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Abstract 

Genome wide association studies (GWAS) have evolved into powerful tools for 

investigating the genetic association of complex traits, such as gastrointestinal parasite 

(GIN) resistance. Knowledge on genes associated with GIN resistance can provide 

information for use in breeding programs. The objective of the study was to identify 

markers associated with resistance in goats, through the following specific objectives: i) 

assessing the level of knowledge on GIN, management and control of GIN, ii) determining 

the prevalence and risk factors of GIN, iii) determining genetic diversity and population 

structure of goats in Zimbabwe and iv) investigating genomic loci associated with GIN 

resistance traits using a genome-wide association analyses (GWAS). Surveys were 

conducted in 135 households, using a pre-tested questionnaires in Chipinge (natural region 

(NR) I and II), Shurugwi (NR III), Binga and Tsholotsho (NR IV) and Matobo (NR V). 

GIN were ranked highest as the most common disease, with 57% of farmers not controlling 

or treating animals and 63% of farmers not having knowledge on the spread of GIN. A total 

of 580 blood and faecal samples were collected from goats from the same households, with 

additional sampling being conducted in the Research station flock. Highest prevalence was 

determined for Eimeria oocysts (43%) and Strongyles (31%). Area, season, sex and age 

significantly influenced patterns of GIN infections (P < 0.05). Prevalence was highest in 

goats from Chipinge and Binga, greater in wet than dry season and in males than females. 

High prevalences were observed for goats aged 1 and 6 years and the least for goats aged 

3. Associated risk factors were also evaluated per area. A subset of the sampled animals 

(253) was genotyped using the Illumina Goat 50 K SNP beadchip. Population structure 

analyses were performed using ADMITXURE and PLINK. Five clusters were identified, 

with distinct populations of Binga and high levels of shared ancestry in goats from 

Stellenbosch University  https://scholar.sun.ac.za



iii 

 

Tsholotsho and Matobo districts. Genetic parameters indicated high levels of genetic 

diversity based on observed (HE) and expected (HO), low linkage disequilibrium (r 2  = 0.03 

- 0.18) and low FST (0.01 – 0.04). For genome-wide analyses, two approaches were used: 

i) single-SNP association using logarithm transformed faecal egg counts, ii) within-

population association using case/control data. After quality control, 49 984 SNPs and 44 

918 SNPs were available for genome-wide association analyses in GenAbel and PLINK 

respectively. The study confirmed that GIN resistance traits were heritable (0.27 - 0.56 i.e 

low - moderate). The analyses revealed significant multiple SNPs that were associated with 

Eimeria and Strongyles at the genome-wide level. Regions on chromosomes (chr) 4 (P = 

2.66 x10-6 and P = 1.45 x10-5) for Eimeira and chr 29 (P = 9.93 x10-6) were found to be 

associated with GIN resistance, for the Eimeria and Strongyles traits. Genes annotated to 

the SNP positions were ORC5, DGKB and HRASLS5, respectively. The role of the genes 

have not been reported in previous studies or implicated in the involvement of biological 

pathways that have roles in eliciting responses towards GIN infections. Overally, the study 

demonstrates the utility of the Illumina Goat 50 K SNP, despite that the animals used in the 

study were not represented in the SNP discovery breeds. Knowledge of these genes and 

understanding the underlying mechanisms to GIN resistance can be used in the 

development of breeding programs and hence improve productivity. 
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Opsomming 

Genoom wye assosiasie studies (GWAS) het ontwikkel in ‘n kragtige instrument vir die 

ondersoek van genetiese verwantskappe van komplekse eienskappe, soos gastro-parasiet 

weerstand. Kennis oor gene wat verband hou met gastro-parasiet weerstand kan inligting 

verskaf wat gebruik kan word in teeltprogramme. Die doel van hierdie studie was om merkers 

geassosieer met weerstand in bokke te identifiseer, deur die volgende spesifieke doelwitte: (i) 

die bepaling van die vlak van kennis oor gastro-parasiete onder kleinboere, hul bestuur en 

beheer van gastro-parasiete (ii) die bepaling van die voorkoms en risikofaktore van gastro-

parasiete (iii) bepaling van genetiese diversiteit en populasisestruktuur van bokke in Zimbabwe 

(iv) die ondersoek van genomiese lokusse wat verwant is aan gastro-parasiet weerstand 

eienskappe met behulp van ‘n genoom wye assosiasie studie (GWAS). Opnames is in 135 

huishoudings, met behulp van ‘n pre-toetse vraelyste in Chipinge (natuurlike gebied (NG) I en 

II), Shurugwi (NG III), Binga enTsholotsho (NG IV), en Matobo (NG V) distrikte, wat vyf 

landbou-ekologiese streke in Zimbabwe verteenwoordig. Gastro-parasiete was die hoogste 

geklas as die mees algemeenste siekte, met meerderheid van die boere (57%) wat nie beheer 

toepas of siek diere behandel nie en 63% van die boere wat geen kennis het oor die verspreiding 

van gastro-parasiet siektes nie. ‘n Totaal van 580 bloed en fekale monsters was versamel van 

bokke vanuit dieselfde huishoudings, met bykomede monsterversameling gedoen in die 

Navorsingstasie kudde. Hoogste voorkoms was Eimeria oösiste (43%) en Strongyles (31%). 

Gebied, seisoen, geslag en ouderdom het die patroon van gastro-parasiete infeksies beduidend 

beïnvloed (P < 0.05). Voorkoms was die hoogste in bokke vanaf Chipinge en Binga, asook 

hoër in die nat teenoor droë seisoen en hoër in bokramme teenoor bokooie. Hoë voorkoms is 

ook waargeneem vir bokke 1 en 6 jaar oud en die minste vir bokke 3 jaar oud. Geassosieerde 

risikofaktore is ook geëvalueer per area. ‘n Subset van die gemonsterde diere (253) was 
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genotipeerd met behulp van die Illumina Bok 50 K SNP beadchip. Populasiestruktuur analise 

is uitgevoer met behulp van ADMITXURE en PLINK. Vyf klusters is geïdentifiseerd, elk met 

sy eie bevolkings van Binga en hoë vlakke van gedeelde afkoms in die bokke vanaf Tsholotsho 

en Matobo. Genetiese parameters is aanduided van hoë vlakke van genetiese diversiteit 

gebaseerd op die waargeneemde (HE) en verwagte (HO), lae koppeling onewewigtigheid (r 2  = 

0.03 - 0.18) en lae FST (0.01 – 0.04). Vir genoomwye ontledings is twee benaderings gebruik: 

i) enkel-SNP assosiasie met behulp van logaritme veranderde fekale eiertellings ii) binne-

populasie assosiasie met behulp van gevalle/kontrole data. Na gehalte beheer, 49 984 SNPs en 

44918 SNPs was beskikbaar vir die genoomwye assosiasie analise in GenAbel en PLINK 

onderskeidelik. Die studie het bevestig dat gastro-parasiete weerstand eienskappe is oorerflik 

(0.27 - 0.56 d.w.s lae tot gemiddeld). Die analise het beduidende verskeie SNP’s openbaar wat 

verband hou met Eimeria en Strongyles by die genoomwye vlak. Streke op chromosome (chr) 

4 (P = 2.66 x10-6 and P = 1.45 x10-5) vir Eimeira en chr 29 (P = 9.93 x10-6) is gevind wat 

verband hou met die gastro-parasiete weerstand, vir die Eimeria en Strongyles eienskappe. 

Gene geannoteerd naby hierdie SNP posisies was ORC5, DGKB en HRASLS5 onderskeidelik. 

Die rol van die gene is nog nie aangemeld in vorige studies of hul betrokkenheid by biologiese 

weë wat reaksie lok teenoor gastro-parasiete infeksie nie. In geheel, toon die studie die nut van 

Illumina Bok 50 K SNP, ten spyte daarvan dat die diere gebruik in die studie nie die diere 

verteenwoordig wat gebruik was in die SNP ontdekking rasse nie. Kennis van hierdie gene en 

die begrip van die onderliggende meganismes van gastro-parasiete weerstand kan gebruik word 

in die ontwikkeling van teelprogramme en sodoende produktiwiteit verbeter. 
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Chapter 1 

1 Background 

1.1 General introduction 

Gastrointestinal parasites (GIN) impose severe economic constraints on goat production 

(Saddiqi et al., 2011; Várady et al., 2011). Control strategies are based almost entirely on the 

frequent use of dewormers (anthelmintic drugs), which are increasingly regarded as 

unsustainable, given the emergence of multiple drug-resistant parasites (Bishop and Morris, 

2007; McManus et al., 2014). In addition, consumer demands for organically produced 

commodities (Moreno et al., 2012) and reduction in drug residues in the environment (Alba-

Hurtado; Muñoz-Guzmán, 2012), has led to increased restrictions on the use of chemicals. This 

has led to the need for new control measures, such as selection for increased GIN resistance 

with available field data. Current knowledge about GI parasite infections in Zimbabwe are 

derived primarily from epidemiological data (Mukaratirwa et al., 2001; Pfukenyi et al., 2007; 

Marufu et al., 2008). Globally, several studies have demonstrated that at least part of the natural 

variation in resistance to nematode infection is under genetic control (Vagenas et al., 2002; 

Crawford et al., 2006; Gutiérrez-Gil et al., 2009). Exploring the host’s genetic resistance to 

parasites can be used as an alternative strategy for controlling GIN. In addition to that, the 

physiological and underlying genetic mechanisms conferring resistance to GIN which are 

complex, are not fully understood.   

Goat breeds reared in Zimbabwe include Boer, Mashona, Matabele and several kinds of 

crossbreeds, with a large proportion of the population being indigenous. Overall, indigenous 

goat genetic breeds in Southern Africa are known for their hardiness, prolificacy, early 

attainment of puberty and low requirement for inputs (Gwaze et al., 2009a). Despite these 
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advantages, indigenous goats are largely neglected for commercal production. Exploitation of 

these genetic resources can be vital for improvement of resistance to GIN, as well as goat 

productivity.  

1.2 Problem statement  

Goats are markedly susceptible to infection with gastrointestinal parasites, as such that the 

frequency of anthelmintic resistance is higher compared to sheep, with which they share the 

same nematode parasites (Mandonnet et al., 2001). Integrated control of strongylosis in goats 

necessitates incorporation of genetic resistance into control systems. Limited studies exist 

globally on resistance to GIN in goats compared to sheep (Bolormaa et al., 2010a); (Vagenas 

et al., 2002). In Zimbabwe, no studies have been conducted to estimate the genetic parameters 

associated with parasite resistance in goats. However, there are reports of quantitative trait loci 

(QTL) for nematode resistance in goats (Bolormaa et al., 2010a; de la Chevrotière et al., 2012) 

and sheep (Dominik et al., 2010; Rout et al., 2012).  

The genetic control of complex traits in livestock has been studied without identifying the 

genes or gene variants underlying observed variation, with selection being conducted on the 

basis of estimated breeding values (EBVs) calculated from phenotypic and pedigree 

information (Goddard and Hayes, 2009). This may pose a serious challenge in smallholder 

farming systems, where there is no record keeping. Selection for parasite resistance has mainly 

been based on indicator traits, such as faecal egg count (FEC) (Davies et al., 2005; Dominik, 

2005), packed cell volumes (Janssen et al., 2002) i.e. degree of anaemia or immunological 

activity e.g. circulating eosinophils and antibody level (Castillo et al., 2011). Results from these 

studies were highly inconsistent, thus posing threats to their uses.  
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Collection and quantifying indicator traits can be costly and time-consuming; therefore it 

would be advantageous if the selection can be conducted without rigorous phenotyping. The 

use of genetic markers in selection programs could be more effective. This can be achieved by 

collecting blood or tissue samples from young animals, then selection is performed based on 

their genotypes, although a low level of phenotyping would be required. The use of genome-

wide data can be utilized as a means of overcoming some of these mentioned problems. In 

addition to identifying markers associated with GIN resistance, data can also be used to 

understand the mechanisms underlying the pathways that increase resistance.  

1.3 Justification  

Genome wide association studies (GWAS) have recently evolved into powerful tools for 

investigating the genetic association to diseases in livestock. This has been made possible by 

the introduction of high-density single nucleotide polymorphisms (SNPs) genotyping 

platforms. These studies take a systematic ‘unbiased’ approach by interrogating the entire 

genome for associations between common gene variants (SNPs) and a phenotype (Visscher, 

2008). All the potential genetic variation for a trait could be picked up due to the extent of 

linkage disequilibrium (LD) between the SNPs on the panel and causative QTL. This explains 

whether polymorphisms associated with resistance are closely linked to the resistance-

conferring mutation or are a large physical distance away in the genome. Evidence where 

GWAS have already identified significant regions associated are documented for GIN 

resistance (Kemper et al., 2011; Riggio et al., 2013; Pickering et al., 2015), and production 

traits (Kijas et al., 2013; Martin et al., 2016; Matika et al., 2016).  

The advantage of using GWAS in low-input/output systems is that it can be used without 

pedigree information. Unlike the candidate approach which tests each marker independently 
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for an association with the trait, the genome-wide association studies have a potential of 

shrinking the estimated effect of each marker and predict genetic merit using a linear 

combination of their effects (Kemper et al., 2011). Information at molecular level generated in 

this study can be used in selection and breeding programs of goats and will also help determine 

the mechanism of parasite resistance. Selection of goats that are genetically resistant to 

parasites may lead to vast epidemiological benefits. There can be reduced pasture larval 

contamination, which will lead to reduced challenge and lower FEC as well as improved 

production.  

1.4 Objectives  

The overall objective of the study was to identify markers associated with resistance to 

gastrointestinal parasites (GIN) infection in goat populations in Zimbabwe  

The specific objectives of the study were: 

i) To assess the level of knowledge on GIN, management and control of the disease 

among smallholder goat farmers in Zimbabwe; 

ii) To determine the prevalence and risk factors of gastrointestinal parasites in different 

agro-ecological regions in Zimbabwe; 

iii) To determine genetic diversity and population structure of goats reared in low-

input/output farming systems of Zimbabwe; and, 

iv) To investigate markers associated with resistance to gastrointestinal parasites using 

genome-wide association analysis (GWAS). 
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1.5 Thesis overview and layout 

The study was conducted with the aim of identifying genetic markers associated to GIN 

resistance in indigenous goats reared in low-input/ output farming systems in Zimbabwe. This 

analyses was made possible by the use of the Illumina Goat 50K SNP beadchip. The use of 

genome-wide tools has been demonstrated in most sheep studies, with little known in goats. 

The thesis is structured into seven chapters, consisting of the general background of the study, 

literature review, four research chapters and a general discussion and conclusion. Each chapter 

is structured as a manuscript with its abstract and list of references.  

In chapter 1 the background of the study and  the motivation of the study were highlighted. 

Chapter 2 reviewed the current control methods of GIN, the motivations of GWAS being 

elaborated and its potential benefits are also discussed. The work in this chapter was published 

in Veterinary Parasitology.  

Chapter 3 explored the management and control practises of GIN in low-input/output farming 

systems. Results indicated that the majority of the farmers were not controlling parasites and 

most of them lacked knowledge in GIN. This work was published in Tropical Animal Health 

and Production.  

In chapter 4, prevalence of gastrointestinal parasitic infections was determined in different age 

groups and sex using faecal egg counts data. The effects of area, season, sex and age were 

evaluated vs the occurrence of infection. Association of these risk factors were then evaluated 

for each area. The work from this chapter was published in Small Ruminants Research.   

In chapter 5 the Goat 50 k SNP beadchip was used to assess the genomic population structure 

of 253 indigenous breeds/ecotypes goats. After quality control, ADMIXTURE and Principal 
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Components were used to perform the population structure analyses. Level of linkage 

disequilibrium (LD), LD decay, effective population sizes and FST were determined. The work 

from this chapter is being prepared for submission in an international peer reviewed journal.  

In chapter 6 genomewide analyses were conducted using GenAbel and PLINK. Analyses was 

performed using results from Chapter 4 to explain phenotypes and Chapter 5 to infer population 

structure. Regions associated with the phenotypes were then annotated onto the goat genome 

in the National Centre for Biotetechnology Information (NCBI) website. Assumed mechanisms 

or pathways proposed to be linked to genetic resistance were drawn. This work is being 

compiled in preparation for submission in an international peer reviewed journal.  

Chapter 7 presents the general discussion, linking all the work conducted in the study. 
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Chapter 2 

2 Literature Review 

2.1 Introduction 

Small ruminants make important contributions to human livelihoods, particularly in developing 

economies. In 2012, 37 and 22% of the 1.2 billion world sheep population were located Asia 

and Africa respectively, as well as 56 and 30% of the approximately 1 billion world goat 

population (FAO, 2015). In most low-input/output smallholder farming systems goats serve as 

household assets with multiple livelihood functions, providing food, income and important 

non-market services (Ruto et al., 2008). However, gastrointestinal parasitic infestations impose 

severe constraints on small ruminant production in marginal systems (Periasamy et al., 2014). 

Control strategies worldwide are based on the use of anthelmintic drugs, which have often been 

associated with cases of multiple drug resistant parasites and drug residues in the food and 

environment. However, most small ruminant farmers in the tropics and sub-tropics are 

resource-constrained, and do not have access to either anthelmintics or land management 

practices to mitigate the influence of gastrointestinal parasites (GIN).  Therefore, there is a 

need for alternative methods of parasite control in these farming systems, with genetic 

improvement offering a more sustainable option. Although resistance to GIN is well studied in 

both experimental (Davies et al., 2006; Riggio et al., 2013) and commercial flocks (Matika et 

al., 2011), a few studies have focused on low-input/output smallholder systems in developing 

countries. This review offers an overview of current practices and potential control methods 

for GIN resistance. 
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2.2 Value of indigenous farm animal genetic resources  

Farm animal genetic resources refer to all animal species and breeds that are of economic, 

scientific and cultural interest to humankind in terms of food and agricultural production for 

the present or the future (Rege and Okeyo, 2006; Rege et al., 2010). Livestock make a 

particularly important contribution to human livelihoods by serving as household assets with 

multiple livelihood functions, providing food, income and important non-market services such 

as draught power and manure (Kohler-Rollefson, 2004; Ruto et al., 2008; Rege et al., 2011). 

Livestock provides capital stock with insurance functions and contribute to social and 

traditional structures, forming the root of cultural identity for many societies (Zander, 2006). 

Indigenous breeds have superior adaptive attributes compared to exotic breeds (Rege et al., 

2011). They have good maternal qualities, are fertile with long productive life spans, 

experience low mortality and good feed conversion rates (Kohler-Rollefson, 2004). All these 

qualities form the basis for low-input, sustainable agriculture (Philipson et al., 2011). 

2.3 Control methods for GIN 

2.3.1 Non-genetic methods of internal parasite control 

Gastrointestinal nematode control methods previously proposed include chemical and 

management or biological approaches (Jackson and Miller, 2006). Chemical control is the most 

widely used method. Alternative approaches, such as use of copper oxide wire particles, have 

been reported in the control of Haemonchus contortus in small ruminants (Torres-Acosta and 

Hoste, 2008). Copper toxicity is however a problem particularly in sheep (Hoste and Torres-

Acosta, 2011), but the potential risk is lower in goats.  

 

Use of ethno-veterinary products, dietary and nutritional supplementation have also been 

reported to reduce parasite infections (Hoste et al., 2006; Terrill et al., 2009). Paolini et al. 
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(2003) reported a reduction by 50-60% in faecal egg counts (FEC) in small ruminants following 

condensed tannin-rich diets supplementation. However, some condensed tannin extracts have 

been found to reduce small intestine burdens (Trichostrongylus colubriformis, Cooperia, 

Nematodirus, Bunostomum spp.) but not those from the abomasum (H. contortus, Teladorsagia 

circumcinta) (Athanasiadou et al., 2001). Anti-parasitic action has been also demonstrated in 

chicory (Cichorium intybus), sulla (Hedysarum coronarium), sainfoin (Onobrychus viciifolia) 

and sericea lespedeza (Lespedeza cuneata) (Houdijk et al., 2012). Biological control methods 

using nematophagous microfungus Duddingtonia flagrans have the ability to break the 

lifecycle of parasites by trapping and killing infective GIN larvae in faeces before they migrate 

to pasture (Terrill et al., 2012).  

 

Rotational resting and grazing as a means of parasite control limits the host-parasite contact 

thus reducing pasture contamination and increasing productivity in common grazing 

rangelands. The strategy of rotational resting and grazing is considered as being either 

preventative, evasive or diluting (Jackson and Miller, 2006). According to Cabaret et al. (2002) 

and Younie et al. (2004), the preventative strategy involves turning out parasite-free animals 

onto clean pastures. The evasive strategy involves moving animals from contaminated to clean 

pastures within the same season and alternating grazing of different species. The diluting 

strategy allows worm challenge to be relieved by diluting pasture infectivity by reducing 

stocking rates, allowing mixed species grazing of animals of different age groups. However, 

these above mentioned methods are difficult to apply at all times, especially in extensive 

production systems and in systems with common grazing. Improved nutrition through 

supplementation of by-pass protein in small ruminants improves resistance and resilience to 

GIN (Torres-Acosta et al., 2012). Studies by Steel (2004), Colvin et al. (2012) and Marume et 
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al. (2012) also provided evidence of the benefits of protein supplementation as a means of 

parasite control.  

 

Internal parasites can also be controlled by making  use of vaccines. Some of these vaccines 

are based on antigens of the parasite stage that adheres to the gut wall and these antigens induce 

immune responses that interfere with successful attachment in the gut. One of the vaccination 

methods for example, focuses on identifying protective hidden antigens derived from the 

worm’s intestinal gut cells (Terrill et al., 2012). When the parasites feed on the host they ingest 

antibodies that bind to functional proteins on the brush border of their intestinal cells, so that 

the digestive processes are compromised, leading to starvation, loss of fecundity, weakness and 

death. Eventually, the parasites detach and are lost from the predilection site (Jackson and 

Miller, 2006). Until recently, the use of hidden antigens was only thought to be effective on 

cestodes (Waller and Thamsborg, 2004) and not on nematodes. In 2014, a new vaccine against 

H. contortus, (Barbervax®) was commercially available. This is an alternative to the drench–

based control method and it has the ability to manage drench resistance (Maxwell, 2015). The 

problem associated with the use of this vaccine could be related to cost, i.e. for initial use in an 

animal, three priming doses are required to achieve an effective level of antibody protection 

and this protection lasts only approximately 6 weeks; thus an animal requires 4-5 vaccinations 

annually. This poses problems in low-input/output farming systems not only in terms of cost 

but also for vaccine storage (limited refrigeration capacity) and handling. 

 

The main constraint for the use of anthelmintics is the development of drug resistance, which 

may be a consequence of host-pathogen co-evolution, in which the parasites survive exposure 

to standard recommended doses of anthelmintics and are able to thrive and reproduce under 

existing dosing regimes. The frequency and dosage of treatment are usually the main factors 
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driving development of resistance to anthelmintics. However, under-dosing, which is a 

common practice in resource limited smallholder farms, particularly in goats, may be the one 

of the leading forces to parasite resistance. The continuous development of new classes of 

anthelmintics has for several decades compensated for parallel development of resistance (von 

Samson-Himmelstjerna and Blackhall, 2005), in several genera such as Haemonchus, 

Trichostrongylus and Ostertagia spp. (Kaplan, 2004; McKellar and Jackson, 2004) in sheep 

and goats. Examples drawn worldwide of anthelmintic resistance across chemical compound 

classes in small ruminants are summarised in Table 2.1.  

 

2.3.2 Genetic control of GIN 

The genetic control methods involve selection of individuals resistant to GIN (Vagenas et al., 

2002) and this relies on the existence of host genetic variation and the predominating 

environmental conditions. Most goat breeds that are highly resistant to parasite infections are 

found in the tropics reared under extensive farming (Hohenhaus and Outteridge, 1995), but 

these breeds remain greatly under-utilized (Baker, 1998). Few studies have been  conducted on 

breeding for resistance to GIN in the tropics and subtropics. These include work conducted in 

Kenya by Baker et al. (1998) in goats (Small East African and Galla breeds) and sheep (Red 

Masaai and Dorper breeds) and also work conducted in Zimbabwe by Matika et al. (2003) in 

sheep (Sabi and Dorper breeds).  

To date, little work has been undertaken in utilizing these genetic resources as a means of 

parasite control via selection and breeding for the resistant lines. Although breeding for GIN 

resistance is an appealing technique, such approaches are difficult to implement in low-

input/output smallholder farming systems, mainly due to lack of record keeping and pedigree 

data in the open mating systems. This aspect is discussed in detail later in this review. 
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2.4 Resistance to GIN in small ruminants  

Resistance is the animal host’s ability to counter the adverse effects of pathogens by developing 

immune-mediated resistance to the pathogen (Kelly et al., 2013). It is often the result of changes 

in genes other than the immediate drug target, including transporters and drug metabolism. The 

ability to reduce worm infection differs between sheep and goats depending on their 

immunological, physiological and behavioural characteristics. Goats have a weaker immune 

response to GIN compared to sheep (Ahmed et al., 2011) leading to higher infestation under 

grazing conditions. However, in conditions where browse is available, their feeding behaviour 

minimises exposure, as they avoid contact with the infective stages of GIN (Torres-Acosta and 

Hoste, 2008). Anthelmintic resistance problems are greater in goats than in sheep due to the 

higher requirement for treatment in adults and also goats’ ability to metabolise and inactivate 

anthelmintics faster (Walken-Brown et al., 2008).  

 

2.4.1 Phenotypic indicators of resistance  

Common indicators of resistance include faecal egg counts (FEC) which is a function of both 

parasite burden and fecundity. Other traits include the immune response factors such as 

eosinophilia and antibody response (IgA, IgG and IgM).  
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Table 2.1:Cases of anthelmintic resistance in sheep and goats 

1Benzimidazoles -BZ; Macrocyclic lactones- ML (Avermectins-AVM or Milbemycin –MLB; Nicotinic agonists (Imidothiazoles-IMID or 

Tetrahydropyrimidines-TETR); Aminoacetonitriles derivatives-AAD; Salicylanilides-SCL 

Species  Country  Anthelmintic1 (Class) Nematode genera Reference(s)  

Goats Ethiopia 
Albendazole, Tetramisole, Ivermectin (BZ, 

IMID, AVM) 

H. contortus, Trichostrongylus, 

Teladorsagia spp 

Sissay et al., 2006; Kumsa and 

Abebe, 2009  

 

 Uganda 
Albendazole, Levamisole, Ivermectin (BZ, 

IMID, AVM) 

H. contortus, Cooperia spp. 

Oesophagostomum spp 

Byaruhanga and Okwee-Acai, 

2013 

 Nigeria  H. contortus Chiejina et al., 2010 

 Pakistan Oxfendazole, Levamisole (BZ, IMID) H. contortus, T. colubriformis Saeed et al., 2010 

Sheep Zimbabwe 
Fenbendazole, Albendazole, Oxfendazole, 

Levamisole (BZ, IMID) 
H. contortus, Cooperia spp. 

Mukaratirwa et al., 1997;   

Matika et al., 2003 

 Zimbabwe 
Fenbendazole, Levamisole, Rafoxanide (BZ, 

IMID, SCL) 
H. contortus Boersema and Pandey, 1997 

 Zambia Ivermectin , Albendazole (AVM, BZ) H. contortus Gabriel et al., 2001 

 Germany  Levamisole, Ivermectin (IMID, AVM) Trichostrongylus spp Voigt et al., 2012 

 Brazil Ivermectin (AVM) H. contortus, Fortes et al., 2013  

 
Northern 

Ireland 

Benzimidazole, Moxidectin, Avermectin 

Levamisole (BZ, MLB, AVM, IMID) 

Trichostrongylus Teladorsagia, 

Cooperia spp. 
McMahon et al., 2013 

Sheep/goats South Africa  
Albendazole, Closantel, Ivermectin, 

Levamisole (BZ, SCL, AVM, IMID) 

H. contortus, Trichostrongylus, 

Oesophagostomum spp 

Bakunzi et al.,2013 

Tsotetsi et al., 2013 

 Kenya  Ivermectin ,Fenbendazole (AVM, BZ) 
H.contortus, Trichostrongylus,  

Oesophagostomum spp.  
Mwamachi et al., 1995 

 Switzerland Avermectin (AVM) 
Haemonchus contortus, 

Trichostrongylus spp 
Artho et al., 2007 

 Norway Albendazole (BZ) Teladorsagia, Trichostrongylus spp Domke et al., 2012 

 India  Fenbendazole, Benzimidazole (BZ) H. contortus, Trichostrongylus spp  Rialch et al., 2013 

 India Thiabendazole, Tetramisole (BZ, IMID) H. contortus Swarnkar and Singh, 2011 

 Philippines  Benzimidazoles (BZ) H. contortus Ancheta et al., 2004 
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It also includes the impact of infection such as anaemia, pepsinogen or fructosamine 

concentrations and resilience in form of growth rate and required treatment frequency (Bishop, 

2011). 

 

2.4.2 Genetic resistance to parasites, from a classical selection approach 

Gastrointestinal parasite resistance is under genetic control and the existence of genetic 

variation among individuals with regards to resistance to GIN has been studied extensively 

(Table 2.2). Conventional breeding strategies are based on the use of indicator traits such as 

FEC and packed cell volumes (PCV), which are costly and time consuming to collect. Whilst 

FEC have been the main indicator for resistance to GIN, significant levels of infection are 

required for genetic variation in FEC to be expressed and in drier parts of the world, this 

increase in FEC may not occur for several years, or may be masked by parasite control 

measures aimed at limiting the infection.  

 

Nematode resistance assessed by using FEC has a low to high heritability in small ruminants, 

ranging from 0.01 to 0.65 (Table 2.3). The heritability of a trait indicates the potential of 

obtaining genetic gain through selection (Lôbo et al., 2009). For example, selecting animals 

with the lowest FEC would increase host resistance to parasites. However, resilient animals are 

not targeted by this approach. Hence, selection and breeding for resistance to GIN is feasible; 

and a case example of 69% reduction in FEC following genetic selection was reported by Eady 

et al. (2003).  

 

Although selection for resistance is possible and effective for sheep and goats; this has not been 

fully adopted in most developing countries, but restricted to research flocks, due to complexity 
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in collecting phenotypes and pedigree information and limitations associated with costs 

involved in running the breeding schemes. Moreover, there are other factors to be taken into 

account. Technical and infrastructural related issues, for example, are the greatest bottlenecks 

in genetic improvement programmes for most of the sheep and goat farming systems: small 

flock sizes, lack of clear breeding goals, lack of or poor infrastructures. These are all factors 

that contribute to the low participation of farmers in breeding schemes, which in turn makes 

achieving within-breed genetic improvement highly challenging. It has to be kept in mind, 

however, that the implementation of a breeding program requires an accurate pedigree. It has 

been indeed shown that even in dairy cattle, which have well established breeding program, 

over 20% of registered animals have paternity errors (Ron et al., 1996) and this percentage is 

probably even higher in small ruminants.  

 

In smallholder properties in tropical and subtropical environments usually there is no pedigree 

recording and no data recording at any time. Mating systems are often not planned with all year 

round kidding/lambing with community animals mixing in communal shared grazing lands. 

This renders the conventional breeding practices as we know them currently impossible to 

implement. However, there are other possibilities with the modern technologies that may 

remedy some of these shortfalls. 

 

2.4.3 Identification of QTL associated with GIN resistance 

Quantitative trait loci (QTL) mapping can help in understanding the complexity of parasite 

resistance by identifying candidate genomic regions. Studies using microsatellite markers (Beh 

et al., 2002; Davies et al., 2006; Gutiérrez-Gil et al., 2009; Marshall et al., 2009) have been 

conducted to understand the mechanisms underlying parasite resistance. Candidate gene 
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studies, together with microarray and gene association studies have also been conducted in 

several small ruminant breeds in an effort to identify genes that are involved in the control of 

resistance and susceptibility (Crawford et al., 2006; Brown et al., 2013). The candidate gene 

approach focuses on identifying DNA markers within candidate genes, which may not 

necessarily be causative mutations for resistance themselves, but may be in linkage 

disequilibrium (LD) with the causative mutation (Sayers and Sweeney, 2005). Candidate genes 

implicated included those that regulate the immune response, e.g. major histo-compatibility 

complex (MHC) and interferon gamma-y (IFN-γ) genes. Several studies confirmed markers 

associated with GIN resistance close to MHC (Miller and Horohov, 2006; Bolormaa et al., 

2010a; Alba-Hurtado and Muñoz-Guzmán, 2013) and IFN-γ genes (Coltman et al., 2001; 

Crawford et al., 2006; Miller and Horohov, 2006; Bolormaa et al., 2010b; Alba-Hurtado and 

Muñoz-Guzmán, 2013).  

 

Although, no causative mutations have been identified in published QTL studies, IFN-γ and 

MHC are possible plausible functional and positional candidate genes (Stear et al., 2009). In 

contrast to the classical selection, the marker-assisted selection can utilize identified QTL to 

accelerate selection even in cases where the desirable alleles for the trait are found in low 

frequencies. Several QTL on different regions and chromosomes (OARs) have been reported 

in the literature for sheep, indicating a polygenic nature for the trait (OAR1, 3, 6, 14 and 20) 

(Beh et al., 2002; Dominik, 2005; Crawford et al., 2006; Davies et al., 2006; Matika et al., 

2011; Salle et al., 2012). In a few studies, some potential candidate genes were identified on 

OAR8 (Crawford et al., 2006), OAR13 (Beraldi et al., 2007), and OAR22 (Silva et al., 2012). 

The lack of consensus across studies may be due to parasite resistance being a genetically 

complex trait (Kemper et al., 2011; Riggio et al., 2013) as well as other reasons discussed in 

the following section. 
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Table 2.2: Small ruminant breeds with reported resistance traits against gastrointestinal parasites 
Species  Resistant Breed Susceptible breed Infection1 Parasite(s)2 References 

Goats Sabi Dorper N Hc Matika et al., 2003 

 Small East African (SEA) Galla N Hc Baker et al., 1994; 1998 

 Jamunapari  Barbari N Hc, Strongyloides 

Oesophagostomum spp 

Rout et al., 2011 

 Creole  - N Hc, Tc Mandonnet et al., 2001 

 Creole - A Hc Bambou et al., 2009 

 Creole - N Hc de la Chevrotiere et al., 

2012b 

 West African - N Mixed  Behnke et al., 2011 

Sheep  Gulf Coast Native  - N Hc Peña et al., 2004 

 F1 and F2 Suffolk 

X Gulf Coast Native  

-  N Hc Li et al., 2001; Miller et al., 

2006 

 INRA 401 - A Hc, Tc Gruner et al., 2004 

 Merino - A Hc, Tc Andronicos et al., 2010 

 Gulf Coast Native  Suffolk N Hc, Tc Miller et al., 1998; Shakya 

et al., 2009 

 Red Masaai Blackheaded Somali, Dorper, 

Romney Marsh 

A/N Hc Mugambi et al., 1997 

 Barbados black belly INRA401 A Trichostrongyles Gruner et al., 2003 

 Santa Ines Ile de France, Suffolk N Hc, Oesophagostomum 

columbianum 

Amarante et al., 2004 

 Texel Suffolk N Trichostrongyle; Teladorsagia, 

Nematodirus 

Sayers et al., 2005; Good et 

al., 2006 

 Florida native, Florida native X 

Rambouillet   

Rambouillet N Hc Amarante et al., 1999 

 Dorper X Katahdin Hampshire  A/N Mixed Burke and Miller, 2002 

 Lohi Thalli, Kachhi A/N Hc Saddiqi et al., 2010 

 Caribbean Hair, Katahdin  Crossbred-Dorper A Hc Vanimisetti et al., 2004 

(-) indicates trials which only involved one breed, within-breed differences; 1N – natural infection; A – artificial challenge 2Hc-Haemonchus contortus; Tc- 

Trichostrongylus colubriformis 
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Table 2.3: Faecal egg counts (FEC) and packed cell volume (PCV) heritability estimates in small ruminants 

Species  Breed(s)  h2 Age (mo) Country  References  

Goats  Galla and SEA 0.13 4.5-8 Kenya   Baker  et al., 1994 

 Cross-bred Cashmere  0.2-0.3 12-18 Scotland  Vagenas et al., 2002 

 Creole 0.14-0.33 4-10 French west indies Mandonnet et al.,2001 

 Creole 0.10 >11 French west indies Mandonnet et al.,2006 

Sheep Dorper vs Red Masaai 0.18 vs. 0.35 8 Kenya  Baker, 1998 

 Menz and Horro 0.01-0.15 1-12 Ethiopia Rege et al., 2002 

 Rhon and German Merino 0-0.35 3-5 Germany Gauly et al., 2002 

 Merino 0.2-0.65 4-13 Australia  Pollot et al.,2004 

 Dorset-Rambouillet-Finn 

(Lambs–ewes) 

0.15-0.39 4 (1-10yrs) Australia  Vanimisetti et al., 2004 

 Soay >0.10-0.26  Scotland Beraldi et al., 2007 

 Santa Ines lambs 0.01-0.52 - Brazil  Lobo et al., 2009 

 Scottish Blackface 0.14 6-7 Scotland Stear et al., 2009 
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2.4 Inconsistencies across studies 

The lack of consistency across the results of nematode studies may be in part due to the weaknesses 

associated with the use of different methods of evaluation. The candidate gene approach relies on 

prior knowledge, however, a large majority of genes have their functions yet to be defined (Singh 

et al., 2014). In addition, previously identified QTL seem to disappear with new ones emerging 

between populations. A possible explanation for this is the differences in the analytical or 

experimental approaches used in different studies. Examples of these include the use of within-

family microsatellite-based linkage (Beraldi et al., 2007; Gutiérrez-Gil et al., 2009; Marshall et al., 

2013) vs. LD approaches using SNPs in genome-wide association studies (GWAS) (Riggio et al., 

2013). Most of the published QTL studies were conducted using half-sib family experimental 

designs which uses within family linkage as opposed to a population LD. Other factors that may 

also contribute to these inconsistencies could be the animal population studied (i.e., different 

breeds, age, sex, immune and physiological status), sample size, nature of infection (i.e. natural 

infection vs. artificial challenge), climatic conditions (i.e. wet vs. dry, tropical vs. temperate), the 

production system (i.e. extensive vs. intensive), nematode species and indicator traits measured. 

Despite the added advantages of utilizing QTL as a means of increasing genetic progress, there are 

still practical problems associated with the use of genetic markers as no major QTL have been 

identified associated with GIN resistance (i.e. GIN resistance seem to be polygenic trait, with many 

loci with small effect spread across the genome).  
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2.4.4 Using GWAS to identify loci underlying variation in GIN resistance  

Advances in genomics, technology, statistics and bioinformatics have led to the implementation 

of GWAS which aim at understanding the genetic basis of complex traits, such as resistance to 

diseases and production traits (e.g. growth, feed intake and milk yield). Previous FEC studies 

utilizing within family linkage have been criticised for the inability to replicate results. GWAS 

aim at overcoming some of these limitations by searching the whole genome for genetic variants 

associated with quantitative traits, without prior assumptions, thus limiting bias (Hirschhorn and 

Daly, 2005). In cases where there is no evidence for a positional candidate, LD is exploited to 

further refine the location of the QTL to target functional mutations in causal genes (Raadsma and 

Fullard, 2006). The SNP arrays such as the Goat SNP 50k chip with a capacity to genotype 52,295 

SNPs (Tosser-Klopp et al., 2014) and Ovine SNP 600k chip with a capacity to genotype 603,350 

SNPs (Anderson, 2014) are becoming important tools for GWAS. Setting up GWAS for parasite 

resistance requires genotyping and phenotyping large numbers of animals to obtain sufficient 

sample sizes (McCarthy et al., 2008).  

 

Other methods can be used to search for QTL, such as the Wright’s fixation index (FST), which 

utilizes allele frequencies between resistant vs. susceptible individuals and measures the degree of 

population differentiation. Comparisons of FST from different parts of the genome can also provide 

insights into the demographic history of populations and selective sweeps (Kijas et al., 2012). Few 

studies have been published on host resistance to parasites in small ruminants, mostly in sheep, 

using SNP chips (Table 2.4). 
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2.4.4.1 Limitations of the GWAS methodology 

In most cases, SNP chips failed to replicate results previously obtained using microsatellites. 

Discrepancies may be due to different factors, such as the method used (linkage analysis where 

markers are phased within families vs. LD), SNP density, lack of LD between markers and 

causative mutations, breeds being analysed (which may not be well represented in the reference 

populations used to create the SNP chips), polygenic nature of the traits of interest, and sample 

size. Large confidence intervals in the linkage analyses makes it difficult to compare the results 

across studies (Höglund et al., 2012). Manolio et al. (2009) reported the problem of missing 

heritability in GWAS for complex traits. Missing heritability refers to heritability estimates of 

complex traits that cannot be accounted for by use of markers in GWAS, but may be attributable 

to non-additive genetic variances such presence of copy number variants (CNV) and epigenetics 

(for a detailed review on missing heritability see Vinkhuyzen et al., 2013).  

 

A meta-analysis conducted by Riggio et al. (2014a) highlighted how some of the challenges could 

be addressed by aggregation of data from several independent studies, thereby increasing power 

of detection of genetic variants with small effects. Work done by Kemper et al. (2012) also 

highlighted how some of the differences between GWAS and family-based linkage studies can be 

overcome, i.e. through adjusting differences in LD, and fitting all markers simultaneously instead 

of individually. 
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Table 2.4: Published QTL studies on host resistance to nematodes in small ruminants 

Species Markers1 Breed  Chromosome  References 

Goats  M Australian Angora and Cashmere 23 Borlomaa et al., 2010 

 M Creole  22, 26 de la Chevrotiere et al., 

2012b 

Sheep M Romney- Coopworth 8, 23 Crawford et al., 2006 

 M Scottish Blackface 2, 3, 14 and 20 Davies et al., 2006 

 M Soay 1*, 6*, 12*  Beraldi et al., 2007 

 M Scottish Blackface 3, 20 Stear et al., 2009 

 M Spanish Churra 1, 6, 10, 14 Gutiérrez-Gil et al., 2009 

 SNP Merino  Marshall et al., 2009 

 M Romney-Merino Backcross 3*, 21, 22* Dominik et al., 2010 

 M Suffolk and Texel 3, 14 Matika et al., 2011 

 M, SNP Romane-Martinik Blackbelly Backcross 5, 12, 13, 21 Salle et al., 2012 

 M Red Masaai, Dorper 2, 26 Marshall et al., 2013 

 SNP Soay 1, 9* Brown et al., 2013 

 SNP Scottish Blackface 6, 14 Riggio et al., 2013 

 SNP Scottish Blackface, Sarda-Lacaune Backross, Martinik 

Blackbelly-Romane Backcross 

4*, 6, 14, 19*, 20* Riggio et al., 2014a 

 SNP Red Maasai-Dorper Backcross 6, 7 Benavides et al., 2015 

*Suggestive associations; 1M – Microsatellites; SNP – OvineSNP50 chip
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2.4.4.2 Challenges of setting up GWAS in low-input/output smallholder systems 

The first hurdle in conducting GWAS in low-input/output smallholder systems, where records are 

scarce, is obtaining accurate indicator traits. Other challenges include cases of co-infection, mixed 

or poorly defined breeds, and requirements for large sample sizes (Hayward, 2013). Selective 

genotyping and selective DNA pooling can be done to reduce number of individuals to be 

genotyped; however, this may lead to loss of individual information (Singh et al., 2014). In low-

input/output smallholder systems it may not be feasible to meet some of these requirements. In 

general, it is not possible to extrapolate results across distantly related populations. The genetically 

fragmented nature of sheep and goat populations/ecotypes makes it challenging to use the results 

on anything other than the population in which they are derived.  

 

One of the key shortcomings of using the SNP technology in low-input/output systems is the cost 

associated with it. To mitigate this, one could exploit the advantages of imputations, in which key 

individuals are genotyped using higher SNP chips or sequenced to form the basis from which 

animals genotyped with low density SNP are imputed to the same density as the former. The power 

for detection of genetic associations can also be improved by performing 2-stage joint analyses 

which involve genotyping a proportion of the available samples in the first stage and the remaining 

in the second stage, with the second stage acting as replication (Skol et al., 2006). Furthermore, 

data sets from different studies can be combined and data imputation (after rigorous data checking) 

can be used as a tool to avoid bias and false-negative results (Ioannidis et al., 2009).  
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2.4.5 Application of genome-wide SNP data in parasite resistance 

2.4.5.1 Selective sweeps/signatures  

The term selective sweeps/signatures refers to advantageous alleles being fixed in a population on 

a particular haplotype background due to selection, leading to changes in gene frequencies of 

variants associated with traits (Gurgul et al., 2014). Statistical methods used for detecting selective 

sweeps are the FST (Weir et al., 2005), LD approach, extended haplotype homozygosity (EHH) 

test, integrated haplotype score (iHS), long-range haplotype (LRH) (Qanbari et al., 2011) and cross 

population EHH (XP-EHH) test. The XP-EHH detects selective sweeps in which the selected allele 

has different frequency to the other population. A study by McRae (2012) using selective sweeps 

on loci associated with resistance or susceptibility to GIN infection identified nine regions showing 

the highest signals in both Romney and Perendale lines. In another GWAS study on divergent lines 

selectively bred for high and low FEC, McRae et al. (2014) identified sixteen regions harbouring 

candidate genes associated with immunological responses to parasite infection i.e. Chitinase 

activity and cytokine response.  

 

2.4.5.2 Copy number variation (CNV)  

Copy number variants are defined as DNA segments which are 1 kb or larger and have variable 

numbers of copies to those in the reference genome (Iafrate et al., 2004). These variants exhibit 

similar demographic patterns to SNPs. CNV analysis on genome-wide SNP data can lead to 

identification of chromosomal regions containing structural variations affecting complex traits 

(Zarlenga and Gasbarre, 2009).  
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A GWAS between CNVs and resistance to GIN in Angus cattle resulted in haplotype blocks 

containing immune-related genes being detected (Xu et al., 2014). According to these authors, 

when the CNV co-segregates with linked SNPs and associated genes, it contributed to the detected 

variations in gene expression and thus difference in host parasite resistance. Studies in sheep 

performed to investigate differentially expressed genes (DEGs) have identified various DEGs 

related to parasite resistance (Diez-Tascon et al., 2005; Keane et al., 2006; Ingham et al., 2008). A 

study conducted by Liu et al. (2011) in cattle identified 20 CNVs, 85% of which were associated 

with parasite resistance. Another large scale analysis of CNVs using SNP genotyping data by Hou 

et al. (2012) detected 297 CNV regions which were validated by qPCR and overlapped with 437 

Ensembl genes associated to GIN infection. Current high-throughput genome scan technologies 

such as next-generation sequencing (NGS) or SNP genotyping microarrays enables CNV 

identification at a genome-wide scale (Gheyas and Burt, 2013). The NGS has a potential of 

reducing ascertainment bias. Despite some of the highlighted potentials, these technologies have 

not been applied widely to small ruminants.  

 

2.4.6 Genomic selection 

Classical genetic improvement programs have relied on the use of phenotypes and pedigree 

information to generate estimated breeding values (EBV). The increasing use of SNP markers in 

studying complex traits also avails the potential to calculate genomic estimated breeding values 

(GEBVs) for traits such as parasite resistance when adequate genotypes and phenotypes are 

available. Understanding genetic architecture underlying resistance will enable the prediction of 

genetic risk or selective breeding (Spencer et al., 2009; Hayes et al., 2010). The genomic selection 

approach was first proposed by Meuwissen et al. (2001) in an attempt to use all SNPs in predictions 
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and has since become a powerful tool especially for genomic predictions in polygenic traits. 

Furthermore, accuracy of estimated SNP effects is influenced by the size of the reference 

population and genetic variance is explained by markers influenced by the effective population 

size (Ne) and density at which the SNP chip covers the genome.  

 

The accuracy of GEBV has been evaluated in experiments involving other livestock species, such 

as sheep (Daetwyler et al., 2012, Riggio et al., 2014b), with minimal work being conducted in 

goats. For reliable genomic prediction, the population under evaluation should have a close 

relationship with the reference population (Habier et al., 2010). To date, limited studies have been 

reported on the use of high density genomic information to select for nematode resistance in small 

ruminants. This may be due to low animal value, and high cost of genotyping. According to 

Kemper et al. (2011), genomic prediction of nematode resistance suggests only moderate accuracy 

with currently available SNP arrays; however, the potential of genomic selection warrants that the 

concept be further investigated. Riggio et al. (2014b) reported moderate accuracies in a within 

breed approach; however, they also noted that across breed accuracies were low or close to zero. 

Within breed genomic selection provides the benefits such as improved genetic progress and 

reduced generation interval.  

 

Genomic selection is now well established in the dairy cattle sector (for milk production) with 

examples in New Zealand and Ireland where GEBVs are now being routinely used by farmers 

(Spelman et al., 2013). The genomic selection programmes for sheep are starting to be rolled out 

to farmers also in Australia. Due to limited goats studies, lessons from sheep studies can be adopted 

for goats. This may require cheap genotyping (low density SNP chip) of large numbers of animals 
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combined with imputation from high density information in targeted animals in order to facilitate 

predictions across breeds (van der Werf et al., 2009). This could be a potential tool for low-

input/output farming systems, in which well phenotyped and genotyped animals from the same 

“breed” could be used as the training set to predict village animals genotyped using a lower 

coverage of 5k SNPs or less. Imputation from the 5k to 50k or higher SNP coverage can then be 

done to allow better prediction. The other option would be to create low density “custom” SNP 

chip which then incorporates the main GWAS hits from genome-wide association meta-analyses 

studies.  

 

Such an approach was successful in human data albeit the “hits” were generated from high 

powered studies (Spiliopoulou et al., 2015). These approaches will have the potential to reduce 

costs; however no low density arrays are commercially available. For now, the challenges of 

setting up such breeding schemes are great and genomic selection at least with current 

technologies, is likely to be expensive and logistically difficult to implement in tropical sheep and 

goats. Despite all these limitations, in systems where records are scarce, genomic selection is the 

only tool that still offers real potential in improving breeding. In these scenarios, a few farmers 

can be incentivised to collect data which then can be used to predict genetic merit from non-

recorded communal flocks.  

 

2.5 Integrated control, eradication to manipulation of host-parasite equilibrium 

Anthelmintic resistance in nematode populations may have resulted partially from the recurrent 

use and over reliance on drugs. As a result of this, concerns have been raised as to whether host 
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genetic resistance would similarly breakdown over a period of time, with nematodes evolving to 

adapt to the resistant hosts (McManus et al., 2014). According to Bishop (2012), the polygenic 

nature of host-parasite resistance suggests that worm evolution should be slower than that of 

anthelmintic resistance, as worms would have to evolve against many more targets. In addition to 

that, there is no published evidence for apparently resistant breeds losing their relative advantage 

compared with those that are more susceptible.  

 

The strategy of nematode control has evolved to a more logical manipulation of host-parasite 

equilibrium in grazing systems by implementation of various actions, which include genetic 

resistance of small ruminants. According to Mandonnet et al. (2014), different strategies can be 

implemented for nematode control especially in the tropics; these include short-term strategies like 

reducing host contact with infective larvae through grazing management. It also involves other 

strategies such as extending the efficiency of current anthelmintics molecules through targeted 

selective treatments (TSTs) which rely on the assumption that some animals are more infected 

than others. In addition to that, it also relies on a longer-term strategy which involves enhancing 

the ability of the host to tolerate the negative effects of worm through genetic selection.  

 

Use of markers in genomic selection dispenses with the need to record pedigrees since these can 

be reconstructed from the markers. However, accurate phenotypes for the reference populations 

will still need to be collected. These could be through creating some “phenotype farms” where 

farmers are incentivised to collect the phenotypes. Some possibilities would be to use existing 

research institute facilities or form breeding schemes (in low-input/output smallholder farming 

systems) through centralised nucleus flocks and village or community-based flocks. By using these 
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strategies, the problems associated with cost of using genomic tools may be mitigated. Village 

flocks can then be improved for parasite resistance using the genetic merits of the animals in the 

nucleus flock. Selection for resistant hosts can thus be considered as a sustainable control strategy 

as it leads to reduced pasture contamination and increased overall flock productivity. However, 

whatever method will be implemented, success will be most likely achieved if they are being used 

to complement other control strategies.  

 

2.6 Summary 

Different control strategies for GIN can be put in place and these include improved nutrition, 

reducing host contact with infective stages, use of vaccination, extending efficiency of 

anthelmintic through target selective treatment and in the long term enhancing ability of the host 

to tolerate negative effects of the worm. Given the reviewed candidate gene, QTL mapping and 

GWAS studies, the genetic architecture of GIN is a trait influenced by many loci with small effects. 

The overall lack of consensus in different studies can be explained by the diversity in studies 

involving different breeds, parasites species and experimental procedures.  

 

The use of sustainable genetic tools is not the ultimate solution but its use in combination with 

other integrated control methods could yield positive results. Conventional breeding systems 

involves phenotyping traits of importance and based on  the availability of pedigree information, 

EBVs are computed and used as a basis for selection. The use of genomic tools has the potential 

to be explored in low-input/output farming systems, where no records are kept. The identification 

of SNPs associated with GIN resistance can be used to develop customised chips for the low-
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input/output farming systems. In the long-run it is possible to consider the use of genomic tools as 

an alternative means of parasite control. 
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Chapter 3 

3 A survey on management and control of gastrointestinal nematodes in communal goat 

farms in Zimbabwe 

3.1 Abstract 

Goats are an important source of livelihood especially in smallholder subtropical communities. 

Infections with gastrointestinal nematodes (GIN) remain the most prevalent parasitic diseases 

affecting small ruminants. The study was conducted to assess management, the level of knowledge 

and control of gastrointestinal nematodes. Surveys were conducted in Chipinge (Natural region 

(NR) I and II), Shurugwi (NR III), Binga and Tsholotsho (NR IV) and Matobo (NR V). Data was 

collected in 135 households using a pretested semi-structured questionnaire. High flock sizes were 

found in NR IV and V which are low rainfall areas. Partitioning of gender roles was such that the 

adult males were involved in decision-making while adult females and children were involved in 

day-to-day management of animals. Farmers showed low levels of input use, with natural pasture 

(98.4%) being the main feed source and indigenous breeds (73.2%) being kept. Mashona breeds 

were reared in NR I, NR II (100% each) and 40% in NR III; Tonga and Matabele reared in NR IV 

(50% each), and Matabele (100%) in NR V. Farmers ranked food and financial benefits as the 

main reasons for keeping goats. Gastrointestinal nematodes ranked highest as the most common 

disease, with 57% of farmers not controlling or treating animals and 63% of farmers not having 

knowledge on the spread of GIN. Access to veterinary services, anthelmintic class and breeds used 

by the farmers had the highest effects on parasitic infections in households. There is need for 

incorporating training workshops for farmers, so as to improve their level of knowledge on GIN 

control This has a potential of improving goat productivity due to improved animal management. 
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3.2 Introduction 

Goats are among the main livestock ruminants reared in rural communities in Africa (Nabukenya 

et al., 2014). In Zimbabwe, goats are a means of livelihood with 97% of the 3.3 million goats being 

reared by smallholder farmers (Homann et al., 2007). Goats are a major source of income, and 

food protein for rural farmers in the tropics and sub-tropics. However, the full exploitation of these 

resources is hindered by drought, traditional systems of husbandry and the presence of numerous 

prevalent diseases (Sheferaw et al., 2015). Goats have an ability to survive and maintain condition 

in harsh environment compared to other ruminants (Emiru et al., 2013). Despite their hardiness, 

studies have shown that infections caused by gastrointestinal parasites (GIN) are a major factor 

hindering small ruminant productivity globally (Calvete et al., 2014; Zanzani et al., 2014). 

Economic losses are due to stunted growth, poor weight gain and poor feed utilization (Pedreira et 

al., 2006; Shija et al., 2014). The impact of helminths is manifested through high morbidity, 

mortality (Gwaze et al., 2009b), cost of treatment and control measures against helminths (Nwosu 

et al., 2007; Miller et al., 2011).  

 

Presently there is little or no attention given to the problem of parasitism of goats in the extensive 

farming systems. Although several studies have been conducted in Zimbabwe, a few have 

contributed to the control programmes used by the smallholder farmers and little is known about 

the level of awareness of the disease. Knowledge on these control practices may assist in revising 
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control strategies. The objective of the study was to assess the knowledge on GIN, management 

and control of the disease in different agro-ecological regions in Zimbabwe. 

  

3.3 Material and methods 

3.3.1 Study sites 

Surveys were conducted in Chipinge, Shurugwi, Binga, Tsholotsho and Matopo districts, 

representing the five agro-ecological regions/natural regions (NR) in Zimbabwe. Selection was 

based on the densities of goat numbers in the communal area (using information from the 

Livestock Production Department) targeting areas with minimal urban influence. Table 3.1 gives 

a summary of characteristics of the natural regions. 
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Table 3.1: Agro-ecological zones/ natural regions (NR) of Zimbabwe and farming systems 

 A modification from (Vincent et al., 1960) 

*Sampling in NR IV was conducted in two districts; this is where most of the goat populations are 

found in Zimbabwe 

 

3.3.2 Household sampling and data collection methods  

One hundred and thirty-five households were randomly selected, with the majority located in NR 

III, IV and V (Table 3.2). Sampling of households was based on goat ownership and the 

willingness to participate of farmers. Information was collected through individual interviews with 

household heads and in their absence the most senior member. The questionnaire collected 

information on farm characteristics, production, management practices, farmer knowledge on 

internal parasites and methods of control. Open-ended questionnaires were pre-tested to adapt the 

content to the local socio-economic environment and for clarity of the interview session. It was 

also done to remove any ambiguous question, to improve the flow of questioning and refine the 

questionnaire. 

 

NR District 
Rainfall 

(mm yr-1) 

Mean annual 

Temperature  

(ᵒC) 

Farming system 

I Chipinge > 1000 (very high) 18.2 Specialised and diversified 

II Chipinge 750-1000 (high) 18.2 Intensive 

III Shurugwi 650-800 (moderate ) 17.6 Semi-intensive 

IV Binga 450-650 (low) 25.3 Semi-extensive 

IV Tsholotsho 450-650 (low) 20.9 Semi-extensive 

V Matobo < 450 (very low) 19.9 Extensive 
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Table 3.2: Summary of households sampled across geographical locations 

Province NR District No. of villages No. of households 

Manicaland I Chipinge 4 15 

Manicaland II Chipinge 4 13 

Midlands III Shurugwi 8 27 

Matabeleland North  

IV Binga 6 28 

IV Tsholotsho 8 26 

Matabeleland South  V Matopo 4 26 

Total   5 33 135 

 

3.4 Statistical analyses 

Data was analysed using Statistical Analysis Systems (SAS) 9.3 (SAS, 2011), using the 

SURVEYMEANS and SURVEYFREQ procedures. Descriptive statistics and χ2 values were 

computed to investigate the relationship between natural regions and use of anthelmintic, and 

gender of household head and goat ownerships. The Generalised Linear Models procedure was 

used to analyse the effects of farmers' socio-economic profiles and natural regions on livestock 

flock sizes. Pair-wise comparisons of the least square means were performed using the PDIFF 

option. Indices were calculated to ranked data such as livestock species importance, traits 

perceived important by farmers, purpose of keeping goats, culling reasons and buck choice as 

important according to the formula: 

𝐼𝑛𝑑𝑒𝑥

=  
∑(𝑛 𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 1 + (𝑛 − 1)𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 2 + (𝑛 − 2)𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 3 … 𝑟𝑎𝑛𝑘 𝑖) 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋 

∑(𝑛 𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 1 + (𝑛 − 1)𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 2 + (𝑛 − 2)𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 3 … 𝑟𝑎𝑛𝑘 𝑖)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
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Where n highest value given to a variable based on the number of ranks (e.g. ranks are 1-3, then n 

= 3) and i = least rank (if least rank is 3, then i = 3) (Mbuku et al., 2006). A binary ordinal logistic 

regression model (PROCSURVEY LOGISTIC) was used to predict the probability of a household 

to experience gastrointestinal parasite infections. The logit model used for analysis was: 

𝑙𝑜𝑔
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 … … . . . 𝛽𝑛𝑋𝑛 + 𝜀𝑖𝑗𝑘𝑙 

where p is the probability of a household experiencing gastrointestinal parasite infections;
𝑝

1−𝑝
 is 

the odds ratio, which refers to the odds of a household experiencing GIN infections; β0 is the 

intercept; β1...βn are the regression coefficients of predictors; X1...Xn are the predictor variables 

(age of household head, gender of household head, goat flock sizes, goat breeds owned, availability 

of supplementary feed, vaccines, a housing structure and accessibility to veterinary services, 

anthelmintic treatment, anthelmintic class); ε is the random residual error distributed as N (0, 1 

σ2
E). 

3.5 Results  

3.5.1 Livestock production  

Livestock rearing was a major activity (77 %) in most households. Mean livestock populations and 

goat flock composition across regions are shown in Table 3.3. Goats were the most reared livestock 

(92.1 %) followed by chickens (84.3 %) and the least were pigs (7.9 %). Goats were ranked the 

most important livestock Ranking index (RI) = 0.35), followed by chickens (RI = 0.22), cattle (RI 

= 0.18) and the least were pigs (RI = 0.02). Total goat numbers ranged from 1-132 in households 

with average flock sizes of 13.9 ± 1.61. Goat flock sizes and composition differed by NRs, with 

highest total flock sizes being observed in NR IV and V (21 ± 2.55 and 16.2 ± 3.40) and the least 
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in NR 1 and 2 (6 ± 4.47 and 5.7 ± 4.81), respectively. Across the NRs majority of the farmers (59.3 

%) had flock sizes ranging 1- 10, 23.4 % (11-20) and 17.2 % having flock sizes of at least 20 goats. 

 

3.5.2 Goat flock composition, ownership and participation in rearing activities 

Flock size significantly varied by gender (P < 0.05) with male-headed households keeping larger 

flocks (15.3 ± 1.83) compared to female-headed households (6.4 ± 1.38). Goats were reared 

extensively (92.1%) and majority of the households rearing goats had at least 2 does whereas bucks 

were found in limited households. Majority of the goats were owned by adult males (53 %) and 

the least by children (19 %) in most natural regions and in NR IV women and children had high 

goat ownership (Figure 3.1). Rating of goat importance in relation to other livestock species was 

not affected by the total flock size (χ2 = 0.88). However goats were ranked the most important 

livestock by farmers who had the least number of goats (i.e. flock size range 1 – 10). Adult males 

were greatly involved in the rearing activities (50.8 %), female (37.9 %) and children to a lower 

extent (11.4 %). Partitioning of roles was in such a way that the adult males were mainly involved 

in decision-making processes such as purchasing, selling and decision on when to slaughter, 

whereas the day-to-day activities such as health management and herding were done by adult 

females and children (Figure 3.2). 

 

3.5.3 Perceptions of farmers on reasons for keeping goats 

Across the regions, goats were mainly reared for meat, cash, manure and to a lesser extent for milk, 

breeding and cultural reasons (Figure 3.3). Farmers ranked food and financial benefits as the main 

reasons for keeping goats. 
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Table 3.3: Livestock numbers and goat flock composition (± SE) 

Species  

 

Average per household 

 

% total livestock 

Natural region I II III IV V % 

Cattle  1.4 ± 2.03c 4.3 ± 2.18b 8.2 ± 1.52a,b 10.0 ± 1.16a 5.4 ± 1.52b 20.5 

Goats 5.1 ± 3.61b 4.15 ± 3.88b 6.3 ± 2.69b 14.7  ± 2.06a 14.3 ± 2.69a 28.0 

Sheep 0 0 1.1 ± 1.32 3.5 ± 1.01 1.4 ± 1.32 4.5 

Chickens 24.3 ± 13.45 17.1 ± 5.42 18.8 ± 4.59 14.8 ± 3.51 10.4 ± 4.59 40.3 

Pigs 2.2 ± 1.04 0 0 0.2 ± 0.24b 0 0.9 

Donkeys 0 0.5 ± 0.62b 0 1.8 ± 0.33a 2.3 ± 0.43a 3.2 

Other poultry 3.5 ± 1.28a 2.2 ± 1.16a,b 0.6 ± 0.54c 0.6 ± 0.48c 0.5 ± 0.54c 2.6 

Goat flock composition      % total flock 

Kids 1.2 ± 1.03b 1.8 ± 1.04b 1.7 ± 0.76b 5.4  ± 0.58a 1.5 ± 0.76b 21.7 

Mature bucks 1.1 ± 1.43b 0.5 ± 1.54b 1.1 ± 1.07b 4.5 ± 0.82a 3.6 ± 1.07a,b 20 

Mature does 3.7 ± 2.69b 3.4 ± 2.89b 5.1 ± 2.0b 11.1 ± 1.54a 10.7 ± 2.0a 58.3 

a,b,c Means in the same row with different superscripts are significantly different (P < 0.05) 
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Figure 3.1: Goat ownership by household members in communal in different agro-

ecological regions 

 

 

Figure 3.2: Management activities by household members in communal households 
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Figure 3.3: Reasons for keeping goats in communal households in different agro-

ecological regions 
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about 17% of the households using their own bucks. Culling was not a common practice (11%) 

across the regions and in areas where it was practiced, old age (19.7%) was the main cause. 

  

3.5.4.2 Goat health and management of gastrointestinal parasites 

Most of the farmers had access to healthcare (69.5%), with the government veterinary services 

being the primary healthcare provider (24.2%), extension (15.6%), and the least were drug 

suppliers and private veterinary specialists. Internal parasites were a prevalent health problem 

(89.5% of respondents). Pulpy kidney (62.9% of respondents), skin problems (46.9%), tick 

borne diseases (41%), orf (27.6%) and eye problems (23.6%) were also reported. Other 

diseases included feet, respiratory and reproductive problems. The main methods of disease 

control, involved use of traditional medicines (50.4%), antibiotics (41.7 %), tick control (41.1 

%), and anthelmintics (27.3%). About 19.8% did not know the names of specific drugs they 

use and 12.8% did not treat their animals. 

 

3.5.1 Knowledge on GIN 

Most of the farmers did not know how internal parasites are spread from one animal to the next 

(62.8%), while 19.6% suspected it could be from contaminated feed, 16.7% from contaminated 

water and the remainder from contaminated kraals. On perception of internal parasites 

infections symptoms; 33% had no idea, while 27.3% used loss in body condition as an 

indicator, 21.9% identifying worms after slaughter, 14.8% worms in faeces and the remainder 

by seeing worms in feaces, diarrhea, ruffled coat and bottle jaw.  
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3.5.4.4 Control of GIN 

Majority of the households did not provide any medical intervention for internal parasite 

control (57.9%), while 34.6% were dosing, and the remainder vaccinated or used traditional 

methods. Frequency of parasitic control was on a routine basis (52.7%) or on per-need basis 

(45.7%) and the rest was based on availability of funds. For those using anthelmintics, 31.7% 

treated adult animals, whereas 8.5% treated kids and 29.4% treated the whole flock. Overall, 

farmers used Benzimidazoles (56.8%), Salicylanilides (27.3%) and to a lesser extent 

Imidothiazoles and macrocyclic lactones  to control gastrointestinal parasites (Figure 3.4). The 

drugs used by the majority of the farmers were Valbazen® (56.8%), Systamex® (20.5%) and 

Albex® (15.9%). Proportions of farms using Benzimidazoles and Salicylanilides significantly 

differed by natural regions (P < 0.05). The use of Benzimidazoles and Salicylanilides was 

highest in NR I, III, IV and NR I, II, V respectively. Of the 44 farms relying on use of 

anthelmintics, 34% changed drugs within one year. Among these farmers, 13.6% changed the 

drug class between years.  

 

Factors considered affecting occurrences of parasitic infections in the different households 

were investigated and the availability of veterinary services, goat breeds and the anthelmintic 

class were used by farmers to predict the occurrence of GIN in the selected areas (Table 3.4). 

Male-headed households (OR = 1.58) and households with heads less than 40 years (OR = 

1.05) had the highest probability of experiencing GIN infections (P > 0.05). In addition to that, 

households owning at least 20 goats (OR = 1.73), and those owning crossbreeds (OR = 3.89) 

had higher chances of experiencing GIN infections than those with less animals and rearing 

indigenous breeds. 
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Figure 3.4: Proportion of households using different classes of anthelmintics in different 

agro-ecological regions; ML = Macrocyclic lactones, BZ = Benzimidazoles, SCL = 

Salicylanilides, IMID = Imidothiazoles 
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Table 3.4: Odds ratio estimates of a household gastrointestinal parasite challenges in the 

selected areas in Zimbabwe 

Effect 
Odds 

Ratio 

95% Wald Confidence 

limit 

Lower limit Upper limit 

Age of household head (> 40 vs < 40 years) 0.767 0.180 3.275 

Gender of household head (male vs female) 0.820 0.184 3.652 

Goat flock size (1 -10 vs 11-20 vs > 20) 0.792 0.442 1.419 

Goat breeds (indigenous vs crossbreeds) 1.658 0.625 4.396 

Availability of goat housing (no vs yes) 0.888 0.088 8.968 

Availability of supplementary feed (no vs 

yes) 

0.836 0.198 3.524 

Availability of veterinary services(no vs yes) 1.062 0.350 3.221 

Gastrointestinal parasitic control (no vs yes)   0.795 0.445 1.423 

Anthelmintic treatment (no vs yes) 0.186 0.035 1.000 

*Class of anthelmintic treatment (BZ vs either 

SCL/IMID/ML) 

2.300 0.890 5.949 

*ML - Macrocyclic lactones; BZ - Benzimidazoles; SCL - Salicylanilides; IMID – 

Imidothiazoles 

 

3.6 Discussion  

The study showed gender disparities in goat ownership with male-headed households having 

larger stock numbers. Despite the larger numbers of goats owned by men, the partitioning of 

roles was in such a way that men were mainly involved in decision making process while 

women and children were the main source of labour. Findings were similar to research by 

Oluka et al. (2005), who attributed this to men having disproportionate control over livestock 

resources and benefits. Livestock production is culturally a male-dominated sector, even 

though women provide the labour. According to Sinn et al. (1999), women are face difficulties 

in access to land, credit, inputs and services, such that to access agricultural extension services 
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is about one in twenty to that of men. This has a potential to negativily affect productivity in 

rural households. 

 

The level of animal management (nutrition, breeds reared, mating systems, disease control) 

were similar to findings by Kosgey et al. (2008). A characteristic of most smallholder farming 

systems: uncontrolled mating systems, indigenous breeds, minimal input use i.e. feeding and 

health management and animals reared for family needs vs. commercial purposes (Kosgey et 

al., 2008). High goat numbers in these natural regions can be associated with the availability 

of natural pasture, and according to Devendra (1999), goat population size and distribution 

favour the arid and semiarid conditions. According to Nwosu et al. (2007), localized 

contamination of watering and feeding areas may predispose the animals to parasitic infections. 

Improved feeding facilitates resistance to parasites. In addition, access to tanniferous feeds 

such as tree legumes also reduces levels of infection in goats (Gray et al., 2012). High goat 

flock sizes were noted in NRs IV and V, which are areas characterized by high temperatures 

and low rainfall, patterns also described by Omoike et al. (2014). 

 

There was limited level of knowledge and perception on causes of parasitic infections, modes 

of transmission, symptoms of infection and parasite control. This could be associated with the 

limited awareness of GIN infection. Current results were in contrast with findings by Moore et 

al. (2016), where farmers had higher awareness of parasite control and the need for proper 

diagnosis of animals before treatment. Despite farmers in this study highlighting that they had 

access to animal healthcare from government veterinary services, the extent of farm visits were 

very minimal. Most of the farmers were not controlling GIN, while a few relied on 

anthelmintics, vaccinations and traditional means. Frequency of anthelmintic treatments was 

relatively moderate, with farmers treating their goats only when animals exhibited clinical 
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signs. Results from this study were in agreement with some studies conducted elsewhere (Aga 

et al., 2013; Zanzani et al., 2014). Poor healthcare management can be mainly attributed to 

limited knowledge, or shortages of funds for procuring drugs. Shija et al. (2014) observed that 

many GIN infections rarely get veterinary attention because of their chronic and insidious 

nature and also clinical signs may be evident only during the terminal stages. 

 

For those using phamaceuticals as a means of parasitic control, the majority had limited 

knowledge of the drugs they were using and they mostly relied on the extension workers for 

health management. In this study, identification of the different anthelmintics was mainly based 

on the availability of residual containers in the households making it difficult amongst 

particpants who had disposed such containers. Benzimidazoles class were the most commonly 

used drugs/ antehilmintics across natural regions, and this was in line with the findings from 

Tsotetsi et al. (2013). This could have been attributed to the low cost of Benzimidazoles in 

relation to other anthelmintics (Tsotetsi et al., (2013; Leignel et al., 2010). A small proportion 

of households unknowingly alternated between drugs of the same or different anthelmintic 

class within the same year or between years; supporting findings by Zanzani et al. (2014) and 

Rojo-Vázquez and Hosking (2013). This, coupled with improper drug use could potentially 

introduce anthelmintic resistance despite the lower frequencies of use. According to Pedreira 

et al. (2006), efficient parasite-control programmes involve more than three treatments per 

year, which was not the case among the interviewd farmers. Some farmers used non-

anthelmintic drugs for treatment such as antibiotics, highlighting the need for farmer education 

on parasitic control and/or prevention methods, drug use and dosage. Considering that use of 

drugs has a potential of reducing parasitic infections. According to Aga et al. (2013), 

phamaceuticals remains the basis of helminths control programs, therefore proper use is very 

important. 
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Goats from male headed-households had higher  occurrences of infection, which could have 

been disproportionate allocation of resources biased towards other livestock such as cattle. The 

probability of infection was higher for households using Benzimidazoles as compared to other 

classes, this maybe due to development of resistance by parasites. This supports studies 

conducted by Rialch et al. (2013) and Kumar et al. (2015) who reported reduced efficacy of 

Fenbendazole, a variant of Benzimidazoles class against GIN. Households that were providing 

nutrient supplements had lower infection rates. Studies conducted by Torres-Acosta et al. 

(2012), Raju et al. (2015) and Garate-Gallardo et al. (2015) have shown that nutrient 

supplementation improves resilience against GIN. Poorly nourished animals are more 

susceptible to GIN infection leading to reduced productivity (Pathak et al., 2013). In this study, 

households with access to veterinary services showed high chances of having infections than 

those without; in this study it was because extension workers interacted less with farmers. On 

the other hand, indigenous breeds showed lower infection. According to Aumont et al. (2003), 

local tropical breeds are adapted to constraints of poor-quality grass, high temperatures and 

local diseases, and thus thrive under such conditions. 

 

The disconnection between level of awareness of gastrointestinal parasitic diseases, their cause 

and control, warrant an urgent need to bridge this gap.  

 

3.7 Conclusion  

Goat farming is important for smallholder farmers in terms of improving livelihoods by 

providing food and serving as a source of insurance in cases of emergencies. Flock sizes were 

greater in the semi-arid agro ecological regions and numbers were also high in male-headed 
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households, though women and children were found to be playing an active role in goat 

management. The disconnection between level of awareness of gastrointestinal parasitic 

diseases, their cause and control, warrant further studies. The survey demonstrated that the 

level of awareness in GIN disease, transmission methods and control was very low. Most of 

the farmers were not treating their goats and some were using non-anthelmintic drugs to treat 

infections. Capacitation of farmers via trainings was necessary for the effective control of GIN. 

The next chapter provides insights on prevalence of GIN in the same study sites described in 

this chapter. The initial sample collection was conducted at the same time when the survey was 

conducted and then conducted different at various times, taking seasons into consideration. 
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Chapter 4 

4 Prevalence and risk factors of gastrointestinal nematodes in low-input, low output 

farming systems in Zimbabwe 

4.1 Abstract 

A longitudinal study was conducted in low-input, low-output farming systems to determine the 

prevalence of gastrointestinal parasitic infections in different age groups, sex and associated 

risk factors in goats. A total of 580 indigenous goats were randomly selected in areas 

representing the five agro-ecological regions of Zimbabwe in the dry and wet seasons. Blood 

and faecal samples were collected from each animal and egg/oocyst per gram of faeces 

(epg/opg), larval culture, and packed cell volumes (PCV) were determined. Factors affecting 

parasitic infections were evaluated. Highest prevalence was determined for Eimeria oocysts 

(43%), strongyles (31%) and lower levels in trematodes and cestodes. Parasites identified were 

Haemonchus spp, Strongyloides spp and Oesophagostomum spp. Area, season, sex and age 

significantly influenced patterns of gastrointestinal infections (P < 0.05). Prevalence was 

highest in goat populations from Chipinge and Binga. Cannonical correlations indicated that 

parasite species composition varied by area and impacts of risk factors also differed. Risk of 

infection was very high for goats sampled in natural regions (NR) I, II, III (OR = 6.6 - 8.2; P 

< 0.05) as compared to those in NR IV and V. Highest helminths and Eimeria infections were 

observed in the wet season (P < 0.05). Young animals were more susceptible to parasitic 

infections (P < 0.05). High prevalences were observed for goats aged 1 and 6 years with the 

least, in goats aged 3. Prevalence was higher in males than females, with odds of infection for 

males being almost three times to that for females (P < 0.0001). Knowledge concerning 

gastrointestinal helminth biology and epidemiological infection patterns caused by these 

Stellenbosch University  https://scholar.sun.ac.za



79 

 

parasites is essential in the development of appropriate control strategies and this has a potential 

to reduce production losses. 

Keywords: faecal floatation, gastrointestinal tract, helminth, coccidian, risk assessment 

 

4.2 Introduction 

Goats make important contributions to human livelihoods in developing economies, since they 

are extremely hardy animals that can survive and reproduce under extremely high temperatures 

and low humidity with minimum available feed (Baker and Gray, 2004). Of the approximately 

1 billion world goat population, 56 and 30% are located in Asia and Africa, respectively (FAO, 

2015). The majority of the goats in Zimbabwe are owned by smallholder farmers in mixed 

crop-livestock systems (Rooyen and Tui, 2009). In this farming system, goats are increasingly 

used to augment cash income and enhance food security, thus serve as an important component 

in the household’s livelihood strategies. Socio-economic importance is attached to goat 

ownership such that, in some instances, they may be the only realisable wealth of a rural 

household (Nwosu et al., 2007). In addition, goats have other functions such as provision of 

manure, cultural roles, thus playing a significant role in livelihoods. 

 

Gastrointestinal nematode (GIN) infections are the main prevalent parasitic diseases affecting 

small ruminant productivity worldwide, especially in tropics and sub-tropics (Torres-Acosta 

and Hoste, 2008; Calvete et al., 2014). Globally the most common nematode species known to 

affect small ruminants are Haemonchus contortus, Trichostrongylus colubriformis, 

Teladorsagia circumcincta and some species such as Nematodirus spp., which are not found 

in sub-Saharan Africa (Bishop and Morris, 2007). Large numbers of internal parasites and their 

prevalence have been documented in different studies of goats including Zimbabwe (Pandey 
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et al., 1994), Namibia (Kumba et al., 2003),  Nigeria (Nwosu et al., 2007), Kenya (Odoi et al., 

2007), Ethiopia (Sissay et al., 2007), South Africa (Gwaze et al., 2009b), Cameroon (Ntonifor 

et al., 2013); Tanzania (Sharma and Mandal, 2013). The most common nematode genera 

detected in mixed infections in these studies were Haemonchus, Trichostrongyles, 

Strongyloides, Trichuris, Bunostomum, Oesophagostomum, Cooperia, Nematodirus spp. 

(Badaso and Addis, 2015). Trichostrongyle nematodes are considered among the most 

pathogenic and economically important parasites of small ruminants (Jurasek et al., 2010) and 

further studies on these are needed in order to devise programmes for preventing managing 

these parasitic diseases. 

  

Gastrointestinal parasitism is associated with economic losses, low productivity, reduced 

animal performance (Badran et al., 2012), high mortality and morbidity (Negasi et al., 2012). 

Goats infected with internal parasites show a rough dull-coat, weakness, diarrhea, apathy, tail 

rubbing, signs of hypo-proteinaemia, submandibular oedema (bottle jaw), loss of appetite and 

weight loss (Risso et al., 2015). In addition, some trichostrongyle nematodes cause anaemia 

due to their haematophagous effect and protein loss, which can lead to ill-thrift in animals. In 

addition to gastrointestinal nematodes, coccidiosis (especially Eimeria species) have also been 

known to infect livestock in Zimbabwe, having moderate to high pathogenic effects (Radfar et 

al., 2011). However, co-infection with other trichostrongyle nematodes makes diagnosis of 

clinical coccidiosis difficult (Chhabra and Pandey, 1991; Zainalabidin et al., 2015). 

 

Host and environment risk factors (agro-ecological conditions, animal husbandry practices 

such as housing system, and pasture management) play an important role on the onset of GIN 

infections (Ratanapob et al., 2012). These largely determine the type, incidence and severity of 

various parasitic diseases (Badran et al., 2012). Other risk factors such as the host species, sex 
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of the animal, age, body condition and breed/genotype (Badaso and Addis, 2015), parasite 

species and intensity of the worm population, also have an effect on the development of 

gastrointestinal parasitic infections (Tariq et al., 2010). Lack of area-specific studies conducted 

in Zimbabwe (Pandey et al., 1994; Matika et al., 2003) have generated limited information on 

gastrointestinal parasite prevalence in the different agro-ecological regions and associated risk 

factors to parasite infection. Knowledge on the prevalence, specific composition of the 

gastrointestinal fauna can provide baseline information which can be used to control parasite 

infections. The objectives of this study were to: i) determine GIN present in diverse farming 

systems; ii) determine level of prevalence of the parasites considered, and iii) evaluate risk 

factors on parasite infections in goats reared in low-input, low-output systems in Zimbabwe.  

 

4.3 Material and methods 

4.3.1 Study sites and animals 

The study was conducted between November 2014 and June 2015 in low-input low-output 

farming systems in five districts of Zimbabwe: Chipinge, Shurugwi, Binga, Tsholotsho and 

Matobo, representing the five agro-ecological regions. Table 4.1 shows a description of the 

study districts. 
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Table 4.1: Agro-ecological zones/natural regions (NR) of Zimbabwe and vegetation 

NR District 
Rainfall 

(mm yr-1) 

Temp 

(ᵒC) 

Altitude 

(m) 
Vegetation 

I Chipinge > 1000 18.2 > 1600 

Mountain grassveld: Themeda, Loudetia, 

Andropogon, Monocymbium, Eragrostis spp. 

Shrubs: Senecio spp. 

 

II Chipinge 750-1000 18.2 
1200 – 

1675 

Hyparrhenia tall grassveld: Hyparrhenia, 

Hyperthelia, Heteropogon, Brachiaria, Digitaria, 

Eragrostis, Andropogon spp. 

Shrubs Terminalia, Burkea, Combretum, Vachellia 

spp. 

 

III Shurugwi 650-800 17.6 > 1200 

Hyparrhenia and Eragrostis veld: Eragrostis, 

Heteropogon, Themeda, Cymbopogon, 

Hyparrhenia spp. 

Shrubs Vachellia, Brachystegia, Julbernardia spp. 

 

IV Binga 450-650 25.3 
450 – 

1050 

Eragrostis veld: Eragrostis Schizachyrium, 

Heteropogon, Schmidtia, Pogonarthria, 

Brachiaria, Urochloa, Digitaria, Enneapogon, 

Aristida spp. 

Shrubs: Terminalia, Combretum, Vachellia, 

Commiphora, Colophospermum, Grewia, 

Brachystegia, Enneapogon spp. 

 

IV Tsholotsho 450-650 20.9 
450 - 

1050 

Eragrostis veld: Eragrostis Schizachyrium, 

Heteropogon, Schmidtia, Pogonarthria, 

Brachiaria, Urochloa, Digitaria, Enneapogon, 

Aristida spp. 

Shrubs: Terminalia, Combretum, Vachellia, 

Commiphora, Colophospermum, Grewia, 

Brachystegia, Enneapogon spp. 

 

V Matobo < 450 19.9 
900 – 

1200 

Aristida and Eragrostis veld: Aristida, Digitaria, 

Triraphis, Heteropogon, Eragrostis, Panicum, 

Baikiaea spp. 

Shrubs: Colophopsermum, Pterocarpus, 

Julbernardia, Brachystegia, Burkea, Terminalia, 

Guibourtia, Combretum spp. 

Modified from (Vincent et al., 1960) and (Gambiza and Nyama, 2000);  

 

4.3.2 Animal management 

Animals from Chipinge, Shurugwi, Binga, Tsholotsho and Matobo were owned by smallholder 

farmers who had small flock sizes, ranging from 1 to 10. The animals from these areas were 

maintained under extensive management systems, foraging on farm land or in communal 
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pastures during the day with minimum supplementation and kraaled during the night. In these 

areas, veterinary care was low to non-existent, with goats not treated/dewormed. Animals 

mated indiscriminately in communal grazing areas. Goats in these areas had contact with other 

animal species such as cattle and sheep in the communal grazing areas. 

  

Animals at Matopos Research Station (in the district of Matobo) were managed semi-

intensively. Goats foraged on the Research Station open rangeland throughout the year with 

some rotation in the paddocks during the day, minimum supplementation (1 kg of prepared 

meal of forage legumes + maize per animal) and penned at night. All animals were treated with 

an acaricide weekly during the wet season and fortnightly during the dry season to control ticks 

and tick-borne diseases. Ivermectin and closantel were used routinely to control for 

gastrointestinal parasites. Mating was done yearly from June to August, with each buck mated 

with 25 - 30 does. 

 

4.3.3 Animal ethical clearance 

Ethical clearance (certificate number 001/15/Animal) for animal use was approved by the 

Animal Ethics sub-committee of the Department of Livestock and Veterinary Services, 

Zimbabwe. This was based on international standards of animals use in research. 

4.3.4 Study animals 

Animals from households described in chapter 3 were used. Size for biological samples was 

determined using the equation n = 1.962pq/L2 (Thrusfield, 1997), where n = sample size, p = 

expected prevalence, q = 1- p and L = limits of error on the prevalence (absolute precision at 

95% confidence interval). The expected prevalence was estimated at 80% in the communal 

areas. In addition, a 10% allowance for non-response in the communal herds was made, giving 
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a total sample size of 270 goats. This led to goats of different ages being sampled depending 

on availability per farm. On the other hand, all the animals at Matopos Research Station were 

sampled, resulting in 310 additional animals of different age classes as summarised in Table 

4.2. 

 

Table 4.2: Summary of animals sampled across geographical locations 

NR District/area Sample size aPredominant 

breed  

I Chipinge 30 Mashona  

II Chipinge 26 Mashona 

III Shurugwi 54 Mashona 

IV Binga 56 Tonga  

IV Tsholotsho 52 Matabele  

V Matopos Research Station 52 Matabele  

V Matobo 310 Matabele  

Total 5 580  

aIn each of the communal areas farmers  kept predominant breeds together with crossbreds 

The Mashona and Tonga goats are small, compact and hardy indigenous breeds. According to 

Mason and Maule (1960), these are prototypes of the Small East African goats, with mature 

body mass of 25 – 30 kg. The Matabele type goats are larger than the Mashona, with mature 

body mass ranging from 40 - 65 kg for males and 30 - 45 kg for females.  

 

4.3.5 Sample collection, examination and culture 

Faecal and blood samples were collected directly from the rectum and jugular veins by 

venipuncture into airtight containers and EDTA vacutainer tubes, respectively. Sample 
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collection was conducted over two different seasons targeting the dry (late April - early 

October) and wet (late October - early April) seasons from 2014 to 2015. Sampling was 

conducted in January, June and July (Tsholotsho); February, June and July (Shurugwi); April, 

June and October (Chipinge), February, May and November (Binga); January, May and 

September (Matobo); January, May, July and September (Matopos Research Station). 

Collection was done on 1,872 records from 580 animals.  Rainfall and temperature for the 

different areas was obtained from the Meteorological department. 

 

Samples were kept between 2 - 4 °C during field sampling in cooler boxes prior and later 

refrigerated prior to analyses. Briefly, faecal egg counts (FEC) were determined by the 

modified McMaster technique, using floatation methods for nematodes, cestodes, and 

sedimentation methods for trematodes (MAFF, 1986). Faecal cultures were prepared by 

incubating 2 - 3 g of faeces between 26 - 28°C for 7 days at 80% humidity after which infective 

larvae were collected using a modified Baerman technique as described by Roberts and 

O'sullivan (1950). Distinguishable nematode eggs (Nematodirus and Trichuris), trematode and 

cestode eggs were identified directly. Identification of 3rd stage larvae of nematodes was only 

at the genus level according to Van Wyk et al. (2004). Packed cell volumes (PCV) were 

assessed using the capillary micro-hematocrit centrifuge method (Bull, 2000). Low PCV is 

usually associated with cases of helminthiasis (Zainalabidin et al., 2015), especially H. 

contortus, which causes anaemia. To complement the information on the samples collected, a 

questionnaire was administered and information on management practices, farmer’s 

knowledge on internal parasites and methods of control, was also recorded. 
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4.4 Statistical analyses 

Analyses were carried out with the Statistical Analysis System v 9.3 (SAS, 2011). Descriptive 

analysis was conducted on survey data. The traits analysed were FEC for nematodes and 

coccidiosis and PCV. Faecal egg counts for all nematodes and coccidia were transformed 

through a base 10 logarithm (log10FEC+25) to approximate a normal distribution. Data and the 

results were back-transformed by taking anti-logarithms and presented as geometric means 

(GFEC). All statistical tests for FEC were applied to the transformed data. Fixed effects were 

explored using PROC GLM procedure (SAS, 2011) using the following model: 

 

Yijkl = μ + Si + Tj + Uk + Al + A*Tlj + A*Ulk + εijkl 

 

where Yijkl is the response variable of LFEC (Lstrongyles, LFasciola, Lamphistomes, 

LTrichuris, LStrongyloides, LMoniezia) and   LEimeria, μ is the population mean; Si is the 

effect of the ith study area (Chipinge, Shurugwi, Binga, Tsholotsho and Matobo districts); Tj is 

the effect of the jth sex (male or female); Uk is the effect of the kth season (wet or dry); Al is the 

effect of the lth age (1-7years); A*Tlj and A*Ulk are the interactions (age*season and age*sex); 

εijkl is the random residual effect. Pairwise comparisons were carried out using the PDIFF 

option in SAS (2011). An ordinal logistic regression was used to determine the odds of 

infection status of the different parasites using the PROC LOGISTIC procedure (SAS, 2011): 

𝑙𝑜𝑔
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 … … . . . 𝛽𝑛𝑋𝑛 + 𝜀𝑖𝑗𝑘𝑙 

where p is the probability of experiencing GIN infections; [p/1 − p] is the Odds ratio, which 

refers to the odds of experiencing GIN infections; β0 is the intercept; β1...βn are the regression 

coefficients of predictors; X1...Xn are the predictor variables (sex, age, area, month, breeds, 

availability of housing, supplementary feeding, veterinary services, farmer knowledge on GIN, 
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parasite control method, use of anthelmintics, anthelmintic class used); ε is the random residual 

error distributed as N (0, 1 σ2
E). The best model was then chosen using stepwise selection. 

Overall fit of the logistic regression models was assessed using the Hosmer-Lemeshow 

goodness-of-fit statistics.  The CANCORR procedure was then used to assess the relationships 

between parasites and the effect of risk factors on parasites in different sites.  

Prevalence was calculated as a percentage of d/n where d is the number of animals infected 

and n is the total number of animals examined through FEC.  

 

4.5 Results  

4.5.1 Animal management  

During the year, goats relied on natural foraging for feed (98.4%), while the remainder also 

received nutritional supplements in addition to the natural pasture. Ninety-five percent of the 

farmers provided their goats with housing (kraals). Majority of the farmers in the communal 

areas (69.5%) has access to healthcare services i.e. government or private veterinary 

practitioners. Regardless of, 57.9% of the farmers did not control for gastrointestinal parasitic 

infections. Among the farmers interviewed, 62.8% lacked general knowledge of parasitic 

infections. 

 

4.5.2 Prevalence of gastrointestinal helminths and Eimeria 

The L3 nematodes identified from faecal cultures of all animals, across all age groups were 

Haemonchus and Oesophagostomum in Chipinge, Matobo (communal and Research Station) 

and Tsholotsho. In Shurugwi parasites identified were Haemonchus and Strongyloides, while 

in Binga all faecal cultures were negative for any genera of nematodes. Mixed infections, 
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comprising of 14% of the faecal cultures, were composed of Haemonchus, Oesophagostomum 

and Strongyloides, with cases of mixed infections highest in Chipinge (NR 1). Faecal egg 

counts were highly variable for the different areas as summarised in Table 4.3. Over the study 

period, majority of the animals had FECs of zeros for all the parasites, with 43 to 80% (dry - 

wet season) for Strongyles being documented and 55 to 60% for coccidia (Eimeria species). 

Level of infection was low for all groups of parasites ranging from Strongyles (143.8 ± 14.87 

epg), Eimeria spp (216.2 ± 21.44 opg) and even lower for the other species, ranging from 0.04 

± 0.00 to 6.0 ± 4.32 epg. The highest epg recorded for Strongyles was 370.2 ± 44.56 epg in the 

wet season and for Eimeria species in goats aged 1 (457.7 ± 82.31 epg).  

 

The highest prevalence (43%) was observed for Eimeria spp., followed by nematodes (31%), 

trematodes (5%) and cestodes (0.4%). Prevalences for all parasites were generally low in the 

Research Station flock as compared to the communal areas (P < 0.05).  Information from FEC 

was used in Table 4.4 to summarise the prevalence of different gastrointestinal parasite across 

study areas. Prevalence levels were higher for younger animals i.e. yearlings (76%) vs. older 

goats i.e. 7 years (38%). Eimeria infections were the most prevalent parasitic infection, 

followed by Strongyles, and the remainder from the remaining species in all age groups. The 

level of Strongyles and Eimeria infections were generally low in goats of all age groups, using 

the intensity scales (levels of infection) by Hansen and Perry (1994), also by Asha and Chebo 

(2015). The highest levels of Eimeria infection were among yearlings (457.7 ± 82.03 opg) and 

those aged 6 years (320.3 ± 146.7 opg). Strongyles infections were low, at 292.2 ± 134.7 epg, 

for six-year old goats and (129.5 ± 24.3 to 207.2 ± 46.1 epg) for 1 to 3 year-old goats. The 

overall prevalence of the total internal parasites was higher in males (77%) than in females 
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(55%) (Table 4.5; P < 0.05). Conversely, the prevalence of Strongyloides and Moniezia spp. 

infections was higher in females than in males. 

 

Prevalence of infection was high in wet (64%) vs. dry season (36%). In addition, the means 

(epg/opg) were calculated to assess the distribution and level of infection by month (Figure 

4.1). Strongyles and coccidian distribution followed the rainfall patterns in Zimbabwe with 

high counts obtained in hot-wet as compared to the cold-dry months. Least squares means by 

season and sex for PCV, LFEC,  LEimeria and GFEC at different ages are presented in Table 

4.6. Packed cell volume, LFEC, GFEC were high for wet vs. dry season, males vs. females for 

all age groups and these were significantly different (P < 0.05) among each other and between 

their interactions (age*season and age*sex). Three percent of the animals had low PCV of less 

than 20 %. Phenotypic correlation between Strongyles and PCV was relatively very weak and 

non-significant (r = 0.003; P > 0.05).  In this study the levels of PCV were low and not 

significant. Fixed effects and their interactions were also tested for their effect on different 

parasites using the model stated.   
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Table 4.3: Summary statistics (mean ± SE, range) of gastrointestinal parasitic infections in goats in different areas in Zimbabwe 

Area 
 

Strongyles 
Fasciola 

spp. 
Amphistomes 

Trichuris 

spp. 

Strongyloides 

spp. 

Moniezia 

spp. 

Eimeria 

spp. 

Binga aMean  FEC 

(Range) 

 

191.7 ± 45.91 

(0  -  1950) 

0.2 ± 0.18 

(0 – 9) 

3.5 ± 2.01 

(0 -  90) 

0 0 0 290.6 ± 54.66 

(0 – 1500) 

Chipinge Mean  FEC 

(Range) 

 

314.4 ± 60.78 

(0 – 7700) 

0.04 ± 0.034 

(0 – 6) 

0.02± 0.01 

(0 – 2) 

0.31 ± 0.29 

(0 – 50) 

41.0 ± 34.64 

(0 – 6000) 

6.6 ± 6.10 

(0 – 1050) 

188.3 ± 28.44 

(0 – 2500) 

Matopo Mean FEC 

(Range) 

 

309.3 ± 43.21 

(0 – 3600) 

0 0.2 ± 0.10 

(0 – 11) 

0.6 ± 0.59 

(0 – 75) 

5.1 ± 4.20 

(0 – 500) 

0 103.0 ± 39.66 

(0 – 4500) 

Shurugwi Mean  FEC 

(Range) 

 

277.8 ± 70.71 

(0 – 8650) 

0.2 ± 0.11 

(0 – 11) 

9.7 ± 5.14 

(0 – 703) 

0.4 ± 0.35 

(0 – 50) 

7.3 ± 5.15 

(0 – 700) 

2.0 ± 1.75 

(0 – 250) 

263.7 ± 43.88 

(0 – 2950) 

Tsholotsho Mean FEC 

(Range) 

 

114.0 ± 23.22 

(0 – 2350) 

0 0 0.4 ± 0.35 

(0 – 50) 

2.6 ± 1.50 

(0 – 150) 

28.1 ± 26.43 

(0 – 3800) 

247.8 ± 68.68 

(0 – 9000) 

Research 

station 

Mean FEC  

(Range) 

 

56.1 ± 8.25 

( 0 – 3800) 

0.01 ± 0.005 

(0 – 3) 

0.2 ± 0.05 

(0 – 34) 

1.8 ± 1.00 

(0 – 1000) 

0 1.6 ± 1.00 

(0 – 1000) 

230.5 ± 25.62 

(0 – 17450) 

aMean  FEC: means were calculated on non-transformed  faecal egg counts so as to observe the levels/intensities of infection   
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Table 4.4: Prevalence (%) of gastrointestinal parasitic infections in goats in different areas in Zimbabwe 

Area Binga Chipinge Matopo Shurugwi Tsholotsho Research station 

Strongyles 61.5 62 77.6 50.8 43 15.7 

Fasciola spp. 5.1 1.3 0 4.9 0 0.9 

Amphistomes 12.8 0.6 3.45 24 0 3.1 

Trichuris spp. 0 0.6 0.9 0.8 0.8 0.6 

Strongyloides spp. 0 2.5 2.6 1.6 2.3 0 

Moniezia spp. 0 0.7 0 0 0.7 0.4 

Eimeria spp. 56.4 51.2 26.7 53.3 39.1 40 

All prevalences were calculated using faecal egg counts 
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Table 4.5: Prevalence (%) for helminths and coccidian parasites by sex of goats in different areas in Zimbabwe 

Area  Sex  Strongyles Fasciola 

spp. 

Amphistomes Trichuris 

spp. 

Strongyloides 

spp. 

Moniezia 

spp. 

Eimeria 

spp. 

Binga Male   66.7 11.1 16.7 0 0 0 55.6 

 
Female  57.1 0 9.5 0 0 0 57.1 

Chipinge Male   63.4 0 0 0 2.4 0 48.8 

 
Female  61.5 1.7 0.85 0.9 2.6 0.9 52.1 

Matopo Male   80.7 0 5.3 0 0 0 24.6 

 
Female  74.6 0 1.7 1.7 5.1 0 28.8 

Shurugwi Male   54 2 18 2 2 0 56 

 
Female  48.6 6.9 28.1 0 1.4 0 51.4 

Tsholotsho Male    38.9 0 0 1.7 3.4 1.7 42.4 

 
Female  46.4 0 0 0 1.5 0 36.2 

Research station Male   27.3 1.8 6.7 1.4 0 0 53.9 

 
Female  8 0.2 0.7 0 0 0.7 30.7 
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Area of sampling had significant effects (P < 0.05) on all parasites except LTrichuris and 

LMoniezia. Specific effects of area on GIN infections are further explained in the section 

below. Sex, age and the interaction of season*age had significant effects on LStrongyles and 

LEimeria (P < 0.05). Season had significant effects on LStrongyles, LAmphistomes and 

LStrongyloides (P < 0.05). The interaction of sex*age had no effect on parasitic infections in 

all areas. Prevalence was highest in goat populations from Chipinge and Binga, greater in wet 

season and in males. High prevalences were observed for goats aged 1 and 6 years while the 

least prevalences for the 3 year olds. 

 

 
Figure 4.1: Rainfall patterns and mean monthly faecal egg counts for goats in all agro-

ecological regions in Zimbabwe  (There was no sampling in March, August and December), 

FECs for Fasciola spp., Amphistomes, Trichuris spp., Moniezia spp. were very low, hence the 

shape of the graph.  
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Table 4.6: Least squares means ± S.E. by season and sex for different ages for packed red 

cell volume (PCV (%)) logarithm transformed faecal egg counts (LFEC) for helminths/ 

coccidian oocysts and geometric mean of faecal egg counts (GFEC (EPG)) 
Age/ yrs Trait  Season  Sex 

  
 Dry Wet  Male Female 

1 PCV  25.7 ± 0.59 26.7 ± 0.77  24.9 ± 0.60 27.5 ± 0.71 

 

bLFEC  1.7 ± 0.03 2.1 ± 0.05  2.0 ± 0.03 1.9 ± 0.04 

 LEimeria  2.2 ± 0.04 1.8 ± 0.05  2.1 ± 0.04 1.9 ± 0.05 

 
GFEC  94 203   223 153 

2 PCV  27.2 ± 0.57 30.1 ± 0.86  27.4 ± 0.68 30.0 ± 0.69 

 
LFEC  1.8 ± 0.03 2.2 ± 0.05  2.0 ± 0.03 1.9 ± 0.04 

  LEimeria  1.9 ± 0.04 1.8 ± 0.06  1.9 ± 0.05 1.8 ± 0.05 

 GFEC  89 252  307 153 

3 PCV  27.9 ± 0.58 28.0 ± 0.80  28.7 ± 0.82 27.3 ± 0.55 

 
LFEC  1.8 ± 0.03 2.1 ± 0.04  2.0 ± 0.04 1.9 ± 0.03 

  LEimeria  1.8 ± 0.04 1.9 ±0.06  1.9 ± 0.05 1.8 ± 0.04 

 
GFEC  135 257  171 201 

4 PCV  27.3 ± 0.60 28.5 ± 0.83  28.0 ± 0.82 27.9 ± 0.60 

 
LFEC  1.8 ± 0.03 1.9 ±0.06  2.1 ± 0.04 1.9 ± 0.03 

  LEimeria  1.9 ± 0.04 1.9 ± 0.06  2.0 ± 0.06 1.8 ± 0.04 

 
GFEC  76 281  167 133 

5 PCV  26.9 ± 0.90 29.5 ± 1.63  28.1 ± 1.65 28.2 ± 0.88 

 
LFEC  1.8 ± 0.04 1.9 ± 0.09  1.8 ± 0.09 1.8 ± 0.05 

  LEimeria  1.8 ± 0.06 2.1 ± 0.12  2.1 ± 0.12 1.9 ± 0.06 

 
GFEC  69 277  57 127 

6 PCV  25.7 ± 1.72 27.1 ± 2.32  26.7 ± 1.80 26.2 ± 2.23 

 
LFEC  1.8 ± 0.09 2.6  ± 0.12  2.4 ± 0.09 2.0 ± 0.12 

  LEimeria  2.1 ± 0.12 1.7 ± 0.16   2.2 ± 0.13 1.6 ± 0.16 

 

cGFEC  32 289  157 59 

bInfection with all the investigated parasites except coccidian oocysts. LFEC includes all 

helminthes infection;  cGFEC- geometric faecal egg counts 
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4.5.3 Risk factors associated with gastrointestinal parasite infection 

Factors affecting gastrointestinal parasitic infections are summarised in Table 4.7. Odds ratios 

indicated that area of sampling and age of animal had the highest effect on parasite infection. 

In addition to area of sampling and age; month of sampling and sex of goats also had significant 

effects on the distribution of parasites (P < 0.05). Odds ratios for the effect of month were 

generally low, but the highest/peak infection were in February (OR = 0.68) and the lowest from 

April to October (OR = 0.14 - 0.22), which indicates the start of the dry season. Goats sampled 

from Chipinge and Shurugwi (NR I, II and III) districts had the highest risk of parasitic 

infection (OR = 6.6 - 8.2; P < 0.05) as compared to those from dry and hot Tsholotsho, Binga 

and Matobo districts (NR IV and V). The risk of infection was highest at the extreme ages 1, 6 

years; moderate at 2, 3, 5 years and lowest at 4 years (P < 0.05). The odds for males being 

infected with intestinal parasites were 2.8 higher than for females (P < 0.0001). 

  

4.5.4 Association of risk factors with parasitic infections in different areas  

Canonical analyses were used to further explore the parasite patterns and the impact of factors 

in different areas. Eigenvectors indicated that Eimeria and Strongyles were the most common 

parasites across the areas. In Binga, parasitic infections of Strongyles, Eimeria and 

amphistomes were the most common. Moderate to high correlations between breed (r = 0.50), 

month (r = 0.50) and availability of supplementary feed (r = 0.82) were associated with 

Eimeria, Strongyles and amphistomes infections. Comparing risk factors indicated that 

increasing supplementary feeding reduced the need for administering anthelmintic control (r = 

- 0.75). Infections in Chipinge included those from Eimeria and Trichuris. Low infections in 

Eimeria were associated with a decrease in age (r = - 0.36) and lack of parasitic control (r  
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= 0.31). Results indicated that the absence of anthelmintic treatment had low correlations (r = 

- 0.24) with Trichuris infections. The use of Salicylanilides and Macrocyclic lactones class of 

anthelmintics was highly negatively associated with Trichuris infections (r = - 0.91). Eimeria 

and Strongyloides infections were most common in Matobo. The absence of veterinary services 

was associated with Eimeria infections (r = -0.46) and the effect of month had a high negative 

relationship with Strongyloides infection. Common parasitic infections in Shurugwi included 

Strongyles, amphistomes and Moniezia. In this area, month had strong negative relationship 

with Strongyles and amphistomes infection. Low Moniezia infections (r = 0.46) were 

associated with use of indigenous breeds, while use of the same breeds showed an increase in 

amphistomes infections. Several risk factors were responsible for Strongyles and Eimeria 

infections in Tsholotsho. Low infections in Strongyles and Moniezia were positively associated 

with month, age, availability of supplementary feeds, with correlations ranging from 0.36 - 0.7, 

the converse of that was reported for Eimeria. The absence of anthelmintic treatment (r = - 

0.46) favoured a decrease in Strongyles and Moniezia infection while Eimeria increased. 

Common parasitic infections in the Research Station flock included Strongyles, Strongyloides 

Fasciola and Trichuris. The availability of housing, supplementary feeding, veterinary 

services, had strong negative correlations (r = - 1) with the increase in all parasitic infections 

in the flock. Sex had a moderate effect (r = 0.48) on Strongyles and amphistomes infections, 

which were high in males. Fasciola infections were high in females and lack of anthelmintic 

use was associated with low Fasciola infections. Factors affecting parasitic infections differed 

according to area. 
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Table 4.7: Odds ratio estimates and confidence limits for fixed factors affecting 

gastrointestinal parasite infection 

Effect 

Odds Ratio 

95% Wald Confidence limit 

Significance 

Lower limit Upper limit 

Area   23.562 10.904 52.746 *** 

Sex 0.365 0.286 0.467 *** 

Age 9.001 4.195 19.709 * 

Month  2.106 0.187 23.989 * 

* P < 0.05; *** P < 0.001  

4.6 Discussion  

The study identified goat internal parasite species in different geographical areas which were 

differentiated by annual rainfalls and vegetation patterns. The prevalence of parasites was 

quantified using FEC obtained in goats of different ages, in two seasons across study areas. 

The parasite prevalence in this study was similar to the one reported by Pandey et al. (1994), 

Nalumba et al. (1996), Odoi et al. (2007) and Shija et al. (2014). In these studies Strongyles 

and Eimeira species were the most prevalent parasites and prevalences were high during the 

rainy season. In this study, high infections with Strongyles and Eimeira species could be 

explained by the environment in which the goats were being reared, and also by poor animal 

management. Goats were reared in mixed crop-livestock systems, where a few numbers of 

goats were herded together in the same area during the dry and wet seasons. This results in 

higher rates of parasitic infection due to possibilities of re-infection in contaminated pastures. 

However, lower infections in the Research Station flock could be explained by improved 

management in terms of housing, feeding and healthcare. Another possibility is their access to 

browse forage such as Vachellia bush (new name for African Acacia, see Kyalangalilwa et al., 

2013 for detail) which is dominant in the Research Station farm. Vachellia spp. contain 
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condensed tannins and evidence from a study by Costa-Júnior et al. (2014) showed a reduction 

in FECs upon supplementation with Vachellia forages. 

 

The most prevalent nematodes were Strongyles, with Haemonchus being the most common. 

Previous studies on the epidemiology of gastrointestinal helminths of goats have also reported 

Haemonchus as the most important nematode (Vassilev, 1995; Tsotetsi and Mbati, 2003; 

Bakunzi et al., 2013; Ntonifor et al., 2013). Its higher prevalence could be due to the fact that 

adult females are capable of producing thousands of eggs per day, which can lead to rapid 

larval pasture contamination and associated outbreaks of haemonchosis (Roeber et al., 2013). 

There is also a role for climatic conditions since the parasite has high biotic potential and its 

pathogenicity which escalates the problem in humid tropics and subtropics (Waller and 

Chandrawathani, 2005). Another downside of Haemonchus contortus is its great ability to 

develop resistance to anthelmintic drugs (Kotze and Prichard, 2016), which pose a problem in 

terms of control. 

 

The low prevalence of trematodes (amphistomes) was observed across the areas. However, 

high prevalence of amphistomes was noted in Shurugwi, this could be attributed to type of 

animal management and weather patterns of this region, characterized by average ambient 

temperatures of 20.3°C and 675 mm annual rainfall recorded during the sampling. These results 

recorded of high trematodes are in accordance with reports by Godara et al. (2014). Previous 

studies conducted in Shurugwi by Dube et al. (2002) identified Paramphistomum 

microbothium and P. clavula as the dominant trematodes. Results for Fasciola were as low as 

those reported by Khanjari et al. (2014). According to these authors, for the development of 

the intermediate host, temperature (> 9.5°C), rainfall and soil moisture are also important 

factors influencing the development of parasite from egg to miracidium. However, infections 
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may have been low in goats due to their browsing/foraging behavior, which minimizes chances 

of ingesting the metacercaria which are found on plants closer to the ground. 

 

The only cestode observed in the study area was Moniezia spp., whose occurrence in the tropics 

is associated with the ingestion of oribatid mites infected with its larvocysts (Diop et al., 2015). 

In addition to Haemonchus, Trichostrongylus, Oesophagostomum, Trichuris and Strongyloides 

have been recorded in other studies (Tsotetsi and Mbati, 2003; Ayaz et al., 2013; Tsotetsi et 

al., 2013). It has been proposed that the prevalence of different species reported in literature 

can be explained by different geographical distribution, host factors and climatic conditions 

required for the development of free-living stages of different nematodes. In this study, only 

Strongyle eggs and Eimeria oocysts (Figure 4.1) showed a definite seasonal prevalence that 

corresponded to the rainfall patterns, similar to those previously reported by Nwosu et al. 

(2007) and Singh et al. (2013). An increase in FEC infection was observed from October with 

a peak in April, which gradually declines into the wet season. These observations were also 

reported by Chhabra and Pandey (1991) in Zimbabwe. Infections continued into the dry season, 

though the level of infection was low. This could be explained by the continued presence of 

worms in the host even during the dry season, when environmental conditions preclude the 

development and survival of their pre-parasitic stages. This observation indicates that rainfall 

and temperatures play a significant role in the epidemiology of gastrointestinal parasites as 

reported by Regassa et al. (2006). According to Magona and Musisi (2002) under satisfactory 

environmental conditions in the wet season, L3 larva of Haemonchus contortus and other 

Strongyles that infect goats reach infective stages within 4 - 6 days, supporting the increased 

FEC in the wet period. 
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The findings that Eimeira spp. infestation was higher in young goats compared to adult goats, 

in terms of both prevalence and level/intensity of infection, and these findings were consistent 

with reports by Gwaze et al. (2009). High infections in young animals could be due to poor 

hygienic conditions and no prophylactic treatments against eimeriosis in smallholder farms 

(Ruiz et al., 2006). Most of the goats that had helminths infection also harboured coccidian 

oocysts, which confirms results obtained by Waruiru et al. (2000). According to Sharma and 

Mandal (2013), this may be associated to landholdings in the households, which directly 

determine the level of livestock management like sanitation, better living space and nutrition. 

In the current study,  management in the smallholder system was characterized by 

overcrowding in small kraals/housing, poor nutrition, frequent exposure to communal grazing 

that have been contaminated and non-existent health control measures in place (Lone et al., 

2012). 

 

The observed high number of animals with zero FECs is in line with previous work (Odoi et 

al., 2007). In addition, there were low levels of infection because local breeds have acquired 

strong immunity to infection of GIT parasites due to recurrent infections. According to Baker 

et al. (1998), most goat breeds that are highly resistant to parasite infection are found in the 

tropics, but they lack desirable productivity traits.  

Factors affecting the FEC i.e. study area, season, age were similar to those reported by Sissay 

et al. (2007), except for sex and time of sampling. In addition, age-wise prevalence revealed 

significant differences between age groups, with young animals being more susceptible and 

having higher FEC than adult animals. These findings are in agreement with previous work 

(Tariq et al., 2010; Lone et al., 2012 ; Ayaz et al., 2013) were naïve animals tended to be more 

susceptible to infections. The protective effect in older animals is therefore, attributed to 

acquired immunity through frequent exposure (Odoi et al., 2007). 
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Males of all ages were more susceptible than females as indicated in Table 6. These findings 

were similar to other studies (Tariq et al., 2008; Ayaz et al., 2013; Nabi et al., 2014; Badaso 

and Addis, 2015). The researchers attributed this to the genetic predisposition and differential 

susceptibility owing to hormonal control. In these studies young and adults were considered. 

However, these results were contrary to the findings of Emiru et al. (2013) and Vieira et al. 

(2014) in Ethiopia and Brazil. The preceeding authors reported that females were more 

susceptible to parasite infection than males. This was attributed to reduced resistance of female 

animals due to their reproductive events and insufficient/unbalanced diet against higher needs. 

There were different parasitic infections in different areas. Impact of various risk factors was 

assessed and these varied across area on different parasites. Each parasitic species was present 

in at least two different areas. Of all the factors assessed, the effects of month, age, 

supplementary feeding and anthelmintic use were the most dominant factors affecting parasitic 

infections. These differences can be explained by varying environmental and animal factors 

and also management systems in these areas. 

  

Levels of infection for the indigenous goats were low, using the intensity scales by Hansen and 

Perry (1994) also by Asha and Chebo (2015). These findings were consistent with reports from 

Odoi et al. (2007). Low intensities could also be associated with the vegetation type that the 

goats were exposed to, in different areas as summarised in Table 4.1. Access to trees or shrubs 

with high levels of tannins e.g. Vachellia has the ability to reduce infection levels. Evidence of 

the anthelmintic properties of plants and plant-extracts is derived primarily from ethno-

veterinary sources, most of which have been widely documented (Githiori et al., 2006). In 

addition, low infection levels can be attributed to individual host’s ability to deter infection, or 

tolerate certain levels of infection without showing susceptibility. The impact of nematode 
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infection was not assessed, but the prevalence determined in this study may be regarded as a 

problem affecting productivity of animals especially in mixed livestock-crop farming systems 

where farmers do not provide nutritional supplements, or invest in acquiring drugs for 

controlling parasites (Kumba et al., 2003). 

  

4.7 Conclusion  

The results from the study indicate that prevalence was high for Strongyles and Eimeria 

oocysts, with Haemonchus being the most commonly identified parasite. Despite this, a lower 

percentage (3%) of these animals was anaemic. The study identified area, sex, age and month 

as the most relevant risk factors for the development of gastrointestinal parasites across agro-

ecological regions. Furthermore, the effect of site was explored for impact of different risk 

factors on parasitic infections and common parasite species and risk factors differed with area. 

Knowledge on these gastrointestinal helminths species and of epidemiological parameters is 

important in the development of appropriate control strategies for different areas. This has a 

potential to reduce production losses and improve rural livelihoods. A subset of blood samples 

that were used for analysis in this chapter were selected for DNA analysis and further used for 

different analyses, presented in chapters 5 and 6. 
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Chapter 5 

5 Genetic diversity and population structure of goats reared in low-input/low-output 

farming systems of Zimbabwe 

5.1 Abstract 

Goats have evolved into a variety of locally adapted populations in response to different human 

and environmental pressures. Indigenous tropical goat breeds constitute a valuable genetic 

resource. In Zimbabwe majority of goat population is found in low-input/low output farming 

systems, where they are exposed to GIN to which there are considered to have developed some 

level of resistance. Genetic characterization of native breeds and investigation of indiscriminate 

breeding as well as resistance and adaptation to local selection pressures is important. This will 

contribute to improving management and conservation of available animal genetic resources 

in Zimbabwe and other countries. The objectives of the study were to assess genetic diversity, 

population genetic structure, linkage disequilibrium and trends in effective population size of 

goats raised in Zimbabwe. A total of 253 goat DNA samples from Chipinge (n = 33), Shurugwi 

(n = 22), Binga (n = 17), Matobo (n = 33), Tsholotsho (n = 25) and Matopos Research Station 

(n = 124) were genotyped using the Illumina goat SNP50k Bead chip. Approximately 90% of 

the single nucleotide polymorphism (SNPs) was available for downstream analyses. Genetic 

parameters indicated high levels of genetic diversity based on HE and HO estimates as well as 

low levels of inbreeding across populations. Populations partitioned into five clusters based on 

principal component analysis with distinct populations of Binga. ADMIXTURE indicated high 

levels of shared ancestry between and Tsholotsho populations. Linkage disequilibrium (LD) 

was on average very low in this study with r2 ranging from 0.03 – 0.18. Chromosomes that had 

the highest mean r2 were 3, 9, 15 16, 22, 27 and the least r2 was observed on chromosome 21 

across all populations. LD across all chromosomes ranged from 0.05 ± 0.09 to 0.11 ± 0.15, 
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with the highest in Binga and the least in Research Station goats. LD decay decreased with 

increase in marker distance in all populations. The effective population sizes were > 100 for 

all populations, 12 generations ago, with the exception of Binga, which had 82. This is the first 

analysis on population structure, diversity, linkage disequilibrium and effective population 

sizes of goat reared in low-input/low-output farming systems in Zimbabwe. The study 

demonstrates the utility of the Illumina Goat SNP50k Bead chip in population genetic studies 

of such and similar. The populations reared in the farming systems were genetically diverse, 

and there was evidence of shared ancestry  among populations. 

Keywords: genetic diversity, linkage disequilibrium, effective population, indigenous goats 

 

5.2 Introduction 

In Zimbabwe 90% of the 3.5 million-goat population is found in low-input/low-output farming 

systems. According to Homann et al. (2007), 40% of these households do not own cattle, hence 

complement their livestock resources with goats among other livestock species. Indigenous 

goats constitute a valuable genetic resource because of their ability to adapt to different 

environmental conditions, nutritional fluctuations, disease resistance and ability to survive 

under low-input/low-output systems (Webb and Mamabolo, 2004).  

Selection has played an important role in the development of goat breeds which are widely 

dispersed and adapted to diverse biophysical and production environments. Continuous 

artificial selection for production, reproduction and biophysical traits in temperate regions has 

been conducted as a means of standardizing breeds (Kim et al. 2016). However, selection for 

such traits has not been conducted on indigenous tropical and subtropical breeds. Indigenous 

African goat breeds are most often exposed to natural selection for traits such as adaptation 
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under varied environments (Serrano et al., 2009). This has most likely selected multiple alleles, 

thus preserving genetic diversity in populations. 

 

The extent of linkage disequilibrium (LD) defined as non-random association of alleles at two 

or more loci, is a useful tool in genetics and evolutionary biology (Qanbari et al., 2010). The 

extent of LD in a population is critical for the prediction of genetic merit from markers and for 

quantitative trait loci (QTL) detection (Goddard and Hayes, 2009; Roldán et al., 2014). It is 

also useful in providing insight into the evolutionary history of a population and inference on 

ancestral effective population size (Ne) (Sved, 1971). This is an important population parameter 

that may help to explain how populations evolved and can improve the understanding and 

modeling of genetic architecture underlying complex traits (Tenesa et al., 2007), such as 

gastrointestinal parasite resistance. 

 

Extensive research in genetic diversity of goats has been reported globally using microsatellite 

markers (Liu et al., 2013; Kotze et al., 2014; Radhika et al., 2015; Hassen et al., 2016; Kim et 

al., 2016), SNP-based markers (Benjelloun et al., 2015; Kotze and Prichard, 2016; Lashmar et 

al., 2016; Manunza et al., 2016; Mdladla et al., 2016; Visser et al., 2016). In addition, high 

density panels have also been shown to be useful in genetic diversity analyses of other livestock 

species (Ai et al., 2013; Kijas et al., 2013; Makina et al., 2014; Khanyile et al., 2015). The 

availability of dense SNP-based markers has provided positive prospects for genetic analyses 

of goats, previously not possible and has an advantage of improving on limitations faced by 

traditional quantitative studies to accelerate genetic progress. 

  

Mashona and Matabele are the predominant goat breeds in low-input/output farming systems 

of Zimbabwe. Others breeds include the Tonga and crossbreeds. Mashona and Tonga goats are 
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small, compact and hardy indigenous breeds. According to Mason and Maule (1960), these are 

prototypes of the small East African goats, with mature body mass of 25 – 30 kg. Mashona 

goats are mainly found in the North/South East parts of the country. The Tonga goats were 

mainly found in the North-west part of the country. The Matabele type goats are bigger than 

the Mashona or Tonga breeds with mature body mass ranging between 40 - 65 kg for males 

and 30 - 45 kg for females. The Matebele are mainly concentrated in the South-western part of 

the country. Knowledge on genetic diversity and possibly selected signatures in native goat 

populations can be used to preserve these animal genetic resources. The genetic relationships 

and differentiation between the native breeds and other products of indiscriminate breeding in 

Zimbabwe have not yet been characterized. Detection of genomic differences can thus provide 

basis of adaption to diverse environments and provide insights into functionally important 

genetic variants (Andersson and Georges, 2004). The objectives of this study were to i) 

investigate population genomic structure and genetic diversity ii) determine extent of linkage 

disequilibrium and trends in effective population sizes in goats reared in low-input/output 

farming systems in Zimbabwe. 

  

5.3 Material and methods 

5.3.1 Animal resources 

A total of 253 blood samples were collected from goats in smallholder farms and a research 

station in Zimbabwe (a subset of samples collected in chapter 4). Sampling for possible 

Matabele goats was conducted in Matobo (n = 33, Tsholotsho (n = 25) and Matopos Research 

Station (n = 124). Mashona goats were sampled from Chipinge (n = 33) and Tonga goats from 

Binga (n = 17). Goats from Shurugwi (n = 22) were also sampled and were expected to be 

either Mashona or Matabele. It is however difficult to assign goats in different areas in 
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Zimbabwe to specific breeds, due to uncontrolled breeding systems especially in these farming 

systems and adaptation to different geographical areas. In this study supposedly breed names 

were ignored and animals were grouped based on their sampling areas. 

 

Blood samples were collected by jugular venipuncture using 10-ml EDTA VACUETTE® 

tubes. Samples were kept between 2 - 4 °C on ice during field sampling period and later stored 

at -21 °C in the refrigerator to prevent formation of ice crystals, prior to laboratory analysis. 

Genomic DNA was extracted using the DNeasy® Blood and Tissue kit (Qiagen), as per 

manufacturer’s protocol. DNA was quantified using Qubit® 3.0 Fluorometer (Life 

Technologies) and the Nanodrop Spectrophotometer (Nanodrop ND-1000). Gel 

electrophoresis was used to determine DNA integrity; samples were visually assessed on 1% 

agarose containing ethidium bromide and TAE buffer. DNA was then visualized by UV 

illumination. 

 

5.3.2 SNP genotyping and quality control 

SNP genotyping was conducted at the Agricultural Research Council-Biotechnology Platform 

in South Africa using the Illumina Goat 50K SNP Bead chip which features 53 347 SNP probes, 

distributed across the whole genome, with inter-SNP spacing of ∼40kb (Tosser-Klopp, 2012). 

SNP calling was done using Illumina Genome Studio v 2.0 and the genotype input file was 

converted into PLINK v 1.07 input files (Purcell et al., 2007). The SNP positions were based 

on the goat genome assembly (CHI_1.0 goat) available from the International Goat Genome 

Consortium (http://www.goatgenome.org/). 
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The SNP data of all six populations was filtered to remove SNPs that were on sex chromosomes 

or had their positions unmapped to the latest reference assembly of the goat genome, resulting 

in 49 993 SNPs. Single nucleotide polymorphisms (SNP) quality control (QC) was conducted 

in different stages depending on the downstream analyses. Quality control thresholds were set 

to remove markers with missing data > 5%, that had MAF ≤ 5%, individuals with missing 

genotypes > 5% using PLINK v 1.07 (Purcell et al., 2007). This resulted in 246 goats and 44 

918 SNPs across the six populations (89.9%). In addition to conducting quality control across 

populations, QC was also conducted per subpopulation (Table 5.2). The highest number of 

goats was removed from the Research Station flock (n = 53), Tsholotsho (n = 6), Shurugwi (n 

= 5), Chipinge (n = 5) and the least from Matobo (n = 4). For population structure analysis, 73 

closely individuals, as inferred by a kinship estimate ≥ 0.45 were removed from downstream 

analyses. Single nucleotide polymorphisms were further excluded using PLINK v 1.07 (Purcell 

et al., 2007) for being in high linkage disequilibrium (r2 > 0.2), removing 11 700 SNPs. 

 

5.4 Data analysis 

5.4.1 Minor allelic frequency 

Minor allelic frequency (MAF) distribution per population was estimated using the 49 993 

autosomal SNPs with chromosomal locations using PLINK v 1.07 (Purcell et al., 2007) under 

default settings. Means and standard deviations were calculated using PROC MEANS 

procedure of the Statistical Analysis System (SAS, 2011). MAF were categorized into fixed 

(MAF = 0), rare (0 - 0.01), intermediate (0.01 - 0.05) or polymorphic (MAF > 0.05) for which 

respective bins were set. 
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5.4.2 Within-population genetic diversity 

Subsets of SNPs that had passed QC after quality control within populations were used to 

estimate observed heterozygosity (HO), expected heterozygosity (HE) and inbreeding 

coefficients (FIS). The inbreeding coefficients, observed and expected heterozygosity indices 

were determined using PLINK v 1.07 software (Purcell et al., 2007) under default settings. 

Analysis of molecular variation was performed as a means of partitioning genetic diversity 

within and between populations, using the Arlequin v 3.1 program (Excoffier et al., 2007). 

 

5.4.3 FST pairwise comparison 

To assess genetic diversity between populations, population-specific fixation index (FST), were 

computed between 15 pairs of populations according to Weir and Cockerham (1984). Unbiased 

estimates of FST were calculated using SVS v 8.1 (Golden Helix Inc., 2014). Interpretation of 

the indices was based on guidelines proposed by Wright (1978). To determine variation in 

allele frequency between loci, per-marker FST values were calculated for all autosomal SNPs 

across populations. 

 

5.4.4 Population structure analysis 

Pairs of markers with high linkage disequilibrium (LD) provide redundant information and 

impose higher computational demands for population structure analyses. To correct for 

redundancy, the dataset was pruned based on LD between markers using PLINK v 1.07 (Purcell 

et al., 2007) command -indep-pairwise 50 5 0.2, which calculates LD for each pair of marker 

in a window of 50 SNP. The settings would prune out one of the SNPs pair that had r2 > 0.2 on 

a sliding window of 5 SNP. The pruned genotypes defined a set including in 33 218 SNPs that 

were used to assess population structure using (i) principal components as implemented in 
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Golden Helix SNP Variation Suite (SVS) v 8.1 (Golden Helix Inc., 2014) and (ii) unsupervised 

clustering of individuals based on maximum likelihood using ADMIXTURE v 1.23 (Alexander 

et al., 2009). ADMIXTURE was used to infer the most probable number of ancestral 

populations based on SNP genotype data. Prior population information was ignored for 

identifying distinct genetic population and assigning individuals to populations. ADMIXTURE 

was run from K = 2 to K = 10 and the optimal number of clusters was determined as that which 

had the lowest cross validation error. 

 

5.4.5 Linkage disequilibrium 

Pairwise r2 estimation was used to measure LD between pairs of SNPs within a chromosome 

and population using PLINK v 1.07 (Purcell et al., 2007) for SNPs on autosomes (chr1 – 29). 

The ‘--r2 --ld-window-kb 2000 --ld-window-r2 0’option in PLINK was used to estimate LD 

for SNP marker pairs up to a distance of 2000kb. Means and standard deviation were calculated 

using PROC MEANS procedure in SAS v 9.3 (SAS, 2011). An analysis of variance (ANOVA) 

was also conducted using the PROC GLM procedure of SAS (SAS, 2011) to determine the 

effects of chromosome, population, distance between SNP markers, the interaction between 

population and chromosome on r2 using the model: 

Yijk = µ + Ci+ Dj + (C*D)ij + bEk+ εijk 

where Yijk is r2, µ is the overall population mean, Ci is the effect of the ith chromosome (chr 1-

29), Dj the effect of the jth goat population (Chipinge, Shurugwi, Binga, Tsholotsho and 

Matobo, Research), (C*D)ij is the effect of interaction between chromosome and population, 

Ek the effect of the kth distance between SNP markers which was fitted as a covariate with a 

regression coefficient b and εijk is the random residual effect. Linkage disequilibrium decay 
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was estimated for all subpopulations using sliding window bins set at 0-1, 1-10,10-20, 20-40, 

40-60, 60-100, 100-200; 200-500, 500-1000 and 1000-2000 kb. 

 

5.4.6 Effective population size   

Effective population size (Ne) was estimated using SNeP v 1.1 (Barbato et al., 2015). SNeP 

estimates Ne from genome-wide linkage disequilibrium, using the following formula as 

suggested by Corbin et al. (2012): 

𝑁𝑇(𝑡) =
1

(4𝑓(𝑐𝑡))
 (

1

𝐸[𝑟𝑎𝑑𝑗
2 |𝑐𝑡]

) − ∝ 

where NT(t) is the effective population size estimated t generations ago, ct is the recombination 

rate t generations ago, r2
adj is the linkage disequilibrium estimation adjusted for sampling bias 

and α is a constant. The recombination rate was calculated using the equation by (Sved, 1971).  

 

Default minimum and maximum inter-SNP distances in SNeP v 1.1 (Barbato et al., 2015) were 

used for SNP data sets for each sub-population, as well as the merged dataset and grouped 30 

distance bins of 50kb each. Ne estimates were subsequently calculated from the r2 values 

obtained for the average distance of each distance bin. 

 

5.5 Results  

5.5.1 SNP marker characteristics 

After quality control, 2679 markers with MAF ≤ 0.05; 803 SNP markers with missing 

genotypes ≥ 0.05; 2301 SNPs that deviated from HWE (P < 0.001) and eight animals with 

missing genotypes ≥ 0.05 were excluded from the dataset consisting of all the populations. The 

final working dataset included 246 animals and 44918 SNPs (89.9%) available for downstream 
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analysis. The highest number of SNPs eliminated from the analysis was based on low MAFs, 

with a range of 5 - 11 % across populations. Table 5.1 summarizes the quality control results 

for the different populations. MAF distribution was also assessed for each population. Binga 

populations had very low MAF (i.e. more animals in the MAF = 0 – 0.1 bin) and also highest 

levels (6.4%) of monomorphic SNPs (MAF = 0) (Figure 5.1). 

 

5.5.2 Minor allelic frequency 

The mean MAF was 0.31 ± 0.12 (Table 5.2) and 95.3 % markers were polymorphic across 

populations. The percentage of SNPs that were polymorphic (MAF > 0.05) ranged from 89 – 

95 %, with the highest level of polymorphic SNPs in the Tsholotsho population (94.5 %) and 

the least in Binga population (89.2 %). 

 

5.5.3 Within-population genetic diversity  

Mean observed and expected heterozygosities were 0.61 ± 0.03 and 0.61 ± 0.00 respectively. 

Highest HO and HE were observed for Binga (0.64 ± 0.02; 0.63 ± 0.00) and Chipinge (0.64 ± 

0.03; 0.63 ± 0.00). Heterozygosity estimates for most of the populations with the exception of 

Shurugwi indicated positive gene diversity (HE < HO), while those for Tsholotsho (0.60 ± 0.01; 

0.60 ± 0.00) and the research station populations (0.60 ± 0.02; 0.60 ± 0.00) were similar (HE = 

HO). Inbreeding coefficients (FIS) were generally low within populations, with high values in 

Chipinge, Binga and Matopo populations and random mating observed in Tsholotsho (FIS = 0). 

Analysis of molecular variance (AMOVA) indicated that high variation within individuals as 

compared to among individuals within populations and also among different populations 

(Table 5.3). 
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5.5.4 Population structure analysis 

Principal component analysis (PCA) was used to visualize individual relationships within and 

between populations. Goats from the different populations grouped into five clusters. Chipinge 

population had a distinct cluster, goats from Binga and Shurugwi grouped together, while the 

Tsholotsho and Matobo also grouped together with a mixture of animals from the research 

station flock. The first PC (Figure 5.2) showed that village goats from Binga, Shurugwi and 

Chipinge clustered in one axis whilst the Tsholotsho and Matobo village goats clustered in 

between the research station populations and Mashona goats. Generally the animals from the 

research station flock were dispersed into 3 separate clusters, while those from the villages in 

different districts had more compact clusters (Figure 5.2).  
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Table 5.1: SNP distribution of polymorphic markers, and within population diversity indicators for the different subpopulations 

 

Population  Binga Chipinge Matopo Research Shurugwi Tsholotsho All 

Total SNPs 49943 49943 49943 49943 49943 49943 49943 

MAF≤ 0.05 5698 5081 2729 2912 4374 2924 2679 

Geno ≥ 0.05 925 793 872 778 665 916 803 

HWE ≥ 0.001 68 162 181 1503 77 675 2301 

MIND > 0.05 (n) 16 32 29 121 22 26 246 

SNPs available for analysis 43711 44381 46637 45372 45258 45929 44918 

% SNPs available for analysis 87.52 88.86 93.38 90.85 90.62 91.96 89.94 
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Figure 5.1: MAF distribution for each goat population 
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Table 5.2: Summary of polymorphic markers, and within-population diversity indicators for the different subpopulations 

Population  

n PN MAF ± SD HO ± SD HE ± SD FIS ± SD 

Binga  

16 89.18 0.29 ± 0.12 0.64 ± 0.02 0.63 ± 0.00 0.02 ± 0.06 

Chipinge 

32 90.4 0.31 ± 0.12 0.64 ± 0.03 0.63 ± 0.00 0.03 ± 0.08 

Matopo 

29 93.74 0.28 ± 0.13 0.61 ± 0.02 0.60 ± 0.00 0.02 ± 0.05 

Research 

121 94.42 0.31 ± 0.12 0.60 ± 0.02 0.60 ± 0.00 -0.01 ± 0.04 

Shurugwi  

22 91.84 0.31 ± 0.12 0.61 ± 0.03 0.62 ± 0.00 0.01 ± 0.08 

Tsholotsho  

26 94.47 0.31 ± 0.12 0.60 ± 0.01 0.60 ± 0.00 0.00 ± 0.04 

All  

246 94.72 0.31 ± 0.12 0.61 ± 0.03 0.60 ± 0.00 0.03 ± 0.08 

*PN polymorphic SNPs, MAF- minor allelic frequency, HO and HE –observed ad expected heterozygosity, FIS- inbreeding coefficient 
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Table 5.3: Analysis of molecular variance using different goat population data 

Population  Among 

populations 

Among individuals 

within populations 

Within 

individuals 

All six populations 

 

2.41 1.10 96.49 

Village populations 

 

2.57 2.65 94.78 

Village  and research 

populations 

 

2.51 1.10 96.53 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Principal components based clustering of goat populations in Zimbabwe. Different 

colors in the ovals indicate the predominant population within a cluster. 

 

At K = 2 of ADMIXTURE analysis (Figure 5.3), the Chipinge goats are separated from the 

other goats. At K = 3, the animals were grouped into 3 clusters, a single cluster for Chipinge, 

Binga and Shurugwi; another with Matobo and Tsholotsho and the last cluster was for Research 

station which was genetically diverse. The four clusters at K = 4 corresponded to separation of 

Chipinge from its previous cluster, which remained the same in K = 5. In the study cross 

validation (CV) errors were plotted for comparison of K values, where K = 5 exhibited the 

lowest CV error the value thus was taken as the most probable number of inferred populations 
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(Figure 5.4). Clusters at K = 5 relate to Chipinge (blue), Binga (blue and green); Matopo and 

Tsholotsho, Shurugwi (green) and research station populations (mixed colours). K values 

beyond K = 5, were plotted so as to visualize any other kind of separations in the populations. 

At K = 6, the Binga population was more distinct. There is evidence of admixture with gene 

components being shared at different levels between populations, with an example of Matobo 

and sharing genetic components since K =2. The  K = 6 to K = 10 were plotted so as the 

distinction of the clusters revealed Chipinge and Binga distinct groups, while the Research 

flock showed high levels of genetic diversity. Indications of outlier populations i.e. those with 

a different colour in a cluster were observed in Chipinge, Matobo and Shurugwi. 

 

5.5.5 FST pairwise comparison 

Pairwise population FST comparisons indicated low levels of genetic differentiation (FST = 0.01 

– 0.04) across all populations (Figure 5.5). The genomic distribution of FST values for all 

autosomes is shown in Figure 5.6. The mean FST value for all 29 autosomes across populations 

was 0.038 ± 0.068 (range 0 – 0.54) indicating low genetic differentiation. 

 

5.5.6 Linkage disequilibrium and extent of linkage disequilibrium decay 

Information on the chromosomes, length, number of SNPs and average r2 per chromosome are 

summarised in Table 5.4. Distribution of SNPs varied among chromosomes ranging from 875 

– 2887 SNPs per chromosome. SNP interval per chromosome ranged from 248 – 288 kb, with 

the lowest and highest interval observed on chromosomes 18 and 19 respectively. Overall LD 

across all chromosomes ranges from 0.05 ± 0.09 to 0.11 ± 0.15. Highest LD was observed in 

Binga and the least in the research station flocks. The highest mean r2 was observed on 

chromosomes 3, 9, 15 16, 22, 27 and the least in chromosome 21 across all populations. 
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Analysis of variance results (Table 5.5) indicated that population, chromosomes, 

population*chromosome interaction and SNP distance interval had significant effects on LD.  

An analysis of rate of LD decay over SNP distance indicated r2 of 0.1 at SNP intervals less than 

10kb that decayed to an average of r2 = 0.04 at SNP intervals between 10 and 20kb across all 

populations. LD decay reduced with an increase in SNP distance, from 0.14- 0.17 at 20 – 40 

kb to a range of 0.03 - 0.09 at 500 - 1000 kb (Figure 5.7). Highest LD values were observed at 

20 - 40 kb (0.09 - 0.17) and the least at 10 - 20 kb (0.02 - 0.06) for the different populations. 

Binga had the highest LD with mean of 0.12 compared to the rest of the population. Least LD 

was observed in the research station (mean r2 = 0.06).  

 

5.5.7 Effective population size   

Effective population size (Ne) at t generations in the past are summarised in Figure 5.8. Ne was 

estimated to be higher than 2000 animals 983 generations ago and decreased to below 450 

animals within the last 12 generations ago. Across all populations a decrease in Ne was 

observed. The LD-based estimates of Ne indicated low effective population sizes ranging from 

82 - 171 for all communal populations and slightly higher (437) for the research station flock. 

A decrease in Ne from at least 3800 and 4500 was observed for the communal and research 

populations respectively.  
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Figure 5.3: Admixture based clustering of goat populations in Zimbabwe 
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Figure 5.4: Cross validation plot for six goat populations in Zimbabwe 
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Figure 5.5: Genomic pairwise FST for goat populations in Zimbabwe 
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Table 5.4: Linkage disequilibrium (average r2) per chromosome in different goat populations in Zimbabwe 

Chr. Chr. length (Mb) No. of SNPs Binga Chipinge Matopo Shurugwi Tsholotsho Research All 

1 155.01 2887 0.11±0.15 0.07±0.11 0.07±0.10 0.08±0.12 0.07±0.11 0.05±0.09 0.04±0.08 

2 135.42 2547 0.11±0.15 0.07±0.11 0.06±0.10 0.08±0.11 0.07±0.10 0.04±0.09 0.03±0.08 

3 116.8 2062 0.12±0.17 0.08±0.14 0.07±0.12 0.09±0.15 0.08±0.12 0.05±0.11 0.04±0.08 

4 115.96 2150 0.11±0.15 0.07±0.11 0.07±0.10 0.08±0.12 0.07±0.10 0.05±0.09 0.04±0.08 

5 111.06 1975 0.10±0.15 0.07±0.11 0.07±0.11 0.08±0.12 0.07±0.11 0.05±0.09 0.04±0.09 

6 114.33 2189 0.11±0.15 0.07±0.11 0.06±0.10 0.08±0.12 0.07±0.11 0.05±0.09 0.03±0.08 

7 106.55 2041 0.11±0.16 0.08±0.13 0.07±0.10 0.08±0.12 0.08±0.11 0.05±0.10 0.04±0.09 

8 11.02 2184 0.11±0.16 0.08±0.13 0.07±0.11 0.08±0.13 0.08±0.12 0.05±0.10 0.04±0.09 

9 90.29 1679 0.12±0.16 0.08±0.13 0.07±0.12 0.09±0.13 0.08±0.11 0.05±0.09 0.04±0.08 

10 99.2 1810 0.12±0.16 0.08±0.13 0.07±0.12 0.09±0.13 0.08±0.12 0.05±0.10 0.04±0.09 

11 105.31 1988 0.12±0.16 0.07±0.12 0.07±0.10 0.09±0.13 0.08±0.11 0.05±0.09 0.04±0.08 

12 82.54 1539 0.11±0.15 0.07±0.12 0.07±0.11 0.09±0.13 0.08±0.11 0.05±0.08 0.04±0.08 

13 80.63 1514 0.11±0.15 0.08±0.12 0.07±0.10 0.08±0.12 0.08±0.11 0.05±0.09 0.04±0.08 

14 92.31 1793 0.11±0.14 0.07±0.11 0.07±0.10 0.08±0.11 0.07±0.10 0.05±0.09 0.04±0.08 

15 78.99 1486 0.12±0.17 0.08±0.13 0.07±0.12 0.09±0.14 0.08±0.12 0.05±0.11 0.04±0.10 

16 77.68 1305 0.12±0.17 0.08±0.13 0.08±0.12 0.09±0.13 0.08±0.12 0.05±0.10 0.04±0.09 

17 71.88 1372 0.11±0.15 0.07±0.11 0.06±0.10 0.08±0.11 0.08±0.11 0.05±0.09 0.04±0.07 

18 61.07 1226 0.11±0.15 0.07±0.12 0.07±0.10 0.08±0.13 0.08±0.11 0.05±0.09 0.04±0.09 

19 62.13 1071 0.12±0.16 0.07±0.11 0.07±0.10 0.08±0.12 0.07±0.11 0.05±0.09 0.04±0.08 

20 71.28 1374 0.11±0.15 0.07±0.11 0.07±0.10 0.08±0.12 0.07±0.11 0.05±0.08 0.04±0.08 

21 66.77 1336 0.11±0.14 0.06±0.10 0.06±0.09 0.08±0.11 0.07±0.10 0.04±0.08 0.03±0.07 

22 57.96 1072 0.11±0.16 0.08±0.12 0.07±0.11 0.09±0.12 0.08±0.11 0.05±0.10 0.04±0.09 

23 49.4 966 0.11±0.15 0.07±0.12 0.06±0.10 0.08±0.11 0.07±0.11 0.05±0.09 0.04±0.08 

24 61.76 1129 0.11±0.15 0.07±0.11 0.07±0.12 0.08±0.12 0.08±0.12 0.05±0.10 0.04±0.08 

25 41.5 694 0.11±0.15 0.08±0.13 0.07±0.11 0.08±0.12 0.07±0.11 0.05±0.10 0.04±0.09 

26 50.17 967 0.11±0.16 0.08±0.12 0.07±0.11 0.09±0.13 0.08±0.12 0.05±0.10 0.04±0.08 

27 44.12 805 0.12±0.18 0.08±0.15 0.08±0.14 0.09±0.15 0.09±0.15 0.06±0.13 0.05±0.12 

28 43.23 850 0.11±0.15 0.07±0.11 0.07±0.10 0.08±0.12 0.07±0.11 0.05±0.10 0.04±0.09 

29 48.38 875 0.11±0.15 0.07±0.13 0.07±0.11 0.08±0.13 0.08±0.12 0.05±0.10 0.04±0.10 

   0.11±0.15 0.07±0.12 0.07±0.11 0.08±0.12 0.08±0.11 0.05±0.09 0.04±0.08 

Chr.-chromosome 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



129 

 

Table 5.5:  Effects of population, chromosome, SNP interval and the interaction between 

population and chromosome on linkage disequilibrium 

Source DF Type III SS Mean Square F Value Pr > F 

Population 5 2928.458 585.6916 35456.7 <.0001 

Chromosome 28 171.0498 6.108921 369.82 <.0001 

SNP interval 1 4143.923 4143.923 250866 <.0001 

Population*chromosome 140 26.89004 0.192072 11.63 <.0001 
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Figure 5.6: Genome distribution of FST values for autosomes across goat populations in 

Zimbabwe 
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Figure 5.7: LD decay with increase physical distance between SNPs for autosomes in goat 

populations in Zimbabwe  
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Figure 5.8: Trends in historic effective population size (Ne) over 983 generations ago
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5.6 Discussion  

Indigenous goats have been raised for a long time for various purposes and they have gradually 

accumulated several traits to be well adapted to local environments. Geographical isolation and 

human intervention has resulted in the formation of different subpopulations with different 

morphological traits. In Zimbabwe the majority of the goat population is reared by smallholder 

farmers. The dominant breeds reared in these systems are the Matabele and SEA prototypes which 

have been described above. Smallholder farmers are constrained in terms of land, capital/income 

for input procurement (De Sherbinin et al., 2008) and production losses such as mortalities 

(Rooyen and Tui, 2009). According to Gwaze et al. (2009a), these mortalities are caused by 

diseases and gastrointestinal parasites. Our preliminary work on gastrointestinal parasites in 

Zimbabwe (Zvinorova et al., 2016a), indicated that prevalence was 43% for Eimeria oocysts, 31% 

for strongyles 31%, with lower levels recorded for trematodes and cestodes. Parasites identified 

were Haemonchus, Strongyloides and Oesophagostomum, however, parasite species composition 

varied by area and impacts of risk factors also differed. This study was conducted as a means of 

understanding the genetic diversity and population structure of goats reared in these farming 

systems, linking that to the susceptibility or resistance of goats differentially challenged with 

gastrointestinal parasites, using the Illumina Goat 50K SNP Bead chip. 

  

Genetic diversity is an essential component for population survival, evolution, genetic 

improvement and adaptation to changing environments (Kumar et al., 2015; da Rocha et al., 2016). 

Local goat populations in Zimbabwe have not been studied for population structure and diversity, 

thus genetic characterization of these populations is of paramount importance. Extensive studies 
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on genetic diversity in goats have been conducted based on a few markers (microsatellites). 

However, these do not provide whole genome coverage, which is essential for accurate predictions 

of population genetic parameters. The development of goat SNP chips has provided opportunities 

for population structure, diversity and association studies. The 50K SNP chip contains 53,347 

SNPs and was developed using the Saanen, Alpine, Creole, Boer, Kacang, and Savanna breeds 

(Tosser-Klopp, 2012).  The SNP chip utility has been demonstrated for different purposes 

including population genetic diversity studies (as previously highlighted in the introduction), 

including in genomic evaluation (Carillier et al., 2013; Brito et al., 2015; Mucha et al., 2015), QTL 

detection (An et al., 2012; Roldán et al., 2014). In the present study, the 50 K SNP chip was used 

to assess the level of LD, understanding the evolutionary history of populations and calculating 

genetic parameters. The use of high density markers makes this possible in the absence of pedigree 

data, especially in goats reared in smallholder farming systems, where record keeping is a not a 

common practice. The level of LD can then be used to detect QTLs associated to GIN resistance.  

 

This is the first comprehensive study on population structure, diversity, linkage disequilibrium and 

effective population sizes of goats reared in low input/output farming systems in Zimbabwe, with 

a focus on indepth understanding of GIN resistance using genome-wide SNP markers. After 

quality control, 89.9% of the total SNPs were deemed informative on the Zimbabwean goat 

population. This is comparable to 87 % by Mdladla et al. (2016) for South African goats and by 

Visser et al. (2016) in South Africa, French and Argentinian breeds. The Research station goats 

had the largest number of SNPs (1503) that deviated from HWE suggestive of strong directional 

selection and non-random mating in this population. The level of polymorphism detected was high 

(i.e. > 89%) among the different populations studied, irrespective of the fact that the 50 K SNP 
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chip was developed from sequence data on exotic goat breeds in Zimbabwe. However, the 

proportion of SNPs with low MAF values was still high across populations indicating a higher 

proportion of fixed alleles within the Zimbabwean goats relative to the discovery populations. 

 

Heterozygosity estimates obtained in this study were very high as compared to other studies (Kijas 

et al., 2013; Nicoloso et al., 2015; Mdladla et al., 2016), therefore, indicating even higher levels 

of genetic diversity. Low levels of inbreeding were observed across all populations. Genetic 

diversity was highest in village goats as compared to the Research station flock, as expected for 

village populations, since these goats rely on communal grazing and mating is indiscriminate, 

hence their low levels of inbreeding. In these farming systems goats are exposed to natural 

selection, where animals become genetically adapted for survival in their natural environments. 

According to Kim et al. (2016), natural selection and random mating of indigenous livestock has 

the ability to shape the genome while maintaining high within- and between-population genetic 

variability. This has a potential of fixing certain genes within populations, especially for complex 

traits such as gastrointestinal parasite resistance. 

  

Heterozygosity estimates obtained in this study were higher as compared to other studies (Kijas et 

al., 2013; Nicoloso et al., 2015), therefore, indicating even higher levels of genetic diversity in the 

present study. Similarities in HE and HO in some of the populations may be due to the use of 

populations/breeds which were previously not used during the development of the 50K SNP panel. 

Molecular variance among all six populations (2.41%) was lower than the 6.39% reported for 

South African breeds (Mdladla et al., 2016) and 11.9 % reported for Angora goats (Visser et al., 

2016). This indicates that there are low levels of genetic differences between the goat populations, 
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high individuals differences. This supported the hypothesis that genetic differences between 

individuals are greater than that between populations. This could be explained by high gene flow 

and heterogeneous characteristics of smallholder production systems. The genetic diversity among 

the populations increases the likelihood that at least some individuals will be able to survive 

parasitic infection by making the population more resistant. 

  

The PCA and ADMIXTURE results clustered populations some village populations together and 

to some extent separating from the Research station flock. The analysis of population structure 

using PCA indicated Illumina Goat SNP50k Bead chip was able to discriminate some of the 

populations and a tendency of clustering together for village populations. According to Huson et 

al. (2014), Illumina Goat SNP50k Bead chip can effectively distinguish goat populations, 

specifically indigenous African goat populations. ADMIXTURE analyses confirmed the genetic 

relatedness of Binga and Shurugwi and also that of Matobo and Tsholotsho. According to Brito et 

al. (2015), this trend is consistent with the breeds’ history. 

  

High gastrointestinal parasite prevalence was observed in village populations (Binga, Chipinge, 

Matopo and Shurugwi) vs. the Research flock. This contradicts with high genetic diversity results 

observed in these populations. This could be explained by the management in place in smallholder 

farming systems; where animal were continuously re-infected in communal grazing lands. Levels 

of infection for the indigenous goats were low, using the intensity scales by Hansen and Perry 

(1994), also by Asha and Chebo (2015). This might be due to the animals acquiring strong 

immunity to infection of GIT parasites due to recurrent infections and development of resistance 

to parasitic infections by the animals. Chipinge population was distinct from the rest of the 
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populations at K=2 and beyond K=5 (lowest cross validation error), distinct populations of Binga 

were observed. However, Binga and Shurugwi showed some level of admixture, indicating that 

the populations may share common ancestry. These populations had the highest number of 

monomorphic SNPs and rare alleles (8 - 11%) and may suggest that a strong drift effect has taken 

place (Nicoloso et al., 2015). The genetic structure of Tsholotsho and Research was similar as 

shown by both PCA and ADMIXTURE results. Low parasite prevalence rates were also observed 

in both these populations, in addition to high levels of genetic diversity. This supports the work by 

King and Lively (2012), where the authors highlighted that high genetic diversity in host 

populations have a potential of reducing the risk of infection. The diversity in the Research station 

population could also be explained by them acquiring their animals from the nearby localities. This  

results in introduction of more genetic compositions, which may not necessarily be of indigenous 

breed origin. Subpopulations observed in the Research flock have a potential  of reducing 

heterozygosity than there would be if the population was undivided. According to Muema et al. 

(2009) this could be as a result of founder effects, leading to subpopulations with allele frequencies 

that are different from the larger population.  

 

Populations that share genomic proportions with each other indicate higher admixture and have a 

diverse genetic composition. Matobo and Tsholotsho had a distinct pattern in admixture which 

also signifies shared ancestry or it may suggest that certain alleles have become fixed in these 

populations due to adaptation in their environment. Overlapping of clusters confirm the ancestry 

the breeds of investigated animals, with those from Binga and Chipinge, mostly the Tonga and 

Mashona, respectively. However, those from Tsholotsho and Matobo were the Matabele, while 

Shurugwi had mixed genetic components. Research station animals have diverse genetic make-up 
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which may contain more than the mentioned indigenous breeds. In all the clusters only the Binga 

population was distinct, the other though indicative of their initial breed composition show 

different level of admixture.  

 

Pairwise FST obtained across population were very low, indicating low population differentiation. 

According to Beaumont and Balding (2004), this may indicate regions of the genome that have 

been subject to stabilizing selection. The findings support the low levels of genetic variation 

explained by AMOVA where only 2.41% explained variation among populations. This makes it 

difficult to pick genetic difference between populations in terms of resistance to parasites. 

However, regions under selection can be detected by searching for outlier markers or haplotypes 

in either the distribution of allele frequencies within or between populations, or patterns of linkage 

disequilibrium along the genome (Holsinger and Weir 2005). Genomic FST values were computed. 

Using the guidelines by Wright (1978), the most differentiated regions representing with the 

highest FST (≥ 0.25) can be considered to be under selection. 

  

Information about genome-wide linkage disequilibrium (LD) extent and decay is essential for 

GWAS mapping of loci affecting economically important traits and the implantation of genomic 

selection in farm animals (Ai et al., 2013). The average levels of LD in our study were very low. 

The highest observed levels of LD were in Binga and Shurugwi and with the Research station 

showing the. An observation, which might be associated with the level of sampling. Brito et al. 

(2014) suggests that it may be due to smaller effective population sizes in those breeds/populations, 

which is also confirmed by the effective population curves in the present study. A study by 

Meuwissen et al. (2001) using the Goat 50k SNP panel concluded that an r2 value greater than 0.2 
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would be sufficient for genomic selection. The different goat populations in our study might 

benefit from a denser snp chip for conducting genome-wide association analyses, because the 

detection potential QTLs with such a panel is minimal. The marker density required for successful 

GWAS and subsequently genomic selection, depends on the extent of LD across the genome 

(Khatkar et al., 2008). Linkage disequilibrium also varied between chromosomes, suggesting a 

variation in autosomal recombination rates due to the effects of genetic drift and selection within 

populations (Qanbari et al., 2010). The extent of LD decay rapidly declined as genetic distances 

increased as calculated using equation by Sved (1971). The method takes into consideration recent 

and past recombinations, as well as past effective population size. Linkage disequilibrium at short 

distances is a function of effective population size many generations ago, while LD at long 

distances reflects more recent population history.  

 

The high Ne observed in the past generations for the Research station reflects the great level of 

admixture observed for this population, as indicated by the ADMIXTURE analysis. However, 

Binga and Shurugwi had the lowest effective population sizes. According to Goddard and Hayes 

(2009), small Ne means that alleles in the current population coalesce in a common ancestor in a 

small number of generations, indicating that there are a few generations of recombination. The 

chromosome segments that are identical by descent are large, and so LD extends for a long 

distance. The Ne estimates for at least 12 generations ago in all populations except the research 

station were similar to those reported by Mdladla et al. (2016) for commercial and ecotype goats 

in South Africa. The current Ne for all populations except Binga is still of acceptable size. 

According to Meuwissen (2009), a threshold of Ne = 100 would be necessary to ensure that an 

animal population is long-term viable in terms of genetic diversity. The lower effective population 
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size in Binga goats implies that improved management should be taken into consideration to 

minimizes loss of diversity. 

 

5.7 Conclusion  

The study demonstrated the utility of the goat 50 K SNP panel in communal goats with highest 

levels of admixture, regardless of the fact that the panel was developed using a few breeds. Results 

from this study provided an insight on the population genetic structure, genetic diversity, extent of 

linkage disequilibrium and effective population sizes of goats in Zimbabwe. This indicates that 

there is potential for improving survival/tolerance of goats to GIN. There were high levels of 

genetic diversity based on HE and HO estimates, low levels of inbreeding across populations and 

low levels of population differentiation. The genetic population structure analysis indicated 

clusters of Binga, some degree of shared ancestry among Chipinge and Shurugwi, as well as 

Tsholotsho and Matobo populations. In all these clusters, the level of gastrointestinal parasite 

infection reported from a preliminary study was low, indicating a possibility of parasite resistance.  

Low levels of LD in this study makes it difficult to detect genetic difference between populations 

in terms of resistance to parasites as well as identify loci which may be associated to parasite 

resistance. The use of a denser SNP panel is required for the communal breeds for purposes of 

conducting GWAS genomic selection. Current effective population sizes were low for populations 

from Binga, indicating the need for improved management of animals to minimize loss of genetic 

diversity. DNA samples that were used in this section, were also used for further analyses in 

chapter 6. 
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Chapter 6 

6 Genome-wide association analyses for gastrointestinal parasite resistance in indigenous 

goats in Zimbabwe 

6.1 Abstract 

Gastrointestinal (GIN) parasitic infections pose a severe threat to small ruminant production, 

through weight losses and/or death. Exploiting host resistance to GIN as a control measure has 

been documented. Understanding the genetic architecture of parasite resistance is important for 

improved production. The aim of this study was to identify polymorphisms strongly associated 

with host resistance in goats reared in low-input/output farming systems in Zimbabwe. The study 

involved conducting genome wide association (GWAS) in goats from Chipinge (n = 33), Shurugwi 

(n = 22), Binga (n = 17), Matobo (n = 33), Tsholotsho (n = 25) and Matopo Research Station (n = 

124) and also performing association analysis within-communal goat populations. The traits 

analysed were logarithm transformed faecal egg counts for Eimeria and Strongyles, level of PCV, 

loads of parasitic infection for both parasites. After quality control, 49 984 SNPs and 44918 SNPs 

were available for genome-wide association analysis in GenAbel and PLINK respectively. The 

study confirmed that GIN resistance traits had heritabilities ranging from 0.27 to 0.56. The GWAS 

analyses revealed multiple SNPs that were associated with Eimeria and Strongyles and were 

significant at the genome-wide level. In particular, the study identified regions on chromosomes 

(chr) 4 (P = 2.66 x10-6) for Eimeira and chr29 (P = 9.93 x10-6) for both Eimeria and Strongyles 

traits.  

Keywords: Gastrointestinal  parasites, GWAS, PCV, goats, genome-wide 
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6.2 Introduction 

Gastrointestinal nematodes (GIN) infections in small ruminants are responsible for significant 

economic losses in tropical and temperate regions worldwide (Crawford et al., 2006). Control is 

largely based on use of anthelmintics (Zanzani et al., 2014). However, resistance to anthelmintics 

has been documented for all major classes of anthelmintics (Riggio et al., 2013; Pickering et al., 

2015). Anthelmintic resistance is higher in goats than in sheep, with which they share the same 

nematode parasites (Mandonnet et al., 2001; Hoste et al., 2010). According to Chiejina and Behnke 

(2011), the ability of goats to control challenge infections following a primary infection is less 

efficient than that of sheep. The immunological memory following anthelmintic abbreviation of a 

primary infection and challenge does not last as long as in sheep. Heavy reliance on drug use to 

control parasites has also raised public concerns due to the presence of drug residues in animal 

food products (Benavides et al., 2015).  

 

In tropical and sub-tropical countries, goats are owned by smallholder farmers and are managed 

extensively, with little or no routine worm control being practiced. In this farming system, goat 

productivity is low, which could be due to low level of chronic infections, with high prevalence 

levels of infections occurring all the year round (Chiejina and Behnke, 2011). According to 

Benavides et al. (2016), the longer animals are exposed to infective larvae in the pasture, the more 

likely host resistance will develop. It is important to develop alternative methods for controlling 

internal parasite infections, such as selection of resistant goats in Zimbabwe. Using host resistance 

as an alternative method of control has the potential to increase frequency of more resistant goats 

and to improve production. 
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Traditionally, the genetic control of complex traits in livestock has been studied without 

identifying the genes or gene variants underlying observed variation, with selection on the basis 

of estimated breeding values (EBVs) calculated from phenotypic and pedigree information 

(Mandonnet et al., 2006; Goddard and Hayes, 2009). Other genetic studies on GIN focused on 

identification of candidate genes (Miller and Horohov, 2006; Alba-Hurtado and Muñoz-Guzmán, 

2012) and QTLs associated with parasite resistance (Matika et al., 2003; Bolormaa et al., 2010a; 

de la Chevrotière et al., 2012a) and using pedigreed populations. QTL studies typically localize 

the causative variant to a fairly large region. However, little overall consensus has emerged from 

these studies, an outcome compounded by the genetic complexity of the trait and the fact that these 

studies are very diverse, involving a variety of breeds, nematode species and experimental 

approaches.  

 

Genome-wide association studies (GWAS) are a recent technology which employs thousands of 

single nucleotide polymorphism (SNP) markers to unveil genomic regions associated with the trait 

of interest. This technology has been possible after the release of genomic tools which in goats 

was the Illumina Goat 50 k SNP BeadChip, which features 53 347 SNP probes, distributed across 

the whole genome, with inter-SNP spacing of ∼40 KB (Tosser-Klopp, 2012). GWAS can fit 

pedigreed populations but it can also be used in case-control studies with no pedigree information, 

which will be quite useful in low-input/output farming systems, where pedigree records are usually 

incomplete or nonexistent. Despite evidence for genetic resistance being studied extensively, fewer 

studies have been conducted in goats, mainly using microsatellite markers. Chronic infections are 

a major source of re-infection and a contributory factor to poor productivity goats in many 

countries. Knowledge on genes associated with parasite resistance can be incorporated in breeding 
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programs. This will benefit the smallholder farmer by reducing cost of drugs, reduce pasture 

contamination and improve animal performance. The objective of this study was to investigate 

SNP-markers associated with resistance to gastrointestinal parasites and infer roles of the genes 

found close to the markers, as a means of understanding mechanisms associated with parasite 

resistance in goats reared in low-input/output farming systems in Zimbabwe. 

 

6.3 Material and methods 

6.3.1 Population description 

The study population consisted of 253 goats from smallholder farmers and a research station in 

Zimbabwe. Local ecotypes of Mashona/ Tonga and Matabele were sampled from Chipinge, 

Shurugwi, Binga, Tsholotsho, Matobo communal farms and from Matopos Research Station. 

Communal animals did not have pedigree records, while some of the Research Station animals 

had. Local ecotypes were maintained under extensive systems, where they foraged on farm land 

or on communal pastures during the day with minimum supplementation and kraaled at night. 

Animals mated indiscriminately and were continuously exposed to natural infections while 

foraging in the communal grazing areas. Animals at the research station (in the district of Matobo) 

were managed semi-intensively. Goats foraged on the research station open rangeland throughout 

the year with some rotation in the paddocks during the day, minimum supplementation, animal 

were naturally infected while foraging. 
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6.3.2 Phenotypic measurements  

Faecal and blood samples were collected directly from the rectum and jugular veins into airtight 

containers and 10-ml EDTA VACUETTE® tubes, respectively. Samples were kept between 2 - 4 

°C during field sampling period on ice in cooler boxes and later stored at -21 °C in the refrigerator 

to prevent formation of ice crystals, prior to laboratory analysis. Sample collection was conducted 

over two different seasons targeting the dry (late April - early October) and wet (late October - 

early April) seasons from 2014 to 2015. Faecal egg counts (FEC) were determined by the modified 

McMaster technique, using floatation methods for nematodes and protozoa (MAFF, 1986). 

Identification of 3rd stage larvae of nematodes was only at the genus level according to Van Wyk 

et al. (2004). Gastrointestinal parasites were classified according to Eimeria spp (oocysts) or 

nematode genera collectively termed Strongyles, which potentially included Haemonchus spp, 

Oesophagostomum spp, and Strongyloides spp. Packed cell volumes (PCV) were also assessed 

using the capillary micro-hematocrit centrifuge method (Bull, 2000).  The FEC data was either 

used directly for analysis or used to classify animals into cases/controls and categorisation of 

animals by levels of infection according to scales used by Hansen and Perry (1994), also by Asha 

and Chebo (2015), i.e. FEC of 0 – 800 eggs per gram (epg) = low, FEC of 800 – 1200 epg = 

moderate and FEC > 1200 epg = high and PCV was either categorised as low or normal. 

  

6.3.3 SNP genotypes and quality control  

Animals were genotyped at the Agricultural Research Council-Biotechnology Platform 

(Oondersteport) in South Africa using the Illumina goat SNP50k Bead chip. The SNP positions 

were based on the current goat genome assembly (CHI_1.0 goat) available from the International 

Goat Genome Consortium (http://www.goatgenome.org). Quality control thresholds were set to 
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remove markers with missing data > 5%, that had MAF ≤ 5%, individuals with missing genotypes 

> 5%, those deviating from Hardy–Weinberg equilibrium (HWE; P < 0.001), across populations 

using PLINK v 1.07 (Purcell et al., 2007). For analyses involving genome-wide associations within 

populations (within-population genome-wide association), SNP data was filtered to remove SNPs 

that were on sex chromosomes or had their positions unmapped to the latest reference assembly of 

the goat genome, while on the single-SNP genome-wide association, these were not filtered off. 

After quality control, 49 984 SNPs were available for genome-wide association analysis in 

GeneAbel and 44918 for within-population GWA analysis in PLINK. 

 

6.4 Statistical analyses 

Initial model specifications and data exploration were conducted using SAS v 9.3 (SAS, 2011). 

Genetic parameters for packed cell volume (PCV), Strongyles and Eimeria resistance were 

determined using ASReml (Gilmour et al., 2009), with the latter two being transformed through a 

base 10 logarithm, log10 (FEC+25) to approximate a normal distribution. Genetic parameters were 

estimated by the fixed effects of sex (male and female), site (Binga, Chipinge, Matopo, Shurugwi, 

Tsholotsho and Research), also using the co-variates of age (1 – 7 years). The animal was fitted as 

a random effect by using either available pedigree for the research station animals or the genomic 

relationship matrix for all animals. 

   

Since local ecotypes were from different localities, with no previous records and Research station 

animals with inadequate pedigree to account for population structure, it was important to identify 

and correct for population stratification. Accounting for population structure has a potential of 
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reducing false-positive associations due to population stratification (Lander and Schork, 1994). 

The population structure was inferred from marker data by using classical multi-dimension scaling 

(MDS) (see Figure 5.2), to explore population substructure and to verify the genetic homogeneity 

of the sample prior to analysis. To account for relatedness, the variance/covariance matrix was 

estimated from the genomic kinship matrix that was constructed by using pair-wise identities by 

state, and calculated for all samples based on all autosomal SNPs, as implemented in the GenABEL 

library (Aulchenko et al., 2007). 

 

Genome-wide association (GWA) analyses was conducted by performing  single SNP association 

analyses, using the GenABEL package in R environment (http://www.r-project.org) (Aulchenko 

et al., 2007) and by performing within-population GWA analyses using PLINK v 1.07 (Purcell et 

al., 2007). The single SNP association analysis utilized quantitative data and it involved fitting 

both fixed and polygenic effects for the traits, with the latter accounting for genetic relationships 

between animals. The fixed effects considered were explained above; also the first three principal 

components (PC1 - PC3) were included, to account for population stratification. Association 

analysis was also tested using the mmscore function (Chen and Abecasis, 2007) on the residuals 

which had been tested for familial relatedness. After Bonferroni correction, significant and 

suggestive thresholds were 1.24 × 10−6 and 2.47 × 10−5 for the genome-wide analysis (P < 0.05), 

respectively. For the within-population genome-wide association analyses, the FEC traits for 

Strongyles and Eimeira were classified as cases or controls, as well as high/low levels of infection 

based on faecal egg counts. Animals from the Research station were excluded from this association 

analyses due to their diverse population structure and high levels of admixture (see Fig 5.3). 

Animals were assigned as cases or controls for the various traits before allelic association using 
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the - - assoc function in PLINK. Association testing and chi square testing were performed in 

subpopulations within Binga, Chipinge, Matobo, Shurugwi and Tsholotsho goats and also in 

combined dataset. 

  

6.5 Results  

Descriptive statistics for FEC prevalence per population are summarised in Chapter 4, Table 4.4 

and levels of infection are summarised in Table 6.1. Level/intensity of infection was generally low 

Strongyles (85.3%), Eimeira (95%) and mixed infection (79%), across populations. The remainder 

included either moderate and/or high levels of infection.  

 

6.5.1 Estimation of genetic parameters 

Heritability estimates for LStrongyles, LEimeria and PCV were generally higher when estimated 

by using the pedigree matrix rather than the kinship matrix. These estimates ranged from moderate 

to high (0.27 - 0.56) for both FEC and PCV when using the kinship matrix and high (0.63 - 0.75) 

when using the pedigree matrix (Table 6.2). 
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Table 6.1: Level of gastrointestinal infection in different areas 

 Intensity  Binga Chipinge Matobo Research  Shurugwi Tsholotsho 

Strongyles Low  93.8 93.4 84.8 82.2 81.8 85.7 

 

Moderate  6.3 0.0 6.1 5.9 13.6 4.8 

 

High  0.0 3.6 9.1 11.9 4.6 9.5 

Eimeria Low  96.4 93.4 100.0 98.3 77.3 90.5 

 

Moderate  0.0 3.6 0.0 0.0 4.6 4.8 

 

High  3.6 0.0 0.0 1.7 18.2 4.8 

Mixed Low  96.4 92.9 78.1 80.3 68.2 76.2 

 

Moderate  3.6 3.6 12.5 6.0 9.1 14.3 

 

High  0.0 3.6 9.4 13.7 22.7 9.5 

The level of infection was based on the faecal egg counts, where, FEC of 0 – 800 eggs per gram 

(epg) = low, FEC of 800 – 1200 epg = moderate and FEC > 1200 epg = high (Hansen; Perry, 

1994); (Asha; Chebo, 2015)  
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Table 6.2: Heritability estimates for GIN using both the kinship and the pedigree-based 

relationship matrices  
Birth weight LStrongyles  LEimeria PCV 

Kinship 
  

  

σ2
a 0.83 x 10-01 0.19 0.19 4.57 

σ2
p 0.24 0.41 0.35 17.2 

Se 0.41 x 10-01 0.39 x 10-01 0.34 x 10-01 1.61 

h2 0.34 0.47 0.56 0.27 

Se 0.29 0.20 0.18 0.18 

Pedigree 
  

  

σ2
a 0.36 x 10-01 0.30 0.25 10.77 

σ2
p 0.23 0.40 0.35 17.0 

Se 0.38 x 10-01 0.39 x 10-01 0.34 x 10-01 1.61 

h2 0.15 0.75 0.72 0.63 

Se 0.32 0.26 0.28 0.27 

Pedigree data was only available for the Research station animals, kinship data was used for all 

the animals 

LStrongyles = Log10(Strongyles+25), LEimeria = Log10(Eimeria+25) 

 

 

6.5.2 Genome-wide association analyses  

Genome-wide association (GWA) analysis identified a strong genome-wide significant association 

for LEimeria, having average animal effect on chromosome (chr) 4 (corrected P-value = 2.66 x 

10-6, -log10 (P) = 22.05). However, several SNPs reached the suggestive level for all traits 

according to definitions we used. A region on chr 4 was noted to have significant associations for 

LStrongyles, at the suggestive level. A summary of identified SNPs, the trait they were associated 

with, their map locations, their P-values and associated genes are reported in Table 6.3. The 

corresponding Manhattan plots and quantile-quantile (QQ) plots for all traits are presented in 

Figures 6.1 – 6.4. The QQ plots were constructed for each association to check the general 
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distribution of the test-statistics and to assess the degree of fit of the model for this analysis. Under 

the hypothesis that most SNP are not associated with the trait, the corresponding QQ plots should 

follow the 45° line y = x to confirm the good fit of the observed-to-expected (theoretical) 

distributions.  

 

Using PLINK, the data was re-analysed with five phenotypes, first using the animals and then 

different subpopulations. The top 10 significant SNPs of different traits, from within-population 

comparisons, are summarised in Tables 6.4 – 6.8. Genome-wide association was observed for 

several SNPs, with two of the top five SNPs for Strongyles infection being located on chr 19 

(snp10639-scaffold1377-1859736, P = 1.29 x 10-5 and snp13217-scaffold1507-522594, P = 7.72 

x 10-6) in Binga goats, chr 3 (snp44005-scaffold595-4718582, P = 6.35 x 10-5) in Chipinge and 

chromosome 14 (snp19587-scaffold1975-373605, P = 1.71 x 10-4; snp1952-scaffold1054-687207, 

P = 1.71 x 10-4) in Tsholotsho. For Eimeira infection, chr 4 (snp55957-scaffold87-1026023, P = 

2.2 x 10-5) and chr 20 (snp49830-scaffold711-2279114, P = 9.68 x 10-5) were found to be 

significant in Binga, on chr 23 (snp4884-scaffold1164-70551, P = 7.29 x 10-5) for Chipinge goats 

and on chr 2 (snp9359-scaffold1341-265416, P = 4.98 x 10-5) for Tsholotsho population. SNPs 

associated with loads/intensity of Strongyle infection were located on chromosomes 4, 17 and 29 

being observed in Binga, Chipinge and Shurugwi. For Eimera intensity of infection association 

were located on chromosomes 4, 17 and 29 (P < 0.05). Common significant SNPs for PCV were 

located on chromosomes 3, 4 and 29 (P < 0.05) from individual sub-populations. 
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Table 6.3: List of SNPs associated with BWT FEC, PCV traits identified by genome-wide association analysis 

Trait SNP Marker Chromosome Position (bp) -log10 (P) 
Pc1df (P) 

 

Associated 

genes 

LEimeria snp49152-scaffold701-194847 4 42887471 22.04742 2.66 x 10-6 ORC5 

LStrongyle snp4990-scaffold117-145789 4 45522178 17.17311 3.41 x 10-5 RELN 

LEimeria snp11688-scaffold143-2734639 25 34779999 15.27857 9.28 x 10-5 NALCN 

LStrongyle snp4026-scaffold1126-2473390 17 48644172 16.20155 5.69 x 10-5 - 

LStrongyle snp42815-scaffold568-5657120 12 61651542 15.92779 6.58 x 10-5 - 

BWT snp28134-scaffold300-5890340 8 40675422 15.64633 7.64 x 10-5 - 

LEimeria snp13629-scaffold1526-1243833 12 73014686 15.53893 8.08 x 10-5 - 

BWT snp59084-scaffold969-2458316 9 30471671 15.45961 8.43 x 10-5 - 

PCV snp53590-scaffold816-423811 22 36556377 15.11593 1.01 x 10-4 ns 

LStrongyle snp1415-scaffold1038-2762722 19 3602327 15.09009 1.02 x 10-4 ns 

PCV snp20198-scaffold20-1688380 11 57190566 14.71118 1.25 x 10-4 ns 

LEimeria snp49201-scaffold701-2256920 4 44949544 14.6866 1.27 x 10-4 ns 

LStrongyle snp29977-scaffold327-1248091 17 54467125 14.53707 1.37 x 10-4 ns 

LEimeria snp47834-scaffold673-1856037 23 12980702 14.52212 1.39x 10-4 ns 

PCV snp16814-scaffold1760-528032 6 33884847 14.45462 1.44 x 10-4 ns 

The genome-wide significance threshold corresponded to a p value less than 1.24 × 10−6 and the suggestive significance threshold 

corresponded to a p-value less than 2.48 × 10−5; (-) on associated genes refers to uncharacterized genes, ns- not significant 
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Figure 6.1: Manhattan plot displaying the GWA results (-log10 (P) of the corresponding Pc1df, 

P-values corrected for the genomic inflation factor λ) and Q–Q plot (below) of observed P-values 

against the expected P-values for log10 (Strongyle+25). Genome-wide P<0.05 (black dashed line) 

and suggestive (red dashed line) thresholds are shown.  
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Figure 6.2: Manhattan plot displaying the GWA results (-log10 (P) of the corresponding Pc1df, 

P-values corrected for the genomic inflation factor λ) Q–Q plot (below) of observed P-values 

against the expected P-values for log10 (Eimeria+25). Genome-wide Genome-wide P<0.05 (black 

dashed line) and suggestive (red dashed line) thresholds are shown. 
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Figure 6.3: Manhattan plot displaying the GWA results (-log10 (P) of the corresponding Pc1df, 

P-values corrected for the genomic inflation factor λ) and Q–Q plot (below) of observed P-values 

against the expected P-values for packed cell volume. Genome-wide P<0.05 (black dashed line) 

and suggestive (red dashed line) thresholds are shown.  
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Figure 6.4: Manhattan plot displaying the GWA results (-log10 (P) of the corresponding Pc1df, 

P-values corrected for the genomic inflation factor λ) and Q–Q plot (below) of observed P-values 

against the expected P-values for body weight. Genome-wide P<0.05 (black dashed line) and 

suggestive (red dashed line) thresholds are shown 
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Table 6.4: SNP associations for Strongyles 

Population Chr. SNP Marker 
Position 

(bp) 
F_A F_U CHISQ 

log P-value 

(P) 
Gene 

Shurugwi 29 snp45158-scaffold615-95117 3968976 0.06 0.70 19.52 9.93 x 10-06 HRASLS5 

Chipinge 3 snp44005-scaffold595-4718582 90576796 0.67 0.13 16.00 6.34 x 10-05 ZFYVE9 

Matobo 14 snp35366-scaffold425-347876 73026013 0.17 0.90 21.48 3.58 x 10-06 NCALD 

Matobo 9 snp36947-scaffold448-1987984 76995912 0.10 0.70 17.91 2.32 x 10-05 OPRM1 

Binga 19 snp10639-scaffold1377-1859736 23852460 0.11 0.92 19.03 1.29 x 10-05 ATP2AE 

Binga 28 snp13217-scaffold1507-522594 6772317 0.11 0.83 15.65 7.63 x 1005 - 

Matobo 17 snp5993-scaffold121-2283992 58749480 0.08 0.70 20.48 6.03 x 10-06 -  

Matobo 26 snp30498-scaffold3363-112737 44763296 0.00 0.40 20.62 5.59 x 10-06 - 

Matobo 15 snp54683-scaffold837-94165 56807645 0.23 0.90 16.48 4.90 x 1005 - 

Binga 1 snp20580-scaffold2027-408470 6544523 0.06 0.92 22.25 2.40 x 10-06 - 

List of top ten SNPs associated with Strongyle infection identified by genome-wide association analysis within individual sub-

populations. F_A and F_U- Allelic frequencies for affected and unaffected, Chr.- chromosome; (-) on associated genes refers to 

uncharacterized genes, ns- not significant  
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Table 6.5: SNP associations for Eimeria 

Population Chr. SNP Marker 
Position 

(bp) 
F_A F_U CHISQ 

log P-value 

(P) 
Gene 

Shurugwi 29 snp45158-scaffold615-95117 3968976 0.06 0.70 19.52 9.93 x 10-06 HRASLS5 

Binga 20 snp49830-scaffold711-2279114 19009631 0.69 0.00 15.2 9.68 x 10-05 PDE4D 

Chipinge 12 snp42761-scaffold568-3276429 64032233 0.09 0.59 15.45 8.45 x 10-05 GPC5 

Chipinge 23 snp31000-scaffold3423-173708 15136679 0.00 0.41 15.71 7.39 x 10-05 KIAA03 

Chipinge 23 snp4884-scaffold1164-70551 30426514 0.19 0.73 15.73 7.29 x 10-05 CCDN3 

Tsholotsho 2 snp9359-scaffold1341-265416 22981313 0.10 0.71 16.45 4.98 x 10-05 RAPGEF4 

Matobo 28 snp1049-scaffold1028-563238 4231554 0.09 0.58 16.64 4.51 x 10-05 PCNX2 

Binga 1 snp14650-scaffold1590-595886 120458177 0.69 0.00 15.2 9.68 x 10-05 - 

Tsholotsho 13 snp49123-scaffold7-6847705 25544289 0.85 0.25 15.74 7.26 x 10-05 - 

Chipinge 11 snp52883-scaffold793-1222376 47038137 0.19 0.73 15.73 7.29 x 10-05 - 

List of top ten SNPs associated with Eimeria infection identified by genome-wide association analysis within individual sub-populations. 

F_A and F_U- Allelic frequencies for affected and unaffected, Chr.- chromosome; (-) on associated genes refers to uncharacterized 

genes, ns- not significant  
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Table 6.6: SNP associations for Strongyle intensity of infection 

Population Chr. SNP Marker 
Position 

(bp) 
F_A F_U CHISQ 

log P-value 

(P) 
Gene 

Shurugwi 29 snp45158-scaffold615-95117 3968976 0.06 0.70 19.52 9.93 x 10-06 HRASLS5 

Matobo 28 snp56862-scaffold90-2142665 19248672 0.69 0.14 17.03 3.68 x 10-05 JMJD1C 

Chipinge 17 snp23387-scaffold2341-25639 9520754 0.54 0.03 17.94 2.28 x 10-05 NR3C2 

Binga 4 snp49507-scaffold706-1451989 20658229 0.83 0.04 18.8 1.45 x 10-05 DGKB 

Binga 4 snp49508-scaffold706-1500437 20706677 0.83 0.04 18.8 1.45 x 10-05 DGKB 

Binga 4 snp49510-scaffold706-1569574 20775814 0.83 0.04 18.8 1.45 x 10-05 DGKB 

Binga 4 snp21932-scaffold2156-19824 90363844 0.67 0.00 18.46 1.73 x 10-05 - 

Binga 11 snp46972-scaffold656-562152 53613950 0.67 0.00 18.46 1.73 x 10-05 - 

Chipinge 2 snp37699-scaffold464-2080725 100621022 0.67 0.10 18.77 1.47 x 10-05 - 

Chipinge 17 snp52353-scaffold779-851002 1165612 0.79 0.20 18.77 1.47 x 10-05 - 

List of top ten SNPs associated with Strongyle intensity identified by genome-wide association analysis within individual sub-

populations. F_A and F_U- Allelic frequencies for high and low loads of infection, Chr.- chromosome; (-) on associated genes refers to 

uncharacterized genes, ns- not significant  
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Table 6.7: SNP associations for Eimeria  intensity of infection 

Population Chr. SNP Marker Position (bp) F_A F_U CHISQ 
log P-value 

(P) 
Gene 

Shurugwi 29 snp45158-scaffold615-95117 3968976 0.06 0.70 19.52 9.93 x 10-06 HRASLS5 

Binga 4 snp49507-scaffold706-1451989 20658229 0.83 0.04 18.8 1.45 x 10-05 DGKB 

Binga 4 snp49508-scaffold706-1500437 20706677 0.83 0.04 18.8 1.45 x 10-05 DGKB 

Binga 4 snp49510-scaffold706-1569574 20775814 0.83 0.04 18.8 1.45 x 10-05 DGKB 

Chipinge 6 snp30831-scaffold340-1546957 11987875 0.59 0.09 15.45 8.45 x 10-05 - 

Tsholotsho 2 snp29701-scaffold3212-210914 23568400 0.06 0.65 15.75 7.23 x 10-05 - 

Chipinge 3 snp56222-scaffold879-1023557 40371352 0.14 0.69 15.93 6.58 x 10-05 - 

Matobo 3 snp15889-scaffold167-197764 81670173 0.47 0.00 16.44 5.02 x 10-05 - 

Binga 4 snp21932-scaffold2156-19824 90363844 0.67 0.00 18.46 1.73 x 10-05 - 

Binga 11 snp46972-scaffold656-562152 53613950 0.67 0.00 18.46 1.73 x 10-05 - 

List of top ten SNPs associated with Eimeria intensity identified by genome-wide association analysis within individual sub-populations. 

F_A and F_U- Allelic frequencies for high and low loads of infection, Chr.- chromosome; (-) on associated genes refers to 

uncharacterized genes, ns- not significant  
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Table 6.8: SNP associations for PCV 

Population Chr. SNP Marker Position (bp) F_A F_U CHISQ 
log P-value 

(P) 
Gene 

Shurugwi 4 snp55533-scaffold860-529654 17408877 0.13 0.75 16.38 5.19 x 10-05 THSD7A 

Matobo 28 snp1049-scaffold1028-563238 4231554 0.09 0.58 16.64 4.51 x 10-05 PCNX2 

Chipinge 17 snp23387-scaffold2341-25639 9520754 0.54 0.03 17.94 2.28 x 10-05 NR3C2 

Shurugwi 14 snp51276-scaffold75-5261761 35863280 0.09 0.67 15.28 9.28 x 10-05 - 

Chipinge 2 snp5777-scaffold1203-687366 68392864 0.50 0.03 15.89 6.73 x 10-05 - 

Tsholotsho 2 snp29701-scaffold3212-210914 23568400 0.06 0.67 15.94 6.53 x 10-05 - 

Binga 24 snp27305-scaffold290-2740278 35916592 1.0 0.2 17.14 3.47 x 10-05 - 

Binga 27 snp7600-scaffold1270-1052577 36860194 0.70 0 18.26 1.93 x 10-05 - 

Chipinge 2 snp37699-scaffold464-2080725 100621022 0.67 0.10 18.77 1.47 x 10-05 - 

Chipinge 17 snp52353-scaffold779-851002 1165612 0.79 0.20 18.77 1.47 x 10-05 - 

List of top ten SNPs associated with PCV identified by genome-wide association analysis within individual sub-populations. F_A and 

F_U- Allelic frequencies for low and normal PCV, Chr.- chromosome; (-) on associated genes refers to uncharacterized genes, ns- not 

significant 
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6.6 Discussion  

The traits that were used for this study were FECs for both Strongyles and Eimera the egg 

counts were further categorised to either high, medium or low intensities, which measured the 

level of parasite burden in the animals. Measurement of FEC was conducted using the 

floatation method. Another trait that was assessed was the packed cell volumes, which gives 

an indication of the degree of anaemia, especially if the animal has been infested with blood-

sucking internal parasites such as Haemonchus contortus. The study indicated that GIN 

resistance is a heritable trait, which can be incorporated in genetic improvement programs. 

Heritability (h2) estimates for FEC traits obtained were generally higher than what has been 

reported in other goat studies (Vagenas et al., 2002; Mandonnet et al., 2006). Estimates 

computed using pedigree data for PCV obtained in this study were comparable with those 

reported by Mandonnet et al. (2001). Heritability estimates had high standard errors, this could 

be explained by low samples sizes used. The pedigree-based estimates for all traits were higher 

than those computed using the kinship matrix which could be attributed to the data structure.  

 

In the previous study (chapter 5), the present study reported low levels of LD (ranging from 

0.05 ± 0.09 to 0.11 ± 0.15), using SNP data, this according to Amin et al. (2007), together with 

missing heritability could be the reason for lower heritability using the kinship matrix. Patterns 

of LD are strongly linked to MAF, i.e. on average, the signals from low-frequency variants are 

less replicated than those from high-frequency variants. Minor allelic frequencies less that 0.05 

were less than 5 % of the SNPs; hence this explains why generally there were higher 

heritabilities for the traits. This supports reports by Vinkhuyzen et al. (2013), where the authors 

explained that heritability will be too low for traits with predominantly low frequency causal 

variants and too high for those with predominantly high-frequency causal variants. This has 
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consequences when one performs genomic partitioning to investigate the frequency spectrum 

of causal variants for complex traits. According to Yang et al. (2011), a transformation that 

involves uniformly scaling the usual SNP-based kinship coefficients can improve the detection 

of causal variants. 

 

Population clusters reported in this study were Chipinge, Binga, Shurugwi; Matobo and 

Tsholotsho. Indicator traits for GIN infections SNPs were not being detected for the respective 

clusters. Differences were being observed within a cluster of Matobo and Tsholotsho, where 

similar SNP associations could be expected. Results from the single-SNP association studies 

indicated six SNPs on four regions associated with Eimeria (chr. 4 and 25) and Strongyles 

resistance, on (chr. 4) (Table 6.3). Annotation of genes was conducted in the National Center 

for Biotechnology Information (NCBI) website. Genes annotated to be associated with Eimeria 

include the recognition complex subunit 5 (ORC5), which is involved in the initiation DNA 

replication together with mating type transcriptional silencing and the RELN gene which is 

involved in cell-cell interactions critical for cell positioning and neuronal migration during 

brain development. Genes associated with Strongyles resistance is the Sodium leak channel, 

non-selective (NALCN) which is responsible for the neuronal background sodium leak 

conductance (http://www.genecards.org/). These genes have not been implicated elsewhere for 

GIN resistance.  

 

The single-SNP genome-wide analyses identified some SNPs for Strongyles (chr 12), which 

were not identified by the within-population genome-wide analyses, together with markers on 

chromosome 12 and 17 being uncharacterised. On the other hand, several other significant 

SNPs were identified by within-population genome-wide analyses especially for PCV. This 

supports the polygenic pattern of inheritance for GIN traits. The minimal number of SNPs 
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detected using the mmscore function could be explained by low levels of LD as well as low 

levels of FST reported. LD ranging from 0.05 ± 0.09 to 0.11 ± 0.15 and FST values ranging from 

0.01 - 0.04, were reported, thus this could have an impact on the SNPs detected.  

 

Different studies have utilized different thresholds of LD as being sufficient to achieve 

accuracy in genomic selection, these are r2 > 0.2 in goats by Meuwissen et al. (2001), r2 > 0.33 

in humans by Ardlie et al. (2002) and r2 > 0.25 in cattle by Qanbari et al. (2010). Low detection 

of SNPs could also be due low samples sizes that we used in this study, of 246 animals. Most 

genomewide association studies that have detected significant results using SNP-based markers 

had samples size of at least 2000 animals, for example, studies by Kijas et al. (2012) and Martin 

et al. (2016). An exception was the study by Kijas et al. (2013) where 182 goats were used for 

the analysis and significant results were obtained, this could be attributed to a very well defined 

phenotype (horn/polledness) and defined breeds. According to Kemper et al. (2011) to increase 

power of detection for SNPs associate to parasite resistance (Martin et al., 2016), the number 

markers need to be increased i.e. using a denser SNP marker panels therefore increasing LD 

between the marker and the polymorphism, or by increasing the number of observations for a 

trait, thus reducing the relative size of the experimental error. 

  

Novel association results would be expected because some of the previous efforts have not 

used indigenous breeds for QTL detection. These breeds have undergone adaptation to tropical 

environmental conditions with much less exposure to artificial selection for production. As a 

consequence, indigenous animals might have developed mechanisms to tackle heavy parasite 

burdens over time as compared to temperate breeds. This supports results from this study, 

where majority of the animals had low intensities of infection despite the minimal treatment or 

parasite control in these farming systems. 
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For the case-control within-population, GWAS the most significant SNP across all parasite 

traits was in the Shurugwi population and the region identified was on chromosome 29 

(snp45158-scaffold615-95117, P = 9.93 x 10-06) for Strongyles and Eimeria infections, also for 

loads of infection of both parasites. The gene positioned at this location is the HRAS Like 

Suppressor Family Member 5 (HRASLS5), among its related pathways are phospholipases and 

it is also involved in transferase activity i.e. transferring acyl groups 

(www.ncbi.nlm.nih.gov/gene). The other common SNP positioned on chr 4 for both Strongyles 

and Eimeria infections was had several SNP markers (P = 1.45 x 10-05). The gene positioned 

at this location is the diacylglycerol kinase beta (DGKB), involved in glycerolipid, 

glycerophospholipid and phosphatidylinositol metabolic pathways. The other significant SNPs 

identified were for Strongyles in different populations. These were located on chr 14 (NCLAD), 

chr 17 (ATXN2) and chr 26 from Matobo and on chr 1 from Binga, with the last two being 

uncharacterized. Ten regions on six different chromosomes were found to be associated with 

PCV, however three of these were annotated (chr. 4, 17 and 28). The Thrombospondin type 1 

domain containing 7A (THSD7A) gene on chromosome 4, codes for protein found in 

endothelial cells from placenta and umbilical cord, this protein interacts with alpha V beta 3 

integrin and paxillin to inhibit endothelial cell migration and tube formation. The Pecanex 

Homolog 2 (PCNX2) gene on chromosome 28 plays a role in tumorigenesis of colorectal 

carcinomas with high microsatellite instability. Nuclear receptor subfamily 3 group C member 

2 (NR3C2) gene on chromosome 17 encodes the mineralocorticoid receptor, which mediates 

aldosterone actions on salt and water balance within restricted target cells. These genes have 

not been EPO elsewhere for GIN resistance. 
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Among the regions (chr 22, 23 and 26) associated with GIN in goats reported in other studies 

(Bolormaa et al., 2010b; de la Chevrotière et al., 2012a). Chromosome 23 (locations 15 and 30 

Mb) was reported for association with Eimeira in Chipinge populations. The regions identified 

corresponded to the cyclin D3 (CCND3) gene and dyslexia-associated protein (KIAA03). Their 

roles are specific to cell cycle regulation and pathways involved development of the cerebral 

cortex by regulating neuronal migration and cell adhesion respectively. However, a region 

between the two genes, houses the HLA class II histocompatibility antigen DR alpha chain 

(LOC102189356). According to Amills et al. (1998) and  Ackerman and Cresswell  (2004), the 

major histocompatibility complex (MHC) class II genes encode proteins that present processed 

peptides derived from extracellular antigens to helper T cells bearing the CD4+ differentiation 

marker. An example of its function in GIN includes eliciting the development of an appropriate 

immune response towards trichostrongyliasis (Amills, 2014). 

 

According to Benavides et al. (2015), differences in results obtained from studies are due to 

the nature of immune response, different experimental approaches, infection protocols (natural 

vs. artificial), GIN species, phenotypic traits measured, environment with which animals were 

raised (tropical vs. temperate; dry vs. humid climates) and statistical methods for analyses. 

Comparison across studies are also not easy due to that livestock populations are characterised 

by high levels of relatedness, that is, closely related animals with a complex population 

structure and an a priori unbalanced distribution of allele frequencies. This is even more 

challenging in this study, where animal were reared under extensive systems and animals bred 

indiscriminately in communal grazing area. Insight could be taken from sheep genetic studies 

and translated to goat studies.  
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In this study, of the top SNPs identified, none of them were found on genes implicated with 

resistance. The findings in the study made it difficult to ascertain the mechanisms giving rise 

to resistance in the goat populations in this study. Genes which are implicated to be associated 

with genetic resistance to GIN include those involved in wound healing, mounting the Th2 

immune response against GIN infections, those that are involved in MHC-mediated antigen 

processing and presentation among others (see review of sheep by Benavides et al. (2016)). 

There are generally limited studies which focused on identification of regions associated with 

GIN resistance in goats, with which to compare with, as there are in sheep. This makes it 

difficult to understand the mechanism underlying genetic resistance in goats; hence insights 

are obtained in sheep genetic studies. 

  

6.7 Conclusion  

Genetic parameters were estimated, indicating that parasite resistance is a heritable trait which 

can be included in breeding programs. Regions on chromosome 4 and 29 were identified as the 

top SNPs associated with parasite resistance, however, regions on chr 23 that were detected, 

were found close to the MHC class II gene at located at 24Mb. Conducting genome-wide 

association within populations identified several regions associated with GIN resistance, 

thereby confirming the polygenic nature of GIN resistance. 
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Chapter 7 

7 General discussion, conclusions and recommendations 

7.1 General discussion  

Goat production in the communal areas represents the most extensive type of farming (low 

input/output). In these farming systems, goats are an important source of livelihood, supplementing 

income in mixed crop-livestock systems, especially in the tropics and sub-tropics. Goats have an 

ability to survive and maintain condition in harsh environment; however, they are susceptible to 

gastrointestinal parasite (GIN) infections. Control of these parasites mainly revolves around the use 

of anthelmintics. In tropical developing countries anthelmintics are often unavailable or too costly 

for smallholder farmers. According to Baker (1999), breeding tropical goats for enhanced resistance 

to nematode parasites should lead to sustained improvements in animal health and performance. 

Different methods of parasite control have been reviewed in Chapter 2. 

  

The objective of the study involved identifying SNPs that are associated with GIN and determine the 

mechanisms in which goats have developed the ability to fight infection in an environment where 

parasite control is practiced at a very low scale. A few experiments have been conducted in genetic 

GIN resistance to infection in goats (Mandonnet et al., 2001; Walkden-Brown et al., 2008; Estrada 

Reyes et al., 2016). Despite the need for more studies of goat-GI nematode interactions, limited 

studies exist. Mechanisms of resistance in goats are suggested to differ from those in sheep (Pomroy 

et al., 1986; Jallow et al., 1994). Of the four distinctive manifestations of host acquired resistance to 

GIN in sheep, namely poor establishment of infective larvae (L3), reduced worm development and 

growth, reduced worm fecundity and accelerated/rapid worm rejection, only the last two are believed 

to be expressed by goat breeds (Chiejina and Behnke, 2011). 
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Indigenous goats in Zimbabwe have no definite genetic structure, such that it was difficult to infer 

the breeds owned by farmers. In chapter 5, the Illumina Goat 50 k beadchip was utilized to assess 

population genetic structure; this information was then used in the genome-wide association analyses 

in chapter 6. There were high levels of genetic diversity, low levels of inbreeding across populations 

and low levels of population differentiation. Population structure analyses using both PCA and 

ADMIXTURE indicated that the research animals were in 5 clusters, and individuals in these clusters 

had common genetic components, thus, making it difficult to infer the breeds of these animals. The 

extent of genetic diversity and population substructure at polymorphic loci are critical for genotype-

phenotype association studies (Periasamy et al., 2014), such as gastrointestinal parasite resistance. 

Population stratification has been demonstrated to result in false-positive associations in various 

species including humans (Helgason et al., 2005) and cattle (Zenger et al., 2007; McKay et al., 2008). 

  

There were low levels of linkage disequilibrium reported in this study, however this made this 

difficult to detect genetic difference between populations in terms of resistance to parasites as well 

as identify loci which are associated with parasite resistance. Although several different 

‘‘significant’’ SNP markers were identified using the two association approaches, none of the markers 

were associated to most candidate genes (those involved in innate and adaptive immune pathways) 

associated with parasite resistance as reviewed by (Benavides et al., 2016). Studies by Bolormaa et 

al. (2010b) and de la Chevrotière et al. (2012a) using microsatellites identified chr 23 to be associated 

with GIN resistance. One of the main determinants of the immune response elicited against pathogens 

is the major histocompatibility complex (MHC), which is located on chr 23, for example, the 

development of an appropriate immune response to trichostrongyliasis (Amills, 2014). 
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Using the single-SNP association, a few regions were identified to be associated with Eimeria, 

Strongyles resistance and PCV as compared to the within-population genome-wide analysis. 

According to Muchadeyi (2016, personal communication) and Hayward (2013), it is not ideal to 

perform genome-wide analysis in extensively raised populations due to poorly defined population 

structures, mixed infections and low sample sizes, hence in this study we conducted within-

population analyses as an alternative method. The genetically fragmented nature of goat 

populations/ecotypes makes it challenging to use results on anything other than the population in 

which they are derived (Zvinorova et al., 2016b). In general, it is not possible to extrapolate results 

obtained across distantly related populations. Due to small sample size, associations with candidate 

genes should be treated as an indication and certainly require further research to be validated. 

 

The use of genetic markers will make a large contribution to breeding programmes, but for low 

input/output farming systems, several challenges can hinder progress. In addition to that, conducting 

GWAS in low-input/output small-holder systems is difficult due to the requirements needed and also 

genotyping costs. However, nucleus breeding schemes can be incorporated in the farming systems to 

overcome costs as well as incorporate appropriate phenotyping and record keeping.  

 

7.2 Conclusions  

The study determined the management of GIN in low-input/output farming systems, level of 

prevalence, population genetic structure and biomarkers associated with GIN resistance. Low levels 

of parasitic control and level of knowledge warrant the need for farmers to be trained and increase 

their awareness. The utility of the Goat 50k SNP was demonstrated by its ability to estimate genetic 

parameters in populations which had no pedigree data, enable analyses of genetic diversity and 

population structure. There was low genetic differentiation among populations, low levels of 
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inbreeding and high genetic diversity. Evidence from the study indicated that goat populations shared 

ancestory, to a certain degree. The study was able to identify multiple SNPs that were associated with 

Eimeria and Strongyles at the genome-wide level. The identification of several loci in the association 

analyses supports the polygenic nature of GIN resistance, which explains that the traits are under the 

control of several genes, each having a small effect. 

  

7.3 Recommendations 

Further work in GIN resistance in goats reared under extensive systems is required to dissect the 

underlying genetic mechanisms. This can be explored by increasing the density of SNP markers as 

well as and increasing sample sizes. Futher work can be conducted in the identified genes to confirm 

or validate their role in mechanisms involved in eliciting immune responses towards GIN infections.  

 

7.4 Research outputs and author contributions 

7.4.1 Peer reviewed publications and manuscripts  

i. Zvinorova, P.I., Halimani, T.E., Muchadeyi, F.C, Matika, O., Riggio, V. and. Dzama, K.  2016. 

Prevalence and risk factors of gastrointestinal parasitic infections in goats in low-input low-output 

farming systems in Zimbabwe. Manuscript published Small ruminants Research 143: 75-83. This 

forms the basis of Chapter 4 and is entirely the work of Miss Zvinorova. 

ii. Zvinorova, P.I., Halimani, T.E., Muchadeyi, F.C., Matika, O., Riggio, V. and Dzama, K.. 2016. 

Breeding for resistance to gastrointestinal nematodes–the potential in low-input/output small 

ruminant production systems. Manuscript published in Veterinary Parasitology, 225: 19-28. This 

paper forms the basis of Chapter 2 and is entirely the work of Miss Zvinorova. 
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