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Abstract 
Reconfigurable manufacturing systems (RMSs) are aimed at dynamic situations, such as 
varying products, variations in production volume requirements and changes in available 
resources. RMSs distinguish themselves from other types of manufacturing systems in 
that they can quickly adapt to a new product being introduced without the need for long 
reconfiguration times, and can therefore cost effectively produce smaller batch sizes.  

RMSs in research environments in most cases used Agent Based Control (ABC), but the 
main automation vendors in the industry do not support ABC. This inhibits the 
acceptance of RMSs by the industry. For this research, C# was investigated as an 
alternative to ABC, since C# can provide for many of the functionalities of agents, yet is a 
more widely known language than ABC. Furthermore, C# is an object-oriented 
programming (OOP) language and thus possesses characteristics aligned with the core 
characteristics of reconfigurable manufacturing systems. 

The focus of this thesis is to determine the suitability of C# for the development of  the 
control software for RMSs. This thesis describes the design, implementation, testing and 
evaluation of a reconfigurable stacking and buffering station. The controller was 
implemented in C# and made use of the ADACOR architecture. 

The physical test-setup was built to evaluate the reconfigurability of the control ler in  a 
series of reconfiguration experiments. 

The thesis showed that the controller could handle all the hardware interfaces without 
problems, since C# generally simplifies the task of hardware interfacing. OOP 
characteristics helped making developing and maintaining the code an intuitive task.  The 
stacking station handled all communication with the cell controller correctly, which 
proved that it could easily be integrated into a distributed control architecture. 
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Uittreksel 
"Reconfigurable manufacturing systems" (RMSs) is gemik op dinamiese si tuasies, soos 
veranderende produkte, veranderings in produksievolumes en veranderinge in 
beskikbare hulpbronne. RMSs onderskei hulself van ander tipes vervaardigingstelsels 
deurdat hulle vinnig kan aanpas by nuwe produkte wat bekendgestel word sonder dat 
dit nodig is om die stelsel eers lank te herkonfigureer, en kan sodoende kleiner 
lotgroottes koste-effektief produseer. 

RMSs maak in navorsingmilieus meestal gebruik van "Agent Based Control" (ABC), maar 
die hoof outomatisasie-verkopers in die industrie ondersteun nie ABC nie. Dit belemmer 
die aanvaarding van RMSs in die industrie. Vir hierdie navorsing is C# as 'n alternatief vi r 
ABC ondersoek omdat C# baie van die funksionaliteite kan voorsien wat aangetref word 
in ABC, maar terselfdertyd 'n meer bekende taal is as ABC. Verder is C# 'n objek-
georiënteerde programmerings- (OOP) taal en beskik dus oor karakteristieke wat in lyn 
is met die kernkarakteristieke van RMSs. 

Die fokus van hierdie tesis is die geskiktheid van C# vir die ontwikkeling van 
beheersagteware vir 'n RMS. Hierdie tesis beskryf die ontwerp, implementering, toetsing 
en evaluering van 'n herkonfigureerbare stapel- en bufferstasie. Die beheerder was in C# 
geïmplementeer en het van die ADACOR-argitektuur gebruik gemaak. 

Die fisiese toets-opstelling was gebou om die herkonfigureerbaarheid van die beheerder 
te kan evalueer aan hand van 'n reeks herkonfigureringseksperimente. 

Die tesis het gewys dat die beheerder sonder probleme alle hardeware-intervlakke kon 
hanteer, omdat C# dit oor die algemeen vergemaklik om met hardeware te 
kommunikeer. OOP karakteristieke was nuttig om die ontwikkeling en instandhouding 
van die program intuïtief te maak. Die stapelstasie het alle kommunikasie met die 
selbeheerder korrek hanteer, wat bewys het dat dit probleeml oos in 'n verspreide 
beheerargitektuur opgeneem kon word. 
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1 Introduction 

1.1 Background 

Manufacturing systems today face challenges such as short product life cycles, rapidly 
changing manufacturing technologies, unpredictable demand due to fluctuations in the 
market and increasing demand from the consumer to be able to manufacture 
customized products (Van Leeuwen & Norrie, 1997) in high varieties, yet inexpensively  
and without compromising quality (Van Brussel, et al., 1999). The time that a particular 
product is on the market is oftentimes far shorter than the time it takes to design a new 
production line, set it up and get production started. For reasons like these, it is 
preferable to have manufacturing systems which are easily reused for various new 
products. Manufacturers who are able to start producing faster can roll out their 
products sooner and therefore have a significant economic advantage over their 
competitors. Reconfigurable Manufacturing Systems (RMSs) are designed to shorten 
these ramp-up times and address the aforementioned challenges. 

An RMS is defined as “being designed for rapid adjustment of production capacity and 
functionality, in response to new circumstances, by rearrangement or change of its 
components.” (Mehrabi, et al., 2000). Making alterations to a (conventional) dedicated 
manufacturing line which was designed without future reconfigurations in mind, is 
costly and can take a considerable amount of time. RMSs on the other hand are 
designed from the beginning to simplify the process of making changes to both the 
hardware and the control software of the manufacturing system, thereby drastically 
shortening ramp-up time while also saving costs and keeping the impact on the ongoing 
production to a minimum. 

Conventional manufacturing systems, like dedicated manufacturing systems (DMSs) still  
have their place in countries with large, established economies, where production 
volumes are high and demand is more stable. Reconfigurable Manufacturing Systems 
offer a more workable solution for fast developing countries with smaller, emerging 
economies and rapidly changing markets. South Africa falls in this category, where 
production volumes are generally not as high but where product variety is wide, such 
that frequent changeovers are required. In South Africa many production processes are  
still performed by hand, but changing labour laws and quality requirements might 
necessitate the implementation of new automation systems. It is thus advisable to 
design those new manufacturing systems to be reconfigurable, even though it is not 
necessarily advisable to change already existing manufacturing systems to be 
reconfigurable. 

This research project is one of several projects carried out by the Mechatronics, 
Automation and Design Research Group (MADRG) at the Mechanical and Mechatronic 
Engineering Department at Stellenbosch University. The MADRG is conducting research 
into various aspects of reconfigurable manufacturing systems: transportation systems 
for RMSs; singulation of parts; machine vision for part identification, orientation, quality 
inspection and autonomous calibration; machine learning for route planning; and 
various assembly processes and machining processes. Where other researchers focus 
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mainly on a factory-level, for the MADRG the focus lies mainly on a cell- and station-
level. Research is conducted in collaboration with a research group at the Central 
University of Technology. South African industry partners include CBI Electric: low 
voltage, hereafter referred to as “CBI” and AAT Composites (manufacturers of aerospace 
and automotive parts). 

Some of the other research projects on a reconfigurable manufacturing cell  done by 
MADRG on the CBI case study are shown in Figure 1. They include the controller for a 
conveyer system with a pallet magazine, the design of singulation units using machine 
vision, a revolving helical drum (not shown), and a vibratory bowel; an eye-in-hand 
camera attached to the end-effector of a robot to eliminate the need for manual 
calibration, a modular welding robot, and a quality assurance cell. Controllers used 
include PC's, Siemens PLC's and a Beckhoff embedded PC. Software used for the 
research projects includes Java, C#, Function Blocks, Agent Based Control, LabView, 
Erlang and a combination of these. 

 

Figure 1 Mechatronics Automation and Design Research Group (MADRG) laboratory 

For a case study, it was considered automating one of the production processes for CBI.  
CBI is a large South African company manufacturing a wide variety of circuit breakers  (a 
few hundred variants) for the local and international market. Batch sizes that they deal  
with vary from as little as 20 to about 60000 per day. Orders are sometimes 
unpredictable and they therefore frequently need to changeover between different 
types of products. At first they wish to automate some of the production processes of 
those products which are produced in high volumes. Only if and when the need arises, 
should the existing system be reconfigured so that those products with lower volumes 
can also be catered for at a later stage but with minimal impact on the already ongoing 
production and with minimal additional capital investment. CBI would therefore be a 
potential user of a reconfigurable manufacturing system which is why they agreed to 
provide material for a case study where some of their production processes are to be 
automated. 

Electrical 
testing 

Buffer Pallet magazine Conveyer 

Modular 
Cartesian robot 

Rivet singulation 
& placement 

6-DOF Robot 
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1.2 Objectives 

The aim of the research presented in this thesis is to evaluate the suitability of  C# for a 
controller in a reconfigurable manufacturing system. This entails: 

 Implement a station controller for an RMS cell using C#. 
 Evaluate the OOP approach in a case study: Design a reconfigurable stacking and 

buffering station of which the throughput rates are at least as high as the 
current manual system. 

1.3 Motivation 

RMSs in research environments in most cases used Agent Based Control (ABC) (Vrba, et 
al., 2011; Cândido & Barata, 2007; Hall, et al., 2005), but the main automation vendors 
in the industry do not support ABC. This inhibits the acceptance of RMSs by the industry. 
The focus of this research is to investigate whether Object-Oriented Programming (OOP) 
would be suited for implementing RMSs, since OOP is used more widely and therefore is 
likely to be more acceptable to industry than ABC. C# is being used for this research, 
since it is a widely used OOP language, which would be acceptable by industry. 

The controller implemented for this research was on a lower level (i.e. station-level) 
than what has usually been done thus far (i.e. cell control level) therefore achieving an 
optimal throughput rate was more important than autonomous adaptability. 

1.4 Thesis overview 

To place this thesis into context, relevant findings from the literature are discussed in 
the next chapter. The case study and the design of the experimental setup are  covered 
in chapter 3. Chapter 4 contains a comparison between viable control software and 
evaluates OOP as an alternative to Agent Based Control. Detail on the implementation 
of the control software is discussed in chapter 5. Experiments were performed to 
evaluate the controller's reconfigurability. These experiments are described in chapter 6, 
followed by a conclusion in the final chapter. 
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2 Literature Review 
Research relating to reconfigurable manufacturing systems, fundamentals of established 
control architectures, and previously used control software is discussed in this chapter.  
Key concepts of object oriented programming (OOP) are compared to properties of 
agent based control. These findings aided the design and implementation of a 
reconfigurable stacking station and its controller, as discussed in later chapters.  

2.1 Reconfigurable manufacturing systems 

To put RMSs in contrast with conventional manufacturing systems, Dedicated 
Manufacturing Systems (DMSs) and Flexible Manufacturing Systems (FMSs) are  briefly 
discussed here. 

DMSs are designed to manufacture a relatively small variety of fairly similar products at 
high volumes. The manufacturing line is set up to handle only those few selected 
products, and the processes are optimized to cost-effectively achieve high throughput 
rates which should match the demand. The equipment installed, the software wri tten 
and the factory layout chosen only keep the selected products and target production 
volumes in mind, but make no specific provision for future reconfigurations. When, at 
some later stage, a new and different product has to be manufactured that has not been 
catered for in the initial design, then the investments required in terms of time , ski lled 
labour costs and new equipment to make the necessary alterations are often not 
worthwhile. For this reason, entirely new production lines are built rather than re-using 
the existing lines. Alternatively, when the decision is made to re-use the existing 
production line and make the necessary changes to it, then those changes typically 
require a lot of capital to replace equipment and extensive changes need to be made to 
the software to accommodate the new product. Finding and removing all the possible 
hardware and software errors after attempting such an unforeseen reconfiguration, 
until production can resume at full scale, can take a tremendous amount of time, during  
which the production of the initial products would also be hindered. 

FMSs are manufacturing systems designed to handle a variety of products. To cater for 
several possible machining requirements, the machinery is usually multifunctional  and 
equipped with a wide variety of tools, usually more than is actually needed for the 
products at hand. This redundancy results in FMSs to oftentimes be unnecessarily 
expensive, and according to Mehrabi, et al  (2000, p. 403) also have drawbacks such as 
utilizing inadequate system software, being not highly reliable, and they can easily 
become obsolete because their software/hardware is fixed and therefore do not foresee 
advances in manufacturing technologies. 

The need for RMS arises in scenarios where production volumes are lower, product 
variety is wider, changes in the market are frequent and unpredictable, or shorter ramp-
up times are required.  Due to frequent changes in the market and changes to 
production methods, the product life cycles are oftentimes shorter than the time it 
takes to get conventional production lines ready to start production. The need for 
shorter ramp-up times therefore arises. 
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RMSs are designed for the exact required production capacity in mind and additional  
equipment is only added if and when needed at a later stage. Hence, unlike FMSs, RMSs 
are not unnecessarily expensive and do not easily become obsolete since they can 
quickly adapt to advances in technology. The additional development time required to 
cater for possible reconfigurations will  quickly be regained by the time and costs saved 
by being able to reconfigure more easily at some later stage. 

Although of course any manufacturing system can be reconfigured, not all systems are  
designed to facilitate future reconfigurations. RMSs are specifically designed with the 
possibility of future reconfigurations kept in mind. This applies to both the hardware and 
the control software. RMSs are designed such that they can be reconfigured quickly and 
easily in order to keep reconfiguration costs low, impact on ongoing production to a 
minimum and prevent tedious hours of debugging afterwards. To accomplish these 
goals, designers should consider the requirements discussed in the next section. 

2.2 Desirable RMS characteristics 

To aid in the design of RMSs, the characteristics of RMS are discussed in this section. 

According to Koren & Shpitalni (2010), the six core characteristics of RMSs are: 

 Customization: flexibility limited to a product family. 

 Convertibility: design for functionality changes. 

 Scalability: design for capacity changes. 

 Modularity: system components are modular. 
 Integrability: interfaces between system components promote rapid integration. 

 Diagnosability: design for easy diagnostics which allows for quick ramp-up after 
reconfiguration. 

The first three are characteristics of the whole RMS and are critical for a system to be 
considered reconfigurable. The last three characteristics, on the other hand, allow 
reconfiguration to be done efficiently. Therefore a system must reflect modularity, 
integrability and diagnosability to be considered reconfigurable. 

RMSs are generally considered to be holonic manufacturing systems (HMSs, discussed in 
section 2.4.2) and Christensen (1994) reports that the HMS Consortium identified the 
following as critical factors for systems: 

 Disturbance handling: Provide better and faster recognition of and response to 
machine malfunctions, rush orders, unpredictable process yields, human errors, 
etc. 

 Human integration: Support better and more extensive use of human 
intelligence. 

 Availability: Provide higher reliability and maintainability despite system size and 
complexity. 

 Flexibility: Support continuously changing product designs, product mixes and 
small lot sizes. 
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 Robustness: Maintain system operability in the face of large and small 
malfunctions. 

Except for the human integration factor, the other factors parallel RMS's properties. 

When considering IEC 61499 function blocks as a means to control holonic systems, 
Christensen (1994) identified capabilities required to provide autonomy. These 
capabilities should also be considered for manufacturing systems: 

 encapsulated local data bases; 

 local process/machine control; 

 local optimization; 

 local product tracking; 
 self-scheduling; 

 self-diagnosis; 

 self-repair; 
 self-configuration. 

Further, for distributed and cooperative holonic architectures, controllers should 
provide communication and negotiation capabilities, as required by Christensen (1994)  
of function blocks. 

One of the particular capabilities of RMSs is the ability to be dynamically reconfigured. 
Christensen (1994), when considering the use of IEC 61499 function blocks for RMSs, 
implied that dynamic reconfiguration is when humans, other holons, or the holonic 
application itself can: 

 dynamically create, modify, destroy and relocate both instances and type 
definitions of functional units (e.g. function blocks or agents); 

 dynamically create and destroy connections among functional units; 

 dynamically activate and de-activate functional units; 
 perform version management of functional units and applications. 

The above is closely related to a system's flexibility and disturbance handling 
capabilities, i.e. its ability to manage change dynamically. The lack of support in IEC 
61131-3 for these capabilities (Brennan, 2007) limits its use in the control of RMSs.  

In many practical situations, such as the CBI application mentioned in section 1.1, the 
situation is dynamic (including requiring occasional reconfigurations), but the context 
does not require the RMS to be able to autonomously reconfigure. On the contrary, i t i s 
the author’s impression that many companies would be uncomfortable with such a level 
of automation. Autonomous reconfiguration is therefore for this study not seen as a 
requirement, but manual reconfiguration is, as are flexibility and disturbanc e handling 
capabilities. The CBI application therefore demonstrates that the relative importance of  
the requirements given in this section depends on the case being considered. One 
cannot assume that all practical systems must fully support all of the above 
requirements. 
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2.3 Autonomous reconfiguration ability 

Since RMSs are designed to exactly match the production demand, the capital required 
for the equipment is generally about the same as for DMSs. However, since designers  of  
RMSs need to keep possible future reconfigurations in mind, software development 
could potentially take longer and consequently be more expensive, since this task 
involves highly skilled labour. An optimal level of autonomy for the system should be 
found: The more intelligent the system is to be, the more adaptions it can make by itself, 
but the design time and accompanying costs will increase accordingly.  

On a hardware level, certain machinery will need be flexible to handle a variety of 
products. If the hardware is to be fully autonomous, then during a product changeover 
the machines would need to adjust or exchange tools themselves. For the 
transportation system to be fully autonomous, it would need to be designed such that i t 
can transport any products or materials to and from any of the stations and provide 
functionality for accurate, repeatable alignment of transported goods. 

On a software level, the system needs to be designed to cater for several different 
configurations, between which the operator is able to convert back and forth, or able  to 
add/introduce (teach) new configurations. If reconfigurations on a software level are 
supposed to happen without any human intervention, then commands being passed 
from the cell controller to the station controller should be responsible for reconfiguring 
the station. The latter would only be possible if a product changeover occurs for which 
the system is already physically equipped. Otherwise, manual involvement would be 
required. 

Since costs associated with making systems autonomously reconfigurable increase 
exponentially, it is generally not worthwhile to develop systems to be fully autonomous. 
CBI prefers the system to rather not be too autonomously reconfigurable. For this case 
study all hardware changes required human intervention and the software was designed 
to dynamically adapt to only minor changes (such as product changeovers), whereas 
major changes would require human intervention. 

2.4 Control architectures for manufacturing systems 

Holonic control architectures have characteristics which make them well suited for 
controllers of RMSs. To better understand holonic control approaches, what they are 
and why they are suitable for controllers of RMSs, other control architectures shown in  
Figure 2 are discussed first. According to Dilts, et al (1991) “it is the function of the 
control architecture [of a manufacturing system] to allocate decision making 
responsibilities to specific control components ... [and to] determine the 
interrelationships between control components, thereby establishing the mechanism for 
coordinating the execution of those various decisions”. 

2.4.1 Overview of classical control architectures 

Dilts, et al (1991) compared the four control architectures described below along with 
their advantages and disadvantages in terms of the reliability/fault tolerance, 
modifiability/extensibility, and reconfigurability/adaptability of the control system: 
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Figure 2 Evolution of control architectures (adapted from Barata (2003) and Dilts, et al. (1991)) 

Centralized control architectures have one central controller on which all information 
resides and on which all decision-making takes place. These decisions are based on 
information from sensors and machine controllers. The central controller has a fairly 
complex logic since it is solely responsible for all of the interactions between the various 
components of the system. 

Advantages are that the centralized controller has access to complete global 
information, which makes global optimization possible. Its disadvantages are that it is 
slow and has inconsistent responsiveness due to the variety of tasks carried out by the 
control unit. Because there is only one control unit, the system is less reliable. If the 
central control unit malfunctions, the entire system is immediately affected. 
Modifications, extensions and reconfigurations to the software are difficult, because the 
logic in centralized architectures is hidden in the program and global data structures  
(Duffie & Piper, 1987). 

For proper hierarchical control architectures, the control tasks are subdivided into 
branches with distinct levels where the subordinate levels of each branch have no 
autonomy, but are obliged to always execute the instructions given from the supervisor 
levels. At the highest level of the hierarchy, “most global goals are decided upon and a 
long-range strategy is formulated. ... Decisions made at this highest level commit the 
entire hierarchical structure to a unified and coordinated course  of action which would 
result in the selected goal or goals being achieved” (Simpson, et al., 1982). Interactions 
between sub-branches have to be handled by the more superior levels of the hierarchy. 

Advantages are reduced software development problems, gradual implementation, 
redundancy, allowance for differing time scales (among various branches) , the 
possibility of incremental addition of vertical slices of the control architecture and fast 
response times. 

Difficulties with dealing with dynamic adaptive control and difficulties with making 
future unforeseen modifications are some of the disadvantages which make it 
unsuitable as a control architecture for an RMS. Further, whenever one of the branches 
has a malfunctioning link, that entire branch will be paralysed and the decision making 
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process of the hierarchical controller is compromised, because it is missing information 
that it is relying on. 

Modified hierarchical control architectures were developed to improve on some of  t he 
drawbacks of hierarchical control. They are similar to proper hierarchical control 
architectures in that there are still distinct levels, but controllers on subordinate levels 
are able to interact and cooperate directly with one another, thereby gaining some local 
autonomy and taking over some basic responsibilities of the main controller. This allows 
the main controller to respond more quickly to requests from the subordinate 
controllers. 

Modified hierarchical architectures have all the advantages and most of the 
disadvantages of proper hierarchical architectures. 

Additional advantages are the ability of local systems to have local autonomy and the 
ability to off-load some linkage tasks to local controllers. These advantages make this 
type of control more robust with respect to disturbances (Cassandras, 1986). Since there 
are less interactions with the supervisory controller, faults are more easily diagnosed. 

Additional disadvantages include connectivity problems and increased difficulty of 
control system design. 

Within heterarchical control architectures, there are no master/slave relationships 
between control components of the system. Executing elements, however, are still 
subordinate to control components. Each control component has full local autonomy 
and “supervisory decision making [is] located at the point of information gathering 
rather than in a central location” (Duffie & Piper, 1987). 

Advantages of heterarchical control are full local autonomy, reduced software 
complexity because of enhanced modularity, implicit fault-tolerance since the control  
strategy is not impacted when one of the nodes fails (Barata, 2003), ease of 
reconfigurability and adaptability and faster diffusion of information. 

Disadvantages are technical limits of controllers, high likelihood of only local 
optimization (without global information), lack of availability of software, and that a 
high network capacity is required. 

A conclusion that can be drawn in review on the abovementioned control architectures 
is that the more autonomy each sub-controller has, the more fault-tolerant and robust 
the system becomes and the easier it is to diagnose errors. The more distributed the 
intelligence of the system is, the more modular it becomes, and thus easier to extend or 
modify. On the other hand, it becomes less likely that global optimization is achieved  
when information gathering and decision making happens only locally. When optimal 
throughput rates are to be achieved (globally), one should opt for control architectures 
with supervisors which have a more global view and are thus more likely to find a global  
optimum. 
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2.4.2 Holonic control architectures for RMSs 

Arthur Koestler (1967) defined the term ‘holon’ which is a combination of the Greek 
words ‘holos’ and suffix ‘-on’, meaning ‘whole’ and ‘part’ respectively. This word he used 
to describe units in biological or social systems which on the one hand form a part of  a 
larger system, yet at the same time are a complete self-contained system themselves. 
This same concept can also be transferred to control architectures of manufacturing 
systems which is why the building blocks of holonic control architectures are called 
‘holons’. 

Giret and Botti (2005) report that the Holonic Manufacturing Systems Consortium gives 
the following definitions: 

Holon: “An autonomous and co-operative building block of a manufacturing system 
for transforming, transporting, storing and/or validating information and 
physical objects. The holon consists of an information processing part and 
often a physical processing part. A holon can be part of another holon.”  

Holarchy: “A system of holons that can co-operate to achieve a goal or objective. The 
holarchy defines the basic rules for co-operation of the holons and thereby 
limits their autonomy.” 

According to Van Brussels, et al. (1998, p. 256) holonic organizations are used to provide 
stability in the face of disturbances, flexibility in the face of change, and efficient use of  
resources. The HMS concept combines the best features of hierarchical and 
heterarchical organisation (Dilts, et al., 1991) by preserving the stability of a hierarchy 
while providing the dynamic flexibility of a heterarchy (Van Brussel, et al., 1998). 

With holonic control, it is possible to choose between a heterarchical and a hierarchic al  
approach (Barata, 2003). A disadvantage of the more heterarchical approach is the 
unpredictable behaviour that can occur when holons take a lot of initiative themselves 
and do not coordinate their work with a global scheduler, which can potentially lead to 
low performance (Bongaerts, et al., 2000). 

Two common holon-based architectures are PROSA and ADACOR which are described in 
the next two sections. 

2.4.3 PROSA 

PROSA is a reference architecture for holonic manufacturing systems, developed at 
KU-Leuven by the Production engineering, Machine design and Automation division. The 
architecture consists of the three basic holon types shown in Figure 3, namely the 
product holon (PH), resource holon (RH) and order holon (OH) and can additionally 
incorporate staff holons (SH), hence the name PROSA (Product-Resource-Order-Staff-
Architecture). 
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Figure 3 Basic building blocks of an HMS and their relations (Van Brussel, et al., 1998) 

Van Brussels, et al. (1998) provide the following descriptions: 

 A resource holon contains a physical part, namely a production resource of the 
manufacturing system, and an information processing part that controls the resource. 
It offers production capacity and functionality to the surrounding holons (Wyns, et al.,  
1996). It holds the methods to allocate the production resources, and the knowledge 
and procedures to organise, use and control these production resources to drive 
production. A resource holon is an abstraction of the production means such as a 
factory, a shop, machines, furnaces, conveyors, pipelines, pallets, components, raw 
materials, tools, tool holders, material storage, personnel, energy, floor space, etc.  

 A product holon holds the process and product knowledge to assure the correct 
making of the product with sufficient quality. A product holon contains consistent and 
up-to-date information on the product life cycle, user requirements, design, process 
plans, bill of materials, quality assurance procedures, etc. As such, it contains the 
‘product model’ of the product type, not the ‘product state model’ of one physical 
product instance being produced. The product holon acts as an information server to 
the other holons in the HMS. 

 An order holon represents a task in the manufacturing system. It is responsible for 
performing the assigned work correctly and on time. It manages the physical product 
being produced, the product state model, and all logistical information processing 
related to the job. An order holon may represent customer orders, make-to-stock 
orders, prototype-making orders, orders to maintain and repair resources, etc. Often, 
the order holon can be regarded as the workpiece with a certain control behaviour to 
manage it to go through the factory, e.g., to negotiate with other parts and resources 
to get produced. 

Also shown in Figure 3 are the types of information being interchanged between the 
basic types of holons. The OH is the one that drives production. As soon as an order has 
been placed, the OH will request the production knowledge from the PH, i.e. the 
sequence of events that the product must undergo. The OH will then attempt to book 
and schedule available RHs which are capable of executing the required production 
processes. The RH which gets assigned the task will request process knowledge from the 
PH such as coordinates, dimensions and machining parameters (e.g. spindle speed). 
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After completion of its sub-task the RH will notify the OH, so that the unfinished product 
can proceed to the next step, where another RH can execute the next process. 

Diagnosing logistical or process errors is the responsibility of the OH, whereas machine 
errors have to be diagnosed by the RH. In the authors view, the PH is not involved in the 
major decision making and is also not responsible for diagnosing errors, but mainly 
serves as an information server, i.e. under normal circumstances it simply provides the 
information that was requested. If that information was not available, the PH will 
request the missing information from a higher level controller, or an operator (via an 
HMI). Those holons which requested the information will either have to wait or focus 
their attention on another task. 

The PROSA architecture can also include staff holons which are used to give guidance to 
the basic holons and provide them with expert knowledge. The final decisions are  sti l l  
made by the basic holons, but they will try to follow the advice of the staff holons 
wherever possible and will only decide not to follow that advice when the staff  holons 
are performing badly due to disturbances (Van Brussel, et al., 1998). 

2.4.4 ADACOR 

ADACOR (ADAptive holonic COntrol aRchitecture) emerged after PROSA, and is based on 
a set of autonomous and cooperative holons with learning capabilities,  self-organization 
and supervisor entities. It incorporates adaptive control which dynamically balances 
between a centralized structure when the objective is global optimization, and a more 
heterarchical structure in the presence of unexpected events and modifications. (Leitão 
& Restivo, 2006) 

ADACOR incorporates the product (PH), task (TH) and operational (OH) holon classes 
which closely correspond to the product, order and resource holon of the PROSA 
architecture. To improve the adaptability of the architecture, ADACOR further 
incorporates the supervisor holon (SH) which introduces coordination and global 
optimization in decentralized control and is responsible for the formation and 
coordination of groups of holons. (Leitão & Restivo, 2006) 

In a similar way that ants in nature can learn to locate the path to new food sources 
based on the smell of pheromones deposited by other ants, so can ADACOR holons learn 
from disturbances which helps them re-organize themselves after disturbances 
occurred. This capability to learn allows them to evolve and adapt to the new 
environment (Leitão & Restivo, 2006). This feature, which is not found in PROSA makes 
ADACOR more complex and is approaching artificial intelligence.  

2.5 IEC 61499 Function Blocks 

Others have successfully used function blocks (FBs) to implement holonic controllers for 
RMSs in research environments. However, function blocks are not widely accepted by 
industry because there is limited development software available and skills in that f ie ld 
are scarce. Nevertheless, it is investigated to find its strengths and weaknesses so that 
an informed decision can be made. 
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Function Block Diagrams (FBD) is a graphical language designed for Programmable Logic 
Controllers (PLC's), where the programmer produces a network of functional entities 
with inputs and outputs for events and data. Whenever a function block’s input event 
signal is triggered, its internal logic will change the values of the output variables. 
Immediately thereafter, or after a specified amount of time, an output event signal  wi ll  
be triggered. The output event signals are typically connected to the input event signals 
of other function blocks so that a sequence of events can be executed. The output 
signals can also be used to control hardware, to communicate over networks or to 
manipulate GUI elements. Similarly, the input signals can be used to pick up signals from 
sensors, to listen to a network port, or to get user input from the GUI.  Figure 4 shows 
examples of function blocks used for GUI elements and network communication. A 
complex network of function blocks can be formed by interconnecting the event signals 
and data signals of several function blocks, as shown in Figure 5. Such a network will 
then have more functionality than the individual function blocks it is made of.  

  

a) FB for graphical user interface                 b) FB for communication services 

Figure 4 Examples of function blocks with event signals and data signals (Christensen, 2011) 

         

Figure 5 Function blocks with event and data connections (left) combined into a network (right)  

(Christensen, 2011) 

The internal working of a function block can be programmed using 61131-3 standard 
languages such as Structured Text, Ladder Diagram, Instruction List or Function Block 
Diagram (FBD). The latter option means that a composite function block can in turn be 
made up of basic or composite function blocks, as shown in Figure 6. Compared to 
structured programming, this is very similar to calling several other methods from within 
an encapsulating method. The difference is that several function blocks can be triggered  
at the same time, thereby running in parallel, whereas method calls in a program would 
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need to happen sequentially. The ability to trigger several function blocks 
simultaneously can cater for processes which require precise timing. 

Within the same application, several function blocks can be programmed using different 
of the abovementioned languages and one can convert between the languages at any 
time, and the development software will do the translating. This allows several 
developers with different skills to all work at different parts of the program, using their 
preferred language, yet all parts can work together harmoniously (Hristu-Varsakelis & 
Levine, 2005, p. 276). Function blocks from existing libraries can effortlessly be 
imported, thereby eliminating the need for reinventing the wheel  and drastically 
reducing development time. 

 

Figure 6 Function blocks which contain function blocks on their inside, are called composite 

function blocks 

Function blocks encapsulate their internal working and provide standard interfaces 
which allows them to be easily integrated into a network of other function blocks or to 
interface with hardware or communication services. 

A big drawback with function blocks is that there is limited development software avai l -
able and skills in that field are scarce. The most well-known is Function Block Develop-
ment Kit (FBDK) which lacks advanced debugging tools. It is hard to trace back the root 
of errors by following the many lines on Function Block Diagrams. Not all connections 
are always indicated by continuous lines but are often indicated by labels or end up 
inside blocks with no visible connection to another block even when in fact some of  the 
blocks are somehow linked to one another. This makes debugging a very demanding 
task with the available software, as was also confirmed by Mulubika & Basson (2013). 

Also, the concept of dragging and dropping blocks, which are then interconnected by 
lines is very dissimilar to conventional ways of programming. However, the Structured 
Text that can be used within the function blocks is syntactically very similar to Pascal and 
has many of the conventional control structures such as iteration loops, conditional 
execution, functions and arrays. Additionally, Structured Text provides pre -defined 
variable types such as timers and counters. One can also write function blocks with 
shared data, and function blocks which use their own instance of a data block,  which i s 
almost equivalent to objects with static variables and creating instances of a class (thus 
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objects). However, such instances have to be created at compile time since dynamic 
memory allocation is not supported in the IEC 61131-3 standard. 

What speaks for function blocks in terms of reconfigurability, is their reusability, their 
standard interfaces, their encapsulation and integrability. Furthermore, the 
development of human-machine interface elements is possible using function blocks 
(Viatkin, 2007). 

In conclusion, function blocks are useful in terms of integrability, modulari ty and real -
time execution, but not in terms of diagnosability (with the currently available 
development tools). The lack of support of dynamic memory allocation along with the 
diagnosability issues was seen as too big a constraint so that function blocks were not 
considered for this research. 

2.6 Objects vs agents 

Agent based control (ABC) has been successfully implemented in RMS research 
environments because agents have several characteristics which make them useful  for 
RMS controllers. Since in this thesis’ research OOP-control is considered as an 
alternative to ABC, the differences and similarities between the two concepts are 
discussed in this section. 

2.6.1 Key properties of agents 

ABC has been applied in a large proportion of RMS research since it suits the 
requirements of RMSs so well. Not all aspects can be considered here, but some key 
capabilities are pointed out: 

According to Bellifemine, et al (2007), an agent is essentially a special software 
component with an interoperable interface to an arbitrary system, and is characterized, 
among other things, by: 

 Autonomy: It can independently carry out complex and often long-term tasks, 
i.e. it operates without the direct intervention of humans or others and has 
control over its actions and internal state. 

 Pro-activity: An agent can take initiative to perform a given task even without an 
explicit stimulus from a user. 

 Ability to communicate: Agents can interact with other entities to assist with 
achieving their own and other’s goals. 

Furthermore (Bellifemine, et al., 2007), an agent is social, because it cooperates with 
humans or other agents in order to achieve its tasks. An agent is reactive, because it 
perceives its environment and responds in a timely fashion to changes that occur in the 
environment. If necessary, it can be mobile, with the ability to travel between different 
nodes in a computer network, and it can learn, adapting itself to its environment and to 
the desires of its users. 

The abovementioned characteristics make agents a very attractive option for 
implementing an RMS's control system:  
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Agents are easy to integrate with one another because they make use of the same 
communication protocol (e.g. FIPA ACL (Bellifemine, et al., 2007)) and adhere to the 
same rules. A newly created agent will be registered at the agent management system 
(described below) and when it wishes to publicize its services, it will announce them at 
the directory facilitator (described below) so that other agents can request to make use 
of its services. In this way agents can always be aware of one another’s presence and the 
system is self-structured. 

Agents are also modular and integrable because they have an interoperable interface to 
an arbitrary system, and they keep their internal working to themselves, always showing 
the same interfaces to the outside world. This means that nothing needs to be changed 
in the rest of the system when a change is made to an individual agent, e.g. one can let 
an agent run on a new platform or make it control a different physical resource and as 
long as the interfaces behave the same, the rest of the system will not be affected. 
Therefore, humans can seamlessly be integrated into an automated manufacturing 
system by implementing an HMI on the inside of an agent which will then appear l ike a 
regular agent as long as it provides a standard interface to the rest of the system. 

Since agents have control over their internal state, they can easily report on their health 
status while they are still responsive, and since agents are proactive, they are capable of  
detecting when other agents stopped responding and can try to resolve the problem. 
This makes them suitable for diagnosability and self-repair. 

According to Van Brussel, et al. (1998), disturbances and changes to the system can 
easily be handled when using the Contract Net Protocol as a negotiation mechanism 
between agents. Because each agent is autonomous, it will try to find the optimal 
solution to its local problem, and because it is also proactive, it will, after disturbances 
occurred, re-evaluate its solution to the current problem. When using the Contract Net 
Protocol, the system is self-scheduling: idling agents or agents whose current job is 
nearing completion, will bid more to get a new offer than agents who have already bee n 
assigned more than one task. This ensures that when tasks can be performed in parallel, 
the work load will be distributed amongst agents rather than piling up at an individual  
agent, and will reduce agent idling time. 

In ABC, dynamic reconfiguration is made possible by the following two components of  
an agent platform: the agent management system and the directory facilitator. Their 
main roles are as follows (Bellifemine, et al., 2007): 

The agent management system is responsible for managing the operation of an agent 
platform, including the creation and deletion of agents, the migration of agents to and 
from the agent platform, and maintaining a directory of identifiers of all agents present 
within the agent platform and their current state (e.g. active, suspended or waiting). 

The directory facilitator (DF) provides "yellow pages" services to other agents and 
maintains a list of services that agents can offer. Every agent that wishes to publicize i ts 
services to other agents would request the registration of its agent description in a DF. 
At any time an agent may request the DF to modify its agent description. The 
registration with a DF does not imply a future commitment or obligation on the part of  
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the registering agent and an agent can subsequently request deregistration of its 
description at any time. 

The agent management system and DF allow agents to be developed off -line, and then 
be dynamically added to the rest of the system without bringing the system to a halt. 
They also allow dynamically creating, modifying, and destroying instances of and 
connections among functional units, and the dynamic activation and de -activation 
thereof. 

2.6.2 Key properties of OOP 

The four key concepts of OOP are abstraction, encapsulation, inheritance and 
polymorphism (Van der Linden, 2002). There are some important synergies between 
these OOP concepts and the modularity, integrability and diagnosability characteristics 
of RMSs:  

Modularity and encapsulation are closely related, in that a software object can be 
instantiated as many times as required, because each instance’s data is independent of  
other instances, unless explicitly specified differently. RMS modules are often 
considered to be holons (Van Brussel, et al., 1998) and a set of OOP objects is well suited 
to form the software part of a holon. New instances of holons without hardware (e.g. 
the order holon in PROSA) can easily be created in an OOP implementation by 
instantiating another object. Similarly, when the order holon's tasks have been 
completed, its object-instance can simply be deleted. Inheritance in OOP provides 
another dimension of modularity for which there is no parallel in agents. When creating 
a new holon during reconfiguration, an appropriately designed OOP implementation will 
allow the object representing the new holon to inherit "modules" of functionali ty from 
previously defined super-classes. This allows for code re-use, thus reducing control ler 
reconfiguration times and risks. 

Integrability can be promoted through objects' properties of inheritance, polymorphism 
and abstraction: A key part of abstraction is that an object hides the complexity of its 
internal working and presents a simple interface to the outside world. Further, 
inheritance (e.g. of an abstract class) and polymorphism can be used to define a generic 
interface for all holons that provides, for example, generic diagnostic and 
communication aspects. Therefore, abstraction, inheritance and polymorphism can be 
used in an OOP implementation of a holon's information processing part to create 
generic interfaces, which enhances an object’s integrability. However, OOP 
implementations will still require the development of, for example, communication 
interfaces using general approaches (e.g. XML strings exchanged over TCP/IP links), 
while agent platforms have much of that functionality built in.  

Mature OOP software development platforms are available, thus providing excellent 
software tools to diagnose control software problems. Further, the multi-threading 
abilities of OOP languages allow diagnostic processes to run concurrently with normal 
operations, thereby enabling near-real time monitoring of the state of the RMS and 
providing good diagnosability. 
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2.6.3 Objects and agents compared 

A number of researchers have compared objects and agents. A brief summary of the 
comparisons is first given here, followed in the next section by an assessment with th is 
thesis’ case study in mind. 

Odell (2002), adapting the work of Parunak (1997), placed OOP and agent programming 
in a broader perspective (Figure 7) and pointed out that a fundamental difference 
between object-oriented and agent-oriented programming is that agents can invoke 
their own units, whereas objects do not. 

 

Figure 7 Evolution of programming approaches (Odell, 2002) 

Two key areas that can differentiate the agent-based approach from the traditional OOP 
approach are autonomy and interaction (Odell, 2002). Proactive agents poll the 
environment for events and other messages to determine what action they should take, 
while objects are conventionally passive. 

For Booch (2000, cited by Odell (2002)), employing agents with object systems is useful,  
because the agent-based approach: 

 provides a way to reason about the flow of control in a highly distributed 
system; 

 offers a mechanism that yields emergent behaviour across an otherwise static 
behaviour; and 

 codifies the best practices in how to organize concurrent collaborating objects.  

Although there are certain similarities between object- and agent-oriented approaches 
(e.g. both adhere to the principle of information hiding and recognize the importance of  
interactions), there are also several important differences (Jennings & Bussmann, 2003): 

 Objects are generally passive in nature: they need to be sent a message before 
they become active.  

 Although objects encapsulate state and behaviour realization, they do not, in 
principle, encapsulate behaviour activation. Thus, any object can invoke any  
publicly accessible method on any other object.  
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 Object orientation fails to provide an adequate set of concepts and mechanisms 
for modelling complex systems.  

 Object-oriented approaches provide only minimal support for specifying and 
managing organizational relationships (basically, relationships are defined by 
static inheritance hierarchies). 

In OOP, there is no "built-in" provision in current languages for an object to “advertise” 
its interfaces. The result is that the programmer needs to have some idea what interface 
to ask for (Odell, 2002). In contrast, an agent can employ mechanisms such as the 
directory facilitator, mentioned above, or specialized broker agents to which other 
agents can make themselves known for various purposes but are otherwise unlisted to 
the rest of the agent population. 

2.7 Conclusion 

In this chapter, research into RMSs was reviewed and the desirable characteristics for 
reconfigurable manufacturing systems were set out so that the controller designed for  
the case study could be evaluated against those characteristics. Furthermore, a 
summary on various types of control architectures and their characteristics was 
provided, to help deciding on the most suitable control architecture for the station 
controller at hand. Since agent based control has been used widely in RMS research 
environments, but C# was to be used for this research, a comparison between objects 
and agents was drawn after discussing the key properties of agents and OOP. The next 
section describes the case study which was chosen so that this thesis' research is closely 
related to an industrial application. 
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3 Case Study 
Circuit breakers, also known as trip switches, are electrical safety devices and are 
installed into circuits which require protection against too high current levels. As soon as 
a circuit draws too much current for too long (e.g. in excess of 60A for longer than 4ms)  
the circuit breaker trips to interrupt the current flow through the circuit. Its purpose is 
therefore to prevent damage to components and to protect humans from injury or 
death. They play a critical role where safety is a concern, and should therefore be highly 
reliable and conform to high quality standards. 

 

Figure 8 A fraction of CBI's product variety (CBI Circuit Breakers - Product Listing [S.a.]) 

3.1 CBI's need for an RMS with traceability 

For a case study, it was considered automating one of the production processes for CBI.  
CBI is a large supplier of circuit breakers which they deliver to the local and international 
market. Figure 8 shows only a small selection of the wide variety of products that CBI 
manufacture. The circuit breakers are designed for various applications and circuit 
configurations, such as single phase or three-phase circuits with or without a neutral 
line. As a result, they come in different shapes and sizes, make use of different 
technologies, are made of different materials and have different ampere ratings. The 
QA-range which forms part of the larger Q-range is shown in Figure 9 and comes in four 
variants: 1 pole, 2 pole, 3 pole and 3 pole + neutral. The variants are either just a single  
riveted pole, or a stack of 2 to 4 similar poles, riveted together. Stacked poles work as a 
unit: if any one pole trips, it will cause the other poles of that unit to immediately trip 
together along with it. The Q-range has by far the highest production volumes and 
hence, when deciding to automate, it is most sensible to design the system for that 
product family first, and only later on reconfigure the system to accommodate the other 
types of circuit breakers when the need arises. 
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Figure 9 Four variants of the QA-range: 1 pole, 2 pole, 3 pole and 3 pole + neutral 

(Technical Downloads [S.a.]) 

Figure 10 shows a pole forming part of a stack, before it has been stacked and riveted. 
The components which are of significance for this case study are listed in Table 1 below. 

Table 1 Circuit breaker components 

Component Description 

Base The bottom part of the casing is called the base. It is a plastic mould with 
features to hold all the internal components in place. 

Shell The shell is the top part of the casing. For stacks, shells of the top-most 
poles have no bevels for alignment or holes in the middle, but shells of the 
bottom and middle poles do have bevels which align the poles when 
stacked and a hole in the middle to let the common trip pin go through. 

Common 
trip pin 

The common trip pin is only present in stacks and must be inserted before 
the stacking process. It interconnects the trip mechanisms of the various 
poles of a stack and is responsible for letting all other poles trip as soon as 
any one pole of the stack trips. 

Switch The switch allows a person to reset a tripped circuit breaker or to 
intentionally trip a circuit breaker. Before the handle pin can be inserted, 
the holes for all the switches of a stack must first be lined up. 

Handle pin The handle pin connects the handles of all the poles of a stack. When 
resetting a trip switch after it has tripped, this pin, which penetrates all the 
handles, ensures that all poles are reset together. The handle pin can be 
inserted by hand at any time after the stacking process. 

Clip-in A yellow part which is present in each pole. It provides extra grip for when 
the circuit breaker is installed. The clip-in can be inserted or removed at 
any time by hand for the Q-range. Other ranges require the clip-in to be 
inserted before the shell has been placed. 

Rivets There are typically about 6 rivets per breaker. Their primary purpose is to 
keep the shell and the base together (for single poles), and for stacks, their 
secondary purpose is to also keep the individual poles of a stack together. 
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Even though the internal components of the individual poles are almost identical, the 
poles can nevertheless not be used interchangeably for different layers of a stack. For 
example, the pole that was intended for the top-most layer of a stack cannot be used for 
a middle or bottom layer due to some external features which differ.  

        

Figure 10 Tripping mechanisms of poles which form part of a stack are interconnected by the 
common trip pin. Handles are connected by the handle pin.  

The individual parts which make up the circuit breakers are produced at the CBI factory 
in Johannesburg, South Africa, by predominantly automatic or semi-automatic processes 
such as casting, folding, punching, winding, pressing and bending. The loose parts are 
then transported to their plant in Lesotho where the circuit breakers are assembled, 
tested, printed, and boxed. At the Lesotho plant there is not a single fully-automated 
process. Most processes involve manual labour only, and for those processes which 
involve machinery, the machinery is operated by hand and sometimes activated by foot. 

A wide variety of circuit breakers are being assembled at the Lesotho plant and 
quantities for batch orders vary from as little as 20 to a few thousand, meaning that a 
worker could be dealing with several different products during the course of a day. 
When dealing with such dynamic production scenarios, manual labour is generally the 
best choice for getting the job done in spite of manual labour being more expensive 
than the operating costs of automation equipment. When compared to conventional or 
even sophisticated automation equipment, people are extremely adaptable to changes 
in production methods. This allows them to quickly change over between known 
products or, after a brief training period, start assembling an entirely new type of 
product. For CBI it is thus not economically viable to automate all of their processes, 
since the overall costs of employees is still less than the total costs associated with an 
automated assembly line. Nevertheless, it cannot be ruled out that people who do 

Holes for rivets 

 

Common trip pin 

 

Bevels for alignment 

 

Shell 

 

Switch 

 

Base 

 

Handle pin 
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repetitive work or who are still in the training process occasionally make mistakes 
without noticing, thereby compromising on quality. Since about 66% of CBI's products 
are being exported, quality is of utmost importance. Having to recall faulty breakers 
after they have already been exported, incurs tremendous costs and can affect the 
company's reputation, especially because superior quality is what sets them apart from 
their competitors. Automating a few selected processes which can diminish or eliminate 
the impact of human errors could therefore still be for the better of the company and its 
employees. The high initial costs related to automation can be justified by the benefits 
obtained from automating certain parts of the factory, as discussed next. 

Roughly, the process plan for assembling a circuit breaker of the QA-range is as follows: 

1. Electrical components and the common trip pin are placed in the bottom part of  
the casing (the base). 

2. With the casing still open, it is ensured that everything was placed correctly. 
3. The top cover of the casing (the shell) is placed and the switch is set to the ON-

position. 
4. While the pole is still unriveted, it is placed into a ramp-wave tester, an electrical-

test device, capable of testing several poles simultaneously. There it is subjected 
to currents of different intensities which should cause the pole to trip at the right 
time. After having passed the test, the switch will be in the OFF-position. 

5. The electrical-tester indicates by means of lights if the tested poles conformed to 
specifications or if they have failed the test. Poles which failed the test are 
removed and sent to be reworked. 

6. Poles are stacked in the correct order on top of one another (when the product to 
be made is a 2-pole, 3-pole or 3-pole+neutral). Since poles are only stacked after 
having passed the test, their switches will always be in the OFF-position and all 
the common trip pins will all have the same orientation, which simplifies 
alignment. 

7. Rivets are inserted into the holes of the casing. 
8. The product is riveted to seal the casing and to join poles which belong together. 
9. For stacks, the handle pin is pushed through the switches of all poles. 
10.  Clip-in(s) are inserted. 
11.  Final quality inspection is done by hand. 
12.  Finished products are packaged. 

Quality checks are performed at several stations. The most important test is 
accomplished by the electrical test station, where each pole is subjected to a pre-
programmed electrical current to determine whether it functions correctly in 
accordance to its ratings. Circuit breakers which consist of multiple poles are not tested 
as a complete unit, but instead the poles are tested individually before they are stacked 
and riveted. Testing therefore happens when the casing could potentially open up and 
allow the internal parts to fall out or disarrange. The ramp-wave tester is currently 
activated by hand and circuit breakers are placed into it by hand. Only those circuit 
breakers which pass the test proceed to the next stations, whereas those that did not 
pass the test are sent back to be reworked. Since each and every breaker is subjected to 
this test before being packaged and shipped, theoretically no breakers which do not 
conform to the quality standards would ever be leaving the factory. However, it 
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occasionally happens that a circuit breaker leaves the factory when in fact it should not 
have passed the quality tests. In other words, some of the breakers were e i ther never 
tested or they failed the test but have accidently proceeded to the next step when they 
should have ended up in the rework line. This can be attributed to human error and 
hence CBI is considering the automation of certain processes, to ensure that each circui t 
breaker leaving the factory has indeed been tested.  

To prevent any human errors being introduced during the quality assurance process, not 
only should the electrical test station itself be automated but also some of the preceding 
and succeeding processes: 

 Visual inspection while internal components are still visible, to ensure no 
components are missing and everything is in the right place. 

 Shell placement. 

 Placement of poles into the tester, and activation of the tester. 
 Electrical testing. 

 Removal of poles from the tester, and the decision what should happen to the 
pole next. 

 Stacking and matching of poles which together form a unit. 
 Placing and riveting rivets. 

 Printing product information on casing which corresponds to what's inside. 

All other non-critical processes should remain manually operated where possible. 
Having the abovementioned processes automated will eliminate the risk of faulty 
breakers leaving the factory and allows complete traceability of each and every product, 
i.e. where each product has been and which processes it was subjected to.   

Being able to trace the route that a product has taken through the factory and recording 
how each product was handled by each machine not only allows one to discard any 
faulty objects but also gives an insight into which machine or action could have been the 
cause of a possible fault. Such a tracing tool can save a lot of effort in resolving any 
issues, thereby reducing ramp-up time. Furthermore, small errors can be detected 
sooner before they propagate. 

To ensure that the integrity of the poles is not affected after the visual inspection, all 
processes up to and including riveting must be automated. This however, will only 
prevent non-conforming poles from passing the test but because the product 
information is only printed at a much later stage, and because different products may 
have a similar outer appearance it could happen that wrong information is printed on a 
fully-functional product which can be worse than shipping poor quality products. To 
allow full traceability, the printing process should therefore also be automated. Once 
the breakers have been riveted and the information printed, there's not much that can 
go wrong and it is safe to let humans handle the processes which follow after printing. 

Although the capital requirements for new automation equipment is generally much 
greater than to employ people, the benefits of traceability and having no more defect 
products can outweigh the costs of automating the quality assurance cell.  Due to CBI’s 
large product variety, the automated parts of the system should be reconfigurable to 
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simplify frequently occurring product changeovers, and to simplify the process of scaling 
up or extending the system at a later stage to cater for new products. CBI thus needs a 
reconfigurable quality assurance cell which provides traceability. 

Other researchers of the research group are investigating the visual inspection station, 
the electrical test station, the riveting station and control strategies for logistical aspects 
and the conveyer system. For this research project, a stacking station in a lab context 
was automated. Next, the design specifications are determined and the mechanical 
design of the station is discussed. 

3.2 Background of stations to be automated 

As shown on the diagram below, the stacking station is situated in-between two 
conveyers, each transporting different types of pallets. Only single poles are transported 
on the first conveyer. The fixtures on those pallets are therefore only required to 
accommodate single poles. Pallets on the second conveyer contain riveting fixtures 
capable of holding stacked 1-pole, 2-pole, 3-pole or 3-pole+neutral circuit breakers. To 
place the stacking station into context with the preceding and succeeding stations, they 
are also briefly discussed. 

 

Figure 11 Stacking station inbetween two conveyers 

The electrical test station receives a pallet filled with fully assembled but unriveted 
single poles. The poles are then tested individually to see whether they comply with 
their electrical requirements. Poles which do not pass the test are being discarded for 
rework, and poles which do pass the test are placed on another pallet and sent to the 
stacking station. To achieve the desired throughput rate at the electrical test station it 
was required that the pallets can carry 6 poles at a time. 
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The stacking station receives pallets containing tested single poles, all of which have 
passed the electrical test. Those poles must then be transferred to pallets containing 
fixtures in which they can be riveted. In addition, when multiple-pole breakers are to be 
manufactured, the stacking station needs to stack the individual poles on top of one 
another to form, for example, triple-pole breakers. Since poles which fail the e lectrical  
test do not reach the stacking station, a complete set of single poles is not always 
available to form a multiple-pole breaker. Therefore, the stacking station also needs the 
ability to temporarily store poles in a buffer until a complete multiple-pole breaker can 
be stacked. Once a complete set has been stacked, it is sent to the rivet feeding station. 

The rivet feeding station receives a stacked set of poles within a riveting fixture on a 
pallet and must feed rivets of the correct length into the holes of the circuit breaker 
casing. Rivets are manually fed into a vibratory bowel where they are s ingulated and 
thereafter oriented. The placement of rivets into the holes is an automated process. 
After all holes of the breaker have been filled, the riveting fixture is sent to the 
automatic riveting station where rivets are riveted to prevent the finished assembly 
from falling apart. 

Whenever pallets arrive at a particular station, an accompanying message must be sent 
by the cell controller to that particular station, informing the station of the pallet 
contents. Whenever a station requests that a pallet be transported away, the cell 
controller must be informed of the pallet contents, that it can plan for the pallets’  next 
destinations. The content of the pallets will change at two stations: The electrical test 
station will only pack poles onto its outgoing pallet if they passed the electrical test, and 
decides itself in which order the poles will be packed. The stacking station also decides 
which products are loaded into which fixtures on the pallets and therefore it is crucial 
for the cell controller to be informed of the pallet contents, so that the next stations will 
also know how to interact with the pallet. 

3.3 Design specifications 

The formulation of a strategy to find and/or rank the requirements for a specific 
application is not the focus of this research, but is considered by Hoffman and Basson 
(2013). However, in this research the following is assumed, taken from the CBI 
application: 

 The system is customizable to the extent that it is able to handle changes within 
a predetermined part family without being shut down. 

 The system is convertible and scalable, but the associated system changes may 
be implemented during a shut-down period. 

 The control system is modular, holonic and distributed, in particular that the 
operational holon (discussed in section 2.4.4) associated with each hardware 
resource runs on its own software platform, and that product information is 
retained in product holons (and not in the operational holons) that reside on a 
cell controller platform or another controller higher in the holarchy.  

 The system can handle disturbances when, for example, a subsystem fails and 
parts have to be rerouted. The system must also provide HMIs at various points 
and allow manual override capabilities. 
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 The system is diagnosable to the extent that each holon can at least assess and 
report on its own health to a cell controller. 

3.3.1 CBI needs analysis 

Since the Q-range currently has by far the highest volumes, the automated process 
should specifically cater for the Q-range initially but the system should be designed with  
the other types of products in mind, so that at a later stage the system can easily be 
reconfigured without major expenditure. Also during a possible future reconfiguration, 
the impact on the already ongoing production processes should be kept to a minimum. 

The parts of the system to be automated in general, must 

 Provide traceability of all products from right before shell placement to where 
the corresponding product info is printed on the shell . This should be 
accomplished by recording where each product has been and which processes it 
was subjected to throughout all processes. 

 Enhance consistent quality by eliminating all human errors. 

 Must initially be able to at least handle the Q-range, which has the highest 
production volumes. It would be advantageous if several other product famil ies 
can also be handled at a later stage. 

 The automated stations should have at least the same throughput rate as the 
manual stations currently in use, preferably faster than 1 pole per seconds. 

The stacking station must be able to: 

 Transfer poles from the source pallets on the first conveyer into the riveting 
fixtures on destination pallets on the second conveyer. 

 Pick up poles in any order. 
 Match correct poles, according to the orders that were placed. 

 Record which poles have been matched and send this information back to the 
cell controller. 

 Buffer poles when they cannot yet be stacked, to prevent congestion. This 
would become necessary whenever some of the poles, which form part of a 
stack, have been discarded by the electrical test station and replacements for 
the failed poles must first be made. Once replacements have arrived at the 
station, they can be used in conjunction with the buffered poles and a complete  
stack can be built. 

 Report on system health periodically and/or upon inquiry. 

 If the system should go offline, production should be able to continue manually.  

Given: 

 When system starts or restarts, the station would be completely empty, i.e. the 
station does not need to be able to record what is in the buffer when the system 
goes offline. Furthermore, the controller does not need to make provision for 
the operator to specify what is loaded into which position of the buffer, because 
at start-up, all positions would always be empty. 
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3.3.2 Functional requirements 

 

Figure 12 Functional analysis 

Figure 12 shows the functional analysis of the stacking station. Below are the functions 
that the station must fulfil: 

 Receive a pallet with an empty riveting fixture 

 Receive a pallet with tested breakers 
 Decide in which order breakers are to be unloaded from the pallet 

 Either temporarily store the breakers in the buffer 

 Or stack directly on the riveting fixture 

 Match poles which belong together and send information about which poles 
have been matched back to the cell controller 

 Send pallet away to the rivet feeding station 

Receiving: 

 Either: detect presence of pallet 
 Or: receive command from cell controller that pallet has arrived 

 Request information about the pallet from the cell controller 

 Receive information about the pallet from the cell controller 

Decide: 

 Determine which poles are being waited for 

 Determine which breakers need to be assembled with the highest priority 

 Determine whether a complete breaker can be built with the available poles 
 Decide whether breakers should be unloaded from the pallet or rather from the 

buffer 
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Store breakers in the buffer: 

 Pick up poles from the pallet 

 Relocate to an available position in the buffer 

 Release the pole into the location on the buffer 

Stack poles 

 Pick up poles from either the pallet or the buffer 

 Relocate to stacking fixture 
 Release pole on top of stack into fixture 

Match poles: 

 Identify a complete set of poles which all have the same electrical parameters 

 Register at the cell controller that those poles are being combined to form a 
stack 

Send pallet away: 

 Notify cell controller that riveting fixture is fully loaded and ready to be sent to 
the rivet feeding station 

3.4 Design of the stacking station 

3.4.1 Station physical architecture 

 

Figure 13 Stacking station physical architecture 

As indicated in Figure 13 the stacking station consists of a 6-DOF Robot, a buffer, a 
conveyer on which poles are being transported to the stacking station and another 
conveyer on which the poles are being transported away from the station. The station 
layout is shown in Figure 14. 
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Figure 14 Stacking and buffering station layout 

3.4.2 Mechanical design 

In the sub-sections to follow, the detail design of the buffer, fixtures, and grippers is 
discussed, and the selection for pallets and the robot is motivated. 

3.4.2.1 Transportation system / pallets 

Up to date CBI uses plain conveyer belts which run along most of the workstations and 
onto which poles are placed by hand at any orientation and picked up by hand at the 
next station. When only humans deal with poles, the orientation of the poles while 
being transported is trivial since their eye-hand coordination allows humans to quickly 
and accurately pick up any poles regardless of their position, orientation or product 
type. However, for automated systems where the poles need to be picked up by 
machines which are essentially blind, it is beneficial to have all arriving poles in a known 
and repeatable position and orientation. For this reason, the MADRG decided to choose 
a Bosch Rexroth TS 2plus pallet-based conveyer system with Bosch Rexroth 320mm x 
320 mm off-the shelf pallets and equip each station with a lifting station, which would 
align and lift all pallets and put them all in a repeatable position for pick-up and 
placement. Product-specific fixtures were designed to go onto those pallets, as 
described in the next section. This arrangement allows a wide variety of products to al l  
make use of the same transportation system. Two options would be conceivable for 
handling product-changeovers: Either, the fixtures on the pallets could be exchanged, or 
easier would be to have enough pallets stored in a pallet magazine, each containing 
product-specific fixtures, and upon product change-over, the required pallets would be 
retrieved from the magazine, while the unused pallets would then be stored in the 
magazine until required for later usage. The latter option would require no manual 
intervention. 
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Other reasons for opting for pallets are that throughput rates for stations such as the 
printing and visual inspection station can be drastically improved when poles arrive  in 
larger quantities. This is particularly important for the printing process, since industrial 
laser printers capable of printing on plastic are very expensive, would therefore be 
bought sparingly and as a result would form the bottleneck. Furthermore, poles are 
located at distinct positions on the pallet, and pallets can be tracked using identifiers 
such as RFID tags. This allows precise tracking of each individual pole, even if  the poles 
themselves are not equipped with identifiers and even when pallets overtake one 
another. 

The Bosch Rexroth TS 2plus is highly modular and supports track widths from 160mm to 
1200 mm, an overall workpiece mass of up to 240 kg, conveying speeds of 6 m/min up 
to 18 m/min in increments of 3 m/min. 

Bosch Rexroth supplies workpiece pallets in various sizes varying from 160 x 160 mm to 
1040 x 800 mm, both square and rectangular-shaped. 

Each station is then equipped with at least one lifting station, so that when a pallet 
arrives, it is stopped and lifted to a pre-defined height, and at the same time aligned so 
that all pallets being handled by the lifting station would always be in a repeatable 
position. To achieve the desired throughput rate at the electrical-test station, the robot 
there had to be able to pick up two poles side-by-side at the same time. From this 
requirement, the optimal number of fixtures per pallet was derived and found to be 6 
fixtures per pallet. 

To allow the pallets to be stored on top of one another inside a pal let magazine, as 
shown in Figure 1, they were kitted with pillars at all four corners which serve to support 
the pallets which are stacked on top of the current pallet while preventing the f ixtures 
from being compressed. 

The ability of the Bosch-Rexroth system to allow for various conveyer components to be 
added as modules, makes it well suitable for reconfigurations. The following 
components can be added at most locations along the conveyer system: 

 Transverse conveyers. 
 Parallel conveyer sections. 

 Stopping stations, to prevent traffic jams at intersections, to regulate the exact 
cycle time for the pallets, and to maintain a safe following distance in-between 
two consecutive pallets. 

 Lifting stations, which align the pallets to a repeatable position and orientation, 
and lift the pallet by a small amount, to a fixed height. 

Figure 15 shows one of the pallets that were used, equipped with six fixtures, four pillars 
and an RFID module in the far corner of the pallet. The fixtures allow breakers to be 
picked up from underneath as well as from above, to suit the needs of the electrical test 
station and the stacking station, respectively. 
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Figure 15 Bosch Rexroth 320x320 pallets can carry six fixtures each 

Using Pallets in conjunction with off-the-shelf lifting stations eliminates the need at each 
station to align the breakers or the need for installing vision-aided pickup systems. The 
drawback is that the workers would need to place the breakers into fixtures at the 
correct orientation, whereas with the current conveyer used by CBI, they can place the 
products in any orientation on the conveyer. Another drawback is that the fixtures on 
the pallets are product specific. Nevertheless, when reconfiguring between products of  
different shapes, the same conveyer and pallets can be used, only the fixtures need to 
be interchanged. Alternatively, to avoid the need for humans to replace the fixtures, 
several pallets containing all kinds of fixtures can be stocked in the pallet magazine and 
only be retrieved once they are needed. 

Although the pallet fixtures themselves are product specific, whereas a conveyer belt 
would not have been product specific, each station would require a sophisticated 
alignment apparatus, whereas the Bosch Rexroth lifting units each have one actuator 
only and are modular. 

3.4.2.1.1 Unloading station 

The transverse conveyers are equipped with proximity sensors which detect the arrival  
of a pallet. At the end of each transverse conveyer is a lifting station which lifts and 
aligns the pallet to a repeatable position to ensure that the robot can accurately pick up 
the poles. 

3.4.2.2 Fixtures 

Fixtures securely hold products in a repeatable position. They contain features which are 
in contact with the perimeter of the product to prevent it from moving around. Where 
those features must be, depends on the product that must be kept in place and 
therefore fixtures are product-specific. Whenever a new type of circuit breaker has to be 
produced of which the outer dimensions are different to previous models or of which 
the rivet positions are different, then a new set of fixtures will have to be manufactured. 
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The fixtures on the first conveyer’s pallets are capable of holding one single pole  each 
and are used for the following processes in the order given below: 

 Manual placement of the base containing all electrical components. 

 Visual inspections. 
 Manual placement of the shell. 

 Electrical test. 

 Transport to stacking station. 

To suit the needs of the various stations, the single-pole-fixtures have been designed 
that workers can place the base with ease and to allow for clear photos to be taken by 
the overhead camera at the visual inspection station. Also, they allow breakers to be 
picked up from the front (as required by the electrical test station) as well as from above 
(as required by the stacking and buffering station). To allow the poles to be picked up 
from the front, some material was machined away to allow a gripper finger to get 
underneath the poles. The fixtures were designed to be narrower than the width of  the 
poles they have to carry to allow picking up from above. They are sufficiently narrow, so 
that if the robot would attempt to pick up a pole which was in fact not on the fixture, 
then the grippers would not grip the fixture. 

On the second conveyer, fixtures had to take up stacks of poles. They had to allow the 
automatic rivet feeder to feed rivets, and the automatic riveter to rivet the stack.  
Whether riveting should be done from underneath or from above was not furth er 
investigated as this was considered to be out of the scope of this research project. For 
either scenarios, the poles would need to be stacked from above into the riveting 
fixture. 

3.4.2.3 Robot 

The main purpose of the robot is to assemble multi-pole breakers by stacking individual  
poles on top of one another. This is accomplished by picking up poles from the source 
pallet and transferring them to fixtures on the destination pallet, where they are  stacked 
on a pile of which the height keeps varying. Occasionally, poles must also be transferred 
from the source pallet to the buffer and from the buffer to the destination pallet. The 
robot must therefore interact with pallets on the source conveyer, with pallets on the 
destination conveyer, and with the buffer. 

Since the poles are lying on their side upon arrival, and must also lie on their side after 
stacking, the pick-and-place robot requires only four degrees of freedom. A SCARA robot 
would have been ideal for this type of application because of its high speeds. However, 
the only feasible robot available in the research laboratory was a KUKA KR 16-2 robot, 
which has six degrees of freedom. It could therefore be used for the proof -of-concept 
setup on which the experiments were carried out.  

4-DOF and 6-DOF robots of comparable size do not differ drastically in price but 4-DOF 
robots are generally less expensive. If provision is to be made for future products that 
might require the robot to rotate about more than one axis, it would be advisable to 
rather opt for a more flexible 6-DOF robot due to its higher versatility.  
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The controller which comes with the robot, deals with all the inverse kinematics 
calculations. All that needs to be done is to establish a way of communicating and then 
sending appropriate commands along with coordinates and parameters. Reconfiguring a 
6-DOF robot is therefore no more difficult than reconfiguring a 4-DOF robot. 

3.4.2.4 Grippers 

The way gripper fingers are to be designed depends on the ir application as wel l  as the 
shape and size of the poles being handled. Gripper fingers are therefore fai rly product 
specific but the same gripper fingers could still be used for several different products as 
long as those products are all similar in size and shape. To allow poles being stacked on 
top of one another, poles have to be lowered into the riveting fixture from above and 
hence must first be picked up from above. The gripper fingers therefore have to grip the 
poles at the sides, as shown in Figure 16 and the line of action of the clamping force 
should pass close through the pole's centre of mass. 

 

Figure 16 To make stacking possible, poles have to be gripped at their short sides 

Requirements for the gripper and gripper fingers are: 

 Unriveted single-poles must be picked up, transferred and placed without the 
casing opening up or the pole being dropped. 

 The casing must not be damaged. 

 The common trip of a pole already on the stack should be properly aligned with 
the common trip connector of the pole being stacked on top.  

 Fingers should not interfere with the poles already on the stack, when adding 
another pole to the stack. 

 In the event of power loss, poles should remain gripped. 

 It must be sensed whether no pole was gripped, or whether it was properly 
gripped or misgripped. 

 Gripper fingers should be designed to cater for quick product changeovers with 
no or minimal ramp-up time. 

 For short cycle times, gripper jaws should open up and close immediately after 
the corresponding command was given. 

Pneumatic force Pneumatic force  
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 They should be re-usable for various types of products, if possible. 

Figure 17 shows an isometric view of how the gripper fingers can be used for stacking. 
Next, the requirements are addressed in the order mentioned above. 

         

Figure 17 Gripper fingers used for stacking poles 

3.4.2.4.1 Picking up & placing without casing opening up 

Since the poles are in an unriveted state, the stacking station has to handle them 
carefully enough to prevent the casing from opening up. Viewed from above, bases and 
their corresponding shells have identical geometries. If the base and shell would be 
gripped simultaneously, then it could happen that the shell is being lifted off  the base, 
leaving the base behind in the fixture. To prevent this, only the base should therefore be 
gripped and contact with the shell should be avoided. This was accomplished by cutting 
away material from the gripper fingers at the location where they would've made 
contact with the shells, as can be seen in Figure 17.  

When a pole is being lowered into the riveting fixture, which has very tight tolerances, 
then both the base and shell will experience an upward friction force. Since the gripper 
fingers only hold onto the base, the shell could be separated from the base when the 
friction force acting on the shell becomes too large. To prevent the case from ever 
opening up, two spring-like sponges (blue parts in Figure 17) were added to the grippers 
to prevent the shell from sliding open while the poles are placed into the riveting fixture. 
While picking up poles out of the source pallet, the sponge would be slightly 
compressed to exert a downward force on the pole which is large enough to counteract 
the upward friction force of the tight riveting fixture, but small enough to not push the 
pole out of the gripper fingers. Sufficient space was left open between the contact 
surfaces and top of the fingers that an entire stack of poles could also have been gripped 
by the same grippers that would usually only transfer one pole at a time . Although this 
feature was never utilized for any experiments, for it to work the sponge would need to 
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be made smaller and the stack being transferred would need to be gripped at the base 
of the bottom-most pole. 

As indicated in Figure 17, the edges of the casings of stacked poles are approximately 
1mm apart leaving very little room for the grippers to grip underneath the casing. When 
the poles are picked up at their sides, the available surface of contact is only a very small 
area and enough friction needs to be developed for a firm grip. Three options were 
considered: 

The first option was to use a thin, small rubber pad to provide the friction. When adding 
a pole onto a stack, this rubber pad should not interfere with the pole underneath, so 
the pole being transferred would need to be held close to the bottom edge of the 
rubber pad. When the pressure is increased too much, the edge of the rubber pad 
would give in more than its centre, thereby causing the resultant force exerted on the 
pole to have a downward component, causing the pole to slip out of the fingers. 
Furthermore, extensive usage would eventually wear out the rubber pads and result in 
non-repeatability. Because of possible unreliability caused by those two aspects, this 
idea was discarded. 

The second option was to use small Ø1mm pins to fit underneath the poles, similar to 
fingernails, thin enough to fit in between the casings of two stacked poles . These pins 
would provide a shoulder for the poles to rest on, preventing them from falling out of 
the fingers. Because of their small size they could easily be damaged and they would 
need to be very accurately positioned relative to the pole to be picked up which would 
often be very difficult to accomplish and there would be very little compliance. Also, this 
concept does not provide a means for keeping the shell on the base while the pole is 
pushed onto the stack, which is why this idea was also discarded. 

The third and chosen option was to give the aluminium a rough sandblasted surface 
finish, rough enough to increase the friction coefficient, but smooth enough as to not 
damage the casings. This concept has proved successful, as poles have been transferred 
to the riveting fixture numerous times without any poles ever being dropped or casings 
opening up. 

3.4.2.4.2 Damage to casing 

To prevent damage to the casing, the gripper fingers were designed sufficiently wide 
that the contact surface between the grippers and the casing was large enough to keep 
the resulting pressure sufficiently low as to not damage the casing. 

3.4.2.4.3 Aligning poles of a stack 

To line up the common trip with the common trip connector during the stacking 
process, the grippers have to align the edges of the pole being stacked with the edges of 
the poles which are already on the stack. To accomplish this task, the end of the gripper 
fingers were chamfered, so that upon lowering the top-most pole of the stack, i ts sides 
would line up with the sides of the pole onto which it is being stacked.  
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3.4.2.4.4 Loss of power 

Festo DHPS-20A pneumatic parallel grippers were used, which are double-acting and 
they come with the option of having backup force retention for either the normally open 
(NO) or normally closed (NC) state of the gripper. To prevent the pole from being 
dropped in the event of power loss, it was opted to have force retention in the NC state. 
Even in the absence of air pressure or loss of input signal, an NC gripper keeps holding 
onto the part, because it contains an internal spring which exerts a closing force.   

3.4.2.4.5 Quick product changeovers 

The left and right gripper were designed to be identical, so that any of the two fingers 
could be attached to any jaw and that there would not be an incorrect way to assemble 
them. For cases where gripper fingers are not symmetrical, it is advisable to label  them 
appropriately to aid with assembly. To ensure that the fingers will always be aligned in a 
repeatable way, they were designed with dowel pins to align them w.r.t. the grippers. 

The grippers were attached to a mounting plate w.r.t. which it was aligned using dowel 
pins. Various members of the research group have been using the KUKA robot for 
various experiments. To allow for quick and easy changeover from one configuration to 
another, another member of the research group has designed a mounting plate which is 
to be attached to the flange at the end effector of the robot and onto which various 
types of tools can be attached in a repeatable position, when used along with dowel 
pins. The flange was designed so that one would not need to screw and unscrew onto 
the robot directly with every changeover. The mounting plate for the gripper was 
designed such that it would be easy to rotate the grippers by 90° if need be.  

Dowel pins ensure all parts are correctly aligned to one another, thereby eliminating the 
need for re-calibration after product changeovers, and drastically reducing ramp-up 
times. Only one or two test runs would be required to ensure everything was assembled 
correctly. 

3.4.2.4.6 Near-real-time control 

The pneumatic air control valve was controlled by a National Instruments Data 
acquisition device containing 8 digital inputs and 8 digital outputs. For powering the 
valve, an external 24VDC power supply was necessary, since the Festo actuators work 
with 24V as well as compressed air supply. 

The DAQ is connected to the PC via USB. National Instruments drivers had to be 
imported into the C# program so that the DAQ could be used. 

3.4.2.4.7 Feedback 

The Festo DHPS-20A gripper features a slot inside which a proximity sensor can be 
anchored which can be moved up or down inside the slot. An SMT-10G/10G proximity 
sensor was used, which is a digital sensor and can only produce a "false" or a "true" 
signal. Using this signal in conjunction with the command sent to the gripper control 
valve, four possible states can be determined: 
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1. Whether a pole has been properly gripped – A command would be given to 
close the gripper, and the sensor returns "true" to indicate that the jaws are  in 
the position for which the sensor has been calibrated, i.e. that the grippers are  
partially closed because the pole being gripped prevents them from closing 
completely. 

2. Whether a pole has been misgripped or is not present where expected – A 
command would be given to close the gripper but the sensor returns "false" 
because the jaws would have moved past the calibrated position and closed 
completely. 

3. Whether air pressure has been lost – A command is given to open the gripper, 
but due to low air pressure, the jaws remain closed at the calibrated position 
and the sensor returns "true". 

4. Whether the gripper is open – A command would be given to open the gripper, 
which moves the jaws away from the calibrated position, causing the sensor to 
return "false". 

The positon of the jaws for which the sensor returns "true" depends on the pol e width. 
The sensor must therefore be re-adjusted whenever breakers of different pole  widths 
have to be accommodated. Alternatively, two or more sensors could have been inserted 
into the slots to determine the thicknesses of various products without the ne ed for 
manual adjustment when switching between product types. 

3.4.2.5 Buffer 

The buffer is used to temporarily store poles that cannot yet form part of an assembly 
until those poles can be used at a later stage. Poles being stored in the buffer are  in an 
unriveted state. 

The following points have been considered for the design of the buffer: 

 Since a SCARA robot would typically be used to interact with the buffer, only 
four degrees of freedom should be required to retrieve poles or place poles into 
the buffer. 

 It should be possible to pick up any pole at any time in any order, i.e. pole s 
should not block access to other poles, e.g. should not be stacked on top of  one 
another, unless they are identical and can thus be used interchangeably. 

 Since poles have common trip connectors protruding upward (as was shown in 
Figure 10), not even poles of the same kind can be stacked on top of one 
another. 

 Poles should be placed repeatable and should not move in case the buffer gets 
bumped into. 

 The buffer itself should ideally not consist of any actuators or controllers to 
make retrieval of poles possible. 

 People should be able to easily insert or remove poles by hand in case of manual 
override mode or when the system has to be cleared after a restart.  

It would have been possible to utilize the existing hardware present in the lab to form a 
buffer: Unused poles could have been stored on empty pallets which would then be sent 
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to the pallet magazine until poles on those pallets would be required at a later stage . 
However, the logistical, practical and economic aspects of this approach were far from 
desirable and other buffer concepts were therefore considered. 

The concept that was chosen is shown in Figure 18. It was designed such that all poles lie 
on the same plane, to simplify calibration, which in turn simplifies reconfigurations.  
When all fixture positions are lying on the same plane, it further simplifies the task of 
choosing a reference point and expressing the coordinates of the individual fixtures 
relative to that reference point. 

 

Figure 18 Exploded view of buffer 

As shown in the figure above, the buffer provides space to store up to 18 single -poles. 
For stacking, the robot needs to grip the poles from above which is why the buffer has 
been designed such that poles can be removed and inserted from above. The top -most 
layer contains several holes which have the shape of the outline of the circuit breakers, 
so that breakers are restricted from moving horizontally. These holes have chamfered 
edges to aid the robot placing the poles. The top-most plate is product-specific as the 
holes are custom-made to match the outline of the poles to be stored. The rest of the 
buffer is product-independent. Therefore, when the shape of a circuit breaker model  i s 
modified, then only the topmost plate of the buffer needs to change to accommodate 
poles with a different shape. The rest of the buffer hardware does not need to be 
changed. When loaded into the buffer, poles will be resting on the middle  plate  which 
has holes big enough for the gripper fingers to fit through in a fully opened and fully 
closed state. The entire buffer rests on raisers so that the tips of the gripper fingers 
would not collide with the table while picking up a pole. 

The advantages of the chosen concept are: 

 Poles can be placed in repeatable positions. 

 Poles of various thicknesses can be stored. 

 Poles will not move in case that the buffer is pushed. 
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 Storing all poles horizontally, which is the same orientation that they are 
transported on the pallets, allows them to be handled by 4-DOF robots. 

 The buffer was inexpensive and easy to manufacture. 

 No complications occurred while installing the buffer and after removal, the 
buffer could be repositioned at its previous location without requiring re -
calibration. 

 Choosing a reference point on the buffer for calibration purposes, and 
calibrating the buffer's workspace coordinates was done without problems. 

The disadvantages of the chosen concept are: 

 The contours of the top-most layer are dependent on the outer geometry of the 
poles that have to be stored. This means that only one type of circuit breaker 
can be stored in the buffer. 

 A relatively large footprint was claimed by the buffer when installed 
horizontally. A vertical design would occupy a fraction of the floor space. 

3.5 Conclusion 

A background on the case study was given in this chapter, along with the design 
specifications for the stacking and buffering station. The mechanical design aspects of 
the transportation system, fixtures, grippers and buffer was then described. Chapter 4 
provides the details of how control software for the station controller was chosen.  
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4 Control Software Selection 
Control software alternatives for a reconfigurable controller are investigated in this 
chapter. They are evaluated in terms of their capability to interface with the hardware 
chosen in the previous chapter, their suitability for holonic control architectures, their 
prevalence in industry and in terms of the requirements discussed in the section below. 
Only A high-level comparison is made to identify some of the weaknesses and strengths 
of C# but a detail comparison is considered out of scope. Furthermore, OOP is evaluated 
as an alternative for agents at the end of this chapter. 

4.1 Software requirements 

Since the controller in this research is not in control of an entire factory but has to 
control only one station, it would not be of much value to have all the individual holons 
run in separate threads. What was seen as a much higher priority on a station-level was 
to achieve optimal throughput rates for which real time or near-real time control of 
hardware plays an important role, while also allowing global optimization. Multi-
threading capabilities were thus seen as a requirement to allow for near-real time 
execution of hardware being controlled by the main thread, while also having the 
following tasks run in parallel: 

 Communication over TCP/IP or any other asynchronous communication 
channels. 

 CPU-intensive forecasting and/or global optimization algorithms. 
 Control of a human-machine interface (i.e. graphical user interface and 

mouse/keyboard event listeners). 

 Diagnostic tools which might require regular access to the hard drive  when log 
files are to be written to gather fault data for diagnostic statistics.  

The station controller must be able to communicate with the cell controller and 
conveyer controller over Ethernet, to receive orders, product information and logistical  
information and to allow for diagnostics to happen remotely over the network. Support 
for TCP/IP communication is thus required. 

To improve modularity among the stations and the cell controller, communication 
should happen by interchanging XML strings due to the fol lowing advantages of XML: 

 XML is platform independent. 

 XML can be designed to be extensible (Obasjano, 2004) which allows for 
changes to the XML structure to be made in one application, and an older or 
newer application will still be able to function properly and read the XML 
message as easily as before the changes have been made. The extensibility of 
XML allows reconfiguration to happen gradually as needed, so that only cri tical  
parts of the system need to be changed, while not having to make changes to 
the entire system at once. 

 XML strings are human-readable, which can simplify diagnostics in some 
occasions. 
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For the case study in particular it was further required that it should be easy to interface 
with the KUKA robot via RS232, and Festo gripper sensor and control valve via a USB-
DAQ. 

The following aspects were other important factors in the search for suitable control 
software: 

 To allow for a fully reconfigurable controller, a holonic control architecture 
should be implementable, i.e. the controller should support OOP concepts so 
that holons or holon-like objects can easily be created. 

 To promote industry acceptance, the language should be widely known, proven 
successful over many years and easy to learn. 

 For shorter development time reusable libraries should be available so that 
relatively basic functionalities do not need to be developed from the ground up.  

 Advanced diagnostic tools should exist for fault finding during development and 
also during operation. 

 Development of an HMI/GUI should not be a major effort. 

 Near-real time control of hardware for optimal throughput rates. 
 Multi-threading capabilities will allow asynchronous tasks such as network 

communication and CPU-intensive tasks such as optimization algorithms to ru n 
while still having near-real time control of time-critical hardware tasks. 

 Support for TCP communication and XML handling. 

 Dynamic memory allocation to cater for changes in product information or order 
information at runtime without the need for recompiling the code and restarting 
the controller. 

 Integrable, thus ability to run on various platforms and support for various types 
of interfaces. 

4.2 Software comparison 

Although numerous programming languages could be used for the implementation of 
the station controller, only some of the most widely used programming languages were 
investigated, since wider usage implies higher likeliness of industry acceptance. The 
languages considered here are Java, C, C#, and C++. 

4.2.1 Java 

Java is the most widely used programming language (Cass, 2015). It is a high-level 
programming language with support for OOP concepts, multi-threading and dynamic 
memory allocation. Developing a GUI does not require major effort. However, it is 
cumbersome to interface with hardware and to get serial communication working. FBD 
and ABC that were mentioned in sections 2.5 and 2.6 are both Java-based applications 
which makes hardware interfacing a cumbersome task for those approaches too.  

A great advantage of Java is that it is platform independent, i.e. the programmer does 
not require any knowledge of the operating system or the machine where the code wi l l 
run on, but can be assured that the code will run the same way on different platforms 
without having to recompile the code. This enhances the modularity of code wri tten in 
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Java. The Java Native Interface (JNI) however, which must be used to interface with 
hardware, is not platform independent. 

To ensure the controller can run for months without interruptions or failure, memory 
leakage must be prevented. Java comes with automatic garbage collection (AGC) which 
simplifies software development in that developers do not need to keep track of the 
memory allocated to pointers themselves and removes the chances of human errors in 
this respect. A disadvantage of AGC is that it is handled by the operating system which 
makes it impossible for the programmer to predict when it will occur.  Whenever AGC 
kicks in, other processes could experience minor delays in their execution, which is 
acceptable when no precise timing between two or more processes is required, or when 
timing-critical processes are executed by a hard-real-time controller such as a PLC. 

4.2.2 C 

C supports dynamic memory allocation but has no built-in AGC. Correctly allocating and 
disposing memory is thus the responsibility of the programmer. Since in C error checking 
(such as array bounds checks) is not performed at runtime and because the programmer 
is in control of memory disposal, C can execute slightly faster and with more precise 
timing than common OOP languages with AGC. Essential parts of the code can easi ly be 
written in assembly which makes C suitable for near-real time control. 

The lack of AGC and automatic error checking leaves those tasks to the programmer 
which, if neglected, could cause unreliable behaviour and produce sudden failures after 
weeks of normal operation, when due to memory leakage suddenly no new memory can 
be allocated. Especially after reconfigurations, when another programmer had to make 
changes to the code, chances are that all allocated memory is no longer disposed of 
correctly. Neglecting to properly dispose of memory does not necessarily produce any 
immediate runtime errors because controllers today typically have an abundance of 
available memory. Memory leakage happening at a slow rate is therefore not likely to be 
detected during ramp-up tests but will only cause failure at a later stage. In the author’s 
view, the lack of AGC makes C less reliable than languages with AGC. 

C is a much lower level language than common OOP languages and has very poor 
support for OOP concepts. Hence, implementing a holonic architecture in C would 
probably take significantly longer. Although C is not a multi-threading language per se, it  
does support multi-threading using libraries. There is no direct support for implementing 
a GUI, but GUIs can be created using wrappers. 

4.2.3 C# 

C# is almost equivalent to Java from an application developer's perspective (Radeck, 
2004) and syntactically is very close to Java, and thus almost equally easy to learn. 
Programmers knowing Java should easily be able to learn C# (and vice versa) since they 
are conceptually very similar. Like Java, C# also has support for AGC, multi-threading, 
OOP concepts and easy GUI development. 

Hardware interfacing, however, is easier in C# than in Java. Drivers for most of the 
hardware are usually available for C, C++ and C#. 
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C# is a strongly-typed (type-safe) language, i.e. errors relating to conflicting types are 
detected at compilation time and code cannot be compiled until these errors are 
resolved. Having such errors already detected during the development phase effectively 
means that some built-in diagnosability is automatically provided for during the 
development phase resulting in more reliable code. 

4.2.4 C++/CLI 

C++/CLI (C++ over Common Language Interface), like Java and C#, supports all OOP 
concepts, multi-threading, AGC, and GUI development. It targets the .Net framework 
and can easily be integrated with other .NET code, such as code written in C#. 

C++ is one of the languages that allows multiple inheritance, i.e. that a sub-class can 
inherit from more than one base class. Java and C# don’t allow this, but they do allow 
inheriting from multiple interfaces, as this would cause no ambiguity for the compiler 
which one of the inherited methods to implement, since interfaces have no 
implementation. 

Managed languages in the .NET Framework do not support multiple inheritance, i.e. only 
one base class can be specified for a derived class. 

Garbage collection works for managed objects for which destructors are not required 
but unmanaged resources are not cleared up by garbage collection and destructors must 
therefore be implemented for them. 

4.3 Chosen controller and chosen software 

Compared to ABC and FBD, the languages discussed in the previous section are easier to 
learn and much more widely used. ABC is a very high level language and provides many 
useful functionalities for holonic control which, when built from scratch, would take a 
long time to implement. However, for the CBI case study not all those functionalities are  
required and hence a more general language should be more suitable. 

TCP communication and XML parsing is supported in all of the languages considered 
above and could therefore not be seen as a determining factor. 

High-level languages are easier to use to program holons, because they allow 
programming to happen on a level which is close to human thinking.  Since C is on a 
much lower level than other OOP languages and because of the lower reliabili ty due to 
the lack of AGC, C was deemed less suitable. Java was decided against because for a 
station controller, lots of hardware interfacing would be required which would be a 
cumbersome task to do in Java. 

Although no significant advantages could be pointed out that C# has over C++ i t was 
nevertheless decided to use C# for this case study since it fulfilled to all the 
requirements set out in section 4.1. 

The integrated development environment (IDE) used was Microsoft Visual Studio 2012 
which has advanced debugging tools. A nifty feature is that, when an exception was 
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thrown, hovering the mouse over an object variable will display its value along with the 
values of all the member variables. This can very quickly shine light onto the possible 
cause of an error and allows for quick diagnosing. 

4.4 Evaluation of OOP as an alternative to agents 

The comparisons in sections 2.6 between agents and objects are not specific to 
manufacturing, nor to control. One should therefore question to what extent the above 
conclusions are applicable, particularly when considering a relatively simple application 
such as the control of a manufacturing cell or a subsystem contained by it, as in the 
intended application of RMS for CBI. This section therefore reconsiders the comparisons 
and also a number of other issues, with the specific application in mind. Figure 19 
summarizes the key differences. 

 

Figure 19 Key properties of agents and OOP 

4.4.1 Encapsulation of behaviour 

Consider the external vs internal "unit invocation" difference shown in Figure 7 and the 
related issue of encapsulation of behaviour, in the context of a holonic control 
architecture: for a holon there is little difference in the logic, and its implementation in 
coding, between an agent-based and an OOP approach. An object can just as easily be 
programmed to initiate its own methods as an agent can initiate its own behaviours. 
Also, the programmer can decide which of an object's methods are publically accessible 
and can therefore expose no more than a communication interface, thereby mimicking 
this property of an agent. In agent platforms such as JADE, the ideal is that each agent 
runs in its own thread, which can be limiting for manufacturing control scenarios. 
However, objects running different methods in different threads (e.g. to handle 
communication or diagnostics in parallel with other activities) is commonplace. 
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Regarding the, in theory, different active vs reactive natures of agents and objects, again 
in a holonic control architecture for a manufacturing cell, there is little difference 
between the logic and programming that will be required for agents and objects. This i s 
even more so since some OOP implementations now have event-listener frameworks 
giving objects some of the dynamic capabilities of agents. 

4.4.2 Dynamics, complexity, autonomy and hierarchy 

As mentioned in the Introduction, RMSs are aimed at dynamic situations. As can be seen 
from Section 2.6, agents are well suited to adapt themselves to dynamic situations. 
Objects do not have all those capabilities built into them. For an OOP based system to 
be as autonomously reconfigurable as agents, designers would need to implement many 
of the standard ABC features in OOP, and then agents might just as well be used in the 
first place.  

The advantages that agents offer in terms of emergent behaviour and reasoning are 
significant for complex systems and highly dynamic situations. Unstable and 
unpredictable environments benefit from decentralization and self-organization (Odel l,  
2002). In manufacturing systems, complexity arises from the large number of interacting 
subsystems, for instance the transportation system responsible for the material flow in a 
factory containing many cells. Optimizing such a system would be challenging and time 
consuming, but systems consisting of autonomous, proactive agents have emergent 
behaviours which allow for optimization to be done automatically i f the correct rules are 
set for the agents. 

On the other hand, for scenarios where the systems are relatively simple and/or 
reconfigurations are infrequent, the autonomous reconfiguration capabilities are of less 
value, and it might be more cost effective for humans to provide inputs (Hoffmann & 
Basson, 2013). The systems that are being considered for CBI are cells, containing 
subsystems such as 6-DOF-robots and automated riveters, for which material f low and 
resource management is much simpler than for an entire factory. The control system of  
a manufacturing cell with limited (if any) redundancy, is a relatively simple system. 
Handling of, for example, disturbances (such as subsystem break-downs or 
unanticipated changes to production schedules) and throughput optimization are 
therefore simple enough to be handled effectively by a hierarchical control approach.  

The Contract Net Protocol is well suited for a holonic system, but is not needed for a 
hierarchical system, since decision-making is done on a higher level, and decisions are  
enforced on the holons situated on a lower level in the hierarchy. The directory facili -
tator of agent platforms is very valuable when handling autonomous reconfiguration of  
systems. However, there is little need for such autonomous reconfiguration in many 
industry applications. Particularly if reconfigurations occur relatively infrequently or 
have a fairly predictable nature, it is feasible to provide HMIs that can be used to 
provide not only the functions that a directory facilitator would, but also diagnostic and 
manual override capabilities. 
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4.4.3 Modularity and integrability 

In terms of modularity and integrability, which are key aspects of RMSs as described in 
Section 2.2, agents offer little advantages over objects. Both agents and objects that 
represent holons will have to provide a communication interface to other holons. An 
agent platform will provide some infrastructure to handle these messages, while an 
OOP-based approach will have to build it up from a lower level. In the case of agents, at 
least an application specific ontology, and possibly also an inter-agent communication 
language, must be designed. The equivalent effort will be required for objects that are  
running in different platforms, for example using TCP/IP sockets and XML encoding. 
Further, for objects in the same executable code, a library of object types based on one 
or more abstract classes, as used in e.g. C++ and C#, can provide a means of specifying a 
standardized interface, thereby simplifying integration and customization. 

Another practical consideration is that many popular agent platforms are programmed 
in Java, which is much more cumbersome to interface with hardware than, for example, 
common OOP platforms like C#. In the CBI application, which involves the control of the 
subsystems of reconfigurable manufacturing cells, there are a large number of interfaces 
between controllers and hardware. Using Java-based tools in such a context is therefore 
less integrable than C#. 

4.4.4 Hard and soft real time requirements 

One of the significant limitations of agents, in a machine control situation, can be their 
autonomy: each agent has autonomous control over its own behaviour. In many 
machine control situations, specific sequencing or timing of actions is required for safe  
and efficient operations. Close timing or rapid sequencing that are guaranteed and safe, 
is therefore difficult to achieve when multiple agents are involved. Such timing is easier 
to achieve with objects running in the same thread, but unless a real time operating 
system is used, there is still a measure of uncertainty in the timing. One can therefore 
conclude that agents are not suited to any form of real time control, while objects are 
suited to so-called "soft real time", where latencies of approximately 50 ms or more are  
acceptable. 

Another limitation of the agent platforms considered by the author is that no provision 
is made for allocating agents different levels of priority in their allocation of  CPU time, 
while it is easier to allocate priorities to threads using standard OOP implementations. A 
manufacturing scheduling optimization algorithm can be therefore run in one thread at 
a lower priority on the same CPU than another thread running timing-sensitive machine 
control routines. This approach may not fully obviate the need to separate the 
“intelligent” part of the system from the real-time part of the system (Brennan, 2007) 
and to use a layered architecture consisting of low level controllers (LLCs) and high level 
controllers (HLCs). Traditionally LLCs would be written in software which allows for 
exactly predictable timing, whereas HLCs would be written in software more sui ted to 
implementing complex algorithms and that are more amenable to reconfiguration. LLCs 
are usually more difficult to reconfigure, particularly when more complex algorithms 
have been implemented. Therefore using OOP instead of ABC for the HLC will allow 
more functionality to be moved from the LLC to the HLC, thereby enhancing 
reconfigurability. 
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4.5 Conclusions drawn from literature 

ABC and FBD both have characteristics which make them suitable for controllers of 
RMSs and both have successfully been implemented in research environments. 
However, neither ABC nor FBD are widely accepted by the industry. ABC performs well  
in terms of modularity, integrability and diagnosability, but performs poorly in terms of  
real-time execution, while FBD performs well in terms of modularity, integrabili ty and 
real time execution, but not in terms of diagnosability and does not support dynamic 
memory allocation. 

The Agent Based Control (ABC) approach is the de facto standard for controllers for 
Reconfigurable Manufacturing Systems. However, due to industry's reluctance to adopt 
ABC, an object-oriented programming (OOP) approach is considered in this research as 
an alternative. OOP is more widely used and has many capabilities that are valuable 
when implementing an RMS.  

Sections 2.6 and 4.4 have shown that ABC's advantages can be decisive in complex, 
highly dynamic systems requiring autonomous reconfiguration. However, in simpler 
systems and systems where timing and sequencing is important, OOP will have 
significant advantages. For CBI, the industry partner of this research, the advantages of  
OOP exceed that of ABC, primarily since autonomous reconfiguration and emergent 
behaviour are not high priorities in their situation, while OOP provides better 
integrability with hardware. 
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5 Control Software Implementation 
This chapter describes the implementation of the station control software and how OOP 
principles were utilized for defining holon classes, with references to C# features that 
are useful when it comes to designing a controller for an RMS. 

5.1 Controller functional requirements 

The hardware that is controlled by the station controller includes the robot, the gripper 
that is attached to the end effector of the robot, the buffer, and the poles that are 
moving through the station. The pallets which are transported to and from the station 
are not controlled by the station controller directly, but rather by a separate conveyer 
controller. The station controller nevertheless needs to be aware of the pallets’ contents 
and locations. The following are the main functions of the station controller: 

 The station controller must be able to receive product information, pallet 
information and orders from the cell controller. 

 When orders are placed the station controller must ensure that the 
corresponding products are assembled as soon as possible and attempt to 
complete all orders before their desired completion date. 

 Source pallets filled with tested, unriveted poles must be received on the one 
conveyer, whereas stacked assemblies must be placed into destination pal lets 
containing riveting fixtures on another conveyer. 

 Poles must be obtained either from the source pallets or from the buffer and get 
stacked into a riveting fixture on one of the destination pallets.  

 Unused poles must be transferred to the buffer until they can be used at a later 
stage. 

 Pallets must not be moved by the station controller directly but messages must 
be sent to the cell controller, to request that pallets are being moved away once 
no longer in use. 

 The cell controller must be notified when orders have been completed or are 
overdue, when required information is missing, when pallets are  to be moved 
away or in case of errors or warnings. 

 The cell controller must be informed of the IDs of poles that have been matched 
to form an assembly. 

 The status of various aspects of the system should be displayed on a human-
machine-interface. The station controller must be able to process input received 
from the operator via the HMI. 

5.2 Control architecture 

To optimally utilize the robot and to achieve the highest possible throughput rates, 
which should be aimed for at a station-level, one would traditionally opt for a 
centralized approach. However, due to some poles failing at the electrical test station in 
an unpredictable pattern and due to the unpredictable arrival time of pallets, the 
stacking station is constantly subjected to disturbances, which are better handled when 
holons have a higher level of autonomy, i.e. when a heterarchical approach is taken.  To 
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achieve optimal throughput rates while also having the flexibility to react to 
disturbances, ADACOR was chosen as the architecture which can dynamically adapt 
between a hierarchical and heterarchical structure. 

ADACOR consists of the product, task, operational and supervisor holons. In addition, 
some staff holons have been adopted from the PROSA architecture. 

The operational holons were used to represent anything physical that had to be 
managed. Product holons were Task holons were driving production 

A supervisor holon was required to ensure optimal execution of competing task holons. 
If several task holons, each with a local view, were to individually try and get their orders 
completed as quickly as possible, the system would be at risk of becoming congested 
and urgent orders might be completed too late. Without supervision congestions could 
occur when all fixtures on the destination pallets were occupied by partially stacked 
assemblies of which none could be completed due to missing poles. These congestions 
could eventually lead to the buffer reaching its full capacity and bring the station to a 
complete halt. Supervisor holons were thus required to prevent those congestions and 
also to handle any poles on the source pallets for which none of the task holons would 
take responsibility and transfer those poles to the buffer. 

Due to the failure of some poles in the preceding test station, the products will take 
different routes through the station so that task holons will keep interacting with 
different operational holons. At times, poles will have to be retrieved from the buffer, 
and when several source and destination pallets are each holding poles meant for 
different types of products, then possible interactions between the various holons could 
be manifold. A heterarchical approach was therefore needed in conjunction with 
supervision. 

Holons of the ADACOR architecture proposed by Leitão and Restivo (2006) have the 
ability to learn. This functionality however was not implemented in the current research 
since it could result in unpredictable behaviour occurring suddenly after a long time of  
normal operation and CBI would not be comfortable with this. This feature would 
further make the system unnecessarily complex without adding much value.  On station-
level relatively few devices are to be control led and hence humans would be able to 
easily identify the changes required when a new type of disturbance occurs, for which 
holons with a learning ability would not necessarily find as good a solution. Holons were 
therefore programmed to continuously operate according to a predefined set of rules 
until those rules would be redefined by a human. 

Figure 20 shows the interrelationships between the different types of holons as wel l as 
some of the communication between the station controller and the cell controller.  
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Figure 20 Stacking station control architecture 
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5.3 Separation of tasks among multiple threads 

To ensure near-real time execution of the hardware and to minimize robot idle time, 
time-critical processes and CPU-intensive tasks or asynchronous tasks were run in 
separate processes. 

As shown in Figure 21, three different processes were run, each in its own thread: 

 The GUI had to be in its own thread since it could hamper the execution of 
hardware processes whenever major updating (refreshing) is to be done on the 
user form. 

 Sending and receiving of XML messages over Ethernet had to be dealt with in i ts 
own thread since TCP/IP communication happens asynchronously and would 
otherwise produce delays of unpredictable duration. 

 All the holons, including the supervisor holon were run in the stacking station’s 
main thread. 

 

Figure 21 Memory shared among various threads 

Although “autonomy of holons” could refer to all of the holons running the enti re  time 
on separate threads and communicating with one another asynchronously, this 
approach was not taken for the stacking station. Instead, all holons were running on the 
main thread only since all of the stacking station’s hardware would always be controlled 
sequentially, never in parallel. Although, for example, pallets could be moving whi le at 
the same time the robot is in motion, the pallets would not be controlled by the stacking 
station controller directly. The station controller would only send a corresponding 
command to the conveyer controller when a pallet is to be moved. 

By having the various task holons all run in turns on the same thread, only one of  them 
would try to book resources at a time. Had they been running on separate threads 
quasi-simultaneously, task holons could potentially undermine one another’s plans by 
booking certain resources which other task holons would require to complete a task. 

Although with this approach holons are only active when given their turn, they are 
nevertheless autonomous since they used all the information they had available to make 
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all decisions themselves without having to pass information on to a higher level and ask 
for advice. The supervisor (discussed in section 5.5.5.1) made no decisions on their 
behalf, other than deciding on the optimal order in which they are to be activated to 
achieve highest possible throughput rates. 

To ensure safe operation between the threads, inherently thread-safe queues had to be 
used from the .NET libraries (System.Collections.Concurrent.ConcurrentQueue<T>), 
which act as a first in first out (FIFO) buffer. The Enqueue() method is used to add an 
element to the end of the queue. Adding elements will generally be a successful 
operation, even when multiple threads are working on the same ConcurrentQueue. In 
contrast, removing elements is not guaranteed to be a successful operation when 
multiple threads are busy working with the same ConcurrentQueue. To remove the first 
element of a queue the TryDequeue() method must be used, which returns the 
requested element if successful, or null when unsuccessful. 

Thread-safe FIFO buffers shared among the threads are indicated in yellow in Figure 21. 
They include the inbox and outbox which allow holons to communicate asynchronously 
over the Ethernet. Thread-safe FIFO buffers were also used for lists of events for the 
event log textboxes (discussed in section 5.5.1). 

A static class called 'HMI' was used to allow the station controller thread and the GUI 
thread to share information such as user input or the status of hardware. To output the 
status of task holons or operational holons, event logs were stored inside the above 
mentioned thread-safe FIFO-lists within the main thread, and removed within the GUI 
thread. 

Each class which was to be run in a separate thread had amongst others, a Run() and 
Terminate() method. The Run() method would be executed inside a thread of its own 
and would loop as long as that object’s run-flag is set. The Terminate() method can be 
invoked publically and, when executed, un-sets that run-flag. By this approach threads 
can be “asked” by other threads to safely finish the current iteration and thereafter 
terminate. A flow diagram indicating how the threads are initiated and interact with one 
another can be found in Figure 33 in Appendix B. 

5.4 Inter-holon communication 

Since it was decided to let all holons run on the same thread, the ability to communicate 
asynchronously was not required, except when communicating over the network. 
Simple method calls are therefore sufficient for communication among holons on the 
same thread. Using method calls means that the calling holon will have to wait for the 
called holon before being able to continue its execution. A communicator holon 
(discussed in section 5.5.7) was developed to handle asynchronous communication over 
Ethernet. Holons could simply deposit messages into the communicator’s outbox and 
immediately continue with their actions without having to wait for a reply, since the 
communicator would deal with the message from that point onwards and will then 
forward the reply it received to the corresponding holon. 
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Methods which needed to be invokable by other holons were declared public whereas 
methods which were to be encapsulated and hidden from other holons were declared 
private or protected. Where appropriate, interfaces were used to enforce standardized 
signatures for methods on certain types of holons. Using method calls, it is generally 
very intuitive for the programmer to know how holons are to be called. For example, 
when information is requested from a product holon, the product holon will simply 
return a reference to the requested information if available, or a null pointer otherwise.  

C# has a keyword this, which can be used by holons to pass references to themselves to 
other holons as an argument forming part of a method call, or as a return value. When 
for example an operational holon agrees to provide a certain service to a task holon, the 
operational holon would use this to pass a reference to itself to the requesting task 
holon. At some later stage the task holon can thereby easily get hold of the operational  
holon that agreed to offer the service. 

5.5 Responsibilities and functionalities of the various holons 

Using inheritance and polymorphism, the various holons running on the station have al l  
directly or indirectly been derived from a generic holon, as shown in Figure 22 below. 
The various types of holons are discussed in the sections that follow. As part of the 
discussion, some features on the graphical user interface, shown in Appendix A, are 
referred to. 

 

Figure 22 Inheritance hierarchy 

5.5.1 Generic holon 

The generic holon was declared an abstract class and given the following properties that 
all the holons would inherit regardless of their type: name, holon-type and timestamp. 

The name property contains a description of the holon, for example “pallet 7” or “KUKA 
KR16-2 robot”. As holons perform actions or detect problems their activity is being 
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recorded and logged in chronological order in an event textbox on the HMI as shown in 
Figure 23. To allow the operator better insight into their activities, some event log 
entries are accompanied by their names. The event textbox was implemented since 
having a good insight into the sequence of events can drastically simplify diagnostics. 

The holon-type property is used to distinguish the different types of holons from one 
another. For a clearer overview in the event textbox described above, holons produce 
their event logs in a unique colour which is determined by their type.  On the right in 
Figure 23, it can further be seen how those events can be filtered by selectively muting 
the activities of certain types of holons. 

Other than for the event textbox, the name property is further used as the sender-fie ld 
when constructing XML messages, as will be described in section 5.5.7. Another use of  
the name property comes into play within the file handling class. To allow reverting back 
to previously taught configurations, certain holons have to store and retrieve settings on 
the hard drive. Being able to use the holons’ names made it an easy task to retrieve the 
correct settings for each of the holons. 

 

Figure 23 Station event log simplifies diagnostics. Holon activity can selectively be muted. 

Within the generic holon’s constructor method, the current system time is stored in the 
timestamp property which effectively records the instantiation time of the holon. This 
allows the age() method to determine the total running time of any holon and can be 
used to detect if, for example, a pallet or pole is stagnant in the system for much longer 
than the norm. The constructor method further lets the holon announce itself in the 
event log, unless “Holon instantiation” (Figure 23) is unchecked, or when that particular 
type of holon is set to be mute. 

All derived holon classes inherit those properties and methods of the generic holon. 
However, polymorphism makes it possible for the derived holon classes to override the 
inherited methods and to define additional properties and methods. To let the 
constructor of the derived class extend the constructor of the parent class (i.e. to re -use 
the functionality of the parent constructor while possibly adding more functionality  in 
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the derived constructor), the base keyword is placed directly after the constructor’s 
header. Using this concept, new instances of derived holon classes would automatical ly 
announce themselves when their constructor method was called, but had the option to 
perform additional actions upon instantiation. 

Abstract classes cannot be instantiated. Yet classes which are derived from an abstract 
class can be instantiated as long as they are not abstract themselves. This means an 
object of type “Holon” cannot be instantiated, whereas for example an object of type 
“Stacking task holon” (non-abstract) could be instantiated. 

5.5.2 Product holon 

The purpose of the product holons is twofold. Firstly, to help the task holons with 
planning the execution of their processes, by specifying the sequence of events that 
must be scheduled by the task holons in order to get products produced; and secondly, 
to provide the operational holons with process knowledge, i.e. the machine parameters 
required by the physical devices in order to make the product according to 
specifications. 

For this purpose, two types of product holons were defined for the stacking station, 
both of which have been derived from the abstract product holon: 

The first type is a partInfo product holon which contains product information about 
individual parts, such as the thickness and dimension of a particular part (e.g. pole), and 
the coordinates where the part is to be picked up, relative to a reference point.  This i s 
the information that the product holons share with the operational holons. 

The second type of product holon contains an AssemblyRecipe which contains an 
ordered list, where each entry of the list specifies a part required along with the 
orientation and coordinates where that part has to be placed. This recipe is shared with 
the task holons. 

The product holons do not perform much decision-making, but serve mainly as 
information-servers. When the requested information is not available inside the product 
holons, then the inquiring holon will receive null as a reply and the product holon will 
request the missing information from the cell controller. The latter only happens if such 
a request was not already sent in the past 15 seconds to prevent the cell controller from 
being flooded with requests for product information. For that means, the abstract 
generic product holon was given an property to store the time of the last request. 

Another property of the abstract product holon was the version number of the product 
information it was holding. This allowed for gradual changes to be made to some 
physical parts and assemblies and keeping their virtual representation up to date, whi le  
also accommodating some older versions of parts or assemblies that might still be used. 

5.5.3 Operational holon 

Operational holons of ADACOR are quite similar to the resource holons of PROSA which 
represent the abstraction of production means and include, among others, machines 
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such as robots, conveyers, pallets, components and raw materials (Van Brussel, et al., 
1998). For this reason, anything physical that needs to be managed was defined as an 
operational holon, namely the robot, gripper, poles, buffers and pallets.  

5.5.3.1 Generic operational holon 

The abstract generic operational holon has the Boolean property simulate which, when 
set to true, lets only the virtual part of the operational holon execute. In this mode, no 
actual hardware is controlled, and feedback from sensors is disregarded. Simulation 
mode allows the developer to make changes to the software and run virtual tests 
offsite, where no physical hardware is available. This reduces ramp-up time and eases 
the impact of reconfigurations on ongoing production since a great part of testing can 
happen on another controller without having to pause production. Furthermore, 
reconfiguration costs are reduced by requiring fewer highly skilled personnel on-site. 

Since there are no hardware-related delays in simulation mode, the virtual system can 
be run at much higher speeds which allows observing the long-term system behaviour 
under certain conditions (e.g. where bottlenecks are most likely to occur or the effect of  
disturbances) without actually having to wait that long. 

5.5.3.2 Pole 

Poles have the following properties: uID, partNo, and versionNo. 

partNo is the part number of the pole and conveys information about the pole’s type, 
such as its ampere rating and for which layer (i.e. bottom, middle or top) of a stack i t i s 
suitable, and what type of stack it is made for (e.g. triple pole of the QA-range). 

versionNo specifies the version number of the pole and is used to ensure that poles are  
only used for a stack when they are compatible with the other poles of the same stack. 
When for instance an external feature of a pole would change, it might no longer 
interlock correctly with other poles of that stack. Therefore, whenever an adjustment 
was made to the design of a pole, its version number would be updated to ref lect that 
change. 

uID stands for unique identifier and was assigned by the cell controller. To allow 
traceability of each and every part which eventually ended up in an assembly, various 
manufacturing details were recorded, in order to easily find the cause of a possible 
problem. Along with the pole’s uID, it was recorded which task holon was driving the 
production, which operational holon has handled the pole, and into which fixture the 
pole has been placed. When building stacks it is important to record which poles have 
been put together. Should the end product be faulty, one will know which routes were 
taken by the individual parts. 

5.5.3.3 Gripper holon 

The code for the gripper holon is shown in Appendix C. Grippers need the ability to open 
and close their jaws and, for diagnostic purposes, the ability to sense whether the part 
being picked up is properly gripped. The abstract generic gripper holon was therefore 
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designed with three methods, namely open(), close() and sensePart() to provide those 
abilities. 

When gripper fingers are being exchanged with gripper fingers of different dimensions, 
then the gripper needs to be brought closer or further away from the object being 
picked up to compensate for the change in gripper finger length. Gripper holons thus 
need to be aware which gripper fingers are attached to the jaws, which is why the 
generic gripper holon was assigned two properties. The first property contains a l i st of  
gripper fingers that can be attached to the gripper jaws, and the second property 
specifies which set of gripper fingers out of that list is actually attached. 

The Festo gripper holon was derived from the generic gripper holon. Since the air 
control valve and the position sensor are controlled via the National Instrument DAQ, 
the Festo gripper holon must know how to interface with the DAQ. For this purpose, 
DAQin and DAQout classes were created which incorporate National Instrument drivers 
for reading and writing digital signals from and to the DAQ. These hardware interfaces 
serve as the link between the operational holon’s virtual part and physical part. In Figure 
20 they are therefore indicated by the yellow blocks which are lying on top of the station 
controller boundary. 

The withoutAir property was defined to allow the virtual part of the gripper holon to run 
smoothly even when no air supply is present. During ramp-up tests this feature can be 
used to perform dry runs, i.e. to let the robot move to all the pickup and place positions 
but without the gripper actually picking up and transferring parts. 

5.5.3.4 Pole stacking robot holon 

Since all robots, regardless of their type, are able to move to a specified location, an 
abstract robot class with an abstract method moveto() was defined. Declaring an 
abstract method in the base class forces all derived non-abstract classes to provide an 
implementation for that method, e.g. the moveto() method. Not all robots (e.g. painting 
or welding robots) have the ability to pick up and place objects which is why the generic 
class does not provide methods to cater for such functionality.  

For the case study, a 6-DOF KUKA robot was used to stack poles, but for the sake of 
reconfigurability it should be possible to use any other capable robot in its place. The 
internal working of those robots would differ and should be hidden, but to enhance 
integrability, the same standard interfaces to the outside world should be used by all 
pole stacking robots. This allows for one robot to easily be swopped with another and 
only the operational holon responsible for managing the new robot would need to be 
programmed, while no reprogramming of other cooperating holons would be required. 

To achieve integrability, an interface was written, containing two methods: pickup() and 
place() which would be required by any pole stacking robot, regardless of its type.  An 
abstract pole stacker robot class was then derived from the generic robot class, and was 
made to also inherit the pickup() and place() methods of the abovementioned interface. 
As an additional field a pole object was included to represent the physical pole being 
held by the robot. 
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From the abstract pole stacker robot class several types of robot classes can be derived 
which represent actual robots. For the case study, a (non-abstract) KUKA pole stacker 
class was implemented, which further contained a Festo gripper holon and an RS232 
class responsible for serial communication with the robot. 

An instance of the Festo gripper holon was encapsulated within the KUKA pole  stacker 
holon, rather than having the gripper run as a separate entity of its own. The reasoning 
behind this is that the gripper and the robot work closely together, i.e. the gripper wi l l 
never open or close unless the robot is motionless, and the robot will never start moving 
until the signal from the gripper holon has confirmed that the part is properly gripped. In 
other words, these two devices will never run concurrently, but always sequentially. This 
encapsulation eliminates any direct communication between the task holons and the 
gripper holons. The cooperation between the gripper and the robot are thus hidden 
inside an operational holon and the task holons can always rely on using the interface 
described above to get poles transferred. 

Part of the KUKA pole stacker holon is running on the KUKA controller which has built-in 
functionalities for handling various arbitrarily oriented coordinate systems, inverse 
kinematics and procedures for calibrating workspaces. On-board the KUKA controller, 
the coordinates for a limited number of calibrated workspaces (e.g. buffers and stopping 
positions of pallets) and tools (e.g. grippers) can be stored. 

To avoid unnecessary recalibration when reverting to a previously calibrated 
configuration (e.g. reusing a previously used set of grippers), a history of calibrat ion 
coordinates must be stored for future reuse. The KUKA controller, however, does not 
support dynamic memory allocation, but can only store a very limited number of 
coordinates and is therefore unsuitable for keeping a history of calibrated workspaces.  
After calibrations, the coordinates are therefore retrieved and stored on-board the 
station controller, which is capable of keeping a complete history of the calibration data. 

The flow diagram for the KUKA Robot Language (KRL) code running on-board the KUKA 
controller is shown in Figure 32, Appendix B. Workspace and tool calibration procedures 
are described in Appendix E. 

5.5.3.5 Pole storage holon 

Although the buffers and pallets used in this research are not equipped with any 
actuators or sensors and therefore require no machine interfaces, they must still have a 
virtual representation since the poles stored inside them need to be managed, as well as 
the slots into which poles can be placed. Somewhere it must be recorded which poles 
are inside which slots, along with the coordinates of those slots. A pole storage holon 
class was therefore defined containing a list for poles and fixtures to fulfil those 
requirements. Buffer and pallet classes were both derived from this class since they 
both contain fixtures/slots into which poles can be placed and fulfil very similar 
functions. 

The task holon (discussed in section 5.5.4), which is responsible for getting the poles 
stacked, must interact with the pole storage holons to find available fixtures and to book 
all poles required for building a stack. The pole storage holons were therefore given the 
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bookPole() and bookFixture() methods along with the releasePole() and releaseFixture() 
methods,  since bookings being made might sometimes need to get cancelled. 

Whenever a robot removes a pole or places a pole into a fixture, the pole storage holon 
must update its inventory list. For interactions with robot holons, the pole storage holon 
class was therefore further given the methods takePole() and removePole(). 

Robots which interact with buffers or pallets need to know the location and orientation  
(i.e. coordinates) of those buffers and pallets. The coordinates of the fixtures relative to 
some reference point on the pallet/buffer are stored in the pole storage holon. The 
coordinate of the reference point itself, however, is not stored in the pole storage holon, 
but in the robot holon that has to interact with the pole storage holon. The pole storage 
holon only stores a workspace number (Figure 24) which it communicates to the robot 
holon. The robot then maps the workspace number to the correct set of coordinates 
which were stored on-board the KUKA controller when that particular workspace was 
first calibrated. With this approach the pole storage holons can be left completely 
untouched in case a robot is being exchanged with another robot. Only the new robot 
would need to be calibrated for each of the surrounding workspaces, which cannot be 
avoided. 

   

Figure 24 Robot contains coordinates of surrounding workspaces’ reference points 

When for example a pole is to be picked up out of a pallet, the robot must be given the 
coordinate of the pole relative to some reference point on the pallet along with the 
workspace number of that pallet. The absolute coordinate to which the end-effector 
must then move to is calculated on-board the KUKA controller which maps the 
workspace number to the calibration data, and adds the relative coordinate of the pole. 

5.5.4 Task holon 

The generic task holons were designed to process batch orders (i.e. multiple basic orders 
of exactly the same type) and were given the properties described below. 

The ID (i.e. unique identifier) is used to distinguish between orders . Also, whenever a 
part is being handled, the process it underwent i s recorded along with the ID for 
traceability purposes. 

Pole storage holons 
are identified by their 
workspace number 
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productType and version are properties which together are used to unambiguously refer 
to the type of product to be produced, and are used when communicating with the 
product holon. 

The priority property is zero by default, but can be set to a higher level to indicate that 
the particular order should be given preference above orders with a lower priority level. 

BatchSize and BatchCounter respectively refer to how many products need to be 
produced for a batch order, and how many of them have already been completed. 

CompleteBefore is the time by which an order ought to be completed and can be used 
to determine the urgency of an order. In case orders become overdue, the cell controller 
is to be warned. To prevent the cell controller from being flooded with warnings, the 
time when the last warning was sent is recorded inside the lastTimeoutError property 
and the next warning is only sent if at least 15 seconds have elapsed. 

Lastly, the status property is used to store the current state of a (partially complete) 
order. 

5.5.4.1 Stacking task holon 

A stacking task holon class was derived from the generic task holon class and contains 
these additional properties: 

The assemblyRecipe property represents a list of parts that need to be assembled in a 
specified order and also contains the coordinates to specify how and where those parts 
are to be oriented and placed. 

Since the poles are to be riveted after being stacked, they need to be placed into a 
riveting fixture. Such a fixture must first be booked, for which the bookedFixture 
property was designed which holds the reference to an available fixture on one of  the 
destination pallets. 

The individual poles which are required to form a stack must also be booked before 
stacking can begin. The bookedPoles property contains a list of references to pole 
storage holons which hold the required poles. Rules have been set such that stacking 
task holons will first negotiate for poles with the source pallet holons before trying to 
obtain poles out of the buffers. By following these rules, poles would not be transferred 
to the buffers unnecessarily, thereby utilizing the robot more efficiently . 

Partially stacked assemblies which cannot be built to completion could congest the 
system. Rules have therefore been set so that the task holons would not initiate the 
stacking process unless the following requirements have all been met: 

 Product holons hold all the information about the assembly to be produced as 
well as all the information about the individual parts that the assembly i s made 
of. 

 A fixture capable of holding the entire stack of poles is available on one of  the 
destination pallets. 
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 All poles required for the assembly are already present in the station, be it on 
one of the source pallets or inside one of the buffers. 

5.5.4.2 Typical sequence of events for a stacking order 

Since task holons are the ones driving production, it is sensible to describe here the 
sequence of events (Figure 25) that would typically play out from the placement of an 
order until its completion. Several disturbances can happen to which the controller wi l l 
react differently, and the cell controller can send messages in any order which could 
result in a different sequence of events. However, for the sake of this discussion it is 
assumed that the cell controller has sent the messages listed below and that the 
communicator (discussed in section 5.5.7) has already distributed the messages to the 
various holons so that the stacking station holds all information required to complete an 
order. 

It is assumed that the cell controller has already sent the following messages: 

 Placement for an assembly order, which will lead to the instantiation of a 
stacking task holon. 

 Notifications that two pallets have arrived: One containing tested poles and 
another pallet with empty riveting fixtures. Two pallet instances will be cre ated 
due to these notifications: a source pallet and a destination pallet. 

 Product information for the assembly for which an order has been placed. A 
newly created assemblyRecipe holon will store this information. 

 Part information for all the parts of the abovementioned assembly. One partInfo 
holon will be created for each part of the assembly. 
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Figure 25 Sequence of events from order placement to completion of order 

If several task holons are active on the station controller, the task coordinator will try to 
optimize their order of execution, as described in section 5.5.5.1. 

Since all task holons are running on the same thread, they will execute one by one. Once 
a task holons gets its turn, it will: 

1. Try to obtain the assemblyRecipe from the corresponding product holon. For 
this, the product type and version number are used as reference. The recipe i s 
not copied, only a reference to the product holon is stored inside the task holon.  
To get hold of the correct product holon, the task holon will  initially direct its 
query to the product holon manager which contains a list of product holons.  

2. For each part listed in the assemblyRecipe, it will ensure that the correct 
partInfo is available. 

3. A fixture will be booked on the destination pallet, which must be capable of 
holding the entire stack. 

4. For each part listed in the assemblyRecipe, the task holon will try to book that 
pole from one of the source pallets, where possible.  To get hold of a pallet 
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holon, the task holon will initially direct its query to the pallet manager which 
contains a list of pallet holons. 

5. If none of the source pallets are holding the required pole, the task holon will try 
to book it from the buffer. 

6. Once all fixtures and poles have been booked, the robot can start stacking the 
poles into the fixture one by one. 

a. In order to grip the pole correctly as indicated in Figure 16, the robot 
holon requests the gripping coordinates from the partInfo holon.  

b. After the pole is lifted out of its pickup-position and the gripper’s 
proximity sensor has confirmed that the pole is properly gripped, the 
pole will be de-registered with the pole storage holon. 

c. Once the pole has been placed into the riveting fixture, it will be 
registered with the destination pallet. 

7. The robot confirms that a pole has been stacked, and the task holon updates the 
state of the order. 

8. Upon completion of an order, the cell controller will be informed about the ID’s 
of the matched poles. The task holon will then be disposed of. 

9. If any source pallet becomes empty or if any destination becomes full, a request 
is sent to the cell controller to transport the pallet away and the pallet holon will 
be disposed of. 

To prevent partially stacked assemblies from congesting the system, the task holons 
would only start the stacking process once all required parts are available along with the 
part information. If, during the booking process any fixture or pole cannot be booked, 
then all those resources which have already been booked are being released again, to be 
used by another order. 

5.5.5 Supervisor holon 

The supervisor holons have been implemented to allow scalability, to prevent 
congestion, to ensure an orderly manner of execution in an attempt to achieve optimal  
throughput rates, and to help with the instantiation of some of the basic holons.  

Next, the responsibilities of the task coordinator, product manager, pallet manager and 
buffer manager are discussed. 

5.5.5.1 Task coordinator 

The task coordinator fulfilled the role of a supervisor holon. It was implemented to 
ensure an orderly manner of execution in an attempt to achieve optimal throughput 
rates 

Transferring poles to and from the buffer is generally an unproductive robot manoeuvre 
which should be avoided where possible. By letting the task coordinator determine the 
order in which task holons execute, buffer utilization can be reduced resulting in higher 
throughput rates. 

The task coordinator periodically sorts the tasks according to their priority, urgency and 
complexity. More complex tasks (i.e. assemblies consisting of many parts) have a smaller 
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chance of having all required parts available at the station at any given stage, and should 
therefore be addressed first. Since sorting is not a very CPU intensive process, the task 
coordinator can be run in the main thread without causing noticeable delays of the 
hardware. 

Using the task coordinator, some form of adaptive control is achieved: Within each cycle 
the control architecture alternates between being centralized and being heterarchical:  

At the beginning of each main cycle, when the task coordinator decides on the order in 
which task holons should be executed, the task holons need to pass their local 
information on to a higher level, so that decisions can be made at that higher level. This 
is typical for hierarchical or centralized control architectures. 

However, after the task coordinator has finished the sorting algorithm, the system 
switches back to heterarchical control. All holons then make decisions themselves based 
on their local view in order to effectively handle disturbances (e.g. poles having fai le d 
the electrical test, missing product information, pallets of which some are unsuitable for 
a given task, etc.). 

Besides determining the execution order of the task holons, the task coordinator also 
counts the total number of orders and conveys this number to the cell control ler upon 
inquiry. When several stacking stations are working in parallel, the cell controller can 
then decide to place further orders with the stacking station which has the fewest 
pending orders. 

5.5.6 Staff holons 

Staff holons assist the basic holons with their tasks. In particular, they provided 
information that was required during the instantiation of new holons. 

5.5.6.1 Product manager 

When the cell controller provides product information, it is the responsibility of the 
product manager to prevent multiple instances of the same product holon from being 
instantiated. 

Some of the messages sent by the cell controller are directed towards particular product 
holons directly and will be treated by those holons themselves. Other product -related 
messages which do not have a particular recipient will be processed by the product 
manager. Upon request from the cell controller or the operator, the product manager 
can also provide a list of all available product information in a structured way.  

5.5.6.2 Pallet manager 

Whenever pallet-related messages are sent over the network, only the pallet ID i s sent 
along as a reference. To reduce communication overhead, the pallets’ fixture 
coordinates are not sent along with the message but are stored on-board the station 
controller. Upon arrival of a pallet, the pallet manager uses the pallet ID to load the 
fixture dimensions for the newly instantiated pallet holon. 

Stellenbosch University  https://scholar.sun.ac.za



 

66 
 

Initially, only the cell controller contains the fixture coordinates for all the pallets in the 
factory. As pallets arrive at the station for which the coordinates are not known yet, the 
pallet manager will obtain those coordinates from the cell controller and store them 
locally. This approach enhances the robustness of the station. In case the cell control ler 
would go offline for a while, the stacking station can continue its operations since i t can 
rely on the local copy of the pallet information. 

Within the stacking station each transverse conveyer on which a pallet can arrive  has a 
unique workspace number which is used by the pallets to interact with the robot. Since 
those workspace numbers are for internal use only, they cannot be provided by the ce l l  
controller but are provided by the pallet manager. 

The pallet manager periodically performs checks to see if a pallet can be sent away. 
Whenever a pallet arrives with poles, task holons will try and use as many of those poles 
as possible for their orders. Some poles cannot be used straight away since they are 
meant to form part of a stack of which other poles are still missing (e.g. due to failing 
the electrical test). The pallet manager will then arrange for those unclaimed poles to be 
transferred to the buffer so that the pallet can move along and give way for the next 
pallet. 

5.5.6.3 Buffer manager 

The buffer manager is a staff holon. During reconfigurations when the system is scaled 
up by adding new buffers, the buffer manager provides unique workspace numbers for 
each of the buffers, to be used in interactions with the robot.  

Furthermore, whenever the total capacity of all the buffers combined reaches a 
utilization level of 75%, 90% or 100%, the cell controller will be notified.  

5.5.7 Communicator holon 

The communicator holon was developed to allow holons on the stacking station to 
communicate with the cell controller and other collaborating stations (for example the 
conveyer or additional stacking stations that might be working in parallel). It contains a 
TCPcomm class which handles asynchronous communication over network sockets. The 
TCPcomm class contains a mailbox, which in turn consists of an inbox and an outbox. 

Other holons on the stacking station that wish to communicate with the cell  control ler 
deposit their messages in the communicator’s outbox. Messages which are received 
over the socket are deposited in the communicator’s inbox. The inbox and outbox are 
thread-safe FIFO buffers. They are being accessed by the communicator’s Run() and 
ProcessMessages() methods which are running on two separate threads. The flow 
diagrams for these methods are shown in Figure 34 in Appendix B. 

The Run() method runs continuously in its own thread and is responsible for 
asynchronously sending and receiving XML messages over the network socket. When a 
holon places its message in the outbox, it will be converted to XML and the 
communicator will immediately attempt to send it. The message will temporarily remain 
in the outbox and will only be removed once receipt thereof has been confirmed. If 
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receipt is not confirmed within 15 seconds after sending, the message will be resent 
repeatedly with increasing time intervals (i.e. after 30, 60, 120 seconds, etc.) until 
eventually receipt has been confirmed. 

Should the connection to the cell controller temporarily be lost, messages wi l l be  sent 
through after the connection has been re-established. In the meantime, the station 
controller could run out of tasks but will not fail. By letting the communicator ensure al l 
messages eventually get through to the intended recipient enhances the robustness of  
the controller and shifts this responsibility away from the basic holons to the 
communicator holon. 

The ProcessMessages() method runs periodically on the main thread and is responsible 
for forwarding the messages from the inbox to the local holons. Since the messages are  
received in XML format, they must be converted to a format appropriate for the holon.  

Converting pallet, product and task holons to XML messages, and vice versa, is handled 
by the communicator only. When for example a pallet is to be sent away and the cell 
controller must be informed of its contents, then the communicator receives a pallet 
holon which it converts to an XML message. Likewise, when the cell controller places an 
order as an XML message, the communicator must convert it to a task holon.  

It was decided to keep the conversion responsibility with the communicator only, and to 
not introduce XML to any of the other holons. If one would later on decide to use an 
alternative to XML, only the communicator’s code would need to change whi le  leaving 
all other holons untouched. 

In C# the System.Xml.Linq library can be used to easily construct and parse XElements. 
The XML message structure that was agreed upon by the members of the research 
group is shown in Table 5 in Appendix D. The type of messages that the station 
controller can send and expect to receive are listed in Table 6 and Table 7 in Appendix D. 

5.6 Conclusion 

This chapter discussed the detail software implementation of the controller. The chosen 
control architecture is ADACOR which incorporates the task, operational, product and 
supervisor holon classes. To this architecture, the communicator holon was added to 
facilitate communication between the cell controller and holons on the station 
controller. To evaluate the station controller in terms of reconfigurability, a series of 
reconfiguration experiments were carried out which are described in the next chapter. 
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6 Evaluation 
To be able to evaluate the performance of the stacking station controller, a smal l  scale  
laboratory setup was built on which a variety of tests have been carried out. Fi rst some 
of the rudimentary procedures that would be needed for many of the reconfigurations 
are described, followed by the actual reconfiguration experiments, such as product 
changeovers, scaling up, readjusting the system, etc. 

The basic hardware based procedures include: calibrating the gripper’s sensors, the 
gripper fingers and the workspaces surrounding the robot. Software based procedures 
include: the creation of holons on-the-go, and the programming of new type of holons. 

6.1 Experimental setup 

The setup that was used for the experiments in the research laboratory is shown in 
Figure 26. Some compromises had to be made due to limited space and resources in the 
automation laboratory which resulted in the following differences between the ideal 
factory layout and the experimental setup: 

 

Figure 26 Stacking and buffering station experimental setup 
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Only one conveyer, with one transverse conveyer was used. A second transverse 
conveyer was imitated by a positioning unit on the main conveyer which allowed precise 
and repeatable positioning of the second source pallet from which poles could also be 
picked up. Instead of a second conveyer carrying the destination pallets with riveting 
fixtures, those fixtures were directly mounted onto a table to play the role of the 
destination pallets. 

Table 2 lists the components that were used for the experiment along with their model  
number and the suppliers, where applicable. The circuit breakers used for this case 
study were supplied by CBI. 

Table 2 Components used for experiment 

Component Supplier Model number 

Conveyer Bosch Rexroth TS 2plus 

Transverse conveyer Bosch Rexroth EQ 2/TE 

Positioning unit Bosch Rexroth PE 2-320/320 

Pallets Bosch Rexroth 320x320 

Fixtures Custom-made n/a 

Grippers Custom-made n/a 

Buffer Custom-made n/a 

6-DOF robot KUKA KR 16-2 

Air control valve Festo CPE10-M1BH-5L-MS 

Parallel gripper Festo DHPS-20-A 

Gripper proximity sensor Festo SMT-8G-PS-24V-E- 2,5Q-OE Prox. 
sensor 

Data acquisition device National Instruments NI USB-6525 

USB-to-serial interface MOXA Uport 1410 

Development software Microsoft .NET Visual Studio 2012 for .NET with C# 
add-on 

 

6.2 Aspects to measure for reconfiguration 

The following aspects were considered/measured: 

 Time required for calibrating hardware. 

 Time for first time configuration. 

 Levels of expertise required. 
 Time and effort required for reverting to a previously taught configuration. 
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 Ramp-up time (tests that are to be run to confirm system works fault-free after 
reconfiguration). 

 Throughput rate, and impact on throughput rate. 

 Which software and hardware components need to change for reconfiguration. 
 Which parts of the system must be tested during ramp-up before one can gain 

certainty that the system runs without complications. 

 Impact that reconfiguration has on ongoing production. 

6.3 Calibrations 

Certain types of reconfigurations would require (re-)calibration of robot workspace 
coordinates (or workspaces for brevity), tools or sensors.  Sensor calibration could be 
done without requiring a restart of the controller, as long as the controller is paused. On 
the other hand, tool and workspace calibrations require that the controller is completely 
offline and must be restarted afterwards. 

For reconfigurations, when a previously defined tool or workspace is to be reused, the 
station controller would also need to be restarted although no calibrations would be 
required. When reverting to previously taught configurations, it would take an unskilled 
operator less than 30 seconds to select the tool or workspace settings from a dropdown 
list on the GUI (Figure 30 in Appendix A). 

All of these calibration procedures can quickly be taught to an operator. No 
programming skills are required but for tool  and workspace calibrations the operator 
should have basic knowledge of the KUKA system. 

First-time calibration of tools, workspaces and the sensor are discussed next.  

6.3.1 Tool calibration 

In the context of the KUKA controller, a tool is anything that can be attached to the 
robot’s end effector, for example grippers or machining tools. The KUKA control ler can 
store tool data for 16 different tools. Each set of tool data contains a description of  the 
tool and a coordinate. The latter is defined as the vector from the centre point of the 
robot’s flange to some reference point on the tool. The reference point on the tool is 
known as the tool centre point (TCP). After a tool has been defined and the robot is told 
to move to a certain coordinate, it will be the TCP that is brought to the specified 
coordinate, and any rotation will happen about this TCP. 

Since grippers are more expensive than gripper fingers, one would opt for exchanging 
only the gripper fingers rather than the gripper when a new type of circuit breaker i s to 
be handled. For this discussion, ‘tool’ therefore refers to the exchangeable gripper 
fingers, which are attached to the gripper at the robot’s end effector.  

As mentioned, calibration data for 16 different tools can be stored on-board the KUKA 
controller. Therefore, 16 different tools can be interchanged at any time without 
requiring calibration, as long as they have been calibrated before and can be attached to 
the robot’s end effector in a repeatable way (e.g. using some form of alignment such as 
dowel pins). 
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When new tools are introduced, they will first need to be calibrated using the 4-point 
XYZ approach described in Appendix E. Calibrating a tool and storing a copy of the tool 
data on-board the station controller takes 11 minutes. This would require a technician 
who is familiar with the KUKA, but the technician is not required to have programming 
skills. Physically exchanging gripper fingers takes 5 minutes. 

6.3.2 Sensor calibration 

After a product changeover, the parts that are to be picked up may have a different 
width, therefore the gripper fingers may have to be exchanged and the proximity sensor 
on the gripper may have to be readjusted. Appendix E gives more details. The sensor i s 
digital, meaning that it can only produce two distinct signals: true or false. The sensor 
should be positioned such that a true signal is produced when the pole is properly 
gripped and a false signal otherwise. 

The sensor calibration procedure is described in Appendix E.1, and takes about 4 
minutes to complete. After one pole was picked up and the correct signal sensed, then 
all other poles of the same range will produce the same signals since they are identical.  
Furthermore, the gripper fingers are equipped with dowel pins, so that reattaching them 
will get them into the same location they have been in before. No ramp-up tests are 
therefore required after the sensor has been recalibrated. 

6.3.3 Workspace calibration 

A workspace is defined by means of a plane with a certain orientation lying in a 3D space 
within reach of the robot. It defines where hardware, which the robot needs to interact 
with, is located and oriented relative to the robot. For the pole stacking robot, 
workspaces thus refer to the location of the buffer and the positions on the transvers e  
conveyers where pallets come to a stop. 

Workspaces are calibrated using the 3-point approach described in Appendix D.3. It 
takes about 15 minutes to calibrate a workspace and transfer the calibration data to the 
station controller. 

6.4 Reconfiguration tests and measurements 

6.4.1 Testing robustness of network communication 

To be able to test the stacking station in its entirety, a basic cell controller was 
developed which could perform tasks such as placing orders and providing the station 
controller with product and pallet information. Appendix A shows a screenshot of the 
cell controller’s user interface. The cell controller was run on a separate computer so 
that network communication could be tested. For this purpose, the same communicator 
holon (discussed in section 5.5.7) that was developed for the station control ler was 
effortlessly reused for the cell controller. Only network settings such as the IP address,  
port number and a recipient’s name had to be specified. 

To put the communicator’s abilities to the test, the stacking station was given several 
tasks to complete along with the product information required to complete those tasks. 
The cell controller was then intentionally disconnected to prevent messages from the 
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station controller from getting through. In this disconnected state, the station controller 
continued to execute all tasks for which the required parts were available and tried to 
inform the cell controller of its progress. After a while the connection was re-established 
and shortly thereafter all the messages which the station controller had tried to send 
came through without any message getting lost. This showed that the holons can rely on 
asynchronous communication over the network. 

6.4.2 Adding a similar buffer 

Another buffer was added to see how the system performed in terms of scalability. Due 
to limited resources, a second buffer was not physically built. Instead, the ex isting 18 -
slot buffer was used to serve as two separate identical buffers, of which each consisted 
of 9 slots as shown in Figure 27. 

      

Figure 27 Buffer added to demonstrate scalability 

The second buffer was internally represented as a pole storage holon which required a 
unique workspace number, which the buffer manager assigned to it. The coordinates of  
the slots relative to the chosen reference point (see Figure 27) had to be obtained from 
the buffer’s CAD file which took about 10 minutes. 

The additional buffer formed an extra workspace that the robot had to interact with and 
therefore had to be calibrated. As was already described in section 6.3.3, this procedure 
takes about 15 minutes for which the controller must go offline. 

As a ramp-up test, a few poles should be placed into and picked up out of various slots 
of the added buffer. This test would ensure that the correct reference point was used 
when the coordinates have been obtained from the CAD file and that the workspace has 
been calibrated accurately. The ramp-up test together with the foregoing calibration 
procedure will cause production to be interrupted for about 40 minutes. 
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6.4.3 Customization test 

Customization refers to a product changeover where the new product is part of the 
same product family that has been catered for previously and therefore requires no 
additional functionality. In the context of the case study, this means that only stacking 
and buffering capabilities were required by the new product. However, different 
parameters had to be used for some of the hardware. 

When a different circuit breaker model has to be manufactured, then the individual 
parts it consists of would be different to that of other models. Likewise, different 
knowledge is required for the assembly process. The fixtures capable of holding the 
different parts would also be different and would therefore be on other pallets.  

Figure 28 shows a pallet with products that were already known (type A) and a pallet 
with a new type of product (type B) that had to be introduced to the station control ler. 
The new poles that have been used were physically the same poles as those used before 
but were represented as a different type of pole by rotating the pallet on which they 
arrived by 90°. This rotation made it appear as if the pallet itself was different too.  
Further, for type B poles, the fixtures had different coordinates relative to the pal let’s 
reference point and type B poles had different pickup coordinates relative to those 
fixtures. 

Since poles of type B have different pickup coordinates (indicated by the turquois e 
markers in Figure 28), new partInfo product holons were needed to store their pickup 
coordinates. New assemblyRecipe product holons were required to hold information for 
assemblies that make use of type B poles. 

Pallets carrying type B poles have their fixtures arranged differently relative to the 
reference point (bottom left corner) of the pallet. New pallet holons for the source and 
destination pallets were therefore required with different sets of fixture coordinates. 

Lastly, new stacking task holons were needed which, when an order for type B 
assemblies has been placed, would ensure that the assemblies were being produced 
according to the plan in the assemblyRecipe holon. 

   

Figure 28 Pallet turned 90° to represent new type of product 
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The new information regarding part info, assembly instructions and the pallets’  f ixture 
coordinates was delivered by the cell controller in XML format, and the stacking station 
controller dynamically instantiated the corresponding partInfo holons, assemblyRecipe 
holons and pallet holons. Whenever a pallet arrived with type B holons, then pole 
holons have been instantiated to represent those poles. As soon as an order had been 
placed for type B assemblies, a stacking task holon was created to drive the production 
for type B assemblies. 

Since type B assemblies required no additional functionality, no changes to the station 
controller software were required to accommodate the new product. For this reason, 
and because all of the abovementioned holons were instantiated dynamically,  the 
station controller did not need to be restarted. The information for type B poles 
nevertheless had to be fed into the system at the cell controller from where it was 
distributed to other stations requiring that information ( i.e. the stacking station). For 
this purpose, a GUI for the cell controller (Appendix A) was developed, allowing the 
operator to specify the assemblyRecipe, and place orders for the new product and send 
this information over Ethernet to the station controller. 

Since type B and type A poles were transported on pallets which arrived on the same 
transverse conveyers, it was not necessary to define and calibrate new workspaces. 
However, the fixtures on those pallets were arranged differently and therefore the 
coordinates for those fixtures first had to be obtained from a CAD file so that the cell 
controller could send the pallet information to stations which needed to interact with 
those pallets (i.e. the stacking station). 

Once the cell controller had all the part info, assembly instructions and pal let info, the 
system could seamlessly switch between type A and type B products without requiring 
further human intervention since the station controller was able to handle 
customization changes dynamically. If type B poles would have had a different pole-
width, then the sensor on the gripper would need to be re-calibrated manual ly,  which 
would take 4 minutes, but would require no special skills. 

6.4.4 Throughput rate tests 

To determine whether the system achieved the desired throughput rate of 1 pole per 
second, and to determine which conveyer configuration yielded the highest throughput 
rates, the throughput rates for three different layouts were measured. For these tests, it 
was assumed that the destination conveyer would never form the bottleneck, but that 
the throughput rate could only be impacted by the source conveyer, which is the con-
veyer from which the robot had to pick up poles. Therefore, only the source conveyer 
was configured for different layouts to determine the effect on the throughput rate. 

The three layouts that were considered for the source conveyer are shown in Table 3: 
using one transverse conveyer; using two transverse conveyers; and using a parallel 
conveyer. For each of those three layouts, two different cases were tested, resulting in a 
total of six different scenarios. For the first case (reported in black), no poles had fai led 
at the electrical test station and the buffer did not need to be used but poles could be 
transferred directly from the source pallet to the destination pallet. For the second case  
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Table 3 Conveyer configurations yielding different throughput rates 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

76 
 

(reported in red), 33% of the poles had to be transferred to the buffer and retrieved 
from the buffer, while 67% were transferred directly to the destination pallet. 

The main conveyer in the laboratory only had one transverse conveyer but a positioning 
unit located on the main conveyer was used to imitate a second transverse conveyer. 
The parallel conveyer configuration could not be built with the available hardware and 
the associated throughput rate could therefore not be measured directly. However, the 
existing hardware configuration was used to measure the duration of various pallet 
movements and these measured values were used to calculate the throughput rates of  
the other configurations and to construct the timing diagrams shown in Table 3. 

The robot can only pick up poles from pallets which are stationary and aligned on a 
positioning unit. When all six poles can be transferred directly from the source to the 
destination pallet, it takes 9.89 seconds to unload a pallet. When only four of the six 
poles can be transferred directly to the destination pallet, while the remaining two poles 
have to be transferred to the buffer, and two other poles have to be retrieved from the 
buffer, then it takes 12.84 seconds for the robot to unload a pallet. In contrast, it takes 
13.4 seconds for a pallet to move out of a transverse conveyer and a next pallet to move 
in and become aligned. Since the overall pallet motion takes longer than the robot 
motion, the robot is idle more than 50% of the time while waiting for the next pal let to 
move in (when only one transverse conveyer is used). It is therefore advisable  to use a 
second transverse conveyer so that there can always be at least one source pal let from 
which poles can be picked up from. 

The results show that when two transverse conveyers are used, the robot has to wait 
the least amount of time, which results in the fastest throughput rates of 1.95 seconds 
per pole. This is about half the speed that CBI requires. By letting another identical 
stacking and buffering station work in parallel, the combined throughput rate wou ld be 
faster than the desired rate of one pole per second. The KUKA KR16 robot that was used 
for these experiments is a big robot and consequently relatively slow. Smaller variants, 
or SCARA robots, would be able to transfer poles much quicker. To exploit the benefits 
of a faster robot, more than two transverse conveyers should be used to ensure that a 
pallet would always be ready for the robot. 

6.4.5 Scalability test – adding another transverse conveyer 

For improved throughput rates, the robot should always be able to do work (i.e. handle  
poles) and never have to be idle while waiting for a pallet. For this reason, there should 
be more than one source pallet within reach from the robot, so that the robot can pick 
up poles from the first pallet while the second pallet simultaneously is moving in or out, 
and vice versa. The laboratory setup only contained one transverse conveyer with a 
positioning unit, but the main conveyer system was also equipped with a positioning 
unit within the robot’s reach, which was used to represent the additional transverse 
conveyer. 

Changes that had to be made to the software to accommodate the additional transverse 
conveyer were minimal, since the controller was programmed to handle this type of 
scalability from the ground up. It was only necessary to change the value of a variable 

Stellenbosch University  https://scholar.sun.ac.za



 

77 
 

that represented the number of stopping positions for source pallets, and to calibrate 
the workspace for the additional transverse conveyer on the KUKA. The newly calibrated 
workspace coordinates were then transferred to the station controller by using the GUI 
shown in Appendix A. The controller had to be restarted. 

6.4.6 Alterations to operational holon 

For the initial implementation of the robot holon, the path that the end effector had to 
follow was specified by a series of coordinates, which the robot had to accurately move 
to. It was observed that the robot did not maintain full speed along the entire path from 
the pickup to the place position, but slowed down significantly whenever it came close 
to any of the specified coordinates describing its path (blue line in Figure 29). For 
optimal throughput rates, the robot should be able to transfer poles as quickly as 
possible. Therefore, the robot holon was re-programmed such that the robot would 
accurately visit only the first and last coordinate of the path, while the other coordinates 
along the path would be visited with some deviations, thereby allowing i t to maintain 
higher speeds (red line in Figure 29). 

 

Figure 29 Effects of path contour on robot speed 

The KUKA controller has built-in capabilities for movements along rounded paths and 
movements to exact coordinates. To change the way the robot had to move, both halves 
of the robot holon had to be changed. The part residing on the C# station controller had 
to be able to send two different commands: one for sending exact coordinates to specify 
the starting and end points, and another command for sending approximate coordi-
nates. The part of the robot holon which resides on the KUKA controller, had to be able  
to receive the additional commands via RS232 and invoke the corresponding method on 
the KUKA controller. None of the other holons required any changes. 

This experiment showed that the rest of the station controller is completely unaffected 
by the change in the operational holon, and that holons can therefore be easily al tered 
independently from one another, which enhances modularity. For example, the KUKA 
robot could have been replaced with a SCARA robot without effecting other parts of the 
system. 

6.4.7 Disturbance handling tests 

The stacking station controller was programmed to inherently handle disturbances 
arising from interrupted supplies of poles due to failures at the electrical test station. 
Whenever poles arrive on pallets which cannot (yet) be used to build a stack, they are 
transferred to the buffer. The following scenarios could all result in poles being 
transferred to the buffer: 

Reduced speeds when coordinates 

have to be visited precisely 
 

More rounded paths 
allow for higher speeds 
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 When the pole is useful for a placed order, but the other poles which are 
needed to form a complete stack have not arrived at the station yet. The “early” 
pole must wait for matching poles but the source pallet must be emptied to give 
way for the next pallet. 

 When none of the placed orders specifies the usage for those poles. 
 When all the poles which together form a complete stack have already arrived 

at the station but the recipe which specifies how they must be stacked is not yet 
available. The request for that recipe would have been sent to the cell controller 
but the response to that request might be delayed because of a temporary 
network fault or the cell controller being over utilized. 

 When poles have arrived on the source pallet but no destination pallet is at the 
station, or the fixtures on the destination pallet do not have the height required 
for the stack. 

Whenever a pole is transferred to the buffer so that the buffer becomes full, an 
appropriate message is sent to the cell controller. 

Since the functioning of the station relied on Ethernet communication, the robustness of 
the communication protocol had to be tested. The cell controller and stacking station 
were both run, and the cell controller gave some orders to the stacking station. The ce l l  
controller then was terminated. None of the messages that the stacking station had to 
send were lost but were kept in the outbox until the cell controller came back onl ine.  It 
could therefore be concluded that the station controller could handle disruptions on the 
network without requiring human intervention or a restart. 

6.4.8 Ramp-up tests 

To test whether workspaces were calibrated accurately or not, poles have to be picked 
up out of a pallet fixture, and brought to a known position on the buffer to see if the 
poles fit without interference. This test should be done for a couple of positions (say the 
three or four corner positions, which are farthest apart). Once all four of those positions 
have been confirmed to be placeable without interference, then it can be deduced that 
the pick-up positions in the middle of the pallet would also be accurate. 

To ensure the robot can reach all pick-up and place positions accurately without 
collisions occurring, the system should be run in Ramp-up-test mode. In this mode, the 
critical coordinates of the pole-storage devices (such as buffers and pallets) are  tested 
for whether or not the robot can successfully remove a pole and put it back into that 
position. 

6.5 Results 

The series of experiments have tested various aspects of the station controller. It was 
shown that when hardware changes were required (i.e. for convertibility and scalabi l ity 
tests) the controller must go offline and the technician must have KUKA and C# skills. 
After such changes, ramp-up tests are necessary to ensure proper working before 
resuming full-scale production. The system will be offline for at least an hour to perform 
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the controller changes and hardware calibrations, and ramp-up tests can take another 
10 minutes. 

Customization tests have shown that the system need not be restarted when a new 
product is being introduced which is part of the same product family that has been 
catered for previously and requires the same hardware functionality. The controller 
could handle such customizations dynamically without human interaction or a restart. 

Convertibility experiments, when reverting to a previously taught configuration, can 
happen by a few mouse clicks, and need not take long if the required hardware is still in 
place and does not need to be re-calibrated. Nevertheless, the controller needs to be 
restarted even if the configuration has been used previously. 

6.6 Recommendation for shorter reconfiguration times 

For the hardware setup that was built for the experiments, the gripper on the robot was 
equipped with only one digital sensor which could sense with certainty only the 
presence of products of a certain width. If another product with a different width has to 
be catered for, then the sensor needs to be readjusted, recalibrated, and thereafter 
undergo a couple of ramp-up tests to confirm its proper functioning. To avoid this 
unnecessary recalibration of the proximity sensor after each product changeover, two 
approaches could be taken. One approach would be to install an array of proximity 
sensors on the gripper which could sense the width of a larger number of products. 
Another approach would be to use a single analogue sensor capable of reporting the 
exact distances by which the jaws are apart. Using one of these approaches can obviate  
the need for manual sensor calibration and allow the system to seamlessly change over 
to different products because the control software could use the positional data to 
determine whether or not the poles have been picked up correctly . Furthermore, the 
chance of human error can be reduced and consistent gripper behaviour can be 
ensured. 

6.7 C# evaluation 

Using C#, being a high-level OOP language, made it an easy and intuitive task to develop 
the control software, and make alterations to it at a later stage. Automatic garbage 
collection took a major load off the programmer and ensured that memory leakage 
would not occur as easily. None of the hardware that had to be controlled was causing 
interfacing difficulties. DLL files supplied by automation vendors could be wrapped 
inside a class and then reused easily. .NET libraries with built-in support for the more 
rudimentary functionalities such as Ethernet communication, thread-safe linked lists, 
XML handling and user forms shortens development time and allows the programmer to 
focus more on the application-specific tasks. 

Some of the benefits of C# can be attributed to the fact that C# is an OOP language, and 
therefore also apply to any other OOP languages such as Java, C++, etc.  As discussed in 
earlier sections, OOP characteristics allowed for the intuitive implementation of holons. 
Also, during reconfigurations, it was intuitive where changes to the software had to be 
made, and software had to be changed only locally. Diagnostic functionalities buil t into 
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the basic generic holon have helped drastically during the development phase al ready, 
and also to point out hardware errors in normal operation mode. 

Encapsulation allowed hardware-specific drivers to be wrapped inside operational 
holons, thereby hiding the implementation detail and providing a standard interface to 
the surrounding holons. This allowed for changes to be made to operational holons, 
without affecting any of the other holons. 

Having parts of the system run synchronously, while other parts communicate 
asynchronously, enhanced the system’s robustness. The station controller could 
continue operating without requiring human intervention even when the connection to 
the cell controller has been lost, or when the cell controller would be restarted. 

Dynamic memory allocation allowed for the system to continue running while 
performing reconfigurations for which no hardware calibration or changes to the control 
software was required. For customization, where for new products only existing 
functionality is required, not having to reprogram and restart the controller means that 
ongoing production is not impacted at all, and that no human intervention was required 
since the station controller was able to handle all the changes dynamically.  
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7 Conclusions and Recommendations 
The Agent Based Control (ABC) approach is the de facto standard for controllers for 
Reconfigurable Manufacturing Systems. However, due to industry's reluctance to adopt 
ABC, an object-oriented programming (OOP) approach using C# was considered in this 
thesis as an alternative. OOP is more widely used and has many capabilities that are 
valuable when implementing an RMS.  

The research has shown that ABC's advantages can be decisive in complex, highly 
dynamic systems requiring autonomous reconfiguration. However, in simpler systems 
and systems where timing and sequencing is important, OOP will have significant 
advantages. For CBI, the industry partner of this research, the advantages of OOP 
exceed that of ABC, primarily since autonomous reconfiguration and emergent 
behaviour are not high priorities in their situation, while OOP provides better 
integrability with hardware. The learning curve for C# is not as steep as for ABC. 

OOP concepts such as inheritance and polymorphism made it possible to efficiently 
reuse code and to compartmentalize code, thereby enhancing modularity. When a 
physical device is to be exchanged with another of similar capabilities, and the same 
interfaces is enforced on the new holon, then the new holon can seamlessly be 
integrated into the rest of the code, and no other holons need to be reprogrammed at 
all. All of the hardware that was used for the case study could easily be integrated since 
C# has built-in support for hardware interfacing and serial communication, unlike Java. 
Java could have been used for the core of the control software, but additional interfaces 
would then need to be written in another language (such as C#) whereas when C# was 
used from the beginning, then no other languages for interfacing would be required.  

Experiments have shown that reconfigurations such as customization can be done with 
no human effort at all as long as the physical hardware can cater for all the needs of the 
added products. Using C#, which is an OOP language, the system can easily be 
expanded, since inheritance provides for code re-use. Further, interfaces allow for 
integrability. 

Object-oriented concepts make OOP languages well suited for implementing holonic 
architectures. Dynamic memory allocation makes it possible to cater for any amount of  
orders, resources or products without requiring changes to the code to be made. Since 
C# is a strongly typed programming language and very strict, the chances of 
programming errors during development is very scarce. Multi -threading capabilities 
allow hardware-critical processes to run in (near) real-time, while at the same time allow 
asynchronous communication over the network via TCP/IP. 

It was found that when trying to debug code while running multiple threads, it becomes 
difficult to see which thread is running in which part of the code . 

The pre-defined objects designed for graphical-user interfaces allow the developer to 
effortlessly produce an HMI in a short amount of time. The reconfiguration tests have 
shown that all six core characteristics of RMSs can be addressed using an OOP-based 
controller. 
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The system could successfully handle orders for single, double, triple- or four-poles and 
could use the buffer effectively when certain poles have failed the electrical test to pair 
matching poles and assemble them to complete the desired order. Furthermore, the 
controller was able to provide some diagnostic tools and had the ability to trace poles, 
and this information can be used for further diagnostics. 

Dynamic creation of holons made it possible to add as many holons as needed at 
runtime. Having no fixed memory limitations makes the system more flexible for 
reconfigurations. 

For future research, diagnostic holons could be developed, which run the entire time 
and use the data of traced poles to determine where in the system possible faults could 
lie. On another thread, an optimizer can be run to prevent collisions between robots in 
case more than one robot is to be used within the same station. To reduce ramp-up 
time, an automatic calibration device could be developed, such as an eye -in-hand 
camera, to let the robot autonomously calibrate the workspace after equipment was 
moved around on the factory floor. This would make it unnecessary for the operator to 
require KUKA skills. 
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Appendix A – Human-Machine Interface screenshots 
This section contains screenshots of the graphical user interfaces that were developed for the stacking station and the cell controller. 

 

Figure 30 Stacking station human-machine interface 
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Figure 31 Cell controller human-machine interface 
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Appendix B – Flow diagrams 
This appendix contains various flow diagrams that have been referred to in chapter 5. 

 

Figure 32 Kuka controller flow diagram 
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Figure 33 Flow diagram for multi-threading on stacking station and cell controller
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Figure 34 Communicator flow diagrams 
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Appendix C – Code for Gripper Holon 
To give the reader an idea of how the code was designed, the code for the Festo Gripper 
Holon is provided below. Since it has been derived from the generic gripper class which 
in turn implements the IGripper interface, the code for the interface and parent class i s 
also shown. 

Table 4 Code for Gripper Holon 

interface IGripper 
{ 
   void Open(); 
   void Close(); 
   bool SensePart(); 
} 
 
public abstract class GripperGen : OperationalHolon, IGripper   //generic 
gripper 
{ 
   public GripperGen(string name, int type) : base(name, type) { } 
   public abstract void Open(); 
   public abstract void Close(); 
   public abstract bool SensePart(); 
 
   protected Boolean CurrentlyOpen = false; //Boolean used to store the 
state that the gripper is SUPPOSED to be in. 
   protected System.Collections.Generic.List<toolConfiguration> tools = new 
List<toolConfiguration>();   //Holds coordinate of tool that was used to 
calibrate bases 
   protected int selectedToolConfig;   //Out of the tools list, which entry 
is being used 
   protected System.Collections.Generic.List<gripperConfiguration> grippers 
= new List<gripperConfiguration>(); //Holds coordinate of gripper that is 
attached to end effector 
   protected int selectedGripper;   //Out of the grippers list, which 
gripper is currently mounted to the end effector 
 
   public toolConfiguration getSelectedTool() 
   { 
      return tools[selectedToolConfig]; 
   } 
   public gripperConfiguration getSelectedGripper() 
   { 
      return grippers[selectedGripper]; 
   } 
} 

 
public class FestoGripper : GripperGen 
{ 
   private DAQin sensor;   //senses state of gripper 
   private DAQout actuator;//digital out for opening/closing gripper valve 
   private Boolean withoutAir; //Gripper holon continues with normal 
operation even when valve is not supplied with air 
 
   public FestoGripper()      //runs before UserForm is shown 
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      : base("Festo DHPS-20-A gripper", HMI.HolonType_RH) 
   { 
      if (FileHandling.FileExists(this))     //retrieve last used 
configurations from HDD 
      { 
         string[] Lines = FileHandling.ReadAllLines(this); 
         int lineCounter = 0; 
         HMI.gripperOutputChannel_SelectedIndex = 
Convert.ToInt32(Lines[lineCounter++]); 
         HMI.gripperInputChannel_SelectedIndex = 
Convert.ToInt32(Lines[lineCounter++]); 
 
         int numGrippers = Convert.ToInt32(Lines[lineCounter++]); 
         selectedGripper = Convert.ToInt32(Lines[lineCounter++]); 
         for (int t = 0; t < numGrippers; t++) 
         { 
            grippers.Add(new gripperConfiguration(Lines[lineCounter], 
Coord.toCoord(Lines[lineCounter + 1]))); 
            lineCounter += 2; //2 lines of information per gripper in the 
file 
         } 
 
         int numTools = Convert.ToInt32(Lines[lineCounter++]); 
         selectedToolConfig = Convert.ToInt32(Lines[lineCounter++]); 
         for (int t = 0; t < numTools; t++) 
         { 
            tools.Add(new toolConfiguration(Lines[lineCounter], 
Convert.ToInt32(Lines[lineCounter + 1]), Coord.toCoord(Lines[lineCounter + 
2]))); 
            lineCounter += 3; //3 lines of information per tool in the file 
         } 
         HMI.KUKA_tools = tools; //links tools on HMI form to tools within 
gripper holon 
      } 
   } 
 
   public void Initialize() //runs as soon as user clicked Start. Writes 
user selected values to configuration file and initializes DAQ I/O's 
   { 
      string lines = HMI.gripperOutputChannel_SelectedIndex + "\t\t;DAQ: 
Selected Output channel\r\n" + 
HMI.gripperInputChannel_SelectedIndex+"\t\t;DAQ: Selected Input channel"; 
      lines += "\r\n\r\n" + grippers.Count() + "\t\t; number of grippers" + 
"\r\n" + selectedGripper + "\t\t; currently attached to end effector"; 
      foreach (gripperConfiguration gripperConfig in grippers) 
      { 
         lines += "\r\n\r\n" + gripperConfig.description + "\r\n" + 
gripperConfig.offset.ToString(); 
      } 
      lines += "\r\n\r\n\r\n;======= TOOLS ==================\r\n" + 
tools.Count() + "\t\t; number of tools" + "\r\n" + selectedToolConfig + 
"\t\t; currently selected"; 
      foreach (toolConfiguration toolConfig in tools) 
      { 
         lines += "\r\n\r\n" + toolConfig.description + "\r\n" + 
toolConfig.ToolNumber + "\r\n" + toolConfig.TCP.ToString(); 
      }          
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      FileHandling.Write(lines, this); 
      //values for HMI.gripperOutputChannel & HMI.gripperInputChannel are 
obtained from GUI before Start button is pressed 
      actuator = new DAQout(HMI.gripperOutputChannel, "gripperJawControl"); 
      sensor = new DAQin(HMI.gripperInputChannel, 
"gripperPositionSensing"); 
       
      if (HMI.simAir)  return; 
      if (SensePart()) //If the gripper is holding a pole while the station 
is powered on, 
      { 
         CurrentlyOpen = true; 
         Close();      //let the grippers hold on tight, to prevent pole 
from slipping out 
         HMI.log("ERROR", "An unknown pole seems to be gripped by the 
gripper. Please remove", this); 
         if (!HMI.simMode) 
            while (SensePart()) ; //wait for operator to remove pole from 
gripper 
      } 
      Open();       //Open up the jaws to prevent collisions when picking 
up the first pole 
   } 
 
   override public void Open() 
   { 
      if (CurrentlyOpen)    //If gripper is already open, but again sent 
command to open 
         HMI.log("WARNING", "Consecutive calls for opening the gripper have 
been made", this); 
      HMI.gripperStatus = "open"; 
      CurrentlyOpen = true; 
      if (!HMI.simAir && !HMI.simMode)   //Don't activate hardware when in 
Simulation mode or no air supply 
         actuator.write(true); 
      HMI.HWlog("Gripper opened"); 
   } 
 
   override public void Close() 
   { 
      if (!CurrentlyOpen)    //If gripper is already closed, but again sent 
command to close 
         HMI.log("WARNING", "Consecutive calls for closing the gripper have 
been made", this); 
            HMI.gripperStatus = "closed"; 
            CurrentlyOpen = false; 
      if (!HMI.simAir && !HMI.simMode)   //Don't activate hardware when in 
Simulation mode or no air supply 
         actuator.write(false); 
      HMI.HWlog("Gripper closed"); 
   } 
 
   override public Boolean SensePart() 
   { 
      Boolean GripperHalfway = false; 
      if (HMI.simMode || HMI.simAir)//When in Simulation mode or when 
testing without air supply: 
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         return !CurrentlyOpen;   //assume gripper always manages to pick 
up parts as intended 
      GripperHalfway = sensor.Read(); 
      if (!CurrentlyOpen && GripperHalfway) 
         HMI.gripperStatus = "Item MIS-GRIPPED!"; 
      HMI.HWlog("Gripper closed halfway: " + 
Convert.ToString(GripperHalfway)); 
      return GripperHalfway; 
   } 
} 
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Appendix D – Inter-station messages 
Appendix C contains information relating to the messages that were interchanged 
between the stacking station and the cell controller. 

 

Table 5 XML message structure for inter-station communication 

<Message> 

  <Recipient> 

Intended recipient of message 
  </Recipient> 

  <Sender> 

Sender of the message 
  </Sender> 

  <Port> 

Number of the port through which the message has been sent 
  </Port> 

  <Type> 

Type of message 
  </Type> 

  <CID> 

Unique ID of the conversation of which the message forms part 
  </CID> 

  <Msg> 

Message content 
  </Msg> 

</Message> 
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Table 6 Type of messages that the station controller can receive 

Message type Purpose 

PlaceOrder When the cell controller places a (batch) order. 

PalletArrive Indicates that a pallet has arrived, and conveys information as to 
what items are loaded into which position of the pallet. 

PalletAway To confirm that pallet has been transported away. 

PalletInfo Contains the fixture coordinates of a pallet. To reduce 
communication overhead, usually only the pallet ID is used as 
reference for the above three commands. When the fixture 
coordinates of a particular pallet are not known yet, but are needed, 
the stacker will requested them first. 

ProductInfo Information regarding assemblies or their parts. 

ReqReportStatus Request to report on status, for diagnostic purposes and for 
scalability purposes: If several stacking stations were working in 
parallel the cell controller would place orders with stations that have 
the smallest workload. Or when a lot of failures occurred at the e-
test, then those pallets with the most irregularities can be sent to 
the station which has the most available space in the buffers. 

 

Table 7 Type of messages sent out by the station controller 

Message type Purpose 

OrderComplete Inform the cell controller of the ID’s of poles being matched. 

SendPalletAway When all fixtures on the pallet have been filled, the pallet can be sent 
away. The cell controller is informed of the exact pallet contents, i .e . 
which products are placed into which positions of the pallet.  

OrderOverdue A warning being sent when an order could not be completed within 
its desired completion time. 

ReqPole When a pole for an order is needed but not present at that station, i t 
will be requested by the task holon in need of that pole. 

ReqProductInfo When an order has been placed, but the corresponding product info 
is not yet available on the stacking station, it will be requested. 

BufferCap Warns the cell controller that the buffer is getting full and that its 
capacity has reached a percentage of 75%, 90% or 100%. 

TaskCount Notifies the cell controller of the number of pending orders on the 
station controller. 
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Appendix E – Calibration procedures 
Some of the reconfigurations require calibration of hardware. Those procedures are 
described in this section. 

E.1 Calibrating the proximity sensor 

When a new part with a different width is to be picked up, then the sensors should be 
re-adjusted to output the correct signals. True should be signalled whenever the part i s 
properly gripped and false otherwise, such as when the grippers are completely open or 
completely closed (i.e. when the part has not been properly gripped). 

The sensor is equipped with an LED which turns on when the proximity sensor gives out 
a true signal. 

Steps: 

1. Let the grippers grip the product in the proper way. 
2. Loosen the screw of the sensor. 
3. Adjust the position of the sensor until the LED comes on while the product is still 

being held. 
4. Tighten the screw to fix the sensor position. 
5. Open the jaws and remove the product. 
6. If the jaws are almost completely open or almost completely closed while the 

product is held properly, it could happen that the region being sensed as 
“gripped” overlaps with the region being sensed as “fully open” or “fully closed” 
due to some tolerance of the sensors. To ensure that the sensor does not give 
out a high voltage when the jaws are completely open or completely closed, 
move the sensor a small distance away from the incorrectly sensed position by 
repeating steps 1-5 above until three distinct positions can be measured. 

   

Figure 35 Adjustable proximity sensor 

 

Sensor which can be moved 
to anywhere in the slot to 
sense a specific position 
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E.2 Calibrating tools, such as the gripper 

On-board the KUKA controller, dimension-data for 16 different tools can be stored 
inside an array called TOOL_DATA[]. 

When calibrating the gripper fingers (the “tool”), make sure the jaws are in a fully 
opened position. Choose a reference point at the edge of the fingertip. When a certain 
tool is selected, the reference point will become the tool centre point (TCP) and any 
subsequent rotations will be executed about that point. 

1. Place an object with a sharp point at a fixed position within close reach of the 
robot. 

2. On the KUKA controller, terminate any running programs and navigate to 
Setup > Measure > Tool > XYZ 4-Point. 

3. Select the index of the TOOL_DATA array inside which the tool coordinates are  
to be stored and specify a name for the tool. 

4. Use the ±X, ±Y, ±Z, ±A, ±B, and ±C buttons on the pendant to move the end-
effector and let the reference point on the tool only just touch the tip of the 
sharp object. 

5. On the pendant, select “Measure” and “Continue”. 
6. Repeat steps 4 and 5, approaching the tip from four different directions, which 

should all be different* to one another. 
7. On the pendant, select “Accept” to store the data. 
8. The procedure may be cancelled at any stage by selecting “Cancel” on the 

pendant. 
9. On the station controller, select “Add new tool” and follow the instructions on 

the screen. This is to ensure that the settings file for the gripper holon ref lects 
the correct tool index chosen in step 3. Recording such changes allows to revert 
back to a previously calibrated tool during any future reconfigurations.  

* The bigger the difference between the lines of approach, the more accurately the 
controller will be able to calculate the relative position of the reference point.  

The tool calibration procedure described above takes about 10 minutes and adding the 
tool to the range of tools on the controller (Figure 36) takes another 30 seconds. 

 

Figure 36 HMI for adding a new tool  
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E.3 Calibrating workspaces such as the buffer, and pallets 

The XYZ 3-point method is used to define a plane unambiguously in the 3D space: 

On-board the KUKA controller, dimension-data for 32 different workspaces (planes) can 
be stored inside an array called BASE_DATA[]. 

Some reference point on the workspace should first be chosen which wi ll  serve as the 
origin of the plane, and with respect to which the CAD dimensions can easily be 
expressed. 

Also, a previously calibrated tool must be attached to the end effector 

1. On the KUKA controller, terminate any running programs and navigate to 
Setup > Measure > Base > 3-point 

2. Select the index of the BASE_DATA array inside which the workspace 
coordinates are to be stored and specify a name for the workspace.  

3. From a list, select a previously calibrated tool which is to be used for the 
workspace calibration procedure. This tool must also be attached to the end 
effector. 

4. Use the ±X, ±Y, ±Z, ±A, ±B, and ±C buttons on the pendant to move the 
reference point on the tool (the TCP) to the reference point of the workspace 
(the origin of the plane). 

5. On the pendant, select “Measure” and “Continue”. 
6. Move the TCP to any point on the positive X-axis of the plane and select 

“Measure” and Continue”. 
7. Move the TCP to any point on the plane which has a positive Y-value, and Select 

“Measure” and “Continue”. 
8. On the pendant, select “Accept” to store the data. 
9. On the station controller, select “Add new workspace” and follow the 

instructions on the screen. This is to ensure that the settings file for the 
corresponding operational holon reflects the correct workspace index chosen in 
step 2. Recording such changes allows to revert back to a previously calibrated 
workspace during any future reconfigurations. 

The workspace calibration procedure takes about 12 minutes to complete.  

 

Figure 37 HMI for adding a new workspace 
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Adding an entirely new workspace on to the station controller (Figure 37), takes about a 
minute, and defining a new configuration for an already existing workspace ( Figure 38)  
takes 2 minutes. 

 

Figure 38 HMI for adding new workspace configuration 
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