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ABSTRACT 

Maize is a valuable and expensive resource in the dairy industry. It is routinely used in 

ruminants’ diets as an energy concentrate to ensure that the high energy demands of top 

performing animals are met. The purpose of this study was to investigate chemical and physical 

factors affecting starch digestibility in vitro as well as possible interactions with fibre 

digestibility. Milling of grains is considered to have a great impact on the rate and extent of 

starch digestion, however differences in milling conditions lead to variation in particle and 

often an inconsistent product. In our first experiment hard and soft maize produced a NGMPS 

of 274.58 ± 0.87 and 470.91 ± 0.87 respectively when milled at 3mm; and a NGMPS of 396.64 

± 0.87 and 576.66 ± 0.87 respectively. There was significant interaction between the type of 

maize and screen size used. In the second experiment ground maize was divided into five 

different fractions and combined with a forage (lucerne or oat hay) to create combinations of 

either high or low starch-to-neutral detergent fibre (NDF) ratios. The chemical constituents 

were determined for the different maize fractions as well as the forages. Subsequently the 

individual ingredients as well as the combinations were analysed for 24 hour in vitro starch 

digestibility, rate of starch digestion, 48 hour in vitro NDF digestion (NDFd), and rate of NDF 

digestion (KNDF). Starch digestibility for the maize fractions Very fine, Fine, Medium, Coarse, 

and Cracked maize were 64.33, 62.28, 59.84, 47.58, and 42.15%, respectively, and rate of 

starch digestion was 18.24, 13.48, 10.02, 7.16, and 3.77 %/h, respectively, when pooled for 

forages and starch-to-NDF ratio. Fibre digestion was influenced by particle size, starch level 
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and forage, resulting in NDF digestibility being the highest when combined with coarse or 

cracked maize, 43.15% and 44.15% respectively, and lowest with fine maize, 32.99%. The rate 

of NDFd for oat hay and lucerne was 3.11 and 5.11 %/h, respectively and it was influenced by 

particle size, with very fine maize reducing the rate. In our second experiment, we investigated 

how different proportions of starch type (amylose/amylopectin) impact the rumen digestion of 

grains. Hylon VII (74% amylose starch) and Amioca (98% amylopectin starch) were combined 

with forages (lucerne or oat hay) in order to create combinations of either high or low starch-

to-NDF ratios. The chemical constituents of Amioca, Hylon, oat hay and lucerne were 

determined. Consequently, the individual ingredients as well as the combinations were 

analysed for 24 hour in vitro starch digestibility, rate of starch digestion, 48 hour in vitro NDF 

digestion, and rate of NDF digestion. Amioca had the greatest starch digestibility and the 

addition of forages increased starch digestion. Rate of starch digestion was 12.55 %/h and 6.13 

%/h for Amioca and Hylon respectively and the rate was influenced forage type, but not by 

starch level. The KNDF was 7.35%/h for lucerne and 3.87%/h for oat hay (when pooled for 

starch type and starch level). The rate of NDFd for oat hay was, 3.15 %/h when combined with 

Amioca and 3.30 %/h with Hylon, but the difference between the control and the starch types 

was not significant. For lucerne the rate of NDF digestion was reduced by the addition of starch, 

7.07 %/h when combined with Amioca and 5.88 %/h with Hylon. Enhanced characterization 

of grains’, with regards to particle sizes and starch type, has the potential to better describe a 

specific feed’s starch digestibility, the possible interactions with cell wall digestion and to more 

effectively satisfy the nutritional requirements of animals in different physiological stages. 
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Notes 

The language and style used in this thesis are in accordance with the requirements of 

the Journal of Dairy Science. This thesis represents a compilation of manuscripts, where each 

chapter is an individual entity and some repetition between chapters is therefore unavoidable.  

Die style en taal gebruik in hierdie tesis is volgens die vereistes van die “Journal of 

Dairy Science”. Hierdie thesis is ‘n samevatting van manuskripte, waar elke hoofstuk as ‘n 

enkele entiteid bestaan, en dus is herhaling van inligting tussen hoofstukke is onvermydelik. 
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CHAPTER 1 

Introduction 

Maize is a valuable and expensive resource in the dairy industry. It is routinely used in 

ruminants’ diets as an energy concentrate to ensure that the energy demands of high 

performance animals are met, especially during lactation. During 2016 maize prices reached a 

record high and due to droughts in 2015 and 2016, the milk to feed price ratio in South Africa 

is now at the lowest since 2007 (Bureau for Food and Agricultural Policy - BFAP, 2016). 

Compared to the beef industry, the beef to maize price ratio has been able to remain relatively 

stable due to increased exports. For the dairy industry, the importance of having a diet that is 

accurately formulated and fine-tuned to stage of lactation has never been more evident.   

Differences in the digestibility of grains are often attributed to differences in nutritional 

value, genetics, variety, geographical locations, year, climatic conditions and agronomic 

practices (Huntington, 1997; Offner et al., 2003). Among the various factors particle size of 

milled grains and type of starch (i.e. amylose or amylopectin) contained within the starch 

granules of the endosperm of grains are recognized as having a major influence on digestibility 

(Huntington et al., 2006). 

In South Africa, feed companies such as Meadow feeds (Roodepoort, South Africa) 

and Afgri (Centurion, South Africa) standardly mill grains at the theoretical size of either 2 or 

4 mm (B. van Zyl and P. Henning, personal communications). Various factors can influence 

the resulting particle size distribution during milling, such as type of grain and endosperm type 

(hard or soft; Greffeuille et al., 2006). This may lead to a variable distribution in particle size 

and an inconsistent product.   

With regards to experimental procedure, when preparing samples to be analysed it is 

routine practice to mill all feed ingredients at the same theoretical size. It is then assumed that 
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any difference in digestibility is due to treatment effect or intrinsic characteristics of the sample. 

However, there exists considerable differences in the starch digestibility between whole, 

cracked, ground and finely ground maize. Thus, if different grains react differently to milling, 

resulting in different particle size distributions, and it is known that particle sizes interact with 

digestion, it is possible that differences seen in digestibility within and amongst various studies 

could in part be due to size differences and respective digestibility. The difference between two 

kinds of maize may therefore be augmented by milling, with higher quality maize resulting in 

finer and more digestible particles and vice-versa for lower quality maize, assuming soft maize 

being of higher quality than hard maize (Almeida-Dominguez et al., 1997).  

Therefore, in order to better define the effect of particle size on the digestibility of 

maize, ground maize was divided into five different fractions based on particle size, very fine 

(<250µm), fine (250-500 µm), medium (500-1180 µm), coarse (1180-2000 µm), and cracked 

(2000-3350 µm). The different fractions were analysed for chemical composition, and 24-hour 

in vitro starch digestibility and rate of starch digestibility. Furthermore, the effect of particle 

size and starch digestibility on neutral detergent fibre (NDF) digestibility was examined by 

combining maize with forage (lucerne or oat hay) in order to create starch-to-NDF ratio of 

either high starch or low starch. The combinations were then analysed for 24-hour in vitro 

starch digestibility and rate of starch digestibility, as well as 48-hour in vitro NDF digestibility 

and rate of NDF digestibility.  

The ratio of amylose to amylopectin has been proven to influence the digestibility of 

grains (Sajilata et al., 2006). When ground grains with different amylose content were 

compared, the in vitro rumen digestibility increased as amylose content decreased (Stevnebø 

et al., 2006).  The reason that amylopectin is more readily digested then amylose is because 

amylose has tighter intermolecular bonding between starch molecules (Buléon et al., 1998a).  
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This leads to a more compacted structure of the starch granules in the endosperm. Therefore, 

grains with greater proportions of amylopectin have greater rumen starch and total tract starch 

digestion.  

However, the results from previous studies may be confounded by other factors such 

as chemical composition and particle size of grains. The direct effect of amylose and 

amylopectin on starch digestion thus needs clarification. 

Thus, in order to determine the direct effect that amylose-to-amylopectin ratio has on 

digestibility, high amylose (Hylon) and high amylopectin (Amioca) starch were analysed for 

chemical composition, and 24-hour in vitro starch digestibility and rate of starch digestibility. 

Furthermore, it is known that starch digestion negatively affects fibre digestion (Grant and 

Mertens, 1992; Oba and Allen, 2003). However, the majority of research does not distinguish 

between amylose and amylopectin starch on fibre digestion. Therefore, the effect of starch type 

and starch digestibility on NDF digestibility was examined by combining starch with forages 

(lucerne or oat hay) in order to create starch-to-NDF ratio of either high starch or low starch. 

The combinations were then analysed for 24-hour in vitro starch digestibility and rate of starch 

digestibility, as well as 48-hour in vitro NDF digestibility and rate of NDF digestibility. 
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CHAPTER 2 

Literature Review: Starch characteristics affecting ruminal and post-ruminal digestion 

in dairy cows and interactions with fibre digestion: a review  

2.1 Introduction 

Traditionally, the main objective in feeding dairy cows has been to maximise dry matter 

intake (DMI), in order to increase milk production. Many factors play a role in influencing 

DMI, such as feeding management, feed quality, palatability, fibre content, feeding conditions, 

and environmental climate, to name a few.  

The methods whereby feed intake is regulated in ruminants can be divided into two 

categories: physical (gut distention and fill) and chemical (nutrients, metabolites, and hormones 

stimulating or suppressing appetite). It is theorised that gut distention is the primary factor 

regulating feed intake when ruminants consume a low-energy diet or when energy 

requirements are high, but when excess energy is consumed chemostatic factors regulate feed 

intake (Allen, 2014). Therefore, in dry cows that typically consume a low-energy dense diet a 

few weeks before calving, feed intake will be limited by gut distention. However, as dairy cows 

are moved onto the more energy dense diets typically supplied during the transition phase 

(previously known as “steam-up diets”) feed intake is regulated by various chemical and 

metabolic factors.  

One of these chemostatic factors is the hepatic oxidation of fuels. In a review by Allen 

et al. (2009) the hepatic oxidation theory (HOT) is comprehensively discussed. According to 

the theory, feed intake would be controlled by a signal from the liver to the brain, in response 

to the oxidation of fuels in the liver. Fermentation in the rumen results in volatile fatty acids 

(VFA; mainly propionate, butyrate, and acetate) which are metabolised by the liver and thus 
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can cause appetite suppression. Furthermore, it was found that propionate is more hypophagic 

than butyrate and acetate (Anil and Forbes, 1980).  

Recently, there has been interest in the ratio of starch digested in the rumen vs. post-

ruminally, and how this influences dry matter intake (DMI) (Reynolds, 2006). The digestion 

of starch in the rumen favours the production of propionate and, as discussed previously, 

hepatic oxidation of propionate suppresses DMI. During the transition phase, as cows are 

switched to a more energy dense diet, cows become more sensitive to the effect of propionate 

metabolism in terms of satiety (Allen et al., 2009).  Excessive starch digestion in the rumen 

can therefore be detrimental to maintain a positive energy balance during this phase. 

Theoretically, if the major site of starch digestion were to be shifted to the small intestine it 

would reduce the production of propionate to some extent, thereby preventing any loss of 

appetite while maintaining a positive energy balance during early lactation. Also, altering the 

degradability of starch would be more desirable than replacing starch with fibre for animals 

with high energy demands (Allen et al., 2009). It is important to note that starch infusions into 

the abomasum have no effect on DMI (Knowlton et al., 1998a; Reynolds et al., 2001a). This 

is in agreement with Allen et al. (2009) who stated that it is starch digestion in the rumen that 

depresses DMI, not starch supply to the small intestine. Starch digestion in the small intestine 

produces glucose that can be oxidised in the liver and in accordance with HOT would cause 

intake levels to drop. However, in reality ruminants hardly oxidised any glucose in the liver. 

Most of the glucose entering the lower digestive tract is oxidised by the enterocytes and a 

satiety signal from the gut wall is unlikely (Allen et al., 2009).   

Increasing the supply of starch post-ruminally has been investigated for its potential to 

increase milk production. Milk production is dependent on glucose supply to the mammary 

gland (Nocek and Tamminga, 1991b). Increasing the supply of glucose to the mammary gland 
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could be achieved by either increasing the supply of glucogenic substrates to the liver from 

rumen fermentation, or by increasing the amount of glucose absorbed from digestion (Nocek 

and Tamminga, 1991b). As starch digestion in the small intestine produces glucose, increasing 

the post-ruminal supply of starch could theoretically increase milk production. Disappointingly 

this has never been proven in practice (Nocek and Tamminga, 1991b; Iqbal et al., 2009). 

Several studies have come to the same conclusion that no net glucose absorption is evident 

from hepatic drained viscera in dairy cattle (Huntington, 1984; Reynolds et al., 1988; Reynolds 

and Huntington, 1988; Arieli et al., 2001). Reynolds et al. (2001) concluded that any glucose 

obtained from the diet was primarily used for intestinal metabolism and is either oxidised or 

stored as omental fat. 

Furthermore, shifting the site of starch digestion to the small intestine could provide an 

energetic advantage. Starch that is digested in the small intestine to produce glucose has a 

greater efficiency of metabolizable energy (ME) utilization compared to starch that is 

fermented in the rumen to produce VFA (Reynolds, 2006).  Owens et al. (1986) determined 

starch digestion in the rumen to be only 70% as efficient as starch digested in the small 

intestine. This is because starch digestion in the small intestine does not incur losses in the form 

of methane or heat of fermentation (Black, 1971; Harmon and McLeod, 2001).  

The utilization of starch by ruminants has been extensively reviewed in the past 

(Theurer, 1986; Owens et al., 1986; Nocek and Tamminga, 1991b; Pflugfelder, 1986; 

Huntington et al., 2006). The purpose of this review is to provide insights into the most 

important factors that influence the rumen degradability and post-ruminal digestibility of starch 

in ruminants. It will also provide an overview of starch digestion in ruminants, review new 

research, investigate specific aspects that influence site of starch digestion, and how this affects 

fibre digestion.  
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2.2 Ruminal and post-ruminal starch digestion and absorption 

Starch digestion in the rumen takes place with the aid of microorganisms such as 

bacteria. They ferment starch to produce volatile fatty acids (VFA), which in turn are utilized 

by the animal as well as the rumen microbes themselves, as energy and protein substrate, 

respectively. Competition within the rumen for an easily digestible and energy rich substrate 

is fierce and usually only a limited portion of starch escapes rumen fermentation (Harmon et 

al., 2004). Ruminal starch digestion ranges from 51 to 93% of starch intake (Nocek and 

Tamminga, 1991b).  Digestion in the rumen is dependent on several intricate and often 

interconnected factors, such as feed intake, ration composition, processing, particle size, animal 

factors (breed, age, physiological stage, and body weight), and adaptation to diet (Huntington, 

1997). Increasing ruminal supply of starch is linked with increased output of organic acids and 

microbial protein, decreased fibre digestion, ammonia concentration, and acetate to propionate 

ratio (Huntington, 1997).  Rapid and excessive rumen fermentation of starch can lead to 

metabolic conditions such as acute rumen acidosis (ARA) or sub-acute rumen acidosis (SARA) 

(Kleen et al., 2003).  

Post-ruminally starch breakdown occurs similarly to that of a simple-stomached 

animal. Starch that reaches the small intestine is digested enzymatically to produce glucose 

which is then absorbed by enterocytes (Huntington, 1997).  When high forage diets are fed, all 

of the starch present in the small intestine is from microbial polysaccharides and can account 

for up to 10% of the duodenal digesta (Owens et al., 1986). However, with high concentrate 

diets it is possible for starch to reach the small intestine by escaping rumen fermentation 

(Owens et al., 1986).   

Unfortunately, not all starch that enters the small intestine is digested there. It was found 

that infusing starch into the abomasum had failed to increase blood glucose levels to the same 
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degree as infusion with glucose, maltose and lactose (Larsen et al., 1956; Huber, 1969). It was 

later discovered that on average 47-88% of the starch that enters the small intestine is digested 

(Owens et al., 1986). This is significant when compared to starch digestion in monogastric 

animals where nearly all of the ingested starch is digested and absorbed. This suggests that the 

small intestine of ruminants may have a limited capacity to digest starch. Various theories have 

been developed to explain this, for instance limited activity of amylase, maltase or isomaltase 

due to inadequate production, inadequate working conditions or presence of enzyme inhibitors; 

low capacity for glucose absorption from the small intestine by enterocytes; insufficient time 

for complete starch digestion; and inadequate access of enzymes to starch granules (Owens et 

al., 1986).  

Studies on high carbohydrate diets and post-ruminally infused starch in cattle have 

consistently reduced pancreatic α-amylase production (Kreikemeier et al., 1990; Branco et al., 

1999; Swanson et al., 2002). For instance, Swanson et al. (2002) infused glucose (20g/hour, 

40g/hour) and partially hydrolysed starch (20g/hour, 40g/hour) into the abomasum of five 

steers over a period of eight days. A pancreatic pouch which drained the main pancreatic duct 

was used to determine the enzyme secretions. Increasing postruminal glucose and starch 

decreased pancreatic α-amylase secretion (Swanson et al., 2002). Most of these studies do not 

take into account long term adaption to high starch diets and research on longer adaption 

periods are limiting. In monogastric animals the signal for amylase secretion is blood glucose 

and insulin, and in ruminant’s levels are typically low. This could mean that ruminants need 

longer adaption periods than typically given in these trials (Owens et al., 1986).  

Low capacity for glucose absorption is unlikely to limit starch digestion. Glucose 

absorption occurs mainly through the activity of SGLT1 transporters (Harmon et al., 2004). 

Shirazi-Beechey et al. (1989) found that the presence of increased amounts of glucose in the 
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intestinal lumen upregulated the expression of glucose transporters in the brush-border 

membranes of ruminants and is therefore unlikely to limit starch digestion in the small intestine. 

It is important to note that the quality of starch supplied to the small intestine also 

influences its capacity to be digested. Before starch reaches the intestinal lumen it must first 

pass though the rumen. Therefore, ruminal degradation influences not only the quantity but 

also the quality of starch reaching the small intestine (Owens et al., 1986). Starch that reaches 

the small intestine are devoid of easily digestible starch and only the more resistant starch 

remains. Therefore, the digestibility values obtained for various starch sources may not be a 

true representation of the small intestines capacity to digest starch (Owens et al., 1986).  If the 

starches were somehow protected from ruminal fermentation, higher digestibility could be 

expected.  

Starch that remains undigested after passing the ileo-caecal valve will be exposed to 

hindgut fermentation (Ørskov et al., 1970). The modes of degradation in the caecum and colon 

resemble that of the rumen and produce similar end products such as VFA and methane. 

However, these end products are largely unavailable to the animal and hindgut fermentation is 

largely viewed as unfavourable because of the risk of hindgut acidosis (Gressley et al., 2011).   
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2.3 Grain factors that influence rumen degradability and post-ruminal delivery and 

digestion of starch  

Composition of grains 

The basic structure of grain kernels has three morphologic parts: pericarp, germ and 

endosperm. The pericarp functions to protect the endosperm and embryo from moisture, 

insects, and fungal infections (Huntington, 1997). Before starch within the grain kernel can be 

digested, the pericarp or seed coating must first be broken, this is achieved either through 

chewing or processing.  Once this has been achieved the seed coating has little effect on 

subsequent digestion, other than diluting the amount of starch in the diet (Rowe et al., 1999). 

However, in grains such as sorghum the pericarp represents only 6-7% of the grain weight and 

as long as the grain is effectively cracked it will have little effect on the nutritional value. The 

pericarp and embryo contain minimal amounts of starch (Kotarski et al., 1992a). The embryo 

has the highest lipid and lipid soluble vitamin content (Evers and Millar, 2002). The principal 

fatty acids found in grains lipids are C16:0, C18:0, C18:1, C18:2, and C18:3, with slight 

differences seen between species but typically C16:0 and C18:2 make up the largest percentage 

(Morrison et al., 1984a).  

The endosperm makes up the largest component of grains (Evers and Millar, 2002) and 

it contains the majority of the starch which is enclosed within structures called starch granules 

(Kotarski et al., 1992a).  The endosperm consists of four layers: aleurone layer, sub-aleurone 

layer (peripheral endosperm), corneous endosperm and the inner floury endosperm (Kotarski 

et al., 1992a). The cells of the aleurone layer are block-like, thick walled and occur in a 

continuous layer around the endosperm and embryo (Evers and Millar, 2002). It has high 

concentrations of proteins, lipids, vitamins, and minerals (Evers and Millar, 2002). The 

Stellenbosch University  https://scholar.sun.ac.za



 

13 
 

peripheral and corneous endosperm is comprised of starch granules embedded in a matrix of 

storage proteins (Evers and Millar, 2002).  

The amount of vitreous endosperm compared to floury endosperm determines the 

vitreousness of grains (Lopes et al., 2009).  Haddad et al. (1999) also describes vitreousness as 

an optical property that is defined by two possible states of the endosperm namely glassy or 

mealy. Vitreousness of grains has been positively linked to decreased ruminal starch 

degradation (Corona et al., 2006).  

The degree of vitreousness is strongly related to the agro-climatic conditions of growth, 

such as climate and soil conditions (Haddad et al., 1999). Vitreousness is also related to genetic 

factors such as the type of maize cultivar (Corona et al., 2006). Based on the characteristics of 

the grain kernel, maize can be divided into five classes: flint, popcorn, floury, dent, and sweet. 

The endosperm of flint maize is almost completely vitreous. Floury maize, as the name implies, 

has an almost entirely floury endosperm (Kotarski et al., 1992b). Dent maize is a hybrid that 

contains different ratios of floury and vitreous endosperm depending on the type of cultivar 

(Corona et al., 2006). These structural differences are also responsible for some of the 

differences seen in in vitro and in vivo digestion among grain sources (Deckardt et al., 2013). 

Several methods have been developed to estimate the vitreousness of grains, including manual 

dissection, grain density and Near-Infrared Reflectance Microscopy (NIRS). Manual dissection 

is the predominant method used to quantify vitreousness in maize (Correa et al., 2002; 

Ngonyamo-Majee et al., 2008). Whole maize kernels are soaked in distilled water. The germ 

and pericarp are removed, and the vitreous and floury endosperm are separated using a scalpel. 

After drying, the endosperm is weighed and expressed as a percentage of the total endosperm. 

Manual dissection can only be performed on whole intact kernels and not on ground feed 

samples. It also has the disadvantage of destroying the sample (Ngonyamo-Majee et al., 2008; 
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Hoffman et al., 2010). The reliability of this method is dependent on the skill and experience 

of the technician (Louis-Alexandre et al., 1991).  Grain density is another method that can be 

used to estimate vitreousness. Correa et al. (2002) found a correlation between grain density 

and ruminal starch availability, and a correlation between vitreousness and ruminal starch 

availability. Grain density is therefore an indirect measure of vitreousness. Grain density is less 

labour intensive than manual dissection and can be used to screen large amounts of grain 

(Correa et al., 2002). Near-Infrared Reflectance Microscopy could provide a rapid and non-

destructive way to measure virtuousness, even for ground samples (Perez et al., 2001). 

Differences between samples are generated by the endosperm colour, protein and starch 

concentration, particle distribution, density and hardness (Ngonyamo-Majee et al., 2008). 

Ngonyamo-Majee et al. (2008) conducted an experiment to determine the correlation between 

the endosperm properties and digestibility’s of 33 different maize cultivars with measurements 

of endosperm properties obtained either manually or by NIRS. They concluded that NIRS had 

the potential to become an effective screening tool for maize vitreousness, density and 

hardness. Additionally, NIRS can be conducted without the use of expensive reagents or 

production of potentially hazardous chemical residues (Perez et al., 2001).  

It was found that increasing vitreousness leads to a decrease in the rumen digestibility 

of maize. Phillippeau et al. (1998) studied the difference between flint and dent maize, as well 

as the amylose content of different cultivars on ruminal starch digestion. Their studies 

confirmed that flint maize is more vitreous than dent maize. Furthermore, rumen starch 

degradability in situ averaged 58% for flint maize and 71% for dent maize. Maize with high 

amylose content tended to have a higher ruminal starch degradability, independent of flint- or 

dent-endosperm type.  
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Similarly, Correa et al. (2002) examined the relationship between vitreousness and in 

situ ruminal starch digestibility of maize. They determined the vitreousness of 14 different 

dent-endosperm cultivars and five different flint-endosperm cultivars at different stages of 

maturity. Manual dissection was used to determine kernel vitreousness. Three lactating 

Holstein cows fitted with rumen cannula were used to determine in situ starch digestibility. 

Again, flint cultivars had higher vitreousness than the dent cultivars and vitreousness tended to 

increase with maturity and decreased ruminal starch availability. The correlations between 

kernel density and vitreousness was found to be 0.87. The correlation between kernel 

vitreousness and ruminal starch availability to be -0.97, and kernel density and ruminal starch 

availability to be -0.87. Stage of maturity did not influence starch content. They observed that 

both kernel density and vitreousness increased with age and therefore came to the conclusion 

that kernel density could become an indirect measurement of starch digestibility (Correa et al., 

2002).  

As mentioned earlier the endosperm consists of four layers: aleurone layer, sub-

aleurone layer (peripheral endosperm), corneous endosperm and the inner floury endosperm 

(Kotarski et al., 1992a). The corneous endosperm is tightly compacted and translucent. While 

the floury endosperm has a more “open” structure and is not covered by a protein matrix and 

is therefore much more susceptible to external attack such as digestion and grain processing 

(Kotarski et al., 1992a). The floury endosperm also contains the majority of the starch granules 

(Huntington, 1997). The protein matrix consists of mostly protein and non-starch 

carbohydrates and is resistant to water and hydrolytic enzymes (Kotarski et al., 1992a).  The 

matrix consists of four different types of proteins: albumins, globulins, glutelins and prolamins 

(Shewry and Halford, 2002b). Prolamins are considered to be the principal storage protein of 

the endosperm of grains (Shewry and Halford, 2002b). Maize prolamin is called zein, in barley 
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it is called hardein, in wheat it is called gliadin, and in sorghum it is called kafarin (Shewry and 

Tatham, 1990). The zein content of maize makes up 50-60% of protein (Shewry, 2007), hardein 

content of barley protein is 50%, gliadin content of wheat protein is 33%, and kafarin content 

of sorghum protein is 42-45% (Taylor and Schüssler, 1986).  There are four types of prolamins: 

ά, β, γ, and δ (Shewry and Halford, 2002b).  One of the major amino acids that make up 

prolamins is proline which is hydrophobic and explains why prolamins are not soluble in water 

or rumen fluid (Shewry and Halford, 2002a). Rumen starch degradation is negatively correlated 

with the prolamin content (Philippeau et al., 2000). The poor rumen starch availability of flint 

maize could possibly be explained by the presence of prolamins within the protein matrix 

(Corona et al., 2006). Phillippeau et al. (2000) studied the protein distribution of maize 

endosperm and its consequence on rumen starch degradation. They determined the protein 

content of eight dent cultivars and six flint cultivars. Flint cultivars had a higher crude protein 

content than dent cultivars. The (α, β, δ)-prolamins and true glutelins were found to be the 

predominant proteins in the endosperm. Rumen starch degradability was negatively correlated 

with prolamins and positively correlated with glutelin content. Likewise, prolamins were 

positively correlated with vitreousness and glutelins were negatively correlated with 

vitreousness. The decrease in ruminal starch degradation of flint maize can be explained by 

presence of protein storage bodies surrounding the starch granules of the vitreous endosperm 

(Philippeau et al., 2000). Prolamin is the major storage protein, thus explaining why flint maize 

has a higher prolamin content than dent corn (Shewry and Halford, 2002b). The protein storage 

bodies prevent the rumen microbes from accessing the starch granules and thereby decrease 

starch availability (Philippeau et al., 2000).  

Starch is a polysaccharide molecule comprised of α–D-glucose units (Tester et al., 

2004). Two distinct populations of starch exist, amylose and amylopectin.  Amylose is a linear 
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molecule consisting of (1-4) linked α-D-glucopyranosyl units (Buléon et al., 1998a). 

Amylopectin is a highly branched molecule and is formed through chains of α-D-copyranosyl 

residues linked by (1-4) linkages and (1-6) linkages (Buléon et al., 1998a). Amylose has few 

branch points, less than 20 per molecule, in contrast amylopectin is characterised by many 

branch points, on average one branch point for every 20 glucose units (Svihus et al., 2005a). 

Amylose has a molecular weight of 105- 106g.mol-1 and amylopectin has a molecular weight 

of 108 g.mol-1 (Parker and Ring, 2001). Most starches contain between 20 and 25% amylose 

(Svihus et al., 2005a). However, grain species exist with more or considerably less amylose, 

such as certain waxy species that contain less than 1% amylose; and Amylomaize that contains 

up to 65% amylose (Parker and Ring, 2001). Amylose, as a percentage of total starch, was 

found to be 3-46% in barley (Åkerberg et al., 1998), 0-70% in maize (Morrison et al., 1984b), 

3-31% in wheat, and 0-30% in sorghum (Beta et al., 2001; Sang et al., 2008). Dombrink-

Kurtzman and Knutson (1997) measured the differences in amylose content of vitreous and 

floury endosperm of maize and discovered a small but significant difference. Floury endosperm 

contains less amylose than vitreous endosperm (Dombrink-Kurtzman and Knutson, 1997). 

Similarly, El‐Khayat et al. (2003) found that the amylose content in wheat was slightly higher 

in cultivars with more vitreous endosperm. Cagampang et al. (1984) determined the correlation 

between vitreousness and amylose content in sorghum to be 0.52. Furthermore, it is known that 

high amylose levels decrease digestibility of grains (Sajilata et al., 2006).  Stevnebø et al. 

(2006) investigated the effect of amylose level of barley starches on in vitro rumen digestibility. 

They found that cultivars with low amylose levels had higher starch digestion than normal or 

high amylose cultivars, for both isolated starch and ground samples (Stevnebø et al., 2006). 

The reason that amylopectin is more readily digested than amylose is because amylose has 

tighter intermolecular bonding between starch molecules (Buléon et al., 1998a).  This leads to 
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a more compacted structure of the starch granules in the endosperm. Therefore, grains with 

greater proportions of amylopectin have greater rumen starch and total tract starch digestion. 

Because waxy species contain more amylopectin than amylose, they swell faster in heated 

water and are digested faster than non-waxy species (Buléon et al., 1998b; Deckardt et al., 

2014).  

Grain processing  

Processing involves any process that improves the efficiency of nutrient utilization in 

the rumen or post-ruminal tract. The types of processing are routinely divided into two types: 

physical and chemical. Physical processing includes grinding, cracking, rolling, or pelleting; 

and heat treatments such as steam flaking, extrusion, roasting, popping, reconstituting, and 

micronizing (Nocek and Tamminga, 1991a). Chemical treatments include aldehydes, alkalines, 

ammoniation, acetic acid, tannins, mild acids, lactic acid, or organic acids (fumaric, malic, 

aspartic acids).  

Physical Processing 

When feeding grains to cows the minimum amount of processing required for efficient 

digestion is cracking, this is because whole grains have been known to pass through the 

digestive tract unchanged. Cracking breaks open the pericarp and exposes the endosperm. 

Taking this concept a step further, grinding and rolling can be used to further decrease particle 

sizes and expose more surface area for the attachment of microbes and digestive enzymes. 

Particle size will also influence the amount of starch granules freed from the protein matrix of 

the endosperm.  

Grain particles size  

Reducing particle size predominantly leads to increased starch digestion in the rumen. 

Callison et al. (2001) used 5 cannulated Holstein cows to determine the starch digestibility of 
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maize at different particle sizes. The diet comprised of 50% lucerne silage and 36.6% of either 

coarsely ground, medium ground, or finely ground maize with mean particle sizes of 1.3 mm, 

2.6 mm, and 4.8 mm, respectively. Decreasing particle size increased true ruminal digestibility 

of non-structural carbohydrates from 49.8%, to 46.5 and 87.0 (Table 2.1). The apparent total 

tract digestibility increased from 91.3, 92.2, to 98%, indicating that starch digestion in the small 

intestine was higher for larger particle sizes (Callison et al., 2001). In contrast to this, Remond 

et al. (2004) conducted a similar experiment using semi-flint maize with mean particle sizes of 

0.730, 1.807, and 3.668 mm (Table 2.1). Apparent total tract digestibility was 91.4, 86.0, and 

69.5% respectively for the different particle sizes, which is lower than expected compared to 

the study by Callison et al. (2001). Possibly indicating that the vitreous nature of semi-flint 

maize had a marked effect on starch digestibility. Unfortunately, the study included no 

information about the nature of the maize used.  

Similarly, reducing the particle size of barley increases rumen starch digestion. Yang 

et al. (2001) utilized eight rumen and duodenal cannulated dairy cows to examine the 

digestibility of coarse and finely ground barley. The rumen digestibility of starch increased 

from 37.8% for coarse ground to 50.1% for finely ground barley, and apparent total tract 

digestibility also increased from 81.7% to 90.2%. Post-ruminal starch digestion (as a 

percentage of intake) decreased from 43.9% for coarsely ground to 40.1% for finely ground 

barley (Yang et al., 2001c). It can be assumed that other grains such as wheat and sorghum will 

produce similar results. However, research comparing the starch digestibility of different 

particle sizes for other grains are limiting.  

Particle size also influences the density and specific gravity of particles, which in turn 

influences the retention time in the rumen (Hyslop et al., 1989). Smaller particles have a higher 

density and tend to sink to the bottom of the rumen where it can pass on to the lower digestive 
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tract thereby decreasing digestion in the rumen (Hooper and Welch, 1985a). This principle is 

well established with forages (Poppi et al., 1980; Hooper and Welch, 1985a; Hooper and 

Welch, 1985b; Nocek and Kohn, 1987), but not in grains. The majority of the research indicates 

that decreasing particle size in grains increases rumen starch degradation (Table 2.1; Galyean 

et al., 1979; Galyean et al., 1981; Yu et al., 1998; Knowlton et al., 1998b; San Emeterio et al., 

2000; Callison et al., 2001; Remond et al., 2004).  However, these studies merely examine the 

differences between whole, cracked, coarse and finely ground grains. Not enough is known 

about the effects of the individual particle size fractions on starch digestion.  

Some inference can be made on the effects of particle size on starch digestion. For 

instance, Ewing et al. (1986) used four ruminally cannulated steers fed whole and cracked 

maize to determine the effects of particle size on rumen passage rates and particle size reduction 

rates. The cracked and ground maize were separated into four different particle size classes: 

<1.19mm, 1.19mm-4.76, 4.76-8mm, and >8.0mm. Each particle class was assigned to a 

different steer and 1kg administered daily through rumen cannulas and repeated for 7 days. As 

particle size decreased, mean pool passage rates increased from 0.024 to 0.046h-1 (Ewing et 

al., 1986). This study did not include any information on rumen and post-ruminal starch 

digestion, however we can assume that if ruminal passage rates increase less starch will be 

broken down in the rumen and thus increase starch supply to the small intestine.  

Heat Treatment 

Physical processing aims to break open grains in order to expose starch to microbes and 

digestive enzymes. However, even the smallest particle sizes can still contain whole starch 

granules protected from digestion in the endosperm matrix (Rowe et al., 1999). Using high 

temperatures, with or without the use of water, it is possible to further disrupt the protein matrix 

and expose starch to digestion.  
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Starch occurs naturally in highly organised water insoluble granules contained within 

the endosperm of grain kernels (Pflugfelder, 1986; Huntington, 1997). Starch granules are 

created by depositing starch in layers containing various amounts of amylose and amylopectin 

held together by hydrogen bonds. The layers alternate between semi-crystalline and amorphous 

in nature (Buléon et al., 1998b). The crystalline regions are quite impervious to water, while 

the amorphous region allow free movement of water (Pflugfelder, 1986; Nocek and Tamminga, 

1991a).  

Considerable variation exists in the starch granule structure of different plant species 

with regards to granule size (1-100µm in diameter), shape (round, lenticular, polygonal), size 

distribution (uni- or bi-modal), association as individual (simple) of granule clusters 

(compound) and composition (α-glucan, lipid, moisture, protein and mineral content) (Tester 

et al., 2004). Additionally, environmental factors during development such as temperature can 

influence both granule size and starch distribution (Svihus et al., 2005a).  

Various non-starch compounds are also associated with starch granules. The most 

important of these are lipids, not only because it is the most abundant non-starch component, 

ranging from 5 to 10%, but also because lipid-starch complexes that form influence starch 

digestion (Evers and Millar, 2002). Lipids are found in the form of free fatty acids and 

lysophospholipids and are associated with the amylose fraction (Morrison et al., 1984a; Pérez 

and Bertoft, 2010). These amylose-lipid complexes play an important role during gelatinization 

and can restrict swelling, dispersion of starch granules, and solubilisation of amylase (Buléon 

et al., 1998a).  

When starch granules are placed in excess water and slowly heated (55°C) they undergo 

swelling (Nocek and Tamminga, 1991a). During this process starch granules can absorb water 

up to 50% of their weight, however this process is reversible after cooling and drying (Nocek 
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and Tamminga, 1991a). If the temperature is increased (60-80°C), irreversible swelling occurs 

called gelatinization (Parker and Ring, 2001). Swelling occurs primarily in the amorphous 

region but not the crystalline regions. This imposes stress on the bonds between the 

amylopectin in the crystalline regions and the amylose in the amorphous regions (Donald, 

2001; Svihus et al., 2005b). At a certain point the crystalline regions are irreversibly broken 

and gelatinization occurs. Amylose in the starch granule leaches out making it available for 

amylase digestion (Pflugfelder, 1986). Starch molecules are gelatinized during processes such 

as steam-flaking, extrusion, and rolling. Mechanical ‘gelatinization’ also occurs during milling 

or grinding of grains, the crystalline regions are damaged through compressing, impact, shear 

or attrition, making starch within the granules vulnerable to enzyme attack (Pflugfelder, 1986). 

The granules will also undergo swelling when they come into contact with water causing starch 

to leach out (Karkalas et al., 1992).  

In a review by Theurer et al. (1999) which summarises nineteen lactation trials 

involving 43 grain processing comparisons, the starch digestion of dry-rolling and steam-

flaking was compared. Ruminal starch digestion of maize increased from 35% to 52% when 

steam flaked, while sorghum increased from 54% to 76%. Post-ruminally, starch digestion (as 

a percentage of entry) increased from 77.5% to 96.6% for maize, sorghum increased from 74% 

to 90% (Table 2.1; Theurer et al., 1999). Similar results are seen with barley, ruminal and post-

ruminal starch digestibility are greatly improved by steam flaking over dry-rolling (Plascencia 

and Zinn, 1996). Malcom and Kieslin (1993) compared the in situ digestibility of steam flaked 

barley to dry ground barley through a 3.2mm screen and found little benefit in steam flaking. 

They concluded that steam flaking and grinding were equally effective at increasing rumen 

starch degradation and exposing starch to microbes (Malcolm and Kiesling, 1993).  
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Retrogradation is the reassociation of the starch molecules after gelatinization through 

the reestablishment of hydrogen bonds between amylose and amylopectin (Nocek and 

Tamminga, 1991a). The resultant bonds are very strong, causing a glue-like hardening of the 

affected starch, decreased porosity of the internal starch matrix, and limits rehydration and 

enzyme penetration (Zinn et al., 2002). Consequently, retrogardation decreases rumen starch 

digestibility (Pflugfelder, 1986). Ward and Galyean (1999) found that enzymatic starch 

digestion was lowered by 40% after steam-flaked maize was allowed to retrograde.  

Chemical Processing  

Chemical methods of grain processing involve the addition of substances such as 

Formaldehyde (CHCO), Sodium hydroxide (NaOH), or ammonia (NH3) in order to alter the 

starch structure and ultimately its digestion. The site of starch digestion will depend on the type 

of process and the degree of processing.  

Aldehydes, especially formaldehyde, are sometimes used to treat grains and it has been 

used effectively to decrease rumen digestion of starch. Formaldehyde enters the starch granule 

and forms a complex with the hydroxyl groups which then form cross-linkages with hydroxyl 

groups on other starch granules (Fluharty and Loerch, 1989). The amorphous, amylose rich 

regions of the starch granule are primarily affected (Pflugfelder, 1986). This causes the starch 

granule to be tightly bound and prevents it from swelling and thereby increasing RRS. Once 

the grain reaches the acidic environment of the abomasum the formaldehyde is released and 

the starch is free to be digested in the small intestine (Fluharty and Loerch, 1989).  

In a study by Fluharty and Loerch (1989) formaldehyde treatment of grain reduced 

rumen degradation of starch while maintaining whole tract starch digestion (Fluharty and 

Loerch, 1989). The addition of 1 and 2% formaldehyde decreased ruminal starch digestion of 

maize 30 and 41.5%, respectively, in sheep. However, total tract starch digestion was not 
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affected, indicating that the rumen resistant starch (RRS) was digested in the small and large 

intestine (Deckardt et al., 2013). Formaldehyde was also effective in decreasing ruminal 

degradation of wheat, Shcmidt et al. (2006) compared untreated ground wheat with ground 

wheat treated with 2% formaldehyde in Holstein steers. The amount of starch entering the 

duodenum increased by 75% when treated (Schmidt et al., 2006). Additionally, the small 

intestinal digestibility of starch increased from 67.36% to 73.12% indicating that the cow’s 

amylase secretion can adapt to the increase in starch reaching the small intestine. This is of 

particular interest because pancreatic amylase secretion is considered to be one of the limiting 

factors in small intestine starch digestion (Owens et al., 1986).  

However, Ortega-Cerrilla et al. (1999) found no evidence that treating barley with 

formaldehyde could reduce rumen starch digestion in vivo. The author suggests that the 

difference seen between barley and other grains is due to structural differences of the starch 

granule.  

Alkaline treatment, such as sodium hydroxide, has been observed to slow down ruminal 

degradation of starch and decrease susceptibility to rumen acidosis (McNiven et al., 1995). 

Shmidt et al. (2006) found that treating ground wheat increased the amount of starch entering 

the small intestine by 57% and increased the small intestinal digestibility of starch from 67.36% 

to 77.5%.   O’Mara et al. (1997) also found sodium hydroxide treatment of wheat effective in 

protecting starch from rumen degradation in dairy cows. Barley also shows a positive response 

to treatment with sodium hydroxide. When coarsely milled barley grain was treated with 

35gNaOH/kg the total track starch digestibility increased and the post-abomasal tract starch 

disappearance increased from 37% in the control to 79% (Dehghan-Banadaky et al., 2008). 

However, sorghum treated with sodium hydroxide had reduced total tract starch digestibility 

(Miron et al., 1997).  
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Another alkaline treatment, ammonia, has been proven to increase RRS in barley. 

Robinson et al. (1988) examined 4 levels of ammonia treatment (0%, 0.65%, 1.3% and 1.95% 

as a percentage DM) of barley grain in dairy cows. Ammonia decreased in situ ruminal starch 

degradation rates without decreasing whole tract digestibility (Robinson and Kennelly, 1988). 

Interestingly, milk yield increased with higher ammonia levels (Robinson and Kennelly, 1989).  

 

2.4 Starch digestion and its subsequent effect on forage NDF digestion 

Starch is one of the main factors negatively influencing fibre digestion in the rumen 

(Hoover, 1986; Firkins et al., 2001). The effect of feeding diets with different starch levels to 

lactating dairy cows were investigated by Gencoglu et al. (2010). Cows were fed diets differing 

in the starch content of the concentrate, 33% vs. 20.1%. Dry matter intake was slightly higher 

for the reduced starch diet, 4.16% vs. 3.88% of body weight. The total tract NDF digestibility 

was higher for the reduced starch diet, 54.1% compared to 39.4% for the higher starch diet. 

Similarly, in an experiment conducted by Valadares et al. (2000) the nutrient digestibility’s of 

forages was examined at different concentrate ratios. As the level of starchy concentrates 

increased the NDF total tract digestibility suffered (Valadares Filho et al., 2000).  

Therefore, any factor that influences the digestibility of starch in grains, will also 

influences the digestibility of fibre. For instance, the type of endosperm in maize, vitreous vs. 

floury, affects the digestibility of NDF. As discussed previously, vitreous maize is more 

resistant to rumen degradation than floury maize (Philippeau et al., 1998).  Lopes et al. (2009) 

conducted an experiment to determine if the type of endosperm influences the digestibility of 

nutrients in lactating dairy cows. Three different diets were formulated with similar starch and 

NDF content, differing only in vitreous content. The less vitreous maize had higher rumen 
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starch and total tract starch digestibility, and NDF digestibility was higher for the vitreous 

maize (Lopes et al., 2009).  

Processing of grains in order to improve digestibility also has a subsequent effect on 

NDF digestion of forages. Joy et al. (1997) carried out an experiment to determine the effect 

of processing maize on nutrients’ digestibility. Lactating dairy cows were fed diets consisting 

of 40% forages and 60% concentrates. The starch content of the different diets were similar 

and the diets differed only in the processing methods used on maize, steam-flaking vs. dry-

rolled. Steam-flaked maize had the highest rumen digestibility of starch, but also the lowest 

NDF digestibility (Table 2.1). Poore et al. (1993) investigated the relationship between fibre 

and rumen starch digestion in rumen cannulated Holstein cows (Table 2.1). Diets were 

compiled using wheat straw and either steam flaked or dry-rolled sorghum, in order to produce 

a forage NDF (FNDF) to rumen degradable starch (RDS) ratios of either 0.8 or 1.35. Increasing 

RDS decreased fibre digestion, especially cellulose, as well as lowered DMI, milk fat 

percentage, and fat corrected milk. The authors suggest that the ratio of FNDF and RDS to be 

at least 1:1 in order to minimize these negative effects (Poore et al., 1993). Similar results were 

obtained for maize by Sarwar et al. (1992) when the NDF to NSC ratio was lower than 1 there 

was a reduction in DMI, milk and milk fat production.  

Enhancing rumen degradability of starch through particle size also decreases NDF 

digestibility. In an experiment by Callison et al. (2001) the effect of particle size on maize was 

examined. As the particle size decreased, from 4.8, 2.6, to 1.2mm, the rumen digestibility of 

starch increased from 49.8, 46.5, to 87% (Table 2.1). Simultaneously, NDF digestibility (as a 

percentage of intake) decreased linearly, from 52.7, 51.5, and 45.6% (Callison et al., 2001).  

Although it is commonly acknowledged that starch digestion adversely affects NDF 

digestion in the rumen, Armentano and Pereira (1997) suggests that there are a few factors that 
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might confound these results. Increasing the inclusion of either NFC or NDF in the diet, 

inadvertently leads to a decrease in the other. This makes it hard to determine which dietary 

component is responsible for any changes in the response seen. When forages in the diet are 

increased at the expense of concentrates, not only is NDF increased but the proportion of NDF 

from forages is increased (Armentano and Pereira, 1997). Furthermore, when NDF in the diet 

is reduced by increasing the concentrate content of the diet the DMI of cows’ increase. It was 

also found in a study by Tine et al. (2001) that increased DMI decreases NDF digestibility. 

Therefore, it is difficult to deduce whether the decrease in NDF digestibility is due to an 

increase in starch in the diet or to higher DMI.  

To resolve this issue, Beckman and Weiss (2005) ascribed treatments effects as 

different NDF to starch ratios rather than changes in starch to NDF concentrations. They 

thereby hypothesized that any changes in the response would not be confounded by DMI, and 

NDF digestibility will be less sensitive to decreases in the NDF to starch ratio (Beckman and 

Weiss, 2005). Six Holstein cows were fed one of three different diets with NDF to starch ratio 

equal to 0.74, 0.95, or 1.27. The diets were designed to have the same in situ NDF digestibility. 

All the diets had 18% forage NDF, but starch concentration and NDF varied. This was achieved 

by using a mixture of soy hulls and cottonseed hulls with the same in situ NDF digestibility as 

the forages. They found that intake tended to increase as NDF to starch ratio increased, however 

intake of digestible energy remained constant despite treatment differences. Total tract 

digestibility of DM and energy decreased linearly as the NDF to starch ratio increased. The 

overall NDF digestibility was not affected by starch concentration. However, the digestibility 

of the forage was reduced by high concentrate diet.  

NDF is vital in the diets of dairy cows, it aids healthy rumen function and normal milk 

fat percentages (Sarwar et al., 1992). The predominant theory as to why rumen starch 
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fermentation depresses NDF digestibility is because it decreases rumen pH (McCarthy et al., 

1989). Fermentation of starch in the rumen results in the production of VFA which cause the 

acidity of the rumen fluid to increase. The optimal pH for cellulolytic bacteria is 6.8 and once 

the pH drops below this their activity decreases along with fibre digestion (McCarthy et al., 

1989).  Thus, shifting the site of starch digestion to the small intestine could have potential 

benefits as relates to fibre digestion. Furthermore, forages influence DMI through gut fill (Oba 

and Allen, 1999). Improving the digestibility of forages can therefore increase passage of 

forages and potentially improve DMI.  

 

2.5 Conclusion 

In recent years, starch has been described as a hot topic in dairy cattle nutrition for 

various reasons. The transition period is hallmarked by poor feed intake, often resulting in 

negative energy balance. Negative energy balance during this period can have several short 

and long term health risks, such as milk fever, mastitis, displaced abomasum, laminitis, and 

poor fertility (Hayirli et al., 2002; Butler, 2003; Esposito et al., 2014). Starch during this phase 

can be a tool to mitigate these risks. Furthermore, starch digested in the small intestine has an 

energetic advantage over starch digested in the rumen and it also lowers the risk of rumen 

acidosis, and may improve DMI and energy balance of transition cows, according to recent 

theories (Reynolds, 2006; Allen et al., 2009). Although more research is needed to develop 

ways to improve starch nutrition during the transition period, the benefits of better fine-tuning 

starch during this time are evident. 

Total tract starch digestion in ruminants can exceed 95%.  However, ruminal digestion 

ranges between 51 and 93% (Nocek and Tamminga, 1991a); and, of the starch reaching the 

small intestine 47 to 88% is digested there (Owens et al., 1986). The composition of the diet 
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and starch characteristics are considered to be the primary factors influencing the rate and 

extent of starch fermentation in the rumen. Many are the published works of at least the last 20 

years, analysing, for example, the effects of species, vitreousness, amylose-amylopectin ratio, 

protein and starch interactions, endosperm type, prolamins, degree of maturity, processing. In 

the small intestine, instead, capacity of ruminants at digesting starch, more than starch 

characteristics, seem to affect amount of starch digested. Despite of the many published works, 

starch still remains a hot topic and all the models that are daily used by nutritionists would 

probably benefit from a better starch and grain characterization, similarly to what is done for 

fibre.  
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Table 2.1 Summary of starch and NDF digestibility    

Reference   Starch digestibility   NDF Digestibility 

  

 

  Grain Treatment 

Particl

e size 

µm 

DMI 

kg/da

y 

Starch 

intake 

(kg/day) 

Rumen 

(%intak

e) 

SI 
(% 

passa

ge) 

SI 

(% 

intak

e) 

Post-

ruminal 

(% intake) 

Total 

tract (% 

intake ) 

 
Intake 

(kg/da

y) 

rumi

nal 

total 

tract 

Knowlton 

et al. 

(1998b) 

 
In 

vivo 
Dry 

maize 
Ground 618 23.4 7.93 60.9 13.2 9.11  88.9 

 

6.552 57.0 30.4 

    Rolled 1725 23.4 7.94 69.2 - -  76.4  6.4818 57.3 33 

 

 

 
High 

moisture 

Maize 

Ground 489 24.4 8.8 86.8 58.8 58.9  98.2 

 

6.5392 64.7 26.3 

    Rolled 1789 23.7 8.3 81.2 63.3 56.6  95.7  6.3753 60.2 25.7 
                    

Remond et 

al. (2004) 

 

In 

vivo 

Dry 

Semi-

flint 

Maize 

Ground 730 16 4.33 58.6 67.5 28.9  91.4 

 

    

 
 

  
Medium 

rolling 
1807 15.9 4.33 49.8 61.1 31.5  86 

 
    

    Coarse rolling 3668 15.9 4.27 35.5 47 30.6  69.5      

                    

 
 

 
Dent 

Maize 
Ground 568 18 4.73 69.8 77.8 23.4  97.3 

 
    

    Coarse rolling 3458 18.1 4.66 53.5 68.3 31.9  89.2      
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Galyean et 

al. (1981) 

 In 

vivo 
Maize Dry rolled 3000    19.9      

 
    

     1500    17.2           

     750    26.6           
    Steam flaked 3000    30.7           

     1500    36.9           
     750    40.8           

Firkins et 

al. (2001) 

 In 

vivo 
Maize Steam rolled  26.5   35   42 77.5 

 
    

    Steam flaked  26.5   52   44 96.6      

   Sorghum  Steam rolled  25.6   54   36 88.7      
    Steam flaked  25.1   76   23 97.9      
                    

Callison et 

al. (2001) 

 In 

vivo 
Maize Finely ground 1200 18.4 4.92 70.1 65.2 19.9  98 

 
5.82 45.6 66.4 

 
 

  
Medium 

ground 
2600 18.7 5.17 31.9 79.1 60.2  92.2 

 
5.95 51.5 66.5 

 
 

  
Coarsely 

ground 
4800 18.8 5.44 35.2 66.4 47.7  91.3 

 
5.87 52.7 65.2 

    Steam rolled  18 5.21 52.2 70.3 36.9  95  5.52 47.5 62.8 
                    

San 

Emetorio et 

al. (2000) 

 
In 

vivo 
Maize Finely ground 1110 24.7 8.73     88.1 

 

6.5455  56.5 

 
 

  
Coarsely 

ground 
3280 25.8 9.13     80.4 

 
6.837  52.8 
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Yu et al. 

(1998) 

 In 

vitro 
Maize Finely ground 1180 23.1       95.8 

 
7.161  54.4 

 
 

  
Coarsely 

ground 
2420 27.5       87.4 

 
9.6525  62.8 

 
 

  
Steam flaked 

at low density 
3840 27.8       97.5 

 
8.062  41 

 
 

  
Steam flaked 

at high density 
4700 27       95.7 

 
9.126  57 

    Steam rolled 5300 26.7       91.3  9.2649  69.3 
                    

Theurer et 

al. (1999) 

 
 Soghum Dry rolled  6.761 4.002 66.8 85 28.5  96.5 

 
    

 

 

  
Steam flaked 

at density 437 

g/L 

 6.456 3.612 76.6 88.7 20.5  97.7 

 

    

 

 

  
Steam flaked 

at density 360 

g/L 

 6.895 3.76 81.5 93 17.5  99.3 

 

    

 

 

  
Steam flaked 

at density 283 

g/L 

 6700 3.867 89.4 91.5 9.8  99.6 

 

    

                    

Poore et al. 

(1993) 

 

 

Sorghum 

and 

Alfafa 

hay 

Dry-rolled 

Sorghum 
1000  6.19 42.6 69.1   84.6 

 

5.14 46.4 41.9 

 
 

  
Steam flaked 

Sorghum 
4000  6.13 71.1 92.1   97.8 

 
5.35 39.8 40 
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Joy et al. 

(1997) 

 In 

vitro 
Maize Dry-rolled  20.94 2.9 34.33   43.66 77.99 

 
7.72 

62.7

2 
66.0

2 

 
 

  
Steam-flaked 

(0.39 kg/L) 
 20.1 2.93 27.258   57.88 85.13 

 
7 

51.7

7 
58.5

6 

 
 

  
Steam-flaked 

(0.31 kg/L) 
 21.4 3.2 44.81   49.59 94.4 

 
7.04 

51.2

3 
58.8

3 
                    

McNiven et 

al. (1995) 

 In 

vivo 
Barley  Control  14 3.56 85 80.8   97.3 

 
4.44 59.7 62.8 

    Roasted  13.6 3.3 86.9 80.6   98.1  4.19 54 58.5 

 
 

  
Sodium 

Hydroxide 
 13.1 2.74 66.9 20.3   85.3 

 
4.02 69 69 
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Chapter 3 

Short communication: Effects of similar theoretical grinding size on particle size 

distributions of hard and soft maize 

3.1 Abstract 

Grains are an important constituent of ruminant diets and milling of grains is routinely 

used in the livestock industry to improve digestibility. Particle size influences grains 

digestibility, with finely milled grains having a higher extent and rate of starch digestion than 

coarsely milled grains regardless of starch content. However, there is evidence that different 

grains react differently to milling under similar conditions, thus potentially producing an 

inconsistent product. If different grains react differently to milling, resulting in different 

particle size distributions, and it is known that particle sizes interact with digestion, it is 

possible that some differences in digestibility could occur. Therefore, we hypothesised that 

there exists an interaction between a specific grain and the mill. The purpose of this study was 

to examine the particle size distribution and geometric mean particle size (GMPS) of different 

grains milled in a similar fashion. Two maize types were selected based on hardness, and milled 

using a Wiley mill fitted with either a 3mm screen or 4.5mm screen. The maize was then sieved 

and separated using the following screen sizes: 106µm, 125 µm, 150 µm, 180 µm, 250 µm, 

500 µm, 850 µm, 1180 µm, 2000 µm, and 3350 µm with a sieve shaker at an amplitude of 100 

for 20 minutes. Hard and soft maize produced a nominal geometric mean particle size 

(NGMPS) of 274.58 ± 0.87 and 470.91 ± 0.87 when milled at 3mm and 4mm respectively; and 

a NGMPS of 396.64 ± 0.87 and 576.66 ± 0.87 respectively. These results clearly indicate that 

an interaction exists between the mill and a specific grain. 
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3.2 Introduction 

Grains are an important constituent of ruminant diets. Milling of grains is routinely used 

in the livestock industry to improve digestibility, as the hard outer shell, or pericarp, is very 

indigestible (Rowe et al., 1999).  

Knowing not only the nutritional value, but also the digestibility of feed ingredients 

when formulating diets is essential. For instance coarsely milled grains and finely milled grains 

have similar starch content, but the latter have higher extent and rate of starch digestion, not 

only in the rumen but post-ruminally as well (Callison et al., 2001; Yang et al., 2001; Remond 

et al., 2004; Ewing et al., 1986). Accurate and precise information relative to digestion kinetics 

enables us to formulate rations that maximise production in a cost effective manner while 

preventing diet related diseases, especially in higher producing ruminants. 

Digestibility of grains can vary considerably. These differences are often attributed to 

differences in nutritional value, genetics, variety, geographical locations, year, climatic 

conditions and agronomic practices (Huntington, 1997; Offner et al., 2003). The effects of the 

specific mill used is often ignored.  

There are various examples of how similar feedstuffs are milled at the same theoretical 

size and yet produce different particle size distribution and geometric mean particle size 

(Crawford and Hoover, 1984; Ehle, 1984; Cherney et al., 1988; Emanuele and Staples, 1988).  

In a study by Greffeuille et al. (2006), the milling properties of two near iso-genic lines 

of wheat grains were tested, differing only in hardness. The results showed that harder wheats 

tended to break into coarser particles, whereas the softer wheats led to fine particles (Greffeuille 

et al., 2006). These two grains were near identical and yet responded differently to the mill and 

produced different particle size distributions.  
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In another experiment, Bitra et al. (2009), measured various milling effects on particle 

size distribution of milled switchgrass, wheat straw and maize stover. It was found that, 

amongst other effects, even the speed of milling influenced particle size distribution, with 

higher speeds favouring smaller particle size (Bitra et al., 2009). It is therefore possible that 

one particular feed ingredient could produce different particle size distributions depending on 

the mill, regardless of what screen size is used.   

When performing an experiment, it is routine practice to mill all feed ingredients at the 

same screen size. It is then assumed that any differences are due to the treatment effect. 

However, if different grains react differently to milling, resulting in different particle size 

distributions, and it is known that particle sizes interact with digestion, it is possible that some 

of the differences seen in digestibility within and amongst various studies or among dairy farms 

could in part be due to size differences and respective digestibility.  

Therefore, we hypothesised that there exists an interaction between a specific grain and 

the mill. The purpose of this study was to examine the particle size distribution and geometric 

mean particle size (GMPS) of maize samples with different hardness milled in a similar 

fashion. 

 

3.3 Materials and Methods    

Two maize samples, provided by Agricol (Cape Town, South Africa) and marketed as 

hard and soft maize, were used in the experiment. A sub-sample of 100 g was milled using a 

Wiley mill (Thomas Scientific, Swedesboro, NJ, USA) fitted with a 3-mm screen or 4.5-mm 

screen. The maize was then sieved and separated using the following screen sizes: 106, 125, 

150, 180, 250, 500, 850, 1180, 2000 and 3350 µm with a sieve shaker (Kingtest laboratory test 

sieve, Retsch GmbH, Series AS 200 basic, Germany), at an amplitude of 100 for 20 minutes. 
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The amount of 100 g was decided after preliminary tests designed to decide the amount of 

sample that would give the highest repeatability, accuracy and precision, using the mentioned 

sieve shaker and samples. Weights for each screen were recorded and used to determine 

geometric mean particle size. The process was then repeated to produce 3 runs.   

Statistical analyses 

Particle size distributions and nominal geometric mean particle size (NGMPS) were 

analysed as response variables by the GLM procedure of SAS (version 9.3; SAS Instiyute, 

Cary – NC, USA), using a factorial arrangement of maize type and screen for NGMPS and, 

maize type, screen and sieve for particle distribution. All the respective interactions and run as 

random factor were also included. Differences between means were declared significant at P ≤ 

0.05 using the least squares means and the Tukey adjustment. Statistical differences resulting 

in 0.05 < P ≤ 0.10 were considered tendencies. Treatments results are reported as least squares 

means unless specified.  

 

3.4 Results and Discussion 

The particle distribution and NGMPS for hard and soft maize ground at 3 mm and 4.5 

mm can be found in Table 3.2. Hard and soft maize produced a NGMPS of 274.58 ± 0.87 and 

470.91 ± 0.87 when milled at 3 mm, respectively; and a NGMPS of 396.64 ± 0.87 and 576.66 

± 0.87, respectively. The type of maize used (hard or soft) was highly significant (P < 0.0001) 

and the interaction between the type of maize and screen size was also significant (P < 0.0086).  
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Table 3.1. Particle size distribution hard and soft maize milled at 3 mm and 4.5mm 

 3 mm  4,5 mm 

Sieve (microns) Soft Hard  Soft Hard 

2000 0.38a 0.96ab  2.14b 2.62b 

1180 2.66a 5.70b  9.86c 13.97d 

850 6.10a 15.15b  12.44b 20.16c 

500 12.22a 28.88d  16.73b 25.31c 

250 33.90c 30.09b  25.75a 24.93a 

180 9.76b 7.32ab  11.96c 6.28a 

150 7.33b 2.00a  4.26a 1.99a 

125 12.59b 8.17a  8.52a 5.93a 

106 8.20b 1.45a  6.29b 1.17a 

Pan 6.87c 0.27a  3.41b 0.25a 

NGMPS* 274.58a 470.91b  396.64c 576.66d 

a-d Means within a row not sharing a superscript differ (P<0.05).  

Particle size distribution is given as the proportion (%) of total material recovered on top of 

each sieve.  

*NGMPS (Nominal geometric mean particle size)  

 

The particle size distributions show considerable differentiation not only between 

screen sizes, but also between maize types. At 3 mm the majority of particles for hard maize 

are retained on sieve size larger than 250 µm, with very little material on the remaining sieves. 

In comparison, soft maize retained the majority of particle below 500 µm with virtually none 

retained at 2000 µm and 1180 µm. At 4.5 mm screen size a similar pattern can be observed 

with hard maize favouring the production of particles larger than 250 µm and soft maize 

favouring the production of finer particles.  

 

3.5 Conclusion 

These results clearly indicate that an interaction exists between the mill and a specific 

grain. Milling of grains at similar screen sizes might produce a product that appears similar, 

however there are differences in the particle size distribution. In practice this undoubtedly leads 

to more variability than producers anticipate and ultimately an inconsistent product. 
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Consequently, rumen digestion, and probably passage, will be affected and therefore methods 

to better quantify how these differences will affect digestion are needed.  
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Chapter 4 

Effects of maize particle size and starch-to-fibre ratio on in-vitro starch and NDF 

degradability 

4.1 Abstract  

Milling of grains is considered to have a great impact on the rate and extent of starch 

digestion, however differences in milling conditions lead to variation in particle and often an 

inconsistent product. The purpose of this study was to investigate the effects that particles with 

specific sizes have on starch and fibre digestion in vitro. Ground maize was divided into five 

different fractions: very fine (<250 µm), fine (250-500 µm), medium (500-1180 µm), coarse 

(1180-2000 µm), and cracked (2000-3350 µm). Fractions were combined with either lucerne 

or oat hay to create combinations of either high or low starch-to-NDF ratios. The samples were 

analysed for in vitro starch and NDF digestibility. Starch digestion and rate were influenced by 

particle size, but not starch-to-NDF ratio, with larger values as particle size decreased. Starch 

digestibility for very fine, fine, medium, coarse, and cracked maize were 64.33, 62.28, 59.84, 

47.58, and 42.15% respectively, and rate of starch digestion was 18.24, 13.48, 10.02, 7.16, and 

3.77 %/h respectively. Fibre digestion was influenced by particle size, starch level and forage, 

resulting in the highest NDFd when combined with coarse or cracked maize, 43.15% and 

44.15% respectively, and lowest with fine maize, 32.99%. The rate of NDFd for oat hay and 

lucerne was 3.11 %/h and 5.11 %/h respectively and it was influenced by particle size, with 

very fine maize reducing the rate. Better characterization of grains’ particle sizes has the 

potential to better describe the specific feed’s starch digestibility and to likely better satisfy 

requirements of animals in different physiological stages.  
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4.2 Introduction  

Maize is a valuable and expensive resource in the dairy industry. It is routinely used in 

ruminants’ diets as an energy concentrate to ensure that the high energy demands of high 

performance animals are met, especially during lactation. During 2016 maize prices reached a 

record high and due to droughts in 2015 and 2016 the milk to feed price ratio in South Africa 

is now at the lowest since 2007 (Bureau for Food and Agricultural Policy - BFAP, 2016).  

Compared to the beef industry, the beef to maize price ratio has been able to remain relatively 

stable due to increased exports. For the dairy industry, the importance of having a diet that is 

accurately formulated and fine-tuned to stage of lactation has never been more evident.   

In South Africa, feed companies such as Meadow feeds (Roodepoort, South Africa) 

and Afgri (Centurion, South Africa) standardly mill grains at the theoretical size of either 2 or 

4 mm (B. van Zyl and P. Henning, personal communications). There are various reports 

showing the effects of the milling used on forages on resulting mean particle size and 

distribution (Hooper and Welch, 1985b). Various factors can influence the resulting particle 

size distribution during milling, such as type of grain and endosperm type (hard or soft) 

(Greffeuille et al., 2006). Even the speed of milling has shown to influence particle distribution 

regardless of grain characteristics (Bitra et al., 2009). This may lead to a variable distribution 

in particle size and an inconsistent product.   

Digestibility of grains can vary considerably. These differences are often attributed to 

differences in nutritional value, genetics, variety, geographical locations, year, climatic 

conditions and agronomic practices (Huntington, 1997; Offner et al., 2003). With regards to 

experimental procedure, when preparing samples to be analysed it is routine practice to mill all 

feed ingredients at the same theoretical size. It is then assumed that any difference in 

digestibility is due to treatment effect or intrinsic characteristics of the sample. However, there 
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exists considerable differences in the starch digestibility between whole, cracked, ground and 

finely ground maize. Thus, if different grains react differently to milling, resulting in different 

particle size distributions, and it is known that particle sizes interact with digestion, it is 

possible that differences seen in digestibility within and amongst various studies could in part 

be due to size differences and respective digestibility. The difference between two kinds of 

maize may therefore be augmented by milling, with higher quality maize resulting in finer and 

more digestible particles and vice-versa for lower quality maize, assuming soft maize being of 

higher quality than hard maize (Almeida-Dominguez et al., 1997).  

The importance of maintaining an adequate forage to concentrate ratio has been well 

documented in the past (Miller and O’Dell, 1969; Weiss and Shockey, 1991; Mertens, 1997; 

Yang et al., 2001a). The mode of digestion of a feed is not only influenced by its chemical 

composition, as is measured by its neutral detergent fibre (NDF), starch, etc., but also by its 

physical characteristics, most importantly particle size (Mertens, 1997). This is a well-

documented phenomenon in forages, and as a consequence various methods have been put 

forward to measure fibre such as the physically effective NDF (peNDF) system which takes 

particle size of forages into account. However, no attempt has ever been made to quantify the 

effect of concentrates in a similar fashion. We can safely assume that the whole diet, and not 

only the peNDF fraction, stimulates chewing for example. Furthermore, it is well known that 

particle size influences the rate and extent of starch digestion in the rumen (Ewing et al., 1986; 

Callison et al., 2001; Yang et al., 2001b; Remond et al., 2004). Incorporating particle size as a 

factor of starch content could enable us to better characterize feeds and thus fine tune diets.  

We hypothesize that once ground maize is separated into specific ranges of particle 

sizes, each of these fractions will be unique with regards to extent and rate of starch digestion. 

There is evidence that starch decreases fibre digestion, however most in vivo results are 
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confounded by the effect of intake (Armentano and Pereira, 1997; Beckman and Weiss, 2005), 

and in vitro analysis do not typically include both the effect of starch-to-NDF ratio and the size 

of the starch source or a different NDF source. Therefore, our objective is to determine how 

the effect of each specific fraction on NDF digestibility varies, according to the starch-to-NDF 

ratio and to forage type.  

Usually it is also assumed that starch digestion is not limited by other substrates. 

However, we wish to examine the effect of forage type and different ratios of starch-to-NDF 

will have on rate and extent of starch digestion. 

 

4.3 Materials and Methods 

Substrates 

All samples were milled using a Wiley mill (Thomas Scientific, Swedesboro, NJ, 

USA). A single batch of yellow maize hybrid (Agricol, Cape Town, South Africa) was milled 

using a 1 or 2-mm screen. Milled maize was then sieved through a series of sieves with mesh 

size: 250 µm, 500 µm, 1180 µm, 2000 µm, and 3350 µm (Kingtest laboratory test sieve, Retsch 

GmbH, Series AS 200 basic, Germany), at an amplitude of 100 for 20 minutes. Five different 

fractions were obtained: very fine (<250 µm), fine (250-500 µm), medium (500-1180 µm), 

coarse (1180-2000 µm), and cracked (2000-3350 µm). Forages, lucerne and oat hay, were 

milled to pass through a 1-mm screen.   

Chemical analyses 

All maize particle sizes’ fractions were separately analysed for dry matter (DM) 

(AOAC, 1995, Method 930.15); organic matter (OM) (AOAC method 920.39); crude protein 

(CP) using a Nitrogen Gas Analyzer FP528 (LECO Africa Pty Ltd, Kempton Park) (AOAC, 

2002); amylose-amylopectin using an Amylose/Amylopectin kit (Megazyme Ireland 
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International, Ltd., Bray, Ireland); amino acids using AccQ-Tag kit (Waters) and Waters 

Acquity Ultra Performance Liquid Chromatograph (UPLC) in accordance with manufacturer’s 

instructions; crude fat (CF) using a Tecator Soxtec System HT 1043 Extraction Unit (AOAC, 

2002; Method 920.39); Fatty Acids using Heptadecanoic acid (C17:0) as internal standard 

(catalogue number H3500, Sigma-Aldrich, Gauteng, South Africa) and a Thermo TRACE 

1300 series gas-chromatograph (Thermo Electron Corporation, Milan, Italy) (Folch et al., 

1957); starch (Hall, 2008) and NDF (Mertens, 2002). 

Vitreousness of maize was determined by X-ray scanning of whole maize kernels (Figure 4.1) 

by X-ray micro-computed tomography scanning using a Phoenix V|Tome|X L240 (General 

Electric Sensing and Inspection Technologies, Wunstorff, Germany). The 2-D X-ray images 

were then rendered into 3-D volumes using the integrated Phoenix Datos acquisition and 

reconstruction software (General Electric Sensing and Inspection Technologies, Wunstorff, 

Germany).  

Lucerne and oat hay were analysed for DM (AOAC, 1995, Method 930.15); OM (AOAC 

method 920.39); starch (Hall, 2008); crude protein (CP) using a Nitrogen Gas Analyzer FP528 

(LECO Africa Pty Ltd, Kempton Park) (AOAC, 2002); crude fat (CF) using a Tecator Soxtec 

System HT 1043 Extraction Unit (AOAC, 2002; Method 920.39); acid detergent lignin (ADL; 

(Van Soest and McQueen, 1973); NDF (Mertens, 2002); and in vitro NDF digestibility 

(ivNDFd; (Raffrenato and Van Amburgh, 2010).  Specifically, amylase, sodium sulfite and 

ashing at 550°C were applied to the NDF analyses. Table 4.1 shows composition of the samples 

used in the study. 

In vitro fermentations 

The different maize fractions (very fine, fine, medium, coarse, and cracked) were 

combined with either lucerne or oat hay in order to create combinations with a high or low 
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starch-to-NDF ratio. Lucerne combined with maize had a starch-to-NDF ratio of 1.75 for high 

starch and 1.33 for low starch.  Oat hay had instead a starch-to-NDF ratio of 2.20 for high 

starch and 1.67 for low starch. Because of initial analytical problems, the differences between 

the ratios were smaller than planned. Preliminary observations suggested to increase the starch 

proportions relative to what found in common dairy cows rations to challenge the buffering 

capacity of the in vitro medium used (Goering and Van Soest, 1970). The starch level was also 

higher for lucerne to compensate for the stronger lucerne buffering capacity (Jasaitis et al., 

1987). Since particle size was one of the treatments, we could not isolate the starch from the 

rest of the maize kernel and therefore, both, forages and maize contributed to NDF and starch 

when the final starch-to-NDF ratios were calculated. Our objective was to measure both NDF 

and starch disappearance, therefore the fermentations were run in parallel to obtain residues for 

either starch or NDF measurements. All the combinations were thus analysed for in vitro starch 

(ivSd) and NDF digestibility (ivNDFd; (Goering and Van Soest, 1970; Hall, 2000; Raffrenato 

and Van Amburgh, 2010). The fermentation controls included either 100% maize, for all sizes, 

or 100% lucerne or oat hay, and they were analysed only for ivSd and ivNDFd, respectively. 

Rumen fluid was collected from two lactating cows at Welgevallen experimental farm 

of Stellenbosch University. The cows were fed a total mixed ration with maize as the main 

starch source and NDF mainly from lucerne and wheat straw. All procedures carried out in this 

experiment were approved by the Research Ethics Committee for Animal Care and Use of 

Stellenbosch University (protocol number SU-ACUD14-00052). Rumen fluid was collected 

by hand and transferred into a pre-warmed insulated flask. The rumen fluid was then filtered 

through 4 layers of cheesecloth, glass wool, and a double layer of 200 µm porosity mesh into 

another pre-warmed Erlenmeyer flask. Carbon dioxide was pumped into the flask to purge any 

air. Samples were weighed into 125-ml Erlenmeyer flasks and 40 ml of in vitro medium 
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(adapted from Goering and Van Soest, 1970) was added to each flask. The prepared flasks were 

then placed in a water bath (39.5°C) and flushed with CO2 before adding rumen fluid.  A pre-

warmed syringe was used to inject rumen fluid into the flasks. Combinations and controls 

fermented for ivSd were incubated in duplicate for 3, 6, 9, 12, and 24 h. Longer incubations 

were not performed since preliminary observations resulted in the majority of starch being 

depleted at about 24 hours, and resistant starch was not present. For ivNDFd samples were 

incubated in duplicate for 6, 12, 24, 48, 120 and 240 h. Indigestible NDF (iNDF) was estimated 

using the undigested residue at 240 h (Raffrenato and Van Amburgh, 2010). All fermentations 

were completed across 3 runs.  

Statistical analyses 

Rates of NDF and starch digestion were computed using a first order decay model for 

both fractions according to the following equations:  

Eq. 1: NDF(t) = pdNDF(0) * e-kNDF(t-LNDF) + iNDF 

Eq. 2: S(t) = S(0) e
-kS(t-LS)  

Where pdNDF(0) and S(0) are the size at time 0 of the potentially digestible NDF and 

starch; KNDF and KS are the fractional rates of digestion of NDF and starch, respectively; LNDF 

and LS are the lags and iNDF is the indigestible NDF. Starch was assumed to be all digestible. 

Simultaneous estimations of the parameters pdNDF, KS, KNDF, iNDF and L were initially 

obtained using PROC NLIN of SAS (version 9.3; SAS Institute, Inc., Cary, NC) and the 

Marquardt algorithm. The Marquardt algorithm was selected to improve the efficiency of 

providing least-squares estimation for the non-linear curve fitting approach. Non-linear 

regression was chosen as the standard procedure because the method assumes equal error at 

each observation and by simultaneously fitting all parameters to the data, the result provides 

the smallest residual sums of squared deviations. The necessity of establishing initial 

Stellenbosch University  https://scholar.sun.ac.za



 

66 
 

parameters values for the non-linear estimations was solved using a linear approach to seed the 

non-linear estimation as done by Grant and Mertens (1992). We used the log-linear approach 

of Van Soest et al. (2005) to generate the initial values for each sample to parameterize the 

decay model, including an indigestible pool for the model using 240 h residual NDF to estimate 

the pdNDF. In vitro starch and NDF digestibility values and the rates estimated by nonlinear 

regression were analysed as response variables by the GLIMMIX procedure of SAS (version 

9.3; SAS Institute, Inc., Cary, NC) using a factorial arrangement of maize size, forage, starch-

to-NDF ratio, respective interactions and with fermentation run included as random effect. The 

highest order interaction (forage × time × ratio × size) was removed from the model because 

non-significant, when starch digestibility was the response variable. The control parameters for 

starch and NDF were the digestibility and rates of the maize fractions and forages, respectively, 

when fermented alone. Differences between means and the control were declared significant 

at P ≤ 0.05 using the least squares means and the Tukey adjustment. Statistical differences 

resulting in 0.05 < P ≤ 0.10 were considered tendencies. Treatments results are reported as least 

squares means unless specified.  

4.4 Results and discussion 

The chemical composition of maize, lucerne and oat hay can be found in Table 4.1. 

Maize vitreousness was determined by X-ray scanning as this was deemed the most reliable 

mode of obtaining the results (Figure 4.1). The accuracy of methods, such as manual dissection, 

rely on the skill of the technician, while x-ray scanning provides a more unbiased result (Louis-

Alexandre et al., 1991). The vitreousness was found to be 70.30% (Table 4.1), which is typical 

for a dent variety (Corona et al., 2006). Among the different maize particle sizes, variation 

existed in starch, NDF, ADL, amylose, CP and EE content. Smaller particles typically 

contained more starch, but lower NDF, ADL, amylose, CP and EE. These differences can 
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indicate that certain parts of the maize kernel tend to break into smaller particles while others 

into larger particles. In other words, the pericarp, germ, or endosperm might be more 

concentrated in certain particle sizes. For instance, floury endosperm has less protein, more 

starch and less amylose than vitreous endosperm (Galyean et al., 1981). Therefore, the 

chemical composition of very fine and fine maize could be due to the preferential separation 

of floury endosperm into these particle size. Vitreous endosperm and germ have the highest 

protein content, and the germ has the highest fat content, it could therefore be assumed that 

these are separated into particle sizes with higher protein and fat content, such as medium 

particle size. Most of the fibre in grain is located in the pericarp, coarse and cracked grain had 

the highest NDF and ADF content and therefore contained the majority of the pericarp. The 

NDF procedure (Mertens, 2002) includes milling at 1 mm, but to avoid loss of fine particles 

during milling we preferred to use the same particles’ sizes. To increase accuracy and precision 

during the NDF procedure, we used extra filtering aid (Whatman 934-AH, Whatman 

International Ltd, Maidstone, England, 1.5 μm pore size) to reduce loss of material and 

smashed the larger particles using pestle and mortar during the refluxing to release the starch 

within the coarser particles. 
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Table 4.1 Chemical composition of maize and forage samples in % of DM. 

 Component 

Sample OM Starch  NDF  ADL  Amylose CP  EE  

Very fine 99.26 77.92 5.65 0.83 19.36 7.29 2.17 

Fine 99.26 74.88 11.89 0.72 22.89 9.28 2.54 

Medium 99.26 69.59 15.01 1.21 25.34 9.74 3.47 

Coarse 99.26 67.35 20.56 1.75 30.88 9.35 3.78 

Cracked 99.26 54.82 25.24 2.92 31.24 8.78 3.37 

Lucerne 91.59 3.97 41.19 2.70 N.A. 18.25 1.63 

Oat hay 95.02 8.42 63.56 4.70 N.A. 8.95 2.17 

N.A.: not analysed. 

The amino acids and fatty acids composition of the different maize particle sizes can 

be found in Tables 4.2 and 4.3. The CP content was comparable to that found in other research 

(Philippeau et al., 2000; Larson and Hoffman, 2008). A high concentration of glutamine and 

proline were found, which are common constituents of prolamins (Shewry and Halford, 2002c), 

with only slight differences seen among particle sizes. Prolamins typically make up 7.5% ± 

0.52 of maize DM, they are an important storage protein and are negatively related to starch 

digestibility in maize (Philippeau et al., 2000). Very little variation was observed between the 

particle sizes for fatty acids.  
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Table 4.2. Amino acids profiles for all maize fractions. 

Amino acids, 

mg/g 

Very Fine Fine Medium Coarse Cracked 

His 2.82 2.57 2.39 2.87 2.52 

Ser 4.72 4.20 3.93 4.65 4.33 

Arg 5.84 4.96 5.33 5.50 4.93 

Gly 3.92 3.11 3.44 3.59 3.12 

Asp 4.97 5.02 4.30 4.85 4.53 

Glu 14.35 14.64 12.56 15.50 14.52 

Thr 2.84 3.00 2.62 3.01 2.76 

Ala 5.20 5.30 4.88 5.80 5.36 

Pro 7.79 6.82 7.09 7.81 7.38 

Cys 0.23 0.28 0.25 0.32 0.28 

Lys 1.31 1.69 1.56 1.58 1.48 

Tyr 4.24 3.10 3.46 3.57 3.40 

Met 1.11 1.00 1.23 1.27 0.75 

Val 3.57 3.48 3.47 3.62 3.45 

Ile 1.98 1.97 2.09 2.29 2.03 

Leu 10.12 9.83 9.61 11.28 10.46 

Phe 6.04 4.67 4.87 5.32 4.79 

Asn 0.80 0.38 0.61 0.50 0.52 

Trp 0.34 0.09 0.10 0.14 0.18 
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Table 4.3. Fatty acid composition for all maize fractions. 

Fatty acid,  

% of total 
Very Fine Fine Medium Coarse Cracked 

C16:0 14.07 14.81 15.05 13.96 14.81 

C18:0 2.88 2.33 2.68 2.11 2.24 

C18:1n9c 27.45 26.16 24.56 26.76 26.27 

C18:2n6c 50.64 52.19 52.20 52.73 52.03 

C18:3n3 1.65 1.63 1.89 1.36 1.54 

 

 

Figure 4.1. 2-D X-ray µCT slice image of whole maize kernel depicting external and internal 

(germ, floury endosperm, vitreous endosperm, and cavities) structures.  
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Starch digestion 

For starch digestion, the effect of particle size was significant (P < 0.05), but starch 

level was not (P = 0.1026), indicating that particle size had a greater effect on starch digestion 

than starch-to-NDF ratio.  The least squares means of starch digestibility are shown in Figure 

4.2. As expected, starch digestibility increased as particle size decreased (P < 0.05).  

 

 

Figure 4.2. Least squares means of starch digestibility across maize particle sizes. 
The least square means of starch digestibility over 24 hours for maize are shown in 

Table 4.4.  

 

By 24 hours almost all starch had disappeared, with very fine starch having the highest 

disappearance (93%; P < 0.05). Starch digestibility decreased as particle size increased for each 

time point, though the difference was not always significant. The greater starch digestibility 

for finer particles is due to higher degree of access to starch. Starch within coarser particles is 

contained in granules within the floury and vitreous endosperm and is in places still protected 

by pericarp making it difficult for microbes to access (Huntington, 1997).  
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Figure 4.3. Least Square means of starch digestibility for the various particle sizes. 
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Table 4.4. Least squares means of starch digestibility across all maize fractions, when pooling forages. 

 Particle size 

Time, h Very Fine Fine Medium Coarse Cracked SEM P-value 

3 0.47bc 0.58axx 0.55ab 0.41cdx 0.33d 0.039 0.0358 

6 0.73a 0.68ax 0.63a 0.47b 0.43b 0.045 0.0009 

9 0.84ab 0.80bx 0.74b 0.54c 0.48c 0.055 0.0004 

12 0.89ab 0.84a 0.82a 0.63bx 0.55b 0.034 0.0034 

24 0.93a 0.85abc 0.85abc 0.81bcx 0.75c 0.022 0.0022 

a-d Means within a row not sharing a superscript differ (P < 0.05). 
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The effects of size and forage were significant (P < 0.05), while the effect of starch-to-

NDF ratio was not (P = 0.1026). The interaction between particle size and forage was 

significant (P < 0.05) and the interaction particle size x forage x time was highly significant (P 

< 0.0001). The interaction between particle size and forages over time is shown in Table 4.5 

and Figures 4.3 and 4.4. Typically, starch digestion was higher for finer particle sizes at all 

time points, however the differences were not always significant. Surprisingly, when fermented 

with lucerne, starch digestion of coarse maize was lower than for cracked maize at all time 

points, however the difference was not significant. The biggest differences are seen when very 

fine, fine, and medium are compared to coarse and cracked maize, with the finer maize typically 

having more starch digestion (P < 0.05). The finer particles’ sizes typically reached maximum 

starch digestion before larger ones. Very fine, fine and medium maize reached maximum starch 

digestion between 9 and 12 hours. Coarse and cracked maize continued starch digestion beyond 

12 hours. Very fine, fine, and medium maize had higher starch digestion in combination with 

oat hay. While coarse and cracked maize had higher starch digestion when combined with 

lucerne, possibly due to the larger amount of protein available, 18.25% CP for lucerne vs. 

8.95% CP for oat hay (Table 4.1).  
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Table 4.5. Least squares means of starch digestibility across maize fractions. 

Lucerne Particle size  

Time, h Very Fine Fine Medium Coarse Cracked SEM P-value 

3 0.56 0.69 0.67 0.45 0.57 0.052 <0.0001 

6 0.82a 0.83a 0.73a 0.46b 0.68ab 0.049 <0.0001 
9 0.87a 0.86a 0.81a 0.49b 0.72ab 0.042 <0.0001 
12 0.91a 0.86ab 0.84ab 0.56b 0.80ab 0.049 0.0003 

24 0.92 0.86 0.86 0.78 0.92 0.048 0.0012 

Oat hay Particle size   

Time, h Very Fine Fine Medium Coarse Cracked SEM P-value 

3 0.50a 0.65a 0.71a 0.52a 0.23b 0.056 <0.0001 
6 0.70a 0.73a 0.75a 0.58a 0.34b 0.033 <0.0001 

9 0.87a 0.83a 0.84a 0.63b 0.41c 0.045 <0.0001 
12 0.94a 0.87a 0.91a 0.71a 0.51b 0.054 <0.0001 

24 0.99a 0.89ab 0.93ab 0.87ab 0.73ab 0.022 0.0002 
a-c Means within a row not sharing a superscript differ (P < 0.05).  
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Figure 4.4. Least squares means of starch digestibility across all maize particle sizes for 

lucerne. Significant differences are shown in Table 4.5.  
 

Figure 4.5. Least squares means of starch digestibility across all maize fractions for oat hay. 

Significant differences are shown in Table 4.5.  

The effects of maize particle size, combined with either lucerne or oat hay at high or 

low level of starch on the rate of starch digestion are shown in Table 4.6. For the control, the 
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rate of starch digestion decreases as particle size increases (P < 0.05). This is in agreement with 

other research indicating that smaller particles are digested faster (Cone, 1991). Gallo et al. 

(2016) determined the in vitro rate of starch digestibility of maize ground at 2 mm using both 

gas production and enzymatic methods. The rate of gas production was 8.8 %/h for ground 

maize when mean particle size was <750 µm; and 5.5 %/h when mean particle size was >750 

µm. The in vitro rate of starch digestibility for ground maize was 7.76 %/h when mean particle 

size was <750 µm and 6.6 %/h when mean particle size was >750 µm using enzymatic methods 

to determine starch digestion (Gallo et al., 2016). Smaller particles were digested faster than 

larger particles because of greater degree of enzyme access to starch granules, greater surface 

area availability for microbial attachment, and lack of protection from pericarp as is seen in 

coarse and cracked maize (Huntington, 1997). 

The addition of forages increased the rate of digestion for all particle sizes. As of yet 

we can only speculate as the cause of this phenomenon. It is unlikely that pH plays a role as 

the Van Soest buffer that was used has an excellent buffering capacity. Most likely though this 

is due to the amount of substrate used for each treatment. In order to create the control (only 

maize, no forage), and high and low starch-to-NDF combinations, different amounts of maize 

and forages were used. However, the amount of in vitro medium and rumen fluid remained 

constant for all treatments, resulting in different ratios medium-starch, and could possibly 

account for the difference in rate of starch digestion. Another explanation could possibly be 

given by a better micro-environment caused by the presence of more cell wall and fibrolytic 

bacteria.   

According to the Nutritional Dynamic System (NDS, Ru.m.&N. Sas, Reggio Emilia, 

Italy) software’s feed database, which is based on the Cornell Net Carbohydrate and Protein 

System (CNCPS, v.6.55) rate of starch digestibility is 5 %/h for whole, 10 %/h for cracked, 12 
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%/h for medium ground, and 15 %/h for finely ground maize. Most feed data set belonging to 

modern rationing software report rates of starch digestion and only a general description of the 

size (e.g.: fine, medium, coarse…). Therefore, it is not possible to compare our results to those 

values. However, our values would definitely be more representative of a grain milled with a 

specific screen whose particle size distribution is not known. Philippeau et al. (1998) found the 

rate of in situ starch degradability of maize ground at 3 mm to be 8.08 %/h. Their results are 

similar to what we obtained for coarse maize (1180-2000 µm) 7.16 %/h. There is limited 

research concerning the rate of starch digestion for finely milled maize, however 

Sveinbjörnsson et al. (2007) conducted an in vitro starch digestibility study, analysed in a 

similar method to our own, using cooked potato starch (97% starch). After 8 hours of 

fermentation the rate of starch digestion was determined as 19.7 %/h (Sveinbjörnsson et al., 

2007), which is similar to the results we obtained for very fine maize 18.24 %/h after 24 hours. 

These results illustrate how difficult it is to compare digestibility across different studies, even 

when maize is processed similarly, differences in milling conditions, maize quality, and particle 

size distributions can produce different results.  
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Table 4.6. Least squares means of rate of starch digestion (%/h) for all combinations. 

Forage Starch level Particle size   

  Very Fine Fine Medium Coarse Cracked SEM P-value 

Lucerne High 28.50a 25.73a 19.73ab 8.91b 11.68b 5.434 0.002 

 Low 28.41ab 34.30a 23.35abc 10.79c 23.70abd 6.298 0.021 

Oat hay High 24.81a 24.11a 21.87a 14.45ax 7.00b 6.875 0.001 

 Low 21.31a 22.22a 24.42a 15.51ax 6.97b 5.774 0.006 

Control  18.24a 13.48ab 10.02abc 7.16bc 3.77c 4.321 0.003 

a-d Means within a row not sharing a superscript differ (P < 0.05).  
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NDF digestion 

For NDFd the effects of particle size, starch level, and forage were all significant (P < 

0.05). The NDFd was the highest when forages were fermented in combination with coarse 

and cracked maize (Figure 4.6). As expected, very fine maize resulted in the lowest NDFd. 

However, unexpectedly, medium maize had a numerical lower NDFd than fine maize but the 

differences between NDFd of very fine, fine and medium particle size maize were not 

significant (P = 0.26). Digestibility of NDF increased as particle size increased, and starch 

digestibility decreased as particle size increased (Figures 4.2 and 4.6). This is in agreement 

with Firkins et al. (2001) and Callison et al. (2001), who found NDFd to be inversely related 

to starch digestibility. The NDFd of lucerne and oat hay are shown in Figure 4.6. Lucerne had 

higher NDFd at all the time points (P < 0.05). 

 

 

Figure 4.6 Least squares means of NDF digestibility for pooled forages across maize particle 

size. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

N
D

F
 d

ig
es

ti
b

il
it

y

Particle size

Very Fine Fine Medium Coarse Cracked

Stellenbosch University  https://scholar.sun.ac.za



 

81 
 

The least squares means of NDFd for pooled forages, alone or with maize, over time 

are shown in Table 4.7. Compared to the control, the addition of maize increased NDFd at all 

the time points, though the difference is not always statistically significant (P > 0.05). The 

NDFd values were calculated by estimating the total amount of NDF in the flasks being 

digested. The NDF digested during the in vitro fermentation of the controls (i.e. lucerne or oat 

hay alone) originates solely from forages. However, when maize and forages were combined 

and fermented in the same flasks, the NDF included cell wall components from both maize and 

forages. The different maize fractions contained between 5.65 and 25.24% NDF, from the very 

fine to cracked fractions, respectively. Interestingly, coarse and cracked maize fractions 

corresponded to the highest NDFd (P < 0.05). This makes it difficult to distinguish the direct 

effect that maize and starch from maize had on forage NDF digestion and can account for the 

improvement on NDFd with the addition of maize, as is further evidenced by the fact that 

NDFd increased as particle size increased and coarser maize had greater NDF content (Table 

4.1).  
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Figure 4.7. Least squares means of NDF digestibility for lucerne and oat hay, for pooled maize 

particle size. 
 

 

 

Figure 4.8. Least squares means of NDF digestibility for pooled forages across maize particle 

size used. 
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Table 4.7. Least squares means* of NDF digestibility, for pooled forages, across maize fractions. 

 Particle size SEM P-value 

Time, h Very Fine Fine Medium Coarse Cracked Control*   

6 0.18c 0.20bc 0.13c 0.29a 0.20b 0.14c 0.0083 <0.0001 

12 0.25c 0.29b 0.22d 0.40a 0.38a 0.20c 0.0095 <0.0001 

24 0.34d 0.42c 0.35d 0.51b 0.58a 0.30e 0.0112 <0.0001 

48 0.41e 0.48c 0.46d 0.56b 0.62a 0.38f 0.0099 <0.0001 

a-f Means within a row not sharing a superscript differ (P < 0.05).  
*Control values represent the least squares means for pooled forages in absence of maize 
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The least squares means of NDFd for lucerne, alone or combined with maize, can be 

found in Table 4.8. As in Table 4.7, the addition of maize increased NDFd compared to the 

control across all particle sizes and for most time points (P < 0.05). Larger particle sizes 

corresponded to higher NDFd digestibility and the differences become more pronounced at 

later time points (P < 0.05).  

The least squares means of NDFd for oat hay, alone or combined with maize, can be 

found in Table 4.8. Unlike lucerne, the addition of maize only improved NDFd of oat hay when 

in combination with larger particle size (P < 0.05). We speculate that lucerne has a greater 

buffering capacity than oat hay, this could possibly explain why NDFd did not improve for oat 

hay in combination with smaller particles. Furthermore, lucerne had greater NDFd than oat hay 

across all treatments (P < 0.05). For all forages the addition of a slowly digesting starch source, 

such as cracked or coarse maize, increased the NDFd considerably. Opatpatanakit et al. (1995) 

observed a similar effect when sorghum was incubated with lucerne. They hypothesised that 

the slow rate at which sorghum is fermented provided energy to cellulolytic bacteria, which 

increased their fermentation rate, without there being substrate competition or changes in pH 

(Opatpatanakit et al., 1995). During our experiments we could not measure the pH within the 

flasks for logistics reasons, since we should have had extra flasks within the same run. 

Measuring the pH would have then prevented us to run all the time points within the same 

fermentation and thus biasing the results.  

The rate of NDFd for all combinations can be found in Table 4.9. The rate of NDFd for 

lucerne was 5.11 %/h, and 3.36 %/h for oat hay, which are similar to results found in the 

literature. In vitro gas production studies determined fractional NDF digestibility rate of 

isolated NDF to be 5.30 %/h for immature and 6.30 %/h for mature lucerne, and lag was 0.4 

and 4.2 h for mature and immature lucerne, respectively, which probably affected the rates 
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results for that study (Doane et al., 1997). In our study, lag was estimated by the non-linear 

regressions but it is not reported, as it did not differ across treatments (P = 0.662). The KNDF 

for oat grass in situ was determined to be 3.69 %/h (Khan et al., 2006). In vitro gas production 

studies determined the rate of digestion of oat hay NDF to be 2.20 %/h, and 3.70 %/h for the 

whole forage (Calabro et al., 2005).  

Compared to the control, the addition of very fine maize reduced the rate of NDFd. For 

all other particle sizes, the addition of maize increased the rate of NDFd (P < 0.05), except for 

medium maize and lucerne at low starch level which has unexpectedly low rate of NDFd. This 

is in contrast with previous research where the addition of starch negatively affects the KNDF 

of forages (Grant and Mertens, 1992; Oba and Allen, 2003). In a study by Grant (1994) the 

KNDF of lucerne decreased from 7.12 %/h to 5.90 %/h when ground maize with a particle size 

of <250µm was added, and 4.10 %/h when pure corn starch was added. In contrast to this 

Beckmann and Weiss (2005) found that when the confounding effects of DMI was removed 

starch had no effect on NDF digestibility in situ. However, as mentioned previously the 

residues obtained during NDF analysis originate not only from forages but also from maize. 

Even though the proportion of NDF coming from maize is small it is highly digestible and can 

explain the increase in KNDF of the treatments compared to the control. In the study by Grant 

(1994), maize was milled and passed through a 250-µm sieve in order to remove most of the 

NDF (Grant, 1994). The results from Grant (1994) agree with our hypothesis that some of the 

NDF originated from maize. In fact, pure starch decreased rate of NDF digestion more (4.10 

%/h) than when maize ground at <250 µm was used (5.90 %/h).   
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Table 4.8. Least squares means of NDF digestibility across particle size for forages 

Lucerne Particle size   

Time. h Very Fine Fine Medium Coarse Cracked Control SEM P-value 

6 0.28b 0.25c 0.18d 0.32a 0.23c 0.20d 0.0086 <0.0001 

12 0.36b 0.37b 0.28c 0.41a 0.44a 0.25d 0.0077 <0.0001 

24 0.41d 0.47c 0.37e 0.53b 0.64a 0.34f 0.0085 <0.0001 

48 0.42e 0.52c 0.45d 0.60b 0.67a 0.40e 0.0056 <0.0001 

Oat hay         

Time. h Very Fine Fine Medium Coarse Cracked Control SEM P-value 

6 0.08d 0.14c 0.07e 0.26a 0.17b 0.08d 0.0074 <0.0001 

12 0.14d 0.21c 0.16d 0.38a 0.33b 0.15d 0.0066 <0.0001 

24 0.28d 0.38b 0.33c 0.49a 0.51a 0.27d 0.0045 <0.0001 

48 0.40d 0.44c 0.46c 0.52b 0.58a 0.35e 0.0053 <0.0001 

a-f Means within a row not sharing a superscript differ (P < 0.05).  
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Table 4.9. Least squares means of rate of NDF digestion for all combinations. 
   Particle size SEM P-value 

Forage 

Starch 

level 
Very Fine Fine Medium Coarse Cracked Control 

  

Lucerne High 4.73d 8.03ab 6.17c 7.29b 9.07a 5.11cd 0.588 <0.0001 

 Low 5.79bc 6.82b 1.81d 6.34b 9.44a 5.11c 0.466 <0.0001 

Oat hay High 3.21c 4.08c 3.97c 6.78b 8.90a 3.36c 0.623 <0.0001 

 Low 3.33b 3.32b 3.20a 5.13a 5.89a 3.36b 0.334 <0.0001 

a-d Means within a row not sharing a superscript differ (P < 0.05).  
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4.6 Conclusion 

Studies similar to ours exist in the literature. However, grains were usually milled with 

two or more screens of different size and all the resulting products were tested in the specific 

study. The only difference in those studies was therefore particle distribution and the products 

obtained were chemically identical. Our aim was however to separate the fractions more 

accurately of the same ground maize using narrow ranges of sieves, and assuming 

heterogeneous chemical fractions. The chemical composition of the individual fractions 

concurs with our hypothesis, especially relative to NDF, starch, lignin and amylose amounts. 

All these chemical constituents, together with the particle size have likely affected our results.  

The results clearly show that maize particle size has an important influence on both starch and 

fibre digestion. As mentioned, different maize particle sizes differed not only in starch content 

but also greatly in NDF. Particle size influenced both rate and extent of starch digestion of 

maize, with smaller particles having the greatest digestion. We clearly demonstrated that rate 

estimation of maize ground at 2 or 4 mm cannot be extremely accurate and precise unless 

particle size distributions are measured and rates of starch digestion are estimated in more than 

one particle size range. Furthermore, there exists a possibility of fine tuning diets for starch 

digestion by incorporating particle size as a factor to better characterize starch. This study 

focused only on maize. Results for other grains can however differ. Given the large ranges 

found for rates of NDF and starch digestions in our study, a more accurate knowledge of the 

specific particles sizes fed of grains would likely result in a more accurate prediction of the 

starch digested in the rumen. Also, by feeding a narrow and known range of particles size, we 

would be able to better formulate diets for specific physiological stages. 
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Chapter 5 

Effects of amylose and amylopectin starch and starch-to-fibre ratio on in vitro starch and 

NDF degradability.  

5.1 Abstract 

Proportions of starch type (amylose/amylopectin) impact fermentability of grains in 

the rumen. The purpose of this study was to isolate and determine the specific effects of 

amylose and amylopectin on rate and extent of starch digestion, when combined with two 

forages and at different levels. Two different starch sources were used with different amounts 

of amylose, Hylon VII (74% amylose starch) and Amioca (98% amylopectin starch). Both 

samples were combined with either lucerne or oat hay in order to create combinations of 

either high or low starch-to-NDF ratios. The samples were analysed for in vitro starch and 

NDF digestibility. Amioca had the greatest starch digestibility and the addition of forages 

increased starch digestion. Rate of starch digestion was 12.55 %/h and 6.13 %/h for Amioca 

and Hylon respectively and it was influenced by starch, and forage type, but not by starch 

level. Neutral detergent fibre digestion was influenced by forage and starch type. Lucerne had 

the greatest NDFd and the addition of starch reduced NDFd of forages. Forages in 

combination with Amioca had the lowest NDFd. The KNDF was 7.35%/h for Lucerne and 

3.87%/h for Oat hay. The rate of NDFd for oat hay was not influenced by starch or starch 

type, 3.15 %/h for Amioca and 3.30 %/h for Hylon. Rate of NDF digestion for lucerne was 

significantly reduced by the addition of starch, 7.07 %/h for Amioca and 5.88 %/h for Hylon. 

By knowing the exact proportions of each starch type in grains we can better characterise the 

starch fraction digestion characteristics. When other factors affecting starch digestion are 

known, a well-defined amylose-amylopectin ratio can be obtained to better quantify, and 
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adjust if needed, the speed of starch digestion in the rumen, which can easily affect rumen 

health in dairy cows. 

5.2 Introduction 

In diets of high performing ruminants’, starch functions as a source of energy and is 

commonly provided by cereals such as maize, wheat, barley or sorghum. Among the various 

factors affecting the digestibility of grains is the type of starch (i.e. amylose or amylopectin) 

contained within the starch granules of the endosperm (Huntington et al., 2006).  

Starch is a polysaccharide molecule comprised of α–D-glucose units (Tester et al., 

2004).  Amylose is a linear molecule consisting of (1-4) linked α-D-glucopyranosyl units 

(Buléon et al., 1998a). Amylopectin is a highly branched molecule and is formed through 

chains of α-D-copyranosyl residues linked by (1-4) linkages and (1-6) linkages (Buléon et al., 

1998a). Amylose, as a percentage of total starch, was found to be 3-46% in barley (Åkerberg 

et al., 1998), 0-70% in maize (Morrison et al., 1984b), 3-31% in wheat, and 0-30% in sorghum 

(Beta et al., 2001; Sang et al., 2008).  

Starch occurs naturally in highly organised water insoluble granules contained within 

the endosperm of grain kernels (Pflugfelder, 1986; Huntington, 1997). Starch granules are 

created by depositing starch in layers containing various amounts of amylose and amylopectin 

held together by hydrogen bonds, the layers alternate between semi-crystalline and amorphous 

in nature (Buléon et al., 1998b). The crystalline regions are quite impervious to water, while 

the amorphous region allow free movement of water (Pflugfelder, 1986; Nocek and Tamminga, 

1991a). 

The ratio of amylose to amylopectin has proved to influence the digestibility of grains 

(Sajilata et al., 2006).  Stevnebø et al. (2006) investigated the effect of amylose level of barley 

starch on in vitro rumen digestibility. They found that cultivars with low amylose levels had 
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higher starch digestion than normal or high amylose cultivars, for both isolated starch and 

ground samples (Stevnebø et al., 2006). The reason that amylopectin is more readily digested 

then amylose is because amylose has tighter intermolecular bonding between starch molecules 

(Buléon et al., 1998a).  This leads to a more compacted structure of the starch granules in the 

endosperm. Therefore, grains with greater proportions of amylopectin have greater rumen 

starch and total tract starch digestion.  

However, various other factors, such as nutritional value, genetics, variety, 

geographical locations, year, climatic conditions and agronomic practices, can influence the 

digestibility of grains (Huntington, 1997; Offner et al., 2003). Therefore, the results of previous 

studies may be confounded by these factors and their interactions. The direct effect of amylose 

and amylopectin on starch digestion thus needs clarification.  

The aim of this study was to isolate and determine the specific effects of amylose and 

amylopectin on rate and extent of starch digestion. Furthermore, it is known that starch 

digestion negatively affects fibre digestion (Grant and Mertens, 1992; Oba and Allen, 2003). 

However, the majority of research does not distinguish between amylose and amylopectin 

starch on fibre digestion. Therefore, our objective was to determine how amylose and 

amylopectin starch affects NDF digestibility in vitro, according to the starch-to-NDF ratio and 

to forage type. 

Usually it is also assumed that starch digestion is not limited by other substrates. 

However, we wish to examine the effect of forage type and different ratios of starch-to-NDF 

will have on rate and extent of starch digestion. 
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5.3 Materials and Method 

Substrates 

Starch samples included Hylon VII Powder (74% amylose starch) and Amioca powder 

(98% amylopectin starch). Samples were provided by Ingredion (Ingredion Germany, GmbH 

– Hamburg, Germany). Forages, lucerne and oat hay, were milled using a Wiley mill (Thomas 

Scientific, Swedesboro, NJ, USA) to pass through a 1-mm screen.   

Chemical Analyses 

Starch samples were analysed for dry matter (DM) (AOAC, 1995, Method 930.15); 

organic matter (OM) (AOAC method 920.39); crude protein (CP) using a Nitrogen Gas 

Analyzer FP528 (LECO Africa Pty Ltd, Kempton Park) (AOAC, 2002); crude fat (CF) using 

a Tecator Soxtec System HT 1043 Extraction Unit (AOAC, 2002; Method 920.39); starch 

(Hall, 2008) and neutral detergent fibre (NDF) (Mertens, 2002).  

Lucerne and oat hay were analysed for DM (AOAC, 1995, Method 930.15), OM 

(AOAC method 920.39), starch (Hall, 2008), acid detergent lignin (ADL; (Raffrenato and Van 

Amburgh, 2011) and NDF (Mertens, 2002).  Specifically, amylase, sodium sulfite and ashing 

at 550°C were applied to the NDF analyses. Table 5.1 shows composition of the samples used 

in the study. 
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Table 5.1 Chemical composition of starch and forage samples used on dry matter (DM) basis. 

Material OM% Starch% NDF% ADL% Amylose% CP% EE% 

Hylon 99.56 78.22 0.84 N.A. 74.00 0.93 0.11 

Amioca 99.63 87.03 0.73 N.A. 2.00 0.78 0.27 

Lucerne 91.59 3.97 41.19 2.7 N.A. 18.25 1.63 

Oat hay 95.02 8.42 63.56 4.7 N.A. 8.95 2.17 

N.A.: not analysed 

In vitro fermentation 

Hylon and Amioca were combined with forages (lucerne and oat hay) in order to create 

either a high starch (60% starch - 40% NDF) or a low starch (50% starch - 50% NDF) to NDF 

ratio. Starch content, relative to NDF, was planned to be higher than real in vivo situation to 

attempt to challenge the well buffered in vitro system. Combinations with lucerne had a starch-

to-NDF ratio of 1.30 for high starch and 1.88 for low starch.  Combinations with oat hay had a 

starch-to-NDF ratio of 1.67 for high starch and 3.06 for low starch. Because of initial analytical 

problems, the differences between the ratios were different than planned. 

Since our objective was to measure both NDF and starch disappearance, the fermentations were 

run in parallel to obtain flasks for either starch or NDF measurements. All the combinations 

were therefore analysed for in vitro starch digestibility (ivSd) and in vitro NDF digestibility 

(ivNDFd) (Goering and Van Soest, 1970; Hall, 2000; Raffrenato and Van Amburgh, 2010). 

The fermentation controls included either 100% Hylon or Amioca; or 100% lucerne or oat hay, 

and they were analysed for ivSd and ivNDFd, respectively.  

Rumen fluid was collected and mixed from two lactating cows at Welgevallen 

experimental farm of Stellenbosch University. The cows were fed a total mixed ration (TMR) 

with about 26% starch on dry matter basis and with maize being the main starch source and 
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containing both amylose and amylopectin. All procedures carried out in this experiment were 

approved by the Research Ethics Committee: Animal Care and Use (REC: ACU) at 

Stellenbosch University (protocol number SU-ACUD14-00052). Rumen fluid was collected 

by hand and transferred into a pre-warmed insulated flask. The rumen fluid was then filtered 

through 4 layers of cheesecloth, glass wool, and a double layer of 200 µm porosity mesh into 

another pre-warmed Erlenmeyer flask. Carbon dioxide was pumped into the flask to purge any 

air. Samples were weighed into 125-ml Erlenmeyer flasks and 40 ml of in vitro medium 

(adapted from Goering and Van Soest, 1970) was added to each flask. The prepared flasks were 

then placed in a water bath (39.5°C) and flushed with CO2 before adding rumen fluid.  A pre-

warmed syringe was used to inject rumen fluid into the flasks. Combinations and controls 

fermented for ivSd were incubated in duplicate for 3, 6, 9, 12, and 24 h. Longer incubations 

were not performed as the majority of starch is depleted at 24 hours. For ivNDFd samples were 

incubated in duplicate for 0, 6, 12, 24, 48, 120 and 240 h and residual ash free NDF of the 

fermented samples were obtained (Mertens, 2002; Goering and Van Soest, 1970). Digestibility 

values obtained at 240 h were used as estimated indigestible NDF (iNDF) as suggested by 

Raffrenato and Van Amburgh (2010). All fermentations were completed across 3 runs.  

Statistical Analyses.  

Rates of NDF and starch digestion were computed using a first order decay model for 

both fractions according to equations 1 and 2 below, respectively:  

Eq. 1: NDF(t) = pdNDF(0) * e-kNDF(t-LNDF) + iNDF 

Eq. 2: S(t) = S(0) e
-kS(t-LS)  

Where pdNDF(0) and S(0) are the size at time 0 of the potentially digestible NDF and 

starch; KNDF and KS are the fractional rates of digestion of NDF and starch, respectively; LNDF 

and LS are the lags and iNDF is the indigestible NDF. Starch was assumed to be all digestible. 
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Simultaneous estimations of the parameters pdNDF, KS, KNDF, LNDF, LS and iNDF were 

initially obtained using PROC NLIN of SAS (SAS Institute, Inc., Cary, NC) and the Marquardt 

algorithm. The Marquardt algorithm was selected to improve the efficiency of providing least-

squares estimation for the non-linear curve fitting approach. Non-linear regression was chosen 

as the standard procedure because the method assumes equal error at each observation and by 

simultaneously fitting all parameters to the data, the results provide the smallest residual sums 

of squared deviations. The necessity of establishing initial parameters values for the non-linear 

estimations was solved using a linear approach to seed the non-linear estimation as done by 

Grant and Mertens (1992). We used the log-linear approach of Van Soest et al. (2005) to 

generate the initial values for each sample to parameterize the decay model, including an 

indigestible pool for the model using 240 h residual NDF to estimate the pdNDF. In vitro starch 

and NDF digestibility values and rates estimated by nonlinear regressions were analysed as 

response variables by the GLIMMIX procedure of SAS using a factorial arrangement of Starch 

type, forage, starch:NDF ratio, all resulting interactions and fermentation run as a random 

effect. The highest order interactions (forage × time × ratio × starch type for Sd and NDFd; 

forage × ratio × starch type for KS and KNDF) were removed because non-significant. The 2nd 

order interactions were also removed when NDFd was the response variable because non-

significant. The control parameters for starch and NDF were the digestibility and rates of the 

starch types and forages, respectively, when fermented alone. Differences between means and 

the control were declared significant at P ≤ 0.05 using the least squares means and the Tukey 

adjustment. Statistical differences resulting in 0.05 < P ≤ 0.10 were considered tendencies. 

Treatments results are reported as least squares means unless specified.  
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5.4 Results and discussion  

As shown above (Table 5.1), Hylon and Amioca had a starch content of 78.22% and 

87.03%, respectively. Both NDF and ADL content in Hylon and Amioca were too small to be 

detected and therefore are not reported. Crude protein, fat and fibre content for both starch 

types were so small as to have little effect on subsequent digestibility. Thus Hylon and Amioca 

are very similar in every respect, except starch type. Hylon and Amioca contained 74% and 

2% amylose, respectively. Differences in digestibility between the two can therefore be 

attributed to interaction between amylose and amylopectin and digestion.  

Starch digestion  

The starch digestibility of Hylon and Amioca (Table 5.2) differed significantly (P < 

0.05) at every time point, with Amioca having greater starch digestibility at every time point 

except 24 hours where Hylon had greater starch digestibility. This is in agreement with the 

literature, confirming that amylose has lower starch digestibility than amylopectin (Li et al., 

2004; Stevnebø et al., 2009). The lower starch digestibility of amylose has been attributed to 

tighter intermolecular bonding between starch molecules (Corona et al., 2006). It can be 

assumed that once these intermolecular bonds have been broken starch is rapidly digested, 

which is a possible explanation for the large increase in ivSd between hours 12 and 24 for 

Hylon.  
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Table 5.2 Least squares means* of starch digestibility of Hylon and Amioca, when pooling 

forages.  

 Time   

 3 6 9 12 24 SEM P-value 

Amioca 

Hylon 

0.53d 0.73c 0.81b 0.84a 0.85a 0.012 <0.0001 

0.43e 0.52d 0.63c 0.79b 0.90a 0.018 <0.0001 

a-d Means within a row not sharing a superscript differ (P < 0.05).  
*Values represent the least squares means across oat hay and lucerne in combination with each 

starch type 
 

The interaction starch type x forage x time was highly significant (P < 0.0001) (Table 5.3). 

When Hylon and Amioca were combined with forages starch digestibility improved (P < 0.05). 

As of yet we can only speculate as to the cause of this phenomenon. It could indicate that 

amylolytic bacteria thrives or starch digestion is improved by the presence of a fibre source in 

vitro. It is unlikely that pH plays a role as the Goering and Van Soest (1970) buffer that was 

used has an excellent buffering capacity. Most likely though this is due to the amount of 

substrate used for each treatment. In order to create the control (only Hylon or Amioca, no 

forage) different amounts of starch and forages were used, to have a relatively constant amount 

of sample within each flask. However, the amount of in vitro medium and rumen fluid remained 

constant for all treatments and could possibly account for the difference in starch digestion. 

Another explanation could possibly be given by a better micro-environment caused by the 

presence of more cell wall and fibrolytic bacteria. Starch digestibility of Amioca was not 

influenced by type of forage, Amioca in combination with lucerne did not differ significantly 

from Amioca with oat hay (P >  0.05). Hylon, however, was influenced by forage type, with 

the combination of Hylon and oat hay having higher starch digestion (P < 0.05).  
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Table 5.3 Starch digestibility of Hylon and Amioca 

 Amioca  Hylon   

Time (hours) Control* Lucerne Oat hay  Control* Lucerne Oat hay SEM P-value 

3 0.22d//// 0.69a 0.68a  0.20dxx 0.50b 0.58c 0.023 <0.0001 

6 0.54d// 0.85a 0.79b  0.28c 0.60d 0.67e 0.027 <0.0001 

9 0.67b 0.89a 0.88a  0.43c 0.68b 0.77d 0.022 <0.0001 

12 0.70c// 0.91a 0.90a  0.64b 0.85b 0.90a 0.032 <0.0001 

24 0.73c/ 0.91b 0.91b  0.77c 0.98a 0.94ab 0.030 <0.0001 

a-e Means within a row not sharing a superscript differ (P < 0.05).  
*Control values represent the least squares means of Hylon and Amioca in absence of oat hay and lucerne  
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The fractional rate of starch digestion (KS) for Hylon and Amioca differed significantly 

(P < 0.05) with Amioca having a higher KS (Table 5.4). The rate of starch digestion was 

significantly influenced by starch (P < 0.0001) and forage (P < 0.0001). However, starch level 

(P < 0.4291) and the interaction between starch level and type of starch (P = 0.8414) was not 

significant. The fixed effect of forage was highly significant (P < 0.0001) and the interaction 

between starch type and forage was significanct (P = 0.0052). As can be seen in Table 5.4 the 

addition of forages greatly increased the KS for both Hylon and Amioca (P < 0.05) and, as 

previously mentioned, this could be due to the amount of substrate in relation to in vitro 

medium and rumen fluid.  Amioca had a higher KS, regardless of forage type. Hibberd et al. 

(1982) found the 6 hour in vitro gas production of isolated starch from maize and sorghum with 

lower amylose content to have more starch digestion. Phillipeau et al. (1998) measured the in 

situ rate of starch digestion of ground maize as 22.9, 6.7, and 5.8%/h with amylose content of 

8.1, 22.6, and 46.8% amylose as a percentage of starch, respectively. Research comparing the 

KS of isolated starches differing in amylose content are limited.  

 

Table 5.4 Least squares means of fractional rates (%/h) of starch digestion for Hylon and 

Amioca in combination with forages and when fermented alone (controls), pooled for different 

starch levels.  

  Amioca Hylon SEM P-value 

Lucerne  30.57a 17.10b 1.44 <0.0001 

Oat hay  25.81a 18.24b 1.24 <0.0001 

Control*  12.55a 6.13b 2.13 <0.0001 

a-b Means within a row not sharing a superscript differ (P < 0.05).  
*Control values represent the least squares means of Hylon and Amioca in absence of oat hay 

and Lucerne 
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NDF digestion 

The fixed effect of forages, as well as the interaction between forage and time were highly 

significant (P < 0.0001).  The NDFd of lucerne and oat hay, for pooled starch types, are shown 

in Figure 5.1. Lucerne had higher NDFd at all time points (P < 0.05).  

The fixed effect of starch and the interaction starch x forage was significant (P < 0.05). 

The addition of Hylon and Amioca reduced NDFd for both forages, though not significantly 

(Table 5.5) (P > 0.05). This is in agreement with literature stating NDFd to be inversely related 

to the starch digestibility (Callison et al., 2001; Firkins et al., 2001). Amioca had greater starch 

digestibility and consequently had a greater negative effect on NDFd than Hylon (P < 0.05). 

Thus amylopectin reduced NDFd of forages to a greater extent than amylose (P < 0.05).  

 

Figure 5.1. Least squares means of rates of starch digestion of Amioca and Hylon and forages 

at different starch levels. 
A= Amioca with no forages; H= Hylon with no forages; AHL= Amioca with Lucerne at high 

starch level; ALL= Amioca with Lucerne at low starch level; HHL= Hylon with Lucerne at 

high starch level; HLL= Hylon with Lucerne at low starch level; AHO= Amioca with Oat hay 

at high starch level; ALO= Amioca with Oat hay at low starch level; HHO= Hylon with Oat 

hay at high starch level; HLO= Hylon with Oat hay at low starch level 
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Figure 5.2. Least squares means of NDF digestibility for lucerne and oat hay, for pooled starch 

types, across time. 
 

Table 5.5. Least squares means of NDF digestibility for forages fermented with either Hylon, 

Amioca or individually (controls).  

 Amoica Hylon Control SEM P-value 

Lucerne 0.30b 0.35a 0.35ab 0.010 0.0037 

Oat hay 0.21b 0.24a 0.28ab 0.021 0.0098 

Means not sharing a superscript differ (P < 0.05).  
*Control values represent the least squares means of oat hay and lucerne in absence of Hylon 

and Amioca 
 

The rate of NDF digestion of forages (pooled starch type and level) found the KNDF for 

oat hay (3.44 %/h ± 0.21) to be much lower than for lucerne (5.76%/h ± 0.21) (P < 0.05) which 

is similar to results found in the literature. According to the Nutritional Dynamic System (NDS, 

Ru.m.&N. Sas, Reggio Emilia, Italy) software’s feed database, which is based on the Cornell 

Net Carbohydrate and Protein System (CNCPS, v.6.55) the rate of NDFd is 4.46%/h for oat 

hay and 6.72%/h for lucerne. In vitro gas production studies determined fractional NDF 
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digestibility rate of isolated NDF to be 5.30 %/h for immature and 6.3 %/h for mature lucerne 

(Doane et al., 1997). The KNDF for oat grass in situ was determined to be 3.69 %/h (Khan et al., 

2006). In vitro gas production studies determined the rate of digestion of oat hay NDF to be 

2.2 %/h, and 3.7%/h for the whole forage (Calabro et al., 2005).  

The rate of NDFd for the interaction between starch type and forage can be found in 

Table 5.6. The KNDF for oat hay was not influenced by the presence of starch (P = 0.14 for 

control vs. Amioca, and P = 0.26 for control vs Hylon) or by starch type (P = 0.65). Rates of 

NDF digestion for lucerne wasreduced by the addition of starch (P<0.005), and Amioca had 

the greater negative effect on NDFd than Hylon (P < 0.05). 

 

Table 5.6. Least squares means of rates of NDF digestion for forages fermented in vitro with 

either Hylon or Amioca, and control. 

Forages Amioca Hylon Control* SEM P-value 

Lucerne 4.07a 5.88b 7.35c 0.3321 <0.0001 

Oat hay 3.15 3.30 3.87 0.3021 0.1721 

a-c Means within a row not sharing a superscript differ (P < 0.05).  
*Control values represent the least squares means of oat hay and lucerne in absence of Hylon 

and Amioca 
 

5.5 Conclusion 

Studies examining the effects of amylose and amylopectin usually use grain varieties 

with different amounts of amylose and amylopectin content, and it is therefore difficult to infer 

only on the specific starch type. Our aim was to test the direct effect that amylose or 

amylopectin have on starch and fibre digestion by making use of isolated starch types. By 

making use of isolated starches we removed the effect that other grain components, such as 

vitreousness, granules composition, prolamin content, protein matrix, particle size and NDF 

content, would have on starch and fibre digestion. This study clearly shows that starch digestion 
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is directly influenced by the specific type. Amylopectin (Amioca) digested faster than amylose 

starch (Hylon), however after 24 hours they were both almost completely digested. As expected 

NDF digestion was inversely related to starch digestion and both starch types decreased NDF 

digestion of forages. However, amylose had the least negative effect on NDF digestion. High 

amylose grains have therefore the potential to provide an energy source to ruminants that does 

not negatively affect NDF digestion to the same extent as high amylopectin ones. Because 

amylose digests at a slower rate than amylopectin it could be of added benefit to ruminants as 

a slowly digesting starch would prevent any sudden changes in rumen pH.   
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Chapter 6 

Conclusions 

The focus of this study was to better quantify some of the chemical and physical factors 

influencing starch digestion in vitro and the consequent interactions with fibre digestion. 

Previous studies have been conducted that analyse the effect of particle size or amylose-to-

amylopectin ratio and have concluded that both these factors play an important role in the 

digestion of grains. However, these studies have predominantly been done on ground grains 

and thus various other factors could have contributed to the results. Therefore, this study aimed 

to reveal the specific effect of each particle size fraction, as well as the specific effect that 

amylose and amylopectin starch has on digestion.  

Once maize was divided by particle size, the individual fractions were unique with 

regards to NDF, starch, lignin and amylose amounts and we theorize that all these chemical 

constituents, together with the particle size have likely affected our results.  Consequently, the 

results clearly show that maize particle size has an important influence on both starch and fibre 

digestion. It is thus clear that rate estimation of ground maize cannot be accurate unless particle 

size distributions are measured and rates of starch digestion are estimated in more than one 

particle size range.  

In the second study, by making use of isolated starches, we removed the effect that 

other grain components, such as vitreousness, granules composition, prolamin content, protein 

matrix, particle size and NDF content, would have on starch and fibre digestion. This study 

confirmed that starch and NDF digestion are directly influenced by the starch type. Even 

though we have come to a similar conclusion than previous studies, that amylose starch digests 

slower than amylopectin, this study has illuminated the exact extent of the relationship between 
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amylose and amylopectin and its effect on starch and NDF digestion. Furthermore, our study 

illustrates that starch digestion is affected not only by the presence of forages but also the type 

of forage  
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