Supplementary information

All extraction studies were executed with the utmost of care in a temperature-controlled laboratory at 25 (± 2) °C.

Table 3.5: Data for the percentage extraction of nickel(II) using varying concentrations of synergist (SDBS). [Complimentary to Figure 3.5 in thesis]

<table>
<thead>
<tr>
<th>Synergist concentration (M)</th>
<th>Run</th>
<th>[Ni^{2+}] after extraction (mg.L^{-1})</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1</td>
<td>38.3</td>
<td>33.8</td>
<td>34.7</td>
<td>0.779</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>37.5</td>
<td>35.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37.5</td>
<td>35.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
<td>25.3</td>
<td>56.3</td>
<td>55.4</td>
<td>0.851</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25.9</td>
<td>55.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26.2</td>
<td>54.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
<td>32.0</td>
<td>44.7</td>
<td>45.8</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31.8</td>
<td>45.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30.3</td>
<td>47.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>1</td>
<td>38.6</td>
<td>33.3</td>
<td>31.0</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40.2</td>
<td>30.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.9</td>
<td>29.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>1</td>
<td>45.4</td>
<td>21.5</td>
<td>21.4</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>47.4</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>43.5</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.03
** Nickel stock concentration = 57.8 mg.L^{-1};
*** Nickel blank concentration = 0.00 mg.L^{-1}
Table 3.7: Data for the percentage extraction of nickel(II) using 2-(1-octyl-imidazol-2-yl)pyridine (4) and varying concentrations of synergist (SDBS). [Complimentary to Figure 3.7 in thesis]

<table>
<thead>
<tr>
<th>Synergist concentration (M)</th>
<th>Run</th>
<th>[Ni²⁺] after extraction (mg.L⁻¹)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No synergist</td>
<td>1</td>
<td>48.5</td>
<td>16.1</td>
<td>15.3</td>
<td>0.775</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.3</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.2</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>33.9</td>
<td>41.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32.9</td>
<td>43.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>34.0</td>
<td>41.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
<td>13.7</td>
<td>76.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.6</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13.6</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
<td>19.4</td>
<td>66.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.2</td>
<td>65.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.7</td>
<td>65.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>1</td>
<td>24.2</td>
<td>58.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24.6</td>
<td>57.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25.1</td>
<td>56.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>1</td>
<td>25.5</td>
<td>55.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>27.8</td>
<td>51.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.7</td>
<td>52.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.03
** Nickel stock concentration = 57.8 mg.L⁻¹
*** Nickel blank concentration = 0.00 mg.L⁻¹
Table 3.8: Data for the percentage extraction of nickel(II) using 2-(1’-pyrazolyl)-methylpyridine (5) and varying concentrations of synergist (SDBS). [Complimentary to Figure 3.8 in thesis]

<table>
<thead>
<tr>
<th>Synergist concentration (M)</th>
<th>Run</th>
<th>[Ni²⁺] after extraction (mg.L⁻¹)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No synergist</td>
<td>1</td>
<td>60.2</td>
<td>5.82</td>
<td>5.37</td>
<td>0.574</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60.9</td>
<td>4.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>60.3</td>
<td>5.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>33.2</td>
<td>48.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>33.9</td>
<td>47.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>33.1</td>
<td>48.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
<td>13.4</td>
<td>79.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.6</td>
<td>78.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.2</td>
<td>77.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
<td>17.6</td>
<td>72.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21.0</td>
<td>67.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17.5</td>
<td>72.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>1</td>
<td>26.2</td>
<td>58.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26.4</td>
<td>58.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25.7</td>
<td>59.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>1</td>
<td>27.2</td>
<td>57.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>27.7</td>
<td>56.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.0</td>
<td>57.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.03

** Nickel stock concentration = 63.9 mg.L⁻¹

*** Nickel blank concentration = 0.03 mg.L⁻¹
Table 3.9: Data for the percentage extraction of nickel(II) using 2-(3-butyl-pyrazol-5-yl)pyridine (8) and varying concentrations of synergist (SDBS). [Complimentary to Figure 3.9 in thesis]

<table>
<thead>
<tr>
<th>Synergist concentration (M)</th>
<th>Run</th>
<th>[Ni²⁺] after extraction (mg.L⁻¹)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No synergist</td>
<td>1</td>
<td>45.0</td>
<td>29.6</td>
<td>26.9</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>46.0</td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.2</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>33.6</td>
<td>47.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>33.7</td>
<td>47.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>34.7</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
<td>17.3</td>
<td>73.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.3</td>
<td>72.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17.3</td>
<td>73.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
<td>24.5</td>
<td>61.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26.5</td>
<td>58.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23.9</td>
<td>62.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>1</td>
<td>30.8</td>
<td>51.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31.3</td>
<td>51.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30.9</td>
<td>51.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>1</td>
<td>34.3</td>
<td>46.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.2</td>
<td>44.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>35.5</td>
<td>44.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.03
** Nickel stock concentration = 63.9 mg.L⁻¹
*** Nickel blank concentration = 0.03 mg.L⁻¹
Table 3.10: A comparison of the percentage extraction of nickel(II) using 2-(1H-imidazol-2-yl)pyridine (1), 2-(1-methyl-imidazol-2-yl)pyridine (2), 2-(1-butyl-imidazol-2-yl)pyridine (3) and 2-(1-octyl-imidazol-2-yl)pyridine (4). [Complimentary to Figure 3.10 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>([\text{Ni}^{2+}]) after extraction (mg.L(^{-1}))</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation ((\sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand 1</td>
<td>1</td>
<td>59.2</td>
<td>7.28</td>
<td>6.92</td>
<td>0.507</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59.8</td>
<td>6.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>59.3</td>
<td>7.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 1 + synergist</td>
<td>1</td>
<td>17.6</td>
<td>72.4</td>
<td>72.5</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.4</td>
<td>72.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17.6</td>
<td>72.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 2</td>
<td>1</td>
<td>59.8</td>
<td>6.38</td>
<td>5.96</td>
<td>1.503</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59.3</td>
<td>7.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>61.1</td>
<td>4.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 2 + synergist</td>
<td>1</td>
<td>14.4</td>
<td>77.5</td>
<td>77.1</td>
<td>0.748</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.2</td>
<td>76.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.3</td>
<td>77.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 3</td>
<td>1</td>
<td>59.0</td>
<td>7.68</td>
<td>7.53</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59.4</td>
<td>7.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>58.9</td>
<td>7.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 3 + synergist</td>
<td>1</td>
<td>14.6</td>
<td>77.1</td>
<td>76.9</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.0</td>
<td>76.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.7</td>
<td>76.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 4</td>
<td>1</td>
<td>48.5</td>
<td>16.1</td>
<td>15.3</td>
<td>0.775</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.3</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.2</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 4 + synergist</td>
<td>1</td>
<td>13.7</td>
<td>76.3</td>
<td>76.4</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.6</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13.6</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* \(\text{pH} = 5.03\)

** Synergist concentration = 0.05 M.

*** Nickel stock concentration (1–3) = 63.9 mg.L\(^{-1}\)

**** Nickel stock concentration (4) = 57.8 mg.L\(^{-1}\)

***** Nickel blank concentration (1–4) = 0.00 mg.L\(^{-1}\)
Table 3.11: A comparison of the percentage extraction of nickel(II) using 2-(1’-pyrazolyl)-methylpyridine (5), 2-(3,5-dimethyl-pyrazol-1-yl)-methylpyridine (6), 2-(3-methyl-pyrazol-1-yl)-methylpyridine / 2-(5-methyl-pyrazol-1-yl)-methylpyridine (7/7’). [Complimentary to Figure 3.11 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>[Ni^{2+}] after extraction (mg.L^{-1})</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand 5</td>
<td>1</td>
<td>60.2</td>
<td>5.82</td>
<td>5.37</td>
<td>0.574</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60.9</td>
<td>4.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>60.3</td>
<td>5.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 5 + synergist</td>
<td>1</td>
<td>13.4</td>
<td>79.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.6</td>
<td>78.7</td>
<td>78.5</td>
<td>0.639</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.2</td>
<td>77.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 6</td>
<td>1</td>
<td>60.3</td>
<td>2.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59.9</td>
<td>3.54</td>
<td>3.49</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>59.6</td>
<td>4.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 6 + synergist</td>
<td>1</td>
<td>19.2</td>
<td>69.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.7</td>
<td>68.4</td>
<td>68.7</td>
<td>0.371</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>19.4</td>
<td>68.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 7/7’</td>
<td>1</td>
<td>60.1</td>
<td>3.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60.4</td>
<td>2.70</td>
<td>2.80</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>60.6</td>
<td>2.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 7/7’ + synergist</td>
<td>1</td>
<td>15.7</td>
<td>74.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.1</td>
<td>74.1</td>
<td>74.3</td>
<td>0.390</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16.2</td>
<td>74.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.03
** Synergist concentration = 0.05 M.
*** Nickel stock concentration (5) = 63.9 mg.L^{-1}
**** Nickel stock concentration (6 & 7/7’) = 62.1 mg.L^{-1}
***** Nickel blank concentration (5–7/7’) = 0.00 mg.L^{-1}
Table 3.12: A comparison of the percentage extraction of nickel(II) using 2-(3-butyl-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10). [Complimentary to Figure 3.12 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>[Ni^{2+}] after extraction (mg.L^{-1})</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand 8</td>
<td>1</td>
<td>45.0</td>
<td>29.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>46.0</td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.2</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 8 + synergist</td>
<td>1</td>
<td>17.3</td>
<td>73.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.3</td>
<td>72.8</td>
<td>72.9</td>
<td>0.0682</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17.3</td>
<td>73.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 9</td>
<td>1</td>
<td>44.8</td>
<td>27.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>43.2</td>
<td>30.4</td>
<td>29.4</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>43.4</td>
<td>30.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 9 + synergist</td>
<td>1</td>
<td>16.7</td>
<td>73.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.8</td>
<td>73.0</td>
<td>73.0</td>
<td>0.116</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16.9</td>
<td>72.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 10</td>
<td>1</td>
<td>39.2</td>
<td>36.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40.2</td>
<td>35.3</td>
<td>35.7</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.5</td>
<td>34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 10 + synergist</td>
<td>1</td>
<td>16.9</td>
<td>72.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.4</td>
<td>72.0</td>
<td>72.3</td>
<td>0.473</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17.4</td>
<td>71.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.03
** Synergist concentration = 0.05 M.
*** Nickel stock concentration (8) = 63.9 mg.L^{-1}
**** Nickel stock concentration (9 & 10) = 62.1 mg.L^{-1}
****** Nickel blank concentration (8) = 0.03 mg.L^{-1}
******* Nickel blank concentration (9 & 10) = 0.00 mg.L^{-1}
Table 3.13: Percentage extraction of nickel(II) over a 24-hour period using 2-(1-octyl-imidazol-2-yl)pyridine (4) and SDBS. [Complimentary to Figure 3.13 in thesis]

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Run</th>
<th>[Ni^{2+}] after extraction (mg.L^{-1})</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>1</td>
<td>35.4</td>
<td>38.8</td>
<td>38.1</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>36.2</td>
<td>37.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>1</td>
<td>27.9</td>
<td>51.8</td>
<td>51.0</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>28.8</td>
<td>50.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>22.4</td>
<td>61.2</td>
<td>61.7</td>
<td>0.623</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21.9</td>
<td>62.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>14.9</td>
<td>74.2</td>
<td>73.9</td>
<td>0.394</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.2</td>
<td>73.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1</td>
<td>14.6</td>
<td>74.7</td>
<td>75.0</td>
<td>0.382</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14.3</td>
<td>75.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1</td>
<td>14.1</td>
<td>75.7</td>
<td>75.5</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14.3</td>
<td>75.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>1</td>
<td>13.9</td>
<td>76.0</td>
<td>75.9</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14.0</td>
<td>75.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>13.5</td>
<td>76.7</td>
<td>76.6</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.6</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>13.2</td>
<td>77.1</td>
<td>77.0</td>
<td>0.217</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.4</td>
<td>76.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 4.98
** SDBS concentration = 0.05 M.
*** Nickel stock concentration = 57.8 mg.L^{-1}
**** Nickel blank concentration = 0.00 mg.L^{-1}
Table 3.14: Percentage extraction of nickel(II) over a 24-hour period using 2-(1’-pyrazolyl)-methylpyridine (5) and SDBS. [Complimentary to Figure 3.14 in thesis]

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Run</th>
<th>[Ni²⁺] after extraction (mg.L⁻¹)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>1</td>
<td>41.2</td>
<td>28.7</td>
<td>27.8</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>42.3</td>
<td>26.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>1</td>
<td>35.7</td>
<td>38.3</td>
<td>39.0</td>
<td>0.942</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34.9</td>
<td>39.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>32.9</td>
<td>43.1</td>
<td>44.8</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31.0</td>
<td>46.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>25.5</td>
<td>56.0</td>
<td>57.0</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24.3</td>
<td>58.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1</td>
<td>18.8</td>
<td>67.5</td>
<td>67.1</td>
<td>0.554</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.2</td>
<td>66.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1</td>
<td>14.2</td>
<td>75.4</td>
<td>75.7</td>
<td>0.393</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.9</td>
<td>76.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>1</td>
<td>14.0</td>
<td>75.8</td>
<td>76.0</td>
<td>0.274</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.8</td>
<td>76.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>13.2</td>
<td>77.1</td>
<td>77.7</td>
<td>0.782</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.6</td>
<td>78.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>13.8</td>
<td>76.1</td>
<td>77.7</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.0</td>
<td>79.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 4.98
** SDBS concentration = 0.05 M.
*** Nickel stock concentration = 57.8 mg.L⁻¹
**** Nickel blank concentration = 0.00 mg.L⁻¹
Table 3.15: Percentage extraction of nickel(II) over a 24-hour period using 2-(3-butyl-pyrazol-5-yl)pyridine (8) and SDBS. [Complimentary to Figure 3.15 in thesis]

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Run</th>
<th>[Ni^{2+}] after extraction (mg.L^{-1})</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>1</td>
<td>25.4</td>
<td>56.1</td>
<td>55.5</td>
<td>0.883</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26.1</td>
<td>54.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>1</td>
<td>22.5</td>
<td>61.2</td>
<td>61.6</td>
<td>0.564</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22.0</td>
<td>62.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>20.1</td>
<td>65.2</td>
<td>65.3</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.0</td>
<td>65.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>19.2</td>
<td>66.8</td>
<td>67.0</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.0</td>
<td>67.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1</td>
<td>18.7</td>
<td>67.7</td>
<td>68.0</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.3</td>
<td>68.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1</td>
<td>17.4</td>
<td>69.9</td>
<td>70.1</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.2</td>
<td>70.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>1</td>
<td>17.0</td>
<td>70.6</td>
<td>70.7</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.9</td>
<td>70.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16.5</td>
<td>71.5</td>
<td>71.3</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.7</td>
<td>71.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>16.1</td>
<td>72.1</td>
<td>71.8</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.5</td>
<td>71.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 4.98
** SDBS concentration = 0.05 M.
*** Nickel stock concentration = 57.8 mg.L^{-1}
**** Nickel blank concentration = 0.00 mg.L^{-1}
Table 3.16: Competitive extraction of various base metal ions in the presence of the synergist, SDBS, only. [Complimentary to Figure 3.16 in thesis]

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>Run</th>
<th>([\text{M}^{2+}] \text{ after extraction (mg.L}^{-1})</th>
<th>Average ([\text{M}^{2+}] \text{ after extraction (mg.L}^{-1})</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>1</td>
<td>91.3</td>
<td>92.0</td>
<td>20.6</td>
<td>0.569</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>92.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>92.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>1</td>
<td>44.3</td>
<td>44.6</td>
<td>29.1</td>
<td>0.361</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>45.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>44.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>58.6</td>
<td>59.5</td>
<td>13.2</td>
<td>0.824</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>59.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1</td>
<td>44.7</td>
<td>44.9</td>
<td>27.0</td>
<td>0.352</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>45.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>44.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
<td>30.2</td>
<td>30.0</td>
<td>86.7</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>1</td>
<td>53.0</td>
<td>53.3</td>
<td>23.8</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>53.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
*** Stock concentrations (mg.L\(^{-1}\)): \([\text{Cd}^{2+}] = 116\), \([\text{Co}^{2+}] = 62.8\), \([\text{Cu}^{2+}] = 68.6\), \([\text{Ni}^{2+}] = 61.5\), \([\text{Pb}^{2+}] = 226\) and \([\text{Zn}^{2+}] = 69.9\).
Table 3.18: Competitive extraction of various base metal ions using 2-(1H-imidazol-2-yl)pyridine (1), both in the presence and absence of SDBS. [Complimentary to Figure 3.18 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average [M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without synergist</td>
<td>Cd</td>
<td>1</td>
<td>113</td>
<td>112</td>
<td>3.36</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>59.9</td>
<td>59.3</td>
<td>5.57</td>
<td>0.558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>58.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>68.7</td>
<td>68.3</td>
<td>0.449</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>68.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>67.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>57.9</td>
<td>57.1</td>
<td>7.13</td>
<td>0.736</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>67.4</td>
<td>66.6</td>
<td>4.76</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>65.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>94.6</td>
<td>96.4</td>
<td>16.7</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>97.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>96.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>46.9</td>
<td>47.5</td>
<td>24.3</td>
<td>0.652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>47.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>36.0</td>
<td>37.2</td>
<td>45.8</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>37.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>37.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>37.9</td>
<td>39.3</td>
<td>36.0</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>40.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>30.2</td>
<td>30.7</td>
<td>86.4</td>
<td>0.420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>30.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>56.5</td>
<td>57.5</td>
<td>17.8</td>
<td>0.908</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
Table 3.19: Competitive extraction of various base metal ions using 2-(1-methyl-imidazol-2-yl)pyridine (2), both in the presence and absence of SDBS. [Complimentary to Figure 3.19 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M^{2+}] after extraction (mg.L(^{-1}))</th>
<th>Average [M^{2+}] after extraction (mg.L(^{-1}))</th>
<th>Average % extraction</th>
<th>Standard deviation ((\sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>112</td>
<td>111</td>
<td>4.05</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>59.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>2</td>
<td>59.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>58.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>68.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>2</td>
<td>57.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>2</td>
<td>66.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>65.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>96.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>2</td>
<td>96.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>92.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>48.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>2</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>46.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>35.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>2</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>41.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>32.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>30.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>57.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
*** Stock concentrations (mg.L\(^{-1}\)): [Cd\(^{2+}\)] = 116, [Co\(^{2+}\)] = 62.8, [Cu\(^{2+}\)] = 68.6, [Ni\(^{2+}\)] = 61.5, [Pb\(^{2+}\)] = 226 and [Zn\(^{2+}\)] = 69.9.
Table 3.20: Competitive extraction of various base metal ions using 2-(1-butyl-imidazol-2-yl)pyridine (3), both in the presence and absence of SDBS. [Complimentary to Figure 3.20 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M2+] after extraction (mg.L⁻¹)</th>
<th>Average [M2+] after extraction (mg.L⁻¹)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd</td>
<td>1</td>
<td>110</td>
<td>112</td>
<td>3.39</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>57.9</td>
<td>59.2</td>
<td>5.80</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>60.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>65.1</td>
<td>65.8</td>
<td>4.17</td>
<td>0.633</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>65.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>55.5</td>
<td>56.5</td>
<td>8.15</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>211</td>
<td>216</td>
<td>4.21</td>
<td>4.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>65.2</td>
<td>66.3</td>
<td>5.16</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>67.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>1</td>
<td>96.6</td>
<td>98.2</td>
<td>15.2</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>98.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>49.6</td>
<td>50.3</td>
<td>19.9</td>
<td>0.843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>51.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>18.5</td>
<td>19.5</td>
<td>71.5</td>
<td>0.885</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>37.6</td>
<td>38.7</td>
<td>37.1</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>39.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>31.8</td>
<td>32.1</td>
<td>85.8</td>
<td>0.495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>32.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>58.3</td>
<td>59.3</td>
<td>15.2</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>60.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>59.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
Table 3.21: Competitive extraction of various base metal ions using 2-(1-octyl-imidazol-2-yl)pyridine (4), both in the presence and absence of SDBS. [Complimentary to Figure 3.21 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average [M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>111</td>
<td>113</td>
<td>2.07</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>58.4</td>
<td>59.7</td>
<td>4.99</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>61.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>59.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>39.1</td>
<td>38.5</td>
<td>43.9</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>38.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>37.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>49.8</td>
<td>50.7</td>
<td>17.6</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>51.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>213</td>
<td>218</td>
<td>3.49</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>65.7</td>
<td>67.0</td>
<td>4.18</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>68.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>95.1</td>
<td>97.5</td>
<td>15.8</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>99.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>98.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>47.8</td>
<td>49.1</td>
<td>21.8</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>19.9</td>
<td>20.4</td>
<td>70.3</td>
<td>0.408</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>37.9</td>
<td>38.9</td>
<td>36.7</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>39.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>29.9</td>
<td>0.7</td>
<td>86.4</td>
<td>0.739</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>57.3</td>
<td>58.8</td>
<td>16.0</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>59.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
Table 3.23: Competitive extraction of various base metal ions using 2-(1’-pyrazolyl)-methylpyridine (5), both in the presence and absence of SDBS. [Complimentary to Figure 3.23 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average [M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>111</td>
<td>112</td>
<td>3.64</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>58.7</td>
<td>58.7</td>
<td>6.46</td>
<td>0.0664</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>58.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>68.4</td>
<td>68.5</td>
<td>0.263</td>
<td>0.0890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>68.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>68.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>56.6</td>
<td>56.6</td>
<td>7.95</td>
<td>0.0440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>56.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>56.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>214</td>
<td>214</td>
<td>5.18</td>
<td>0.535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>66.0</td>
<td>66.1</td>
<td>5.48</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>96.7</td>
<td>96.6</td>
<td>16.5</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>96.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>96.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>47.8</td>
<td>48.0</td>
<td>23.6</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>48.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>36.4</td>
<td>36.0</td>
<td>47.6</td>
<td>0.512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>35.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>36.6</td>
<td>36.7</td>
<td>40.4</td>
<td>0.0646</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>36.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>36.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>30.4</td>
<td>30.5</td>
<td>86.5</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>58.0</td>
<td>58.1</td>
<td>16.9</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
Table 3.24: Competitive extraction of various base metal ions using 2-(3,5-dimethyl-pyrazol-1-yl)-methylpyridine (6), both in the presence and absence of SDBS. [Complimentary to Figure 3.24 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average [M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>112</td>
<td>112</td>
<td>3.14</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>112</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>58.7</td>
<td>58.9</td>
<td>6.25</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>59.0</td>
<td>59.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>65.5</td>
<td>66.6</td>
<td>3.53</td>
<td>0.612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.5</td>
<td>66.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>56.9</td>
<td>56.9</td>
<td>7.47</td>
<td>0.0500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.0</td>
<td>56.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>56.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>215</td>
<td>215</td>
<td>4.69</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>215</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>66.0</td>
<td>66.2</td>
<td>5.38</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.1</td>
<td>66.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>93.7</td>
<td>94.1</td>
<td>18.7</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>94.5</td>
<td>94.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>48.2</td>
<td>48.4</td>
<td>23.0</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>48.6</td>
<td>48.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>48.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>27.2</td>
<td>27.5</td>
<td>59.9</td>
<td>0.348</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>27.5</td>
<td>27.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>44.8</td>
<td>45.0</td>
<td>26.9</td>
<td>0.210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>45.1</td>
<td>45.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>45.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>29.6</td>
<td>29.7</td>
<td>86.8</td>
<td>0.188</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>29.9</td>
<td>29.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>57.3</td>
<td>57.6</td>
<td>17.7</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.8</td>
<td>57.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
*** Stock concentrations (mg.L^{-1}): [Cd^{2+}] = 116, [Co^{2+}] = 62.8, [Cu^{2+}] = 68.6, [Ni^{2+}] = 61.5, [Pb^{2+}] = 226 and [Zn^{2+}] = 69.9.
Table 3.25: Competitive extraction of various base metal ions using 2-(3-methyl-pyrazol-1-yl)-methylpyridine / 2-(5-methyl-pyrazol-1-yl)-methylpyridine (7/7'), both in the presence and absence of SDBS. [Complimentary to Figure 3.25 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average [M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd</td>
<td>1</td>
<td>111</td>
<td>112</td>
<td>3.02</td>
<td>0.789</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>58.4</td>
<td>58.9</td>
<td>6.17</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>59.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>59.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>67.8</td>
<td>68.1</td>
<td>0.732</td>
<td>0.784</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>67.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>69.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>56.3</td>
<td>57.0</td>
<td>7.34</td>
<td>0.615</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>213</td>
<td>215</td>
<td>4.60</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>66.0</td>
<td>66.4</td>
<td>5.01</td>
<td>0.411</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>93.7</td>
<td>94.5</td>
<td>18.4</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>94.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>95.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>47.0</td>
<td>47.4</td>
<td>24.6</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>47.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>47.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>31.4</td>
<td>32.3</td>
<td>52.9</td>
<td>0.843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>32.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>41.7</td>
<td>42.2</td>
<td>31.4</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>42.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>42.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>29.3</td>
<td>29.4</td>
<td>87.0</td>
<td>0.272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>29.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>56.6</td>
<td>57.0</td>
<td>18.5</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
Table 3.27: Competitive extraction of various base metal ions using 2-(3-butyl-pyrazol-5-yl)pyridine (8), both in the presence and absence of SDBS. [Complimentary to Figure 3.27 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average [M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>112</td>
<td>114</td>
<td>114</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>60.1</td>
<td>59.5</td>
<td>60.0</td>
<td>4.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>12.3</td>
<td>11.3</td>
<td>11.6</td>
<td>83.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>56.5</td>
<td>57.2</td>
<td>57.0</td>
<td>7.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>219</td>
<td>223</td>
<td>222</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>68.6</td>
<td>67.6</td>
<td>67.9</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>67.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>95.9</td>
<td>98.0</td>
<td>96.6</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>95.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>48.4</td>
<td>49.2</td>
<td>48.2</td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>36.6</td>
<td>38.5</td>
<td>37.4</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>34.2</td>
<td>35.0</td>
<td>34.5</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>34.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>31.3</td>
<td>31.7</td>
<td>31.3</td>
<td>86.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>57.2</td>
<td>58.5</td>
<td>57.6</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
*** Stock concentrations (mg.L^{-1}): [Cd^{2+}] = 116, [Co^{2+}] = 62.8, [Cu^{2+}] = 68.6, [Ni^{2+}] = 61.5, [Pb^{2+}] = 226 and [Zn^{2+}] = 69.9.
Table 3.28: Competitive extraction of various base metal ions using 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9), both in the presence and absence of SDBS. [Complimentary to Figure 3.28 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average [M²⁺] after extraction (mg.L⁻¹)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>111</td>
<td>111</td>
<td>4.18</td>
<td>0.393</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>58.5</td>
<td>58.5</td>
<td>6.77</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>58.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>43.1</td>
<td>42.0</td>
<td>38.8</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>41.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>50.6</td>
<td>50.3</td>
<td>18.3</td>
<td>0.365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>49.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>218</td>
<td>218</td>
<td>3.33</td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>65.8</td>
<td>66.0</td>
<td>5.62</td>
<td>0.196</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>66.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without synergist (SDBS)</td>
<td>Cd</td>
<td>1</td>
<td>97.5</td>
<td>96.9</td>
<td>16.3</td>
<td>0.891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>97.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>49.1</td>
<td>48.9</td>
<td>22.2</td>
<td>0.480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>48.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>49.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>38.4</td>
<td>38.3</td>
<td>44.3</td>
<td>0.180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>38.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>38.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>33.1</td>
<td>33.1</td>
<td>46.3</td>
<td>0.353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>33.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>32.4</td>
<td>32.2</td>
<td>85.7</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>32.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>58.3</td>
<td>57.9</td>
<td>17.2</td>
<td>0.548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>58.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
Table 3.29: Competitive extraction of various base metal ions using 2-(3-octyl-pyrazol-5-yl)pyridine (10), both in the presence and absence of SDBS. [Complimentary to Figure 3.29 in thesis]

<table>
<thead>
<tr>
<th>Synergist</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average [M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>115</td>
<td>114</td>
<td>1.30</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>62.3</td>
<td>61.5</td>
<td>2.01</td>
<td>0.681</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>61.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>61.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>6.65</td>
<td>6.70</td>
<td>90.2</td>
<td>0.0518</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>58.3</td>
<td>58.8</td>
<td>4.38</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>221</td>
<td>223</td>
<td>1.22</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>68.2</td>
<td>68.2</td>
<td>2.53</td>
<td>0.945</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>69.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>67.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>98.0</td>
<td>98.9</td>
<td>14.6</td>
<td>0.780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>99.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>99.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>49.3</td>
<td>49.8</td>
<td>20.8</td>
<td>0.447</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>49.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>37.0</td>
<td>37.2</td>
<td>45.8</td>
<td>0.314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>37.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>35.4</td>
<td>35.7</td>
<td>42.0</td>
<td>0.364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>35.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>32.3</td>
<td>32.2</td>
<td>85.7</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>32.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>32.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>58.1</td>
<td>58.7</td>
<td>16.1</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>59.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 5.07
** SDBS concentration = 0.05 M
*** Stock concentrations (mg.L^{-1}): [Cd^{2+}] = 116, [Co^{2+}] = 62.8, [Cu^{2+}] = 68.6, [Ni^{2+}] = 61.5, [Pb^{2+}] = 226 and [Zn^{2+}] = 69.9.
Table 3.30: Copper selectivity study using 2-(3-butyl-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10). Copper concentration was decreased tenfold, whilst no synergist was added. [Complimentary to Figure 3.30 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M$^{2+}$] after extraction (mg L$^{-1}$)</th>
<th>Average [M$^{2+}$] after extraction (mg L$^{-1}$)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>104</td>
<td>102</td>
<td>2.62</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>Co</td>
<td>1</td>
<td>57.1</td>
<td></td>
<td>2.50</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>55.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>56.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>2.86</td>
<td></td>
<td>57.6</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>41.4</td>
<td></td>
<td>30.5</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>40.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>196</td>
<td></td>
<td>2.86</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>60.7</td>
<td></td>
<td>2.55</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>58.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>60.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>102</td>
<td></td>
<td>3.66</td>
<td>0.503</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>Co</td>
<td>1</td>
<td>56.2</td>
<td></td>
<td>3.15</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>56.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>56.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>5.56</td>
<td></td>
<td>18.7</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>41.0</td>
<td></td>
<td>30.6</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>39.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>192</td>
<td></td>
<td>4.05</td>
<td>0.452</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>59.5</td>
<td></td>
<td>3.65</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>58.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues to next page…
<table>
<thead>
<tr>
<th>Ligand</th>
<th>Metal ion</th>
<th>Run</th>
<th>Average $[\text{M}^{2+}]$ after extraction (mg.L$^{-1}$)</th>
<th>Average $[\text{M}^{2+}]$ after extraction (mg.L$^{-1}$)</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>1</td>
<td>100</td>
<td>101</td>
<td>4.36</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>1</td>
<td>49.7</td>
<td>49.5</td>
<td>14.4</td>
<td>0.537</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.8</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.2</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>1.05</td>
<td>0.983</td>
<td>85.9</td>
<td>0.931</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.920</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1</td>
<td>52.6</td>
<td>52.6</td>
<td>9.19</td>
<td>0.721</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53.1</td>
<td>52.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>52.2</td>
<td>52.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
<td>189</td>
<td>189</td>
<td>4.78</td>
<td>0.817</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>191</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>188</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>1</td>
<td>58.7</td>
<td>58.9</td>
<td>4.23</td>
<td>0.808</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59.5</td>
<td>58.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>58.5</td>
<td>58.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*pH = 4.95
**SDBS concentration = 0.05 M

Table 3.31: Copper selectivity study using 2-(3-butyl-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10). Copper concentration was decreased hundredfold, whilst no synergist was added. [Complimentary to Figure 3.31 in thesis]
<table>
<thead>
<tr>
<th>Ligand</th>
<th>Metal ion</th>
<th>Run</th>
<th>[M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average [M^{2+}] after extraction (mg.L^{-1})</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand 9</td>
<td>Cd</td>
<td>1</td>
<td>104</td>
<td>103</td>
<td>4.74</td>
<td>0.282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>103</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>53.7</td>
<td>53.6</td>
<td>3.74</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>53.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>53.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0.550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.580</td>
<td>0.567</td>
<td>21.3</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>38.1</td>
<td>38.0</td>
<td>34.7</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>193</td>
<td>193</td>
<td>5.15</td>
<td>0.243</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>62.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>61.9</td>
<td>62.1</td>
<td>4.50</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>62.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 10</td>
<td>Cd</td>
<td>1</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>102</td>
<td>102</td>
<td>6.06</td>
<td>0.0533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>1</td>
<td>39.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>38.9</td>
<td>39.0</td>
<td>30.0</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>39.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>1</td>
<td>0.0710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.0697</td>
<td>0.0719</td>
<td>90.0</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.0750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>1</td>
<td>53.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>52.8</td>
<td>52.9</td>
<td>9.26</td>
<td>0.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>52.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>1</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>191</td>
<td>191</td>
<td>6.05</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>1</td>
<td>61.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>61.4</td>
<td>61.3</td>
<td>5.60</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>61.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* pH = 4.97
** SDBS concentration = 0.05 M
*** Stock concentrations (mg.L^{-1}): [Cd^{2+}] = 108, [Co^{2+}] = 55.7, [Cu^{2+}] = 0.720, [Ni^{2+}] = 58.3, [Pb^{2+}] = 203 and [Zn^{2+}] = 65.0.
Table 3.32: Percentage copper(II) and nickel(II) stripped from 2-(3-butyl-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10) at pH ≈ 1. [Complimentary to Figure 3.32 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>[Cu$^{2+}$] after extraction (mg.L$^{-1}$)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>48.6</td>
<td>31.2</td>
<td>31.2</td>
<td>0.0922</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>48.6</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>48.5</td>
<td>31.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>54.3</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55.1</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>54.9</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>35.8</td>
<td>49.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>36.3</td>
<td>48.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>35.2</td>
<td>50.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>[Cu$^{2+}$] after stripping (mg.L$^{-1}$)</th>
<th>% Stripped</th>
<th>Average % stripped</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>9.66</td>
<td>43.9</td>
<td>46.7</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.4</td>
<td>47.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.8</td>
<td>49.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>8.98</td>
<td>56.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.09</td>
<td>51.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.04</td>
<td>57.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>4.20</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.39</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.12</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>[Ni$^{2+}$] after extraction (mg.L$^{-1}$)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>41.5</td>
<td>28.2</td>
<td>27.9</td>
<td>0.680</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>41.4</td>
<td>28.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>42.1</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>40.7</td>
<td>29.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>41.1</td>
<td>28.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>41.1</td>
<td>28.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>38.4</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>37.9</td>
<td>34.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>38.1</td>
<td>34.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Run</th>
<th>[Ni$^{2+}$] after stripping (mg.L$^{-1}$)</th>
<th>% Stripped</th>
<th>Average % stripped</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>5.10</td>
<td>31.6</td>
<td>38.0</td>
<td>5.76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.90</td>
<td>42.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.40</td>
<td>39.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9.81</td>
<td>58.2</td>
<td>62.1</td>
<td>3.58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.6</td>
<td>62.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11.0</td>
<td>65.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.92</td>
<td>19.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.97</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.33</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Copper stock concentration = 70.6 mg.L$^{-1}$
** Nickel stock concentration = 57.8 mg.L$^{-1}$
Table 3.3: Percentage extraction of copper(II) over a 24-hour period using 2-(3-butyl-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10). [Complimentary to Figure 3.33 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Time (h)</th>
<th>Run</th>
<th>$[\text{Cu}^{2+}]$ after extraction (mg.L$^{-1}$)</th>
<th>Extraction %</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.17</td>
<td>1</td>
<td>28.5</td>
<td>55.3</td>
<td>55.1</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>28.8</td>
<td>54.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1</td>
<td>22.2</td>
<td>65.2</td>
<td>65.6</td>
<td>0.544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>21.7</td>
<td>66.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>1</td>
<td>18.8</td>
<td>70.6</td>
<td>70.3</td>
<td>0.424</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>19.1</td>
<td>70.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1</td>
<td>17.1</td>
<td>73.2</td>
<td>72.7</td>
<td>0.771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>17.8</td>
<td>72.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1</td>
<td>12.0</td>
<td>81.2</td>
<td>80.7</td>
<td>0.693</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12.6</td>
<td>80.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1</td>
<td>9.17</td>
<td>85.7</td>
<td>85.4</td>
<td>0.297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.44</td>
<td>85.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>1</td>
<td>8.23</td>
<td>87.1</td>
<td>86.5</td>
<td>0.804</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.96</td>
<td>86.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1</td>
<td>8.49</td>
<td>86.7</td>
<td>86.5</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.76</td>
<td>86.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1</td>
<td>8.23</td>
<td>87.1</td>
<td>86.7</td>
<td>0.563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.74</td>
<td>86.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.17</td>
<td>1</td>
<td>54.2</td>
<td>15.2</td>
<td>15.6</td>
<td>0.516</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>53.7</td>
<td>16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1</td>
<td>51.5</td>
<td>19.3</td>
<td>19.2</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>51.7</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>1</td>
<td>48.9</td>
<td>23.5</td>
<td>23.9</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>48.4</td>
<td>24.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1</td>
<td>47.1</td>
<td>26.3</td>
<td>26.1</td>
<td>0.233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>47.3</td>
<td>26.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1</td>
<td>43.2</td>
<td>32.4</td>
<td>32.8</td>
<td>0.530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>42.7</td>
<td>33.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1</td>
<td>41.1</td>
<td>35.7</td>
<td>35.9</td>
<td>0.410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>40.7</td>
<td>36.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>1</td>
<td>35.7</td>
<td>44.1</td>
<td>43.7</td>
<td>0.569</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>36.2</td>
<td>43.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1</td>
<td>35.1</td>
<td>45.0</td>
<td>44.6</td>
<td>0.590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>35.7</td>
<td>44.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1</td>
<td>34.7</td>
<td>45.6</td>
<td>45.9</td>
<td>0.452</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>34.3</td>
<td>46.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues to next page…
<table>
<thead>
<tr>
<th>Ligand</th>
<th>Time (h)</th>
<th>Run</th>
<th>[Cu²⁺] after extraction (mg.L⁻¹)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.17</td>
<td>1</td>
<td>15.5</td>
<td>75.7</td>
<td>75.3</td>
<td>0.559</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>2</td>
<td>16.0</td>
<td>74.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1</td>
<td>12.9</td>
<td>79.9</td>
<td>80.1</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>2</td>
<td>12.6</td>
<td>80.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>1</td>
<td>9.22</td>
<td>85.6</td>
<td>85.9</td>
<td>0.537</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>2</td>
<td>8.74</td>
<td>86.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1</td>
<td>6.94</td>
<td>89.1</td>
<td>89.6</td>
<td>0.601</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2</td>
<td>6.40</td>
<td>90.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1</td>
<td>6.32</td>
<td>90.1</td>
<td>90.5</td>
<td>0.587</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2</td>
<td>5.79</td>
<td>90.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1</td>
<td>5.67</td>
<td>91.1</td>
<td>91.4</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>2</td>
<td>5.33</td>
<td>91.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>1</td>
<td>5.20</td>
<td>91.9</td>
<td>91.5</td>
<td>0.476</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>2</td>
<td>5.63</td>
<td>91.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1</td>
<td>5.11</td>
<td>92.0</td>
<td>91.6</td>
<td>0.531</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2</td>
<td>5.59</td>
<td>91.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1</td>
<td>5.05</td>
<td>92.1</td>
<td>91.7</td>
<td>0.513</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2</td>
<td>5.51</td>
<td>91.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* No SDBS added.
** Copper stock concentration = 63.9 mg.L⁻¹
*** Copper blank concentration = 0.00 mg.L⁻¹
Table 3.34: pH isotherm study: the percentage extraction of nickel(II) over an acidic pH range (0–7), using 2-(3-buty1-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10). [Complimentary to Figure 3.34 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>pH</th>
<th>Run</th>
<th>[Ni$^{2+}$] after extraction (mg.L$^{-1}$)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>55.1</td>
<td>4.66</td>
<td>4.19</td>
<td>0.673</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>55.7</td>
<td>3.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>51.2</td>
<td>11.4</td>
<td>10.7</td>
<td>0.966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>52.0</td>
<td>10.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>42.1</td>
<td>27.2</td>
<td>27.4</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.9</td>
<td>27.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>41.6</td>
<td>28.1</td>
<td>28.0</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.6</td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>41.6</td>
<td>28.1</td>
<td>28.6</td>
<td>0.673</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.0</td>
<td>29.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>40.7</td>
<td>29.6</td>
<td>29.3</td>
<td>0.416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.0</td>
<td>29.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>52.1</td>
<td>9.87</td>
<td>10.1</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>51.9</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>49.4</td>
<td>14.6</td>
<td>14.1</td>
<td>0.709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>50.0</td>
<td>13.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>45.9</td>
<td>20.6</td>
<td>20.8</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>45.7</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>41.3</td>
<td>28.6</td>
<td>28.2</td>
<td>0.624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>41.8</td>
<td>27.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>41.0</td>
<td>29.1</td>
<td>29.3</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>40.8</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>40.6</td>
<td>29.8</td>
<td>30.3</td>
<td>0.722</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>40.0</td>
<td>30.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>52.5</td>
<td>9.25</td>
<td>9.65</td>
<td>0.575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>52.0</td>
<td>10.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>50.7</td>
<td>12.4</td>
<td>12.6</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>50.4</td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>40.1</td>
<td>30.6</td>
<td>31.0</td>
<td>0.575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.7</td>
<td>31.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>38.9</td>
<td>32.6</td>
<td>32.4</td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>39.2</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>37.9</td>
<td>34.5</td>
<td>35.2</td>
<td>0.942</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>37.1</td>
<td>35.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>37.0</td>
<td>36.1</td>
<td>36.4</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>36.6</td>
<td>36.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Nickel stock concentration = 57.8 mg.L$^{-1}$
Table 3.35: pH isotherm study: the percentage extraction of copper(II) over an acidic pH range (0–7), using 2-(3-butyl-pyrazol-5-yl)pyridine (8), 2-[3-(tert-butyl)-pyrazol-5-yl]pyridine (9) and 2-(3-octyl-pyrazol-5-yl)pyridine (10). [Complimentary to Figure 3.35 in thesis]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>pH</th>
<th>Run</th>
<th>[Cu²⁺] after extraction (mg.L⁻¹)</th>
<th>% Extraction</th>
<th>Average % extraction</th>
<th>Standard deviation (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 8</td>
<td>1.18</td>
<td>1</td>
<td>47.8</td>
<td>32.3</td>
<td>32.7</td>
<td>0.571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>47.2</td>
<td>33.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1</td>
<td>27.0</td>
<td>61.7</td>
<td>62.1</td>
<td>0.471</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>26.5</td>
<td>62.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>1</td>
<td>16.6</td>
<td>76.5</td>
<td>76.1</td>
<td>0.531</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>17.1</td>
<td>75.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.99</td>
<td>1</td>
<td>15.6</td>
<td>78.0</td>
<td>78.3</td>
<td>0.561</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>15.0</td>
<td>78.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.04</td>
<td>1</td>
<td>14.2</td>
<td>79.9</td>
<td>79.3</td>
<td>0.781</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>15.0</td>
<td>78.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.72</td>
<td>1</td>
<td>13.9</td>
<td>80.3</td>
<td>80.0</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14.3</td>
<td>79.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 9</td>
<td>1.18</td>
<td>1</td>
<td>60.2</td>
<td>14.7</td>
<td>14.0</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>61.2</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1</td>
<td>55.3</td>
<td>21.6</td>
<td>22.1</td>
<td>0.661</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>54.7</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>1</td>
<td>46.4</td>
<td>34.3</td>
<td>34.7</td>
<td>0.471</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>45.9</td>
<td>35.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.99</td>
<td>1</td>
<td>42.5</td>
<td>39.8</td>
<td>40.2</td>
<td>0.501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>42.0</td>
<td>40.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.04</td>
<td>1</td>
<td>41.9</td>
<td>40.7</td>
<td>40.5</td>
<td>0.240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>42.1</td>
<td>40.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.72</td>
<td>1</td>
<td>39.3</td>
<td>44.4</td>
<td>43.7</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>40.2</td>
<td>43.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligand 10</td>
<td>1.18</td>
<td>1</td>
<td>56.0</td>
<td>20.6</td>
<td>19.9</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>57.0</td>
<td>20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1</td>
<td>50.5</td>
<td>28.5</td>
<td>28.0</td>
<td>0.631</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>51.1</td>
<td>27.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>1</td>
<td>14.0</td>
<td>80.2</td>
<td>79.7</td>
<td>0.691</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14.7</td>
<td>79.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.99</td>
<td>1</td>
<td>8.33</td>
<td>88.2</td>
<td>87.7</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.00</td>
<td>87.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.04</td>
<td>1</td>
<td>7.01</td>
<td>90.1</td>
<td>90.4</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.56</td>
<td>90.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.72</td>
<td>1</td>
<td>2.26</td>
<td>96.8</td>
<td>97.0</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.99</td>
<td>97.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Copper stock concentration = 70.6 mg.L⁻¹