coefficient of variation 
wX as 

 ww XXX
33  �+ (3.23) 

Thus, the log-normal distribution with the lower bound at zero (x0 = 0) has always a 
positive skewness, which may have a relatively high value (greater than 0,5); e.g. for the 
coefficient of variation equal to 0,30 a coefficient of skewness +x = 0,927 is obtained from 
equation (3.23). Applications of the log-normal distribution with the lower bound at zero (x0 = 
0) can thus lead to unrealistic theoretical models (usually underestimating the occurrence of 
negative and overestimating the occurrence of positive deviations from the mean), particularly 
for higher values of the coefficient of variation wX. Then the three-parameter log-normal 
distribution may be used. Although the occurrence of negative values can also be undesirable 
(unrealistic for most mechanical quantities), it is usually negligible from a practical point of 
view.  
 

Figure 3.4. Probability density functions for the concrete cover. 
 
 

Example 3.3
A concrete cover X of a reinforced concrete cross-section has the mean � = 25 mm and 

the standard deviation � = 10 mm. The probability density function $(x) for a normal 
distribution and for a log-normal distribution with the lower bound at zero is shown in Figure 
3.4. 
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It follows from Figure 3.4 that the normal distribution predicts some occurrence of 
negative values of the concrete cover, which may not correspond to reality. On the other hand, 
the log-normal distribution with the lower bound at zero may overestimate the occurrence of 
positive deviations, which may not be acceptable and may affect the bending resistance of the 
cross-section. The overestimation of the occurrence of extreme positive deviations is due to a 
high skewness + = 1,36 of the log-normal distribution, which follows from equation (3.23). 
Note that the available experimental data on a concrete cover indicate that in most cases the 
skewness of the distribution is less than 1, and if no other evidence is available, then the value 
+ 6 0,5 may be assumed.  

 
The log-normal distribution is widely applied in the theory of reliability as a 

theoretical model for various types of random variables. In general it can be used for one-
sided limited asymmetric random variables including material properties, actions, and 
geometrical data. In particular, the log-normal distribution with the lower bound at zero (x0 = 
0) is commonly used for resistance properties (strengths) of various materials (concrete, steel, 
timber, masonry). 

 
 

3.5 Gamma distribution
 
Another popular type of one-sided limited distribution is Pearson’s distribution of 

type III. Its detailed description is available in [11]. A special case of Pearson’s distribution of 
type III with the lower bound at zero is the gamma distribution. The probability density 
function of this important distribution is dependent on two parameters only: on the mean � 
and standard deviation �. To simplify the notation two auxiliary parameters 7 and k are often 
used 
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where )(k8  is the gamma function of the parameter k. The moment parameters of the gamma 
distribution follow from equation (3.24) as 
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The curve is bell shaped for k . 1, i.e. for a skewness + - 2 (in the inverse case the 
gamma distribution is a decreasing function of x). For k → �, the gamma distribution 
approaches the normal distribution with parameters � and �.  

The gamma distribution is applied similarly as the log-normal distribution with the 
lower bound at zero. However, it differs from the log-normal distribution by its skewness, 
which is equal to the double of the coefficient of variation (+ = 2w) and is considerably lower 
than the skewness of the log-normal distribution with the lower bound at zero. In accordance 
with equation (3.23) it has the skewness 33 XXX ww  �+ . That is why the gamma distribution 
is more convenient for describing some geometrical quantities and variable actions that do not 
have a great skewness.  

 
Example 3.4 

A sample of experimental measurements of a concrete cover has the following 
characteristics: a sample size n = 157, m = 26,8 mm, s = 11,1 mm, and a = 0,40. It is a 
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relatively large sample, which can be used for assessing skewness (long-term experience may 
be available to verify the obtained value). A histogram of the experimental measurements and 
theoretical models of the normal distribution, log-normal distribution with the origin at zero, 
gamma distribution and beta distribution (described in the following section) is shown in 
Figure 3.5. It appears that the gamma and beta distributions are the most suitable theoretical 
models. However, it follows from equation (3.25) that the skewness of the gamma distribution 
is 2×11,1/26,3 = 0,83, thus about double the value assessed from the measurements. 
Obviously, in this case, the beta distribution would be the most suitable theoretical model.  

To choose an appropriate theoretical model for experimental data is, in general, a 
complicated task. Information about theoretical methods (the so-called goodness of fit tests) 
provided by mathematical statistics can be found in literature [11, 12, 14]. In this textbook 
some practical aspects and procedures only will be indicated. 

 
 

 

Figure 3.5. Histogram and theoretical models for concrete cover of reinforcement. 

 
 

3.6 Beta distribution
 
Beta distribution (also called Pearson’s distribution of type I) is defined on a two-sided 

interval -a, b. (this interval can be arbitrarily extended and then the distribution approaches 
the normal distribution). Generally, the beta distribution depends on four parameters and is 
used mainly in those cases where the domain of the random variable is evidently limited 
(some actions and geometrical data, e.g. the weight of a subway car, fire load intensity, a 
concrete cover of reinforcement). The principal difficulty in a practical application of the beta 
distribution is the necessity to estimate four parameters, for which credible data may not be 
always available.  
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The beta distribution is usually written in the form  
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where c and d are the so-called shape parameters. The lower and upper bounds are given as 
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where g is an auxiliary parameter. The parameters c and d can be derived from equations 
(3.27) as  
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The moment parameters of the beta distribution can be expressed in terms of the 
parameters a, b, c and d as  
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Note that the skewness + and kurtosis , are dependent on only the parameters c and d 
(they are independent of the limits a and b). That is why the parameters c and d are called the 
shape parameters. In practical applications the distribution is used for c . 1 and d . 1 
(otherwise the curve is J or U shaped), for c = d = 1 it becomes a uniform distribution, for c = 
d = 2 it is the so-called parabolic distribution on the interval - a, b .. When c = d, the curve is 
symmetric around the mean. When d → �, the curve becomes the type III Pearson’s 
distribution (see section 3.5). If c = d → �, it approaches the normal distribution. Depending 
on the shape parameters c and d the beta distribution thus covers various special types of 
distributions. The location of the distribution is given by the parameters a and b. 

The beta distribution can be defined in various ways. If all the four parameters a, b, c 
and d are given, it is possible to assess the moment parameters �, �, + and , from equations 
(3.27) to (3.30). In practical applications, however, two other combinations of input 
parameters are likely to be applied: 

1. The input parameters are �, �, a and b. The remaining parameters c and d will 
be assessed from equations (3.27) and (3.28), the moment parameters + and , from equations 
(3.29) and (3.30). 

2. The input parameters are �, �, + and one of the limits a (for + . 0) or b (for 
+ - 0). The remaining parameters of the distribution b (or a), c and d will be assessed by 
means of equations (3.27) to (3.29). 

The beta distribution with the lower bound a = 0 is often used in practical applications. 
It can be shown that in such a case the beta distribution is defined if 

 + � 2w (3.31) 

where w = � / � is the coefficient of variation. For + = 2w the curve becomes the type III 
Pearson’s distribution (see section 3.5). Therefore, if the input parameters are the mean �, 
standard deviation � and a skewness + � 2w, the beta distribution with a lower limit at zero 
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(a = 0) is fully described. The upper limit of the beta distribution with the lower bound at zero 
follows from the relation (3.27) 
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In equation (3.32) the parameters c and d are given as  
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Equations (3.33) and (3.34) follow from general equations (3.25) to (3.29) for the lower 
bound a = 0.  
 
Example 3.5

Given a mean � = 25 mm, a standard deviation 10 mm (w = 0,40), and a skewness 
+ = 0,5, assess the parameters of a beta distribution with the origin at zero (a = 0) for a 
reinforcement cover layer. Equation 3.31 is satisfied (0,5 - 2 � 0,4). From equations (3.33) 
and (3.34) it follows that  
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For the upper bound of the distribution it follows from equation (3.32) that 
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Figure 3.6 shows the beta distribution having the parameters assessed above together 
with corresponding normal, log-normal and Gamma distribution that have the same mean � 
and standard deviation �. Obviously, there are considerable differences between the 
distributions indicated in Figure 3.6.  

The normal distribution (skewness + = 0) predicts the occurrence of negative values, 
which may not comply with the real conditions for the reinforcement cover layer. The log-
normal distribution with the lower bound at zero has a skewness + = 1,264 (given by equation 
(3.23)), which does not correspond to experimental results and leads to an overestimation of 
the occurrence of positive deviations (which may further lead to unfavourable consequences 
for the resistance of the reinforced concrete element). The gamma distribution has a skewness 
+ = 2w = 0,8 (equation (3.25)) and is closer to the experimental value 0,5. The most 
convenient model seems to be the beta distribution having a skewness + = 0,5 obtained from 
experimental data.  

The above discussion can be supplemented by statistical tests [11, 12, 14]. On the 
other hand it should be mentioned that goodness of fit tests often fail and do not lead to an 
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unambiguous conclusion. In such a case the selection of a convenient model depends on the 
character of the basic variable, on available experience and on common experience. 

 
 

Figure 3.6. Normal, Log-normal, Gamma and Beta distributions for the concrete cover layer 
of reinforcement in a reinforced concrete element 

 
 

3.7 Gumbel and other distributions of extreme values
 
The extreme values (maximal or minimal) in a population of a certain size are random 

variables and their distribution is very important for the theory of structural reliability. Three 
types of the distribution of extreme values are usually covered in specialised literature, they 
are denoted as types I, II and III. Each of the types has two versions – one for the distribution 
of minimal values, the second for the distribution of maximal values. All these types of 
distribution have a simple exponential shape and are convenient to work with. The extreme 
value distribution of type I, which is commonly called the Gumbel distribution, is described in 
detail. Descriptions of the other types of distribution can be found in specialised literature 
[11]. 

The distribution function of type I for the version maximal values distribution 
(Gumbel distribution of maximum values) has the form 

 #(x) = exp(�exp(�c(x � xmod))) (3.35) 

It is a distribution defined on an infinite interval, which depends on two parameters: 
on the mode xmod and parameter c . 0. By differentiating the distribution function we obtain 
the probability density function in the form 

 $(x) = c exp(�c (x � xmod) � exp(�c(x � xmod))) (3.36) 

Both these parameters can be assessed from the mean � and standard deviation �  

 
�
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The skewness and kurtosis of the distribution are constant: + = 1,14, , = 2,4. 
An important feature of the Gumbel distribution is an easy transformation of the 

distribution function #(x) of an original random variable having the mean � and standard 
deviation � to the distribution function #N(x) for the maxima of populations that are N times 
greater than the original population. If individual original populations constituting a new N 
times greater population are mutually independent, then the distribution function #N(x) is 
given as  

 #N(x) = (#(x))N (3.39) 

By substitution of equation (3.35) into equation (3.39) #N(x) can be written as 

 #N(x) = exp(�exp(�c(x � xmod – ln N/c))) (3.40) 

It follows from equations (3.35) and (3.40) that the mean �N and standard deviation �N of the 
maxima of the new N times greater population are  

 �N = � + ln (N/c) = � + 0,78 ln (N �), �N = �  (3.41) 

Thus the standard deviation of the original population does not change and �N = �, but 
the mean �N is greater than the original value � by ln(N/c).  

 
Example 3.6 

One-year maxima of wind pressure are described by a Gumbel distribution with a 
mean �1 = 0,35 kN/m2, �1 = 0,06 kN/m2. The corresponding parameters of 50-year maximum 
value distribution, i.e. parameters �50 and �50, follow from equation (3.41) 

 �50 = 0,35 + 0,78 � ln (50 � 0,06) = 0,53 kN/m2, �50 = 0,06 kN/m2   

Figure 3.7 shows both the distributions of one-year and fifty-year maxima of wind 
pressure described by a Gumbel distribution.  

 
Figure 3.7. Distribution of maximum wind pressure over the periods of 1 year and 50 years. 
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The distribution function of type I, for the minimal values distribution (Gumbel 

distribution of minimum values) has the form  

 #(x) = 1 � exp(�exp(�c(xmod � x))) (3.42) 
This distribution is symmetric to the distribution of maximal values given by equation 

(3.35). It is therefore also defined on an open interval and depends on two parameters: on the 
mode xmod and parameter c . 0. By differentiating the distribution function we obtain the 
probability density function in the form 

 $(x) = c exp(�c (xmod � x) � exp(�c (xmod � x))) (3.43) 

Both these parameters can be assessed from the mean � and standard deviation �  
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�� 6577,0mod  �x  (3.44) 
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The probability density functions of the minimum values are symmetric to the shape 
of maximal values relative to the mode xmod, as is apparent from Figure 3.8. 

 
 

Figure 3.8. The Gumbel distribution of the minimum and maximum values. 
 
 

In a similar way, the type II distribution, the so-called Fréchet distribution, and type III 
distribution, the so-called Weibull distribution, are defined. All three types of distribution 
complement each other with regard to possible values of the skewness +. Each type covers a 
certain area of skewness, as shown in Figure 3.9. 

Types I and II of the extreme values distribution are often applied in the description of 
quantities of which the maximal values are studied (actions), and the type III distribution is 
applied for quantities of which the minimal values are studied (e.g. strength and other material 
properties). 
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Figure 3.9. Types of the distribution of extreme values versus the skewness +. 

 
 
 

3.8 Multivariate random variables
 
This section contains remarks and basic information on multivariate, particularly on 

bivariate, random variables. A detailed discussion concerning the multivariate random 
variables, probabilistic models, parameters of population and sample characteristics can be 
found in literature [11, 12].  

If two variables (two characteristics) X and Y are studied for each item (entity), every 
time a set of conditions � (see section 2.1) is realised, i.e. a certain random event is realised, 
and given that the variable X takes on the very value x and the variable Y takes on the very 
value y, then the variables X and Y form a pair of joint random variables. An example is the 
force X and the weight Y studied when a concrete cube fails when loaded under given 
conditions in a test machine (see Example 2.2). It is certainly possible to study more than two 
characteristics, e.g. the force, weight and moisture content. In a general case variables X1, 
X2,... Xn are studied, which we will denote for simplicity as a vector X [X1, X2,... Xn] and its 
realizations x1, x2,... xn as a vector x [x1, x2,... xn]. The following summary is particularly 
concerned with two-dimensional random variables, which have two components (two joint 
random variables) X and Y.  

The summary of all possible realizations x and y of a pair of joint random variables X 
and Y is called the two-dimensional population. A pair of joint random variables X and Y is 
also called the two-dimensional random variable. Similarly to the one-dimensional random 
variable the two-dimensional random variable is described by the distribution of probabilities, 
i.e. by a function which determines the probability that the random variables X and Y make up 
part of some given sets (for continuous random variables) or take on some given values (for 
discrete random variables). The two-dimensional distribution function #(x, y) (sometimes 
denoted #XY(x, y)) gives, for every pair of values x, y, the probability that the random variable 
X is less than or equal to x, and the random variable Y is less than or equal to y  

 #(x, y) = P(X � x; Y � y) (3.46) 

The probability density function of a continuous random variable $(x) is the derivative 
(if it exists) of the distribution function  
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The marginal distribution function of the variable X, #X(x), is a special case of the 
distribution function #(x, y) without any constraint on the variable Y, i.e. for all the 
realizations Y - �  

 #(x, �) = P(X � x; Y � �) = #X(x) (3.48) 

The marginal distribution function of the variable Y, #Y(y), is defined in a similar way. 
It is a special case of the distribution function #(x, y) without any constraint on the variable X, 
i.e. for the sum of all possible realizations of the variable X - �  

 #(�, y) = P(X � �; Y � y) = #Y(y) (3.49) 
We say that the random variables X and Y are independent if it holds that  

 #(x, y) = #(x, �) #(�; y) = #X(x) #Y(y) (3.50) 

Then it holds for the probability density function that 

 $(x, y) = $X(x) $Y(y) (3.51) 

where $X(x) and $Y(y) are the marginal probability density functions of the variables X and Y.  
The two-dimensional random variable is described by moment parameters and various 

types of distribution (usually by the normal), similarly to one-dimensional variables. Besides 
the one-dimensional moments which lead to the definition of averages �X, �Y, and the standard 
deviations �X, �Y, the joint moments of both variables X and Y are also applied. The most 
important one is the joint central moment of the first order �XY, which is called the covariance  

 dxdyyxyx YXXY )())(,( ��� ��$� %  (3.52) 

The covariance provides the basis for the definition of the correlation coefficient :XY   

 
YX

XY
XY ��

�: �  (3.53) 

It always holds for the value of the correlation coefficient that –1 � :XY � +1. If the 
variables X and Y are independent, then :XY = 0. An inverse proposition holds only in the case 
of the two-dimensional normal distribution (which is described below). In the case of 
multivariate random variables X [X1, X2,... Xn], the covariance �ij and the correlation 
coefficients :ij between the individual components X1, X2,... Xn form matrices. The matrix of 
covariances is applied in the transformation of the vector of dependent variables to the vector 
of independent random variables, which are used in reliability analysis of more complex 
problems (see the software product STRUREL [24]).  

Using a sample of pair observations x1,y1; x2,y2;...; xn,yn, the sample covariance is 
assessed 

 � ��
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�
i

XY myyimxxin
s ))((

1
1  (3.54) 

which is an unbiased estimator of the population’s covariance (the denominator n – 1 follows 
from the requirement that the estimator is unbiased, similarly to the case of the sample 
variance (3.9)). Analogically to (3.53) it therefore holds for the sample correlation coefficient 
that  
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After substitution of relations (3.54) and (3.9) their denominators n –1 do not apply in 
this formula. 

The sample correlation coefficient rXY is often used for the numerical expression of the 
mutual linear dependence between X and Y in a number of pair observations. The value of rXY 
lies between –1 and +1. If it equals one of these bounds, it means that the dependence 
between X and Y in a number of pair observations is exactly linear. When possible, a scatter 
diagram showing the observed set should be used to verify the linearity, and possibly to 
reduce the domain so that the assumption of linearity is justified.  

A two-dimensional normal distribution of two continuous random variables X and Y 
having parameters �x, �y, �x, �y, and a correlation coefficient :xy = : is given by the following 
equation (3.56) 
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The marginal distributions $X(x) and $Y(y) are also normal and have parameters �X, �X 
and �Y, �Y similarly to the conditional distributions for given y = y0 and x = x0, which have 
parameters �x + :(y0 � �Y)�X/�Y, �x(1–:2)1/2 and �Y + :(x0 � �X)� Y/�X, �Y(1�:2)1/2 [11]. The 
conditional distributions may come in useful for (very frequent) indirect experimental 
verification of properties of one of the joint random variables X and Y by means of the other.  

Similarly, as in the case of the one-dimensional random variable through 
transformations, the standardized random variables U and V are given as 
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The standardized two-dimensional normal distribution can then be written in the form  
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The bivariate normal distribution can be generalized [11, 14] to a distribution of 
multivariate random variables described by the vector X [X1, X2,... Xn], where the covariance’s 
and correlation coefficients between the individual components X1, X2,... Xn, form matrices. 

 
 

3.9 Combination of two random samples
 
Sometimes it is required to combine two random samples taken from one population 

assuming that the characteristics of both the samples are known, but the original observations 
xi are not available. It must be emphasised that only homogeneous samples of the same origin 
(taken under the same conditions) should be combined. Violation of this important 
assumption could lead to incorrect results. 

Assume that a first sample of the size n1 has the characteristics m1, s1, a1, a second 
sample of the size n2 has the characteristics m2, s2, a2. The characteristics of a combined 
sample of the size n can be determined from the following expressions: 
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 n = n1 + n2 (3.59) 
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It is interesting to note that the standard deviation s is dependent not only on the 
standard deviations, but also on the means of both the samples. Similarly, the skewness 
depends also on the characteristics of lower order (means and standard deviations).   

In some cases it may occur that the size of one sample, say n1, is not known, and only 
the first two characteristics m1, s1 are available. This is a typical situation of updating previous 
data having the characteristics m1, s1, using newly observed data of the size n2 having the 
characteristics m2, s2.   

Following the Bayesian concept [3, 11], the unknown value n1 and a corresponding 
degree of freedom ;1 may be assessed using the relations for the coefficients of variation of 
the mean and standard deviation w(�) and w(�), (the parameters � and � are considered as 
random variables in Bayes’ concept) for which it holds  

 n1 = [s1 / (m1 w(�))]2, ;1 = 1 / (2 w(�)2) (3.63) 

Both unknown variables n1 and ;1 may be assessed independently (generally ;1 � n1 – 
1), depending on previous experience with a degree of uncertainty of the estimator of the 
mean � and the standard deviation � of the population. Note that for a new sample it holds 
that ;2 = n2 – 1. 

When the sample size n1 and the degree of freedom ;1 are estimated, the degree of 
freedom ; is given as [3, 11] 

 ; = ;1 + ;2 – 1 if n1 � 1, ; = ;1 + ;2 if n1 = 0  (3.64)  
Then the resulting size of the combined sample n and the mean m is given by 

equations (3.59) and (3.60), the standard deviation s is determined from a modified equation 
(3.61) as  
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The above relationship may be easily applied using the Mathcad sheet included in 
annex 4 to this textbook. 

 
Example 3.7

Suppose that from previous production of a given type of concrete the following 
experience is available for its strength  

 m1 = 30,1 MPa, w(�) = 0,50, s1 = 4,4 MPa, w(�) = 0,28. 

For unknown characteristics n1 and ;1 it follows from equation (3.63) that 
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Thus, the following characteristics are considered further on: n1 = 0 and ;1 = 6.  
To verify the quality of the concrete, new measurements have been carried out using 

specimens from the same type of concrete. The following strength characteristics have been 
obtained 

n2 = 5, ;2 = n2 – 1 = 4, m2 = 29,2 MPa, s2 = 4,6 MPa. 
Using equations (3.59), (3.60), (3.64) and (3.65), the updated characteristics are as 

follows 
 n = 0 + 5 = 5  

; = 6 + 4 = 10 
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Thus, using the previous information the standard deviation of the new measurements 
could be decreased from s = 5,6 MPa to s = 4,5 MPa.  

However, it should be noted that the combination of the previous information with the 
current measurements might not always lead to favourable results. For example, if the 
coefficients of variation are w(�)=0,2 and w(�)=0,6, then the unknown characteristics n1 and 
;1 follow from equation (3.63) as  
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In this case  

 n = 1 + 5 = 6  

; = 1 + 4 � 1 = 4 
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In this case, the mean increased slightly from 29,2 to 29,35, the standard deviation 
increased considerably from 5,6 to 6.03. However, this is an extreme case, caused by 
unfavourable estimates of n1, ;1 and ; following from equations (3.63) and (3.64). In practical 
applications these equations should be applied with caution, particularly in extreme cases 
similar to the above example. In connection with the above warning an important assumption 
mentioned at the beginning of this section should be stressed. Only those samples that are 
evidently taken from the same population can be used for combining or updating statistical 
data, otherwise the results of the combination of two random samples may lead to incorrect 
results. 

 



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

56 

 
3.10 Functions of random variables

Structural behaviour is commonly described by a function of random variables X, Y, 
that are random variables, resulting in the variable Z given by a general relationship  

Z = f (X, Y,...) (3.66) 

Z is therefore also a random variable having parameters �Z, �Z,, +Z, for which (using the 
Taylor expansion of f (X, Y,...) into a power series) approximate relationships may be found  

 �Z = f1(�X, �Y,... �X, �Y, ..., + X, +Y, ... ) (3.67) 

 �Z = f2(�X, �Y,... �X, �Y, ..., + X, +Y, ... ) (3.68) 

 +Z  = f3(�X, �Y,... �X, �Y, ..., + X, + Y, ... ) (3.69) 

Annex 3 provides relationships (3.67) to (3.69) for selected functions (3.66) 
considering two random variables X and Y. These relationships may be effectively applied to 
simplify a number of common expressions entering the limit state functions used in reliability 
analysis of structural members. 

  
Example 3.8

Consider a simple product of two random variables X and Y. Equation (3.66) is then 
written as  

 Z = X × Y 

Using annex 3 the following relationships for the basic parameters may be found 

�Z = �X × �Y 
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3.11 Updating of probability distributions
 
If the prior probabilities p’ are described by a continuous probability density function 

$(x) of a random variable X (for details see chapter 3) and likelihood by conditional density 
function $(I|x) where I denotes outcomes of additional investigation I, then a posteriori 
(updated) probability density $(x|I) may be derived from (2.25) by substituting $(x) for pi’, 
$(I|x) for li, $(x|I) for pi” and using integration instead of the summation as   

  
xxIx

xIxIx
d)|()(
)|()()|(

% $$
$$

�$  (3.70) 

Note that the likelihood $(I|x) is the conditional probability density function describing the 
probability that the outcome of the updating investigation I (information obtained from I) is 
due to the occurrence of x. Formulae (3.70) can be used for the updating of distribution 
functions when additional experimental investigations are used for assessing new or existing 
structures.   
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Example 3.9
 Assume that a variable X has a normal prior distribution with probability density 
function $(x) having the mean μ and the standard deviation σ. Additional investigation 
indicated that the likelihood function $(I|x) is described by a general three-parameter log-
normal distribution having the same standard deviation σ but the mean equal to μ + 0,5 σ and 
the skewness + = 1. Using a numerical integration of it follows from formulae (3.66) that the 
updated distribution $(x|I) has the following parameters 

 μx|I = μ + 0,18 σ

 σ x|I = 0,64 σ

 +x|I  = 0,39 
 
Figure 3.10 shows the prior probability density $(u), likelihood $(I|u) and the updated 
probability density function $(u|I) using standardized random variable U.      

Figure 3.10. Prior probability density $(u), likelihood $(I|u) and the updated probability 
density function $(u|I). 

 
It follows from Figure 3.10 that the updated distribution has considerably lower 

variability than the prior distribution. Obviously updating of probability distributions may be 
extremely effective when assessing characteristic values of the resistance variables using 
additional tests.   
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4 FRACTILE OF RANDOM VARIABLES
 
 

4.1 Fractile of theoretical models
 
One of the most important keywords of the theory of structural reliability is the term 

fractile of a random variable X (or of its probability distribution), sometimes also called the 
quantile. For a given probability p, the p-fractile xp denotes such a value of the random 
variable X, for which it holds that values less than or equal to xp occur with the probability p. 
If #(x) is the distribution function of the random variable X, then it follows from equation 
(3.1) that the value #(xp) is equal to the probability p, thus the fractile xp can be defined as  

 P(X � xp) = #(xp) = p  (4.1) 
The same definition holds for a standardised random variable U (given by the 

transformation equation (3.14)), when in equation (4.1) U is substituted for X and up is 
substituted for xp. Figure 4.1 illustrates the definition given by equation (4.1).  
 

 
Figure 4.1. Definition of the fractile for a standardised random variable U. 
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Fractiles up of standardised random variables U are commonly available in tables. 

Figure 4.1 illustrates the definition of the fractile described by equation (4.1) for a 
standardised random variable U; it shows the distribution function #(u), the probability 
density function $(u), the probability p (equal to 0,05) and the fractile up (equal to �1,645) for 
the normal standardised distribution of U.  

In general, the fractile xp of an original random variable X may be calculated using 
tables for up available for standardised random variables U with a relevant type of 
distribution. It follows from the transformation (3.14) that the fractile xp may be determined 
from the standardised random variable up (found in available tables) using the relationship 

 xp = � + up� = � (1 + up w)  (4.2) 

where � denotes the mean, � the standard deviation and w the coefficient of variability of the 
observed variable X. 

If the probability p - 0,5, then the value xp is called the lower fractile, for p . 0,5 the 
xp is called the upper fractile. Figure 4.2 shows the lower and upper fractiles up of a 
standardised random variable U with a normal distribution for probabilities p = 0,05 and 0,95, 
and thus denoted u0,05 and u0,95.  
 

 
 

Figure 4.2. The lower and upper fractiles of a standardised random variable U having a 
normal distribution. 

 
The values up of the lower fractile of a standardised random variable U having a 

normal distribution for selected probabilities p are given in Table 4.1. Considering the 
symmetry of the normal distribution, the values up of the upper fractile can be assessed from 
Table 4.1 by the substitution of p with 1 � p and by changing the sign of values up (from 
negative to positive). Detailed tables can be found, for example in textbooks [5, 6], in the 
standard ISO 12491 [3], and in specialised literature [18, 19, 20]. 
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Table 4.1. Fractile up of a standardised random variable with a normal distribution. 

p 10–7 10–6 10–5 10–4 0,001 0,010 0,050 0,100 0,200 0,500 
�up 5,199 4,753 4,265 3,719 3,091 2,327 1,645 1,282 0,841 0,000 

 
For a standardised random variable with a general three-parameter log-normal 

distribution the value up of the standardised random variable is dependent on the skewness +. 
The values up for selected skewnesses + and probabilities p are given in Table 4.2.  

The fractile corresponding to the probability p = 0,05 is usually applied for an 
assessment of the characteristic value of material properties (strength of concrete, yield 
strength of steel, masonry strength). However, the design values of dominant variables are 
fractiles which correspond to a lower probability (p < 0,001), the design values of non-
dominant variables are fractiles corresponding to a greater probability (p < 0,10). 
 
Table 4.2. Fractile up of a standardised random variable with a log-normal distribution.  

 
+

Probability p 
10–4 10–3 0,01 0,05 0,10 0,20 0,50 0,80 0,90 0,95 0,99 1�10–3 1�10–4 

�2,0 �9,52 �6,24 �3,52 �1,89 �1,24 �0,61 0,24 0,77 0,97 1,10 1,28 1,42 1,49 
�1,5 �7,97 �5,51 �3,31 �1,89 �1,29 �0,68 0,20 0,81 1,04 1,21 1,45 1,65 1,77 
�1,0 �6,40 �4,70 �3,03 �1,85 �1,32 �0,74 0,15 0,84 1,13 1,34 1,68 1,99 2,19 
�0,5 �4,94 �3,86 �2,70 �1,77 �1,32 �0,80 0,08 0,85 1,21 1,49 1,98 2,46 2,81 
0,0 �3,72 �3,09 �2,33 �1,65 �1,28 �0,84 0,00 0,84 1,28 1,65 2,33 3,09 3,72 
0,5 �2,81 �2,46 �1,98 �1,49 �1,21 �0,85 �0,08 0,80 1,32 1,77 2,70 3,86 4,94 
1,0 �2,19 �1,99 �1,68 �1,34 �1,13 �0,84 �0,15 0.74 1,32 1,85 3,03 4,70 6,40 
1,5 �1,77 �1,65 �1,45 �1,21 �1,04 �0,81 �0,20 0,68 1,29 1,89 3,31 5,51 7,97 
2,0 �1,49 �1,42 �1,28 �1,10 �0,97 �0,77 �0,24 0,61 1,24 1,89 3,52 6,24 9,52 

 
In the case of a log-normal distribution with the lower bound at zero, which is 

described in section 3.4, it is possible to calculate the fractile from the value of the fractile of 
a standardised random variable with a normal distribution using the relation 

 & ')1ln(exp
1

2
,2

wu
w

x pnormp  
 

�
�  (4.3) 

where unorm,p is the fractile of a standardised random variable with a normal distribution, � is 
the mean and w the coefficient of variation of the variable X. An approximation of equation 
(4.3) is often applied in the form 

 xp < � exp (unorm,p � w) (4.4) 

whose accuracy is fully satisfying for w - 0,2, but it is commonly used for greater w as well. 
 
Example 4.1  

Let us assess the fractile xp of a normal and log-normal distribution with the lower 
limit at zero for p = 0,001; 0,01; 0,05 and 0,10, if w = 0,3. We know that the log-normal 
distribution with the lower limit at zero has, in this case, a positive skewness + = 0,927 
(according to equation (3.23)), which needs to be known for interpolation in Table 4.2. The 
resultant values xp are given in the following table in the form of dimensionless coefficients 
xp/� (expressing the ratio of the fractile to the mean), which were assessed in different ways 
for the normal and for the log-normal distribution.  
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Table of the fractions xp/�. 

Fraction xp/� for Probability p 
0,001 0,010 0,050 0,100 

normal distribution, equation (4.2) and Table 4.1 0,073 0,302 0,506 0,615 
log-normal distribution, equation (4.2) and Table 4.2 0,385 0,483 0,591 0,658 
log-normal distribution, equation (4.3) and Table 4.1 0,387 0,484 0,591 0,657 
log-normal distribution, equation (4.4) and Table 4.1 0,396 0,496 0,610 0,681 

 
The above table of coefficients xp/� shows the expected difference between the 

fractiles of normal and log-normal distributions. The lower fractile of the normal distribution 
is significantly lower than the corresponding fractile of the log-normal distribution, 
particularly for small probabilities p. The table also shows that the approximate formula (4.4) 
provides satisfactory results for computation of the fractile of the log-normal distribution (the 
error will decrease with decreasing the coefficient of variation w).  

The fractile of the gamma distribution can be calculated from the available tables for 
the type III Pearson distribution [5, 6]. To calculate the fractile of the beta distribution, the 
available tables of an incomplete beta function may be used or it can be assessed by an 
integration of the probability density function according to definition (4.1). However, when it 
is needed (and neither appropriate tables nor software products are available), the fractile of 
the beta distribution, which is bell shaped (for shape parameters c . 2 and d . 2), may be 
assessed approximately from equation (4.2) using the table values of up for a standardised log-
normal distribution, having the same skewness + as the beta distribution. An analogical 
procedure may be used for other types of distribution too.  

The fractile xp can be easily assessed for the Gumbel distribution. From equation 
(3.35) and definition (4.1) follows an explicit relation for xp directly dependent on the 
probability p  

 �� )))ln(ln(78,045,0())ln(ln(1
mod pp

c
xxp � �<���  (4.5) 

where the mode xmod and parameter c are substituted by relations (3.37) and (3.38).  
 
Example 4.2 

Let us determine the upper fractile of the wind pressure from Example 3.6 described 
by a Gumbel distribution when a probability p = 0,98 is considered. It is known from 
Example 3.6 that for the one-year maximum �1 = 0,35 kN/m2, �1 = 0,06 kN/m2. The fractile 
x0,98 for such parameters follows from equation (4.5) 

 x0,98 = 0,35 – (0,45 + 0,78 � ln(–ln(0,98))) � 0,06 = 0,51 kN/m2   
The corresponding fractile of the maximum for a period of 50 years (as shown in 

Example 3.6 where �50 = 0,53 kN/m2, �50 = 0,06 kN/m2) is  

 x0,98 = 0,53 – (0,45 + 0,78 � ln(–ln(0,98))) � 0,06 = 0,69 kN/m2  
Simple mathematical operations with the Gumbel distribution, including the 

computation of fractiles, are the main reasons why this distribution is so popular. The Gumbel 
distribution is frequently used as a theoretical model of random variables describing climatic 
and other variable actions that are defined on the basis of the maximal values in a given 
period of time (for example during one or five years).  
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4.2 Fractile estimation from samples – coverage method
 

Theoretical models are very rarely known precisely in practical applications. In civil 
engineering, it is often necessary to assess the fractile of a random variable (for example of 
the strength of a new or unknown material) from a limited sample, the size n of which may be 
very small (n < 10). Furthermore, random variables may have a high variability (the 
coefficient of variation is sometimes greater than 0,30). The assessment of the fractile of a 
population from a very small sample is then a serious problem, which is solved in 
mathematical statistics by various methods of estimation theory. In the following, three basic 
methods are shortly described: the coverage method, the prediction method and the Bayesian 
method for estimation of the population fractile. 

The keyword of the coverage method for the fractile estimation from a sample of a 
limited size n is the confidence �, i.e. the probability (usually 0,75, 0,90 or 0,95) that the 
estimated value covers the population fractile (that is why the method is called the coverage 
method). The estimator xp,cover of the lower fractile xp is determined by the coverage method in 
such a way that  

 P(xp,cover - xp) = �  (4.6) 

Thus, the estimator xp,cover is lower (on the safe side) than the unknown fractile xp with the 
probability (confidence) �.  

In the following summary practical formulas are given without being derived, 
assuming that the population has a general three-parameter distribution characterised by the 
skewness +, which is assumed to be known from previous experience. Besides that, it is 
assumed that the mean � of the population is never known in advance and the estimation is 
based on the average m obtained from a sample. The standard deviation s of the population is 
assumed to be either known and then it is used, or unknown and then the sample standard 
deviation s is used instead.  

If the standard deviation � of the population is known from previous experience, the 
estimator xp,cover of the lower p-fractile is given by the relation 

 xp,cover = m � =p �  (4.7) 

If the standard deviation of the population � is unknown, then the sample standard deviation s 
is considered  

 xp,cover = m � kp s (4.8) 

Coefficients of estimation =p = = (+, p, �, n) and kp = k (+, p, �, n) depend on the 
skewness +, on the probability p corresponding to the fractile xp, which is estimated, on the 
confidence � and on the size n of the population. The knowledge of the confidence � that the 
estimator xp,cover will be on the safe side of the real value is the greatest advantage of the 
classic coverage method. In documents [1, 2] the confidence � is recommended by the value 
0,75. In cases of the demands of increased reliability, when a detailed reliability analysis is 
required, a higher value of confidence, say 0,95 may be more appropriate [14].  
 
 
4.3 Fractile estimation from samples – prediction method
 

According to the prediction method [14] the lower p-fractile xp is estimated by the so-
called prediction limit xp,pred, for which it holds that a new value xn+1 randomly drawn from 
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the population will be lower than the estimator xp,pred only with the probability p, i.e. it holds 
that 

 P(xn+1 - xp,pred) = p  (4.9) 
It can be shown that for a growing n the estimator xp,pred defined in this way is asymptotically 
approaching the unknown fractile xp. It can also be shown that the estimator xp,pred 
corresponds approximately to the estimator obtained by the coverage method xp,cover for a 
confidence � = 0,75 [14].  

If the standard deviation � of the population is known, then the lower p-fractile is 
estimated by the value xp,pred according to the relation 

 xp,pred = m + up (1/n + 1)1/2 �  (4.10) 

where up = u (+, p) is the p-fractile of a standardised log-normal distribution having the 
skewness +.  

If, however, the standard deviation of the population is unknown, then the sample 
standard deviation s must be considered instead of �  
 xp,pred = m + tp (1/n + 1)1/2 s (4.11) 

where tp = t(+, p, ;) is the p-fractile of the generalised Student"s t-distribution for ; = n –1 
degrees of freedom, which has a skewness + (information about the Student’s distribution and 
about the number of degrees of freedom may be obtained from the textbook [5] and from 
other specialised sources [18, 19,20])  
 
 
4.4 Comparison of the coverage and prediction methods
 

The coverage and predictive methods represent two basic procedures of estimation of 
the population’s fractile from an available sample of a limited size n. If the standard deviation 
of the population � is known, then equations (4.7) and (4.10) are applied, in which two 
analogical coefficients =p and �up(1/n + 1)1/2 appear. Both of these coefficients depend on the 
sample size n, the coefficient =p of the coverage method depends more on the confidence �. 
Table 4.3 shows the coefficients =p and �up(1/n + 1)1/2 for p = 0,05 and selected values of n 
and � when a normal distribution of the population is assumed.  
 
Table 4.3. Coefficients =p and �up(1/n + 1)1/2 from equations (4.7) and (4.10) for p = 0,05 and 
a normal distribution of the population (when � is known). 

 Sample size n 
Coefficient 3 4 5 6 8 10 20 30 � 
 � = 0,75 2,03 1,98 1,95 1,92 1,88 1,86 1,79 1,77 1,64 
=p � = 0,90 2,39 2,29 2,22 2,17 2,10 2,05 1,93 1,88 1,64 
 � = 0,95 2,60 2,47 2,38 2,32 2,23 2,17 2,01 1,95 1,64 
�up(1/n+1)1/2 1,89 1,83 1,80 1,77 1,74 1,72 1,68 1,67 1,64 

 
It is evident from Table 4.3 that with the growing sample size n both the coefficients 

approach the value 1,64, which holds for a theoretical model of the normal distribution (see 
Table 4.1). The coefficient =p of the coverage method increases with increasing confidence �. 
Note that for a confidence � = 0,75 it holds that =p < �up(1/n + 1)1/2. Thus, for � = 0,75 the 
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coverage method leads approximately to the same estimator as the predictive method, xp,cover < 
xp,pred (for a greater confidence � . 0,75 the xp,cover - xp,pred).  

If the standard deviation of the population � is unknown, equations (4.8) and (4.11) 
are applied, in which two analogical coefficients kp and �tp(1/n + 1)1/2 appear. Both of these 
coefficients depend again on the sample size n, the coefficient kp of the coverage method 
depends more on the confidence �. Table 4.4 and Figure 4.3 show the values of coefficients kp 
and �tp(1/n + 1)1/2 for p = 0,05 and selected values of n and � when a normal distribution of 
the population is assumed.  
 
Table 4.4. Coefficients kp and �tp(1/n + 1)1/2 from equations (4.8) and (4.11) for p = 0,05 and 
a normal distribution of the population (when � is unknown). 

Coefficient Sample size n 
 3 4 5 6 8 10 20 30 � 
 � = 0,75 3,15 2,68 2,46 2,34 2,19 2,10 1,93 1,87 1,64 
kp � = 0,90 5,31 3,96 3,40 3,09 2,75 2,57 2,21 2,08 1,64 
 � = 0,95 7,66 5,14 4,20 3,71 3,19 2,91 2,40 2,22 1,64 
� tp(1/n+1)1/2 3,37 2,63 2,33 2,18 2,00 1,92 1,76 1,73 1,64 

 
It is obvious from Table 4.4 and Figure 4.3 that with increasing the sample size n both 

the coefficients kp and �tp(1/n + 1)1/2 approach the value 1,64, which is valid for a theoretical 
model of the normal distribution (see Table 4.1). In the case of the coverage method, the 
coefficient kp increases with increasing confidence � and the relevant estimators xp,cover of the 
lower fractile are decreasing (on the safe side). Note that as in the case of the known standard 
deviation � both coefficients are approximately equal, kp < �tp(1/n + 1)1/2 and for the 
confidence � = 0,75 the coverage method leads to approximately the same estimator, xp,cover < 
xp,pred, as the prediction method.  
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Figure 4.3. Coefficients kp and �tp(1/n + 1)1/2 for p = 0,05 and a normal distribution of the 
population (when � is unknown). 
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Also the skewness (asymmetry) of the population + may significantly affect the 

estimator of the population’s fractile. Tables 4.5 and 4.6 show the coefficients kp from 
equation (4.8) for three values of the skewness + = –1,0, 0,0 and 1,0, a probability p = 0,05 
and confidences � = 0,75 (Table 4.5) and � = 0,95 (Table 4.6). Values of the coefficients from 
Table 4.6 are shown in Figure 4.4.  
 
Table 4.5. Coefficient kp from equation (4.8) for p = 0,05, � = 0,75 and a log-normal 
distribution having the skewness + (when � is not known). 

 Sample size n 
Skewness 3 4 5 6 8 10 20 30 � 
+  = �1,00 4,31 3,58 3,22 3,00 2,76 2,63 2,33 2,23 1,85 
+  =  0,00 3,15 2,68 2,46 2,34 2,19 2,10 1,93 1,87 1,64 
+  =  1,00 2,46 2,12 1,95 1,86 1,75 1,68 1,56 1,51 1,34 

 
 
Table 4.6. Coefficient kp from equation (4.8) for p = 0,05, � = 0,95 and a log-normal 
distribution having the skewness + (when � is not known). 

 Sample size n 
Skewness 3 4 5 6 8 10 20 30 � 
+ = �1,00 10,9 7,00 5,83 5,03 4,32 3,73 3,05 2,79 1,85 
+ =  0,00 7,66 5,14 4,20 3,71 3,19 2,91 2,40 2,22 1,64 
+ =  1,00 5,88 3,91 3,18 2,82 2,44 2,25 1,88 1,77 1,34 

 
It is evident from Tables 4.5 and 4.6 that as the sample size n increases, the coefficients kp 
approach the values of up, which are valid for a theoretical model of the log-normal 
distribution (see Table 4.2). Thus, the influence of the skewness does not disappear when n → 
�, and it is especially significant for small samples and a greater confidence � = 0,95 (see 
Figure 4.4). 
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Figure 4.4. Coefficient kp for p = 0,05 and a confidence � = 0,95 (when � is unknown). 
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A similar dependence on the skewness may be observed in the case of the generalised 

Student’s t-distribution for which the fractiles tp are given in Table 4.7. These values tp are 
applied in the prediction method using formula (4.11) and further in the Bayes method. That 
is why Table 4.7 gives the values of fractiles tp directly depending on the number of degrees 
of freedom ;. As in Tables 4.6 and 4.7 the probability p = 0,05 and three skewnesses + = 
�1,0; 0,0 and 1,0 are considered. 
 
Table 4.7. Coefficient �tp from equation (4.11) for p = 0,05 and a log-normal distribution with 
the skewness + (when � is unknown). 

 Coefficient � tp for ; = n � 1 degrees of freedom 
Skewness 3 4 5 6 8 10 20 30 � 
+ = �1,00 2,65 2,40 2,27 2,19 2,19 2,04 1,94 1,91 1,85 
+ =  0,00 2,35 2,13 2,02 1,94 1,86 1,81 1,72 1,70 1,64 
+ =  1,00 1,92 1,74 1,64 1,59 1,52 1,48 1,41 1,38 1,34 

 
It follows from Table 4.7 that as the size of the sample n increases, the values of tp 

approach the theoretical values of up, which are valid for a model of the log-normal 
distribution with the appropriate skewness and are given in Table 4.2. Therefore, the influence 
of the skewness again (as in the case of kp) does not disappear for n → �, but it is especially 
significant for small samples (it increases with decreasing the sample size n).  
 
Example 4.3  

A sample of size n = 5 measurements of the strength of concrete has an average m = 
29,2 MPa and a standard deviation s = 4,6 MPa. We assume that the population is normal and 
that its standard deviation � is unknown. The characteristic strength fck = xp, where p = 0,05 is 
firstly assessed by the coverage method. If the confidence is � = 0,75, then it follows from 
equation (4.8) and Table 4.4 that 

 xp,cover = 29,2 – 2,46 � 4,6 = 17,9 MPa  

If a higher confidence � = 0,95 is required, then 

 xp,cover = 29,2 – 4,20 � 4,6 = 9,9 MPa  

If the predictive method is used, then it follows from equation (4.11) and Table 4.4 that  

 xp,pred = 29,2 – 2,33 � 4,6 = 18,5 MPa  
The characteristic strength obtained by the predictive method is only a little greater 

than the value according to the coverage method with the confidence � = 0,75. However, if a 
higher confidence � = 0,95 is required, then the predictive method leads to a value which is 
almost twice as great as the value obtained by the coverage method.  

If the sample comes from a population with a log-normal distribution and a positive 
skewness + = 1, then the coverage method with the confidence � = 0,75 (Table 4.5) gives an 
estimator 

 xp,cover = 29,2 – 1,95 � 4,6 = 20,2 MPa  
which is a value that is 13% greater than when the skewness is zero.  

Similarly it follows for the predictive method from equation (4.11) and Table 4.7 that  
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 MPa4,206,41
5
174,12,29pred, �� ���px   

where the value tp = �1,74 is given in Table 4.7 for + = 1,0 and ; = 5 � 1= 4. The resulting 
strength is in this case 10% greater than the value which corresponds to the normal 
distribution (+ = 0).  
 
 
4.5 Fractile estimation from samples – Bayes’ method
 

If previous experience is available for a random variable (for example in the case of a 
long-term production), it is possible to use the so-called Bayes method, which generally 
follows the idea of updating probabilities described in section 2.5. The Bayes method of 
fractile estimation is described here without deriving any important relations. A more detailed 
description is given in documents ISO [2, 3] and other specialised literature [18, 19, 20].  

Assume that a sample of a size n with an average m and a standard deviation s is 
available. Besides, an average m’ and a sample standard deviation s’ assessed from an 
unknown sample of an unknown size n’ are known from previous experience. It is, however, 
assumed that both the samples come from the same population having a mean � and standard 
deviation �. Then the two samples may thus be combined. This could be a simple task if the 
individual values of the previous set were known, but that is not the case. However, the Bayes 
method must be used.  

Parameters of the combined sample are generally given by relations [3, 11] 

 n” = n + n’  (4.12) 

 ;” = ; + ;’ –1 if n’ � 1, ;” = ; + ;’ if n’ = 0   

 m” = (mn + m’n’) / n”   

 s” 2 = (; s2 + ;’s’ 2 + nm2 + n’m’ 2 � n”m” 2) / ;”   

The unknown values n’ and ;’ may be assessed using the relations for the coefficients 
of variation of the mean and standard deviation v(�) and v(�), (parameters � and � are 
considered as random variables in the Bayes concept) for which it holds [2, 3]  

 n’ = [s’ / (m’ v(�))]2, ;’ = 1 / (2 v(�)2) (4.13) 

Both the unknown variables n’ and ;’ are assessed independently (generally ;’ � n’ – 1), 
depending on previous experience concerning the degree of uncertainty of the estimator of the 
mean � and standard deviation � of the population.  

The next step of the procedure applies the prediction method of fractile estimation. 
The Bayes estimator xp,Bayes of the fractile is given by a relationship similar to equation (4.11) 
for a predictive estimator, assuming that the standard deviation � of the population is not 
known 
 '''''' sntmx pp

2/1)1/1(  "" �Bayes,  (4.14) 

where ),,( ;+ '''''' ptt pp �  is a fractile of a generalised Student’s t-distribution having an 
appropriate skewness +, for ;” degrees of freedom (that is generally different from the value 
n” – 1).  

If the Bayes method is applied for an assessment of material strength, the advantage 
may be taken of the fact that the long-term variability is constant. Then the uncertainty of an 
assessment of � and the value v(�) are relatively small, the variables ;’ assessed according to 
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equation (4.13) and ;” assessed according to equation (4.12) are relatively high. This factor 
may lead to a favourable decrease of the value t ''

p  and to an augmentation of the estimator of 
the lower fractile of xp according to equation (4.14). On the other hand, uncertainties in an 
assessment of the mean � and the variable v(�) are usually great and previous information 
may not significantly affect the resulting values n” and m”.  

If no previous information is available, then n’ = ;’ = 0 and the resulting 
characteristics m”, n”, s”, ;” equal the sample characteristics m, n, s, ;. In this case the 
Bayes method is reduced to the prediction method and equation (4.14) becomes equation 
(4.11); if � is known, equation (4.10) is used. This particular form of the Bayes method, when 
no previous information is available, is considered in international documents CEN [1] and 
ISO [2, 3].  
 
Example 4.4  

If previous experience were available for example 4.3, the Bayes method could be 
used. Suppose that the information is 
 m’ = 30,1 MPa, v(�) = 0,50, s’ = 4,4 MPa, v(�) = 0,28. It follows from equation (4.13) that 

 6
28,02

1,1
50,0
1

1,30
4,4

2

2
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�

�-	



�
�



�� '' ;n   

Further on these values are thus considered: n’ = 0 and ;’ = 6. Because ; = n – 1 = 4, 
it follows from equation (4.12) 

 n” = 5, ;” = 10, m” = 29,2 MPa, s” = 4,5 MPa. 
From equation (4.14) the fractile estimate follows as 

 MPa3,205,41
5
181,12,29, �� ���Bayespx   

where the value t p
'' = 1,81 is given in Table 4.7 for + = 0 and ;” = 10. The resulting strength 

is thus greater (by 10%) than the value obtained by the predictive method.  
If the population has a log-normal distribution with the skewness + = 1, then it follows 

from equation (4.14) considering the value t p
'' = 1,48 given in Table 4.7 that 

 MPa9,215,41
5
148,12,29, �� ���Bayespx   

which is a value greater by 8% than the Bayes estimator for + = 0.  
 

Examples 4.3 and 4.4 clearly showed that the estimator of characteristic strength (the 
fractile with a probability p = 0,05) assessed from one sample may be expected within a broad 
range (in Examples 4.3 and 4.4 from 9,9 MPa to 21,9 MPa), depending on the applied 
method, required confidence, previous information, and on assumptions concerning the 
population. Note that besides the alternatives considered in Examples 4.3 and 4.4 concerning 
confidence level and skewness,  knowledge of the standard deviation � of the population and 
the assumption of a normal distribution or even a negative skewness (in case of some high 
strength materials) may be applied.  

In general, more significant differences in the resulting fractiles may occur when the 
design values of strength are estimated, i.e. fractiles corresponding to a small probability, than 
in the case where characteristic values (p < 0,001) are considered. However, a direct 



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

70 

estimation of such fractiles from very small (n < 10) or small samples (10 < n < 30) of the 
population could be done only if a sufficient amount of information concerning the 
distribution of the relevant random variable is available. In such a case, it is advisable to 
compare the results of a direct assessment of the design value with an indirect assessment 
when the characteristic value is estimated first as a 5% fractile and then the design value is 
determined using material partial factors.  
 
4.6 Estimation of fractiles according to Eurocodes
 

Eurocode 1 [1] gives coefficients for estimation of a fractile of a random variable with 
normal distribution (asymmetric distributions are not considered for the fractile estimation) 
from a sample for three probabilities p = 0,05 (for characteristic value xk), p = 0,001 (for the 
design value xd of the dominant variable) and for p = 0,10 (for design value xd of the non-
dominating variable). As already mentioned above, the characteristic values xk and the design 
values xd are defined as fractiles xp, which correspond to a given probability p (application of 
these variables in structural design is explained in the following chapters).  

For characteristic values of material properties a fractile corresponding to the 
probability p  = 0,05 is usually considered (however, for the variables which describe variable 
loads the probability p is usually less than that), i.e. it holds 

 P(X - xk) = 0,05 (4.15) 
For the design values xd of dominating variables it holds approximately that p = 0,001 (or 
another value close to this one), i.e. it holds 

 P(X - xd) = 0,001  (4.16) 

Finally, for the design values xd of non-dominant variables it holds approximately that p = 0,1, 
i.e. it holds that  
 P(X - xd) = 0,1 (4.17) 
A more detailed description of dominating and non-dominating variables is given in the 
following chapters. 

The following Tables 4.8 and 4.9, which give the required coefficients for the 
estimation of variables xk and xd according to equations (4.15) and (4.15), are adopted from 
the document [1] in its original version, even though the first Table 4.8 partially overlaps with 
the precedent Tables 4.3 and 4.4. Table 4.10 is taken from the pre-standard version of EN 
1990 (denoted ENV 1991-1). Let us note that all the coefficients in [1] are denoted by the 
symbol kn, which is used also in the following tables.  
 
Table 4.8. Coefficients kn for a 5% characteristic value (see Tables 4.4 and 4.3). 

 Sample size n 
Coefficient 1 2 3 4 5 6 8 10 20 30 � 
� up(1/n+1)1/2, �  known 2,31 2,01 1,89 1,83 1,80 1,77 1,74 1,72 1,68 1,67 1,64 
� tp(1/n+1)1/2, �  unknown – – 3,37 2,63 2,33 2,18 2,00 1,92 1,76 1,73 1,64 
 
Table 4.9. Coefficients kn for a design value xd of a dominating variable, P(X - xd) = 0,001.  

 Sample size n 
Coefficient 1 2 3 4 5 6 8 10 20 30 � 
� up(1/n+1)1/2, � known 4,36 3,77 3,56 3,44 3,37 3,33 3,27 3,23 3,16 3,13 3,09 
� tp(1/n+1)1/2, �  unknown – – – 11,4 7,85 6,36 5,07 4,51 3,64 3,44 3,09 
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Table 4.10. Coefficients kn for a design value xd of a non-dominating variable, P(X - xd) = 0,1. 

 Sample size n 
Coefficient 1 2 3 4 5 6 8 10 20 30 � 
� up(1/n+1)1/2, �  known 1,81 1,57 1,48 1,43 1,40 1,38 1,36 1,34 1,31 1,30 1,28 
� tp(1/n+1)1/2, �  unknown – 3,77 2,18 1,83 1,68 1,56 1,51 1,45 1,36 1,33 1,28 
 

The assumption concerning the knowledge of the standard deviation � is replaced 
(inaccurately) in EN 1990 [1] by the assumption that the coefficient of variation w is known. 
The original version of Table 4.9 [1] gives for the sample size of � a wrong value of 3,08 for 
the coefficients (the correct value is 3,09). Note that when the knowledge of the standard 
deviation � is assumed, Tables 4.8 to 4.10 give coefficients for the sample size n = 1. 
However, application of these values is associated with significant statistical uncertainties and 
a minimum sample size n = 3 is recommended here. Note that Table 4.10 (for a 0,1 fractile for 
a non-dominant random variable) is included only in the previous pre-standard ENV version 
and not in the final EN 1990 [1].  

 
 
4.7 Fractile estimation using updated distribution

Fractiles may be estimated using updated probability distributions provided that prior 
distribution $(x) and likelihood function $(I|x) are available. Then, using equation (3.70) the 
updated distribution $(x|I) may be found and its appropriate fractile can be determined. The 
following example of concrete strength shows the practical procedure. Note that the updating 
procedure may be particularly effective in the case of existing structures.   

 
Example 4.5

Consider the strength of concrete C20/25 (where 20 MPa is the nominal characteristic 
strength) for which the log-normal distribution LN (30,5) is commonly assumed as a prior 
distribution $(x). Let the additional test lead to a likelihood function $(I|x) described by log-
normal distribution LN(31,5;4,6) (see Figure 4.5). The updated distribution $(x|I), given by 
equation (3.70), may be approximated by log-normal distribution LN(30,3;3,3). Compared 
with the a priori distribution (see Figure 4.5) the updated distribution has a lower variability 
(the coefficient of variability decreases from 0,167 to 0,109) and a greater characteristic 
strength (5% fractile), which increases from 22,5 MPa to 25,2 MPa. Obviously updating leads 
to a considerably greater characteristic strength than that predicted by the a priori distribution.  
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Figure 4.5. Updating of concrete strength distribution. 
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5 ELEMENTARY RELIABILITY THEORY 
 
 
5.1 Basic concepts
 

The fundamental task of the theory of structural reliability is the analysis of a simple 
requirement that the action effect E (expressed in a suitable unit) is smaller than the structural 
resistance R. This condition can be written in the form of the inequality 

 E - R  (5.1) 
The condition (5.1) describes a desirable (satisfactory, safe) state of a considered 

structural component. It is assumed that structural failure occurs when the condition (5.1) is 
not satisfied. Thus, an assumed sharp (unambiguous) distinction between a desirable (safe) 
and undesirable (failure) state of the structure is given by the equality  

 R � E = 0  (5.2) 

Equation (5.2) is the fundamental form of the so-called limit state (performance) 
function. It should be noted, however, that the assumption of a sharp boundary between 
desirable and undesirable states is a simplification that might not be suitable for all structural 
members and materials as indicated in the following example 5.1.  
 
Example 5.1 

A steel tie rod from Figure 5.1 has a resistance in axial 
tension given as R = � d2 fy / 4, where d denotes the diameter of 
the rod and fy the yield point. The rod is loaded by a weight E 
= V:, where V denotes the volume and : the density of the 
suspended mass. Thus the condition (5.1) has the form 

 V: - � d2 fy / 4  
The limit state function follows from the above inequality as 

 � d2 fy / 4 � V: = 0   

In this example, the limit state is defined as the state when the 
stress in the rod reaches the yield point fy. This simplification is 
accepted in many common cases, but it may not correspond to the 
actual failure of the rod, in particular when structural steel with 
significant ductility and strain hardening is used.  
 

Both the variables E and R are generally random variables 
and the validity of inequality (5.1) cannot be guaranteed 
absolutely, i.e. with the probability equal to 1. Therefore, it is necessary to accept the fact that 
the limit state described by equation (5.2) may be exceeded and failure may occur with a 
certain probability. The essential objective of reliability theory is to assess the probability of 
failure pf and to find the necessary conditions for its limited magnitude. For the simple 
condition in the form of inequality (5.1), the probability of failure may be formally written as 

 pf = P(E . R)  (5.3) 

The random character of the action effect E and the resistance R, both expressed in 
terms of a suitable variable (performance indicator) X (i.e. stress, force, bending moment, 
deflection) is usually described by an appropriate distribution function, i.e. by distribution 

 

E 

Figure 5.1. A tie rod. 

R 
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functions #E(x), #R(x) and by corresponding probability density functions $E(x), $R(x), where 
x denotes a general point of the considered variable X used to express both of the variables E 
and R. Distributions of the variables E and R further depend on appropriate parameters, for 
example on moment parameters �E, �E, +E, �R, �R and +R. Let us further assume that E and R 
are mutually independent (which may be achieved by an appropriate transformation).  

Figure 5.2 shows an example of probability density functions of both the variables E 
and R and their mutual location. Types of distribution and their parameters indicated in 
Figure 5.2 are just indicative information. In particular, the moment parameters (the means 
and standard deviations) may be considered as relative values related to the resistance mean 
�R (i.e. normalised by �R). 

 

Figure 5.2. Action effect E and resistance R as random variables. 
 

Note that the probability density functions $E(x) and $R(x) shown in Figure 5.2 
overlap each other and, therefore, it is clear that unfavourable realisations of the variables E 
and R, denoted by small letters e and r, may occur in such a way that e . r, i.e. the load effect 
is greater than the resistance and failure may occur. Obviously in order to keep the failure 
probability pf = P(E>R) within acceptable limits, the parameters of variables E and R must 
satisfy certain conditions (concerning the mutual location and variances of both the 
distributions) depending on their types of distribution. 

The desired conditions will certainly include the trivial inequality �E - �R (see 
Figure 5.2). Obviously, this “requirement for mutual location” of both the distributions is not 
sufficient to ensure the specified failure probability pf. The correct conditions should 
obviously also include requirements for variances of both variables. This will be clarified in 
the following discussion of fundamental cases of structural reliability. 
 
 
5.2 Fundamental cases of one random variable 
 

Consider first a special case when one of the variables E and R, say the action effect E, 
has a very low (negligible) variability comparing to the variability of the resistance R. Then E 
may be considered a non-random (deterministic) variable, i.e. a variable that always attains a 
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certain fixed value e0 (E = e0). In some cases this assumption may certainly be considered a 
reasonable approximation. One of these cases may be the loaded tie rod from Example 5.1, 
where the weight F of the suspended mass can be determined with sufficient accuracy (i.e. 
without any significant uncertainty). This special case is illustrated in Figure 5.3, where the 
action effect is indicated by a fixed value e0 = 80 (�E = 80, � E = 0) and the resistance by the 
log-normal distribution having the mean � R = 80, � R = 10 (all numerical values being 
normalised dimensionless quantities). 

 

 
Figure 5.3. The deterministic effect of actions E and random resistance R. 

 
 

The probability of failure pf for the special case of the deterministic load effect of 
actions shown in Figure 5.3 may be assessed directly from the distribution function #R(x), 
similar to the case of a fractile. The value e0 may be considered as simply a fractile of the 
resistance R for which the probability pf may be calculated using equation (3.1)  

 pf = P(R - e0) = #R(e0)  (5.4) 

The distribution function #R(e0) is usually assessed from tables for a standardised random 
variable U, for which the value u0 corresponding to e0 is computed. It follows from the 
transformation formula (3.14) that 

 u0 = (e0 � μR) / �R  (5.5) 
Then the probability of failure is given as 

 pf = P(R - e0) = #LN,R(e0) = #LN,U(u0)  (5.6) 

where # LN,U(u0) is the value of the distribution function of a standardised random variable of 
the log-normal distribution.  

Note that the value –u0 is the distance of the fixed value e0 of the action effect E from 
the mean �R of the resistance R expressed in the units of the standard deviation �R. If the 
distribution of the resistance R is normal (not log-normal), then the defined distance is called 
the reliability index �  
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 � = (�R � e0) / �R  (5.7) 
and the probability of failure may be expressed by the relation 

 pf = P(R - e0) = #U(��)  (5.8) 

If the resistance R has a different distribution from normal, then the reliability index � 
is formally defined as a negative value of a standardised random variable corresponding to the 
failure probability pf. Thus, in general 

 )(1
fU p�#���  (5.9) 

where )(1 p fU#� �  denotes the inverse distribution function of a standardised normal 
distribution. As its numerical values are more suitable than the values of the failure 
probability, the reliability index � defined by equation (5.9) is a commonly used measure of 
structural reliability.  
 
Example 5.2 

Consider that resistance R has a mean �R = 100 (expressed in dimensionless units), 
standard deviation �R =10 (the coefficient of variation is thus w = 0,10). For the deterministic 
effect of actions it holds that e0 = 80 (see Figure 5.3). If R has a normal distribution, then the 
reliability index follows directly from equation (5.7)  

 � = (100 � 80) / 10 = 2  
and the probability of failure follows from relation (5.8) 

 pf = P(R - 80) = #U(�2) = 0,023  

where #u(�2) is the value of the distribution function of the standardised normal distribution. 
However, if the distribution of R is not normal but log-normal with the lower bound at 

zero (according to equation (3.23), the skewness + = 3w + w3 = 0,301), then it follows from 
equation (5.5) 

 u0 = (80 � 100) / 10 = �2  
The probability of failure pf is then given as 

 pf = P(R - 80) = #LN,U(�2) = 0,014   

where #LN,U(�2) is the distribution function of the standardised random variable U with the 
log-normal distribution having the lower bound at zero (the skewness + = 0,301). The 
resulting probabilities do not differ significantly but this is because their values are rather 
high.  

If the fixed value of an action’s effect decreases to e0 = 70, then for the normal 
distribution of the resistance R the reliability index is � = 3 and the probability of failure is  

 pf = P(R - 70) = #U(�3) = 0,00135   

If the distribution of the resistance R is the log-normal distribution with the lower 
bound at zero, then  

 pf = P(R - 70) = #LN,U(�3) = 0,00021  

The reliability index defined by equation (5.9) is � = 53,3)00021,0(1 �#� �
U , i.e. greater than 

the value 3 valid for the normal distribution of the resistance R.  
Obviously, when the load effect is only e0 = 70, the resulting failure probabilities are 

remarkably lower than in the case when e0 = 80. Furthermore, the numerical example also 
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shows that the assumption concerning the type of distribution plays an important role and may 
be, in some cases, decisive. 
 
 
5.3 Two random variables having normal distribution
 

Assume that both basic variables, the action effect E and resistance R are random 
variables. It is then more complicated to assess the probability of failure defined by equation 
(5.3). A simple solution can be obtained assuming normal distribution for both E and R. Then, 
also, the difference  

 G = R � E  (5.10) 
called the reliability margin, has normal distribution with parameters 

 �G = �R � �E  (5.11) 

 22222 2 ERREERG ��:���   �  (5.12) 

Here :RE is the coefficient of correlation of R and E. It is often assumed that R and E are 
mutually independent and :RE = 0. Equation (5.3) for the probability of failure pf can now be 
modified to  

 pf = P(E . R) = P(G - 0) = #G(0) (5.13) 

and the whole problem is reduced to the determination of the distribution function #G(0), 
which gives the probabilities of the reliability margin G being negative. The distribution 
function #G(0) is usually determined using the transformation of the variable G to the 
standardised random variable U given by equation (3.14). Using this equation, the value u0 
corresponding to the value g = 0 is given as  

 u0 = (0 � �G) /�G = � �G /�G  (5.14) 
The probability of failure is then given as 

 pf = P(R - E) = #G(0) = #U(u0)  (5.15) 

The probability density function #G(g) of the reliability margin G is shown in Figure 5.4, 
where the grey area under the curve #G(g) corresponds to the failure probability pf. 

Assuming that G has the normal distribution, the value –u0 is called the reliability 
index, which is commonly denoted by the symbol �. In the case of the normal distribution of 
the reliability margin G, it follows from equations (5.11), (5.12) and (5.14) that the reliability 
index � is given by a simple relationship  
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If the quantities R and E are mutually independent, then the coefficient of correlation 
:RE vanishes (:RE=0). Thus, the reliability index � is the distance of the mean �G of the 
reliability margin G from the origin, given in the units of the standard deviation �G.  
 
Example 5.3  

Consider again the example 5.2, in which the resistance R and the load effect E are 
mutually independent random variables (:RE=0) having normal distribution. The resistance R 
has the mean �R = 100, variance �R = 10 (the coefficient of variation is therefore only w = 
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0,10), and the effect of actions E has the mean �E = 80 and �E = 8 (all expressed in 
dimensionless units). It follows from equation (5.11) and (5.12) that  

 �G = 100 – 80 = 20  

 81,12810 2222 � �� G   

As both basic variables R and E have the normal distribution, the reliability index � follows 
directly from equation (5.7) 

 � = 20 / 12,81 = 1,56   
and the probability of failure follows from relation (5.8) 

 pf = P(G - 0) = #U(�1,56) = 0,059   

  

Figure 5.4. Distribution of the reliability margin G. 
 
 

If the variables E and R are not normal, then the distribution of the reliability margin 
G is not normal either, and the above-described procedure has then to be modified. In a 
general case, the numerical integration or transformation of both variables into variables with 
normal distribution can be used. The transformation into normal distribution is used primarily 
in software products. 

There is, however, an approximate simple procedure that can provide a good first 
assessment of the failure probability pf. The reliability margin G may be approximated by 
three-parameter log-normal distribution. Assume that the distributions of E and R depend on 
the moment parameters �E, �E, +E, �R, �R and +R. The mean and the variance of the reliability 
margin G may be assessed from the previous equations (5.11) and (5.12) which hold for 
variables with an arbitrary distribution. Assuming mutual independence of E and R, the 
skewness +G of the reliability margin G may be estimated using the following approximate 
relation 
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It is then assumed that the reliability margin G can be described with sufficient 
accuracy by a log-normal distribution with determined moment parameters �G, �G and +G 
(equations (5.11), (5.12) and (5.17)). It shows that this approximation offers satisfactory 
results if the probability of failure is not too small.  
 
Example 5.4 

Consider a tie rod having a rigidity R and bearing a suspended load of a weight E. Let 
R be a log-normal variable with origin at zero having the parameters (expressed again in 
relative dimensionless units) �R = 100 and �R = 10 (and therefore +R = 0,301), E has the 
Gumbel distribution with moment parameters �E = 50 and �E = 10 (it follows from section 3.7 
that +E = 1,14).  

The moment parameters of the reliability margin are assessed according to equations 
(5.11), (5.12) and (5.17) 

 �G = �R � �E = 100 – 50 = 50  

 14,141010 222222 � � � ��� ERG   
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For a standardised random variable it follows from equation (5.14) that 

 u0 = � �G / �G = � 50 / 14,14 = � 3,54   

For the log-normal distribution having the skewness +G = � 0,30 it holds that 

 pf = P(R - E) = #LN,U(�3,54) = 0,00101   

which corresponds to a reliability index � = 3,09. A more precise result obtained by the 
application of the software VaP [25] is pf = 0,00189.  

However, when skewness is not taken into account in the assessment of probability, it 
follows from the standardised normal distribution that 

 pf = P(R - E) = #U(�3,54) = 0,00020  
which differs significantly from the result when the log-normal distribution was considered.  
 
 
5.4 Two random variables having general distribution
 

The exact solution of the probability of failure pf defined for the case of two random 
variables E and R by equation (5.3) may be obtained by integration. Figure 5.5 is used to 
explain the integration procedure. Let the event A denote the occurrence of an action effect E 
in the differential interval -x, x+dx.. The probability of the event A is given as 

 P(A) = P(x - E - x+dx) = $E(x) dx  (5.18) 

Let us denote B as the event that a resistance R occurs within the interval -–�, x.. 
Probability of the event B is, according to section 3.1, given by the relation 

 P(B) = P(R - x) = #R(x) (5.19) 
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The differential increment of the probability of failure dpf corresponding to the 
occurrence of the variable E in the interval -x, x+dx. is given by the probability of 
simultaneous occurrence of the events A and B, i.e. by the probability of their intersection A � 
B. According to the principle of multiplication of probabilities (2.22), it holds that  

 dpf = P(A � B) = P(A) P(B) = P(x - E - x+dx) P(R - x) = $E(x) #R(x) dx  (5.20) 
The above-mentioned assumption of mutual independence of the variables E and R, 

and thus also of the events A and B, is applied here. 
 

Figure 5.5. Distribution of variables E and R. 
 
 

The integration of the differential relationship (5.20) over the interval in which both 
the variables E and R occur simultaneously (generally the interval -–�, �.) leads to the 
relation 

 xxxp RE d )()(% #$�
�

��
f  (5.21) 

The integration of the relation (5.21) usually has to be carried out numerically or using 
the simulation methods of Monte Carlo.  
 
Example 5.5  

The action effect E and the resistance R are described by a log-normal distribution 
with the same parameters as in Example 5.4 (the Gumbel distribution for E was simply 
approximated by a log-normal distribution having the same parameters). The approximate 
solution in example 5.4, based on the log-normal distribution with the lower bound at zero, 
leads to the probability of failure pf = P(R - E) = #LN,U(�3,54) = 0,00100. Numerical 
integration, according to relation (5.21) using the programme MATHCAD, leads to a solution 
pf = P(R - E) = 0,00187, the programme VaP suggests a solution pf = P(R - E) = 0,00189, 
which can be considered a very good approximation. 
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Figure 5.6 shows the variation of the probability of failure pf with the coefficients of 
skewness +E and +R for the same parameters of variables E and R (�R = 100, �R = 10, �E = 50 
and �E = 10) as in Example 5.4 and 5.5. The probability of failure pf is assessed by direct 
integration using the programme MATHCAD. It follows from Figure 5.6 that the probability 
of failure pf depends greatly on the skewnesses +E and +R (therefore on assumed theoretical 
models), and in practical conditions, can differ by several orders of magnitude, even when the 
means and the standard deviations of the variables E and R remain the same.  

 
  

 
Figure 5.6. Variation of the probability of failure pf with the coefficients of skewness +E and 

+R for �R = 100, �R = 10, �E = 50 and �E = 10. 
 
 

Thus, it appears that the determination of failure probability in the case of a simple 
example described by inequality (5.1), where only two random variables E and R are 
involved, is easy only when both the variables are normally distributed. If they have other 
distributions, the exact solution is more complicated and the resulting values depend 
significantly on the assumed types of distributions. The approximate solution assuming for E 
and R a general (three-parameter) log-normal distribution provides a good first estimate 
failure probability. The obtained values should be, however, verified by more exact 
procedures considering appropriate theoretical models of E and R. 
 
 
5.5 Design point in Eurocodes
 

Various simplifications are accepted in order to enable practical application of 
important principles of the theory of reliability and their effective applications in operational 
documents like Eurocodes. Figure 5.7, taken from EN 1990 [1], illustrates basic probabilistic 
principles accepted for developing the partial factor method in Eurocodes. The basic variables 
E and R considered above are indicated in a two-dimensional graph together with the 
fundamental limit state function (5.10). 

The horizontal axis shows the ratio R/�R, the vertical axis the ratio E/�E. It is assumed 
that the variables E and R are independent and both normally distributed. Consequently the 
joint probability distribution function can be represented by concentric circles corresponding 
to different levels of the probability density. The assumption of the normal distribution may 
be in some cases (see examples 5.5 and 5.6) an unrealistic hypothesis, which might provide an 
approximation only. However, as described later, the actual distributions of both the basic 
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variables E and R can be transformed at a given point into the normal distributions and, 
therefore, Figure 5.7 may be considered as indicating a specific case of variables after such a 
transformation.  

 

 
 

Figure 5.7. Design point. 
 
 
The safe (desirable) region, where the condition (5.1) is satisfied, is located under the 

failure boundary (under the diagonal of the axes), the failure (undesirable) region lies above 
the diagonal. The design point (ed, rd) can be any point lying on the failure boundary (the 
diagonal). However, it has been shown [21, 22, 23, 24] that the best option is the point on the 
limit state function closest to the mean (�E, �R). Then important properties (like consistency 
and invariance of the solution under different formulations of the limit state function and 
choice of basic variables) are assured. Accepting this finding, the design point coordinates 
follow from Figure 5.7 in the form  
 ed = �E � +E��E  (5.22) 

 rd = �R � +R��R  (5.23) 

where +E and +R denote here the so-called FORM sensitivity factors of the variables E and R, 
and not the skewness as in the previous sections (such unpleasant ambiguity is accepted in 
order to use the same notation as the documents CEN and ISO [1, 2] ). The “minus” signs in 
equations (5.22) and (5.23) are used consistently with the convention provided for the 
sensitivity factors +E and +R in Eurocode [1]). 

It follows from Figure 5.7 for the weight factors +E and +R (direction cosines of the 
normal to the failure boundary), considering the convention in equations (5.22) and (5.23) 

 ���+ 22/ REEE  ��  (5.24) 

 ���+ 22/ RERR  �  (5.25) 

 
In Eurocodes an approximation of these sensitivity factors by fixed values is further accepted 

 7,0/ 22 �� �� ���+ REEE  (5.26) 
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 8,0/ 22 � � ���+ RERR  (5.27) 

while the validity of such an approximation is delimited in EN 1990 [1] by means of a 
condition for the ratio of the standard deviations in the form  

 0,16 - �E / �R - 7,6 (5.28) 

When this condition is not satisfied, it is recommended that the weight factor + = ±1,0 
is used for a variable having the greater standard deviation. Let us remark that this 
simplification is on the safe side as the sum of squared direction cosines should be equal to 1.  

The design values ed and rd of the variables E and R are thus defined as the fractiles of 
the normal distribution  

 P(E . ed) = #U(++E�) = #U(� 0,7�)  (5.29) 

 P(R - rd) = #U(�+R�) = #U(� 0,8�) (5.30) 

where #U(u) denotes a standardised distribution function of normal distribution. If � = 3,8, 
then the design values ed and rd are fractiles corresponding approximately to probabilities 
0,999 and 0,001. Note that in equation (5.29) the use of the symmetry of normal distribution 
is taken into account, i.e. of the relationship 1 � #U(�+E�) = #u(++E�).  

If the load or resistance models contain several basic variables (other loads, several 
materials, geometrical data), equations (5.29) and (5.30) are used for the dominating variables 
(the most significant for the considered structural member) only. For other (non-dominating 
or accompanying) variables the requirements on the design values are decreased by reducing 
the reliability index � using factor 0.4, thus   

 P(E . ed) = #U(+0,4+E�) = #U(� 0,28�) (5.31) 

 P(R - rd) = #U(–0,4+R�) = #U(� 0,32�) (5.32) 

If the reliability index � = 3,8, the design values of non-dominant variables are fractiles 
corresponding approximately to the probabilities 0,9 and 0,1.  

Thus, the design values ed and rd are the upper fractiles (for actions) or the lower 
fractiles (for resistance), corresponding to certain probabilities of being exceeded (actions) or 
not reached (resistance). For the dominant variables, the probabilities are given by the 
distribution function of the normal standardised distribution for values u = ++E� and –+R�, in 
the case of non-dominant variables for reduced values u = +0,4+E� and –0,4+R�. These 
probabilities (for the lower fractile approximately 0,001 for dominant and 0,1 for non-
dominant variables) are then used to determine the design values of the basic variables having 
an arbitrary type of (non-normal) distribution. Note that in the case of upper fractiles (actions) 
the complementary probabilities (0.999 and 0.9) and appropriate probability distributions are 
to be considered (see chapter 4).  
 
Example 5.6  

The design values ed and rd of the variables E and R from example 5.4 will be assessed 
assuming that the reliability index � = 3,8, +E = � 0,7 and +R = 0,8. According to equation 
(5.29), it holds for E that  

 P(E . ed) = #U(+E�) = #U(�2,66) = 0,0039   

The complementary probability is therefore 0,9961 and we obtain from equation (4.5) 

 ed = � � (0,45 + 0,78ln(�ln(p)))� = 50 – (0,45 + 0,78�ln(�ln(0,9961)))�10 = 88,75  
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We remark that when the normal distribution is assumed, we obtain from equation (4.5) 

 ed = � + up� = 50 + 2,66 � 10 = 76,6   
According to equation (5.30), it holds for R  

 P(R - rd) = #U(�+R�) = #U(�3,04) = 0,0012   

For the log-normal distribution with the mean of 100 (units) and the standard 
deviation of 10 (units) it follows from equation (4.4)  

 rd < � exp(unorm,p � w) = 100 � exp(�3,04�0,10) = 73,79   
For the normal distribution we obtain  

 rd = � + up� = 50 – 3,04 � 10 = 69,6   

Obviously, it holds for the design point that ed . rd and the tie rod does not satisfy the 
condition (5.1) (we know from example 5.4 that � is only 3,09). In order to satisfy the 
condition for a reliability index of 3,8, the parameters of the variables E and R would have to 
be modified.  
 
 
5.6 Multivariate case
 

In previous sections the basic case of two random variables and a linear performance 
function have been considered. As a rule more basic variables X1, X2,… Xn have to be 
considered. Variables X1, X2,… Xn are denoted as the vector X [X1, X2,… Xn] and their 
realisations x1, x2, …, xn as the vector x [x1, x2, …, xn]. In the multivariate case the reliability 
margin (5.10) may be generalised as  

G(X1, X2,… Xn) = G(X) (5.33) 

The safe domain of the basic variables is described by the inequality  

G (X1, X2,… Xn) = G(X) > 0 (5.34) 

The unsafe domain of the basic variables is described by the inequality  

G (X1, X2,… Xn) = G(X) < 0 (5.35) 

The limit state function is thus given as  

G(X1, X2,… Xn) = G(X) = 0 (5.36) 

When a non-linear performance function G(X) and more basic variables X (X is a 
vector of basic variables) are considered, failure probabilities pf can be generally expressed 
using the limit state function G(X) as 

 Pf = P(G(X) � 0) = XX
X
%
� 0)(

d)(
G

$  (5.37) 

$(X) is the joint probability density function of the vector of all the basic variables X and the 
inequality G(X) � 0 denotes the failure domain (the equality G(X) = 0 denotes the limit state 
and G(X) � 0 denotes the safe domain). However, such a function may be difficult to find or 
may be very complicated. The integral in equation (5.38) can also be written as multiple 
integral 

 Pf = P(G(X) � 0) = n
G

nXnXX xxxxxx ....ddd)()...()( 21
0)(

2211% $$$
�X

 (5.38) 
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The integral in equation (5.37) or (5.38) indicates how the probability pf can be 
determined provided that the joint probability density function $(X) and densities $Xi(xi) are 
known. In some special cases the integration indicated in equations (5.37) and (5.38) can be 
done analytically, in some other cases, when the number of basic variables is small (up to 5), 
various types of numerical integration may be effectively applied.  

In general (see ISO 2394 [2]), the failure probability pf may be computed using: 
 

 – exact analytical integration; 
 – numerical integration methods; 
 – approximate analytical methods (FORM, SORM, methods of moments); 
 – simulation methods; or 

– by a combination of these methods.  
 
Exact analytical methods can be applied only in exceptional academic cases. 

Numerical integration can be applied much more frequently. The most popular computational 
procedures to determine the failure probability constitute approximate analytical methods. In 
complicated cases simulation methods or their combination with approximate analytical 
methods are commonly applied. Most of the commercially available software products 
include approximate analytical methods and various types of simulation methods.  

 
Example 5.7

To illustrate the general concepts described above consider again the tie rod described 
in Example 5.1 (see Figure 5.8). The resistance of the rod is given by a non-linear R = � d2fy 
/4, where d denotes the diameter of the rod (in general a random variable), fy is the yield point 
(a random variable of considerable deviations). Assume that the rod is carrying a 
deterministic mass E = F. The reliability margin (5.33) has therefore the form  

 G(X) = g(d, fy, F) =  � d2fy /4 � F > 0 
The limit state function is given as 

G(X) = g(d, fy, F) = � d2fy /4 � F = 0 

In addition to constants there are three basic variables entering the 
limit state function: d, fy and F. Note that the limit state is defined 
as reaching the yield point fy, which is a commonly accepted 
simplification that may not be adequate for some types of 
construction steel.  

The limit state function may be difficult to show 
graphically in the case of more than two basic variables. For 
given forces F = 100 and 50 kN the limit state function is shown 
as G(X) = 0 in Figure 5.9, where G(X) > 0 corresponds to the safe 
domain and G(X) < 0 the unsafe domain. The limit state function 
is a non-linear smooth curve. Figure 5.9 shows also the means of 
d and fy (30 mm and 290 MPa) and the design points, which are 
derived using the FORM method (described below) and assuming 
normal distribution of d and fy having standard deviations 3 mm and 25 MPa respectively.  

In accordance with equations (5.37) or (5.38) the failure probabilities pf can be 
determined by integration over the unsafe domain, which is located below the curve 
representing the limit state function (see Figure 5.9). 

 
 

Figure 5.8. A tie rod. 

E=F

R=� d2fy/4
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Figure 5.9. The limit state function and design points for the tie rod. 
 
 
 

5.7 FORM and SORM 
 
The FORM (First Order Reliability Method) is one of the basic and very efficient 

reliability methods. The FORM method is used as a fundamental procedure by a number of 
software products for the reliability analysis of structures and systems. It is also mentioned in 
EN 1990 [1] that the design values are based on the FORM reliability method. Figure 5.7 
illustrates this concept for two variables E and R. Considering a multivariate case when basic 
variables are described by a vector X [X1, X2,… Xn], the main steps of the FORM method can 
be summarised as follows: 

 
– the basic variables X are transformed into a space of standardised normal variables 
U, and the performance function G(X) = 0 transformed into G’(U) = 0 (Figure 5.10); 
– the failure surface G’(U) = 0 is approximated at a chosen given point by a tangent 
hyperplane (using Taylor expansion); 
– the design point, i.e. the point on the surface G’(U) = 0 closest to the origin, is found 
by iteration (see Figure 5.10); 
- the reliability index � is determined as the distance of the design point from the 

origin (see Figure 5.10) and then the failure probability Pf is given as Pf = #(–�).

The FORM method can be refined by approximating the failure surface G’(U) = 0 by 
a quadratic surface. Such a method is called The Second Order Reliability Method (SORM). 
In literature on structural reliability a number of other improvements and additional 
modifications may be found [21, 21, 22]. 

The first step, transformation of the original variable X into a space of standardised 
normal variables U, is illustrated in Figure 5.10 (a) showing the original basic variables R and 
E and Figure 5.10 (b) showing the transformed variables UR and UE. The transformation into 
the equivalent normal variables at a given point x* is based on two conditions: 

– equal distribution functions: 
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The mean and the standard deviation of the equivalent normal distribution follow from 
equations (5.39) and (5.40)  
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(a) Original basic variables R and E. (b) Transformed variables UR and UE. 

 
Figure 5.10. First Order Reliability Method. 

 
 

The whole computation iteration procedure of the FORM method can be summarised 
in the following ten steps. 

 
1. The limit state function G(X)=0 is formulated and theoretical models of basic 

variables X = {X1, X2, ...Xn} are specified. 
 
2. The initial assessment of the design point x* = {x1*, x2*, ...xn*} is made; for 

example by the mean values of n – 1 basic variables and the last one is determined from the 
limit state function G(x*) = 0. 

 
3. At the point x* = {x1*, x2*, ...xn*} equivalent normal distributions are found for all 

the basic variables using equations (5.37) and (5.38).  
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4. The transformed design point u* = {u1*, u2*, ...un*} of the standardised random 

variables U = {U1, U2, ...Un} corresponding to the design point x* = {x1*, x2*, ...xn*} is 
determined using equation 
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5. Partial derivatives denoted as a vector D of the limit state function in respect of the 
standardised variables U = {U1, U2, ...Un} are evaluated at the design point  
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For a linear limit state function a0 + ∑ aiXi = 0 the derivatives are Di= ai. 
 
6. The reliability index � is estimated as
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For a linear limit state function a0 + ∑ aiXi = 0 the reliability index is given as 
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7. Sensitivity factors are determined as  

 @ A @ A
@ A @ ADD
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�+  (5.47) 

8. A new design point is determined for n – 1 standardised and original basic variables 
from     

 ui* = +i�i (5.48)

xi* = e
Xi

e
X ii

u �� *�  (5.49)

 
9. The design value of the remaining basic variable is determined from the limit state 

function G(x*) = 0.  
 

10. The steps 3 to 9 are repeated until the reliability index � and the design point {x*} 
have the required accuracy.   
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 Note that different sign conventions are used in literature and software products 
concerning the FORM method. In particular, the sensitivity factors in equations (5.23), (5.24) 
and the derivatives in (5.47) sometimes have opposite signs to those indicated in the above-
mentioned equations. The signs of the sensitivity factors and the derivatives of the limit state 
function used here are consistent with those provided in EN 1990 [1].  

 
Example 5.8

Consider the tie rod from Example 5.1 where the resistance R has the log-normal 
distribution LN(100, 10) with the lower bound at zero (the skewness +R = wR + wR

3 = 0,301) 
and the load E has the Gumbel distribution GUM(50, 10). Using the iteration procedure 
indicated above the following results may be obtained: the reliability index � = 2,90, the 
failure probability pf = 0,0019, the design point ed = rd = 89,8, and the sensitivity factors +R = 
0,36 and +E = � 0,93. Almost the same numerical results are obtained when the Gumbel 
distribution is approximated by the three-parameter log-normal distribution having the 
skewness +E = 1,14.  

Note that if both the basic variables R and E have the normal distribution, then the 
reliability index � = 3,54, the failure probability pf = 0,0002, the design point ed = rd = 75, and 
the sensitivity factors +R = 0,707 and +E = � 0,707.  
 
 
5.8 Simulation methods
 

Various simulation methods (direct, adaptive and allocated) are very popular and 
attractive for their simplicity and transparency. All the simulation methods are based on the 
generation of random variables of given distribution. Available software products (EXCEL, 
MATHCAD, MATLAB) include special subroutines for the generation of commonly used 
types of distributions (uniform, normal, log-normal, Gumbel).  

Simulation methods have a number of modifications that can be divided into two basic 
group: 

– zero-one indicator based methods, which operate in the original space of variables X, 
– conditional expectation methods, which can be called semi-analytical methods. 
The first group of the zero-one indicators includes the direct Monte Carlo simulation 

(when the original probability density is applied), the method of importance sampling (when 
the original probability density close to the design point is applied) and the adaptive sampling 
(updated importance sampling). The second group of the conditional expectation consists of 
directional simulation (suitable in the case of a union of events) and axis orthogonal 
simulation (suitable in the case of an intersection of events).  

In the following the direct Monte Carlo method is described briefly. Information 
concerning more sophisticated simulation methods are available in a number of specialised 
references.  

Simulation of a random variable X having an arbitrary distribution #X(x) may be in 
general carried out provided that a generator of random numbers having the uniform 
distribution in the interval <0, 1> is available. If zj denotes realisation of a random Z having 
the uniform distribution in the interval <0, 1>, then the corresponding realisation xj of the 
variable X can be obtained using the inverse of the distribution function )(1 zX

�# , which has 
the definition domain interval <0,1>. Realisations xi of the random variable X can be therefore 
obtained from the relationship  

 )(1
jXj zx �#�  (5.50) 
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Using equation (5.50), realisations xij of all basic variables Xi can be generated and 
then it is verified whether a combination of obtained realisations leads to a failure or not. A 
failure occurs if  

 G(x1i,x2i,x3i,...) < 0 (5.51) 

If the number of all realisations is n and the number of realisations which comply with 
inequality (5.51) is nf, the failure probability pf may be assessed using the classical definition 
of probability based on the ratio  

 pf = 
n
nf  (5.52) 

Obviously, the assessment of the probability pf is more accurate when the number of 
realisations n is sufficiently large. A general rule for the specification of the number n is 
relatively simple. If the expected failure probability is about 10–5, i.e. from the number of 
realisations 105 on average just one should lead to a failure. Then n should be about two 
orders greater, thus n > 107. Note that the coefficient of variation wpf of the failure probability 
can be estimated using formula  

 wpf = (1−pf)0,5(n pf)–0,5 (5.53) 

If pf = 10–5 and n = 107, then it follows from (5.53) that the coefficient of variation is 
wpf = 0,10, which is considered a reasonable accuracy. Clearly, to realise n = 107 generations 
of all the basic variables is a time-consuming, cumbersome procedure. That is why a number 
of modifications of the direct Monte Carlo have been developed (zero-one indicator-based 
methods or conditional expectation methods, methods of Latin Hypercube Sampling, or their 
combination with FORM). These modifications significantly improve the assessment and 
decrease the number of required realisations. A detailed description of these methods is 
available in specialised literature and in manuals to the software products COMREL and VaP 
[24,25]. 

 
Example 5.9

Consider Example 5.4 describing a tie rod R carrying the load E. Assume that R has 
the log-normal distribution with the lower bound at zero, �R = 100 and �R = 10 (+R = 0,301), 
the load effect E has the Gumbel distribution having the parameters �E = 50 and �E = 10 (+E
= 1,14). It is known from Example 5.8 that E may be approximated by the three-parameter 
log-normal distribution. As the failure probability is expected by the value pf = 1,9 10–3 
assessed in Example 5.4 and 5.8, the number of trials should be at least about 105. The 
following Table shows the results obtained by different methods. 

 
Method used for determining pf Β pf 
Second Moment approximation – Example 5.4 3.54 0.00020 
Third Moment approximation – Example 5.4 3.09 0.00101 
FORM – Example 5.8 2.90 0.00189 
Crude Monte Carlo (100000 trials) 2.90 0.00188 
Numerical integration 2.90 0.00187 

 
It follows from the above Table that the second moment approximation provides only 

a very rough estimate. The third moment approximation seems to provide a much better 
result. Obviously the most consistent results are obtained by FORM, crude Monte Carlo 
simulation, and numerical integration. There is practically no difference between the results 
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obtained by these methods, and β = 2,9 and failure probability pf = 0,0019 can be considered 
as a sufficiently accurate estimate of the reliability level.  
 
 
5.9 Target reliability level
 

Probabilistic reliability methods are based on the comparison of the failure probability pf 
with its target value pt or the reliability index � with its target value �t. It is generally required to 
design the structure in such a way that the determined values of the basic variables are close to 
the target values specified in appropriate code provisions, thus  

 pf 6 pt, or � 6 �t (5.54)

The target values of the reliability index �t given in EN 1990 [1] were derived mainly 
from a number of previous reliability studies of structural members made from different 
materials. However, it should be mentioned that the obtained reliability indices depend on many 
factors (the type of component, loading conditions and structural materials) and, consequently, 
have a great scatter. It is known that the results of any reliability study are significantly 
dependent on the assumed theoretical models used to describe the basic variables. Unfortunately 
these models are not unified and have not been used systematically. Still, the recommended 
values of the reliability index may be considered as reasonable average values of the reliability 
level characterising the existing structures. 

Another possibility for specifying the target reliability index or the target failure 
probability is the minimum requirement for human safety from the individual or social point of 
view when the expected number of fatalities is taken into account. This approach is briefly 
described in ISO 2394 [2]. Without going into detail it starts from an accepted lethal accident 
rate of 10–6 per year, which corresponds to the reliability index �t,1 = 4,7. This value corresponds 
to the target reliability index accepted in EN 1990 [1] for an ultimate limit state per one year. 

The reliability index for a period of n years may be then calculated from the following 
approximate equation  

 #(�t,n) = [#(�t,1)]n (5.55) 

from which the approximate value �t,50 = 3,8 may be obtained from �t,1 = 4,7.  
Here #(.) denotes the distribution function of a standardised normal distribution. 

Figure 1 shows the variation of �n with �1 for n = 5, 25, 50 and 100. Note that if the reference 
period T1 is one year, then n indicates the number of years of the reference period Tn (n = Tn). 

Figure 5.11 confirms the data indicated in Table 1.2. For example if the target 
reliability level of a structure is specified by �50 = 3,8 for the design working life T = 50 
years, then it could be verified using the reference period T1 = 1 year and �1 = 4,7. When, 
however, the same reliability index 3,8 is specified for a structure having the design working 
life Tn = 25 years only, thus �25 = 3,8, then the reliability of this structure could be verified 
using the alternative reference period T1 = 1 year and the reliability index �1 = 4,5, similarly 
when �5 = 3,8 then �1 = 4,2 (see Figure 5.11). 

It should be emphasised that both values �t,1 = 4,7 and �t,50 = 3,8 correspond to the 
same reliability level, but to different reference periods considered for the assessment of the 
design values of some actions (1 and 50 years). The reference period may, or may not, 
coincide with the design working life.  

A completely different question is the specification of the reliability index for a 
construction works of a limited design working life. A practical illustration of the numerical 
calculation of the reliability index is shown in Example 5.10. 
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Figure 5.11. Variation of �n with �1 for n = 5, 25, 50 and 100. 

 
 
It should be noted that the actual frequency of failure may be dependent on many factors 

not considered in partial factor design and, consequently, the reliability index � may not 
correspond to actual frequency of structural failure.  

Example 5.10
Consider an agricultural structure with moderate consequences of failure and a limited 

design working life of 25 years. In that case it may be reasonable to specify �t,1 < 4,7, say �t,1 
= 4,2. Using now the equation (5.55), it can be found that for the design working life n = 25 
years  

 #(3,4) = [#(4,2)]25 

and thus �t,1 = 4,2 corresponds to �t,25 = 3,4. Note that using the same equation (5.55) for n = 50 
years, it follows that �50 = 3,2. The correct interpretation of this finding is as follows: if the input 
data (in particular actions) are related to 1 year and the design calculations are done for this 
period, then �1 = 4,2 should be considered; if the input data are related to 25 years, then �t,1 = 3,4 
should be considered in the design verification.  
 
 
5.10 Probabilistic optimisation
  

Probabilistic optimisation is another way of estimating an adequate reliability level. In 
general, with increasing reliability level the cost of a structure increases and unfavourable 
consequences due to structural failure decrease. The basic idea of probabilistic optimisation is 
to find such a reliability level which would minimize the total cost. To illustrate this concept a 
simple objective function describing the total cost is considered in the following. Assume that 
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the total expected cost Ctot of a structural member can be approximated by the objective 
function   

 Ctot = C0 + CP P + Cf pf(P) (5.56) 

Here C0 denotes the initial cost, which is assumed to be independent of the decisive parameter 
P, the product CP P is the additional cost of the member caused by the chosen magnitude of 
the parameter P (CP denotes the cost per unit parameter P), the product Cf pf(P) is the 
expected cost caused by the failure of the structural member. The necessary condition for the 
minimum of the total cost is given by the derivative 

9Ctot / 9P= CP + Cf 9pf(P)/ 9P = 0 (5.57) 
Thus the optimum P (if it exists) may be determined from the condition   

9pf(P)/ 9P = � CP /Cf  (5.58) 

Equation (5.58) can be used in a computer program to determine the optimum value of the 
parameter P. However, it is often less difficult and more transparent to compute the total cost 
Ctot using equation (5.56) or a similar (more sophisticated) objective function.  
 
Example 5.11

Consider the reinforced concrete slab described in the appendix to chapter 1. Consider 
the fundamental objective function (5.56), in which the reinforcement area A is considered the 
decisive parameter P. Figure 5.12 shows the total cost of the slab as a function of the 
reinforcement area A assuming the partial costs CA = 100, Cf =1000 of some financial units. 
The results shown in this example were obtained using the programme COMREL of the 
software product STRUREL [24]. 

 
Figure 5.12. Variation of the total cost of the slab and the reliability index � with the 

reinforcement area A assuming the partial costs CA = 100, Cf =1000 [units].

 

  

0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0013 0.0014 0.0015 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

CA A 

Cf pf(A) 

CA A + Cf pf(A) for CA = 100, Cf =1000 

The cost Ctot – C0 = CA A + Cf pf(A) � � 

A[m2]        

1.5 

2.5 

3.5 

4.5 

5.5 

6.5 



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

94 

It follows from Figure 5.12 that under the given assumptions the optimum 
reinforcement area seems to be close to A = 0,0009 m2, which is the value slightly lower than 
the design area obtained by the partial factor method in the appendix to chapter 1. Figure 5.12 
also shows the variation of the reliability index β with the reinforcement area A. Note that the 
optimum reinforcement area A = 0,0009 m2 leads approximately to the reliability index β = 
4,2 (see Figure 5.12).  

Obviously the optimum area A is dependent on the assumed partial costs CA and Cf . 
Figure 5.13 shows the optimum reinforcement areas A for selected partial costs CA and Cf and 
the reliability index β that is independent of partial costs CA and Cf. The cost per unit 
reinforcement area CA is constant (100 units) and only the cost of failure varies from 10 to 
100000 units. 

 
Figure 5.13. Variation of the total cost and the reliability index � with the reinforcement area 

A for selected partial costs CA and Cf 
 
 
 It follows from Figure 5.13 that with increasing cost of failure Cf the optimum 
reinforcement area A and corresponding reliability index increase. It should be noted that for a 
very low cost Cf (less than or equal to CA) the reliability level may be rather low (less than 
3,5) and may become unacceptable. The reliability requirements on the maximum failure 
probability may then turn out to be decisive and the optimal reinforcement area A cannot be 
used.  
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6 TIME-VARIANT RELIABILITY 

6.1 General considerations
 
 Time-dependent phenomena affecting the reliability of civil engineering structures and 
systems are caused primarily by two types of basic variables:  

– variable actions (for example imposed and climatic actions), 
– material properties (deterioration of construction materials). 

In some cases, geometric parameters (including deflections) may also change considerably in 
time and affect structural reliability. Basic variables, describing time-dependent phenomena 
(for example wind pressure, snow load, carbonation depth, deflection), are, in general, 
continuous time-dependent random functions (stochastic processes), which require 
sophisticated mathematical tools. However, for practical purposes of reliability analysis, the 
random functions are usually approximated by simplified models (jump processes or jump 
processes with intermittencies). The step-wise functions offer sufficiently accurate models 
provided that their parameters are adjusted to the character of the variable, to the properties of 
actions and materials.  
 In the case of time-dependent basic variables, the failure of a structure may occur due 
to two different events: 

– first excess of a certain limit; and  
– fatigue or accumulation of another type of material deterioration. 

In some cases it is possible to reduce a time-dependent problem to a time-independent one. 
Such a simplification is possible when only one source of action is involved and when the 
failure is caused by the first excess of a certain limit. In this case the random function 
representing an action may be replaced by a probability distribution function describing the 
action’s variability over the given time period (a required design working life), for which the 
probability of failure is to be assessed. The mean of the alternative distribution may be 
determined as the expected value of the maximal action over the given period, the standard 
deviation of the distribution corresponds to the variance of the maximal action’s expected 
value.  
 An analogical procedure may be used in the case of failure due to fatigue. Using the 
Miner-Palmgren rule of accumulation of deterioration over a given period, a time-dependent 
fatigue strength with a corresponding probability distribution function may be expressed 
considering the usual dependence on the number of cycles and the stress.  
 However, in more complicated cases with more time-dependent basic variables, it is 
necessary to use appropriate models of time-dependent quantities and processes. The next 
section gives a concise description of some of the most important concepts applied in time-
variant reliability analysis. 
 
 
6.2 Time-variant actions
 
 Consider a time-variant action (a random function) Q, for which one realisation of  
instantaneous values is shown in Figure 6.1. A probability density function of instantaneous 
values Q denoted as $Q(q) is indicated in Figure 6.1 on the right. The corresponding 
distribution function is #Q(q). Suppose that the considered time period (a required design 
working life) T is divided into small time intervals I (for example one year). In the Eurocodes, 
such a time period is denoted as the reference period. For each time interval I a maximal 
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value (annual maximum) Qi,max is determined. These maximum values form a new random 
variable of annual extremes Qmax, which have a certain probability density function $Qmax(q) 
(for example a Gumbel distribution) as shown in Figure 6.1 on the right. Note that symbol q 
denotes here a particular value of Q or Qmax. A distribution function corresponding to the 
probability density function $Qmax(q) is denoted as #Qmax(q).  

 
 

Figure 6.1. Time-dependent function of a random action Q. 
 
 
 The distribution functions $Q(q) and $Qmax(q) are shown in Figure 6.2. Obviously, the 
mean of the variable Qmax is greater than the mean of Q.  
 

 
Figure 6.2. Distribution functions $Q(q) and $Qmax(q). 

 
 
 The definition of the characteristic value of an action is based on the distribution 
function #Qmax(q), which is based on the specified reference period I (for example one year). 
Note that the required design working life T is usually 50 to 100 years. The characteristic 
value qk is defined as the upper fractile of the distribution #Qmax(q) corresponding to the 
specified probability p (for example 0,02), so that it holds that 

 P(Qmax . qk) = 1 – #Qmax(qk) = p  (6.1) 
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 Thus, the probability p refers to the distribution #Qmax(q) valid for a reference period I 
and gives the probability that the characteristic value qk will be exceeded by the maximal 
value Qmax assessed for the reference period I.  
 If the characteristic value qk is exceeded by the maximum value Qi,max in each of the 
time periods I with a probability p, then after a certain number of reference periods I the 
characteristic value qk will be exceeded with a probability equal to 1. Such a time period is 
called the return period and is denoted as Tret. It holds approximately that the number of 
reference periods is 1/p, and the mean return period is then  

 Tret = I/p = I/(1 � #Qmax(qk)) (6.2) 
The return period is commonly used to describe the characteristic value qk or the significance 
of particular values of various climatic actions. A usual value of the return period fluctuates 
between 50 and 100 years, which corresponds to the required design working life T.  
 
Example 6.1  
 The characteristic value of wind pressure qk is defined for a reference period I = 1 
year and the probability of being exceeded by annual maxima Qi,max is specified as p = 0,02. 
The mean return period Tret is, according to relation (6.2), given as 

 Tret = I /p = 1/0,02 = 50 years   

Therefore, it can be concluded that the characteristic value of wind pressure qk has the mean 
return period of 50 years.  
 
 
6.3. Rectangular wave processes
 
 A rectangular wave renewal process (step-wise or jump process), which is an 
approximation of time-dependent variable actions, is an effective tool used to simplify time-
variant reliability analysis. It is also applied when a combination of two variable actions Q1 
and Q2 is analysed. A rectangular wave representation of a single variable action Q is shown 
in Figure 6.3. Note that the time period is split into small time intervals of generally unequal 
duration. This is a generalisation of the Ferry Borges-Castanheta model for variable actions 
Q, in which the time intervals have a constant duration. 
 The step-wise function (jump or rectangular wave process) shown in Figure 6.3 is an 
approximation of a continuous random function describing a variable action Q when no 
intermittencies in Q(t) are considered. Furthermore, no distribution is considered for the time 
intervals in which new rectangular waves arrive. So, the process is fully characterised by the 
jump rate 7 and the distribution function of the amplitude of the rectangles. The jump rate 7 
should be estimated considering the mean time interval �I  

 7 = 1/�I (6.3) 

It follows that the mean duration of pulses (rectangles) is �I = 1/7. In the analysis, it is further 
assumed that the renewals (rectangles) occur independently of each other. 
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Figure 6.3. A rectangular wave process. 

 
 
Example 6.2
 Consider an imposed load in an office area. It is known that the long-term part of the 
load (furniture and other equipment) is changed on average every 5 years, thus �I  = 5 years. It 
follows from equation (6.3) that the jump rate 7 is  

 7 = 1/�I = 1/5 = 0,2 [1/year]

 
 
6.4. Rectangular wave processes with intermittencies
 
 A more refined model of variable action Q(t) is a rectangular wave renewal process 
with intermittences, which is indicated in Figure 6.4. A detailed treatment of this model may 
be found in literature [2, 24, 31, 32]. The following simplified description is limited to 
practical guidance useful for applications of some software products.  
 It is indicated in Figure 6.4 that there are intervals when the time-dependent variable 
load Q(t) is “on” and intervals when the load Q(t) is “off”. Denote �I the mean of the renewal 
interval (shown in Figure 6.4) and �J the mean duration of the interval, when the load is “on”. 
It is useful to define the so-called interarrival duration intensity of the variable load Q(t) as the 
ratio 
 : = �J /�I = 7�J (6.4) 

Example 6.3
 Consider a wind load, which achieves significant values (storms) 10 times a year. The 
duration of each storm is about 8 hours. In a reliability analysis, the following parameters 
should be therefore considered: 

  

t   

(   

Q   (   t   )   

μI=1/7
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�I= 1/10 [years], 7 = 1/�I = 10 [1/year] 

�I = 1/10 [years], �J = 8 /(365 � 24) = 0,0009 [year], : = �J /�I = 7�J = 0,009 
 Obviously, there might be a great uncertainty in the estimates of the parameters. Then 
it would be wise to determine the sensitivity of the reliability analysis to these parameters or 
to repeat the analysis using reasonable lower and upper estimates.  

 

Figure 6.4. A rectangular wave process with intermittencies. 
 
 
 The interarrival duration intensity ratio : of the variable load Q(t) is applied in time-
variant reliability analysis using the software package STRUREL.  
 
 
6.5 Combination of actions, Turkstra’s rule
 
 The fundamental principle for the assessment of the effect of the combination of 
actions, according to the contemporary international documents [1, 2], is based on the rule 
that the leading action (dominant) is not reduced and is considered at its full value, while the 
other accompanying (non-dominant actions) are reduced by factors �0i � 1. The principles of 
the assessment of the combination of actions will be demonstrated considering two random 
actions Q1(t) and Q2(t). It is assumed that both the actions may be described by step-wise 
(jump) functions as indicated in Figure (6.5) (a rectangular wave renewal process (step-wise 
functions) approximates the random function describing a time-variant action shown in Figure 
6.1).  
 To simplify the problem, it is further assumed that [2] (some terms are explained in  
[22, 24]): 
 

– Q1(t) and Q2(t) are stationary and ergodic processes, 
– all intervals I1 are equal,  
– all intervals I2 are equal, 
– I1 � I2, 
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– if r1 = T/I1 and r2 = T/I2 where T is the reference period, then r1 and r2/r1 are 
integers,  
– Q1(t) and Q2(t) are constant over the intervals I1 and I2,  
– values Q1(t) and Q2(t) in two different intervals are mutually independent,  
– Q1(t) and Q2(t) are independent. 

 

Figure 6.5. Approximation of random actions by step-wise functions. 
 
 For each of the actions Q1(t) and Q2(t) three different distribution functions are further 
determined: 

1. Distribution of original values Q is denoted as #Q(q). 
2. Distribution of maximum values Qmax determined for the reference period T  

 #Qmax(q) = (#Q(q))r (6.5) 

3. Distribution of the maximum value Q1c and Q2c over the interval I1, obviously 
Q1c = Q1 and the distribution of Q2c is 

 #Q2c(q) = (#Q(q))r2/r1 (6.6) 
Figure 6.6 shows the distribution functions considered for the action Q2 for points 1 to 3. 
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Figure 6.6. Distribution functions of the random action Q2. 
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 Assume a linear relationship between the load effect Emax and the actions Q1 and Q2: 

 E = E(Q1, Q2) = a Q1 + b Q2  (6.7) 

where a and b are appropriate factors depending on the structural and loading conditions. The 
maximum action effect Emax of the actions Q1 and Q2 during the whole reference period T can 
be written as  
 Emax = max E(Q1c, Q2c) (6.8) 
where the maximum is considered for all intervals I1 during the reference period T.  
 The resulting action effect may be approximately assessed as the maximum of the 
following values (the so-called Turkstra rule)  
 Emax = E(Q1 max, Q2c) where Q1 is considered as dominant (6.9) 

 Emax = E(Q1c,Q2 max) where Q2 is considered as dominant (6.10) 
which can be also written as 
 Emax = max (E(Q1 max, Q2c), E(Q1c, Q2 max)) (6.11) 
 When the structure is designed by a probabilistic method, the actions according to 
relations (6.8) and (6.11) are considered as random actions having a distribution function as 
shown in Figure 6.6. 
 When the structure is designed by the partial factors method, the design value Emax,d of 
the actions effect E is determined from the relationship 
 Emax,d = max (E(Q1 max,d, Q2cd), E(Q1cd, Q2 max,d)) (6.12) 
where Q1max,d = �Q1Q1k and Q1cd = �Q1�01Q1k and analogous relations hold for Q2. 
  
 
6.6 Combination value of variable actions 
 
 The relationships for combination factors �0 may be derived in several ways. Equation 
(6.12), based on Turkstra’s rule, is applied most often. The design combination value Qcd (it 
may refer to either the action Q1 or Q2) is selected as a fractile of the Qc corresponding to the 
probability #(–0,4+E�), thus  
 #Q(Qcd)=#(–0,4+E�) (6.13) 
where +E = 0,7 is a weighting factor for the variable action Q. The combination factors �0 
follow (6.13) as  
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 If the distribution #Qmax(q) is approximated by the normal distribution, then equations 
(6.14) and (4.2) lead to the formula 
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which may be approximated as indicated in [2] 
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Note that w denotes the coefficient of variation related to the extremes within the reference 
period T (50 years). 



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

102 

 Considering the Gumbel distribution and equation (4.5) for its fractile, the relationship 
(6.14) becomes 
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where w denotes the coefficient of variation of the probability distribution #Qmax(q) related to 
the reference period T (50 years). 
 
Example 6.4
 Consider that an accompanying wind action W is combined with a leading imposed 
action Q assuming a required working life T = 50 years. Considering Turkstra’s rule, annual 
extremes of the wind W should be combined with the 50 years extreme of the imposed load Q. 
For the leading action Q, it is assumed that it changes every 5 years, thus r1 = T/I1 = 50/5 =10, 
for the accompanying action – wind W – annual extremes are considered, thus r2 = T/I2 = 
50/1. It follows that r = r2/r1 = 5. The coefficient of variation w of the 50 years wind 
maximum is expected within the interval from 0,2 to 0,4. The factor �0, determined using the 
three relationships derived above, equations (6.15), (6.16) and (6.17), is shown in Figure 6.7 
as a function of the coefficient of variation w. 
 

Figure 6.7. Factor �0 for wind assuming r = 10. 
 
 It follows from Figure 6.7 that the three expressions used to calculate �0 yield similar 
results. With increasing coefficient of variation w the factor �0 decreases. It is interesting to 
note that for the coefficient of variation w = 0.3 the factor �0 < 0,4, which is considerably 
lower than the value recommended in the present version of EN 1990 (where the value 0,7 is 
indicated). However, if the coefficient of variation w = 0,2, then �0 > 0,4.  
 Equations (6.15), (6.16) and (6.17) are also given in Appendix A to Eurocode 1 [1], 
where other combination values of the variable load Q(t) for usual cases are recommended 
too. Besides the combination values �0Qk of random actions, yet other reductions of the 
characteristic values of random actions are applied in international documents: the frequent 
value �1Qk and the quasi-permanent value �2Qk. Generally these reduced values are called 
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the representative values of random actions. They are applied in various combinations of 
actions for ultimate limit states and serviceability limit states with regard to the type of design 
situation [1]. The frequent value �1Qk of random load Q(t) is determined in such a way that 
the total period of time when this value is exceeded over a certain reference period is a small 
part (0,01) of this interval. The quasi-permanent value �2Qk of the random load Q(t) is 
defined as the value, which is exceeded during a considerable part (0,5) of the reference 
period (this is how it differs from the frequent value). 
 The relationship between the characteristic value Qk, combination value �0Qk, 
frequent value �1Qk and quasi-permanent value �2Qk of a random action is shown in a 
schematic way in Figure 6.8. Relative values of the representative values indicated in Figure 
6.8 correspond approximately to the values recommended in Eurocode 1: �0 6 0,7, �1 6 0,5 
and �2 6 0,3. Detailed tables of recommended values for typical variable actions Q are given 
in Eurocode 1 [1]. The described models and their further improvements can be found in 
recent materials [16, 27].  

Figure 6.8. Representative values of random actions Q. 
 
 
6.7 Frequent and quasi-permanent values

The frequent and quasi-permanent values, Q1 and Q2, of variable actions Q are defined 
through the relative duration of exceeding Q1, J1 = 0,01, and relative duration of exceeding 
Q2, J2 = 0,5. As mentioned above the relative duration is defined as (see Figure 6.8) 
  �K� Tti /)2(1J  

where T denotes a certain reference period. Let us denote the distribution function of non-zero 
Q variable action #Q´(Q) Probability of exceeding Q1 and Q2 may be written as 
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 If the probability of non-zero Q is q, then the relative duration of exceeding Q1 and Q2 
may be written as J1(2) = p1(2) q and the probability as p1(2) =J1(2)/q. It follows then from 
equation (6.18) that the frequent and quasi-permanent values Q1 and Q2 may be expressed as  

 )1( )2(11
2,1 q

Q Q
J

�#� �
"  (6.19) 

The corresponding factors � are then given as 
  kk QQQQ 2211 , �� ��  (6.20) 

Figure 6.9. Frequent and quasi-permanent values of a variable action Q. 
 
 
 
 

 
Figure 6.10. Factors �1 and �2 for frequent and quasi-permanent values of a variable action 
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Assuming Gumbel distribution, equations (6.19) and (6.20) lead to the expression   

 
))]}98,0(ln(ln[78,045,0{1

))]}1(ln(ln[78,045,0{1 )2(1

)2(1 #� �

�#� �
�

w
q

w
J

�  (6.21)  

In equation (6.21) the characteristic value Qk in denominator is considered as 0,98 fractile of 
annual extremes (“point in time”) distribution of Q. Figure 6.10 shows both factors �1 and �2 
for frequent and quasi-permanent values of a variable action Q determined from equation 
(6.21). Note that the coefficient of variation wQ relates to the annual extremes distribution.    

  
Example 6.5

Consider a wind action having 10 storms a year, each of 8 hours duration. Thus the 
probability q = 10/(365�3) = 0,009 and (1�J1/q) = 0,011. Considering wQ = 0,5 it follows 
from Figure 6.10 that �1 = 0,2, the value recommended in EN 1990 [1]. It follows that �2 = 
0,0.  
  
 
6.8 Deterioration of structural members 
 
 Material deterioration due to unfavourable effects of external environment (for 
example of humidity, carbon dioxide and chlorides) represent important time-dependent 
phenomena that may significantly affect structural reliability and durability. Due to a number 
of unknown factors these deterioration processes are usually quite variable. A probabilistic 
approach to their analysis is thus most desirable.  
 The examined resulting quantity, describing the degradation of material, is in fact the 
effect of external influences and is thus denominated as E(t), where t indicates time. The 
assumption is made that it is a monotonously increasing function of time (for example the 
carbonation depth). To preserve the assumed structural properties it is required that this 
quantity does not exceed the general time-dependent structural resistance R(t) (for example 
the thickness of the reinforcement cover layer), which is supposed to be a monotonously 
decreasing function of time t. Figure 6.11 shows an expected shape of the functions E(t) and 
R(t). 
 The basic condition of an acceptable (satisfactory or safe) state is thus the inequality 

 E(t) - R(t) (6.22)  
which is in fact a generalisation of inequality (5.1). Therefore, the next steps follow the 
general procedure described in chapter 5. For monotonous functions E(t) and R(t) condition 
(6.22) leads to the problem of the first excess of a given limit (see the types of failure for the 
time-dependent events given in Section 6.1). 
 Figure 6.11 further indicates that the random quantities E(t) and R(t) are described by 
probability density functions $E(x;t) and $R(x;t) and by the distribution functions #E(x;t) and 
#R(x;t), which are functions – first, of a realisation x of the observed random variable and 
secondly, of a non-random time t (to distinguish the nature of these two quantities we used a 
semi-colon to separate them). The time-dependent probability distributions depend on the 
moment parameters �E(t), �E(t), +E(t), �R(t), �R(t) and +R(t), which, obviously, are generally 
functions of time t.  
  

 
 



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

106 

 
 

 
Figure 6.11. Time-variant functions E(t) and R(t). 

 
 
 
Considering the equations (5.3) and (5.21), the time-dependent probability of failure pf(t), i.e. 
the probability that the condition (6.22) will be violated, may be written in the form  

 xtxtxtRtEPtp ER d);();())()(()(f $%#�.�
�

��
 (6.23) 

 The structural lifetime T may now be defined as the time during which the condition 
(6.22) is violated only with a given probability po (for example 0,05), i.e. the time for which it 
holds 

 pf(T) = p0  (6.24) 

Assuming the monotonous functions E(t) and R(t), the probability pf(t) is also monotonous 
and its inverse function )(-1

f pp may be defined. Then the lifetime T may be written as  
 )( 0

-1
f ppT �   (6.25) 

 The structural lifetime T is thus linked to the probability p0 that the observed 
functional property of the structure will not be satisfied (a failure will occur). When the 
lifetime T is exceeded, also the probability pf of failure exceeds the value p0.  
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 The general procedure is illustrated on carbonation and loss of protecting properties of 
concrete. In this case the condition (6.22) may be simplified to an inequality between the 
neutralisation depth d(t) and the time independent cover layer thickness c (see Figure 6.12).  

 d(t) - c  (6.26) 
 Random behaviour of both quantities d(t) and c may be described by three-parameter 
log-normal distributions.  
 Time-dependence of the carbonation depth d(t) is usually approximated by a semi-
empirical relationship for the square root of the effective time teff  

 d(t) = A Lteff  (6.27) 
where A is the coefficient of carbonation and the effective time teff is defined as the weighted 
average of rainy, humid and dry periods. According to CEB (see also paper [35]) the teff = t1-2n 
where n is a parameter of climatic conditions (0 for inner conditions, 0,3 for exposed, 
unsheltered outer conditions).  
 
Example 6.6  
 From an extensive study of cooling towers [35] in unprotected outer conditions these 
values for the mean �d, coefficient of variation wd and skewness +d were assessed 

 �d = 4t0,2 mm, wd = 0,35, +d = 0,5 (6.28) 
where t is time expressed in years. The cover thickness c is characterised as follows 

 �c = 20, 25 and 30 mm, �c = 10 mm, +c = 1,0  (6.29) 

  
 
 

 
Figure 6.12. Carbonation depth d(t) and thickness of cover layer c. 
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 The probability of failure pf(t) for the parameters given in equations (6.28) and (6.29) 
is shown in Figure 6.13 that can be used for estimating pf or T given by equations (6.24) and 
(6.25). If a probability pf = 0,01 is required, then a cover layer c having the mean �c = 25 mm 
ensures a working life of about 15 years only, the mean �c = 30 mm ensures about 100 years.  
  
 

 

 
 

Figure 6.13. Probability of failure pf(t) for parameters given in (6.28) and (6.29). 
 
 
 What is, however, the optimum probability of failure pf? This important question may 
be resolved using methods of probabilistic optimisation generally described in section 5.10. 
  The whole procedure of probabilistic cost optimisation is based on the concept of an 
objective function giving the total cost Ctot as the sum of initial costs C0, marginal costs cC1, 
where c denotes the thickness of cover layer and C1 the cost per unit of thickness c, and costs 
due to failure pf(t;c)Cf, where pf(t;c) is the probability of failure in time t for a thickness c. 
Thus, Ctot can be written as  

 Ctot = C0 + cC1 + pf(t;c)Cf  (6.30) 

If C0, Cf and �c are independent of c, then the derivative 9pf(t;c)/9c may be substituted by the 
expression 9pf(t;c)/9�c and the necessary condition for the minimum total costs is 

 
c

cpCC t

�9
9

��
);(f

f1  (6.31) 

Relationships (6.30) and (6.31) are accepted for developing a special-purpose Mathcad sheet 
applied in the following example. 
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Example 6.7
 An example of cost optimisation is illustrated in Figure 6.14, which shows partial cost 
c + pf(t;c) Cf/C1. This partial cost, which attains the minimum for the same mean �c as Ctot, 
was determined using a special-purpose software tool for selected values of the cost ratio 
Cf/C1, design durability of 50 years and data from Example 6.6 (i.e. for �d = 4t0,2 mm, wd = 
0,35, +d = 0,5, �c = 10 mm, +c = 1,0). 
 
 
 

 

Figure 6.14. Cost c + pf(t;c) Cf /C1 for parameters given in equations (6.28) and (6.29). 
 
 
 It follows from Figure 6.14 that it is possible to assess the optimal thickness of cover 
layer in respect of the ratio of costs Cf/C1; the minimum cost values are indicated by arrows.  
 Recent studies [35] seem to indicate that the carbonation depth d(t) may be well 
described by Gamma distribution having the coefficient of variation  

 w(t) = +(t)/2 = 0,1 t0,5 (6.32) 
 Available statistical data for the concrete cover also have a positive skewness, which is 
approximately equal to the coefficient of variation + 6 w. Two types of distribution are 
therefore applicable: the three-parameter log-normal or the beta distribution. As the concrete 
cover is obviously a both sided limited random variable, the Beta distribution Beta(�, �, +, b) 
can be used. A developed MATHCAD sheet provides a simple tool to evaluate the reliability 
of reinforcement protection as shown by the following example. 

Example 6.8
 Another example of cost optimisation is illustrated in Figure 6.15, which shows again 
the partial cost c + pf(t;c) Cf/C1. This partial cost, which attains the minimum for the same 
mean �c as the total cost Ctot, was determined using a special-purpose MATHCAD sheet for 
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selected values of the ratio Cf/C1, design durability of 50 years and modified data from 
Example 6.6: 

�d = 4t0,2 mm, wd(t) = +d(t)/2 = 0,1 t0,5 (6.33) 

 wc = 0,4 mm, +c = 0,5 (6.34) 
 Figure 6.15 shows the partial cost c + pf(t;c) Cf/C1 versus the concrete cover c 
assuming a time t = 50 years, a gamma distribution for the carbonation depth d(t) and a beta 
distribution for the concrete cover c. 
 

 
Figure 6.15. The partial cost c + pf(t;c) Cf /C1 versus the concrete cover c for t = 50 years. 

  
 
 The developed MATHCAD sheet also calculates precise values of the optimum 
concrete cover. For example assuming the cost ratio Cf/C1 = 1000 the optimum concrete cover 
is estimated as 45,07 mm (see Figure 6.15). An open task is to assess the cost ratio Cf/C1. 
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7 RELIABILITY UNDER VARIABLE LOADS WITH INTERMITTENCIES

7.1 Introduction
 
The following reliability analysis of a reinforced concrete column is an extension of a 

previous study by Holický & Vrouwenvelder [31] based on the recent theoretical 
development of time-variant reliability analysis [32]. The study is a part of an extensive 
research activity on Probabilistic Model Code [27] supervised by the Joint Committee for 
Structural Safety (JCSS). The JCSS aims at providing a standardised set of statistical models 
for loads and structural properties, which will reflect the present state of knowledge. 

Simpler stochastic models considered beforehand, when time-variant variables were 
described by the simple jump process [31], are superseded here by the jump process with 
intermittencies developed by Rackwitz [40]. In addition, some minor improvements in the 
deterministic design of the column were accepted. 

The variable actions (short- and long-term imposed loads and wind) are considered as 
stationary and ergodic random processes described by square wave (jump) sequences. Each 
process is characterised by a jump rate 7 and an interarrival duration intensity :, both related 
to one year. A total of 12 study cases of the concrete column, designed according to the newly 
developing Eurocode EN 1990 [1], EN 1991 and EN 1992, are analysed using the software 
COMREL [24] (Reliability Consulting Programs (RCPs) (1997)). 

 
7.2 Model structure

A model multi-storey structure considered in this study is schematically shown in Figure 7.1. 
It is assumed that each frame in the transversal direction of the structure may be considered as 
an unbraced sway frame. These frames consist of four columns at a constant transverse 
distance a1; in the longitudinal direction of the structure the frames are located within a 
constant distance a2 (see Figure 7.1). 
 

 
Figure 7.1. Transverse frame of a multi-storey structure. 
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In the following reliability analysis the edge, fully clamped column of an internal 
transversal frame having the height L (see Figure 7.1) and rectangular cross-section b � h is 
considered. The cross-section height h is twice (in one study case, three times) the width b. 
Considering different structural arrangements, a total of 12 study cases indicated in Table 7.1 
are analysed. Further, it is assumed that the storey height above the considered column is hs = 
3 m, permanent load is determined as the weight of a reinforced concrete floor of a uniform 
equivalent thickness of 0,30 m (including the weight of the slab, columns, beams, floor and 
cladding). 
 
Table 7.1. Study cases of a reinforced column. 
 

Case 
 

Number of 
storeys  

n 

Height of the 
column
L [m] 

Transversal 
distance  
a1 [m] 

Longitudinal 
distance  

a2 [m] 

Cross-section 
dimension  
b�h[m�m] 

1 10 6 5 5 0,35�0,70 
2 10 3 5 5 0,30�0,60 
3 10 9 5 5 0,35�0,70 
4 10 12 5 5 0,45�0,90 
5 10 6 4 5 0,30�0,60 
6 10 6 7 5 0,35�0,70 
7 10 6 5 4 0,30�0,60 
8 10 6 5 7 0,40�0,80 
9 1 6 5 5 0,25�0,50 
10 3 6 5 5 0,25�0,50 
11 20 6 5 5 0,45�0,90 
12 10 6 5 5 0,25�0,75 

 
The effects of actions considered in the analysis of a built-in column consist of the 

axial force and bending moment, denoted again by N and M with appropriate subscripts. In 
the design calculation, the axial force and bending moment are represented by the design 
values Nd and Md  respectively. The maximum design axial force Nd,max is given as  

Nd,max = �GNW,k+�Qmax{Nimp,k+�0Nwind,k;Nwind,k+�0 Nimp,k }  (7.1) 
where �G = 1,35 is the partial factor for permanent actions, �Q = 1,50 is the partial factor for  
variable actions, �0 is the factor for combination value, NW,k is the characteristic value of the 
axial force due to self-weight, Nimp,k is the characteristic value due to imposed load and Nwind,k
is the characteristic value due to wind (positive values are assumed for compressive forces). 
Taking into account the arrangement of the structure indicated in Figure 7.1, the characteristic 
value due to self-weight of n floors and one roof is given as 

NW,k = (n +1) a1 a2 t :c  / 2  (7.2) 
where :c is the weight of concrete per unit volume considered as 0,024 MN/m3. Nimp,k is the 
characteristic value of imposed load from n storeys given as 

Nimp,k = n a1 a2  pimp +n / 2   (7.3) 
Where, according to Eurocode 1 EN 1991-1-1 (2004), the reduction factor:  
+n = [2+(n – 2) �0] / n; here n is the number of storeys (>2) and �0 is the load combination 
factor given in EN 1990 [1]. Choosing the category B (Public Building) the characteristic 
value of floor imposed load pimp,k equals 3 kN/m2. Nwind,k is the wind resulting from a pressure 
Cp G pwind,k on a vertical area equal to (L + nhs ) a2 ; multiplication by the height (L + nhs )/2 
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gives the overturning moment. This moment is assumed to be balanced by the normal forces 
in the two outer columns, so: 

Nwind, k =  ((1/2)(L + nhs )2 a2 Cp G pwind ,k  – 4 Md0) / (3 a1) (7.4) 

 
where Md0 is the first order bending moment at the bottom of one column. The characteristic 
value of the wind action is considered assuming the return period of 50 years as pwind,k = 0,5 
kN/m2; the gust (exposure) factor G = 2,5 and the shape factor Cp = 0,8 + 0,5 = 1,3 (EN 1991-
1-4 (2004)).  

In accordance with EN 1992-1: Eurocode 2 (2004) the design value Md of the bending 
moment is  

Md = Md0 + Nd ( ea + e2) = Nd (e0 + ea + e2 ) (7.5) 
where e0 = Md0 / Nd is the first order eccentricity, ea is the additional eccentricity taking into 
account geometric imperfections and e2 is the second order eccentricity due to deformations 
of the column. It is assumed that the first order moment Md0 is caused only by wind action 
and is approximately given as 

Md0 = L[�Q Cp G pwind,k (L+nhs) a2]/8  (7.6) 
where L denotes the column height (see Figure 7.1). The eccentricities ea and e2 are 
determined according to Eurocode 2 (EN 1992 (2004)) as  

ea = 1,12 L /(2 � 200) = 0,0028 L   (7.7) 

e2 = 0,1K1 l0
2 (1/ r)  (7.8) 

K1 = l0 /(20 i) – 0,75 � 1  (7.9) 
where l0 / i (i being the radius of gyration) denotes the slenderness ratio. The curvature 1/r is 
given in Eurocode 2 (ENV 1992-1 (2004) as 

 1/r = 2 K2 ,yd  / (0,9 (h – d1))  (7.10) 

K2 = (Nud – Nd) / ( Nud – Nbal,d)  � 1   (7.11) 
where Nud is the design capacity of the cross-section, Nd is the design axial force and Nbal,d is 
the force which maximises the ultimate moment of the cross-section; in this study (for 
symmetrical reinforcement) Nbal,d is taken as Nbal,d = 0,5 + fcd Ac, where + is a coefficient 
taking account of long-term effects on the compressive strength. The remaining variables 
entering equation (7.10), the design yield strain ,yd = fyd / Ea and the effective depth of cross-
section (h – d1), are given below. The resulting values of Nd,max are shown in Table 7.2. 

For given design values of the normal forces Nd and bending moments Md, the column 
cross-sections are designed using a simplified interaction diagram described by the following 
formulae: 
 
for Nd < + b h fcd / 2 

 [As fyd (h–d1–d2)+hNd(1–Nd /(+ b h fcd)]/2–Md>0 (7.12) 

for Nd > + b h fcd / 2 

K2 [As fyd (h – d1– d2) / 2 + + b h2fcd / 8]  –  Md > 0 (7.13) 

Nud = + b h fc d + As fyd  (7.14) 
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Nbal,d = +  b h fcd / 2  (7.15) 
These relationships give a good approximation of interaction diagrams derived from 

appropriate rules. The total reinforcement area As should satisfy the conditions of Eurocode 2 
(ENV 1992-1 (2004)). 
 0,15 |Nd | /fyd < As,  (7.16) 

   0,003 b h < As < 0,08 b h (7.17) 
This is satisfied in all cases. Theoretical values of As rounded off upward to the last digit are 
given in Table 7.2.  
 
 
Table 7.2. Effects of actions for the maximum axial force Nd,max. 
 

 
Case 

Nd,max 
[MN] 

Md0 

[MNm] 
e0 

[m] 
ea102

 

[m] 
As104

 

[m2] 
e2102

 

[m] 
Md 

[MNm] 
1 2,075 0,329 0,159 1,7 24,9 2,2 0,410 
2 2,038 0,151 0,074 0,8 19,9 0,1 0,170 
3 2,111 0,535 0,253 2,5 50,2 6,0 0,715 
4 2,148 0,768 0,358 3,4 31,4 0,3 1,061 
5 1,857 0,329 0,177 1,7 40,2 2,8 0,412 
6 2,658 0,329 0,124 1,7 37,2 1,8 0,421 
7 1,660 0,263 0,159 1,7 29,2 2,9 0,339 
8 2,904 0,461 0,159 1,7 31,2 1,4 0,549 
9 0,306 0,082 0,268 1,7 4,9 4,9 0,102 

10 0,671 0,137 0,204 1,7 10,7 4,9 0,181 
11 4,735 0,603 0,127 1,7 55,6 0,7 0,716 
12 2,075 0,329 0,159 1,7 33,0 1,5 0,395 

 

The following assumptions are accepted in the deterministic design of column cross-
sections:  
– only symmetrical reinforcement (As1 = As2 = As / 2) is considered; 
– the rectangular shape of the column cross-section is chosen such that h/b = 2 (in the last 

study case h/b =  3); 
– the distance of reinforcing bars from the edge is chosen in all study cases as d1 = 0,05 m; 

and 
– the assumed material characteristics for the concrete class C 20/25 and reinforcing steel S 

500 are  

fck=20 MPa, �c = 1,5, fcd = 13,33 MPa, + = 0,85 (7.18) 

fyk = 500 MPa, �s = 1,15, fyd = 435 MPa (7.19) 

7.3 Limit state function
 

In the time-variant reliability analysis the actual axial force N is considered as a simple 
sum of actual axial forces due to all considered actions: 

N =  NW +  Nimp  +  Nwind  (7.20) 



7. Reliability under Variable Loads with Intermittencies

115 

where NW is the axial force due to self-weight, Nimp is the axial force due to imposed load and 
Nwind is the axial force due to wind action (positive values are again accepted for compressive 
forces). The bending moment M is given by a modified equation (7.6), in which actual values 
are applied instead of the design values and a new additional eccentricity ea is considered as N
L/2, where the initial sway N, is given in Table 7.3. The second order eccentricity e2 is given 
by modified equations (7.8) and (7.9), in which l0 = L. 

The limit state function G(X) may be expressed as the difference between the 
resistance bending moment and the actual bending moment about the cross-section centre 

G(X) = OR MR – OE M (7.21) 
Two coefficients of model uncertainties OR and OE are considered as random variables to cover 
the imprecision and incompleteness of the relevant theoretical models. The resistance bending 
moment is determined taking into account (7.15) to (7.18), where actual values of basic 
variables are considered instead of the design values. The statistical characteristics of all basic 
variables, based on the data given in a previous study by Holický & Vrouwenvelder [31], and 
JCSS document [27] are shown in Table 7.3. 
 
Table 7.3. Statistical characteristics of basic variables. 
 
Symbol Name of variable Distrib. 

/Type 
Dimen-

sion 
Mean Standard 

deviation 
+ reduction factor R/R – 0,85 0,085 
As reinforcement area DET m2 nom 0 
fc concrete strength LN/R MPa 30 5 
fy yield strength LN/R MPa 560 30 
E modulus of elast. DET GPa 200 0 
a1 column distance DET m nom 0 
a2 perpend. distance DET m nom 0 
b width of section N/R m nom 0,005 
d1, d2 distance of bars  N/R m 0,05 m 0,01 
h height of section N/R m nom 0,01 
L height of column DET m nom 0 
n number of floors DET – nom 0 
N initial sway(1) N/R rad 0 0,001(1) 
OE mod. unc. load N/R – 1,0 0,1 
OR mod. unc. resistance N/R – 1,1 0,11 
: weight N/R MNm–2 0,0240 0,00192 
Cp shape factor N/R – 1,3 0,13 
G gust factor GUM/R – 2,5 0,25 
pwind wind pressure GUM/S MNm–2 0,00035 0,00006(2) 
pimpl long-term load GAM/S MNm–2 0,0006 mean�v (3) 
pimps short-term load GAM/S MNm–2 0,0002 mean�v (4) 
 
Notes to Table 7.3: 

(1)  The initial overall sway N  is used to calculate the additional eccentricity ea according 
to equation ea = N L/2. 
(2) The mean and standard deviation correspond to the distribution of the yearly maximum. 
(3) The mean and standard deviation correspond to the random point-in-time distribution; 
v2= (0,16+8/(a1 a2))(1/n+:impl (1–1/n)) (CIB report, see [32]), where the coefficient of the 
correlation of the long-term loads in two floors is considered as : impl = 0,5. The factor v
also holds for one storey with n = 1. 
(4) The mean and standard deviation correspond to the distribution of 24 hours (one day) 
maximum, v2= 50/(a1 a2). 
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In Table 7.3 all time-invariant variables are denoted by R-variables while time-variant 

variables are denoted by S-Variables for later convenience. 
 
 
7.4 Reliability analysis
 

The reliability analysis of the column is presented for four different assumptions 
considering variable actions as:  
– time-invariant variable models for extreme wind, long- and short-term imposed loads – the 

resulting reliability indices �0 may be used as a first approximation of a more refined 
analysis, 

– jump processes without intermittencies for wind and long-term imposed loads – the 
resulting reliability indices �1 refer to Turkstra’s rule (see ISO 2394 [2]), i.e. a load takes 
on its extreme while the others are at their point-in-time value and the resulting 
probabilities are summed,  

– jump processes without intermittencies for wind, long- and short-term imposed loads – the 
resulting reliability indices are denoted by �2, 

– jump processes with intermittencies for wind, for simultaneously jumping long-term loads 
and for short-term loads – the resulting reliability indices are denoted by �3.  

– jump processes with intermittencies with a given interarrival duration intensity for wind, 
long- and short-term loads – the resulting reliability indices �4 refer to independent 
occupancy loads.  

In the time-invariant analysis all the variable actions are considered as time-invariant 
processes characterised by the theoretical models indicated in Table 7.3. The time-variant 
reliability analysis assumes that the variable actions (wind, short-term and long-term imposed 
loads) are stationary and ergodic random processes described by rectangular wave renewal 
processes (jump processes) enveloping the real load processes. In this sense all subsequent 
results are conservative. When no intermittencies are considered, then each jump process is 
characterised by a jump rate 7 (an average number of the magnitude changes of square waves 
in a year). Two different analyses assuming the jump processes without intermittencies, 
described in detail by Holický & Vrouwenvelder [31], are presented here: short-term imposed 
load is absent (�1) and short-term load is present (�2). 

When intermittencies are considered, in addition to the jump rate 7, each jump process 
is additionally characterised by the interarrival duration intensity : (a product of the arrival 
rate and the mean duration �J), both expressed in terms of years. The distribution of the 
duration of a rectangular wave can theoretically remain unspecified. Its mean duration is 1/7. 
However, the distributions for the times between the interarrivals of on-times and the 
distributions of the durations of on-times must be specified.  

For stationary processes and stationary intermittencies and assuming random initial 
conditions an upper-bound failure probability is determined from 
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where [t1, t2] denotes the reference time interval, E[N+(t1, t2)] the mean number of 
outcrossings and ;+(t1, t2) the outcrossing rate. The pk

@kA are the coincidence probabilities for 
the set @kA of loads being “on”. They are computed according to a simple model proposed 
earlier (see [32]). There it is assumed that the interarrival times of the “on”-times follow an 
exponential distribution with a parameter = and the duration of “on”-times a truncated 
exponential distribution. Each “on”-time is associated with only one rectangular wave so that 
with 7 = = = 1/�I the interarrival intensity is : = �J /�I =7�J (see Figure 7.2). 
 
 

Figure 7.2. Intermittent rectangular wave jump process. 

 
The outcrossing rate for the independent amplitudes of the rectangular wave renewal 

processes is determined from (Rackwitz [40]) 
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�{k} is the reliability index and ={k}j are the main curvatures in the �-point according to 
FORM/SORM for the set {k} of active loads. :{k} is the correlation coefficient of the two 
linearised failure domains before and after a jump. As usual, the reliability computations are 
performed in a standard space and the results given below correspond to SORM.  

Formally, the last factor can be interpreted as a first-order correction to the jump rates, 
then denoted by 7’. It is an improvement as compared to the asymptotic result [31]. The 
improvement is demonstrated in Figure 7.3. Amplitude dependencies as in Table 7.3 can also 
be introduced by making the mean of the imposed long-term load uncertain, for example, as a 
normally distributed variable with the mean zero. Then :impl = 0,5 corresponds to a standard 
deviation of this uncertain mean of about 70% of the original standard deviation and the 
standard deviation of pimpl given the mean is also only about 70% of the original value of 
(0,16+8/(a1 a2)). 
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Figure 7.3. Ratio of improved and asymptotic domain probabilities over reliability index � for 
various :. 

 
 
 

A lower bound for the failure probability can also be given as the point-in-time failure 
probability 
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where, due to stationarity, t*
{k} can be taken as t1. 

 
The following parameters are considered here: 

 
M long-term imposed load:  

7 = = = 1/7 [1/ year], :  = 3 (an assumption), 
M short-term imposed load:  

7 = = = n [1/ year], :  = n /365 , 
M wind load: 

7 = = = 10 [1/year], :  = 10/ 365/ 3 = 0,009, 
 

where n denotes the number of storeys (equal to 1, 3 and 10). 
Thus, the long-term imposed load is assumed to change simultaneously in all storeys 

of a building on average every 7 years. The assumption of : = 3 may be a little unrealistic but 
the influence of the parameter : of the long-term imposed load is not very important.  

The short-term load is assumed to be present in each storey of the building during one 
day in a year. Approximately (neglecting possible dependence and time overlapping of the 
load in different storeys), the short-term load is considered as one process with a number of 
magnitude changes in a year 7 = n and the interarrival duration intensity : = 7�J = n/365 
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corresponding to the arrival rate and to the mean duration �J of one day. This may not be an 
adequate approximation in some cases as it implies that short-term loadings occur 
independently and do not overlap in time. 

Further, the extreme wind velocity in a year is assumed to have the characteristics 
specified in Table 7.3, and the intensity : for wind is determined assuming an arrival rate of 
on-times 10 (ten storms in a year) with the mean duration �J of 8 hours (1/365/3 of a year). In 
a first approximation the pressure distribution in each storm is again Gumbel with the same 
standard deviation but with an appropriately reduced mean.  

The resulting reliability indices �0, �1, �2, �3 and �4 for the 12 study cases are given in 
Table 7.4, assuming a lifetime of 50 years.  

 
Table 7.4. Reliability indices for a built-in column. 

Study  Reinf.  Reliability analysis 
case ratio 

[%] 
Time invar. Turkstra’s  

rule 
Jump 

process 
Intermittent Intermittent 

 AS / bh  �0 �1 �2 �3 �4 
1 1,02 5,34 5,31 5,30 5,98 – 
2 1,11 5,95 6,03 6,03 6,69 – 
3 2,05 5,07 5,05 5,04 5,76 – 
4 0,78 4,06 3,99 3,97 4,83 – 
5 2,23 5,27 5,34 5,33 6,08 – 
6 1,52 6,08 6,07 6,07 6,69 – 
7 1,62 5,38 5,35 5,35 6,04 – 
8 0,98 5,57 5,55 5,54 6,21 – 
9 0,39 2,85 2,70 2,60 3,75 3,75 
10 0,86 3,69 3,59 3,55 4,48 4,29 
11 1,37 5,59* 5,69* 5,64* 6,32* – 
12 1,76 5,62* 5,68* 5,66 6,35 – 

 
 
In all the cases rapid convergence to a unique �-point was observed. The given results 

correspond to SORM. A few results have been checked by crude Monte Carlo integration or 
by importance sampling showing errors of, at most, a few per cent. The numerical effort for 
the five types of analysis was about 1:3:1:6:7 with the unit being approximately 500 state 
function calls. The reliability indices are within a wide range from less than 3 to over 7 
(similarly as in previous studies [31]). When judging the results, one has to know whether 
long- and short-term occupancy loadings are “loading” or “resistance” variables. These loads 
can have a stabilising effect. Whenever one of them is a “loading” variable, this is indicated 
by the superscript “*”. 

The time-invariant calculations for �0 and �1 are approximate in the sense that the 
extreme value distributions described by gamma-distributions are replaced by Gumbel 
distributions with the same mean and variance. �0 is in general far too inaccurate and should 
be considered as a first approximation only. In all the study cases �0, �1, and �2 (no 
intermittencies) differ insignificantly and all are always smaller than �3 (intermittencies). This 
is due to dominating wind load. However, �2 and �3 can generally be markedly different from 
�0 and �1. Note that in the study cases 9 and 10 the reliability indices �0, �1 and �2 (in the 
study case 9 also �3 and �4) are less than 3,8, which is the value recommended in ENV1991-1: 
Eurocode 1 (1994). 

Figure 7.4 shows the reliability indices �2 and �3 versus the reinforcement ratio. It 
appears that for a reinforcement ratio less than 1%, both the reliability indices (and as follows 
from Table 7.4 also �0, �1 and �2) considerably decrease and may be unsatisfactory. 
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Figure 7.4. Reliability indices �2 < �3 versus the reinforcement ratio. 
 

 
7.5 Study case 10

 
The assumption that the long-term imposed load changes simultaneously in all storeys 

of a building (on average every 7 years) may not be realistic. In the following this hypothesis 
is changed to another extreme assumption. The long-term imposed loads in particular storeys 
are mutually independent. So, in the study case 10, having three storeys, three independent 
long-term imposed loads are considered together with a short-term imposed load and wind 
load. Thus, in total 2n–1 = 31 different “load combination cases” have to be studied, i.e. any 
one load “on” and all others “off”, any two loads “on” and the others “off”, ..., all 5 different 
loads “on”. The probability of failure for all loads being “off” is neglected. For the fourth type 
of analysis there are only 7 “load combinations”. For the convenience of presentation only 
these combinations are shown in the Table 7.5. It is seen that larger contributions to the total 
failure probability come only when wind is active. In this case occupancy loading has a 
stabilising effect. The computations with simultaneous jumps (�3) result in larger �-values 
than with independent jumps. The detailed analysis shows that this is due to a larger total 
jump rate but also due to the correlation between the loads for simultaneous jumps. 

The upper and lower (approximate) bounds of the failure probability Pf, defined by 
(7.22) and (7.24), are indicated in Figure 7.5 in a parameter study concerning the interarrival 
duration intensity : of wind load within a range from 0,005 to 0,015 (the value assumed in the 
previous calculation was 0,009) implying a change in the duration of the storms from roughly 
50% (4 hours) to 150% (12 hours). 

Figure 7.5 shows that the upper and lower bounds are very close to each other. For 
example, for : = 0.009 (used in the previous analysis) it holds 

 4,48 < � < 4,63  (7.25) 
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Figure 7.5. Lower and upper bounds of failure probability pf for the study case 10 (�3). 
 

It can be shown that the true reliability is very close to the upper bound in this case. 
The lower bound also corresponds to the initial failure probability. 
 
Table 7.5. Load combinations for the study case 10 for �3 (sequence is pwind, pimps, pimpl). 

Case Active load pf@kA p@kA 
1 xxx 3,93E-07 5,45E-05 
2 xoo 1,09E-05 2,21E-03 
3 oxo 2,44E-23 2,02E-03 
4 oox 3,27E-23 7,37E-01 
5 xxo 5,04E-07 1,82E-05 
6 xox 1,70E-06 6,64E-03 
7 oxx 2,72E-23 6,06E-03 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.6. +-values of variables (+PL1 = +PL2 = +PL3 = 0,0109). 
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Finally, it follows from Figure 7.6 that wind is the dominating variable and live loads 
are “resistance” variables. The corresponding +-values are positive but small. 
 
 
7.6 Concluding remarks
 

The results of the reliability analysis of 12 study cases of a reinforced concrete column 
show considerable differences in the reliability level of the column in different structural 
arrangements. Considering a 50-year lifetime, reliability indices vary within a broad range of 
from 2,6 up to 6,7. 

Any time-invariant analysis is inadequate. The time-variant reliability analysis 
assuming variable loads as jump processes without intermittencies is a safe approximation to 
a more refined analysis assuming variable loads as jump processes with intermittencies. The 
latter type of analysis may considerably improve the reliability assessment of structures, 
particularly those exposed to variable actions with relatively low interarrival duration 
intensity. It is further emphasised that the effect of stabilising occupancy loading can only be 
taken into account consistently by assuming jump processes with intermittencies.  

It appears that the reliability level of reinforced concrete columns designed according 
to Eurocodes may in some cases be insufficient. In other cases, depending on actual structural 
arrangements, it may become uneconomical to follow the codes. The obtained reliability 
indices � seem to be dependent on the reinforcement ratio. In particular, lower �-values were 
obtained for reinforcement ratios below 1 %.  

The widely varying reliability indices suggest that the partial safety factors in the 
Eurocodes are not necessarily appropriate. It appears that larger partial safety factors for 
variable loading, smaller safety factors for dead load and resistance variables, especially a 
better load combination rule, would make the reliability level more uniform. Definite 
conclusions, however, must be based on a much larger set of study cases. 

The detailed analysis of the study case 10 shows that lower and upper bounds on 
failure probabilities are very near to each other. The independence of jumps of long-term 
imposed loads in different storeys leads to a decrease of � by 0,15 (increase of failure 
probability). Obviously, the assumptions concerning the dependence of long-term imposed 
loads should be revised in other study cases also. 
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8 RELIABILITY BASIS OF THE PARTIAL FACTOR METHOD

8.1 Introduction
 
Partial factor methods provide operational design procedures adopted in many national 

and international standards, including Eurocodes. The fundamental Eurocode EN 1990 Basis 
of Structural Design [1] describes details of accepted procedures based on a partial factor 
method in Section 6 and Annex A. Additional background information and the theoretical 
basis of the method are described in Annex C of EN 1990 [1]. General concepts of the partial 
factor method are also described in International Standard ISO 2394 [2]. 

This chapter is primarily focused on the design verification formats of partial factors 
adopted in the latest version of Eurocodes. Essentially, it is a short extension of chapters 5 and 
6, which describe how to determine partial factors for material properties and actions using 
general probabilistic concepts.  

Symbols and terms used in EN 1990 [1] coincide mostly with those applied in this 
chapter. However, EN 1990 does not use capitals and small letters in the same way as 
introduced in previous text (where capitals denote general random variables and small letters 
their particular realisations). In Eurocodes a particular value of a random variable is denoted 
by a subscript of the letter denoting the variable. For example, in EN 1990 a material property 
as a random variable is denoted by X, its particular value, say the design value, is denoted by 
Xd (while xd would be used in previous chapters). As this chapter is closely linked to  
Eurocodes, notation used in these documents is accepted here (i.e. the symbol X denotes a 
material property and Xd is used for its design value). 

It should also be noted that alternative terms and symbols can be found in ISO 2394 
and other literature on structural reliability. For example the term “performance function” 
used in Annex C of EN 1990 is sometimes replaced by “limit state function” or “state 
function”. Another important term “survival probability” ps is often called “reliability” (see 
also the recent document ISO 2394 [2]). Other terms used in Annex C of EN 1990, for 
example “probabilistic, semi-probabilistic, deterministic methods” and the classification of 
“level I, II and III reliability methods”, may be applied in literature in a slightly different way. 
Additional terms (like “design value method” used previously in ENV 1991-1 but not applied 
in EN 1990) may be found in ISO 2394 [2] and other literature. 

Supplementary symbols and terms to those given in EN 1990 will be introduced in this 
chapter in order to provide more comprehensive background information. For example $(x) 
will be used for the probability density function of a variable X, symbol X will be also used 
for a vector of all basic variables. 

 
 

8.2 The design value method

The design value method, which is also called “semi-probabilistic method (level I)” 
(in EN 1990 [1]), is a very important step from probabilistic design methods toward 
operational partial factors method. The design value method is directly linked to the basic 
principle of EN 1990, according to which it should be verified that no limit state is exceeded 
when the design values of all basic variables are used in the models of structural resistance R 
and action effect E. Thus, if the design values Ed and Rd of E and R are determined 
considering the design values of all basic variables, then a structure is considered as reliable 
when the following expression holds  

Ed < Rd  (8.1) 
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where the design values Ed and Rd are symbolically expressed as 

Ed  = E {Fd1, Fd2, ... ad1, ad2, ... �d1, �d2 , ...} (8.2) 

Rd  = R {Xd1, Xd2, ... ad1, ad2, ... �d1, �d2, ...} (8.3) 

Here, E denotes a function describing the action effect, R denotes a function 
describing the structural resistance, F is a general symbol for actions, X for material 
properties, a for geometrical properties, and � for model uncertainties. Subscript ‘d’ refers to 
design values. 

If only two variables E and R are considered, then the design values Ed and Rd may be 
found using the following formulae 

P(E > Ed ) = #(++E�) (8.4) 

P(R � Rd ) = #( �+R�) (8.5) 

where � is the target reliability index, +E and +R, with |+| � 1, are the values of the FORM 
weight (sensitivity) factors. As already indicated in equations (5.26) and (5.28), the sensitivity 
factor +E is negative for unfavourable actions and action effects (in EN 1990 [1] +E =  � 0,7), 
the resistance sensitivity factor +R is positive (in EN 1990 [1] +R = 0,8).  

 
 

8.3 Reliability verification in Eurocodes
 
In accordance with the partial factor methods accepted in EN 1990 to 1999 the design 

values of the basic variables, Xd and Fd, are usually not introduced directly into the design 
equations. They are commonly expressed in terms of their representative values Xrep and Frep, 
which may be: 

– the characteristic values Xk and Fk, i.e. values with a prescribed or intended 
probability of being exceeded, for example for actions, material properties and geometrical 
properties; 

– the nominal values Xnom and Fnom, which may be treated as characteristic values for 
material properties and as design values for geometrical properties. 

The representative values Xrep and Frep should be divided and/or multiplied, 
respectively, by the appropriate partial factors to obtain the design values Xd and Fd. 
Considering the representative values Xrep and Frep by their characteristic values Xk and Fk, the 
design values Xd and Fd can be expressed as   

 Xd = Xk/�M  (8.6) 

 Fd = �F Fk (8.8) 

where �M denotes the partial factor of materials properties and �F the partial factor of action. 
Both partial factors �M and �F are in most cases greater than 1. The above expressions for the 
design values of actions F and material properties X may be modified depending on the type 
of verified structural member and construction material. 

As described in the following sections, both partial factors �M and �F should include 
model uncertainties, which may significantly affect the reliability of a structure. As stated in 
EN 1990 [1], design values for model uncertainties may be incorporated into the design 
expressions through the partial factors �Ed and �Rd applied as follows: 

 @ A...;;;; 011 dkiiqikqPkjgjEdd aQQPGEE �������   (8.8) 
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 @ A Rddmkd aXRR ��J� /...;/  (8.9) 

Here J denotes a conversion factor appropriate to the material property.  
The coefficient �, which takes account of reductions in the design values of variable 

actions, is applied as �0 , �1 or �2 to simultaneously occurring accompanying variable 
actions. The following simplifications may be made to expressions (8.8) and (8.9), when 
required. 

a) On the loading side (for a single action or where linearity of action effects exists) : 

Ed = E {�F,iF rep,i, ad} (8.10) 

b) On the resistance side the general format is given in expressions (8.9), and further 
simplifications may be modified in the relevant material-oriented documents provided the 
level of reliability is not reduced. It should be mentioned that non-linear resistance and action 
models, and multi-variable action or resistance models, are commonly encountered in 
Eurocodes. In such instances, the above relations become more complex. 

8.4 Partial factors in Eurocodes

The relation between individual partial factors in Eurocodes is schematically indicated 
in Figure 8.1. 

 

 
Figure 8.1: Relation between individual partial factors 

 
 
In accordance with Figure 8.1 the partial factor �F may be split into the load intensity 

uncertainty factor �f and model uncertainty factor �Ed. Similarly, the partial factor �M may be 
split into the material property factor �m and resistance model uncertainty factor �Rd. 
Generally, it holds that   

 �F = �f �Ed (8.11) 

 �M = �m �Rd (8.12) 

Note that in EN 1990 subscript “S” is used for uncertainty of the action effects instead of 
symbol “E”, which is used consistently here. Numerical values of both factors of model 
uncertainty depend on particular conditions and should be derived from previous experience and 
available experimental data. The load effect factor �Ed may be expected within the interval from 
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1,05 to 1,15 (as indicated in EN 1990 [1]). The resistance factor �Rd depends on the construction 
materials and behaviour of the structural member. For example, uncertainty of the bending 
capacity of a steel beam will be lower (about 1,05) than uncertainty of a welded connection 
capacity (about 1,15). Similarly, uncertainty of the bending moment capacity of a reinforced 
concrete beam will be lower than uncertainty of the shear capacity of the beam.   

 
 

8.5 Partial factors for material property 

Partial factor for resistance �m is defined in equation (8.13) by fractiles Xk and Xd. 
Taking into account general expression (4.2) for fractiles of random variables the factor �m 
may be written as  
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where wX denotes coefficients of variation of X, u0.05 or up denotes 5%- or p-fractile of the 
standardised random variable having the same probability distribution as the resistance X. 
Assuming a log-normal distribution of X, then the fractiles up in equation (8.13) must be taken 
from the standardised log-normal distribution given in Table 4.2. In the case of a log-normal 
distribution having the lower bound at zero, equation (8.13) may be written as  
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where u denotes now the normal standardised variable, for which detail tables are commonly 
available (see also Table 4.1 indicating basic data). Note that the approximation indicated in 
the last expression in equation (8.14) is fully acceptable for small coefficients of variation wX 
(< 0.2). Figures 8.2 and 8.3 show the variation of the partial factor �R of the material property 
X with the reliability index � for selected values of the coefficient of variation wR given for a 
normal distribution by equation (8.13) (Figure 8.2), and a log-normal distribution by equation 
(8.14) (Figure 8.3). 

Example 8.1
Consider the strength of construction steel given by the yield point, which has the 

coefficient of variation wX less than 0,1. Figure 8.4 shows the dependence of the partial factor 
�m on the coefficient of variation wX for three types of distribution functions: a normal N, a 
log-normal LN with the lower bound at zero (x0 = 0) and a log-normal distribution LN with 
the skewness + = 0,5 assuming � = 3,8. 

Figure 8.4 shows that for a two-parameter log-normal distribution with the lower 
bound at zero (x0 = 0), which is a very popular model for resistance, the partial factor �m for 
the coefficient of variation wX = 0,08 should be about �m = 1,12, for a three-parameter log-
normal distribution with the skewness 0,5 (a realistic value) �m = 1,09. So, considering the 
material property (without the resistance model uncertainty), the factor �m may be expected 
around 1,10. If the model uncertainty �Rd = 1,05 is included, then it follows from (8.12) that 

�M = �m �Rd = 1.1�1.05 = 1.155 6 1.15  

However, due to strain hardening �Rd is often considered as unity and �M 6 �m.  
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Figure 8.2. Variation of �m  with � for selected coefficients of variation wX = 0,05; 0,10; 0,15 
and 0,20, and for a normal distribution of X. 

Figure 8.3. Variation of �R with � for selected coefficients of variation XR = 0,05; 0,10; 0,15 
and 0,20, and for a log-normal distribution of X. 

Figure 8.4. Partial factor �m versus the coefficient of variation wX for normal and log-normal 
distributions assuming � = 3,8. 
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Generally the partial factor �m increases with increasing reliability index � value. The 
increase of �m is considerably greater in the case of normal distribution (Figure 8.2) than in 
the case of log-normal distribution (Figure 8.3). The effect of the type of distribution is 
particularly obvious for coefficients of variation wX greater than 0,10 (Figure 8.4). A 
considerable effect of the type of distribution on the theoretical value of partial factors can be 
expected also for other basic variables, in particular for actions. 

 
 

8.6 Partial factors for permanent load
 
Consider a permanent load G (self-weight) having a normal distribution. It is assumed 

that the characteristic value Gk of G is defined as the mean �G [1], [2] and [16]: 

 Gk = �G (8.15) 

The design value Gd is given (see also documents [1], [2]) as 

 Gd = �G � +G � � � �G = �G + 0,7� � � �G = �G(1 + 0,7� � � wG) (8.16) 

In equation (8.16) �G denotes the mean, �G the standard deviation, wG the coefficient of 
variation and +G = � 0,7 the sensitivity factor of G.  

The partial factor �G of G is given as [1], [2] 

 �g = Gd / Gk (8.17) 
Taking into account equations (8.15) and (8.16) it follows from (8.17) that 

 �g = (1 + 0,7� � � wG) (8.18) 

Figure 4 shows the variation of the partial factor �G with the reliability index � for 
selected values of the coefficient of variation wG = 0,05; 0,10; 0,15 and 0,20.  

Figure 8.5. Variation of �g with � for selected coefficients of variation wG = 0,05; 0,10; 0,15 
and 0,20, and for a normal distribution of G. 
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Note that �G = 1,35 (recommended in EN 1990 [1]) corresponds approximately to the 
reliability index � = 3,8 if the coefficient of variation is about 0,1 (the value recommended in 
EN 1990 [1] was further increased by 5% to take into account model uncertainty). 

It follows from Figures 8.2, 8.3 and 8.5 that less significant variation with � -values 
should be generally expected for the partial factor of self-weight �G than for the partial factor 
of material property �R. 

 
Example 8.2

Consider a permanent load, which has the coefficient of variation wG = 0,1. It follows 
from equation (8.18) and Figure 8.5 that for wG = 0,1 the partial factor �g = 1,28. If the model 
uncertainty �Ed = 1,05 is included, then it follows from equation (8.12) that 

�G = �g �Ed = 1.28�1.05 = 1.33 6 1.35  

Note that the value �G = 1.35 is recommended in EN 1990 [1].  
 
 

8.7 Partial factors for variable load
 
A similar procedure as in the case of the permanent load G can be used for estimation 

of the partial factors �Q for variable loads Q. Assuming the Gumbel distribution the 
characteristic value is usually defined as 0,98 fractile of annual extremes (or extremes related 
to a certain basic reference period) and is given as  

 Qk = �Q (1 � wQ (0,45 + 0,78 ln(�ln(0,98)))) (8.19) 
The design value Qd related to the design working life or other reference period is given as 

 Qd = �Q (1 � wQ (0,45 – 0,78+T ln(N)+ 0,78ln(�ln(#–1(�+E�)))) (8.20) 

In equations (8.19) and (8.20) �Q denotes the mean, wQ the coefficient of variation of extreme 
values of Q determined for the basic reference periods (that is, for example 1 or 5 years), N 
denotes the ratio of the working design life, for example 50 years (or other reference period), 
and the basic reference period. As an example the period ratio N = 10 (= 50/5) is considered 
below. Finally, +E = � 0,7 is the sensitivity factor of Q and +T  is the time-sensitivity factor 
given by the ratio w’Q / wQ where w’Q denotes the coefficient of variation of the time-
dependent component of Q and wQ denotes the coefficient of variation of the total Q. When Q 
depends on time-dependent components only, w’Q = wQ and +T = 1. Note that the reliability 
index β in equation (8.20) is related to the design working life (for example to the reference 
period of 50 years) and not to the basic reference period (for example to 1 or 5 years). 

The partial factor �Q of Q is given as [1], [2] 

 �Q = Qd / Qk (8.21) 

The partial factor �Q of a variable action Q defined by equation (8.21) depends on five 
parameters. In addition to wQ, +E, � (used also in the case of time-invariant basic variables), 
the partial factor of variable actions �Q depends also on the period ratio N and on the time-
sensitivity factor +T. Figure 8.6 shows the variation of �Q with the coefficients of variation wQ 
for selected values of � assuming a Gumbel distribution of Q, and the period ratio N = 10 (the 
reference period 10 times greater than the basic reference period) and the time-sensitivity 
factor +T = 1 (no time-independent components). Figure 8.7 shows the variation of �Q with the 
reliability index � for selected values of the coefficients of variation wQ assuming again a 
Gumbel distribution of Q, N =10 and +T = 1.  
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Figure 8.6. Variation of �Q with the coefficients of variation wQ for selected values of � 
assuming a Gumbel distribution of Q, N =10 and +T = 1. 

Figure 8.7. Variation of �Q with the reliability index � for selected values of the coefficients of 
variation wQ assuming a Gumbel distribution of Q, N = 10 and +T = 1. 

 
 
It should be noted that the time-variant component may have a considerably lower 

variability than the total action Q and, therefore, a reduced coefficient of variation should be 
considered in equation (8.20) for estimating time-variant effects (+T < 1). Consequently, the 
predicted design value Qd and the partial factor �Q would decrease. Without going into details, 
it appears that the value �Q = 1,5, recommended in EN 1990 [1], is a reasonable approximation 
corresponding to the reliability index � = 3,8, to the coefficient of variation wQ = 0,3 (that may 
be considered as a reduced coefficient of variation of the extremes of Q) and the period ratio 
N = 10 (the reference period 10 times greater than the basic reference period). 
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Example 8.3
Consider a variable load, which has the coefficient of variation wQ = 0,3. Assume that 

N = 10 and +T = 1 (for example an imposed load). It follows from equations (8.19), (8.20) and 
(8.21) that the partial factor �q = 1,48 (see also Figures 8.6 and 8.8). If the model uncertainty 
�Ed = 1,05 is accepted, then it follows from equation (8.12) that 

�Q = �q �Ed = 1.48�1.05 = 1.54 6 1.5  

Note that the value �Q = 1.5 is recommended in EN 1990 [1]. 

8.8 Partial factors for wind action
 
 A typical example of a variable load Q affected significantly by time-invariant 
components is the wind action. The wind pressure (or force) may be generally written as [27] 

   q = 0,5 ρ v2 cr ca cg cd = Qref cr ca cg cd  (8.22) 

where Qref = 0,5 ρ v2 denotes the time-variant reference pressure dependent on the air density 
ρ (deterministic quantity equal to 1,25 kg/m3) and the wind speed v (having the characteristic 
value based on the annual extremes, for example 26 m/s). The roughness factor cr, 
aerodynamic shape factor ca, gust factor cg and dynamic factor cd may be considered as time-
invariant random variables depending on structural and environmental conditions.  

Table 8.1 shows indicative parameters of the variables entering equation (8.22), which 
are adopted from JCSS [27]. However, the parameters are in general significantly dependent 
on particular conditions. Moreover, the indications provided in literature (mentioned in [27]) 
are rather inconclusive. The following results should therefore be considered as indicative 
findings only. Nevertheless, the submitted general procedures for determining the partial 
factor �Q may be applied for more specific characteristics of wind components, a given 
structure and environmental conditions.    
 
 
Table 8.1. Indicative parameters of the wind components. 

Symbol Name of the variable   Relative mean  Coefficient of variation w 

Qref Annual pressure extreme 0,8 0,25 

cr Roughness factor 0,8 0,15 

ca Aerodynamic shape factor 1,0 0,20 

cg Gust factor 1,0 0,15 

cd Dynamic factor 1,0 0,15 

  
 

Considering the parameters of wind components indicated in Table 8.1, the resulting 
coefficient of annual wind action (wind pressure or force) is about wQ = 0,4 (the expected 
range is from 0,3 to 0,6) and the sensitivity factors +T = 0,6 (the expected range is from 0,5 to 
0,8). It is assumed that both the reference pressure Qref and the wind action q may be 
approximately described by Gumbel distribution.   
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Figure 8.8 shows the variation of �Q with the coefficient of variation wQ for the 
reliability index � = 3,8, N= 50 and +T = 0,5; 0,6; 0,8 and 1,0 (the extreme case indicated in 
Figure 8.8 by a dashed line) assuming approximately a Gumbel distribution for both Qref and 
q. It follows from Figure 8.8 that the partial factor �Q may be significantly affected by the 
time-sensitivity factor +T, particularly for the coefficient of variation VQ expected for annual 
extremes of wind pressure (around 0,4). Note that for the coefficient of variation wQ = 0,4 and 
the sensitivity factor +T = 0,6 the partial factor �Q is about 1,6, which is a slightly greater 
value than the value 1,5 recommended in EN. However, taking into account the expected 
reduction of the actual mean of the reference pressure Qref and the roughness factor cr 
indicated in Table 1 (given in [27]), the partial factor �Q = 1,5 seems to be a reasonable value. 
Note that for wQ = 0,4 and the time-sensitivity factor +T = 1,0 (valid in case of no time-
independent components) the partial factor is �Q = 1,85 (see Figure 8.8). Obviously, further 
research is needed to specify plausible statistical parameters of wind actions.  

 

 
Figure 8.8. Variation of �Q with the coefficient of variation wQ for the reliability index � = 3,8, 

N = 50 and +T  = 0,5; 0,6; 0,8 and 1,0, assuming a Gumbel distribution for Qref and q. 
 
 
Example 8.4

Consider a wind action, which has the coefficient of variation wQ = 0,3. Assume that N
= 50 and +T = 0,4. It follows from equations (8.19), (8.20) and (8.21) (see also Figures 8.8) 
that the partial factor �Q = 1,55. If the model uncertainty �Ed = 1,05 is included, then it follows 
from equation (8.12) that 

�Q = �q �Ed = 1.54�1.05 = 1.61 6 1.6  
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Note that the value �Q = 1.5 is recommended in EN 1990 [1] generally for all variable actions. 

 
8.9 Concluding remarks

Elementary methods of structural reliability can be used to assess the partial factors 
and other reliability elements in the fundamental case of two random variables when the limit 
state function is formulated as the difference between the resulting structural resistance and 
load effect. More sophisticated theoretical principles of the First Order Reliability Method 
(FORM) are applicable to a general case of more basic variables. 

The basic principles of FORM provide operational techniques that can be used for 
estimating the design points and partial factors of basic variables in general, multivariate 
reliability tasks. However, the assessment of various reliability elements in the new structural 
design codes is partly based on historical and past experience. Such experience may depend 
on local conditions including climatic actions and traditionally used construction materials 
and, consequently, might be considerably diverse in different countries. That is why a number 
of reliability elements and parameters in the present suite of European standards are open for 
national choice. 

The partial factor �Q for wind pressure is dependent on the time-sensitivity factor +T, 
particularly for the coefficients of variation wQ within the expected range for annual extremes 
of wind pressure (around 0,4). For wQ = 0,4 and the sensitivity factor +T = 0,5 the theoretical 
value of the partial factor �Q is relatively high, about 1,6. However, taking into account the 
expected reduction of the actual mean of the reference pressure Qref and the roughness factor 
cr indicated in the JCSS materials [27], the partial factor �Q = 1,5 recommended in EN 1990 
[1] seems to be an adequate value. Further research is needed to specify plausible statistical 
parameters of wind actions.   
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9 SYSTEM RELIABILITY

9.1 General
 
Structures of buildings and other engineering works commonly consist of a system of 

structural elements (or members). Failure of such a structure may have several modes that 
should be considered when analysing the overall structural reliability. However, even in the 
case of one structural member (say a beam or a column), several failure modes (limit state 
functions) have to be taken into account. For example, a continuous beam may fail due to 
positive or negative moments or due to shear. This chapter provides a short summary of the 
basic principles of system reliability. A more detailed comprehensive text may be found in a 
number of recent publications [18, 21, 22]. 

In general, the reliability of a structural system depends on the reliability of its 
elements and relevant failure modes. As a rule there is a high correlation between the 
properties of elements in different parts of the structure. In some cases loads may also be 
mutually dependent. In addition, the limit states for the whole structure such as the overall 
deflection or foundation settlement may be significant. 

When all the different failure modes are identified, a ‘fault-tree’ or an -tree’ modelling 
failure modes can be established. Basic principles of system reliability analysis are illustrated 
by a simple example of a plane frame.  

Example 9.1
Consider the simple portal frame shown in Figure 9.1. The frame is exposed to the 

horizontal force H and the vertical loads G + Q.  
 

Figure 9.1. A portal frame. 
 
 
Assuming plastic behaviour, the frame has three possible modes of collapse. In each 

path different plastic hinges will be formed as follows: 
 
a) Sway mode: Plastic hinges formed at sections 1, 2, 4 and 5; 
b) Beam mode: Plastic hinges at sections 2, 3, and 4, 
c) Combined mode: Plastic hinges at sections 1, 3, 4 and 5. 
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Figure 9.2 indicates the abovementioned failure modes and appropriate plastic hinges 
at sections 1 to 5.  

 

 
Figure 9.2. Failure modes. 

 
 
A fault tree describing the failure of the portal frame is indicated in Figure 9.3 together 

with the deformed shape of the frame due to the above-mentioned failure modes.  
 

 
Figure 9.3. A fault tree describing the failure of a plane frame. 

 
Figure 9.3 clearly shows logical operators “AND”, applicable in the case of the 

simultaneous development of appropriate plastic hinges in each failure mode, and “OR”, 
applicable in the union of different failure modes.  
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As indicated in Figure 9.3, any of the n failure modes (n = 3, in example 9.1 and 

Figure 9.3) leads to structural failure (a series system). The failure is then the union of failures 
Fi due to modes i = 1, 2, …n. Then the probability of failure FS of the structure can be written 
as  

Pf =  P(FS) = P(F1�F2�...�Fn) (9.1) 
where Fi denotes the failure due to mode i (i = 1, 2, … n). For each mode i, a certain number 
of m nodes or structural elements have to fail simultaneously (in the example 9.1 plastic 
hinges are developed). So the probability of failure of each mode, Fi, will be: 
  Pf(Fi) = P(Fi1�Fi2�...�Fim)  (9.2) 
where Fij is the event failure of the j-th element or node in the i-th failure mode. To reach the 
collapse of the structure in the mode i, m elements or nodes must fail. 

In general, the structure is idealised as a series system (described by equation (9.1)), or 
a parallel system (described by equation (9.2)), or the combination of both.   

 
 

9.2 Parallel system
 

In the parallel system, the elements are so interconnected that the failure of one or 
more of the elements does not mean the failure of the whole structure. Such a structure is 
called a redundant structure. This redundancy can be active, when the redundant members can 
activate before the limit state of any member is reached, or passive, when the redundant 
members act only when a limit state is reached in some member. 

It should be taken into account that any hyperstatic structure is not necessarily a 
parallel system: if the elements are brittle, the failure of any of them can lead to a new 
distribution of stresses so that new failures are reached immediately. 

The failure probability of a pure parallel system with m components is given by: 

Pf sys = P 	
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where Fj is the failure of the j-th component with Gj limit state function. Thus: 
 P(Fj) =P(Gj < 0) 6 #(–β)  (9.4) 

The probability of failure of the system by FORM is given by: 
 Pf sys = #m(– β ; ρ)  (9.5) 
where #m is the multi-dimensional standard normal distribution, β is the vector of the 
component reliability indices and ρ the m×m correlation matrix of the indices, given by 

ρjk = �
i

αij αik ;  j, k = 1, 2, ... , m (9.6) 

and αij is the sensitivity factor of the i-th variable in the j-th component limit state function. 
It is a demanding task to calculate the probability of failure of the system. An upper 

bound of this probability can be obtained as: 

Pf sys = 
m

kj 1,
Min

�
> ?� )( kj FFP (9.7) 

A simple approximation for only two elements: 
Pf sys = Φ(– β1) Φ(– β*

2);  β*
2 = (β2 – ρ β 1) / : 2

1�  (9.8) 

 
9.3 Series system

 
A series system is where the failure of any element leads to the collapse of the 

structure. It is called the ‘weakest link’. Any statically determined structure is a series system. 
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In a similar manner that was shown in the previous section, the failure probability in a pure 
series system with m components is given by: 

Pf sys = P 	


�

�


�

jF  
m

1
�   (9.9) 

The probability of failure of the system given by FORM is: 
 Pf sys = 1– #m( β ; ρ)  (9.10) 

Simple bounds to this probability are given by: 
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These bounds are usually too wide. Methods to find more precise bounds for series, 
parallel and hybrid systems can be found in [18, 21, 22]. 

 
Example 9.2

Consider the previous Example 9.1 in detail. Using the principle of virtual work the 
failure modes shown in Figure 9.2 can be described by the following limit state functions: 

 Sway failure mode F1: g1(X) = M1 + M2 + M4 + M5 – h H   
 Vertical failure mode F2: g2(X) = M2 + 2M3 + M4 – b (G + Q)  
 Combined failure mode F3: g3(X) = M1 + 2M3 + 2M4 + M5 – h H – b (G + Q)  

It is assumed that the plastic moments Mi (i = 1, 2, 3, 4, 5) at all hinges (i = 1, 2, 3, 4, 
5) have the same characteristic value Mk (say 100 kNm). Considering now the combined 
failure mode, the characteristic value Mk and the characteristic values of actions Gk, Qk, and
Hk may be related as follows: 

Sway failure mode:    h �H �0Hk = 4 Mk/�M 
Vertical failure mode:            b (�G Gk + �Q Qk) = 4 Mk/�M 
Combined failure mode:          b (�G Gk + �Q Qk) + h �H �0Hk = 6 Mk/�M 

Here �H, �G, and �Q denote the partial factors and �0 the combination factor. For the 
given actions Gk, Qk and Hk the required resistance moment Mk is given as the maximum 
value obtained from the above relationships.   

In the following parametric study two additional parameters are introduced: 
– S (the interval <0,1>) denoting the ratio of variable actions (Qk+Hk) and the total 

action (Gk+Qk+Hk) 
 S = (Qk + Hk)/(Gk + Qk + Hk)  

– k (around 1) denoting the ratio of variable actions Hk and Qk  

k = Hk/ Qk  

In the reliability analysis the following probabilistic models (covering implicitly model 
uncertainties) are considered for basic variables: 

Mi:  LN(�M, 0,1�M) 
G:  N(Gk, 0,1 Gk)  

Q:  LN(0,2Qk, 0,35 Qk)  
H:  LN(0,3Hk, 0,5Hk)  

The mean of the plastic moments Mi is given as �M = Mk �R/Rk (= Mk � 280/235), 
where �R = Rk � 280/235 is an approximation of the mean strength for the steel S 235. The 
geometric data h = 8 m and b = 5 m are considered as deterministic quantities. 

The failure probability of the series system is given as 
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Pf = P{F1 � F2 � F3} � P{F1} + P{F2} + P{F3}  
The probabilities shown in Table 9.1 have been obtained using the program SYSREL 

(the input file is shown in Appendix). The following parameters were assumed: �G = 1.35, �Q
= �H = 1.5, �0 = 0.6, S = 0.6, k = 0,5, and the mutual coefficient of correlation between M2, M3 
and M4 equal to 0.5 (correlations of the plastic moments of the beam). Under these conditions 
the vertical mode is the most critical failure mode (failure probabilities of other two modes 
are negligible). However, the significance of individual failure modes depends on the loading 
conditions including the parameters S and k.    
 
Table 9.1. Failure mode probabilities. 
 
 
 
 
 

The parametric study for the parameter S within the interval <0,1> , shown in Figure 
9.4, indicates the variation of the reliability index β with the parameter S (the ratio of the 
variable and total actions) on the structural reliability. 

 
 

 
Figure 9.4. Variation of the reliability index � with the load parameter S. 

 
 

It follows from Figure 9.4 that the reliability index � is strongly dependent on the load 
parameter S. For the practical range 0 < S < 0,7 the index � is within the range from 4 to 5,4. 
Figure 9.4 is, however, valid for the indicated theoretical models of basic variables and other 
abovementioned assumptions only. The variation of the reliability index � with the load ratio 
S may be considerably different for other assumptions and the load parameter k. In particular, 
increasing the parameter k (and horizontal force H) may significantly affect the reliability 
index �.    
 

Theoretical models 
Mi:  LN(mM, 0.1mM) 
G:   N(Gk, 0.1 Gk) 
Q:   LN(0.6Qk, 0.35 Qk) 
H:   LN(0,3Hk, 0.5Hk) 

 k =  0,5  
 

χ =(Qk + Hk)/(Gk + Qk + Hk) = 0,6 

β = 4,332 
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Appendix. SYSREL input file for the example of a series system.
 

Limit state functions/Characteristic actions/The mean actions/Parameters of actions 
and plastic moments 
 
     FLIM(1){Sway mode}     = M1+M2+M4+M5–h*H 
     FLIM(2){Vertical mode} = M2+2*M3+M4–b*(G+Q) 
     FLIM(3){Combined mode} = M1+2*M3+2*M4+M5–h*H–b*(G+Q) 
 
 
DEFFUNC(4)(){The characteristic value Qk as a function of CHI}=CHI*Gk/((1+k)*(1–CHI)) 
DEFFUNC(5)(){The characteristic value Hk as a function of CHI}=FUNC(4)*k 
 
DEFFUNC(6)(){The Md1 as a function of Gk}=(h*FUNC(5)*gH)/4 
DEFFUNC(7)(){The Md2 as a function of Gk}=b*(gG*Gk+gQ*FUNC(4))/4 
DEFFUNC(8)(){The Md3 as a function of 
Gk}=(h*FUNC(5)*gH*psiH+b*(gG*Gk+gQ*FUNC(4)))/6 
DEFFUNC(9)(){The mean of M as the maximum}= 
(280/235)*gM*MAX(MAX(FUNC(6),FUNC(7)),FUNC(8)) 
 
DEFFUNC(10)(){The mean of G}=Gk*mG 
DEFFUNC(11)(){The mean of Q}=FUNC(4)*mQ 
DEFFUNC(12)(){The mean of H}=FUNC(5)*mH 
 
RF07(1)=FUNC(10) 
RF07(2)=covG*FUNC(10) 
RF07(3)=FUNC(11)*EXP(–LN(1+(covQ)^2)/2) 
RF07(4)=SQRT(LN(1+(covQ)^2)) 
RF07(7)=FUNC(12)*EXP(–LN(1+(covH)^2)/2) 
RF07(8)=SQRT(LN(1+(covH)^2)) 
 
RF07(5)=1.0*FUNC(9)*EXP(–LN(1+(covM)^2)/2) 
RF07(6)=SQRT(LN(1+(covM)^2)) 
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10 PRINCIPLES OF RISK ASSESSMENT 

10.1  General procedure 

A number of national standards and some parts of newly developing European 

standards for structural design often refer to methods of risk assessment, particularly in the 

case of structures exposed to accidental actions when the consequences of adverse events are 

significant. Accidental design situations seem to occur more and more frequently and extents 

of unfavourable events are of increasing importance. However, up to now no internationally 

accepted document for the risk analysis and risk evaluation of civil engineering systems is 

available.

It appears that the standardisation of general principles and rules for the risk 

assessment of civil engineering systems including tunnels is of the utmost importance. In 

December 2004 the International Standard Organisation ISO, technical committee TC98, 

subcommittee SC2 established a new working group responsible for developing a new 

document on the Risk Management of Civil Engineering Systems. The new International 

Standard should provide a common methodology and clearly defined terminology that would 

improve not only the common practice of risk assessment, but also risk communication as an 

extremely important component of the whole risk management. The aim of the submitted text 

is to describe important aspects of risk assessment that are applicable to various civil 

engineering systems. 

General principles of risk assessment and the common tools applied for analysing the 

risk of civil engineering systems described in this informative text are based on the common 

concepts presented in documents [1] to [10]. The main parts of risk assessment and the basic 

terminology used in this text are indicated in Figure 10.1 (adopted from [10]). It follows from 

Figure 10.1 that the risk assessment of a system is an important part of the whole risk 

management. The risk assessment consists of risk analysis and risk evaluation. 

Figure 10.1. A framework for risk management (adopted from [10]). 

The risk analysis of a system consists of the use of all available information to 

estimate the risk to individuals or populations, property or the environment, from identified 

hazards. The risk assessment further includes risk evaluation (acceptance or treatment) as 
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indicated in Figure 10.1 (adopted from [10]). The whole procedure of risk assessment is 

typically an iterative process as indicated in Figure 10.2 (adopted from [7]). The first step in 

the risk analysis involves the context (scope) definition related to the system and the 

subsequent identification of hazards.  

The system is understood [10] as a bounded group of interrelated, interdependent or 

interacting elements forming an entity that achieves in its environment a defined objective 

through the interaction of its parts. In the case of technological hazards related to civil 

engineering works, a system is normally formed from a physical subsystem, a human 

subsystem, their management, and the environment. Note that the risk analysis of civil 

engineering systems (similar to the analysis of most systems) usually involves several 

interdependent components (for example human life, injuries, and economic loss). 

Figure 10.2. Flowchart of iterative procedure for risk assessment (adopted from [7]). 

Any technical system may be exposed to a multitude of possible hazard situations. In 

the case of civil engineering facilities, hazard situations may include both environmental 

effects (wind, temperature, snow, avalanches, rock falls, ground effects, water and ground 

water, chemical or physical attacks, etc.) and human activities (usage, chemical or physical 

attacks, fire, explosion, etc.). As a rule, hazard situations due to human errors are more 

significant than hazards due to environmental effects.  
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10.2 Hazard identification 

A hazard is a set of circumstances, possibly occurring within a given system, with the 

potential for causing events with undesirable consequences. For instance the hazard of a civil 

engineering system may be a set of circumstances with the potential to cause an abnormal 

action (for example fire, explosion) or environmental influence (flooding, tornado) and/or 

insufficient strength or resistance or an excessive deviation from intended dimensions. In the 

case of a chemical substance, the hazard may be a set of circumstances likely to cause its 

exposure [10]. 

Hazard identification and modelling is the process of recognising the hazard and  

defining its characteristics in time and space. In the case of civil engineering systems the 

hazards Hi may be linked to various design situations of the building (as defined in [7]) 

including persistent, transient and accidental design situation. As a rule, Hi are mutually 

exclusive situations (for example persistent and accidental design situations of a building). 

Then if the situation Hi occurs with the probability P{Hi}, it holds �P{Hi} = 1. If the 

situations Hi are not mutually exclusive, then the analysis becomes more complicated.  

Note that in some documents (for example in the recent European document EN 1990 

[1]) the hazard is defined as an event, while in risk analysis [10] it is usually considered a 

condition with the potential for causing events, thus as a synonym for danger. 

10.3 Definition and modelling of relevant scenarios  

A hazard scenario is a sequence of possible events for a given hazard leading to 

undesired consequences. Identifying what might go wrong with the system or its subsystem is 

a crucial task for risk analysis. It requires detailed examination and understanding of the 

system [10]. Nevertheless, a given system is often part of a larger system. Consequently, 

modelling and subsequent analysis of the system is a conditional analysis.  

The modelling of relevant scenarios may be dependent on specific characteristics of 

the system. For this reason a variety of techniques have been developed for the identification 

of hazards (for example PHA HAZOP) and for the modelling of relevant scenarios (fault tree, 

event tree/decision trees, causal networks). A detailed description of these techniques is 

beyond the scope of this text but may, however, be found in [6, 7, 8, 9] and other literature.

10.4 Estimation of probabilities 

Probability is generally the likelihood or degree of certainty of a particular event 

occurring during a specified period of time. In particular, the reliability of a structure is often 

expressed as the probability related to a specific requirement and a given period of time, for 

example 50 years [1,2]. 

Assuming that a system may be found in mutually exclusive situations Hi, and the 

failure F of the system (for example of the structure or its element) given a particular situation 

Hi occurs with the conditional probability P{F|Hi}, then the total probability of failure pF is 

given by the law of total probability (see for example [11]) as: 

 pF = �
i

ii HFH }|{P}{P  (10.1) 

Equation (10.1) can be used for the modification of the partial probabilities 

P{Hi}P{F|Hi} (appropriate to the situations Hi) with the aim to comply with the design 

condition pF < pt, where pt is a specified target probability of failure. The target value pt may 
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be determined using the probabilistic optimisation of an objective function describing, for 

example, the total cost. 

The conditional probabilities P{F|Hi} must be determined by a detailed probabilistic 

analysis of the respective situations Hi under relevant scenarios. The traditional reliability 

methods �2� assume that the failure F of the system can be well defined in the domain of the 

vector of basic variables X. For example, it is assumed that a system failure may be defined 

by the inequality g(x) � 0, where g(x) is the so-called limit state function, where x is a 

realisation of the vector X. Note that g(x) = 0 describes the boundary of the limit state, and the 

inequality g(x) � 0 the safe state of a structure. 

If the joint probability density fX(x|Hi) of basic variables X given the situation Hi is 

known, the conditional probability of failure P{F|Hi} can then be determined using the 

integral 

 P{F|Hi} = �
�0)(g

d)|(f
x

X xx iH  (10.2) 

It should be mentioned that the probability P{F|Hi}, calculated using equation (10.2), 

suffers generally from two essential deficiencies: 

–  uncertainty in the definition of the limit state function g(x),

– uncertainty in the theoretical model for the density function fX(x|Hi) of basic 

variables X.

These deficiencies are most likely the causes of the observed discrepancy between the 

determined probability pF and actual frequency of failures; this problem is particularly 

disturbing in the case of fire. Yet, the probability requirement pF � pt is generally accepted as 

a basic criterion for the design of structures. 

In a risk analysis we need to know not only the probability of the structural failure F,
but probabilities of all events having unfavourable consequences. In general, the situations Hi

may cause a number of events Eij (for example excessive deformations, full development of 

the fire). The required conditional probabilities P{Eij|Hi} must be estimated by a separate 

analysis using various methods, for example the fault tree method or causal networks.

10.5  Estimation of consequences 

Consequences are possible outcomes of a desired or undesired event that may be 

expressed verbally or numerically to define the extent of human fatalities and injuries or 

environmental damage and economic loss [7]. A systematic procedure to describe and/or 

calculate consequences is called the consequence analysis. Obviously, consequences are 

generally not one-dimensional. However, in specific cases they may be simplified and 

described by several components only, for example by human fatalities, environmental 

damage and costs. At present only various costs have usually been included. It is assumed that 

adverse consequences of the events Eij can normally be expressed by several components Cij,k,

where the subscript k denotes the individual components (for example the number of lost 

lives, the number of human injuries and the damage expressed in a certain currency).  

10.6 Estimation of risk 

Risk is a measure of the danger that undesired events represent for humans, the 

environment or economic values. It is commonly expressed in the probability and 

consequences of the undesired events. It is often estimated by the mathematical expectation of 
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the consequences of an undesired event. Then it is the product “probability � consequences”. 

However, a more general interpretation of risk involves probability and consequences in a 

non-product form. This presentation is sometimes useful, particularly when a spectrum of 

consequences, with each magnitude having its own probability of occurrence, is considered 

[9].

The estimation of risk is a process used to produce an estimate of the measure of risk. 

As already stated above, the risk estimation is based on the hazard identification and generally 

contains the following steps: scope definition, frequency analysis, consequence analysis, and 

their integration [10]. If there is one-to-one mapping between the consequences (utility) Cij,k 

and the events Eij, then the total risk Rk related to the considered situations Hi is the sum 

 Rk = �
ij

iiijkij HHEC }{P}|{P,  (10.3) 

If the dependence of consequences on events is more complicated than just one-to-one 

mapping, then equation (10.3) will have to be modified. A practical example of equation 

(10.3) can be found in [9], where an attempt to estimate the risk due to persistent and fire 

design situation is presented.

In some cases it is possible to deal with one-component risk R only. Then the subscript 

k in equation (10.3) may be omitted. Moreover, the probability of undesired events may 

depend on the vector of basic variables X. Then the total risk R may be formally written as  

 R = � xxx X d)(f)(C  (10.4) 

where R(x) denotes the degree of risk as a function of basic variables X, and fX(x) denotes the 

joint probability density function X.

10.7 Logic trees 

A number of different logic (decision) trees (fault tree, event tree, cause/consequence 

chart) have been developed to analyse the risk of a system ([19] to [23]). Applications of logic 

trees significantly improve the completeness and clarity of an engineering work. The use of 

this kind of tool is widespread in risk analysis and implies some important advantages. 

Influences of the environment and of human activities can easily be considered 

simultaneously. Logic trees can also enable the detection of the most effective 

countermeasures. Furthermore, they can be easily understood by inexperienced persons and 

therefore can provide very effective communication means between experts and public 

authorities.

The fault tree can be defined as a logical diagram for the representation of the 

combinations of influences that can lead to an undesired event. When establishing a fault tree, 

the undesired event constitutes the starting point. Going out from this event, possible causes 

are to be identified. The possible causes and consequences are to be linked in a logic way, 

without introducing any loops. Every event that is not a consequence of the previous event 

has to be considered as an independent variable. 

An example of a fault tree shown in Figure 10.3 describes the failure of a plane frame 

(indicated at the bottom of Figure 10.3). 

Fault trees can be used to clarify the causes of failures in a case where they are 

unknown. The most common application, however, consists in detecting possible causes of 

undesirable events before they can occur. Since the fault trees also show the possible 

consequences of events, they are very useful for the establishment of the most accurate 

measures for prevention of these events. 
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Figure 10.3. A fault tree describing the failure of a plane frame. 

Figure 10.4. An event tree describing the collapse of a structure under persistent and fire 

design situations (all data are related to 50-year period of an administrative building having 

the fire compartment area 250 m
2
 without sprinklers and with a protected structure). 
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 An event tree identifies possible subsequent events (see Figure 10.4) starting from an 

initial event. Each path consists of a sequence of events and ends up at the consequence level 

(for example at structural failure, see Figure 10.4). The aim of the event tree analysis is to 

identify possible consequences of an initial event and to calculate the probability of the 

occurrence of these consequences corresponding to a different sequence of events. 

 Logic trees may be supplemented by the consequences of events; the graphic 

representation of such a tree is called the cause/consequence-chart. The consequence chart 

corresponds to an event tree with a suitable representation of expected consequences. For 

example Figure 10.4 may include consequences linked to each failure probability (frequency 

per year) of the structural collapse under given conditions. Then the tree may be used for the 

cause/consequence or risk (utility) analysis. 

The simplest form of the cause/consequence consideration is the so-called prior-

analysis of the risk (utility), when the basic statistical and probabilistic information is 

available prior to any decision or activity. The prior analysis is an assessment of the risk 

associated with different decisions; it is commonly used for comparing the risks 

corresponding to different decisions. The posterior decision analysis differs from the prior 

analysis by considering possible changes in the branching probabilities and/or the 

consequences due to risk reducing measures, risk mitigating measures, and the collection of 

additional information. The posterior decision analysis may be used to evaluate different 

additional activities affecting the total risk.  

Another important modification of logic trees is known as the pre-posterior decision 

analysis. The aim of the pre-posterior decision analysis is to identify the optimal decisions 

with regard to activities that may be performed in the future, for example a planning of risk 

reducing activities and/or the collection of new information. An important pre-requisite for 

the pre-posterior decision analysis is the consideration of future actions that may be applied 

taking into account the results of the planned activities.

10.8 Bayesian network 

Another promising tool for risk analysis seems to be the Bayesian (belief) causal 

networks [19, 26]. A simple example of the causal network is shown in Figure 10.5. The 

network containing only four chance nodes describes the structural failure under persistent 

and fire design situations similar to the event tree in Figure 10.4. Compared with the event 

tree shown in Figure 10.4 the network in Figure 10.5 also includes the effect of sprinklers 

(node B). Note that the directional arrows in Figure 10.5 indicate the causal links between 

interconnected chance nodes. 

E-CollapseA-Situation

D-Flashover

B - Sprinkler

Figure 10.5. The causal network describing the structural failure under persistent and fire 

design situations. 
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The collapse of a structure depends on the probability of persistent and fire situations 

and on the conditional probabilities of the full development of fire, which depend on the 

capability of sprinklers and on the conditional probability of the structural collapse under the 

conditions given by parent nodes (for example when fire is fully developed – fire flashover). 

Obviously the causal network representation seems to be much more effective than the event 

tree version. Moreover, each node may have several states. Consequently, the input data are 

not indicated directly in the graphic representation of the network but are given in the tables 

of conditional probabilities.  

The basic principle of the probability calculation used in the Bayesian networks may 

be illustrated considering the nodes A, B and D of the network in Figure 10.5. One child node 

D (Fire flashover) is dependent on two parent nodes: A (Design situation) and B (Sprinklers). 

If the parent nodes A and B have the discrete states Ai and Bj, then the probability of the event 

Dk (a particular state of the node D) is given by the formula 

 P(Dk) = � P(Dk| AiBj)P(Ai) P(Bj) (10.5) 

Equation (10.5) represents a fundamental theoretical tool for analysing the Bayesian 

network. The input data consist of the probabilities P(Ai) and P(Bj), and the conditional 

probabilities P(Dk|AiBj). These extensive data are based on available statistical evidence, 

probabilistic analysis or expert assessment (judgement) and are transparently summarised in 

the tables of conditional probabilities. 

Bayesian networks supplemented by decision and utility nodes called influence 

diagrams [19, 26] provide a powerful tool for risk estimation. In fact, the influence diagram is 

a generalisation of the cause/consequence-chart discussed above. The main features of this 

tool are illustrated by the example shown in Figure 10.6, which is an extension of the 

fundamental task indicated in Figure 10.5. Figure 10.6 shows a simplified influence diagram, 

which has been developed recently [37] for the risk analysis of buildings under persistent and 

fire design situations.

Figure 10.6. The Bayesian network describing a structure under normal and fire design 

situations. 
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The network consists of seven chance nodes numbered 1, 2, 3, 4, 5, 12 and 14, four 

decision nodes 6, 7, 15 and 16, and six utility nodes 10, 9, 10, 11, 13 and 17. The utility nodes 

represent the costs of various fire safety measures (nodes 8, 10, 17), the damage to the 

building (nodes 9, 11), and injuries (node 13). 

Directional arrows indicating the causal links between the parent and child nodes 

interconnect the chance, decision and utility nodes. All the causal links must be described by 

appropriate input data (conditional probabilities or utility units) linked to assumed states of 

the nodes. For example the utility nodes (except the utility node 13) are directly dependent on 

the size of the building (node 15). The utility node 13, describing the cost of injury, is affected 

by the size of the building through the number of endangered persons represented by the 

chance node 14. These data are often difficult to specify, and an expert assessment has to be 

made. 

The chance nodes 1, 2, 3, 4, 5, 12 and 14 represent alternative random variables 

having two or more states. The node 1-Situation describes the probability of fire start pfi,s = 

P(H2) and the complementary probability 1	 pfi,s of the normal situation H1. The chance node 

2-Sprinklers describes the functioning of sprinklers provided that the decision (node 6) is 

positive; the probability of the active state of the sprinklers given the fire start is assumed to 

be very high, for example 0,999. The chance node 3-Flashover has two states: the design 

situation H3 (the fire design situation without flashover) and H4 (the fire design situation with 

flashover when the fire is fully developed). 

When sprinklers are installed, the flashover in a compartment of 250 m
2

has the 

positive state with the conditional probability 0,002; if sprinklers are not installed, then 

P{H4|H2} = 0,066 [40]. It is assumed that with the probabilities equal to the squares of the 

above values the fire will flash over the whole building, thus the values 0,000004 and 0,0044 

are considered for the chance node 3. The chance node 4-Protection (introduced for formal 

computational reasons) has identical states to the decision node 7-Protection. The chance 

node 5-Collapse represents the structural failure that is described by the probability 

distribution linked to three child nodes (1,3,4). This situation can hardly be modelled using a 

decision tree. Note that the probability of collapse in the case of fire but not flashover may be 

smaller than in a persistent situation, due to a lower imposed load. 

10.9 Decision-making 

The decision-making is generally based on the process of risk acceptance and option 

analysis (see Figure 10.1) that is sometimes referred to as the risk evaluation. The risk 

acceptance is based on various criteria of risk that are the reference points against which the 

results of the risk analysis are to be assessed. The criteria are generally based on regulations, 

standards, experience, and/or theoretical knowledge used as a basis for the decision about the 

acceptable risk. Acceptance criteria and the criteria of risk may sometimes be distinguished 

[9]. Various aspects may be considered, including cultural, social, psychological, economic 

and other aspects [10], [21]. Generally, the acceptance criteria may be expressed verbally or 

numerically [38].  

Assuming for example that the acceptance limits Ck,d for the components Ck are 

specified, then it is possible to design the structure on the basis of acceptable risks using the 

criterion Ck� Ck,d, which may supplement the probability requirement pF � pt.

It should be noted that various levels of risk might be recognised, for example 

acceptable risk, tolerable risk, and objective risk [38] (see the definitions of these terms). It is 

a remarkable fact that the public seems to be generally better prepared to accept certain risks 

than to stand for specified probabilities of failure �30�.



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN

150

10.10 Concluding remarks 

The risk is commonly estimated by the mathematical expectation of the consequences 

of an undesired event that often leads to the product “probability � consequences”. As a rule, 

the risk of civil engineering systems is a multidimensional quantity having several 

components. 

Risk analysis is based on hazard identification and generally contains the following 

steps: the scope definition, hazard identification, definition and modelling of hazard scenarios, 

estimation of probabilities, estimation of consequences, estimation of risk and decision-

making. 

The most important contribution of risk analysis and assessment consists of the 

systematic consideration of various consequences. Several techniques are available at present: 

the decision trees, the Bayesian belief networks and influence diagrams. Available experience 

indicates that the Bayesian belief networks provide a transparent, logical and effective tool for 

analysing engineering systems. It should, however, be underlined that any analysis of an 

engineering system is always dependent on the assumed input data, often of a very uncertain 

nature. The input data should be estimated with due regard to the specific technological and 

economic conditions of a given system. In particular, the economic, social and environmental 

consequences of adverse events should be further investigated.

It appears that the methods of risk analysis and assessment may significantly 

contribute to a further improvement of current engineering design. The remarkable fact that 

the public is better prepared to accept certain risks than to stand for specified probabilities of 

failure will make the application of risk assessment easier. It is therefore anticipated that in 

the near future probabilistic methods in engineering will be supplemented by criteria for 

acceptable risks. Obviously the proposed new International Standard ISO will be extremely 

useful.
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APPENDIX: TERMINOLOGY OF RISK ASSESSMENT  

Considering the main area of their application the terms are subdivided into four 

groups: general terms, the terms related to risk communication, the terms related to risk 

assessment and the terms related to risk management and control. Mutual links between 

different terms are illustrated in Figure 10.1 indicating a framework for risk management and 

in Figure 10.2 showing a fundamental flowchart of the risk assessment procedure. 

1 GENERAL TERMS 

1.1 Hazard: An event or a combination of events with the potential for undesirable 

consequences.

Note 1: For instance an abnormal action or environmental influence and/or insufficient 

strength or resistance or an excessive deviation from intended dimensions, in the case 

of a chemical, the potential that the substance has for causing adverse effects at 

various levels of exposure. [10]. 

Note 2: In some documents (for example in the recent draft of EN 1990 [1]) the hazard 

is defined as an event, while in risk analysis [10] it is considered a condition with a 

potential for causing an event. Thus, in risk analysis the hazard is a synonym to 

danger.

1.2 Hazard scenario: A sequence of possible events related to a given hazard leading to 

undesired consequences.

Note: To identify what might go wrong with the system or its subsystem is crucial to a 

risk analysis. It requires the system to be examined and understood in considerable 

detail [38].

1.3 Event: Occurrence of a particular set of circumstances. 

Note: An undesired event is an event, which can cause negative consequences like 

human fatalities and injuries or environmental damage and economic losses. 

1.4 Probability: The likelihood or degree of belief of a particular event occurring within a 

specified reference (time, number of repetitions, etc.). 

Note: The probability may depend significantly on the time period during which the 

particular event may occur. 

1.5 Objective probability: The probability determined using theoretical arguments or 

adequate statistical data.  

1.6 Subjective probability: The probability determined using intuition and relevant 

experience.

1.7 Consequence: The utility assigned to the event in accordance with the preferences of 

the decision maker. 

Note 1: There can be more than one consequence from one event. 

Note 2: Consequences can range from positive to negative.  

Note 3: Consequences can be expressed qualitatively or quantitatively. 
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1.8 Risk: The expected consequences associated with an activity. Risks may be related to 

adverse events for humans, qualities of the environment or economic values. In 

general the risk is the combination of probability of an event and its consequence [7]. 

Note 1: The risk is often estimated by the mathematical expectation of the 

consequences of an undesired event. Then it is the product “probability �
consequences”. However, a more general interpretation of the risk involves probability 

and consequences in a non-product form. This presentation is sometimes useful, 

particularly when a spectrum of consequences, each having its own corresponding 

probability of occurrence, is considered [38].  

Note 2: Various levels of risk may be recognised, for example acceptable risk, 

tolerable risk and objective risk [38] (see the definition of these terms).  

1.9 Objective risk: An estimate of the system risk, obtained using theoretical arguments 

or adequate statistical data (for example the annual expected fatalities from car 

accidents) or from quantified risk analysis methods (QRA, PRA).  

1.10 Reliability: The ability of a structure or structural element to fulfil the specified 

requirements during a given period of time (for example design life).  

Note 1: The reliability is often expressed as a probability related to a specific 

requirement and a period of time [1, 2]. 

Note 2: In respect of ultimate limit states, the reliability is often referred to as safety; 

in respect of serviceability limit states, the reliability is often referred to as 

serviceability [1, 2]. 

1.11 Safety: The state of being protected against hurt or injury, freedom from danger or 

hazard.

Note: In structural reliability safety is often understood as the reliability with regard to 

the ultimate limit state (see the definition of Reliability). 

1.12 System: A bounded group of interrelated, interdependent or interacting elements 

forming an entity that achieves a defined objective in its environment through the 

interaction of its parts. 

Note 1: This definition implies that the system is identifiable, is made up of interacting 

elements or subsystems, all elements are identifiable, and the boundary of the system 

can be identified [10]. 

Note 2: In terms of technological hazards, a system is normally formed from a 

physical subsystem, a human subsystem, their management and environment [10]. 

2 TERMS RELATED TO RISK COMMUNICATION 

2.1 Risk communication: The exchange or sharing of information about risk between the 

decision-maker and other stakeholders. 

Note: The information can relate to the existence, nature, form, probability, severity,

acceptability, treatment or other aspects of risk. 

2.2 Stakeholder: Any individual, group or organisation that can affect, be affected by, or 

perceive itself to be affected by a risk [8]. 

Note 1: The decision-maker is also a stakeholder. 
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Note 2: The term “stakeholder” includes but has a broader meaning than the interested 

party (which is defined in ISO 9000:2000). 

2.3 Interested party: A person or group having an interest in the performance or success 

of an organisation [7].

Examples: Customers, owners, people in an organisation, suppliers, bankers, unions, 

partners or society. 

Note: A group can comprise an organisation, a part thereof, or more than one 

organisation.

(ISO 9000: 2000, definition 3.3.7). 

2.4 Risk perception: The way in which a stakeholder views a risk, based on a set of 

values or concerns [7]. 

Note 1: The risk perception depends on the stakeholders’ needs, issues, knowledge and 

preferences. 

Note 2: The risk perception can be significantly subjective. 

2.5 Criteria of risk: The reference points against which the results of the risk analysis are 

to be assessed. The criteria are generally based on regulations, standards, experience, 

and/or theoretical knowledge used as a basis of the decision on acceptable risk. 

Note: Various aspects may be considered, including cultural, social, psychological, 

economic and other aspects [38]. The acceptance criteria may be expressed verbally or 

numerically [38]. 

2.6 Acceptable risk: A level of risk, which is generally not seriously perceived by 

society, and which may be considered as a reference point in criteria of risk.

Note: It is expected that various aspects including cultural, social, psychological, 

economic and other aspects will influence the risk perception in society (see also the 

definition of risk criteria). 

3 TERMS RELATED TO RISK ASSESSMENT 

3.1 Hazard identification: A process of recognising the hazard and defining its 

characteristics.

3.2 Causal analysis: A systematic procedure for describing and/or calculating the 

probability of causes for desired or undesired events. 

3.3 Consequence analysis: A systematic procedure to describe and/or calculate 

consequences.

3.4 Risk analysis: The use of available information concerning relevant hazard situations 

for estimating the risk for individuals or populations, property or environment.  

Note: The risk analysis generally involves the context (scope) definition, hazard 

identification, and risk estimation [10]. 

3.5 Risk assessment: A process of risk analysis, risk acceptance and option analysis. 
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Note: In some documents [1] the risk assessment is defined as risk analysis and risk 

evaluation, where the risk evaluation covers risk acceptance and option analysis (see 

the definition of risk evaluation). 

3.6 Risk estimation: A process used to produce the estimate of the risk measure. 

Note: The risk estimation is based on hazard identification and generally contains the 

following steps: scope definition, probability analysis, consequence analysis, and their 

integration [10]. 

3.7 Risk evaluation: A process of risk acceptance and option analysis.  

3.8 Sensitivity analysis: A systematic procedure to describe and/or calculate the effect of 

variations in the input data and underlying assumptions in general on the final result. 

3.9 Option analysis: A process used to identify a range of possible alternatives for 

managing the risk. 

4 TERMS RELATED TO RISK MANAGEMENT AND CONTROL 

4.1 Risk management: The complete process of risk assessment and risk control. 

Note: The entire risk management is schematically indicated in Figure 10.1 (adopted 

from [10]). 

4.2 Risk treatment: A process of selection and implementation of measures to modify 

risk [9].

Note 1: The term “risk treatment” is sometimes used for the measures themselves. 

Note 2: The risk treatment measures can include avoiding, optimising, transferring or 

retaining risk. 

4.3 Safety management: A systematic process undertaken by an organisation in order to 

attain and maintain a level of safety that complies with the defined objectives. 

4.4 Tolerable risk: A level of risk which an individual or society is willing to accept to 

secure certain benefits, assuming that the risk will be properly controlled.

Note: The tolerable risk may not be negligible, but it should be kept under review and 

permanent control. 

4.5 Risk control: Actions implementing risk management decisions. 

Note: The risk control may involve monitoring, reevaluation, and compliance with 

decisions.

4.6 Risk optimisation: A process, related to a risk, to minimise the negative and to 

maximise the positive consequences and their respective probabilities [8]. 

Note 1: In the context of safety, the risk optimisation is focused on reducing the risk. 

Note 2: The risk optimisation depends upon risk criteria, including costs and legal 

requirements. 

Note 3: A risk associated with risk control can be considered. 
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4.7 Risk reduction: Actions taken to lessen the probability, negative consequences, or 

both, associated with a risk [7]. 

4.8 Mitigation: Limitation of any negative consequence of a particular event [8]. 

4.9 Risk avoidance: The decision not to become involved in, or action to withdraw from, 

a risk situation. 

Note: The decision may be taken based on the result of risk evaluation. 

4.10 Risk transfer: Sharing with another party the burden of loss or the benefit of gain, for 

a risk [7].
Note 1: Legal or statutory requirements can limit, prohibit or mandate the transfer of a 

certain risk.

Note 2: The risk transfer can be carried out through insurance or other agreements. 

Note 3: The risk transfer can create new risks or modify existing risk. 

Note 4: Relocation of the source is not the risk transfer. 

4.11 Risk financing: Provision of funds to meet the cost of implementing risk treatment

and related costs [7]. 

Note: In some industries, the risk financing refers to funding the financial 

consequences related to the risk only.

4.12 Risk retention: Acceptance of the burden of loss, or the benefit of gain, from a 

particular risk [7]. 

Note 1: The risk retention includes the acceptance of risks that have not been 

identified. 

Note 2: The risk retention does not include treatments involving insurance, or transfer 

by other means. 

Note 3: There can be variability in the degree of acceptance and dependence on risk 

criteria.

4.13 Risk acceptance: The decision to accept a risk. 

Note 1: The verb “to accept” is chosen to convey the idea that acceptance has its basic 

dictionary meaning. 

Note 2: The risk acceptance depends on risk criteria.

4.14 Residual risk: A risk remaining after risk treatment [8].  

Note: See also ISO/IEC Guide 51 [7] for safety aspects. 
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Annex 4: Conventional probabilistic models of basic variables
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1 Introduction

 
Probabilistic models of basic variables used in different reliability studies often 

deviate one from the other. Obviously, the reliability studies based on different probabilistic 
models may lead to more or less different results and to undesirable discrepancies in 
recommendations concerning the partial safety factors, combination factors and other 
reliability elements. It is the aim of this Annex to propose conventional models in order to 
enable an efficient comparison of reliability studies of various structural members made of 
different materials (steel, concrete, composite). It is foreseen that this Annex may be used 
independently of the main text and that is why it is written as a self-contained document with 
its own references and figures.  

Probabilistic models of basic variables presented in this study Annex are intended to 
be used primarily for calibration procedures expected in the near future in connection with 
implementation of Eurocodes [1, 2, 3, 4] and ISO standard [5] into the national systems of 
codes. Proposed models are specified considering middle values of action variances, common 
structural conditions and normal quality control of material properties. Recent documents of 
JCSS [6, 7], CIB reports [8, 9, 10, 11], SAKO report [13] and other references [14, 15, 16] are 
taken into account.  

 
 

2 Probabilistic models
 
The following conventional models of basic variables are primarily intended to be 

used in time-invariant reliability analyses (using Turkstra’s combination rule) of simple 
reinforced concrete and steel members. However, the annual maximum value distribution 
supplemented by appropriate parameters describing time-variant properties can also be 
applied in time-variant reliability analysis. 

Table 1 includes three fundamental categories of basic variables (actions, material 
strengths and geometric data) supplemented by uncertainty factors for action effects and 
structural resistance. Note that the data indicated in summary Table 1 represent only 
reasonable conventional models, which may not be adequate in some specific cases (for 
example for the wind load of high rise buildings).  
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For the purpose of comparative and calibration studies the mean values �X of all the 
variables X are related to the characteristic value Xk used in the design calculation. The last 
column of Table 1 shows the occurrence probability of value X as smaller than the 
characteristic value Xk 

 P{X<Xk}= #X(Xk) (1) 

Here #X denotes the distribution function of the basic variable X. Note that due to several 
reasons (historical development of codified values, quality control of materials) these 
probabilities in general differ from those recommended for specifications of the characteristic 
values Xk in Eurocodes (for example the actual probability of the material strengths X being 
less than Xk is only 0,02 instead of the recommended value 0,05 given in EN 1990 [1]). 
 
 
Table 1. Conventional models of basic variables for time-invariant reliability analyses. 

No. Category 
of variabl. 

Name of basic 
variables 

Sym. 
X

Dimen
sion 

Dis-
trib. 

Mean  
�X 

St. dev. 
�X 

Prob. 
#X(Xk) 

Refer-
ences 

1 Actions Permanent+ G kN/m2 N Gk 0,03-0,10�X 0,5 6,8 
2  Imposed–5 years Q kN/m2 GU 0,2Qk 1,1�X 0,995 6,9 
3  Imposed–50 y.++ Q kN/m2 GU 0,6Qk 0,35�X 0,953 6,9 
4  Wind – 1 year * W kN/m2 GU 0,3Wk 0,5�X 0,999 6,10 
5  Wind – 50 years * W kN/m2 GU 0,7Wk 0,35�X 0,890 6,10 
6  Snow – 1 year ** S kN/m2 GU 0,35 Sk 0,70 �X 0,998 6,11 
7  Snow  

–50 year** 
S kN/m2 GU 1,1 Sk 0,30 �X 0,437 6,11 

8 Material  Steel yield point fy MPa LN fyk+2� 0,07-0,10�X 0,02 6,13-16 
9  Steel strength fu MPa LN = �fy*** 0,05�X – 6,13-16 

10 Strengths Concrete fc MPa LN fck+2� 0,10-0,18�X 0,02 6,13-16 
11  Reinforcement fy MPa LN fyk +2� 30 MPa 0,02 6,13-16 
12 Geometry IPE profiles A,W,I m2,3,4 N 0,99Xnom 0,01-0,04 �X <0,73 6,16 
13 steel sect. L-section, rods A,W,I m2,3,4 N 1,02Xnom 0,01-0,02 �X <0,16 6,16 
14 Geometry Cross-section b, h m N bk,hk 0,005-0,01 0,5 6 
15 concrete  Cover of reinf. a m BET ak 0,005-0,015 0,5 6 
16 cross-sect. Additional ecc. e m N 0 0,003-0,01 – 6 
17 Model un- Load effect factor �E – N 1 0,05-0.10 – 6,7 
18 certainties Resistance factor+ �R – N 1-1,25 0,05-0,20 – 6,7 

 
Notes: + See also Table 1a. 
 ++ See also Table 1b. 

* See also Table 1c. 
 ** See also Table 1d. 

*** The coefficient = can be used to estimate the mean of fu and can be considered 
as follows [6]: 

  = = 1,5 for structural carbon steel; 
  = = 1,4 for low alloy steel; and 
  = = 1,1 for quenched and tempered steel. 

+ See also data in [6]. 
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3 Comments on probabilistic models
 
 
3.1 Actions
  
Permanent load

The characteristic value of self-weight is in general determined from nominal 
dimensions (which are normally equal to the mean dimensions) and from the mean densities. 
So, in many common cases the mean of self-weight is approximately equal to its nominal 
(characteristic) value. The actual dimensions of structural members may, however, differ (by 
several per cent) from their nominal value depending on the construction material and 
production as indicated in [6]. The coefficient of variation of weight density (and self-weight) 
varies in common cases from 0,03 up to 0,10 [6, 8] as indicated in Table 1.  

Self-weight G of structural members may usually be determined as a product of the 
volume T and density �:  

 G = T � (2) 
Both the volume T and the density � are random variables that may be described by a normal 
distribution [6]. The mean of the volume T is approximately equal to the nominal value (as a 
rule slightly greater), the mean of the density � is usually well defined by the producer. 
Informative coefficients of variation are indicated in Table 1a; more extensive data are 
available in [6].  

The coefficient of variation wG of the resulting self-weight may be estimated as  

 wG
2 = wT

2 + w�
2 + wT

2 w�
2 (3) 

The last term in equation (3) may be usually neglected. 
 
 

Table 1a. Examples of the coefficients of variation (indicative values only) 

Material Coefficient of variation of 
T � G

Steel (rolled) 0.03 0.01 0.031 
Concrete (plate 300 mm thick, ordinary) 0.02 0.04 0.045 
Masonry unplastered 0.04 0.05 0.080 
Timber (sawn beam 200 mm thick, dry) 0.01 0.10 0.100 

 
Data indicated in Table 1a should be considered as informative values only. The 

coefficients of variation of T for concrete and timber depend strongly on the size (increase 
with decreasing thickness of members) and type of material. Note also that variability of non-
structural members may be considerably greater than self-weight of structural members (see 
also [8]).  

 
  
Imposed load

The imposed load considered in Table 1 refers to office areas for which the 
characteristic value recommended in EN 1991-1 [2], is within the range from 2 to 3 kN/m2. 
The experimentally determined mean of sustained load is 0,5 kN/m2, which is approximately 
0,2 of the mean, as indicated in Table 1. The standard deviation may vary in a broad range 
depending on the loaded area, influence coefficients and other factors as described in [6, 9]. 
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The coefficient of variation 1,1 corresponds approximately to a loaded area of 50 m2 and 
influence coefficient 1,4. Note that with increasing area the coefficient of variation decreases.  

Thus, the parameters of the imposed load indicated in Table 1 are derived considering 
typical office areas. Nevertheless, they may also be used as a first approximation (a priori 
information) for imposed loads in other types of loaded areas. 

When time-variant analysis is applied, the imposed load is usually split into a 
sustainable (long-term) part and a short-term part. Parameters of both components of imposed 
load (including jump rate 7 and interarrival duration intensity :) should be taken from 
available documents [6, 9]. 

Imposed load Q is usually described by Gumbel distribution (in [6] also Gamma and 
exponential distribution is used for sustained and intermittent load respectively). In general, 
the total imposed load Q consists of the sustained (long-term) component q and intermittent 
(short-term) component p. The sustained load q is always present while the intermittent 
component p may be absent and in fact may be active only very rarely (for example a few 
days a year only). The parameters of both components including jump rate λ of sustained load, 
v jump rate of intermittent load and d duration time of intermittent load are indicated in Table 
1b, which is taken from JCSS materials [6].  
 

Table 1b. Parameters of the imposed load in accordance with loading areas. 

Category A0 
[m2] 

Sustained load q Intermittent load p
�q 

[kN/m2] 
�V  

[kN/m2] 
�U

[kN/m2] 
1/λ 

[years] 
�p 

[kN/m2] 
�U 

[kN/m2] 
1/v 

[years] 
d 

[days] 
Office 20 0,5 0,3 0,6 5 0,2 0,4 0,3 1-3 
Lobby 20 0,2 0,15 0,3 10 0,4 0,6 1 1-3 
Residence 20 0,3 0,15 0,3 7 0,3 0,4 1 1-3 
Hotel rooms  20 0,3 0,05 0,1 10 0,2 0,4 0,1 1-3 
Patient room 20 0,4 0,3 0,6 5-10 0,2 0,4 1 1-3 
Laboratory 20 0,7 0,4 0,8 5-10     
Libraries 20 1,7 0,5 1 10     
Classroom 100 0,6 0,15 0,4 10 0,5 1,4 0,3 1-5 
Stores  

first floor 
upper floor 

 
100 
100 

 
0,9 
0,9 

 
0,6 
0,6 

 
1,6 
1,6 

 
1-5 
1-5 

 
0,4 
0,4 

 
1,1 
1,1 

 
1,0 
1,0 

 
1-14 
1-14 

Storage 100 3,5 2,5 6,9 0,1-1     
Industrial 
– light 
– heavy 

 
100 
100 

 
1 
3 

 
1 

1,5 

 
2,8 
4,1 

 
5-10 
5-10 

    

Concentration 
of peoples 

20     1,25 2,5 0,02 0,5 

 
 
The standard deviation of the sustained load q may be determined [6] as 

 =���
A
A

UVq
0222  �  (5) 

where �V is the standard deviation of the overall load intensity, �U is the standard deviation of 
the random field describing space variation of the load, A0 denotes the reference area (20 or 
100 m2), A the loaded area and = is the influence factor depending on the structural 
arrangement including boundary conditions. In common cases the factor = is within the 
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interval from 1 to 2,4 [6]. Figure 1 shows typical influence lines and corresponding factors = 
(= = 2 is considered in the following example as a representative value).  
 
 = = 1 

= = 2 = = 2 = = 2,4 

= = 1,4 

0 0 1 1 
O O 

O O 

J J 

i i 

 
Figure 1. Typical influence lines and corresponding factors =. 

 
A relationship similar to equation (5) may be used to determine the standard deviation �p of 
the intermittent load p. 
As an example consider an office area for which the characteristic value Qk = 3 kN/m2 is 
recommended in [3]. In accordance with Table 2 the mean values �q (for a 5-year period) and 
�p (for a 1 to 3-day period) are 

�q,5 = 0,5 kN/m2, �p = 0,2 kN/m2 (6) 

Assuming the factor = = 2 and the loaded area A = 40 m2, the standard deviations are as 
follows 

�q = (0,302 + 0,602 �2�20/40)0.5 = 0,67 kN/m2, �p = (0,402 �2�20/40)0.5 = 0,40 kN/m2 (7) 

Note that the standard deviations are strongly dependent on the factor = and the loading area 
A = 40 m2 loaded area A; if = = 2 and A = 20 m2 then 

�q = (0,302 + 0,602 �2�20/20)0.5 = 0,90 kN/m2, �p = (0,402 �2�20/20)0.5 = 0,57 kN/m2 (8) 
In general, with increasing loaded area A the standard deviations of both load components 
decreases.  
Considering the factor = = 2 and the loaded area A = 40 m2 and assuming Gumbel distribution 
for the sustained load p, then the 50-year extremes have the mean mp,50 and coefficient of 
variation wp,50  

�p,50 = 0,5 + 0,78 ln (10�0,67) = 1,98 kN/m2, wp,50 = 0.34 (9) 

Indicative parameters �p,50/Qk = 0,6 and wp = 0.35 correspond well to the above data and may 
therefore be chosen for a first approximation.  
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Wind load
Statistical parameters of wind pressure w(z) indicated in Table 1a are derived 

considering the EN model [3] and JCSS probabilistic model code [6]. Assuming oropraphy 
factor equal to 1, wind pressure w(z) can be written as: 

 & ' & ' & ' 2
bbvgbq

2
rgp 2

1),(71,)( vqzIzcqmzczcczw :� ��  (10) 

Here cp denotes the pressure coefficient, which depends on geometry of a structure and the 
size of a loaded area, cg(z) denotes the gust factor [6] (for terrain category II and z < 7,5 m 
equal to 2,4), which depends on the turbulence intensity Iv(z) defined in [3], cr(z) is the 
roughness factor defined in [3] (for terrain category II and z < 7,5 m equal to 0,95), mq is the 
model coefficient introduced in [6], which describes the ratio between expected and computed 
values of the basic wind pressure qb, :(denotes the air density (assumed as :(�(*UVW kg/m2) 
and vb is the reference wind speed specified in maps for a given region (assumed as vb= 26 
m/s).  
  
 

Table 1c. Wind load parameters assuming terrain category II and z < 7,5 m, the reference 
wind speed vb = 26 m/s and its coefficient of variation 0,20. 

w = cp cg cr
2 mq qb 

Var. 
types 

Symbol 
X Name of basic variable Dist. Dim. Parameters 

Xk �X �X/Xk �X wX  

C
oe

f. 

cp( Pressure coefficient N  
 nom nom 1 0,1nom 0,1 

cg( Gust factor N – 2,4 2,4 1 0,24 0,1 
cr

2( Roughness factor N – 0,91 0,73 0,8 0,073 0,1 
mq( Model coefficient N – 1 0,8 0,8 0,16 0,2 

A
ct

io
ns

 –
 e

xa
m

pl
e qb,1

Annual extremes of basic 
wind pressure G kN/m2 0,42* 0,20* 0,44 0,085 0,43 

qb,50
50-year extremes of basic 

wind pressure G kN/m2 – 0,46 1,10 0,085 0,18 

w1
Annual extremes of wind 

pressure G kN/m2 0,92 0,28 0,30 0,15 0,50 

W50
50-year extremes of wind 

pressure G kN/m2 – 0,64 0,70 0,211 0,33 

Notes:  *   The characteristic value of qb,1 is determined for the wind speed vb= 26 m/s.  
** The mean of qb,1 is determined assuming Gumbel distribution, coefficient of 

variation of the wind speed 0,2 and probability 0,02 of the characteristic value 
being exceeded.  

 
 
 

Note that the product ce(z) = cg(z) cr(z)2 is defined in [3] as the exposure factor, which 
is given for various terrain categories in a diagram. The annual extremes of basic wind 
pressure is denoted qb,1. 
 Table 1c shows the statistical parameters of all coefficients and resulting wind actions 
assuming the reference wind speed vb = 26 m/s and its coefficient of variation 0,20, which is a 
middle value (it may vary from 0,10 up to 0,35 [6]). The characteristics for w1 and w50 
determined in Table 1c considering a middle value 0,20 are also included in Table 1. 
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Parameters of time-variant behaviour of wind load (jump rate 7 and interarrival 
duration intensity :) should be taken from available documents [6, 11]. 
 
Snow load

Statistical parameters of the snow load indicated in Table 1d are derived considering 
the EN model [4], which can be written as: 

 gte sCCs i��  (11) 

where �i is the load shape coefficient considered for a uniform snow load covering a whole 
roof area and for the roof slope about 15°, Ce denotes the exposure coefficient and Ct denotes 
the heat coefficient. The snow load on ground at the weather station sg is specified in maps for 
a given region.  

Table 1d shows the statistical parameters of these coefficients and resulting snow 
actions assuming a middle value of the coefficient of variation of annual extremes of snow 
load on ground sg,1 may vary from 0,3 to 1,15 [6]. The characteristics for s1 and s50 determined 
in Table 1d assuming a middle value 0,70 are also included (using rounded values) in 
summary Table 1. 
 
 

Table 1d. Snow load parameters assuming the coefficient of variation for snow load on 
grounds sg,1 equal to 0,70. 

s = �1 Ce Ct sg
Var. 
types 

Symbol
X Name of basic variable Dist. Dim. Parameters 

Xk �X �X/Xk �X wX

C
oe

f. �1Ce( Shape and exposure coef. N – 0,8 0,8 1 0,12 0,15 
Ct( Heat coefficient D – 1 1 1 – – 

A
ct

io
ns

 –
 e

xa
m

pl
e sg,1*

Annual extremes of snow 
load on ground G kN/m2 1,33 0,47 0,35 0,33 0,70 

sg,50
50-year extremes of snow 

load on ground G kN/m2 – 1,48 1,11 0,33 0,22 

s1
Annual extremes of snow 

load on roof G kN/m2 1,06 0,38 0,35 0,25 0,72 

s50
50-year extremes of snow 

load on roof G kN/m2 – 1,18 1,11 0,33 0,28 

Note:  * The mean of sg,1 is determined assuming Gumbel distribution, coefficient of 
variation of the snow on ground 0,7 and probability 0,02 of the characteristic value being 
exceeded.  
 
 

It should be noted that the coefficient of variation of annual extremes of snow on 
ground may vary in a broad range from 0,30 up to 1,15 [6] depending on local conditions (see 
coast, inland and mountains regions). 

Parameters of time-variant behaviour of snow load (jump rate 7 and interarrival 
duration intensity :) should be taken from available documents [6, 10]. 
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3.2 Material properties
 The mean value �X of a material property X (the yield point for common steel of the 
grade S 235 and S 355, normal concrete strength and reinforcing bars) may be estimated using 
a simple expression  

�X = Xk + k �X = Xk / (1� k wX) (12) 

where k (usually equal to 2) is a coefficient taking into account quality control procedure, �X 
denotes the standard deviation and wX the coefficient of variation of X. The mean of ultimate 
strength is usually determined from the mean of the yield point using factor = [6] as indicated 
in Table 1. The coefficient of variation wX for structural steel is within the range from 0,7 to 
0,10, for ultimate strength is around 0,05 [6]. For concrete and reinforcing bars usually the 
standard deviation �X (commonly 5 and 30 kN/m2 respectively) is considered instead of the 
coefficient of variation wX. However, the coefficient of variation of concrete may vary in a 
broad range 0,05 to 0,18 depending on the production procedure.  
 Note that an alternative expression for the mean �X of yield point of structural steel 
may be found in literature (see [6] and references indicated there). The following expression 
is offered in [6] for structural steel (rolled sections): 

�X = Xk + exp (k wX) � C (13) 

In this expression + denotes spatial position factor (+ = 1,05 for webs of hot rolled section, 
+ = 1,00 otherwise), C is a constant reducing the yield strength as obtained from usual mill 
tests to the static yield strength (a value 20 MPa is recommended but rate of loading should be 
considered).  

A comparison of expressions (12) and (13) indicates that expression (13) is more 
conservative (primarily due to the reduction constant C). For steel S 355 the mutual 
differences may be about 5%. However, recent experience with a great number of 
experimental data clearly indicates that the second expression (13) is rather conservative (and 
unrealistic for small coefficients of variation) while the first expression (12) appears to be 
more suitable and is therefore recommended here. However, even expression (12) may be 
conservative in some cases. Nevertheless, any such expression is always an approximation 
providing informative (a priori information) values only, which should be updated in 
particular conditions using long-term experience and available experimental data.  
 
3.3 Geometric data
 Variability of geometric data is usually less significant than variability of material 
properties. Statistical characteristics indicated in Table 1 are taken directly from available data 
[6, 16] and other measurements. Note that the mean of steel cross-sections in the case of H-
profiles is 0.99Xnom, and slightly greater (1,02) in case of L profiles and rods, with coefficient 
of variation around a value of 3%. In general variation of dimensions in the case of reinforced 
concrete cross-section is more significant (standard deviation from 5 to 10 mm) than variation 
of steel sections. 

In particular variation of the concrete cover of reinforced concrete cross-sections may 
be important depending on the type and size of cross-section. Both–sided, limited Beta 
distribution (or Gamma distribution) seems to be the most suitable theoretical model in this 
case. Data indicated in Table 1 correspond to middle values of expected ranges [6]. In the 
case of Beta distribution the lower bound can be assumed to be zero, a = 0, the mean equal to 
the nominal (design) value, �x = xnom, and the upper bound equal to three times the mean, b = 
3�x, which corresponds to a skewness equal to two times the coefficient of variation, +x = 2wx 
(which is characteristic for Gamma distribution).  
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3.4 Model uncertainties 
Model uncertainties of action effects and resistances are conventionally expressed 

through the coefficients defined as ratio of the observed and model values [6]. In some cases 
little data are available and often professional judgments and experience are taken into 
consideration. Information given in Table 1 is adopted from the latest documents of JCSS [6]. 
Model uncertainty coefficients for resistances of steel and concrete members are provided in 
more detail in Table 2 and 3. Table 4 indicates uncertainty coefficients for load effects. In all 
cases log-normal distribution having the origin at zero is recommended in [6]. 
 
 

Table 2. Coefficient of model uncertainties for resistance of steel members 

Model type Distribution Mean CoV References 
Beam bending moment capacity LN 1,00 0,05 6 
Column resistance LN 1,20 0,10 * 
Welded connection capacity LN 1,15 0,20 6 
Bolted connection capacity LN 1,25 0,08 6 
Note.  * Data taken from previous materials of JCSS, which are not, however, included in the 
latest version of JCSS website [6]. 
 
 

Table 3. Coefficient of model uncertainties for resistance of concrete members 

Model type Distribution Mean CoV References 
Bending moment capacity LN 1,20 0,15 6 
Shear capacity of beams LN 1,00 0,10 6 
Column resistance LN 1,20 0,15 * 
Capacity of connections LN 1,00 0,15 * 
Punching shear  LN 1,00 0,15 * 
Note. * Data taken from previous materials of JCSS, which are not, however, included in the 
latest version of JCSS website [6]. 
 
 

Table 4. Coefficient of model uncertainties for load effect.  

Model type Distribution Mean CoV References 
Moment in frames  LN 1,00 0,10 6 
Axial force in frame LN 1,00 0,05 6 
Shear forces in frame LN 1,00 0,10 6 
Moments in plates  LN 1,00 0,20 6 
Forces in plates  LN 1,00 0,10 6 
Stresses in 2D solids LN 1,00 0,05 6 
Stresses in 3D solids LN 1,00 0,05 6 
Deflection in steel structures LN 1,00 0,07 * 
Deflection in concrete structures  LN 1,00 0,10 * 
Crack width in concrete LN 1,00 0,30 * 
Note. * Data taken from previous materials of JCSS, which are not, however, included in the 
latest version of JCSS website [6]. 
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Data indicated in Tables 2, 3 and 4 should be, however, considered as indicative 
values only and ought to be verified taking into account structural conditions and available 
experimental data. It is expected that coefficients of model uncertainties will be further 
developed by JCSS taking into account newly available experimental data and their statistical 
evaluation.  
 

3.5 Time-variant parameters
Time-variant behaviour of climatic actions (snow and wind) is usually described by 

jump process with intermittencies. Figure 2 shows a possible approximation used to describe 
actual time-dependency of an action. Two basic parameters can be considered for each action 
as indicated schematically in Figure 2 [6]: jump rate 7 = 1/�I and the mean duration �J of the 
action being “on”. Using these two parameters the interarrival duration intensity : is defined 
as 

: = (�J /�I = 7(�J (14) 

As for the snow load, let us assume that it takes its extreme five times a year (7s = 5). 
Therefore, the arrival rate of on-times is also equal to 5. The mean duration (the time during 
which the structure is loaded by the extreme snow load) is supposed to be about 14 days. The 
interarrival duration intensity results :s = 5x14/365 = 0,19. 

As for the wind load, windstorms are expected to appear ten times a year (7w = 10) 
and the mean duration of the storm is approximately 8 hours. The interarrival duration 
intensity is :w = 10/365/3 = 0,009. 

 
 

 

Figure 2. Jump process with intermittencies 

 
The above-mentioned procedure for determination of the interarrival duration intensity 

ratio : for selected values of the jump rate 7 and the mean duration �J (corresponding to 
climatic actions) is illustrated in the following Table 5. 

E(t) 

μI(�(*)7 

�J 

Action approximation 

t in days 
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Table 5. The interarrival duration intensity ratio : for selected values of the jump rate 7 and 
the mean duration �J (corresponding to climatic actions). 

7( The mean duration �J [hours] 
[1/years] 4 8 12 16 24 48 72 144 

 0,0005 0,0009 0,0014 0,0018 0,0027 0,0055 0,0082 0,0164 
  1 0,0005 0,0009 0,0014 0,0018 0,0027 0,0055 0,0082 0,0164 
  2 0,0009 0,0018 0,0027 0,0037 0,0055 0,0110 0,0164 0,0329 
  4 0,0018 0,0037 0,0055 0,0073 0,0110 0,0219 0,0329 0,0658 
  6 0,0027 0,0055 0,0082 0,0110 0,0164 0,0329 0,0493 0,0986 
  8 0,0037 0,0073 0,0110 0,0146 0,0219 0,0438 0,0658 0,1315 
10 0,0046 0,0091 0,0137 0,0183 0,0274 0,0548 0,0822 0,1644 
12 0,0055 0,0110 0,0164 0,0219 0,0329 0,0658 0,0986 0,1973 
14 0,0064 0,0128 0,0192 0,0256 0,0384 0,0767 0,1151 0,2301 
18 0,0082 0,0164 0,0247 0,0329 0,0493 0,0986 0,1479 0,2959 
24 0,0110 0,0219 0,0329 0,0438 0,0658 0,1315 0,1973 0,3945 

 

Typical jump arrival rates 7U((the mean duration �J and the interarrival duration 
intensity : are indicated in [6]. Indicative values of the jump rate 7 and the mean duration �J
based on data provided in [6] and judgement are given in Table 6.  
 
 

Table 6. Recommended values of the jump rate 7 and the mean duration �J. 

Location Wind Snow 

Location – climate  
Jump rate 7 

[1/year] 
Duration �J 

[hours] 
Jump rate 7

[1/year] 
Duration �J 

[hours] 

Inland climate 5 to 15 4 to 24 2 to 5 24 to 144 
Oceanic climate 10 to 20 8 to 48 1 to 3 12 to 72 
Mountain climate 12 to 24 12 to 72 12 to 24 24 to 144 
 
 
 

The indicative values given in Table 6 should be considered as informative values 
only. In particular conditions both parameters, the jump rate 7 and the mean duration �J, 
should be specified using available local information. In the case of a lack of representative 
information the lower and upper bounds of both parameters should be used to assess the 
possible effect of this uncertainty on the resulting reliability level. 
 Typical jump rates 7 the mean duration �J and the interarrival duration intensity 
: for inland climates are given in Table 7. 
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Table 7. Typical jump arrival rates = = 7 the mean duration �J and the interarrival duration 
intensity :. 

Action Arrival rate =�(7(
[1)year?( 

Duration �J
[year] 

Interarrival duration 
intensity : = 7(�J 

Snow 5 (5 times a year) 14/365 (14 days) 0,19 

Wind 10 (10 times a year) 1/365/3 (8 hours) 0,009 
 

In particular examples it is necessary to take into account local climatic conditions. If 
the local conditions are unknown then it is recommended to assess a “lower” and “upper” 
bound of appropriate parameters and to verify their effect on the resulting reliability level.  
 
 
4 Concluding remarks
 
 Proposed conventional models of basic variables indicated above should be considered 
as indicative values only, valid in normal conditions only, which are intended to be used 
primarily for comparative studies. In a reliability analysis of a particular structure 
probabilistic models of basic variables should be specified taking into account actual loading 
and structural conditions, and relevant experimental data. When considering the proposed 
models the following remarks should be taken into account in particular.  
 

1. Actual variability of self-weight and other permanent load may vary in a broad 
interval from 0.03 up to 0,10; it appears that the permanent load may be described 
by a normal distribution having the indicative values of the mean and coefficient of 
variation given as follows 

μG/Gk = 1 and wG = 0,1 

2. The imposed load may be described by Gumbel distribution having the indicative 
mean and coefficient of variation 

μp,50/Qk = 0,6 and wQ = 0.35 

Probabilistic models for imposed actions indicated in Table 1 correspond to an 
office area of middle size and middle level of action variability. 
 

3. Wind actions may be described by Gumbel distribution having the indicative mean 
and coefficient of variation 

μp,50/Qk = 0,7 and wQ = 0.35 

4.  Snow loads may be described by Gumbel distribution having the indicative mean 
and coefficient of variation 

μp,50/Qk = 1,1 and wQ = 0.30 

5. Time-variant parameters of variable actions (in particular climatic actions) should 
be specified, taking into account local conditions. 

 
6. Probabilistic models for material property and geometric data indicated in Table 1 

correspond to normal quality control. 
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Annex 5: Partial factor method and probabilistic design
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1 Introduction
 

Basic European document for structural design EN 1990 [1] allows the application of 
probabilistic methods as an alternative design procedure to the partial factor method. Basic 
instructions for probabilistic methods are provided in annexes C and D of [1] and in the 
International Standard ISO 2394 [2]. Further information can be found in specialised 
literature (for example [21, 22, 23]) or in JCSS materials [27]. A number of useful software 
products for the reliability analysis of structures (for example [24] and [25]) are commercially 
available and can be used effectively in practice. However, application and interpretation of 
results obtained using these products requires some experience and theoretical knowledge that 
may be found from simple examples.  

The aim of this Annex is to supplement this design guide with basic guidance on the 
application of probabilistic methods using elementary mathematical tools. In addition the 
direct comparison of probabilistic design with the partial factor method is provided. For that 
purpose a system of special-purpose functions (described in an Annex to this contribution) 
has been developed using the language of technical computing MATLAB. The failure 
probability is computed using an approximate numerical integration. The system illustrates 
basic steps and practical procedures of the probabilistic design simultaneously with 
deterministic design based on the partial factor method.  

It is believed that the MATLAB functions developed provide useful insight into 
probabilistic methods and enable the overcoming of difficulties with the correct interpretation 
of rather theoretical procedures. The direct comparison of the probabilistic design and partial 
factor methods may help in the understanding of mutual relations between input data of 
probabilistic methods and reliability elements (partial and various reduction factors) used by 
the partial factor method. A simple steel member exposed to a combination of one permanent 
and two variable actions is considered as an example illustrating general principles.  
 
 
2 Fundamental load combinations

 
In the following, combinations of three actions, permanent action G, imposed load Q 

(leading) and wind W (accompanying), are considered. EN 1990 provides three combination 
rules in permanent and transient design situations denoted here "A", "B" and "C". Assuming 
the linear behaviour of structural members, actions G, Q and W and their characteristic values 
Gk, Qk and Wk denote appropriate load effects (not the original actions). The design value of 
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the action effect Ed is generally obtained using the characteristic values Gk, Qk and Wk and 
appropriate partial factors γG, γQ, γW and reduction factors O, ψQ and ψW as follows. 

 
A. Considering the formula (6.10) in EN 1990, the design value of the action effect Ed is 
given as 

 Ed = γGGk + γQQk + γW ψW Wk (1) 

B. An alternative procedure is provided in EN 1990 by twin expressions (6.10a) and (6.10b)  

 Ed = �GGk + �Q(�Q(Qk + �W �W Wk (2) 

 Ed = O �GGk + �QQk + �W(�W Wk (3) 
 The less favourable action effect from equations (2) and (3) should be considered. In 

equation (3) O is the reduction factor for unfavourable permanent actions G. Note that in 
equations (1) to (3) “+” generally implies “to be combined with”. 

 
C. In addition EN 1990 allows further modification of the alternative "B", simplifying 

equation (2) by considering permanent loads only, thus the load effect is then  

 Ed = γGGk (4) 

  The less favourable action effect resulting from (3) and (4) is then considered.  
 

In the following only the first two combinations "A" and "B" are considered 
(combination "C" is similar to the combination "B").  The reliability elements (partial factors 
�G, �Q, �W and the reduction factors O, �Q and �W) recommended in EN 1990 [1] are applied. 
Factors �G, �Q and �W denote generally the partial factors of actions G, Q and W, though in 
accordance with EN 1990 [1] the partial factors for variable actions are equal, thus �Q = �W). 
Other possible combinations (as indicated in the handbook [16]) may be analysed similarly.  

Note that if the leading action is wind W, then in equations (1) and (2) instead of 
reducing the wind action W by factor �W, the imposed load Q should be reduced by the 
appropriate factor �Q.  

To enable easier generalisation of obtained results for a given load effect Ed under 
various intensities of variable actions, the characteristic values of Gk, Qk and Wk are related 
using quantities S given as the ratio of variable actions Qk+Wk to the total load Gk+Qk+Wk, 
and the ratio k of accompanying action Wk to the main action Qk 

 S = (Qk+Wk)/(Gk+Qk+Wk),        k = Wk/Qk (5) 

Note that a realistic range of S is from 0,1 to 0,6 (for a steel structure from 0,3 to 0,5 [16]). 
However, in some cases the load ratio S may be very low if not zero (for example 
underground garages). 

For a given design value of the load effect Ed the characteristic values of individual 
actions Gk, Qk, Wk can be expressed using variables S and k as follows 

 Gk = 

)1)(1(
))()((

 )(

d

S
S����

�O
� 
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k

E
WWQQ

G

,   Qk = 
)1)((1

k

S
S

� k
G ,   Wk = k Qk (6) 

The factors O, �Q and �W indicated in the first relationship of (6) in brackets are applied in the 
same way (either yes or no) as in equations (1) to (4) for the alternative combination rules 
"A", "B" and "C". 
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For the alternative choice "A", equation (1) is valid in the whole range 0 � S � 1, 
whereas using alternative choice "B", equation (2) is valid in the interval 0 � S � Slim,B and 
equation (3) in the interval Slim,B � S � 1. Correspondingly, for alternative choice "C", 
equation (4) is valid in the interval 0 � S � Slim,C and equation (5) in the interval Slim,C � S � 1. 
The limiting values Slim,B and Slim,C can be derived from equations (2) to (5) as follows  

 Slim,B = 
)ψk(bγ)ψ(aγk)ξ)((γ

k)ξ)((γ

WWQQG

G

� �  �
 �

11
11

 (7) 

 Slim,C = bkγaγk)ξ)((γ
k)ξ)((γ

WQG

G

   �
 �

11
11

 (8) 

where the auxiliary variable a = 1 and b = �W when k � (1–�Q)/(1–�W) (imposed load Q is the 
leading action) and a = �Q and b = 1 when k > (1–�Q)/(1–�W) (action W is the leading 
action). 

EN 1990 [1] allows through the National Annex, which will be published by the 
national standardisation institution  

 
– which of the combination expression to use, and 
– specification of appropriate safety factors 

 
Thus, the National Annexes should include a recommendation for one of the 

alternatives indicated in EN 1990 for a fundamental combination of actions in the Ultimate 
limit states and partial factors �G and �Q for permanent and variable actions. Considering a 
generic structural member it may be shown that the choice of these nationally determined 
parameters might significantly affect the resulting reliability level. Partial and reduction 
factors �, � and O recommended in EN 1990 [1] and used in this paper are summarised in 
Table 1. 
 
 
Table 1. Partial and reduction factors. 

Action Partial factors � Combination factor � Reduction factor O
Permanent G 1,35 1,0 0.85 
Imposed Q 1,5 0,7 – 
Climatic W 1,5 0,6 – 

 
In addition to the factors indicated in Table 1 other information (for example 

characteristic values of actions) may be necessary to design a member using partial factor 
methods provided in EN 1990. 
 
 
3 Partial factor design of a steel member
 

Design resistance Rd of a steel member is described by a simple relationship 

 Rd = A fk /�M  (9) 

where A denotes a design parameter depending on the geometry and boundary conditions of 
the member, fk the characteristic strength, and �M the partial factor of material property. 
Considering so-called economic design, when Ed = Rd, the design parameter A is given as 
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 A = Ed �M / fk (10) 

The partial factor of material property �M is normally within the interval 1,0 to 1,15 
(nationally determined parameter). Two alternatives �M = 1,00 and �M = 1,10 are considered in 
the attached numerical example of a steel member.  

The load effect Ed is given by equations (1) to (4) in terms of the characteristic values 
Gk, Qk, Wk and appropriate reliability elements (the partial and reduction factors). The 
attached system of MATLAB functions considers the characteristic values Gk, Qk and Wk, and 
further, the characteristic strength fk and partial factor �M as input data. The reliability 
elements (the partial and reduction factors) are considered by the default values recommended 
in EN 1990; nevertheless they may be easily adjusted in the inscription of the appropriate 
function if needed. 
 
 
4 Probabilistic design of a steel member

 
The most important step in reliability analysis is the formulation of a limit state 

function (reliability margin) G(X) separating the safe and unsafe domain of basic variables X. 
In this report the limit state function G(X) is considered in a simple form as the difference 
between the resistance R(X) and the load effect E(X) 

 G(X) = R(X) – E(X) = �R R0(X) – �E E0(X) (11) 

where the factor �R represents uncertainties of the resistance model R0(X) and the factor �E 
represents uncertainties in the load effect model E0(X). Note that the resistance R0(X) in 
equation (11) corresponds to the resistance given by equation (9) and denoted there simply as 
R, and the load effect E0(X) is a probabilistic description of the load combination given in 
expressions (1) to (4). The vector X denotes all the basic variables entering the expressions for 
the resistance R0(X) and the load effect E0(X). 

Considering the steel member described above, the following limit state function may 
be obtained from equations (9) and (11): 

 G(X) = �R A  fy  – �E (G0 + Q0 + W0) (12) 
where vector X consists of seven basic variables (six random variables and one deterministic 
parameter) describing the resistance R and load effect E.  

Probabilistic methods of structural reliability then determine the failure probability pf, 
generally given by the integral  

 pf = P{G(X) < 0} = XX
X
%
� 0)(

d)(
G

$  (13) 

where $(X) denotes the joint probability density function of the vector X. As a rule instead of 
the failure probability pf the reliability index � is used as an equivalent reliability measure. 

 � = –#–1(pf) (14) 

where #–1(pf) is the inverse distribution function of the standardised normal distribution. 
As already mentioned in chapter 5 the integral in equation (13) indicates how the 

probability pf can be determined provided that the joint probability density function $(X) is 
known (it may be a quite complicated or unknown function). In some special cases integration 
in equation (13) can be done analytically while, in some other cases, when the number of 
basic variables is small (up to 5), various types of numerical integration may be effectively 
applied. An approximate numerical integration is applied in the developed MATLAB 
functions. 
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In the general case of many basic variables the failure probability pf may be computed 
using various methods reviewed in chapter  2. It should be mentioned again that approximate 
analytical methods including the FORM (First Order Reliability Method) method are very 
efficient reliability methods, which can be used for time variant as well as for time-invariant 
reliability analysis. 

The FORM method is used as a fundamental procedure by a number of software 
products for the reliability analysis of structures and systems. The FORM method is also 
mentioned in EN 1990 as the background procedure applied to determine the design and 
combination values of basic variables, the partial factors, and various reduction factors 
applied in the partial factor method.  
 
 
5 Partial factor method and probabilistic design

 
Consider an example of a steel member described by seven basic variables X (see 

equation (12)) given in Table 2: the random strength fy, the deterministic design parameter A 
(variability of the design parameter A is taken into account by variability of fy), three random 
variables describing the actions: G0, Q0, and W0 and two factors of model uncertainties �R (the 
resistance uncertainty) and �E (the load effect uncertainty) considered as random variables.  

Table 2 indicates probabilistic models of basic variables for a time-invariant reliability 
analysis using Turkstra’s rule (a combination of a 50-year maximum of leading action and an 
annual maximum of accompanying action). 

The normalised strength and load effect are considered in the following numerical 
analysis assuming the characteristic strength fk = 1 (without mentioning dimensions) and the 
load effect Ed = 1 for the load combination "A". Obviously, for the load combination "B" the 
load effect is smaller, thus Ed < 1. The partial factor methods for the load combination "A" 
then becomes trivial, from equation (10) the design parameter follows as A = �M. This 
simplification is accepted to enable easier comparison of both load combinations "A" and "B" 
of the partial factor method with more complicated probabilistic design.  
 

Table 2. Probabilistic models of basic variables 

N° Category of 
variables 

Name of basic 
variables 

Sym. 
X Dimension Distri-

bution 
Mean 
�X 

St.dev. 
�X 

1 Actions Permanent G0 kN N Gk 0,1�X 
2  Imposed – 50-yr Q0 kN/m2 GU 0,6Qk 0,35�X 
3  Wind – 1-yr W0 kN/m2 GU 0,3Wk 0,5�X 
4 Materials Structural steel fy kN/m2 LN fyk +2�X 0,08�X 
5 Geometric data Design parameter  A m2 Det Anom 0 
6 Model  Action effect fact. �E – LN 1,00 0,05�X 
7 Uncertainty Steel bending �R – LN 1,00 0,05�X 

 
 
For a given design value of the load effect Ed of the load combination "A" the 

characteristic values of individual actions Gk, Qk, Wk must be expressed in terms of the load 
ratios S and k using equation (6). Note that the load ratios S and k are defined by equation (5). 
In the attached numerical example of a steel member the load ratios S = 0.4 (a value typical 
for steel structures) and k = 0,0 (lower reliability level than for k > 0,0) are considered. If the 
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load effect Ed = 1 for the load combination A it follows then from equation (6) that Gk,= 
0,426, Qk= 0,284 and Wk  = 0. 

A system of control and auxiliary functions for structural design developed using the 
language of technical computing MATLAB is applied for the partial factor methods and 
probabilistic design presented in Figure 1. The whole system contains a number of control 
and auxiliary functions intended for different design aspects and different structural materials. 
Note that the control function "SteelDes1" is applied for partial factor and probabilistic design 
of the considered steel member. 

Figure 1 shows the design parameter A determined by the partial factor method 
(assuming the load ratios S = 0.4 and k = 0,0, two partial factors �M = 1,0 and 1,1 and two 
combination rules "A" and "B") and variation of the reliability index � and failure probability 
pf with the design parameter A (assuming three coefficients of variation of the steel strength 
0,06, 0,08, 0,10, which are supposed to also cover variation of geometric data generally 
affecting the design parameter A). 

The coefficient of variation of the steel strength seems to have an insignificant effect 
on the reliability level of the member. It appears that the required reliability level (� = 3,8, pf
= 7,24 10–5) is satisfied if the design parameter is about A = 0,97. If the partial factor method 
is used then the load combination rule "A" for the partial factor �M = 1,00 yields A = �M = 
1,00, for the partial factor �M = 1,10 yields A = �M = 1,10; the load combination rule "B" for 
the partial factor �M = 1,00 yields A = 0,91, for the partial factor �M = 1,10 yields A = 1,01.   
 

 
Figure 1. The design parameter A determined by the partial factor method. 

 
 

A for �M=1,0� = 3,8

Load combination: B                  A B                   A

Vfy =0,10
0,08
0,06

A for �M=1,1

Vfy =0,06
0,08
0,10A for �M=1,0

A for �M=1,1

pf=7,24 10–5
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It appears that the developed system of control and auxiliary functions may effectively 
help to implement the probabilistic design methods into common design practice. 

Figure 2 shows the comparison of Turkstra’s rule with the upper and lower bound of pf 
determined by COMREL [24]. for the load ratios S = 0,4 and k = 0,0, and the coefficient of 
variation of steel strength 0,08; the lower and upper bounds of variable load Q are determined 
assuming the mean as 0,2 Qk, wQ = 1,1 and jump rate 0,2 (5 years). 

It appears that the time-variant analysis provides reasonable bounds for the reliability 
index � and the design values of the parameter A. Turkstra’s rule seems to yield a 
conservative estimate of the reliability level and design value of the parameter A. Similar 
results are shown in Figure 3 for the load ratio k= 0,5 when two variable actions (Q and W) 
are active. 

Figure 3 shows the comparison of Turkstra’s rule with the upper and lower bound of pf 
determined by COMREL [24] for the load ratios S = 0.4 and k = 0,5, and the coefficient of 
variation of steel strength 0,08; the lower and upper bounds are determined assuming for the 
variable load Q the mean 0,2 Qk, the coefficient of variation wQ = 1,1 and jump rate 0,2 
(5 years), for the variable load W the mean 0,5 Wk, the coefficient of variation wW = 0.3 and 
jump rate 10 (10 times a year) and duration coefficient 0.009. 

Figure 3 also indicates that if the total load effect is the same with an increasing 
number of variable actions the reliability level increases and the required design value of the 
parameter A decreases.  

 
 
 

 
Figure 2. Comparison of Turkstra’s rule S = 0,4 and k = 0,0, and the coefficient of variation of 

steel strength 0,08. 
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Figure 3. Comparison of Turkstra’s rule S = 0,4 and k = 0,5, and the coefficient of variation of 

steel strength 0,08. 
 
 

The above findings confirm previous experience that the time-variant reliability 
analysis may lead to considerable economic effects. However, these effects are significantly 
dependent on particular conditions including the number of time-variant basic variables and 
their theoretical models. Practical application of time-variant reliability analysis should 
therefore include critical review of variable actions and theoretical models used for their 
description. 
 
 
6 Concluding remarks

 
Figure 1 illustrates the relationship between the probabilistic design and the partial 

factor method of a steel member; assuming time-invariant analysis based on Turkstra’s rule it 
shows the correspondence between the design parameter and the reliability index. Two main 
aspects of the partial factor method are considered in particular: alternative load combinations 
and the partial factor of material property (yield strength). Figure 1 indicates that both aspects 
have significant effects on the partial factor design and clearly illustrates the relationship 
between the considered alternatives and corresponding reliability level of the investigated 
structural member.  

Considering a 50-year design life and the required reliability index � = 3,8 it appears 
that the load combination “A” for the partial factor �M = 1,0 and the load combination “B” for 
the partial factor �M = 1,1 lead to almost the same satisfactory approximation of the 
probabilistic design for the required reliability index 3,8. The application of the load 
combination “B” together with the partial factor �M = 1,0 seems to yield unsafe values of the 
design parameter (by about 5% lower than the probabilistic design) while the application of 
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the load combination “A” together with the partial factor �M = 1,1 leads to slightly 
uneconomical design (by about 10 % greater than the probabilistic design).  

Thus, the following two almost equivalent alternatives leading to a satisfactory design may 
be recommended from the reliability point of view: 

 
– the load combination "A" with the partial factr �M = 1,0, 
– the load combination "B" with the partial factor �M = 1,1. 

 
However, this recommendation is based on limited experience comprising only the 

presented simple example of a steel member. Further studies are needed to specify more 
definite conclusions; in particular, different load ratios S, k and different theoretical models of 
basic variables should be considered.  

Figures 2 and 3 indicate the effect of more refined probabilistic design considering 
time-variant properties of variable actions described by the Ferry Borges-Castanheta model. It 
appears that the time-variant reliability analysis may lead to considerable economic effects in 
comparison with the time-invariant analysis based on Turstra’s rule or with the deterministic 
design based on the partial factor method. However, these positive effects are significantly 
dependent on particular conditions including the number of time-variant basic variables 
(actions) and their theoretical models.  

It appears that reliability methods may be effectively used for structural design and 
may bring considerable economic effects. Available software products including the 
developed system of MATLAB functions may contribute to an efficient implementation of 
probabilistic design into common design practice. 
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Annex 6: List of selected software tools supplementing the main text
  
 

The software tools are intended for calculation procedures described in the main text. 
Three different software products are used to develop the tools: Excel, Mathcad and Matlab. 
The software tools are listed in the order of the relevant chapters of this textbook.  
 
 
Chapter 1

Excel sheets
RCBeam.xls – Excel sheet intended for design of a reinforced concrete beam in 

accordance with various design methods. 
 

Mathcad sheets 
RCBeam.mcd – Mathcad sheet intended for design of a reinforced concrete beam in 

accordance with various design methods. 
 
Chapter 2

Excel sheet
Update.xls – Excel sheet intended for updating of probabilities using Bayes’ theorem. 

Mathcad sheets 
Update.mcd – Mathcad sheet intended for updating of probabilities using Bayes’ 

theorem. 
Update.prn – Mathcad file supplementing sheet Update.mcd with data. 
 

Chapter 3

Excel sheet
DistUp.xls – Excel sheet intended for updating of distributions using Bayes’ theorem. 

Mathcad sheets 
BetaDist.mcd – Mathcad sheet intended for specification of the parameters of Beta 

distribution. 
 GammaDist.mcd – Mathcad sheet intended for specification of the parameters of 
Gamma distribution. 
 LNDist.mcd – Mathcad sheet intended for specification of the parameters of Log-
normal distribution. 
 Gumbelmax.mcd – Mathcad sheet intended for specification of the parameters of 
Gumbel distribution. 

SampComb.mcd – Mathcad sheet intended for specification of the parameters of Beta 
distribution. 

Matlab sheets (see also Annex 7) 
Ndens.m – Matlab sheet for probability density function of a normal distribution. 
Ndist.m – Matlab sheet for distribution function of a normal distribution.  
Ndinv.m – Matlab sheet for the inverse distribution function of a normal distribution. 
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Lndens.m – Matlab sheet for probability density function of a general three-parameter 
log-normal distribution. 

Lndist.m – Matlab sheet for probability distribution function of a general three-
parameter log-normal distribution. 

Lndistinv.m – Matlab sheet for the inverse probability distribution function of a 
general three-parameter log-normal distribution. 

 
Chapter 4

Excel sheet
Mod_est.xls – Excel sheet intended for estimation of resistance model fractiles using 

sample data and EN 1990 procedure. 

Mathcad sheets
DisFract.mcd – Mathcad sheet intended for computation of fractiles for theoretical 

distribtutions. 
SamFract.mcd – Mathcad sheet intended for estimation of fractiles using sample data.  
Mod_est.mcd – Mathcad sheet intended for estimation of resistance model fractiles 

using sample data and EN 1990 procedure. 
BayesFract.mcd – Mathcad sheet intended for estimation of fractiles using sample data 

and Bayes’ approach.  
Cdata.prn – Mathcad file supplementing sheet Mod_est.mcd with data. 
rData.prn – Mathcad file supplementing sheet Mod_est.mcd with data. 
 

Chapter 5

Excel sheets
 FORMRCB.xls – Excel sheet intended for FORM reliability analysis of a reinforced 
concrete beam. 
 FORM2.xls – Excel sheet intended for FORM reliability analysis of a fundamental 
case of two basic variables approximated by general three-parameter log-normal distribution.  
 FORM5.xls – Excel sheet intended for FORM reliability analysis of a case of five 
basic variables approximated by general three-parameter log-normal distribution. 

FORM7.xls – Excel sheet intended for FORM reliability analysis of a case of seven 
basic variables approximated by general three-parameter log-normal distribution. 

FORM7nonlin.xls – Excel sheet intended for FORM reliability analysis of a non-linear 
case of seven basic variables approximated by general three-parameter log-normal 
distribution. 
 
Mathcad sheets

FORM_RCB.mcd – Mathcad sheet intended for FORM reliability analysis of a 
reinforced concrete beam. 
 FORM2.mcd – Mathcad sheet intended for FORM reliability analysis of a 
fundamental case of two basic variables approximated by general three-parameter log-normal 
distribution.  
 FORM5.mcd – Mathcad sheet intended for FORM reliability analysis of a case of five 
basic variables approximated by general three-parameter log-normal distribution. 

FORM7.mcd – Mathcad sheet intended for FORM reliability analysis of a case of 
seven basic variables approximated by general three-parameter log-normal distribution. 
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FORM7nonlin.mcd – Mathcad sheet intended for FORM reliability analysis of a non-
linear case of seven basic variables approximated by general three-parameter log-normal 
distribution. 

Sim2.mcd – Mathcad sheet intended for reliability analysis of a fundamental case of 
two basic variables approximated by general three-parameter log-normal distribution using 
crude Monte Carlo method. 

 
Matlab sheet

FORM2.m – Matlab sheet intended for FORM reliability analysis of a fundamental 
case of two basic variables approximated by general three-parameter log-normal distribution.  
 FORM5.m – Matlab sheet intended for FORM reliability analysis of a case of five 
basic variables approximated by general three-parameter log-normal distribution. 

FORM7.m – Matlab sheet intended for FORM reliability analysis of a case of seven 
basic variables approximated by general three-parameter log-normal distribution. 

Sim2.m – Matlab sheet intended for reliability analysis of a fundamental case of two 
basic variables approximated by general three-parameter log-normal distribution using crude 
Monte Carlo method. 

 
Chapter 6

Mathcad sheets
PSI0.mcd – Mathcad sheet intended for computation of the factor ψ0 assuming 

selected types of theoretical models. 
PSI2.mcd – Mathcad sheet intended for computation of the factor ψ2 assuming normal 

and Gumbel distribution. 
 
Chapter 8

Excel sheets
 GammaQ.xls – Excel sheet intended for computation of gamma Q based on input data 
including reliability index, sensitivity factor, reference intervals and time-sensitivity factor. 

Mathcad sheets
GammaRGQ.mcd – Mathcad sheet intended for determination of partial factors for resistance 
variables, permanent and variable loads assuming various types of distributions.  

 
Matlab sheet

GenerDes0.m – Matlab sheet for design of a generic structural member. 
GenerDes1.m – Matlab sheet for design of a generic structural member (an alternative 

sheet to LoadEffect0.m – see Annex 7). 
SteelDes1.m – Matlab sheet for design of a simple steel structural member. 
CBeamDes1.m – Matlab sheet for design of a reinforced concrete beam. 
CColumnDes1.m – Matlab sheet for design of a reinforced concrete column. 
MasonDes1.m – Matlab sheet for design of a simple masonry wall.  
TimberDes1.m – Matlab sheet for design of a simple timber structural member. 
LoadEffect0.m – Matlab sheet for specification of a load effect on a simple structural 

member. 
LoadEffect1.m – Matlab sheet for specification of a load effect on a simple structural 

member (an alternative sheet to LoadEffect0.m – see Annex 7). 
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Annex 7: System of Matlab functions for probabilistic structural design

Introduction
 
The developed system of MATLAB functions (small programs and interconnected 

functions) is primarily intended for deterministic (partial factor method) and probabilistic 
design of structural members. Load combinations are considered in accordance with the rules 
provided in EN 1990. Two combination rules are considered: the combination rule A 
corresponding to the expression (6.10) in EN 1990, and the combination rule B corresponding 
to twin expressions (6.10a) and (6.10b) in EN 1990. Resistance of selected structural 
members made of different materials is described taking into account the principles and rules 
of material oriented Eurocodes 1992 to 1996.  

A typical system of MATLAB functions used for deterministic and probabilistic 
design of structural members is indicated in Figure 1.  

 
 

 
Figure 1. System of MATLAB functions used for design of structural members. 

 
 
 

As indicated in Figure 1 the system of MATLAB functions for design of structural 
members consists of seven components: one control function, which specifies resistance 
parameters of a structural member and generates figures with the resulting graphs, and other 
auxiliary functions calculating appropriate load effects and failure probability (for different 
combination rules). Arrows in Figure 1 indicate interchange of data between individual 
functions of the system. 

Obviously the central role of the system is provided by the control function (some 
control functions are still under construction), which defines parameters of a structural 
member and generates resulting graphs. In addition to the graphical results numerical outputs 
of selected quantities are also provided in the MATLAB command window. Failure 
probability is calculated by the function LNPF that further calls functions Lndens (calculating 
probability density function of three-parameter log-normal distribution) and Lndist 
(calculating distribution function of three-parameter log-normal distribution).  

LNPF

GraphsNdinv

Lndens Lndist

ActionEffect

Control Function



RELIABILITY ANALYSIS FOR STRUCTURAL DESIGN 

188 

A more detailed insight to the whole system may be obtained from the following list 
of control functions (programs) and other functions. The description of each function 
indicates its purpose and links to other functions. Additional information may also be found in 
the appropriate MATLAB files that include a number of comments and explanatory notes. 
Note that all the functions use some default parameters, which may, however, be adjusted 
taking into account particular design conditions of a given structural member.  
 
 
List of control functions 
  
Several alternative control functions (programs) have been developed to design simple 
structural members made of different materials. The control function generates a series of 
figures with graphs indicating variation of the reliability index and failure probability with a 
design parameter. These graphs together with information given in the Matlab command 
window enable decisions concerning the design parameter. 

A concise description of each program is given in the following list of available 
programs. As indicated in Figure 1 any of these programs gradually calls a series of other 
MATLAB functions described below the list of the control functions. These functions 
calculate characteristics of load effects and failure probability using approximations of actual 
distributions by the three-parameter log-normal distribution for both the load effects and 
resistance. 
 
GenerDes0 
 The control function GenerDes0(Ed,CHI,k,fk,gR) is the fundamental form of a 
program for design of a structural member. The arguments of this program are three 
parameters of actions: the total load effect Ed, load ratios CHI and k, the characteristic 
strength fk and the partial safety factor of the resistance gR. The characteristic action effects 
Gk, Qk and Wk are calculated from Ed, CHI and k. This form of the program is therefore 
useful to study the effect of various load ratios CHI and k on the resulting reliability level 
assuming a given load effect Ed.  

The coefficient of variation wr of the resistance R is automatically chosen as three 
values: 0,1; 0,15 and 0,20. A general structural member of the resistance R (without any 
reference to specific geometry and type of structural material) is described by the 
characteristic mean and the coefficient of variation wr (including model uncertainty). 

The program GenerDes0(Ed,CHI,k,fk,gR) calls the functions  
LoadEffect0(Ed,CHI,k) 
Ndinv(p) and  
Lnpf (mr,sr,skr,me,se,ske), which further calls the functions 

Lndens(x,sk,mu,sigma) 
Lndist(x,sk,mu,sigma) 

GenerDes1 
 The control function GenerDes1(Gk,Qk,Wk,fk,gR) is similar to the fundamental form 
GenerDes0. The program depends explicitly on three characteristic values of the load effects 
Gk, Qk and Wk, on the characteristic strength fk and on the partial safety factor of the 
resistance gR. The design value EdA (for the combination A) and EdB (for the combination 
B) of the load effect E is calculated from the characteristic actions Gk, Qk, Wk assuming the 
partial factors recommended in EN 1990. This control function is therefore useful for 
practical design procedures when the characteristic values of the load effects Gk, Qk and Wk 
are given.  
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The coefficient of variation wr of the resistance R is automatically chosen as three 
values: 0,1, 0,15 and 0,20. A general structural member of the resistance R (without any 
reference to specific geometry and material properties) is described by the normalised mean 
and the coefficient of variation wr (including model uncertainty). 

The program GenerDes1(Gk,Qk,Wk,fk,gR) calls the functions  
LoadEffect1(Gk,Qk,Wk) 
Ndinv(p) and  
Lnpf (mr,sr,skr,me,se,ske), which further calls the functions 

Lndens(x,sk,mu,sigma) 
Lndist(x,sk,mu,sigma) 

CBeamDes1 (exactly same as GenerDes1) 
 The control function GenerDes1(Gk,Qk,Wk,fk,gR) is similar to the fundamental form 
GenerDes0. The program depends explicitly on three characteristic values of the load effects 
Gk, Qk and Wk, on the characteristic strength fk and on the partial safety factor of the 
resistance gR. The design value EdA (for the combination A) and EdB (for the combination 
B) of the load effect E is calculated from the characteristic actions Gk, Gk, Wk assuming the 
partial factors recommended in EN 1990. This form of the program is therefore useful for 
practical design procedures when the characteristic values of the load effects Gk, Gk and Wk 
are given.  

The coefficient of variation wr of the resistance R is automatically chosen by three 
values: 0,1, 0,15 and 0,20. A general structural member of the resistance R (without any 
reference to specific geometry and material properties) is described by the normalised mean 
and the coefficient of variation wr (including model uncertainty). 

The program GenerDes1(Gk,Qk,Wk,fk,gR) calls the function  
LoadEffect1(Gk,Qk,Wk) 
Ndinv(p) and  
Lnpf (mr,sr,skr,me,se,ske), which further calls functions 

Lndens(x,sk,mu,sigma) 
Lndist(x,sk,mu,sigma) 

 
SteelDes1 
 The control function SteelDes1 is a modification of the function GenerDes1. The 
function SteelDes1(Gk,Qk,Wk,fk) depends explicitly on three characteristic values of the load 
effects Gk, Qk and Wk, on the characteristic strength fk of steel, and on the partial safety 
factor gm for steel. The design value EdA (for the combination A) and EdB (for the 
combination B) of the load effect E is calculated from the characteristic actions Gk, Qk, Wk 
assuming the partial factors recommended in EN 1990.  

The function automatically chooses three coefficients of variation of steel strength wf 
= 0,06, 0.08 and 0.10, and two different partial safety factors gm (1,00 and 1,10) to show the 
effect of wf and gm on the resulting reliability of the deterministic design. The coefficient of 
variation of model uncertainty is assumed as wKr = 0,05.  

The control function SteelDes1(Gk,Qk,Wk,fk) calls the functions  
LoadEffect1(Gk,Qk,Wk) 
Ndinv(p) and  
Lnpf (mr,sr,skr,me,se,ske), which further calls functions 

Lndens(x,sk,mu,sigma) 
Lndist(x,sk,mu,sigma) 
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List of auxiliary functions
 
LoadEffect0

Function LoadEffect0(EdA,CHI,k) calculates from the input arguments EdA, CHI and 
k the characteristic values of the load effects Gk, Qk and Wk assuming the partial safety 
factors recommended in EN 1990. Using Gk, Qk and Wk the load effect EdB corresponding 
to the combination rule B (twin expressions (6.10a) and (6.10b)) is determined and the 
statistical characteristics me, se and ske of the load effect E are assessed.  

The function is called by the command “LoadEffect(EdA,CHI,k)” and returns a vector 
[me,se,ske,EdB].   
 
LoadEffect1

Function LoadEffect1(Gk,Qk,Wk) is used when the characteristic values of the load 
effects Gk, Qk and Wk are specified. From the input arguments Gk, Qk and Wk it calculates  
the load effects EdA corresponding to the combination rule A (expressions (6.10) in EN 
1990) and EdB corresponding to the combination rule B (twin expressions (6.10a) and (6.10b) 
in EN 1990).  

The function is called by the command “LoadEffect1(Gk,Qk,Wk)” and returns a 
vector [me,se,ske,EdA,EdB]. 

LNPF
Function LNPF is intended for determination of the failure probability using three-

parameter log-normal distribution for both the load effect E and member resistance R. The 
function is called by the control function using command “Lnpf (mr,sr,skr,me,se,ske)”. It 
returns the failure probability p.  

The function LNPF calls the functions 
Lndens (x,sk,mu,sigma) 
Lndist (x,sk,mu,sigma)  
 

Lndens
Function Lndens is intended for calculation of the probability density function of 

three-parameter log-normal distribution. The function is called by the function LNPF using 
command “Lndens(ske,me,se)”, and returns the value of probability density function of three-
parameter log-normal distribution. 
 
Lndist

Function Lndist is intended for calculation of the distribution function of three-
parameter log-normal distribution. The function is called by the function LNPF using 
command “Lndist(skr,mr,sr),” and returns the value of the distribution function of three-
parameter log-normal distribution. 
 
Ndinv

Function Ndinv calculates the inverse distribution function of the normal distribution 
(giving the reliability index beta from failure probability). The function is called by the 
control function using command “Ndinv(p)” (commands “Ndinv(p,mu,sigma)” or 
"Ndinv(p,mu)” may be also used), and returns the inverse distribution function of the normal 
distribution. 
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Annex 8: Excel sheet FORM 7 and RORMRCB

EXCEL sheet "RORM7" provides FORM iterative computation of the reliability index β

Limit state function g(X )= a 0+a 1*X 1*( a 2*X 2+a 3*X 3)+a 4*X 4*(a 5*X 5+a 6*X 6+a 7*X 7)

Basic variables X i  are approximated by general three-parameter lognormal distribution 
LN(μ , σ , + ), which becomes automatically normal distribution when the skewness +  = 
Note that: +  = 3 σ /μ  for two-parameter lognormal distribution

+  = 1.14 for Gumbel distribution
+  = 2 σ /μ  for Gamma distribution 

A B C D E F G H I J K L
Input data  The initial x1 is automatically calculated, do not change x1

i a i X i Guess of  x 2 80,00 Lognormal of X i

0 0 μ σ + C x 0 Design p. u uu φ Φ
1 1 1,000 0,050 0,150 0,050 0,00 0,963 -0,74 -0,73 6,3392 0,2318
2 1 100,000 10,000 0,301 0,100 0,00 65,451 -3,45 -4,20 0,0000 0,0000
3 1 0,010 0,010 0,301 0,100 -0,09 0,009 -0,05 0,00 40,2020 0,4991
4 -1 1,000 0,050 0,150 0,050 0,00 1,035 0,71 0,72 5,9508 0,7642
5 1 30,000 10,000 0,000 0,000 infinity 54,089 2,41 2,41 0,0022 0,9920
6 1 5,000 2,000 1,140 0,364 -0,496 5,727 0,36 0,53 0,1581 0,7015
7 1 1,000 1,000 1,140 0,364 -1,748 1,061 0,06 0,24 0,3914 0,5943

Requirement for the design point, + i > 0 then x 0i < x i , when +i < 0 then x 0i > x i

Iteration of the FORM method - enter the new x  manually instead of the initial x
ai xi Equivalent normalDeriv. SensitivityNew point  Partial factors

0 0 μ e σ e u i g i u i *g i alpha New x � �x /μ
1 1 0,998 0,048 -0,73 3,15 -2,308 0,240 0,963 0,963
2 1 75,000 6,529 -1,46 6,286 -9,194 0,479 65,451 Enter the 0,655
3 1 0,010 0,010 0,00 0,01 -2E-05 0,001 0,009 new x i 0,948
4 -1 0,998 0,052 0,72 -3,09 -2,228 -0,236 1,035 to x 2 1,035
5 1 30,000 10,000 2,41 -10,4 -24,94 -0,788 54,089 to x 7 1,803
6 1 4,567 2,195 0,53 -2,27 -1,201 -0,173 5,727 in H16 1,145
7 1 0,825 0,991 0,24 -1,03 -0,245 -0,078 1,061 to H21 1,061

Sum 13,13 -40,12 1,000
1 β  in iter. n 3,0551 Macro procedure

Required acc. 0,001 β  in iter. n-1 3,0551 5,5E-07 Accuracy reached
Probability of failure p f = Φ(�β ) - command =NORMDIST(-G34;0;1;1) 1,1E-03

The whole iteration procedure may be performed manually following instruction given 
in the cells K27 to K32 or using Macro "ITERATION". 

Note that the initial gueas of variables X 2 to X 7 should be enteredto the cells H16 to H21.

Number of iter.

 

ai xi Equivalent normal  Derivatives 

Note that the initial guess of variables X2 to X7 should be entered to the cells H16 to H21. 

log-normal 

log-normal distribution 
+=0 
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B. FORM method for determination of the reliability index beta  
Simplifier form of indexing is chosen, which is more suitable for counting: 

h=X1, As=X2, fyd=X3, c=X4, b=X5, fcd=X6, K=X7, G=X8, Q=X9, W=X10 

3. Input parameters for basic variables {X}={X1, X2…X10} and the coefficients
a7, a8, a9 and a10 may be written in following re-indexed limit state function:

g(X) = X1*X2*X3-X4*X2*X3-X2
2*X3

2/(2*X5*X6) + a7*X7*(a8*X8+a9*X9+a10*X10)  

Input Variables i a � � +
Hight of cross-section h x01 - 0,3 0,01 0
Area of reinforcement As x02 - 0,0004 0,00002 0,15
Yield strength of reinforcement fy x03 - 560000 30000 0,15
Cover c x04 - 0,03 0,005 0,5
Width of cross-section b x05 - 0,2 0,005 0
Concrete strength fc x06 - 30000 5000 0,5
Model uncertainty K x07 -1 1 0,05 0,15
Permanent load G x08 1 18 1,8 0
Variable load Q x09 1 10 2 1,14
Variable load W x10 1 2 1 1,14

The check of the initial gues values 

x1= 0,1826

4. FORM iteration procedure:
Symbolic iteration procedure

The initial guess 
values of X is
calculated from g (X)= 0
Number of iterations n

Equivalent normal
distributions of
the basic variables X. 

Standardised variables

Partial derivatives of g(X):

R
ES

IS
TA

N
C

E
LO

A
D

xi �iX� x1

x4 x2Y x3Y
x2& '2 x3& '2Y

2 x5Y x6Y
 a7 x7Y a8 x8Y a9 x9Y a10 x10Y & 'Y�

x2 x3Y
X�

�n x �Z

x1

x4 x2Y x3Y
x2& '2 x3& '2Y

2 x5Y x6Y
 a7 x7Y a8 x8Y a9 x9Y a10 x10Y & 'Y�

x2 x3Y
Z

�ei
dnorm qnorm # xi �iU �iU + iU& ' 0U 1U& ' 0U 1U& '

[ xi �iU �iU + iU& '
Z

�ei xi �ei qnorm # xi �iU �iU + iU& ' 0U 1U& 'Y�Z

ui

xi �ei�

�ei
Z

i 1 10\\�for

g1 x2 x3Y �e1YZ

g2 x1 x3Y x4 x3Y�
x2 x3& '2Y

2 x5Y x6Y
�

5
3
3
4

2
0
0
1
�e2YZ

g3 x1 x2Y x2 x4�
x2& '2 x3

5
4

2
1

x5 x6
�

5
3
3
4

2
0
0
1
�e3YZ

g4 x2� x3Y �e4YZ

g5

x2& '2 x3& '2Y

2 x5& '2Y x6Y
�e5YZ

j 1 n\\�for

X�

guess values 

value of X1 is 

Height of cross-section h  



Annex 8

193 

 
 
 

Reliability index:

Sensitivity factors:

New design point 
to be used in the 
next iteration 

FORM Iteration:

Number of iteration: n  = 10 Click on the button to start:

Xi xi

nominato
r �ei

denominat
or �ei �ei �ei �i gi aai xi+1 ��x)�

h 0,2896 0,2331 23,3088 0,0100 0,3000 -1,0367 1,9646 0,2347 0,2896 0,9654
As 0,0004 0,1845 9833,1 0,0000 0,0004 -1,2419 2,3535 0,2811 0,0004 0,9387
fy 523262 0,1851 0,0000 28147,1 558149,9 -1,2395 2,3489 0,2806 523266 0,9344
c 0,0325 0,3417 63,6473 0,0054 0,0295 0,5566 -1,0547 -0,1260 0,0325 1,0817
b 0,1998 0,3985 79,7066 0,0050 0,2000 -0,0453 0,0859 0,0103 0,1998 0,9989

fcd 28161,6 0,3814 0,0001 4664,8 29560,4 -0,2998 0,5682 0,0679 28161,8 0,9387
K 1,0627 0,1845 3,4751 0,0531 0,9968 1,2418 -2,3533 -0,2811 1,0627 1,0627
G 19,8171 0,2397 0,1332 1,8000 18,0000 1,0095 -1,9128 -0,2285 19,8167 1,1009
Q 22,0129 0,0010 0,0002 6,1748 0,6361 3,4619 -6,5619 -0,7838 22,0151 2,2015
W 2,4884 0,3250 0,2848 1,1413 1,7577 0,6403 -1,2129 -0,1449 2,4881 1,244

1,0000
Reliability index �� :

��i= 4,42

Probability of failure pf :

pf= 5,00E-06

pf normdist � i� 0U 1U 1U& 'X� � i

g6

x2& '2 x3& '2Y

2 x5Y x6& '2Y
�e6YZ

g7 a7 a8 x8Y a9 x9Y a10 x10Y & 'Y �e7YZ

g8 a7 a8Y x7Y �e8YZ

g9 a7 a9Y x7Y �e9YZ

g10 a7 a10Y x7Y �e10YZ

�
g uY( )�

g g
�
Y& '0.5

Z

aai

gi

g g
�
Y& '0.55

4
2
1

Z

xi �ei aai �Y �eiY�Z

i 1 10\\�for

x1

x4 x2Y x3Y
x2& '2 x3& '2Y

2 x5Y x6Y
 a7 x7Y a8 x8Y a9 x9Y a10 x10Y & 'Y�

x2 x3Y
Z

�

Height of cross-sectrion h 

value
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Annex 9: Mathcad sheet FORM 7

MATHCAD sheet "FORM7" for calculation of the reliability index �� and
failure probability assuming a non-linear limit state function 

g(X) = a0 + a1*X1( a2*X2 + a3*X3) + a4*X4 (a5*X5+a6X6+a7X7)
  and general three-parameter log-normal distribution LN(�,�,+) of basic

variables X1, X2, X3, X4, X5, X6 and X7

A General three-parameter log-normal distribution for any +
1. Parameter C and skewness  + :

Check: 
Distribution parameter C
given by the skewness +: C +& '

3
+

2
4 + 

3
+

2
4 +��

3 2
X� C 0( ) 0�

Distribution bound x0
(�(- 6 � for zero + ):

x0 � �U +U& ' �
�

C +& '� + 0�if

� 6�� otherwise

X� x0 0 1U 1U( ) 3.1038��

2. Probability density [  and distribution function # (for any  + ): 
Standardised variable: u x �U �U& ' x ��

�
X� Transformed standardised variable:

uu x �U �U +U& '
ln u x �U �U& ' 1

C +& ' ��



�	



ln C +& ' 1 C +& '2 Y
�



�

 

sign +& ' ln 1 C +& '2 & 'Y

+ 0�if

u x �U �U& ' otherwise

X�

uu 50 50U 10U 0U( ) 0�

Density probability function:

[ x �U �U +U& ' dnorm uu x �U �U +U& ' 0U 1U& '

� u x �U �U& ' 1
C +& ' Y ln 1 C +& '2 & 'Y

+ 0�if

dnorm uu x �U �U +U& ' 0U 1U& '
�

otherwise

X� [ 50 50U 1U 0U( ) 0.3989�

Distribution function: # x �U �U +U& ' pnorm uu x �U �U +U& ' 0U 1U& 'X� # 100 100U 10U 0U( ) 0.5�

B FORM method for determination of the reliability index � and probability pf  
    Coefficients a0, a1, a2, a3, a4, a5, a6 and a7 of the limit state functions and 

 Input parameters for basic variables {X}={X1, X2, X3, X4, X5, X6 and X7}  

Three parameter
log-normal distribution
LN(�,�,+) for any +, if
+�(](then the normal
distribution is used .
When X1 and X4 are
model uncertainties
then LN(�,�) is used. 

i 1 7\\X�
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X� x0i x0 �i �iU +iU& 'X�

x01 0.88�

x02 8.5265� 10 14�
��

Check of the bounds x03 0.05�� x04 0.94� x05 22.5224� x06 0.05�� x07 0.05��

The check of the
initial guess values 

xi �iX� x1

a0 a4 x4Y a5 x5Y a6 x6Y a7 x7 & 'Y 54 21�

a1 a2 x2Y a3 x3Y & 'Y
X� x1 0.5001�
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Probability of 
failure pf 

pf 1.7006 10 3�
��

pf pnorm �5� 0U 1U& 'X��
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2.9022

2.9303

2.9292

2.929

2.9289
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�

Iteration of the 
reliability index � 

New design point 
to be used in the 
next iteration, go 
back to the 
section 5 and use 
this data in a new 
run 

Sensitivity factors:

Reliability index:

Derivatives of g(X):

Standardised variables

Equivalent 
normal
distributions of 
the basic 
variables X. 

The value x2 
is calculated 
from g (X)= 0

�n x �Z

x1

a0 a4 x4Y a5 x5Y a6 x6Y a7 x7 & 'Y 54 21�

a1 a2 x2Y a3 x3Y & 'Y
Z

�ei
dnorm qnorm # xi �iU �iU +iU& ' 0U 1U& ' 0U 1U& '

[ xi �iU �iU +iU& '
Z

�ei xi �ei qnorm # xi �iU �iU +iU& ' 0U 1U& 'Y�Z

ui

xi �ei�

�ei
Z

i 1 7\\�for

g1 a1 a2 x2Y a3 x3Y & '�e1YZ

g2 a1 a2Y x1Y �e2YZ

g3 a1 a3Y x1Y �e3YZ

g4 a4 a5 x5Y a6 x6Y & 'Y �e4YZ

g5 a4 a5Y x4Y �e5YZ

g6 a4 a6Y x4Y �e6YZ

g7 a4 a7Y x4Y �e7YZ

�
g uY( )�

g g
�
Y& '0.5

Z

aai

gi

g g
�
Y& '0.55

4
2
1

Z

xi �ei aai �Y �eiY�Z

i 1 7\\�for

x1

a0 a4 x4Y a5 x5Y a6 x6Y a7 x7 & 'Y 54 21�

a1 a2 x2Y a3 x3Y & 'Y
Z

j 1 n\\�for

�

X�The initial guess 
values of X

n 1 5\\X�Number of iterations

Probability of failure pf is determined from the reliability index � 4. FORM iteration procedure:
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Annex 10: Matlab sheet FORM 7

function pf = FORM7
%  DESCRIPTION, 28.02.2005
%     FORM7a evaluates the the probability of failure pf considering the limit state 
function
%
%                g(X)=A0 + A1*X1*(A2*X2+A3*X3) + A4*X4*(A5*X5+A6*X6+A7+A7)
%
%  FUNCTIONS USED
%     LNDENS(x,ske,me,se), LNDIST(x,skr,mr,sr), NDENS(x), NDIST(x) and NDINV(p)
%  INPUT
%     Input data (except A0) are loaded from the files A.dat (coefficients A), and X.dat 
(parameters
%     of the basic variables X). All the basic variables are characterised by the mean m, 
standard deviation s
%     and skewness sk (arbitrary). The FORM procedure approximates the basic 
variables by general 
%     log-normal distribution LN(m,s,sk), including normal distribution (for sk=0).
%     
%  OUPUT
%     val   : failure probability pf
%  VERSION
%     MH, Czech Technical University in Prague, Klokner Institute, 28.2.2005
%  Initialization
% %loading external data files
load A.dat, load X.dat, %The matrix X can also be defined in the command window
A0=0;% additive constant (not included in the data file A.dot), default value A0=0. 
When A0 is different from 0,

% numerical problems may arise. Then a new alternative initial point (for example 
modifying resistance) may be chosen.  
for i=1:1:7;

x(i)=X(i,1); % Initial guess value of basic variables
end
x(1)=-(A0+A(4)*x(4)*(A(5)*x(5)+A(6)*x(6)+A(7)*x(7)))/(A(1)*(A(2)*x(2)+A(3)*x(3))); 
% Initial guess value of x1
% FORM iterations
acc=0.001;delta=1;betap=0;j=0;%required accuracy (may be modified if required)initial 
iteration parameters
while delta > acc %for j=1:1:5 %Iteration loop for a given accuracy (5 cycles are usually 
sufficient for acc = 0.001)

j=j+1; % The indicator of the number of cycles
for i=1:1:7; % Loop for transformation of original distributions to equivalent normal 

ditributions

se(i)=NDENS(norminv(LNDIST(x(i),X(i,1),X(i,2),X(i,3))))/LNDENS(x(i),X(i,1),X(i,2),X(i
,3));

me(i)=x(i)-se(i)*norminv(LNDIST(x(i),X(i,1),X(i,2),X(i,3)));
u(i)=(x(i)-me(i))/se(i); % Standardized variables   
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end
% Derivatives of g(X)    
g(1)=A(1)*(A(2)*x(2)+A(3)*x(3))*se(1);g(2)= A(1)*A(2)*x(1)*se(2);g(3)= 

A(1)*A(3)*x(1)*se(3);
g(4)=A(4)*(A(5)*x(5)+A(6)*x(6))*se(4); g(5)= A(4)*A(5)*x(4)*se(5);g(6)= 

A(4)*A(6)*x(4)*se(6);
g(7)= A(4)*A(7)*x(4)*se(7); 
% Auxiliary quantities
gg=sqrt((g(1)*g(1)+g(2)*g(2)+g(3)*g(3)+g(4)*g(4)+g(5)*g(5)+g(6)*g(6)+g(7)*g(7)));
gu=g(1)*u(1)+g(2)*u(2)+g(3)*u(3)+g(4)*u(4)+g(5)*u(5)+g(6)*u(6)+g(7)*u(7);
% Reliability index
beta =-gu/gg;

for i=1:1:7; % Loop for determining sensitivity factors and a new design point  
aa(i)=g(i)./gg; % sensitivity factors
x(i)=me(i)-beta.*aa(i).*se(i); % New design point  

end
x(1)=-

(A0+A(4)*x(4)*(A(5)*x(5)+A(6)*x(6)+A(7)*x(7)))/(A(1)*(A(2)*x(2)+A(3)*x(3))); % 
Initial guess value of x1

delta=abs(beta-betap); % Difference of beats of two last cycles
betap=beta; % Saving the current beta

end
%    Outputs
Number_of_iterations_and_achieved_accuracy=[j,delta],
Alphas=[aa(1),aa(2),aa(3),aa(4),aa(5),aa(6),aa(7)],
Design_points=[x(1),x(2),x(3),x(4),x(5),x(6),x(7)],
Design_points_over_means=[x(1)/X(1,1),x(2)/X(2,1),x(3)/X(3,1),x(4)/X(4,1),x(5)/X(5,1),x(
6)/X(6,1),x(7)/X(7,1)],
beta, %a1=aa(1),a2=aa(2),a3=aa(3),a4=aa(4),a5=aa(5),a6=aa(6),a7=aa(7),% To be 
printed if needed    
pf=NDIST(-beta); % Answer of the function FORM7
% The end of the function FORM7
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