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Abstract

Reconfigurable manufacturing systems (RMSs) are aimed at dynamicsituations, such as
varying products, variations in production volume requirements and changesin available
resources. RMSs distinguish themselves from othertypes of manufacturing systems in
that they can quickly adaptto a new product beingintroduced without the needforlong
reconfiguration times, and can therefore cost effectively produce smaller batch sizes.

RMSs in research environments in most cases used Agent Based Control (ABC), but the
main automation vendors in the industry do not support ABC. This inhibits the
acceptance of RMSs by the industry. For this research, C# was investigated as an
alternative to ABC, since C#can provide for many of the functionalities of agents, yetisa
more widely known language than ABC. Furthermore, C# is an object-oriented
programming (OOP) language and thus possesses characteristics aligned with the core
characteristics of reconfigurable manufacturing systems.

The focus of this thesisis to determine the suitability of C# for the development of the
control software for RMSs. This thesis describes the design, implementation, testingand
evaluation of a reconfigurable stacking and buffering station. The controller was
implemented in C#and made use of the ADACOR architecture.

The physical test-setup was built to evaluate the reconfigurability of the controllerin a
series of reconfiguration experiments.

The thesis showed that the controller could handle all the hardware interfaces without
problems, since C# generally simplifies the task of hardware interfacing. OOP
characteristics helped making developing and maintaining the code anintuitive task. The
stacking station handled all communication with the cell controller correctly, which
proved thatit could easily be integrated into a distributed control architecture.
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Uittreksel

"Reconfigurable manufacturing systems" (RMSs) is gemik op dinamiesesituasies, soos
veranderende produkte, veranderings in produksievolumes en veranderinge in
beskikbare hulpbronne. RMSs onderskei hulself van ander tipes vervaardigingstelsels
deurdat hulle vinnig kan aanpas by nuwe produkte wat bekendgestelword sonder dat
dit nodig is om die stelsel eers lank te herkonfigureer, en kan sodoende kleiner
lotgroottes koste-effektief produseer.

RMSs maak in navorsingmilieus meestal gebruik van "Agent Based Control" (ABC), maar
die hoof outomatisasie-verkopersin die industrie ondersteun nie ABC nie. Dit belemmer
die aanvaardingvan RMSs in die industrie. Vir hierdie navorsingis C#as 'n alternatiefvir
ABC ondersoek omdat C#baie van die funksionaliteite kan voorsien wat aangetref word
in ABC, maar terselfdertyd 'n meer bekende taal is as ABC. Verder is C# 'n objek-
georiénteerde programmerings-(OOP) taal en beskik dus oor karakteristieke wat in lyn
ismet die kernkarakteristieke van RMSs.

Die fokus van hierdie tesis is die geskiktheid van C# vir die ontwikkeling van
beheersagteware vir'n RMS. Hierdie tesis beskryf dieontwerp, implementering, toetsing
enevalueringvan 'n herkonfigureerbare stapel- en bufferstasie. Die beheerderwas in C#
geimplementeeren hetvan die ADACOR-argitektuur gebruikgemaak.

Die fisiese toets-opstelling was gebou om die herkonfigureerbaarheid van die beheerder
te kan evalueeraan handvan 'n reeks herkonfigureringseksperimente.

Die tesis het gewys datdie beheerdersonder problemealle hardeware-intervliakke kon
hanteer, omdat C# dit oor die algemeen vergemaklik om met hardeware te
kommunikeer. OOP karakteristieke was nuttig om die ontwikkelingeninstandhouding
van die program intuitief te maak. Die stapelstasie het alle kommunikasie met die
selbeheerder korrek hanteer, wat bewys het dat dit probleemloos in 'n verspreide
beheerargitektuur opgeneem kon word.
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1 Introduction

1.1 Background

Manufacturing systems today face challenges such as short product life cycles, rapidly
changing manufacturing technologies, unpredictable demand due to fluctuationsin the
market and increasing demand from the consumer to be able to manufacture
customized products (Van Leeuwen & Norrie, 1997) in high varieties, yetinexpensively
and without compromising quality (Van Brussel, etal., 1999). The time that a particular
productis on the marketis oftentimes farshorterthan the time it takesto designanew
production line, set it up and get production started. For reasons like these, it is
preferable to have manufacturing systems which are easily reused for various new
products. Manufacturers who are able to start producing faster can roll out their
products sooner and therefore have a significant economic advantage over their
competitors. Reconfigurable Manufacturing Systems (RMSs) are designed to shorten
these ramp-up timesand address the aforementioned challenges.

An RMS is defined as “being designed for rapid adjustment of production capacity and
functionality, in response to new circumstances, by rearrangement or change of its
components.” (Mehrabi, etal., 2000). Making alterationstoa (conventional) dedicated
manufacturing line which was designed without future reconfigurations in mind, is
costly and can take a considerable amount of time. RMSs on the other hand are
designed from the beginning to simplify the process of making changes to both the
hardware and the control software of the manufacturing system, thereby drastically
shortening ramp-up time while also saving costs and keeping the impactonthe ongoing
productiontoa minimum.

Conventional manufacturing systems, like dedicated manufacturing systems (DMSs) still
have their place in countries with large, established economies, where production
volumes are high and demand is more stable. Reconfigurable Manufacturing Systems
offer a more workable solution for fast developing countries with smaller, emerging
economies and rapidly changing markets. South Africa falls in this category, where
production volumes are generally not as high but where product variety is wide, such
that frequent changeovers are required. In South Africa many production processes are
still performed by hand, but changing labour laws and quality requirements might
necessitate the implementation of new automation systems. It is thus advisable to
design those new manufacturing systems to be reconfigurable, even though it is not
necessarily advisable to change already existing manufacturing systems to be
reconfigurable.

This research project is one of several projects carried out by the Mechatronics,
Automation and Design Research Group (MADRG) at the Mechanical and Mechatronic
Engineering Department at Stellenbosch University. The MADRGis conductingresearch
into various aspects of reconfigurable manufacturing systems: transportation systems
for RMSs; singulation of parts; machine vision for partidentification, orientation, quality
inspection and autonomous calibration; machine learning for route planning; and
various assembly processes and machining processes. Where other researchers focus
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mainly on a factory-level, for the MADRG the focus lies mainly on a cell- and station-
level. Research is conducted in collaboration with a research group at the Central
University of Technology. South African industry partners include CBI Electric: low
voltage, hereafterreferred to as “CBI” and AAT Composites (manufacturers of aerospace
and automotive parts).

Some of the other research projects on a reconfigurable manufacturing cell done by
MADRG on the CBI case study are shown in Figure 1. They include the controller fora
conveyersystem with a pallet magazine, the design of singulation unitsusing machine
vision, a revolving helical drum (not shown), and a vibratory bowel; an eye-in-hand
camera attached to the end-effector of a robot to eliminate the need for manual
calibration, a modular welding robot, and a quality assurance cell. Controllers used
include PC's, Siemens PLC's and a Beckhoff embedded PC. Software used for the
research projects includes Java, C#, Function Blocks, Agent Based Control, LabView,
Erlang and a combination of these.

Rivet singulation B Electrical B 6-DOF Robot
& placement = testing

Modular \ 3l y 1%
Cartesian robot || Buffer ' ) - Conveyer A Palletmagazine

Figure 1 Mechatronics Automation and Design Research Group (MADRG) laboratory

For a case study, it was considered automating one of the production processesfor CBI.
CBl isa large South African company manufacturing awide variety of circuit breakers (a
few hundred variants) forthe local and international market. Batch sizesthatthey deal
with vary from as little as 20 to about 60000 per day. Orders are sometimes
unpredictable and they therefore frequently need to changeover between different
types of products. At first they wish to automate some of the production processes of
those products which are producedin highvolumes. Onlyifandwhentheneed arises,
should the existing system be reconfigured so that those products withlower volumes
can also be cateredforat a later stage but with minimal impact onthe already ongoing
production and with minimal additional capital investment. CBI would therefore be a
potential user of a reconfigurable manufacturing system which is why they agreed to
provide material for a case study where some of their production processes are to be
automated.
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1.2 Objectives

The aim of the research presented in this thesis is to evaluate the suitability of C# for a
controllerin a reconfigurable manufacturing system. This entails:

e Implementastation controllerforan RMS cell using C#.

e Evaluate the OOP approach ina case study: Design a reconfigurable stacking and
buffering station of which the throughput rates are at least as high as the
current manual system.

1.3 Motivation

RMSs in research environments in most cases used Agent Based Control (ABC) (Vrba, et
al., 2011; Candido & Barata, 2007; Hall, et al., 2005), but the main automation vendors
inthe industry donotsupport ABC. Thisinhibits the acceptance of RMSs by the industry.
The focus of this research is toinvestigate whether Object-Oriented Programming (OOP)
would be suited forimplementing RMSs, since OOP is used more widely and thereforeis
likely to be more acceptable to industry than ABC. C# is being used for this research,
sinceitis a widely used OOP language, which would be acceptable by industry.

The controller implemented for this research was on a lower level (i.e. station-level)
than what has usually been done thus far(i.e. cell control level) therefore achieving an
optimal throughput rate was more important than autonomous adaptability.

1.4 Thesis overview

To place this thesis into context, relevant findings from the literature are discussed in
the next chapter. The case study and the design of the experimental setup are covered
in chapter 3. Chapter 4 contains a comparison between viable control software and
evaluates OOP as an alternative to Agent Based Control. Detailonthe implementation
of the control software is discussed in chapter 5. Experiments were performed to
evaluate the controller's reconfigurability. These experiments are described in chapter6,
followed by a conclusioninthe final chapter.
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2 Literature Review

Research relating to reconfigurable manufacturing systems, fundamentals of established
control architectures, and previously used control software is discussed in this chapter.
Key concepts of object oriented programming (OOP) are compared to properties of
agent based control. These findings aided the design and implementation of a
reconfigurablestacking station andits controller, as discussed in later chapters.

2.1 Reconfigurable manufacturing systems

To put RMSs in contrast with conventional manufacturing systems, Dedicated
Manufacturing Systems (DMSs) and Flexible Manufacturing Systems (FMSs) are briefly
discussed here.

DMSs are designed to manufacture arelatively small variety of fairly similar products at
high volumes. The manufacturing line is set up to handle only those few selected
products, and the processes are optimized to cost-effectively achieve high throughput
rates which should match the demand. The equipmentinstalled, the software written
and the factory layout chosen only keep the selected products and target production
volumesin mind, but make no specific provision forfuture reconfigurations. When, at
some laterstage, a new and different product has to be manufactured that has not been
cateredfor intheinitial design, thenthe investments requiredintermsoftime, skilled
labour costs and new equipment to make the necessary alterations are often not
worthwhile. Forthisreason, entirely new production lines are builtratherthanre-using
the existing lines. Alternatively, when the decision is made to re-use the existing
production line and make the necessary changes to it, then those changes typically
require alot of capital to replace equipment and extensive changes needto be made to
the software to accommodate the new product. Finding and removing all the possible
hardware and software errors after attempting such an unforeseen reconfiguration,
until production canresume at full scale, cantake a tremendous amount of time, during
which the production of the initial products would also be hindered.

FMSs are manufacturing systems designed to handle avariety of products. To cater for
several possible machining requirements, the machinery is usuallymultifunctional and
equipped with a wide variety of tools, usually more than is actually needed for the
products at hand. This redundancy results in FMSs to oftentimes be unnecessarily
expensive, and according to Mehrabi, et al (2000, p. 403) also have drawbacks such as
utilizing inadequate system software, being not highly reliable, and they can easily
become obsolete because theirsoftware/hardware is fixed and therefore do not foresee
advancesin manufacturing technologies.

The need for RMS arises in scenarios where production volumes are lower, product
variety iswider, changesin the marketare frequentand unpredictable, orshorterramp-
up times are required. Due to frequent changes in the market and changes to
production methods, the product life cycles are oftentimes shorter than the time it
takes to get conventional production lines ready to start production. The need for
shorterramp-up timesthereforearises.
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RMSs are designed for the exact required production capacity in mind and additional
equipmentisonlyaddedif and when needed at alaterstage. Hence, unlike FMSs, RMSs
are not unnecessarily expensive and do not easily become obsolete since they can
quickly adaptto advancesintechnology. The additional developmenttime required to
cater for possible reconfigurations will quickly be regained by the time and costs saved
by beingable to reconfigure more easily at some later stage.

Although of course any manufacturing system can be reconfigured, notall systems are
designed to facilitate future reconfigurations. RMSs are specifically designed with the
possibility of future reconfigurations keptin mind. This applies to both the hardware and
the control software. RMSs are designed such that they can be reconfigured quicklyand
easily in order to keep reconfiguration costs low, impact on ongoing production to a
minimum and prevent tedious hours of debugging afterwards. To accomplish these
goals, designers should consider the requirements discussed in the next section.

2.2 Desirable RMS characteristics

To aid inthe design of RMSs, the characteristics of RMS are discussedinthissection.
Accordingto Koren & Shpitalni (2010), the six core characteristics of RMSs are:

e Customization:flexibility limited toa product family.

e Convertibility: design for functionality changes.

e Scalability: design for capacity changes.

e Modularity: system components are modular.

e Integrability: interfaces between system components promote rapid integration.

e Diagnosability: design for easy diagnostics which allows for quick ramp-up after
reconfiguration.

The first three are characteristics of the whole RMS and are critical for a system to be
considered reconfigurable. The last three characteristics, on the other hand, allow
reconfiguration to be done efficiently. Therefore a system must reflect modularity,
integrability and diagnosability to be considered reconfigurable.

RMSs are generally considered to be holonic manufacturing systems (HMSs, discussed in
section 2.4.2) and Christensen (1994) reports that the HMS Consortium identified the
following as critical factors for systems:

e Disturbance handling: Provide better and fasterrecognition ofandresponse to
machine malfunctions, rush orders, unpredictable processyields, human errors,

etc.

e Human integration: Support better and more extensive use of human
intelligence.

e Availability: Provide higherreliability and maintainability despite system size and
complexity.

e Flexibility: Support continuously changing product designs, product mixes and
small lotsizes.
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e Robustness: Maintain system operability in the face of large and small
malfunctions.

Exceptfor the humanintegration factor, the otherfactors parallel RMS's properties.

When considering IEC 61499 function blocks as a means to control holonic systems,
Christensen (1994) identified capabilities required to provide autonomy. These
capabilities should also be considered for manufacturing systems:

e encapsulatedlocal databases;
e |ocal process/machine control;
e |ocal optimization;

e local producttracking;

e self-scheduling;

o self-diagnosis;

o self-repair;

e self-configuration.

Further, for distributed and cooperative holonic architectures, controllers should
provide communication and negotiation capabilities, as required by Christensen (1994)
of function blocks.

One of the particular capabilities of RMSs is the ability to be dynamically reconfigured.
Christensen (1994), when considering the use of IEC 61499 function blocks for RMSs,
implied that dynamic reconfiguration is when humans, other holons, or the holonic
applicationitself can:

e dynamically create, modify, destroy and relocate both instances and type
definitions of functional units (e.g. function blocks or agents);

e dynamically create and destroy connections among functional units;

e dynamicallyactivate and de-activate functional units;

e performversion management of functional units and applications.

The above is closely related to a system's flexibility and disturbance handling
capabilities, i.e. its ability to manage change dynamically. The lack of support in IEC
61131-3 for these capabilities (Brennan, 2007) limits its use in the control of RMSs.

In many practical situations, such as the CBI application mentioned in section 1.1, the
situation is dynamic (including requiring occasional reconfigurations), but the context
doesnotrequire the RMS to be able to autonomously reconfigure. Onthe contrary, it is
the author’simpression that many companies would be uncomfortable with such alevel
of automation. Autonomous reconfiguration is therefore for this study not seen as a
requirement, but manual reconfiguration s, as are flexibility and disturbance handling
capabilities. The CBl application therefore demonstrates that the relative importance of
the requirements given in this section depends on the case being considered. One
cannot assume that all practical systems must fully support all of the above
requirements.
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2.3 Autonomous reconfiguration ability

Since RMSs are designed to exactly match the production demand, the capital required
for the equipmentis generally about the same as for DMSs. However, since designers of
RMSs need to keep possible future reconfigurations in mind, software development
could potentially take longer and consequently be more expensive, since this task
involves highly skilled labour. An optimal level of autonomy for the system should be
found: The more intelligent the systemis to be, the more adaptions it can make by itself,
but the design time and accompanying costs will increase accordingly.

On a hardware level, certain machinery will need be flexible to handle a variety of
products. If the hardware isto be fully autonomous, then duringaproductchangeover
the machines would need to adjust or exchange tools themselves. For the
transportation system to be fully autonomous, it would need to be designed such that it
can transport any products or materials to and from any of the stations and provide
functionalityforaccurate, repeatable alighment of transported goods.

On a software level, the system needs to be designed to cater for several different
configurations, between which the operatoris able to convert back and forth, or able to
add/introduce (teach) new configurations. If reconfigurations on a software level are
supposed to happen without any human intervention, then commands being passed
from the cell controllerto the station controller should be responsible forreconfiguring
the station. The latter would only be possible if aproduct changeoveroccurs for which
the system is already physically equipped. Otherwise, manual involvement would be
required.

Since costs associated with making systems autonomously reconfigurable increase
exponentially,itis generally not worthwhile to develop systems to be fully autonomous.
CBI prefersthe system to rather not be too autonomously reconfigurable. For this case
study all hardware changes required humanintervention and the software was designed
to dynamically adapt to only minor changes (such as product changeovers), whereas
majorchangeswould require human intervention.

2.4 Control architectures for manufacturing systems

Holonic control architectures have characteristics which make them well suited for
controllers of RMSs. To better understand holonic control approaches, what they are
and why they are suitable for controllers of RMSs, other control architecturesshown in
Figure 2 are discussed first. According to Dilts, et al (1991) “it is the function of the
control architecture [of a manufacturing system] to allocate decision making
responsibilities to specific control components ... [and to] determine the
interrelationships between control components, thereby establishing the mechanism for
coordinating the execution of those various decisions”.

2.4.1 Overview of classical control architectures

Dilts, et al (1991) compared the four control architectures described below along with
their advantages and disadvantages in terms of the reliability/fault tolerance,
modifiability/extensibility, and reconfigurability/adaptability of the control system:
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Figure 2 Evolution of control architectures (adapted from Barata (2003)and Dilts, et al. (1991))

Centralized control architectures have one central controller on which all information
resides and on which all decision-making takes place. These decisions are based on
information from sensors and machine controllers. The central controller has a fairly
complexlogicsinceitissolely responsible forall of the interactions between the various
components of the system.

Advantages are that the centralized controller has access to complete global
information, which makes global optimization possible. Its disadvantages are that it is
slow and has inconsistent responsiveness due to the variety of tasks carried out by the
control unit. Because there is only one control unit, the system is less reliable. If the
central control unit malfunctions, the entire system is immediately affected.
Modifications, extensions and reconfigurations to the software are difficult, because the
logic in centralized architectures is hidden in the program and global data structures
(Duffie & Piper, 1987).

For proper hierarchical control architectures, the control tasks are subdivided into
branches with distinct levels where the subordinate levels of each branch have no
autonomy, but are obliged to always execute the instructions given from the supervisor
levels. Atthe highest level of the hierarchy, “most global goals are decided upon and a
long-range strategy is formulated. ... Decisions made at this highest level commit the
entire hierarchical structure to aunified and coordinated course of action which would
resultinthe selected goal orgoals being achieved” (Simpson, etal., 1982). Interactions
between sub-branches have to be handled by the more superiorlevels of the hierarchy.

Advantages are reduced software development problems, gradual implementation,
redundancy, allowance for differing time scales (among various branches), the
possibility of incremental addition of vertical slices of the control architecture and fast
response times.

Difficulties with dealing with dynamic adaptive control and difficulties with making
future unforeseen modifications are some of the disadvantages which make it
unsuitable as a control architecture foran RMS. Further, wheneverone of the branches
has a malfunctioninglink, that entire branch will be paralysed and the decision making
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process of the hierarchical controlleris compromised, becauseitis missinginformation
thatitis relyingon.

Modified hierarchical control architectures were developed toimprove onsome of the
drawbacks of hierarchical control. They are similar to proper hierarchical control
architecturesinthatthere are still distinct levels, but controllerson subordinate levels
are able tointeract and cooperate directly with one another, thereby gaining some local
autonomy and taking over some basic responsibilities of the main controller. This allows
the main controller to respond more quickly to requests from the subordinate
controllers.

Modified hierarchical architectures have all the advantages and most of the
disadvantages of properhierarchical architectures.

Additional advantages are the ability of local systems to have local autonomy and the
ability to off-load some linkage tasks to local controllers. These advantages make this
type of control more robust with respect to disturbances (Cassandras, 1986). Since there
are lessinteractions with the supervisory controller, faults are more easily diagnosed.

Additional disadvantages include connectivity problems and increased difficulty of
control system design.

Within heterarchical control architectures, there are no master/slave relationships
between control components of the system. Executing elements, however, are still
subordinate to control components. Each control component has full local autonomy
and “supervisory decision making [is] located at the point of information gathering
rather thanin a central location” (Duffie & Piper, 1987).

Advantages of heterarchical control are full local autonomy, reduced software
complexity because of enhanced modularity, implicit fault-tolerance since the control
strategy is not impacted when one of the nodes fails (Barata, 2003), ease of
reconfigurability and adaptability and faster diffusion of information.

Disadvantages are technical limits of controllers, high likelihood of only local
optimization (without global information), lack of availability of software, and thata
high network capacity is required.

A conclusion that can be drawnin review on the abovementioned control architectures
isthat the more autonomy each sub-controller has, the more fault-tolerant and robust
the system becomes and the easier it is to diagnose errors. The more distributed the
intelligence of the systemis, the more modularitbecomes, and thus easiertoextendor
modify. On the other hand, it becomes less likely that global optimization is achieved
when information gathering and decision making happens only locally. When optimal
throughputratesare to be achieved (globally), one should optfor control architectures
with supervisors which have amore global view and are thus more likely tofind aglobal
optimum.
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2.4.2 Holonic control architectures for RMSs

Arthur Koestler (1967) defined the term ‘holon’ which is a combination of the Greek
words ‘holos’ and suffix ‘-on’, meaning ‘whole’ and ‘part’ respectively. This word he used
to describe unitsin biological orsocial systems which onthe one hand form a part of a
larger system, yet at the same time are a complete self-contained system themselves.
This same concept can also be transferred to control architectures of manufacturing
systems which is why the building blocks of holonic control architectures are called
‘holons’.

Giretand Botti (2005) reportthat the Holonic Manufacturing Systems Consortium gives
the following definitions:

Holon: “An autonomous and co-operative building block of a manufacturing system
for transforming, transporting, storing and/or validating information and
physical objects. The holon consists of an information processing part and
often a physical processing part. A holon can be part of another holon.”

Holarchy: “A system of holons that can co-operate to achieve a goal or objective. The
holarchy defines the basic rules for co-operation of the holons and thereby
limits their autonomy.”

Accordingto Van Brussels, etal. (1998, p. 256) holonicorganizations are used to provide
stability in the face of disturbances, flexibility in the face of change, and efficient use of
resources. The HMS concept combines the best features of hierarchical and
heterarchical organisation (Dilts, et al., 1991) by preserving the stability of a hierarchy
while providing the dynamicflexibility of a heterarchy (Van Brussel, etal., 1998).

With holoniccontrol, itis possible to choose between a heterarchical and ahierarchical
approach (Barata, 2003). A disadvantage of the more heterarchical approach is the
unpredictable behaviourthat can occur whenholons take alot of initiative themselves
and do not coordinate their work with a global scheduler, which can potentially lead to
low performance (Bongaerts, etal., 2000).

Two common holon-based architectures are PROSA and ADACOR which are described in
the nexttwo sections.

2.4.3 PROSA

PROSA is a reference architecture for holonic manufacturing systems, developed at
KU-Leuven by the Production engineering, Machine design and Automation division. The
architecture consists of the three basic holon types shown in Figure 3, namely the
product holon (PH), resource holon (RH) and order holon (OH) and can additionally
incorporate staff holons (SH), hence the name PROSA (Product-Resource-Order-Staff-
Architecture).

10
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Figure 3 Basic building blocks of an HMS and their relations (Van Brussel, et al., 1998)

VanBrussels, etal. (1998) provide the following descriptions:

A resource holon contains a physical part, namely a production resource of the
manufacturing system, and an information processing part that controls the resource.
It offers production capacity and functionality to the surrounding holons (Wyns, et al.,
1996). It holds the methods to allocate the production resources, and the knowledge
and procedures to organise, use and control these production resources to drive
production. A resource holon is an abstraction of the production means such as a
factory, a shop, machines, furnaces, conveyors, pipelines, pallets, components, raw
materials, tools, tool holders, materialstorage, personnel, energy, floor space, etc.

A product holon holds the process and product knowledge to assure the correct
making of the product with sufficient quality. A product holon contains consistent and
up-to-date information on the product life cycle, user requirements, design, process
plans, bill of materials, quality assurance procedures, etc. As such, it contains the
‘oroduct model’ of the product type, not the ‘product state model’ of one physical
productinstance being produced. The product holon acts as an informationserver to
the other holons in the HMS.

An order holon represents a task in the manufacturing system. It is responsible for
performing the assigned work correctly and on time. It manages the physicalproduct
being produced, the product state model, and all logistical information processing
related to the job. An order holon may represent customer orders, make-to-stock
orders, prototype-making orders, orders to maintain and repair resources, etc. Often,
the order holon can beregarded as the workpiece with a certain controlbehaviour to
manageit to go through the factory, e.g., to negotiate with other parts and resources
to get produced.

Also shown in Figure 3 are the types of information being interchanged between the
basictypes of holons. The OHis the one that drives production. Assoonasan order has
been placed, the OH will request the production knowledge from the PH, i.e. the
sequence of events that the product must undergo. The OH will then attempt to book
and schedule available RHs which are capable of executing the required production
processes. The RH which gets assigned the task will request process knowledge from the
PH such as coordinates, dimensions and machining parameters (e.g. spindle speed).

11
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Aftercompletion of its sub-task the RH will notify the OH, so that the unfinished product
can proceed to the nextstep, where another RHcan execute the next process.

Diagnosinglogistical or process errorsis the responsibility of the OH, whereas machine
errors have to be diagnosed by the RH. In the authors view, the PHis not involvedinthe
major decision making and is also not responsible for diagnosing errors, but mainly
servesasan information server, i.e. under normal circumstancesitsimply provides the
information that was requested. If that information was not available, the PH will
request the missing information from a higher level controller, or an operator (via an
HMI). Those holons which requested the information will either have to wait or focus
theirattention onanothertask.

The PROSA architecture can alsoinclude staff holons which are used to give guidance to
the basic holons and provide them with expert knowledge. The finaldecisions are still
made by the basic holons, but they will try to follow the advice of the staff holons
wherever possibleand will only decide nottofollow thatadvice when the staff holons
are performing badly due to disturbances (Van Brussel, etal., 1998).

2.4.4 ADACOR

ADACOR (ADAptive holonic COntrol aRchitecture) emerged after PROSA, and is based on
a set of autonomous and cooperative holons with learning capabilities, self-organization
and supervisor entities. It incorporates adaptive control which dynamically balances
between a centralized structure when the objectiveis global optimization, and a more
heterarchical structure inthe presence of unexpected events and modifications. (Leitdo
& Restivo, 2006)

ADACOR incorporates the product (PH), task (TH) and operational (OH) holon classes
which closely correspond to the product, order and resource holon of the PROSA
architecture. To improve the adaptability of the architecture, ADACOR further
incorporates the supervisor holon (SH) which introduces coordination and global
optimization in decentralized control and is responsible for the formation and
coordination of groups of holons. (Leitdo & Restivo, 2006)

In a similar way that ants in nature can learn to locate the path to new food sources
based on the smell of pheromones deposited by other ants, so can ADACOR holons leam
from disturbances which helps them re-organize themselves after disturbances
occurred. This capability to learn allows them to evolve and adapt to the new
environment (Leitdo & Restivo, 2006). This feature, whichis notfoundin PROSA makes
ADACOR more complex andis approaching artificial intelligence.

2.5 1EC 61499 Function Blocks

Others have successfully used function blocks (FBs) to implement holonic controllers for
RMSs in research environments. However, function blocks are not widely accepted by
industry because there is limited development software available and skillsinthat field
are scarce. Nevertheless, itisinvestigated to findits strengths and weaknesses so that
an informed decision can be made.

12
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Function Block Diagrams (FBD) isa graphical language designed for Programmable Logic
Controllers (PLC's), where the programmer produces a network of functional entities
with inputs and outputs for events and data. Whenever a function block’s input event
signal is triggered, its internal logic will change the values of the output variables.
Immediately thereafter, oraftera specified amount of time, an output eventsignal will
be triggered. The output eventsignals are typically connected tothe input eventsignals
of other function blocks so that a sequence of events can be executed. The output
signals can also be used to control hardware, to communicate over networks or to
manipulate GUI elements. Similarly, the input signals can be used to pick up signals from
sensors, to listen to a network port, or to get user input from the GUI. Figure 4 shows
examples of function blocks used for GUI elements and network communication. A
complex network of function blocks can be formed by interconnecting the eventsignals
and data signals of several function blocks, as shown in Figure 5. Such a network will
then have more functionality than the individual function blocks itis made of.
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a) FB for graphical user interface b) FB for communication services

Figure 4 Examples of function blocks with event signals and data signals (Christensen, 2011)
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Figure 5 Function blocks with event and data connections (left) combined into a network (right)
(Christensen, 2011)

The internal working of a function block can be programmed using 61131-3 standard
languages such as Structured Text, Ladder Diagram, Instruction List or Function Block
Diagram (FBD). The latter option means that a composite function block can in turn be
made up of basic or composite function blocks, as shown in Figure 6. Compared to
structured programming, thisis very similar to calling several other methods from within
an encapsulating method. The difference is that several function blocks can be triggered
at the same time, thereby runningin parallel, whereas method callsin a program would

13
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need to happen sequentially. The ability to trigger several function blocks
simultaneously can cater for processes which require precise timing.

Withinthe same application, several function blocks can be programmed using different
of the abovementioned languages and one can convert between the languages at any
time, and the development software will do the translating. This allows several
developers with different skills to all work at different parts of the program, using their
preferred language, yet all parts can work together harmoniously (Hristu-Varsakelis &
Levine, 2005, p. 276). Function blocks from existing libraries can effortlessly be
imported, thereby eliminating the need for reinventing the wheel and drastically
reducing developmenttime.

|
-

m g W

Figure 6 Function blocks which contain function blocks on their inside, are called composite
function blocks

Function blocks encapsulate their internal working and provide standard interfaces
which allowsthem to be easily integrated into a network of otherfunctionblocks or to
interface with hardware or communication services.

A bigdrawback with function blocks is thatthere is limited development software avail-
able andskillsinthatfield are scarce. The most well-known is Function Block Develop-
mentKit (FBDK) which lacks advanced debuggingtools. Itis hard to trace back the root
of errors by following the many lines on Function Block Diagrams. Not all connections
are always indicated by continuous lines but are often indicated by labels or end up
inside blocks with novisible connection toanotherblock evenwheninfactsome of the
blocks are somehow linked to one another. This makes debugging a very demanding
task with the available software, as was also confirmed by Mulubika & Basson (2013).

Also, the concept of dragging and dropping blocks, which are then interconnected by
linesisverydissimilarto conventional ways of programming. However, the Structured
Textthat can be used within the function blocks is syntactically very similar to Pascal and
has many of the conventional control structures such as iteration loops, conditional
execution, functions and arrays. Additionally, Structured Text provides pre-defined
variable types such as timers and counters. One can also write function blocks with
shared data, and function blocks which use theirown instance of adata block, which is
almost equivalent to objects with staticvariables and creatinginstancesof aclass (thus

14
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objects). However, such instances have to be created at compile time since dynamic
memory allocationis not supportedinthe IEC 61131-3 standard.

What speaks for function blocks in terms of reconfigurability, is their reusability, their
standard interfaces, their encapsulation and integrability. Furthermore, the
development of human-machine interface elements is possible using function blocks
(Viatkin, 2007).

In conclusion, function blocks are usefulinterms of integrability, modularity and real-
time execution, but not in terms of diagnosability (with the currently available
developmenttools). The lack of support of dynamicmemory allocationalong with the
diagnosability issues was seen as too big a constraint so that function blocks were not
considered forthis research.

2.6 Objects vs agents

Agent based control (ABC) has been successfully implemented in RMS research
environments because agents have several characteristics which make them useful for
RMS controllers. Since in this thesis’ research OOP-control is considered as an
alternative to ABC, the differences and similarities between the two concepts are
discussedinthissection.

2.6.1 Key properties of agents

ABC has been applied in a large proportion of RMS research since it suits the
requirements of RMSs so well. Not all aspects can be considered here, but some key
capabilities are pointed out:

According to Bellifemine, et al (2007), an agent is essentially a special software
componentwith aninteroperable interface to an arbitrary system, and is characterized,
among other things, by:

e Autonomy: It can independently carry out complex and often long-term tasks,
i.e. it operates without the direct intervention of humans or others and has
control overits actionsand internal state.

e Pro-activity: Anagent cantake initiative to performagiventask even withoutan
explicit stimulusfromauser.

e Ability to communicate: Agents can interact with other entities to assist with
achievingtheirown and other’s goals.

Furthermore (Bellifemine, et al., 2007), an agent is social, because it cooperates with
humans or other agents in order to achieve its tasks. An agent is reactive, because it
perceivesits environmentand respondsin atimelyfashionto changesthatoccurin the
environment. If necessary,itcan be mobile, with the ability totravel between different
nodesina computernetwork, anditcan learn, adaptingitself toits environmentand to
the desiresof its users.

The abovementioned characteristics make agents a very attractive option for
implementingan RMS's control system:
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Agents are easy to integrate with one another because they make use of the same
communication protocol (e.g. FIPA ACL (Bellifemine, et al., 2007)) and adhere to the
same rules. Anewly created agent will be registered at the agent management system
(described below)and whenitwishesto publicize its services, it willannounce them at
the directory facilitator (described below) so that otheragents can requestto make use
of its services. Inthis way agents can always be aware of one another’s presence and the
systemis self-structured.

Agentsare also modularand integrable becausethey have aninteroperable interface to
an arbitrary system, and they keep theirinternal working to themselves, always showing
the same interfaces tothe outside world. This means that nothingneedsto be changed
inthe restof the system whenachange is made to an individual agent, e.g.one can let
an agent run on a new platform or make it control a different physical resource and as
long as the interfaces behave the same, the rest of the system will not be affected.
Therefore, humans can seamlessly be integrated into an automated manufacturing
system by implementingan HMI on the inside of an agent which will thenappear like a
regularagentas longas it provides a standard interface to the rest of the system.

Since agents have control overtheirinternal state, they can easily report on their health
status while they are still responsive, and since agents are proactive, they are capable of
detecting when other agents stopped responding and can try to resolve the problem.
This makesthem suitable for diagnosability and self-repair.

According to Van Brussel, et al. (1998), disturbances and changes to the system can
easily be handled when using the Contract Net Protocol as a negotiation mechanism
between agents. Because each agent is autonomous, it will try to find the optimal
solutiontoitslocal problem, and because itis also proactive, it will, after disturbances
occurred, re-evaluate its solution to the current problem. When using the Contract Net
Protocol, the system is self-scheduling: idling agents or agents whose current job is
nearing completion, will bid more to get a new offerthan agents who have already been
assigned more than one task. This ensures that when tasks can be performedin parallel,
the work load will be distributed amongst agents ratherthan pilingupat an individual
agent, and will reduce agentidlingtime.

In ABC, dynamicreconfigurationis made possible by the followingtwocomponents of
an agent platform: the agent management system and the directory facilitator. Their
main roles are as follows (Bellifemine, etal., 2007):

The agent management system is responsible for managing the operation of an agent
platform, including the creation and deletion of agents, the migration of agents to and
fromthe agent platform, and maintaining a directory of identifiers of all agents present
withinthe agent platform and theircurrent state (e.g. active, suspended orwaiting).

The directory facilitator (DF) provides "yellow pages" services to other agents and
maintains alist of services thatagents can offer. Every agentthat wishesto publicize its
services to otheragents would request the registration of its agent description in a DF.
At any time an agent may request the DF to modify its agent description. The
registration with aDF does notimply a future commitmentorobligationon the part of
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the registering agent and an agent can subsequently request deregistration of its
descriptionatanytime.

The agent management system and DF allow agentsto be developed off-line, and then
be dynamically added to the rest of the system without bringing the system to a halt.
They also allow dynamically creating, modifying, and destroying instances of and
connections among functional units, and the dynamic activation and de-activation
thereof.

2.6.2 Key properties of OOP

The four key concepts of OOP are abstraction, encapsulation, inheritance and
polymorphism (Van der Linden, 2002). There are some important synergies between
these OOP concepts and the modularity, integrability and diagnosability characteristics
of RMSs:

Modularity and encapsulation are closely related, in that a software object can be
instantiated as many times asrequired, because eachinstance’s dataisindependent of
other instances, unless explicitly specified differently. RMS modules are often
considered to be holons (Van Brussel, etal., 1998) and a set of OOP objectsis well suited
to form the software part of a holon. New instances of holons without hardware (e.g.
the order holon in PROSA) can easily be created in an OOP implementation by
instantiating another object. Similarly, when the order holon's tasks have been
completed, its object-instance can simply be deleted. Inheritance in OOP provides
anotherdimension of modularity for which there is no parallel in agents. When creating
a new holon during reconfiguration, an appropriately designed OOP implementation will
allow the objectrepresentingthe new holon toinherit "modules" of functionality from
previously defined super-classes. This allows for code re-use, thusreducing controller
reconfiguration times and risks.

Integrability can be promoted through objects' properties of inheritance, polymorphism
and abstraction: A key part of abstraction is that an object hides the complexity of its
internal working and presents a simple interface to the outside world. Further,
inheritance (e.g. of an abstract class) and polymorphism can be used to define ageneric
interface for all holons that provides, for example, generic diagnostic and
communication aspects. Therefore, abstraction, inheritance and polymorphism can be
used in an OOP implementation of a holon's information processing part to create
generic interfaces, which enhances an object’'s integrability. However, OOP
implementations will still require the development of, for example, communication
interfaces using general approaches (e.g. XML strings exchanged over TCP/IP links),
while agent platforms have much of that functionality builtin.

Mature OOP software development platforms are available, thus providing excellent
software tools to diagnose control software problems. Further, the multi-threading
abilities of OOP languages allow diagnostic processes to run concurrently with normal
operations, thereby enabling near-real time monitoring of the state of the RMS and
providing good diagnosability.
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2.6.3 Objects and agents compared

A number of researchers have compared objects and agents. A brief summary of the
comparisonsisfirstgiven here, followed in the next section by anassessmentwith this
thesis’ case study in mind.

Odell (2002), adapting the work of Parunak (1997), placed OOP and agent programming
in a broader perspective (Figure 7) and pointed out that a fundamental difference
between object-oriented and agent-oriented programming is that agents can invoke
theirown units, whereas objects do not.

Monolithic Modular Object-Oriented Agent
Programming ~ Programming  Programming  Programming
Unit
Behavior | Nonmodular Modular Modular Modular
Unit External External Internal Internal
State
Unit External External Internal
Invocation Extemal (CALLed) (message) (rules, goals)

Figure 7 Evolution of programming approaches (Odell, 2002)

Two key areas that can differentiate the agent-based approach from the traditional OOP
approach are autonomy and interaction (Odell, 2002). Proactive agents poll the
environmentforeventsand other messages to determinewhataction they should take,
while objects are conventionally passive.

For Booch (2000, cited by Odell (2002)), employing agents with object systemsis useful,
because the agent-based approach:

e provides a way to reason about the flow of control in a highly distributed
system;

e offers a mechanism that yields emergent behaviour across an otherwise static
behaviour; and

e codifiesthe best practicesin how to organize concurrent collaborating objects.

Although there are certain similarities between object- and agent-oriented approaches
(e.g.bothadhere tothe principle of information hiding and recognize the importance of
interactions), there are also several important differences (Jennings & Bussmann, 2003):

e Objectsare generally passive in nature:they need tobe sentamessage before
they become active.

e Although objects encapsulate state and behaviour realization, they do not, in
principle, encapsulate behaviour activation. Thus, any object can invoke any
publicly accessible method on any other object.

18



Stellenbosch University https://scholar.sun.ac.za

e Objectorientationfails to provide an adequate set of concepts and mechanisms
for modelling complex systems.

e Object-oriented approaches provide only minimal support for specifying and
managing organizational relationships (basically, relationships are defined by
staticinheritance hierarchies).

In OOP, there isno "built-in" provisionin current languages foran object to “advertise”
itsinterfaces. The resultisthatthe programmerneedsto have some idea whatinterface
to ask for (Odell, 2002). In contrast, an agent can employ mechanisms such as the
directory facilitator, mentioned above, or specialized broker agents to which other
agents can make themselves known forvarious purposes but are otherwise unlisted to
the rest of the agent population.

2.7 Conclusion

In this chapter, research into RMSs was reviewed and the desirable characteristics for
reconfigurable manufacturing systems were set out so that the controllerdesigned for
the case study could be evaluated against those characteristics. Furthermore, a
summary on various types of control architectures and their characteristics was
provided, to help deciding on the most suitable control architecture for the station
controller at hand. Since agent based control has been used widely in RMS research
environments, but C# was to be used for this research, a comparison between objects
and agents was drawn after discussing the key properties of agentsand OOP. The next
section describes the case study which was chosen so that this thesis'researchis closely
related to an industrial application.
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3 Case Study

Circuit breakers, also known as trip switches, are electrical safety devices and are
installed into circuits which require protection againsttoo high current levels. Assoon as
acircuit draws too much current fortoo long (e.g. in excess of 60A for longerthan 4ms)
the circuit breaker trips to interrupt the current flow through the circuit. Its purpose is
therefore to prevent damage to components and to protect humans from injury or
death. They play a critical role where safetyisaconcern, and should therefore be highly
reliable and conform to high quality standards.

Figure 8 A fraction of CBI's product variety (CBI Circuit Breakers - Product Listing [S.a.])

3.1 CBI's need for an RMS with traceability

For a case study, it was considered automating one of the production processes for CBI.
CBl isa large supplierof circuit breakers which they deliver to the local and international
market. Figure 8 shows only a small selection of the wide variety of products that CBI
manufacture. The circuit breakers are designed for various applications and circuit
configurations, such as single phase or three-phase circuits with or without a neutral
line. As a result, they come in different shapes and sizes, make use of different
technologies, are made of different materials and have different ampere ratings. The
QA-range which forms part of the larger Q-range is shown in Figure 9 and comesin four
variants: 1 pole, 2 pole, 3 pole and 3 pole + neutral. The variants are eitherjusta single
riveted pole, orastack of 2 to 4 similar poles, riveted together. Stacked poleswork as a
unit: if any one pole trips, it will cause the other poles of that unit to immediately trip
together along with it. The Q-range has by far the highest production volumes and
hence, when deciding to automate, it is most sensible to design the system for that
productfamily first, and only later on reconfigure the system to accommodate the other
types of circuit breakers when the need arises.
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Figure 9 Four variants of the QA-range: 1 pole, 2 pole, 3 pole and 3 pole + neutral
(Technical Downloads [S.a.])

Figure 10 shows a pole forming part of a stack, before it has been stacked and riveted.
The components which are of significance for this case study are listedin Table 1 below.

Table 1 Circuit breaker components

Base The bottom part of the casing is called the base. It is a plasticmould with
featuresto hold all the internal componentsin place.

Shell The shell is the top part of the casing. For stacks, shells of the top-most
poles have nobevels foralignment or holesinthe middle, but shells of the
bottom and middle poles do have bevels which align the poles when
stacked and a hole inthe middle toletthe common trip pin go through.

Common The common trip pinis only presentin stacks and must be inserted before

trip pin the stacking process. It interconnects the trip mechanisms of the various
poles of a stack and isresponsibleforlettingall other polestripassoon as
any one pole of the stack trips.

Switch The switch allows a person to reset a tripped circuit breaker or to
intentionally trip acircuit breaker. Before the handle pincanbeinserted,
the holesforall the switches of a stack must firstbe lined up.

Handle pin = The handle pin connects the handles of all the poles of a stack. When
resettingatrip switch afterit has tripped, this pin, which penetrates all the
handles, ensures that all poles are reset together. The handle pin can be
inserted by hand at any time after the stacking process.

Clip-in Avyellow part whichis presentineach pole. It provides extragrip forwhen
the circuit breaker is installed. The clip-in can be inserted or removed at
any time by hand for the Q-range. Other ranges require the clip-in to be
inserted beforethe shellhas been placed.

Rivets There are typically about 6rivets per breaker. Their primary purpose is to
keepthe shell and the base together (forsingle poles), and for stacks, their
secondary purpose is to also keep the individual poles of astack together.
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Even though the internal components of the individual poles are almost identical, the
poles can nevertheless not be used interchangeably for different layers of a stack. For
example, the polethat wasintended forthe top-most layer of a stack cannot be used for
a middle orbottom layer due to some external features which differ.

Holesforrivets

Commontrip pin

Bevelsforalignment

Shell

Switch

Base

\
T pin

Figure 10 Tripping mechanisms of poles which form part of a stack are interconnected by the
common trip pin. Handles are connected by the handle pin.

The individual parts which make up the circuit breakers are produced at the CBI factory
inJohannesburg, South Africa, by predominantly automatic or semi-automatic processes
such as casting, folding, punching, winding, pressing and bending. The loose parts are
then transported to their plant in Lesotho where the circuit breakers are assembled,
tested, printed, and boxed. At the Lesotho plant there is not a single fully-automated
process. Most processes involve manual labour only, and for those processes which
involve machinery, the machinery is operated by hand and sometimes activated by foot.

A wide variety of circuit breakers are being assembled at the Lesotho plant and
guantities for batch orders vary from as little as 20 to a few thousand, meaning that a
worker could be dealing with several different products during the course of a day.
When dealing with such dynamicproduction scenarios, manual labouris generally the
best choice for getting the job done in spite of manual labour being more expensive
than the operating costs of automation equipment. When compared to conventional or
evensophisticated automation equipment, people are extremely adaptableto changes
in production methods. This allows them to quickly change over between known
products or, after a brief training period, start assembling an entirely new type of
product. For CBI it is thus not economically viable to automate all of their processes,
since the overall costs of employees is still less than the total costs associated with an
automated assembly line. Nevertheless, it cannot be ruled out that people who do
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repetitive work or who are still in the training process occasionally make mistakes
without noticing, thereby compromising on quality. Since about 66% of CBI's products
are being exported, quality is of utmost importance. Having to recall faulty breakers
after they have already been exported, incurs tremendous costs and can affect the
company's reputation, especially because superior quality is what sets themapart from
theircompetitors. Automating afew selected processes which can diminish or eliminate
the impact of human errors could therefore still be for the better of the company and its
employees. The highinitial costs related to automation can be justified by the benefits
obtained from automating certain parts of the factory, as discussed next.

Roughly, the process plan forassemblingacircuit breaker of the QA-range is as follows:

1. Electrical componentsandthe commontrip pinare placedinthe bottom part of
the casing (the base).

2. Withthe casingstill open, itis ensured that everything was placed correctly.

3. The top cover of the casing (the shell) is placed and the switch is set to the ON-
position.

4. Whilethe poleisstill unriveted, itis placed intoaramp-wave tester, an electrical-
testdevice, capable of testing several poles simultaneously. Thereitissubjected
to currents of different intensities which should cause the pole totripat theright
time. After having passed the test, the switch will be in the OFF-position.

5. The electrical-testerindicates by means of lights if the tested poles conformed to
specifications or if they have failed the test. Poles which failed the test are
removed and sentto be reworked.

6. Polesarestackedinthe correct order ontop of one another (when the productto
be made is a 2-pole, 3-pole or 3-pole+neutral). Since poles are only stacked after
having passed the test, their switches will always be in the OFF-position and all
the common trip pins will all have the same orientation, which simplifies
alignment.

7. Rivetsareinsertedintothe holesof the casing.

8. Theproductisriveted toseal the casingand to join poles which belong together.

9. Forstacks, the handle pinispushed throughthe switches of all poles.

10. Clip-in(s) areinserted.

11. Final qualityinspectionis done by hand.

12. Finished products are packaged.

Quality checks are performed at several stations. The most important test is
accomplished by the electrical test station, where each pole is subjected to a pre-
programmed electrical current to determine whether it functions correctly in
accordance to its ratings. Circuit breakers which consist of multiple poles are nottested
as a complete unit, butinstead the poles are tested individually before they are stacked
and riveted. Testing therefore happens when the casing could potentially open up and
allow the internal parts to fall out or disarrange. The ramp-wave tester is currently
activated by hand and circuit breakers are placed into it by hand. Only those circuit
breakers which pass the test proceed to the next stations, whereas those that did not
pass the testare sentback to be reworked. Since each and every breakeris subjected to
this test before being packaged and shipped, theoretically no breakers which do not
conform to the quality standards would ever be leaving the factory. However, it
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occasionally happensthat acircuit breakerleavesthe factorywheninfactit should not
have passed the quality tests. In other words, some of the breakerswere either never
tested orthey failed the test but have accidently proceeded to the nextstepwhen they
should have ended up in the rework line. This can be attributed to human error and
hence CBIlis considering the automation of certain processes, to ensure that each circuit
breakerleavingthe factory hasindeed been tested.

To preventany human errors beingintroduced during the quality assurance process, not
only should the electrical test station itself be automated butalso some of the preceding
and succeeding processes:

e Visual inspection while internal components are still visible, to ensure no
components are missingand everythingisintheright place.

e Shell placement.

e Placementof polesintothe tester, and activation of the tester.

e Electrical testing.

e Removal of polesfromthe tester, and the decision whatshouldhappen to the
pole next.

e Stackingand matching of poleswhichtogetherformaunit.

e Placingandrivetingrivets.

e Printingproductinformation on casing which corresponds to what'sinside.

All other non-critical processes should remain manually operated where possible.
Having the abovementioned processes automated will eliminate the risk of faulty
breakersleavingthe factory and allows complete traceability of each and every product,
i.e.where each product has been and which processes it was subjected to.

Beingable totrace the route thata product has taken through the factory and recording
how each product was handled by each machine not only allows one to discard any
faulty objects butalso gives aninsightinto which machine oraction could have beenthe
cause of a possible fault. Such a tracing tool can save a lot of effort in resolving any
issues, thereby reducing ramp-up time. Furthermore, small errors can be detected
sooner before they propagate.

To ensure that the integrity of the polesis not affected after the visual inspection, all
processes up to and including riveting must be automated. This however, will only
prevent non-conforming poles from passing the test but because the product
information is only printed at a much later stage, and because different products may
have a similarouterappearance it could happen that wronginformationis printed on a
fully-functional product which can be worse than shipping poor quality products. To
allow full traceability, the printing process should therefore also be automated. Once
the breakers have beenriveted and the information printed, there'snot much that can
go wrongand it issafe to let humans handle the processes which follow after printing.

Although the capital requirements for new automation equipmentis generally much
greaterthan to employ people, the benefits of traceability and having no more defect
products can outweigh the costs of automating the quality assurance cell. Due to CBI’s
large product variety, the automated parts of the system should be reconfigurable to
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simplify frequently occurring product changeovers, and to simplify the process of scaling
up or extending the system at a later stage to cater for new products. CBI thus needs a
reconfigurable quality assurance cell which provides traceability.

Otherresearchers of the research group are investigating the visual inspection station,
the electrical test station, the riveting station and control strategies for logistical aspects
and the conveyer system. For this research project, a stacking station in a lab context
was automated. Next, the design specifications are determined and the mechanical
design of the stationis discussed.

3.2 Background of stations to be automated

As shown on the diagram below, the stacking station is situated in-between two
conveyers, each transporting different types of pallets. Only single poles are transported
on the first conveyer. The fixtures on those pallets are therefore only required to
accommodate single poles. Pallets on the second conveyer contain riveting fixtures
capable of holding stacked 1-pole, 2-pole, 3-poleor 3-pole+neutral circuitbreakers. To
place the stacking stationinto context with the preceding and succeeding stations, they
are also briefly discussed.

Conveyer 1 )
’ Rivet — Automatic |—
_ feeding riveting Conveyer 2
rework [ Electrical station |—| station |—
= test

station i

Stacking station

=== Route of pallets carried by conveyer 1
;5 == Route of pallets carried by conveyer 2
--------- > Route followed by products

Figure 11 Stacking station inbetween two conveyers

The electrical test station receives a pallet filled with fully assembled but unriveted
single poles. The poles are then tested individually to see whether they comply with
their electrical requirements. Poles which do not pass the test are being discarded for
rework, and poles which do pass the test are placed on another pallet and sent to the
stacking station. To achieve the desired throughput rate at the electrical test station it
was required thatthe pallets can carry 6 poles ata time.
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The stacking station receives pallets containing tested single poles, all of which have
passed the electrical test. Those poles must then be transferred to pallets containing
fixturesinwhich they can be riveted. Inaddition, when multiple-pole breakersare to be
manufactured, the stacking station needs to stack the individual poles on top of one
anotherto form, forexample, triple-pole breakers. Since poles which fail the electrical
test do not reach the stacking station, a complete set of single poles is not always
available toforma multiple-pole breaker. Therefore, the stacking station also needs the
ability totemporarily store polesinabuffer until acomplete multiple-pole breaker can
be stacked. Once a complete sethas been stacked, itissenttothe rivetfeedingstation.

The rivet feeding station receives a stacked set of poles within ariveting fixture on a
pallet and must feed rivets of the correct length into the holes of the circuit breaker
casing. Rivets are manually fed into a vibratory bowel where they are singulated and
thereafter oriented. The placement of rivets into the holes is an automated process.
After all holes of the breaker have been filled, the riveting fixture is sent to the
automatic riveting station where rivets are riveted to prevent the finished assembly
fromfalling apart.

Whenever pallets arrive at a particular station, an accompanying message mustbe sent
by the cell controller to that particular station, informing the station of the pallet
contents. Whenever a station requests that a pallet be transported away, the cell
controller must be informed of the pallet contents, thatitcan planfor the pallets’ next
destinations. The content of the pallets will change at two stations: The electrical test
station will only pack poles ontoits outgoing palletif they passed the electrical test, and
decidesitselfin which orderthe poleswill be packed. The stacking stationalso decides
which products are loaded into which fixtures on the pallets and therefore it is crucial
for the cell controllerto be informed of the pallet contents, so that the next stations will
alsoknow how to interact with the pallet.

3.3 Design specifications

The formulation of a strategy to find and/or rank the requirements for a specific
application is not the focus of this research, but is considered by Hoffman and Basson
(2013). However, in this research the following is assumed, taken from the CBI
application:

e Thesystemiscustomizable tothe extentthatitisable to handle changeswithin
a predetermined part family without being shut down.

e Thesystemisconvertible andscalable, butthe associated system changes may
be implemented during ashut-down period.

e The control system is modular, holonic and distributed, in particular that the
operational holon (discussed in section 2.4.4) associated with each hardware
resource runs on its own software platform, and that product information is
retained in product holons (and notinthe operational holons) that reside on a
cell controller platform oranother controller higherinthe holarchy.

e The system can handle disturbances when, for example, a subsystem fails and
parts have to be rerouted. The system must also provide HMls at various points
and allow manual override capabilities.
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The systemis diagnosable tothe extentthateach holon can at leastassess and
reporton itsown healthtoa cell controller.

CBI needs analysis

Since the Q-range currently has by far the highest volumes, the automated process
should specifically cater for the Q-range initially but the system should be designed with
the other types of products in mind, so that at a later stage the system can easily be
reconfigured without major expenditure. Also during a possible futurereconfiguration,
the impact onthe already ongoing production processes should be kepttoaminimum.

The parts of the system to be automatedin general, must

Provide traceability of all products fromright before shellplacement to where
the corresponding product info is printed on the shell. This should be
accomplished by recording where each product has beenand which processesit
was subjected tothroughoutall processes.

Enhance consistent quality by eliminating all human errors.

Must initially be able to at least handle the Q-range, which has the highest
productionvolumes. It would be advantageous if several other product families
can alsobe handled ata laterstage.

The automated stations should have at least the same throughput rate as the
manual stations currentlyin use, preferably faster than 1 pole perseconds.

The stacking station must be able to:

Given:

Transfer poles from the source pallets on the first conveyer into the riveting
fixtures on destination pallets on the second conveyer.

Pick up polesinanyorder.

Match correct poles, accordingto the orders that were placed.

Record which poles have been matched and send this information back to the
cell controller.

Buffer poles when they cannot yet be stacked, to prevent congestion. This
would become necessary whenever some of the poles, which form part of a
stack, have been discarded by the electrical test station and replacements for
the failed poles must first be made. Once replacements have arrived at the
station, they can be used in conjunction with the buffered polesand acomplete
stack can be built.

Report on system health periodically and/oruponinquiry.

If the system should go offline, production should be able to continue manually.

When system starts or restarts, the station would be completelyempty,i.e. the
station does notneedto be able to record what isin the bufferwhen the system
goes offline. Furthermore, the controller does not need to make provision for
the operatorto specify whatisloaded into which position of the buffer, because
at start-up, all positions would always be empty.
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3.3.2 Functional requirements
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Figure 12 Functional analysis

Figure 12 shows the functional analysis of the stacking station. Beloware the functions
that the station must fulfil:

e Receive a palletwith anemptyriveting fixture

e Receive a pallet withtested breakers

e Decide in which orderbreakers are to be unloaded fromthe pallet
e Eithertemporarily storethe breakersinthe buffer

e Orstack directly ontheriveting fixture

e Match poles which belong together and send information about which poles
have been matched back to the cell controller

e Send palletawaytothe rivetfeedingstation
Receiving:

e Either:detect presence of pallet

e Or:receive commandfrom cell controllerthat pallet has arrived
e Requestinformationaboutthe palletfrom the cell controller

e Receiveinformationaboutthe pallet from the cell controller

Decide:

e Determine which poles are being waited for

e Determine which breakers need to be assembled with the highest priority

e Determine whetheracomplete breakercan be built with the available poles

e Decide whetherbreakersshould be unloaded from the pallet orratherfrom the
buffer
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Store breakersinthe buffer:

e Pickup polesfromthe pallet
o Relocate toan available positionin the buffer
e Releasethe poleintothelocation onthe buffer

Stack poles

o Pickup polesfromeitherthe palletorthe buffer
e Relocate tostacking fixture
e Release pole ontop of stack into fixture

Match poles:
e |dentifyacomplete setof poleswhich all have the same electrical parameters
e Register at the cell controller that those poles are being combined to form a

stack

Send palletaway:

o Notifycell controllerthatriveting fixtureis fullyloaded andready to be sent to
therivetfeedingstation

3.4 Design of the stacking station

3.4.1 Station physical architecture

STACKING STATION

Figure 13 Stacking station physical architecture

As indicated in Figure 13 the stacking station consists of a 6-DOF Robot, a buffer, a
conveyer on which poles are being transported to the stacking station and another
conveyer on which the poles are being transported away from the station. The station
layoutisshownin Figure 14.
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Figure 14 Stacking and buffering station layout

3.4.2 Mechanical design

In the sub-sections to follow, the detail design of the buffer, fixtures, and grippers is
discussed, and the selection for pallets and the robot is motivated.

34.2.1 Transportation system / pallets

Up to date CBI uses plain conveyer belts which run along most of the workstations and
onto which poles are placed by hand at any orientation and picked up by hand at the
next station. When only humans deal with poles, the orientation of the poles while
beingtransportedistrivial since theireye-hand coordination allows humans to quickly
and accurately pick up any poles regardless of their position, orientation or product
type. However, for automated systems where the poles need to be picked up by
machines which are essentially blind, itis beneficial to have all arriving polesinaknown
and repeatable position and orientation. For this reason, the MADRG decided to choose
a Bosch Rexroth TS 2plus pallet-based conveyer system with Bosch Rexroth 320mm x
320 mm off-the shelf pallets and equip each station with alifting station, which would
align and lift all pallets and put them all in a repeatable position for pick-up and
placement. Product-specific fixtures were designed to go onto those pallets, as
describedin the next section. This arrangement allows a wide variety of products to all
make use of the same transportation system. Two options would be conceivable for
handling product-changeovers: Either, the fixtures on the pallets could be exchanged, or
easier would be to have enough pallets stored in a pallet magazine, each containing
product-specificfixtures, and upon product change-over, the required palletswould be
retrieved from the magazine, while the unused pallets would then be stored in the
magazine until required for later usage. The latter option would require no manual
intervention.

30



Stellenbosch University https://scholar.sun.ac.za

Other reasons for opting for pallets are that throughput rates for stations such as the
printingand visual inspection station can be drasticallyimproved when poles arrive in
larger quantities. Thisis particularly important for the printing process, since industrial
laser printers capable of printing on plastic are very expensive, would therefore be
bought sparingly and as a result would form the bottleneck. Furthermore, poles are
located at distinct positions on the pallet, and pallets can be tracked using identifiers
such as RFID tags. This allows precise tracking of each individual pole, evenif the poles
themselves are not equipped with identifiers and even when pallets overtake one
another.

The Bosch Rexroth TS 2plusis highly modularand supports track widths from 160mm to
1200 mm, an overall workpiece mass of up to 240 kg, conveying speeds of 6 m/min up
to 18 m/mininincrementsof 3 m/min.

Bosch Rexroth supplies workpiece palletsin various sizes varying from 160 x 160 mm to
1040 x 800 mm, both square and rectangular-shaped.

Each station is then equipped with at least one lifting station, so that when a pallet
arrives, itisstoppedandliftedtoa pre-defined height, and at the same time aligned so
that all pallets being handled by the lifting station would always be in a repeatable
position. To achieve the desired throughput rate at the electrical-test station, the robot
there had to be able to pick up two poles side-by-side at the same time. From this
requirement, the optimal number of fixtures per pallet was derived and found to be 6
fixtures per pallet.

To allow the pallets to be stored on top of one another inside a pallet magazine, as
showninFigure 1, they were kitted with pillars at all four corners which serve to support
the pallets which are stacked on top of the current pallet while preventingthe fixtures
from being compressed.

The ability of the Bosch-Rexroth system to allow forvarious conveyer componentstobe
added as modules, makes it well suitable for reconfigurations. The following
components can be added at most locations along the conveyersystem:

e Transverse conveyers.

e Parallel conveyersections.

e Stoppingstations, to prevent trafficjams atintersections, toregulate the exact
cycle time forthe pallets, and to maintain asafe following distance in-between
two consecutive pallets.

e Liftingstations, which align the palletstoarepeatable positionand orientation,
and liftthe pallet by asmall amount, to a fixed height.

Figure 15 shows one of the pallets that were used, equipped with six fixtures, four pillars
and an RFID module in the far corner of the pallet. The fixtures allow breakers to be
picked up from underneath as well asfrom above, to suitthe needs of the electrical test
station and the stacking station, respectively.
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Figure 15 Bosch Rexroth 320x320 pallets can carry six fixtures each

Using Palletsin conjunction with off-the-shelf lifting stations eliminates the need at each
stationto align the breakers orthe need forinstalling vision-aided pickup systems. The
drawback is that the workers would need to place the breakers into fixtures at the
correct orientation, whereas with the current conveyer used by CBI, they can place the
products in any orientation on the conveyer. Another drawback is that the fixtures on
the pallets are product specific. Nevertheless, when reconfiguring between products of
differentshapes, the same conveyerand pallets can be used, only the fixtures need to
be interchanged. Alternatively, to avoid the need for humans to replace the fixtures,
several pallets containing all kinds of fixtures can be stocked in the pallet magazine and
only be retrieved once they are needed.

Although the pallet fixtures themselves are product specific, whereas a conveyer belt
would not have been product specific, each station would require a sophisticated
alignment apparatus, whereas the Bosch Rexroth lifting units each have one actuator
onlyand are modular.

3.4.2.1.1 Unloadingstation

The transverse conveyers are equipped with proximity sensors which detect the arrival
of a pallet. At the end of each transverse conveyer is a lifting station which lifts and
aligns the pallettoa repeatable position to ensure that the robot can accurately pick up
the poles.

34.2.2 Fixtures

Fixtures securely hold productsin arepeatable position. They contain features which are
in contact with the perimeter of the product to preventitfrom movingaround. Where
those features must be, depends on the product that must be kept in place and
therefore fixtures are product-specific. Whenever anew type of circuit breaker has to be
produced of which the outer dimensions are different to previous models or of which
therivet positions are different, then a new set of fixtures willhave to be manufactured.
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The fixtures on the first conveyer’s pallets are capable of holdingone single pole each
and are usedforthe following processesinthe ordergiven below:

e Manual placement of the base containingall electrical components.
e Visualinspections.

e Manual placementof the shell.

e Electrical test.

e Transport to stacking station.

To suit the needs of the various stations, the single-pole-fixtures have been designed
that workers can place the base with ease and to allow for clear photos to be taken by
the overhead camera at the visual inspection station. Also, they allow breakers to be
picked up fromthe front (asrequired by the electrical test station) as well asfrom above
(as required by the stacking and buffering station). To allow the poles to be picked up
from the front, some material was machined away to allow a gripper finger to get
underneath the poles. The fixtures were designed to be narrowerthanthe width of the
polesthey have tocarry to allow picking up from above. They are sufficiently narrow, so
that if the robot would attempt to pick up a pole which was in fact not on the fixture,
thenthe gripperswould not grip the fixture.

On the second conveyer, fixtures had to take up stacks of poles. They had to allow the
automatic rivet feeder to feed rivets, and the automatic riveter to rivet the stack.
Whether riveting should be done from underneath or from above was not further
investigated as this was considered to be out of the scope of this research project. For
either scenarios, the poles would need to be stacked from above into the riveting
fixture.

3.4.2.3 Robot

The main purpose of the robotis to assemble multi-pole breakers by stacking individual
poles on top of one another. This is accomplished by picking up poles from the source
palletand transferringthemto fixtures on the destination pallet, where they are stacked
on a pile of which the height keeps varying. Occasionally, poles mustalso be transferred
from the source pallet to the buffer and from the buffer to the destination pallet. The
robot must therefore interact with pallets on the source conveyer, with pallets on the
destination conveyer, and with the buffer.

Since the polesare lyingontheirside uponarrival, and mustalsolie ontheir side after
stacking, the pick-and-place robot requires only four degrees of freedom. A SCARA robot
would have been ideal forthis type of application because of its high speeds. However,
the only feasible robot available in the research laboratory was a KUKA KR 16-2 robot,
which has six degrees of freedom. It could therefore be used forthe proof -of-concept
setup on which the experiments were carried out.

4-DOF and 6-DOF robots of comparable size do not differ drastically in price but 4-DOF
robots are generally less expensive. If provisionisto be made forfuture products that
might require the robot to rotate about more than one axis, it would be advisable to
rather optfor a more flexible 6-DOF robot due toits higherversatility.
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The controller which comes with the robot, deals with all the inverse kinematics
calculations. All that needs to be done is to establish away of communicatingand then
sendingappropriate commands along with coordinates and parameters. Reconfiguring a
6-DOF robotis therefore no more difficult than reconfiguring a4-DOF robot.

34.2.4 CGrippers

The way gripperfingers are to be designed depends ontheirapplication as well as the
shape and size of the poles being handled. Gripperfingers are therefore fairly product
specificbutthe same gripperfingers couldstillbe used for several different products as
long as those products are all similarinsize and shape. To allow poles beingstacked on
top of one another, poles have to be lowered into the riveting fixture from above and
hence must first be picked up from above. The gripper fingers thereforehave togrip the
poles at the sides, as shown in Figure 16 and the line of action of the clamping force
should pass close through the pole's centre of mass.

Figure 16 To make stacking possible, poles have to be gripped at their short sides

Requirements forthe gripperand gripperfingers are:

e Unriveted single-poles must be picked up, transferred and placed without the
casingopeningup or the pole beingdropped.

e The casing mustnot be damaged.

e The common trip of a pole already on the stack should be properlyaligned with
the common trip connector of the pole being stacked on top.

e Fingers should not interfere with the poles already on the stack, when adding
another pole tothe stack.

o Intheeventofpowerloss, polesshould remain gripped.

e |t must be sensed whether no pole was gripped, or whether it was properly
gripped or misgripped.

o Gripperfingersshould be designed to caterfor quick product changeovers with
no or minimal ramp-up time.

e Forshortcycle times, gripperjaws should openup and closeimmediately after
the corresponding command was given.
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e Theyshouldbere-usable forvarious types of products, if possible.

Figure 17 shows an isometric view of how the gripper fingers can be used for stacking.
Next, the requirements are addressed in the order mentioned above.

Bolts and dowels pins —p
for repeatable
attachment

Cut-out, to prevent shell
from being gripped and
lifted off the base

1mm gap between )
the casings' edges Compressiblesponges

to press shell down

To
polpe Sand-blasted surface
- to grip base
Middle
pole
Bottom [ Chamfer foraligning
pole | poles duringstacking

Figure 17 Gripper fingers used for stacking poles

3.4.2.4.1 Pickingup & placing without casing opening up

Since the poles are in an unriveted state, the stacking station has to handle them
carefully enough to prevent the casing from opening up. Viewed from above, bases and
their corresponding shells have identical geometries. If the base and shell would be
gripped simultaneously, thenitcould happenthatthe shellis beinglifted off the base,
leaving the base behind in the fixture. To prevent this, only the base should therefore be
gripped and contact with the shell should be avoided. This was accomplished by cutting
away material from the gripper fingers at the location where they would've made
contact with the shells, as can be seenin Figure 17.

When a poleisbeingloweredintothe riveting fixture, which hasverytight tolerances,
then both the base and shell will experience an upward friction force. Since the gripper
fingers only hold onto the base, the shell could be separated from the base when the
friction force acting on the shell becomes too large. To prevent the case from ever
openingup, two spring-like sponges (blue partsin Figure 17) were added to the grippers
to preventthe shell fromsliding open whilethe poles are placed into the riveting fixture.
While picking up poles out of the source pallet, the sponge would be slightly
compressed to exertadownward force on the pole whichislarge enough to counteract
the upward friction force of the tight riveting fixture, but small enoughtonot push the
pole out of the gripper fingers. Sufficient space was left open between the contact
surfaces and top of the fingers thatan entire stack of poles could also have been gripped
by the same grippersthat would usually only transferone pole ata time. Although this
feature was never utilized forany experiments, foritto work the sponge would need to
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be made smallerand the stack being transferred would need to be gripped at the base
of the bottom-most pole.

As indicated in Figure 17, the edges of the casings of stacked poles are approximately
1mm apart leavingvery littleroom forthe grippers to grip underneath the casing. When
the poles are picked up at theirsides, the available surface of contactis only a very small
area and enough friction needs to be developed for a firm grip. Three options were
considered:

The first option was to use a thin, small rubber pad to provide the friction. When adding
a pole onto a stack, this rubber pad should not interfere with the pole underneath, so
the pole being transferred would need to be held close to the bottom edge of the
rubber pad. When the pressure is increased too much, the edge of the rubber pad
would give in more than its centre, thereby causing the resultant force exerted on the
pole to have a downward component, causing the pole to slip out of the fingers.
Furthermore, extensive usage would eventually wear out the rubber pads and result in
non-repeatability. Because of possible unreliability caused by those two aspects, this
ideawasdiscarded.

The second option was to use small @1mm pins to fit underneath the poles, similar to
fingernails, thin enough tofitin between the casings of two stacked poles. These pins
would provide a shoulder for the poles to rest on, preventing them from falling out of
the fingers. Because of their small size they could easily be damaged and they would
needtobe very accurately positioned relativeto the pole to be picked upwhich would
often be very difficult toaccomplish and there would be very little compliance. Also, this
concept does not provide a means for keeping the shell on the base while the pole is
pushed ontothe stack, whichis why thisideawas also discarded.

The third and chosen option was to give the aluminium a rough sandblasted surface
finish, rough enough to increase the friction coefficie nt, but smooth enough as to not
damage the casings. This concept has proved successful, as poles have been transferred
to the riveting fixture numerous times without any poles ever being dropped orcasings
openingup.

3.4.2.4.2 Damageto casing

To prevent damage to the casing, the gripper fingers were designed sufficiently wide
that the contact surface between the grippers and the casingwas large enoughto keep
the resulting pressure sufficiently low as to not damage the casing.

3.4.2.4.3 Aligning poles of a stack

To line up the common trip with the common trip connector during the stacking
process, the grippers have to align the edges of the pole being stacked with the edges of
the poles which are already on the stack. To accomplish this task, the end of the gripper
fingers were chamfered, so that upon loweringthe top-most pole of the stack, its sides
would line up with the sides of the pole onto whichiitis being stacked.
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34.2.4.4 Llossof power

Festo DHPS-20A pneumatic parallel grippers were used, which are double-acting and
they come with the option of having backup force retention for either the normallyopen
(NO) or normally closed (NC) state of the gripper. To prevent the pole from being
droppedinthe eventof powerloss, it was opted to have force retentioninthe NCstate.
Evenin the absence of air pressure or loss of input signal, an NC gripperkeeps holding
ontothe part, because it contains an internal spring which exerts aclosing force.

34.2.45 Quick productchangeovers

The left and right gripper were designed to be identical, so that any of the two fingers
could be attached to any jaw and that there would notbe an incorrect way to assemble
them. For cases where gripperfingers are not symmetrical, it isadvisabletolabel them
appropriately toaid with assembly. To ensure that the fingers will always be alignedin a
repeatable way, they were designed with dowelpins to alignthem w.r.t. the grippers.

The grippers were attached toa mounting plate w.r.t. whichitwas aligned using dowel
pins. Various members of the research group have been using the KUKA robot for
various experiments. To allow for quick and easy changeoverfrom one configuration to
another, another member of the research group has designed a mounting plate whichis
to be attached to the flange at the end effector of the robot and onto which various
types of tools can be attached in a repeatable position, when used along with dowel
pins. The flange was designed so that one would not need to screw and unscrew onto
the robot directly with every changeover. The mounting plate for the gripper was
designedsuch thatitwould be easy to rotate the grippers by 90° if need be.

Dowel pins ensure all parts are correctly alighed to one another, thereby eliminating the
need for re-calibration after product changeovers, and drastically reducing ramp-up
times. Only one ortwo testruns would be required to ensure everything was assembled
correctly.

3.4.2.4.6 Near-real-timecontrol

The pneumatic air control valve was controlled by a National Instruments Data
acquisition device containing 8 digital inputs and 8 digital outputs. For powering the
valve, an external 24VDC power supply was necessary, since the Festo actuators work
with 24V as well ascompressed airsupply.

The DAQ is connected to the PC via USB. National Instruments drivers had to be
imported into the C# program so that the DAQ could be used.

3.4.2.47 Feedback

The Festo DHPS-20A gripper features a slot inside which a proximity sensor can be
anchored which can be moved up or down inside the slot. An SMT-10G/10G proximity
sensor was used, which is a digital sensor and can only produce a "false" or a "true"
signal. Using this signal in conjunction with the command sent to the gripper control
valve, four possiblestates can be determined:
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1. Whether a pole has been properly gripped — A command would be given to
close the gripper, and the sensorreturns "true" to indicate thatthe jaws are in
the position for which the sensor has been calibrated, i.e. thatthe grippers are
partially closed because the pole being gripped prevents them from closing
completely.

2. Whether a pole has been misgripped or is not present where expected — A
command would be given to close the gripper but the sensor returns "false"
because the jaws would have moved past the calibrated position and closed
completely.

3. Whether air pressure has been lost —A command is given to open the gripper,
but due to low air pressure, the jaws remain closed at the calibrated position
and the sensorreturns "true".

4. Whetherthe gripperisopen—A command would be giventoopenthegripper,
which moves the jaws away from the calibrated position, causingthe sensor to
return "false".

The positon of the jaws for which the sensorreturns "true" depends onthe pole width.
The sensormust therefore be re-adjusted whenever breakers of different pole widths
have to be accommodated. Alternatively, two or more sensors could have beeninserted
into the slots to determine the thicknesses of various products without the need for
manual adjustment when switching between product types.

34.2.5 Buffer

The buffer is used to temporarily store poles that cannot yet form part of an assembly
until those poles can be used at a laterstage. Poles beingstoredinthe buffer are in an
unriveted state.

The following points have been considered for the design of the buffer:

e Since a SCARA robot would typically be used to interact with the buffer, only
four degrees of freedom should be required to retrieve poles or place polesinto
the buffer.

e [t should be possible to pick up any pole at any time in any order, i.e. poles
should not block access to other poles, e.g. should not be stacked ontop of one
another, unlessthey are identical and can thus be used interchangeably.

e Since poleshave common trip connectors protruding upward (aswas shown in
Figure 10), not even poles of the same kind can be stacked on top of one
another.

e Polesshouldbe placed repeatable and should not move in case the buffer gets
bumped into.

e The buffer itself should ideally not consist of any actuators or controllers to
make retrieval of poles possible.

e Peopleshouldbe able to easilyinsert orremove poles by hand in case of manual
override mode orwhen the system has to be cleared aftera restart.

It would have been possible to utilize the existing hardware presentinthelabto form a
buffer: Unused poles could have been stored on empty pallets which would then be sent
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to the pallet magazine until poles on those pallets would be required at a later stage.
However, the logistical, practical and economicaspects of thisapproachwere far from
desirable and other buffer concepts were therefore considered.

The concept that was chosenisshownin Figure 18. It was designed such thatall poles lie
on the same plane, to simplify calibration, which in turn simplifies reconfigurations.
When all fixture positions are lying on the same plane, it further simplifies the task of
choosing a reference point and expressing the coordinates of the individual fixtures
relative tothatreference point.

Product-specific constraining plate

Chamfered perimeter to

\.\/ aidinsertion of poles

~

,Plateon which poles rest

( Re-usablefor various products
,4___ Raisers to prevent collisions

between gripper fingers and table
Figure 18 Exploded view of buffer

As shownin the figure above, the buffer provides space to store up to 18 single-poles.
For stacking, the robot needs to grip the polesfrom above whichiswhythe buffer has
been designed such that poles canbe removed andinserted fromabove. Thetop-most
layer contains several holes which have the shape of the outline of the circuitbreakers,
so that breakers are restricted from moving horizontally. These holes have chamfered
edges to aid the robot placing the poles. The top-most plate is product-specific as the
holes are custom-made to match the outline of the poles to be stored. The rest of the
bufferis product-independent. Therefore, when the shape of acircuit breaker model is
modified, then only the topmost plate of the buffer needsto change to accommodate
poles with a different shape. The rest of the buffer hardware does not need to be
changed. When loaded into the buffer, poles will be restingonthe middle plate which
has holes big enough for the gripper fingers to fit through in a fully opened and fully
closed state. The entire buffer rests on raisers so that the tips of the gripper fingers
would not collide with the table while pickingup apole.

The advantages of the chosen conceptare:

e Polescanbe placedinrepeatable positions.
o Polesofvariousthicknesses can be stored.
e Poleswill not move in case that the bufferis pushed.
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e Storing all poles horizontally, which is the same orientation that they are
transported on the pallets, allows them to be handled by 4-DOF robots.

e Thebufferwasinexpensive and easy to manufacture.

e No complications occurred while installing the buffer and after removal, the
buffer could be repositioned at its previous location without requiring re -
calibration.

e Choosing a reference point on the buffer for calibration purposes, and
calibrating the buffer's workspace coordinates was done without problems.

The disadvantages of the chosen conceptare:

e The contours of the top-mostlayerare dependenton the outer geometry of the
poles that have to be stored. This means that only one type of circuit breaker
can be storedinthe buffer.

e A relatively large footprint was claimed by the buffer when installed
horizontally. A vertical design would occupy afraction of the floor space.

3.5 Conclusion

A background on the case study was given in this chapter, along with the design
specifications for the stacking and buffering station. The mechanical design aspects of
the transportation system, fixtures, grippers and buffer wasthen described. Chapter 4
provides the details of how control software forthe station controller was chosen.
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4 Control Software Selection

Control software alternatives for a reconfigurable controller are investigated in this
chapter. They are evaluatedinterms of their capability tointerface withthe hardware
choseninthe previous chapter, theirsuitability for holoniccontrol architectures, their
prevalence inindustry and in terms of the requirements discussed in the section below.
Only A high-level comparison is made to identify some of the weaknesses and strengths
of C# but a detail comparisonis considered out of scope. Furthermore, OOP is evaluated
as an alternative foragents atthe end of this chapter.

4.1 Software requirements

Since the controller in this research is not in control of an entire factory but has to
control only one station, it would not be of much value to have all the individualholons
run in separate threads. What was seen asa much higher priority on a station-level was
to achieve optimal throughput rates for which real time or near-real time control of
hardware plays an important role, while also allowing global optimization. Multi-
threading capabilities were thus seen as a requirement to allow for near-real time
execution of hardware being controlled by the main thread, while also having the
followingtasksrunin parallel:

e Communication over TCP/IP or any other asynchronous communication
channels.

e CPU-intensive forecasting and/orglobal optimization algorithms.

e Control of a human-machine interface (i.e. graphical user interface and
mouse/keyboard event listeners).

e Diagnostictools which mightrequire regularaccesstothe hard drive when log
filesare tobe written to gatherfault data for diagnosticstatistics.

The station controller must be able to communicate with the cell controller and
conveyer controller over Ethernet, to receive orders, productinformation and logistical
information and to allow for diagnostics to happen remotely overthe network. Support
for TCP/IP communicationisthus required.

To improve modularity among the stations and the cell controller, communication
should happen by interchanging XMLstrings due to the following advantages of XMIL:

e XML isplatformindependent.

e XML can be designed to be extensible (Obasjano, 2004) which allows for
changes to the XML structure to be made in one application, and an older or
newer application will still be able to function properly and read the XML
message as easily as before the changes have been made. The extensibility of
XML allows reconfiguration to happen gradually as needed, sothatonly critical
parts of the system need to be changed, while not having to make changes to
the entire systematonce.

e XML strings are human-readable, which can simplify diagnostics in some
occasions.
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For the case study in particularit was furtherrequired thatitshould be easy to interface
with the KUKA robot via RS232, and Festo gripper sensor and control valve via a USB-
DAQ.

The following aspects were other important factors in the search for suitable control
software:

e To allow for a fully reconfigurable controller, a holonic control architecture
should be implementable, i.e. the controller should support OOP concepts so
that holons or holon-like objects can easily be created.

e To promoteindustry acceptance, the language should be widely known, proven
successful over many years and easy to learn.

e For shorter development time reusable libraries should be available so that
relatively basicfunctionalities do not need to be developed from the ground up.

e Advanceddiagnostictools should exist forfault finding during developmentand
alsoduringoperation.

e Development of an HMI/GUI should not be a major effort.

e Near-real time control of hardware for optimal throughputrates.

e Multi-threading capabilities will allow asynchronous tasks such as network
communication and CPU-intensive tasks such as optimization algorithms to run
while still having near-real time control of time-critical hardware tasks.

e Supportfor TCP communicationand XML handling.

e Dynamicmemory allocation to caterfor changesin product information ororder
information at runtime without the need forrecompilingthe code and restarting
the controller.

e Integrable, thusability torunon various platforms and support forvarious types
of interfaces.

4.2 Software comparison

Although numerous programming languages could be used for the implementation of
the station controller, only some of the most widely used programming languages were
investigated, since wider usage implies higher likeliness of industry acceptance. The
languages considered here are Java, C, C#, and C++.

4.2.1 Java

Java is the most widely used programming language (Cass, 2015). It is a high-level
programming language with support for OOP concepts, multi-threading and dynamic
memory allocation. Developing a GUI does not require major effort. However, it is
cumbersome to interface with hardware and to get serial communication working. FBD
and ABC that were mentioned in sections 2.5 and 2.6 are both Java-based applications
which makes hardware interfacing acumbersome task forthose approachestoo.

A great advantage of Java is that it is platform independent, i.e. the programmer does
not require any knowledge of the operating system or the machine where the code will
run on, but can be assured that the code will run the same way on different platforms
without havingto recompile the code. This enhances the modularity of code written in
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Java. The Java Native Interface (JNI) however, which must be used to interface with
hardware, is not platformindependent.

To ensure the controller can run for months without interruptions or failure, memory
leakage must be prevented. Javacomes with automaticgarbage collection (AGC) which
simplifies software development in that developers do not need to keep track of the
memory allocated to pointers themselves and removes the chances of human errors in
this respect. A disadvantage of AGCisthat it is handled by the operatingsystem which
makes it impossible for the programmer to predict when it will occur. Whenever AGC
kicks in, other processes could experience minor delays in their execution, which is
acceptable when no precise timing between two or more processesisrequired, or when
timing-critical processes are executed by a hard-real-time controllersuch asa PLC.

422 C

C supports dynamicmemory allocation but has no built-in AGC. Correctly allocating and
disposing memory is thus the responsibility of the programmer. Since in Cerror checking
(such as array bounds checks) is not performed at runtime and because the programmer
is in control of memory disposal, C can execute slightly faster and with more precise
timingthan common OOP languages with AGC. Essential parts of the code can easily be
writtenin assembly which makes Csuitablefor near-real time control.

The lack of AGC and automatic error checking leaves those tasks to the programmer
which, if neglected, could cause unreliable behaviour and produce sudden failures after
weeks of normal operation, when due to memory leakage suddenly no new memory can
be allocated. Especially after reconfigurations, when another programmerhad to make
changes to the code, chances are that all allocated memory is no longer disposed of
correctly. Neglectingto properly dispose of memory does not necessarily produce any
immediate runtime errors because controllers today typically have an abundance of
available memory. Memory leakage happening ata slow rate is therefore not likely to be
detected during ramp-up tests but will only cause failure at alater stage. In the author’s
view, the lack of AGC makes C less reliable than languages with AGC.

C is a much lower level language than common OOP languages and has very poor
support for OOP concepts. Hence, implementing a holonic architecture in C would
probably take significantly longer. Although Cis nota multi-threading language perse, it
does support multi-threading using libraries. There is no direct support forimplementing
a GUI, but GUIs can be created using wrappers.

4.2.3 C#

C# is almost equivalent to Java from an application developer's perspective (Radeck,
2004) and syntactically is very close to Java, and thus almost equally easy to learn.
Programmers knowingJavashould easily be able to learn C#(and vice versa) since they
are conceptually very similar. Like Java, C# also has support for AGC, multi-threading,
OOP conceptsand easy GUI development.

Hardware interfacing, however, is easier in C# than in Java. Drivers for most of the
hardware are usually available for C, C++ and CH.
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C# is a strongly-typed (type-safe) language, i.e. errors relating to conflicting types are
detected at compilation time and code cannot be compiled until these errors are
resolved. Having such errors already detected during the development phase effectively
means that some built-in diagnosability is automatically provided for during the
development phase resultingin more reliable code.

4.2.4 C++/CLI

C++/CLI (C++ over Common Language Interface), like Java and C#, supports all OOP
concepts, multi-threading, AGC, and GUI development. It targets the .Net framework
and can easily be integrated with other .NET code, such as code writtenin C#.

C++ is one of the languages that allows multiple inheritance, i.e. that a sub-class can
inherit from more than one base class. Java and C# don’t allow this, but they do allow
inheriting from multiple interfaces, as this would cause no ambiguity for the compiler
which one of the inherited methods to implement, since interfaces have no
implementation.

Managed languagesinthe .NET Framework do not support multipleinheritance, i.e. only
one base class can be specified foraderived class.

Garbage collection works for managed objects for which destructors are not required
but unmanaged resources are not cleared up by garbage collection and destructors must
therefore be implemented forthem.

4.3 Chosen controller and chosen software

Comparedto ABC and FBD, the languages discussed in the previous section are easierto
learnand much more widely used. ABCisa very high level language and provides many
useful functionalities for holonic control which, when built from scratch, would take a
longtime to implement. However, for the CBI case study notall those functionalities are
required and hence amore general language should be more suitable.

TCP communication and XML parsing is supported in all of the languages considered
above and could therefore not be seenasa determining factor.

High-level languages are easier to use to program holons, because they allow
programming to happen on a level which is close to human thinking. Since Cis on a
much lowerlevelthan other OOP languages and because of the lower reliability due to
the lack of AGC, C was deemed less suitable. Java was decided against because fora
station controller, lots of hardware interfacing would be required which would be a
cumbersome tasktodo inJava.

Although no significant advantages could be pointed out that C# has over C++ it was
nevertheless decided to use C# for this case study since it fulfilled to all the

requirements setoutinsection 4.1.

The integrated development environment (IDE) used was Microsoft Visual Studio 2012
which has advanced debugging tools. A nifty feature is that, when an exception was
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thrown, hovering the mouse overan object variable will display its valuealongwith the
values of all the member variables. This can very quickly shine light onto the possible
cause of an error and allows for quick diagnosing.

4.4 Evaluation of OOP as an alternative to agents

The comparisons in sections 2.6 between agents and objects are not specific to
manufacturing, norto control. One should therefore question to what extent the above
conclusions are applicable, particularly when considering arelatively simple application
such as the control of a manufacturing cell or a subsystem contained by it, as in the
intended application of RMS for CBI. This section therefore reconsiders the comparisons
and also a number of other issues, with the specific application in mind. Figure 19
summarizesthe key differences.

Agents: alive all the time (active) Obijects: alive only when called (passive)
One thread per agent Multiple threads per object are possible, e.g. one
thread per method
Behaviour based on individual goals and states, as Multiple objects can run on one thread

well as the states of on-going conversations with
other agents

Local variables Local and shared data structures

String-messages based on a

Interfaces | standardized communication protocol Interfaces

<= Agent decides which behaviour to invoke, < ~, Parameters in a fixed sequence, but can
—_— can say no be programmed to handle strings

| | Methods are invoked under a
| | | | | |— <——> caller's thread of control
|_ Considered as an error if object says no

Encapsulated behaviours, self-invoking <

Can only be invoked from outside by requesting, —_—
but agent may deny. T
1

Figure 19 Key properties of agents and OOP

4.4.1 Encapsulation of behaviour

Considerthe externalvsinternal "unitinvocation" difference shownin Figure 7and the
related issue of encapsulation of behaviour, in the context of a holonic control
architecture:fora holonthereislittle difference inthe logic, and itsimplementation in
coding, between an agent-based and an OOP approach. An object can just as easily be
programmed to initiate its own methods as an agent can initiate its own behaviours.
Also, the programmer can decide which of an object's methods are publically accessible
and can therefore expose no more than a communicationinterface, thereby mimicking
this property of an agent. In agent platforms such as JADE, the ideal is that each agent
runs in its own thread, which can be limiting for manufacturing control scenarios.
However, objects running different methods in different threads (e.g. to handle
communication ordiagnosticsin parallelwith otheractivities) is commonplace.
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Regardingthe, intheory, different active vs reactive natures of agents and objects, again
in a holonic control architecture for a manufacturing cell, there is little difference
betweenthe logicand programmingthat will be required foragentsand objects. This is
evenmore sosince some OOP implementations now have event-listener frameworks
giving objects some of the dynamic capabilities of agents.

4.4.2 Dynamics, complexity, autonomy and hierarchy

As mentioned inthe Introduction, RMSs are aimed at dynamicsituations. As can be seen
from Section 2.6, agents are well suited to adapt themselves to dynamic situations.
Objects do not have all those capabilities built into them. For an OOP based system to
be as autonomously reconfigurable as agents, designers would need to implement many
of the standard ABC featuresin OOP, and then agents mightjustas well be used in the
first place.

The advantages that agents offer in terms of emergent behaviour and reasoning are
significant for complex systems and highly dynamic situations. Unstable and
unpredictable environments benefit from decentralization and self-organization (Odell,
2002). In manufacturing systems, complexity arises from the large number of interacting
subsystems, forinstance the transportation system responsible for the material flowina
factory containing many cells. Optimizing such a system would be challenging and time
consuming, but systems consisting of autonomous, proactive agents have emergent
behaviours which allowforoptimization to be done automaticallyif the correct rules are
setfor the agents.

On the other hand, for scenarios where the systems are relatively simple and/or
reconfigurations are infrequent, the autonomous reconfiguration capabilities are of less
value, and it might be more cost effective for humans to provide inputs (Hoffmann &
Basson, 2013). The systems that are being considered for CBI are cells, containing
subsystems such as 6-DOF-robots and automated riveters, forwhich material flow and
resource managementis much simplerthan for an entire factory. The control system of
a manufacturing cell with limited (if any) redundancy, is a relatively simple system.
Handling of, for example, disturbances (such as subsystem break-downs or
unanticipated changes to production schedules) and throughput optimization are
therefore simple enough to be handled effectively by a hierarchical control approach.

The Contract Net Protocol is well suited for a holonic system, but is not needed fora
hierarchical system, since decision-makingisdone onahigherlevel,and decisions are
enforced on the holons situated on a lower level in the hierarchy. The directory facili -
tator of agent platformsisvery valuable when handling autonomous reconfiguration of
systems. However, there is little need for such autonomous reconfiguration in many
industry applications. Particularly if reconfigurations occur relatively infrequently or
have a fairly predictable nature, it is feasible to provide HMls that can be used to
provide notonly the functionsthata directory facilitator would, but also diagnostic and
manual override capabilities.
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4.4.3 Modularity and integrability

In terms of modularity and integrability, which are key aspects of RMSs as described in
Section 2.2, agents offer little advantages over objects. Both agents and objects that
represent holons will have to provide a communication interface to other holons. An
agent platform will provide some infrastructure to handle these messages, while an
OOP-based approach will have to build itup froma lowerlevel. Inthe case of agents, at
leastan application specificontology, and possibly also aninter-agent communication
language, must be designed. The equivalent effort will be required forobjects that are
running in different platforms, for example using TCP/IP sockets and XML encoding.
Further, forobjectsinthe same executable code, alibrary of objecttypesbased on one
or more abstract classes, as usedin e.g. C++and C#, can provide a means of specifying a
standardized interface, thereby simplifying integration and customization.

Another practical consideration is that many popularagent platforms are programmed
inJava, whichis much more cumbersome tointerface with hardware than, forexample,
common OOP platforms like CH. In the CBI application, which involves the control of the
subsystems of reconfigurable manufacturing cells, there are alarge number of interfaces
between controllers and hardware. Using Java-based tools in such a contextis therefore
lessintegrable than C#.

4.4.4 Hard and soft real time requirements

One of the significant limitations of agents, in amachine control situation, can be their
autonomy: each agent has autonomous control over its own behaviour. In many
machine control situations, specificsequencing ortiming of actionsisrequired for safe
and efficient operations. Close timing or rapid sequencing that are guaranteed and safe,
istherefore difficult to achieve when multiple agents are involved. Suchtimingiseasier
to achieve with objects running in the same thread, but unless a real time operating
systemisused, thereisstillameasure of uncertaintyinthe timing. One can therefore
conclude that agents are not suited to any form of real time control, while objects are
suitedtoso-called "softreal time", where latencies of approximately 50ms or more are
acceptable.

Anotherlimitation of the agent platforms considered by the authoris that no provision
ismade forallocating agents different levels of priority in theirallocation of CPU time,
whileitiseasiertoallocate priorities to threads using standard OOP implementations. A
manufacturing scheduling optimization algorithm can be thereforeruninonethread at
alower priority onthe same CPU than anotherthread running timing-sensitive machine
control routines. This approach may not fully obviate the need to separate the
“intelligent” part of the system from the real-time part of the system (Brennan, 2007)
and to use a layered architecture consisting of low level controllers (LLCs) and high level
controllers (HLCs). Traditionally LLCs would be written in software which allows for
exactly predictabletiming, whereas HLCs would be written in software more suited to
implementing complex algorithms and that are more amenable to reconfiguration. LLCs
are usually more difficult to reconfigure, particularly when more complex algorithms
have been implemented. Therefore using OOP instead of ABC for the HLC will allow
more functionality to be moved from the LLC to the HLC, thereby enhancing
reconfigurability.
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4.5 Conclusions drawn from literature

ABC and FBD both have characteristics which make them suitable for controllers of
RMSs and both have successfully been implemented in research environments.
However, neither ABCnor FBD are widely accepted by the industry. ABC performs well
interms of modularity, integrability and diagnosability, but performs poorlyinterms of
real-time execution, while FBD performs wellin terms of modularity, integrability and
real time execution, but not in terms of diagnosability and does not support dynamic
memory allocation.

The Agent Based Control (ABC) approach is the de facto standard for controllers for
Reconfigurable Manufacturing Systems. However, due toindustry'sreluctance toadopt
ABC, an object-oriented programming (OOP) approachis consideredinthisresearch as
an alternative. OOP is more widely used and has many capabilities that are valuable
whenimplementing an RMS.

Sections 2.6 and 4.4 have shown that ABC's advantages can be decisive in complex,
highly dynamic systems requiring autonomous reconfiguration. However, in simpler
systems and systems where timing and sequencing is important, OOP will have
significant advantages. For CBI, the industry partner of thisresearch, the advantages of
OOP exceed that of ABC, primarily since autonomous reconfiguration and emergent
behaviour are not high priorities in their situation, while OOP provides better
integrability with hardware.
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5 Control Software Implementation

This chapter describes the implementation of the station control software and how OOP
principles were utilized for defining holon classes, with referencesto C# features that
are useful whenitcomesto designingacontrollerforan RMS.

5.1 Controller functional requirements

The hardware that is controlled by the station controllerincludesthe robot, the gripper
that is attached to the end effector of the robot, the buffer, and the poles that are
moving through the station. The pallets which are transported to and from the station
are not controlled by the station controller directly, but rather by a separate conveyer
controller. The station controller nevertheless needs to be aware of the pallets’ contents
and locations. The following are the main functions of the station controller:

e The station controller must be able to receive product information, pallet
information and orders from the cell controller.

e When orders are placed the station controller must ensure that the
corresponding products are assembled as soon as possible and attempt to
complete all orders before their desired completion date.

e Source palletsfilled with tested, unriveted poles mustbe received on the one
conveyer, whereas stacked assemblies must be placed into destination pallets
containingriveting fixtures on another conveyer.

e Polesmustbe obtained either from the source pallets orfromthe bufferand get
stackedintoa riveting fixtureon one of the destination pallets.

e Unused poles mustbe transferred tothe bufferuntil they canbe usedata later
stage.

e Pallets must notbe moved by the station controller directly but messages must
be sentto the cell controller, to request that pallets are being moved away once
no longerin use.

e The cell controller must be notified when orders have been completed or are
overdue, whenrequiredinformation is missing, when pallets are to be moved
away or in case of errors or warnings.

e The cell controller must be informed of the IDs of poles that have been matched
to forman assembly.

e The status of various aspects of the system should be displayed on a human-
machine-interface. The station controller must be able to processinput received
from the operatorviathe HMI.

5.2 Control architecture

To optimally utilize the robot and to achieve the highest possible throughput rates,
which should be aimed for at a station-level, one would traditionally opt for a
centralized approach. However, due to some poles failing at the electrical test station in
an unpredictable pattern and due to the unpredictable arrival time of pallets, the
stacking stationis constantly subjected to disturbances, which are betterhandled when
holons have a higherlevelof autonomy, i.e. when a heterarchical approachistaken. To
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achieve optimal throughput rates while also having the flexibility to react to
disturbances, ADACOR was chosen as the architecture which can dynamically adapt
between ahierarchical and heterarchical structure.

ADACOR consists of the product, task, operational and supervisor holons. In addition,
some staff holons have been adopted from the PROSA architecture.

The operational holons were used to represent anything physical that had to be
managed. Product holons were Task holons were driving production

A supervisorholon was required to ensure optimal execution of competing task holons.
If several task holons, each with a local view, were to individually try and get theirorders
completed as quickly as possible, the system would be at risk of becoming congested
and urgentorders might be completed too late. Without supervision congestions could
occur when all fixtures on the destination pallets were occupied by partially stacked
assemblies of which none could be completed due to missing poles. Thesecongestions
could eventually lead to the buffer reaching its full capacity and bring the station to a
complete halt. Supervisor holons were thus required to prevent those congestions and
alsoto handle any poles onthe source pallets forwhich none of the task holons would
take responsibility and transferthose poles to the buffer.

Due to the failure of some poles in the preceding test station, the products will take
different routes through the station so that task holons will keep interacting with
different operational holons. Attimes, poles will have to be retrieved from the buffer,
and when several source and destination pallets are each holding poles meant for
differenttypes of products, then possible interactions between the various holons could
be manifold. A heterarchical approach was therefore needed in conjunction with
supervision.

Holons of the ADACOR architecture proposed by Leitdo and Restivo (2006) have the
ability tolearn. This functionality however was notimplemented in the currentresearch
sinceitcouldresultinunpredictable behaviour occurring suddenly afteralong time of
normal operation and CBI would not be comfortable with this. This feature would
further make the system unnecessarily complex without adding much value. Onstation-
level relatively few devices are to be controlled and hence humans would be able to
easily identify the changes required when a new type of disturbance occurs, for which
holons with alearningability would not necessarily find as good a solution. Holons were
therefore programmed to continuously operate according to a predefined set of rules
until those rules would be redefined by ahuman.

Figure 20 showsthe interrelationships between the different types of holonsas well as
some of the communication between the station controllerand the cell controller.
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5.3 Separation of tasks among multiple threads

To ensure near-real time execution of the hardware and to minimize robot idle time,
time-critical processes and CPU-intensive tasks or asynchronous tasks were run in
separate processes.

As shownin Figure 21, three different processes were run, eachinits own thread:

e The GUI had to be in its own thread since it could hamper the execution of
hardware processes whenever major updating (refreshing)istobe done on the
userform.

e Sendingandreceiving of XMLmessagesover Ethernet had to be dealtwithinits
own thread since TCP/IP communication happens asynchronously and would
otherwise produce delays of unpredictable duration.

e Allthe holons, including the supervisor holon were runinthe stackingstation’s

main thread.
:Ethernet thread: ! Main thread '+ GUl thread
i Communicator static HMI class i
'| Receiving Message User events !
i distribution i |
i Holons | | Updating _ !
[ Sending Messages _ labels !
I"—|E4deposited —*| Updati '
! . Event lists —pp ating i
: __in outbox : ‘_ text boxes |
- Information written by only FIEO Thread-safe concurrent queues
one thread multiple threads read & write

Figure 21 Memory shared among various threads

Although “autonomy of holons” could referto all of the holonsrunningthe entire time
on separate threads and communicating with one another asynchronously, this
approach was not taken forthe stacking station. Instead, all holons were runningonthe
main thread only since all of the stacking station’s hardware would always be controlled
sequentially, neverin parallel. Although, forexample, pallets could be moving while at
the same time the robot isin motion, the pallets would not be controlled by the stacking
station controller directly. The station controller would only send a corresponding
command to the conveyercontroller when a palletisto be moved.

By havingthe various task holons all runin turns on the same thread, onlyone of them
would try to book resources at a time. Had they been running on separate threads
quasi-simultaneously, task holons could potentiallyundermineone another’s plans by
booking certain resources which othertask holons would require to complete atask.

Although with this approach holons are only active when given their turn, they are
nevertheless autonomous since they used all the information they had available to make
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all decisions themselves without having to passinformation ontoa higherlevel and ask
for advice. The supervisor (discussed in section 5.5.5.1) made no decisions on their
behalf, other than deciding on the optimal order in which they are to be activated to
achieve highest possible throughput rates.

To ensure safe operation between the threads, inherently thread-safe queues had to be
used from the .NET libraries (System.Collections.Concurrent.ConcurrentQueue<T>),
which act as a first in first out (FIFO) buffer. The Enqueue() method is used to add an
element to the end of the queue. Adding elements will generally be a successful
operation, even when multiplethreads are working on the same ConcurrentQueue. In
contrast, removing elements is not guaranteed to be a successful operation when
multiple threads are busy working with the same ConcurrentQueue. Toremove the first
element of a queue the TryDequeue() method must be used, which returns the
requested elementif successful, or null when unsuccessful.

Thread-safe FIFO buffers shared amongthe threads are indicated in yellow in Figure 21.
They include the inbox and outbox which allow holons to communicate asynchronously
over the Ethernet. Thread-safe FIFO buffers were also used for lists of events for the
eventlogtextboxes (discussedinsection 5.5.1).

A static class called 'HMI' was used to allow the station controller thread and the GUI
thread to share information such as userinputor the status of hardware. To output the
status of task holons or operational holons, event logs were stored inside the above
mentioned thread-safe FIFO-lists within the main thread, and removed within the GUI
thread.

Each class which was to be run in a separate thread had amongst others, a Run() and
Terminate() method. The Run() method would be executed inside a thread of its own
and would loop as long as that object’s run-flag is set. The Terminate() method can be
invoked publically and, when executed, un-sets that run-flag. By thisapproach threads
can be “asked” by other threads to safely finish the current iteration and thereafter
terminate. Aflow diagramindicating how the threads are initiated and interact with one
anothercan be foundin Figure 33 in AppendixB.

5.4 Inter-holon communication

Sinceitwas decidedtoletall holonsrunonthe same thread, the ability to communicate
asynchronously was not required, except when communicating over the network.
Simple method calls are therefore sufficient for communication among holons on the
same thread. Using method calls means that the calling holon will have to wait for the
called holon before being able to continue its execution. A communicator holon
(discussedin section 5.5.7) was developed to handle asynchronous communication over
Ethernet. Holons could simply deposit messages into the communicator’s outbox and
immediately continue with their actions without having to wait for a reply, since the
communicator would deal with the message from that point onwards and will then
forwardthe replyitreceivedtothe correspondingholon.
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Methods which needed to be invokable by other holons were declared public whereas
methods which were to be encapsulated and hidden from other holonswere declared
private or protected. Where appropriate, interfaces were used to enforce standardized
signatures for methods on certain types of holons. Using method calls, it is generally
very intuitive for the programmer to know how holons are to be called. For example,
when information is requested from a product holon, the product holon will simply
return a reference tothe requested information if available, ora null pointer otherwise.

C# has a keyword this, which can be used by holons to pass referencestothemselves to
other holons as an argument forming part of a method call, or as a return value. When
for example an operational holon agreesto provide acertain service to a task holon, the
operational holon would use this to pass a reference to itself to the requesting task
holon. Atsome laterstage the task holon can thereby easily get hold of the operational
holonthat agreed to offerthe service.

5.5 Responsibilities and functionalities of the various holons

Usinginheritance and polymorphism, the various holons running on the station have all
directly or indirectly been derived from a generic holon, as shown in Figure 22 below.
The various types of holons are discussed in the sections that follow. As part of the
discussion, some features on the graphical user interface, shown in Appendix A, are
referredto.

Object
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Figure 22 Inheritance hierarchy

5.5.1 Generic holon

The genericholon was declared an abstract class and given the following properties that
allthe holons would inheritregardless of theirtype: name, holon-type and timestamp.

The name property contains a description of the holon, forexample “pallet 7” or “KUKA
KR16-2 robot”. As holons perform actions or detect problems their activity is being
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recorded andlogged in chronological orderinan eventtextbox onthe HMl as shown in
Figure 23. To allow the operator better insight into their activities, some event log
entries are accompanied by their names. The event textbox was implemented since
havinga good insightinto the sequence of events can drastically simplify diagnostics.

The holon-type property is used to distinguish the different types of holons from one
another. Fora cleareroverviewinthe event textbox described above, holons produce
their event logs in a unique colour which is determined by their type. On the rightin
Figure 23, it can further be seen how those events can be filtered by selectively muting
the activities of certain types of holons.

Otherthan forthe eventtextbox, the name propertyisfurtherused as the sender-field
when constructing XML messages, as will be described insection 5.5.7. Another use of
the name property comesinto play withinthe file handling class. To allow reverting back
to previously taught configurations, certain holons have to store and retrieve settings on
the hard drive. Beingable to use the holons’ names made itan easy task to retrieve the
correct settings foreach of the holons.

Stacking Station Event Log

Order |0 currently being stacked:  Laver currently being stacked: 1
[00:0507] Pick up: pos5  [Pallet O ot workspace 2] (096, 2239 158] (0, 0,07
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[00:06:08] Placing: pos1  [Pallet 7 at workspace 0 [109.107, 49.8, 15.51] (07, 0%, 0°) Superyisar
[00:06:02] Layer 1 has been stacked: TrplePole_1 54 3ms +7

[00:06:09] Pick up: pos 4 [Fallet 1 &t work space 2] [B9.6,139.9,15.8] (0°, 0°, 07)

[00:06:09] Placing: pos 1 [Pallet 7 at workspace 0] [109.107, 49.8, 28,317 (0°, 0%, 0°)

[00:06:09] Layer 2 has been stacked: TrplePole_2 B4 3ms «7

[00:06:09] Fick up: poz5  [Pallet 1 at workspace 2) [B3E, 223.9.15.8] (0", 0", 0°)

b I

Halon Ingtanhiation

Figure 23 Station event log simplifies diagnostics. Holon activity can selectively be muted.

Within the genericholon’s constructor method, the current systemtime isstoredin the
timestamp property which effectively records the instantiation time of the holon. This
allows the age() method to determine the total running time of any holon and can be
usedto detectif, forexample, apallet or poleisstagnantinthe system for much longer
than the norm. The constructor method further lets the holon announce itself in the
eventlog, unless “Holon instantiation” (Figure 23) is unchecked, or when that particular
type of holonis set to be mute.

All derived holon classes inherit those properties and methods of the generic holon.
However, polymorphism makes it possible forthe derived holon classes to override the
inherited methods and to define additional properties and methods. To let the
constructor of the derived class extend the constructor of the parentclass (i.e.tore-use
the functionality of the parent constructor while possibly adding more functionality in
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the derived constructor), the base keyword is placed directly after the constructor’s
header. Using this concept, new instances of derived holon classes would automatical ly
announce themselves when their constructor method was called, but had the option to
perform additional actions uponinstantiation.

Abstract classes cannot be instantiated. Yet classes which are derived from an abstract
class can be instantiated as long as they are not abstract themselves. This means an
object of type “Holon” cannot be instantiated, whereas for example an object of type
“Stackingtask holon” (non-abstract) could be instantiated.

5.5.2 Productholon

The purpose of the product holons is twofold. Firstly, to help the task holons with
planning the execution of their processes, by specifying the sequence of events that
must be scheduled by the task holonsin orderto get products produced; andsecondly,
to provide the operationalholons with process knowledge, i.e. the machine parameters
required by the physical devices in order to make the product according to
specifications.

For this purpose, two types of product holons were defined for the stacking station,
both of which have been derived from the abstract product holon:

The first type is a partinfo product holon which contains product information about
individual parts, such as the thickness and dimension of a particular part (e.g. pole), and
the coordinates where the partisto be picked up, relative toa reference point. This is
the information that the product holons share with the operational holons.

The second type of product holon contains an AssemblyRecipe which contains an
ordered list, where each entry of the list specifies a part required along with the
orientation and coordinates where that part has to be placed. Thisrecipe isshared with
the task holons.

The product holons do not perform much decision-making, but serve mainly as
information-servers. When the requested information is not availableinside the product
holons, then the inquiring holon will receive null as a reply and the product holon will
request the missinginformation fromthe cell controller. The latter only happensifsuch
arequestwas not already sentinthe past 15 seconds to preventthe cell controller from
being flooded with requests for product information. For that means, the abstract
genericproduct holon was given an property to store the time of the last request.

Another property of the abstract product holon was the version number of the product
information it was holding. This allowed for gradual changes to be made to some
physical parts and assemblies and keepingtheirvirtual representation up to date, while
alsoaccommodating some olderversions of parts or assemblies that might still be used.

5.5.3 Operational holon

Operational holons of ADACOR are quite similarto the resource holons of PROSAwhich
represent the abstraction of production means and include, among others, machines
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such as robots, conveyers, pallets, components and raw materials (Van Brussel, et al.,
1998). For this reason, anything physical that needs to be managed was defined as an
operational holon, namely the robot, gripper, poles, buffers and pallets.

5.5.3.1 Generic operational holon

The abstract genericoperational holon has the Boolean property simulate which, when
setto true, lets only the virtual part of the operational holon execute. Inthis mode, no
actual hardware is controlled, and feedback from sensors is disregarded. Simulation
mode allows the developer to make changes to the software and run virtual tests
offsite, where no physical hardware is available. This reduces ramp-up time and eases
the impact of reconfigurations on ongoing production since a great part of testing can
happen on another controller without having to pause production. Furthermore,
reconfiguration costs are reduced by requiring fewer highly skilled personnel on-site.

Since there are no hardware-related delays in simulation mode, the virtual system can
be run at much higherspeeds which allows observing the long-term system behaviour
under certain conditions (e.g. where bottlenecks are most likely to occur or the effect of
disturbances) without actually having to wait that long.

55.3.2 Pole

Poles have the following properties: ulD, partNo, and versionNo.

partNo is the part number of the pole and conveys information about the pole’s type,
such as itsampere rating and for which layer (i.e. bottom, middle ortop) of astack it is
suitable, and what type of stack itis made for(e.g. triple pole of the QA-range).

versionNo specifies the version numberof the pole andis used toensure thatpoles are
onlyused fora stack when they are compatible with the other poles of the same stack.
When for instance an external feature of a pole would change, it might no longer
interlock correctly with other poles of that stack. Therefore, whenever an adjustment
was made to the design of a pole, itsversion numberwould be updatedto reflect that
change.

ulD stands for unique identifier and was assigned by the cell controller. To allow
traceability of each and every part which eventually ended up in an assembly, various
manufacturing details were recorded, in order to easily find the cause of a possible
problem. Along with the pole’s ulD, it was recorded which task holon was driving the
production, which operational holon has handled the pole, and into which fixture the
pole has been placed. When building stacks it is important to record which poles have
been puttogether. Should the end product be faulty, one willknow whichroutes were
taken by the individual parts.

5.5.3.3 Gripper holon

The code forthe gripperholonisshownin Appendix C. Grippers need the ability to open
and close theirjaws and, for diagnosticpurposes, the ability to sense whether the part
being picked up is properly gripped. The abstract generic gripper holon was therefore
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designed with three methods, namely open(), close() and sensePart() toprovide those
abilities.

Whengripperfingers are being exchanged with gripper fingers of different dimensions,
then the gripper needs to be brought closer or further away from the object being
picked up to compensate for the change in gripper finger length. Gripper holons thus
need to be aware which gripper fingers are attached to the jaws, which is why the
genericgripperholon was assigned two properties. The first property contains a list of
gripper fingers that can be attached to the gripper jaws, and the second property
specifies which set of gripperfingers out of that list is actually attached.

The Festo gripper holon was derived from the generic gripper holon. Since the air
control valve and the position sensor are controlled via the National Instrument DAQ,
the Festo gripper holon must know how to interface with the DAQ. For this purpose,
DAQin and DAQout classes were created which incorporate National Instrumentdrivers
for readingand writing digital signals from and to the DAQ. These hardware interfaces
serve asthe link between the operational holon’s virtual part and physical part. In Figure
20 they are therefore indicated by the yellow blocks which are lying on top of the station
controller boundary.

The withoutAir property was defined to allow the virtual part of the gripper holonto run
smoothly even when noairsupply is present. During ramp-up tests thisfeature can be
used to performdryruns,i.e.to letthe robot move to all the pickup and place positions
but without the gripper actually picking up and transferring parts.

5.5.34 Pole stacking robot holon

Since all robots, regardless of their type, are able to move to a specified location, an
abstract robot class with an abstract method moveto() was defined. Declaring an
abstract method in the base class forces all derived non-abstract classes to provide an
implementation forthat method, e.g. the moveto() method. Notall robots (e.g. painting
or welding robots) have the ability to pick up and place objects whichiswhy the generic
class does not provide methods to caterfor such functionality.

For the case study, a 6-DOF KUKA robot was used to stack poles, but for the sake of
reconfigurability it should be possible to use any other capable robot in its place. The
internal working of those robots would differ and should be hidden, but to enhance
integrability, the same standard interfaces to the outside world should be used by all
pole stacking robots. This allows for one robot to easily be swopped with another and
only the operational holon responsible for managing the new robot would need to be
programmed, while no reprogramming of other cooperating holons would be required.

To achieve integrability, an interface was written, containing two methods: pickup() and
place() which would be required by any pole stacking robot, regardless of its type. An
abstract pole stacker robot class was then derived from the genericrobotclass, and was
made to alsoinheritthe pickup() and place() methods of the abovementioned interface.
As an additional field a pole object was included to represent the physical pole being
held by the robot.
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From the abstract pole stackerrobotclass several types of robot classes canbe derived
which represent actual robots. For the case study, a (non-abstract) KUKA pole stacker
class was implemented, which further contained a Festo gripper holon and an RS232
classresponsible for serialcommunication with the robot.

An instance of the Festo gripper holon was encapsulated withinthe KUKApole stacker
holon, ratherthan havingthe gripperrun as a separate entity ofitsown. Thereasoning
behindthisisthatthe gripperand the robot work closely together, i.e.the gripper will
neveropenorclose unlessthe robotis motionless, and the robot will never start moving
until the signal from the gripper holon has confirmed that the partis properly gripped.in
otherwords, these two devices will never run concurrently, but always sequentially. This
encapsulation eliminates any direct communication between the task holons and the
gripper holons. The cooperation between the gripper and the robot are thus hidden
inside an operational holon and the task holons can always rely on using the interface
described above to get poles transferred.

Part of the KUKA pole stacker holon isrunning on the KUKA controller which has built-in
functionalities for handling various arbitrarily oriented coordinate systems, inverse
kinematics and procedures for calibrating workspaces. On-board the KUKA controller,
the coordinates fora limited number of calibrated workspaces (e.g. buffers and stopping
positions of pallets) and tools (e.g. grippers) can be stored.

To avoid unnecessary recalibration when reverting to a previously calibrated
configuration (e.g. reusing a previously used set of grippers), a history of calibration
coordinates must be stored for future reuse. The KUKA controller, however, does not
support dynamic memory allocation, but can only store a very limited number of
coordinates andistherefore unsuitablefor keeping a history of calibrated workspaces.
After calibrations, the coordinates are therefore retrieved and stored on-board the
station controller, which is capable of keeping a complete history of the calibration data.

The flow diagram for the KUKA Robot Language (KRL) code runningon-board the KUKA
controlleris shownin Figure 32, AppendixB. Workspace and tool calibration procedures
are describedin AppendixE.

5.5.3.5 Pole storage holon

Although the buffers and pallets used in this research are not equipped with any
actuators or sensors and therefore require no machine interfaces, they muststill have a
virtual representation sincethe polesstoredinsidethem need to be managed, aswell as
the slots into which poles can be placed. Somewhere it must be recorded which poles
are inside which slots, along with the coordinates of those slots. A pole storage holon
class was therefore defined containing a list for poles and fixtures to fulfil those
requirements. Buffer and pallet classes were both derived from this class since they
both contain fixtures/slots into which poles can be placed and fulfil very similar
functions.

The task holon (discussed in section 5.5.4), which is responsible for getting the poles
stacked, mustinteract with the pole storage holons to find available fixtures and to book
all polesrequiredforbuildingastack. The pole storage holons were therefore given the
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bookPole() and bookFixture() methods along with the releasePole() and releaseFixture()
methods, since bookings beingmade might sometimes needto getcancelled.

Wheneverarobot removes a pole orplaces a pole into a fixture, the pole storage holon
must update itsinventory list. Forinteractions with robot holons, the pole storage holon
class was therefore further given the methods takePole() and removePole().

Robots which interact with buffers or pallets need to know the location and orientation
(i.e. coordinates) of those buffers and pallets. The coordinates of the fixturesrelative to
some reference point on the pallet/buffer are stored in the pole storage holon. The
coordinate of the reference pointitself, however, is not stored in the pole storage holon,
but inthe robot holon that has to interact with the pole storage holon. The pole storage
holon only storesa workspace number (Figure 24) which it communicates to the robot
holon. The robot then maps the workspace number to the correct set of coordinates
which were stored on-board the KUKA controller when that particular workspace was
first calibrated. With this approach the pole storage holons can be left completely
untouched in case a robot is being exchanged with another robot. Only the new robot
would need to be calibrated for each of the surrounding workspaces, which cannot be
avoided.

Source Source

1 pallet a pallet Pole storage holons
are identified by their
workspace number

Buffer Robot

Destination
2 pallet

Figure 24 Robot contains coordinates of surrounding workspaces’ reference points

When for example apoleisto be picked up out of a pallet, the robot mustbe given the
coordinate of the pole relative to some reference point on the pallet along with the
workspace number of that pallet. The absolute coordinate to which the end-effector
must then move to is calculated on-board the KUKA controller which maps the
workspace numberto the calibration data, and adds the relative coordinate of the pole.

5.5.4 Task holon

The generictask holons were designed to process batch orders (i.e. multiple basicorders
of exactly the same type) and were given the properties described below.

The ID (i.e. unique identifier) is used to distinguish between orders. Also, whenever a
part is being handled, the process it underwent is recorded along with the ID for
traceability purposes.
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productType and version are properties which together are used to unambiguously refer
to the type of product to be produced, and are used when communicating with the
product holon.

The priority propertyis zero by default, butcan be set to a higherlevel toindicate that
the particularordershould be given preference above orders with alower priority level.

BatchSize and BatchCounter respectively refer to how many products need to be
produced fora batch order, and how many of them have already been completed.

CompleteBefore is the time by which an order ought to be completed and can be used
to determine the urgency of an order. In case orders become overdue, the cell controller
is to be warned. To prevent the cell controller from being flooded with warnings, the
time when the last warning was sent is recorded inside the lastTimeoutError property
and the next warningis only sentif at least 15 seconds have elapsed.

Lastly, the status property is used to store the current state of a (partially complete)
order.

5.5.4.1 Stacking task holon

A stacking task holon class was derived from the generic task holon class and contains
these additional properties:

The assemblyRecipe property represents a list of parts that need to be assembled in a
specified orderand also contains the coordinates to specify how and where those parts
are to be oriented and placed.

Since the poles are to be riveted after being stacked, they need to be placed into a
riveting fixture. Such a fixture must first be booked, for which the bookedFixture
property was designed which holds the reference to an available fixture on one of the
destination pallets.

The individual poles which are required to form a stack must also be booked before
stacking can begin. The bookedPoles property contains a list of references to pole
storage holons which hold the required poles. Rules have been set such that stacking
task holons will first negotiate for poles with the source pallet holons before trying to
obtain poles out of the buffers. By following these rules, poles would not be transferred
to the buffers unnecessarily, thereby utilizing the robot more efficiently.

Partially stacked assemblies which cannot be built to completion could congest the
system. Rules have therefore been set so that the task holons would not initiate the
stacking process unless the following requirements have all been met:

e Product holons hold all the information about the assembly to be produced as
well as all the information about the individual parts that the assembly is made
of.

e Afixture capable of holdingthe entire stack of polesisavailable on one of the
destination pallets.
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e All poles required for the assembly are already presentin the station, be it on
one of the source pallets orinside one of the buffers.

5.5.4.2 Typical sequence of events for a stacking order

Since task holons are the ones driving production, it is sensible to describe here the
sequence of events (Figure 25) that would typically play out from the placement of an
order until its completion. Several disturbances can happen to which the controller will
react differently, and the cell controller can send messages in any order which could
result in a different sequence of events. However, for the sake of this discussion itis
assumed that the cell controller has sent the messages listed below and that the
communicator (discussed insection 5.5.7) has already distributed the messages to the
various holons so that the stacking station holds all information required to complete an
order.

It isassumed that the cell controllerhas already sent the following messages:

e Placement for an assembly order, which will lead to the instantiation of a
stacking task holon.

e Notifications that two pallets have arrived: One containing tested poles and
another pallet with empty riveting fixtures. Two palletinstances will be created
due to these notifications: asource pallet and adestination pallet.

e Product information for the assembly for which an order has been placed. A
newly created assemblyRecipe holon will store this information.

e Partinformationforall the parts of the abovementioned assembly. One partinfo
holon will be created foreach part of the assembly.
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Figure 25 Sequence of events from order placement to completion of order

If several task holons are active on the station controller, the task coordinator will try to
optimize theirorder of execution, as described insection 5.5.5.1.

Since all task holons are running on the same thread, they will execute one by one. Once
atask holonsgetsitsturn, it will:

1. Try to obtain the assemblyRecipe from the corresponding product holon. For
this, the producttype and version numberare used asreference. The recipe is
not copied, only areference tothe product holonisstoredinside the task holon.
To get hold of the correct product holon, the task holon will initially direct its
guery to the product holon manager which contains a list of product holons.

2. For each part listed in the assemblyRecipe, it will ensure that the correct
partinfoisavailable.

3. A fixture will be booked on the destination pallet, which must be capable of
holding the entire stack.

4. For each part listed in the assemblyRecipe, the task holon will try to book that
pole from one of the source pallets, where possible. To get hold of a pallet
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holon, the task holon will initially direct its query to the pallet manager which
contains a list of pallet holons.

5. Ifnone of the source pallets are holding the required pole, the task holon will try
to bookit fromthe buffer.

6. Once all fixtures and poles have been booked, the robot can start stacking the
polesintothe fixture one by one.

a. In order to grip the pole correctly as indicated in Figure 16, the robot
holon requests the gripping coordinates from the partinfo holon.

b. After the pole is lifted out of its pickup-position and the gripper’s
proximity sensor has confirmed that the pole is properly gripped, the
pole will be de-registered with the pole storage holon.

c. Once the pole has been placed into the riveting fixture, it will be
registered with the destination pallet.

7. Therobot confirmsthata pole has beenstacked, and the task holon updates the
state of the order.

8. Upon completion of anorder, the cell controller will be informed aboutthe ID’s
of the matched poles. The task holon will then be disposed of.

9. Ifany source pallet becomes empty orif any destination becomes full, arequest
issentto the cell controllerto transport the pallet away and the pallet holon will
be disposed of.

To prevent partially stacked assemblies from congesting the system, the task holons
would only start the stacking process once all required parts are available along with the
part information. If, during the booking process any fixture or pole cannot be booked,
thenall those resources which have already been booked are being released again, to be
used by anotherorder.

5.5.5 Supervisor holon

The supervisor holons have been implemented to allow scalability, to prevent
congestion, to ensure an orderly mannerof executionin an attemptto achieve optimal
throughputrates, and to help with the instantiation of some of the basicholons.

Next, the responsibilities of the task coordinator, product manager, pallet manager and
buffermanagerare discussed.

5.5.5.1 Task coordinator

The task coordinator fulfilled the role of a supervisor holon. It was implemented to
ensure an orderly manner of execution in an attempt to achieve optimal throughput
rates

Transferring poles to and from the bufferis generally an unproductive robot manoeuvre
which should be avoided where possible. By letting the task coordinatordetermine the
orderin which task holons execute, buffer utilization can be reduced resultinginhigher
throughput rates.

The task coordinator periodically sorts the tasks according to their priority, urgency and
complexity. More complex tasks (i.e. assemblies consisting of many parts) have a smaller
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chance of havingall required parts available at the station at any given stage, and should
therefore be addressed first. Since sortingis nota very CPU intensive process, the task
coordinator can be run in the main thread without causing noticeable delays of the
hardware.

Usingthe task coordinator, some form of adaptive control is achieved: Within each cycle
the control architecture alternates between being centralized and being heterarchical:

At the beginning of each main cycle, when the task coordinatordecides onthe orderin
which task holons should be executed, the task holons need to pass their local
information ontoa higherlevel, sothat decisions can be made at that higherlevel. This
istypical for hierarchical or centralized control architectures.

However, after the task coordinator has finished the sorting algorithm, the system
switches back to heterarchical control. All holons then make decisions themselves based
on theirlocal viewin orderto effectively handle disturbances (e.g. poles having failed
the electrical test, missing productinformation, pallets of which some are unsuitablefor
a giventask, etc.).

Besides determining the execution order of the task holons, the task coordinator also
counts the total number of orders and conveys this numbertothe cell controller upon
inquiry. When several stacking stations are working in parallel, the cell controller can
then decide to place further orders with the stacking station which has the fewest
pendingorders.

5.5.6 Staff holons

Staff holons assist the basic holons with their tasks. In particular, they provided
information that was required during the instantiation of new holons.

5.5.6.1 Product manager

When the cell controller provides product information, it is the responsibility of the
product manager to prevent multiple instances of the same product holon from being
instantiated.

Some of the messages sent by the cell controllerare directed towards particular product
holons directly and will be treated by those holons themselves. Otherproduct-related
messages which do not have a particular recipient will be processed by the product
manager. Upon request from the cell controller or the operator, the product manager
can also provide a list of all available productinformationin astructured way.

5.5.6.2 Pallet manager

Whenever pallet-related messages are sent overthe network, only the pallet ID is sent
along as a reference. To reduce communication overhead, the pallets’ fixture
coordinates are not sent along with the message but are stored on-board the station
controller. Upon arrival of a pallet, the pallet manager uses the pallet ID to load the
fixture dimensions forthe newly instantiated pallet holon.
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Initially, only the cell controller contains the fixture coordinates forall the palletsin the
factory. As pallets arrive at the station for which the coordinates are not known yet, the
pallet manager will obtain those coordinates from the cell controller and store them
locally. This approach enhances the robustness of the station. In case the cell controller
would go offline forawhile, the stacking station can continue its operations since it can
rely on the local copy of the palletinformation.

Within the stacking station each transverse conveyeron which a palletcanarrive has a
unique workspace number which is used by the palletstointeract with the robot. Since
those workspace numbers are forinternal use only, they cannot be provided by the cell
controller butare provided by the pallet manager.

The pallet manager periodically performs checks to see if a pallet can be sent away.
Whenevera palletarrives with poles, task holons will try and use as many of those poles
as possible for their orders. Some poles cannot be used straight away since they are
meant to form part of a stack of which other poles are still missing (e.g. due to failing
the electrical test). The pallet manager will then arrange forthose unclaimed poles to be
transferred to the buffer so that the pallet can move along and give way for the next
pallet.

5.5.6.3 Buffer manager

The buffer manageris a staff holon. During reconfigurations when the system is scaled
up byadding new buffers, the buffer manager provides unique workspace numbers for
each of the buffers, to be used ininteractions with the robot.

Furthermore, whenever the total capacity of all the buffers combined reaches a
utilization level of 75%, 90% or 100%, the cell controller will be notified.

5.5.7 Communicator holon

The communicator holon was developed to allow holons on the stacking station to
communicate with the cell controller and other collaborating stations (forexample the
conveyeroradditional stacking stations that might be workingin parallel). Itcontains a
TCPcomm class which handles asynchronous communication over network sockets. The
TCPcomm class contains a mailbox, whichin turn consists of aninbox and an outbox.

Otherholonsonthe stacking station that wish to communicate with the cell controller
deposit their messages in the communicator’s outbox. Messages which are received
over the socket are deposited in the communicator’s inbox. The inbox and outbox are
thread-safe FIFO buffers. They are being accessed by the communicator’s Run() and
ProcessMessages() methods which are running on two separate threads. The flow
diagrams for these methods are shownin Figure 34 in Appendix B.

The Run() method runs continuously in its own thread and is responsible for
asynchronously sending and receiving XML messages overthe network socket. When a
holon places its message in the outbox, it will be converted to XML and the
communicatorwillimmediately attemptto sendit. The message willtemporarily remain
in the outbox and will only be removed once receipt thereof has been confirmed. If
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receipt is not confirmed within 15 seconds after sending, the message will be resent
repeatedly with increasing time intervals (i.e. after 30, 60, 120 seconds, etc.) until
eventually receipt has been confirmed.

Shouldthe connectionto the cell controllertemporarily be lost, messages will be sent
through after the connection has been re-established. In the meantime, the station
controller could run out of tasks but will not fail. By lettingthe communicatorensure all
messages eventually get through tothe intended recipient enhances the robustness of
the controller and shifts this responsibility away from the basic holons to the
communicator holon.

The ProcessMessages() method runs periodically onthe mainthread andisresponsible
for forwarding the messages fromthe inboxto the local holons. Since the messages are
received in XMLformat, they must be converted to a formatappropriate forthe holon.

Converting pallet, product and task holons to XML messages, and vice versa,ishandled
by the communicator only. When for example a pallet is to be sent away and the cell
controller must be informed of its contents, then the communicator receives a pallet
holonwhichit convertsto an XML message. Likewise, when the cell controller places an
orderas an XML message, the communicator must convertittoa task holon.

It was decided to keep the conversion responsibility with the communicator only, and to
not introduce XML to any of the other holons. If one would later on decide to use an
alternative to XML, only the communicator’s code would need to change while leaving
all other holons untouched.

In C# the System.Xml.Ling library can be used to easily constructand parse XElements.
The XML message structure that was agreed upon by the members of the research
group is shown in Table 5 in Appendix D. The type of messages that the station
controllercan send and expecttoreceive are listed in Table 6and Table 7 in AppendixD.

5.6 Conclusion

This chapter discussed the detail softwareimplementation of the controller. The chosen
control architecture is ADACOR which incorporates the task, operational, product and
supervisor holon classes. To this architecture, the communicator holon was added to
facilitate communication between the cell controller and holons on the station
controller. To evaluate the station controller in terms of reconfigurability, a series of
reconfiguration experiments were carried out which are described in the next chapter.
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6 Evaluation

To be able to evaluate the performance of the stacking station controller, asmall scale
laboratory setup was builton which a variety of tests have been carried out. First some
of the rudimentary procedures that would be needed for many of the reconfigurations
are described, followed by the actual reconfiguration experiments, such as product
changeovers, scaling up, readjusting the system, etc.

The basic hardware based procedures include: calibrating the gripper’s sensors, the
gripperfingers and the workspaces surrounding the robot. Software based procedures
include:the creation of holons on-the-go, and the programming of new type of holons.

6.1 Experimental setup

The setup that was used for the experiments in the research laboratory is shown in
Figure 26. Some compromises had to be made due to limited space and resourcesin the
automation laboratory which resulted in the following differences between the ideal
factory layout and the experimental setup:

\EI
conveyer

Riveti g
fixtures

servingas
destination
[ENIES

b

Transverse
conveyer with
buffer A . | positioningunit

Figure 26 Stacking and buffering station experimental setup
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Only one conveyer, with one transverse conveyer was used. A second transverse
conveyerwasimitated by a positioning unit on the main conveyer which allowed precise
and repeatable positioning of the second source pallet from which poles could also be
picked up. Instead of a second conveyer carrying the destination pallets with riveting
fixtures, those fixtures were directly mounted onto a table to play the role of the
destination pallets.

Table 2 liststhe componentsthat were used forthe experiment along with their model
number and the suppliers, where applicable. The circuit breakers used for this case

study were supplied by CBI.

Table 2 Components used for experiment

Conveyer Bosch Rexroth TS 2plus

Transverse conveyer Bosch Rexroth EQ2/TE

Positioning unit Bosch Rexroth PE 2-320/320

Pallets Bosch Rexroth 320x320

Fixtures Custom-made n/a

Grippers Custom-made n/a

Buffer Custom-made n/a

6-DOF robot KUKA KR 16-2

Air control valve Festo CPE10-M1BH-5L-MS

Parallel gripper Festo DHPS-20-A

Gripper proximitysensor Festo SMT-8G-PS-24V-E- 2,5Q-0OE Prox.
sensor

Data acquisition device National Instruments | NI USB-6525

USB-to-serial interface MOXA Uport 1410
Development software Microsoft .NET Visual Studio 2012 for .NET with C#
add-on

6.2 Aspects to measure for reconfiguration

The following aspects were considered/measured:

e Timerequiredforcalibrating hardware.

e Timeforfirsttime configuration.

e Levelsof expertise required.

e Timeand effortrequired forrevertingto a previously taught configuration.
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e Ramp-uptime (teststhatare to be runto confirm system works fault-free after
reconfiguration).

e Throughputrate, and impacton throughputrate.

e Whichsoftware and hardware components need to change forreconfiguration.

e  Which parts of the system must be tested during ramp-up before one can gain
certainty that the systemruns without complications.

e Impact thatreconfiguration has on ongoing production.

6.3 Calibrations

Certain types of reconfigurations would require (re-)calibration of robot workspace
coordinates (or workspaces for brevity), tools or sensors. Sensor calibration could be
done withoutrequiring arestart of the controller, aslongas the controlleris paused. On
the otherhand, tool and workspace calibrations require that the controlleris completely
offline and must be restarted afterwards.

For reconfigurations, when a previously defined tool orworkspace istobe reused, the
station controller would also need to be restarted although no calibrations would be
required. When reverting to previously taught configurations, it would take an unskilled
operatorlessthan 30 seconds to selectthe tool or workspace settings fromadropdown
liston the GUI (Figure 30 in Appendix A).

All of these calibration procedures can quickly be taught to an operator. No
programming skills are required but for tool and workspace calibrations the operator
should have basicknowledge of the KUKA system.

First-time calibration of tools, workspaces and the sensorare discussed next.

6.3.1 Tool calibration

In the context of the KUKA controller, a tool is anything that can be attached to the
robot’s end effector, for example grippers or machining tools. The KUKA controller can
store tool data for 16 differenttools. Each set of tool data contains a description of the
tool and a coordinate. The latter is defined as the vector from the centre point of the
robot’s flange to some reference point on the tool. The reference point on the tool is
known as the tool centre point (TCP). Afteratool has been defined and the robot istold
to move to a certain coordinate, it will be the TCP that is brought to the specified
coordinate, and any rotation will happen about this TCP.

Since grippers are more expensive than gripper fingers, one would opt for exchanging
onlythe gripperfingersratherthanthe gripper when anew type of circuitbreaker is to
be handled. For this discussion, ‘tool’ therefore refers to the exchangeable gripper
fingers, which are attached to the gripperatthe robot’s end effector.

As mentioned, calibration data for 16 different tools can be stored on-board the KUKA
controller. Therefore, 16 different tools can be interchanged at any time without
requiring calibration, aslong as they have been calibrated before and can be attached to
the robot’s end effectorin a repeatable way (e.g. usingsome form of alignmentsuch as
dowel pins).
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When new tools are introduced, they will first need to be calibrated using the 4-point
XYZ approach described in Appendix E. Calibrating a tool and storing a copy of the tool
data on-board the station controller takes 11 minutes. This would require a technician
whois familiar with the KUKA, but the technicianis notrequiredtohave programming
skills. Physically exchanging gripper fingers takes 5 minutes.

6.3.2 Sensor calibration

After a product changeover, the parts that are to be picked up may have a different
width, thereforethe gripperfingers may have to be exchanged and the proximity sensor
on the gripper may have to be readjusted. AppendixE gives more details. The sensor is
digital, meaning that it can only produce two distinct signals: true or false. The sensor
should be positioned such that a true signal is produced when the pole is properly
gripped and a false signal otherwise.

The sensor calibration procedure is described in Appendix E.1, and takes about 4
minutes to complete. After one pole was picked up and the correct signal sensed, then
all other poles of the same range will produce the same signals sincetheyareidentical.
Furthermore, the gripperfingers are equipped with dowel pins, so that reattaching them
will get them into the same location they have been in before. No ramp-up tests are
therefore required afterthe sensorhas been recalibrated.

6.3.3 Workspace calibration

A workspace is defined by means of a plane with a certain orientation lyingina 3D space
within reach of the robot. It defines where hardware, which the robot needstointeract
with, is located and oriented relative to the robot. For the pole stacking robot,
workspacesthusrefertothe location of the bufferand the positionsonthetransverse
conveyers where pallets come to astop.

Workspaces are calibrated using the 3-point approach described in Appendix D.3. It
takesabout 15 minutesto calibrate aworkspace and transferthe calibration datato the
station controller.

6.4 Reconfiguration tests and measurements

6.4.1 Testing robustness of network communication

To be able to test the stacking station in its entirety, a basic cell controller was
developed which could perform tasks such as placing orders and providing the station
controller with product and palletinformation. Appendix A shows a screenshot of the
cell controller’s user interface. The cell controller was run on a separate computer so
that network communication could be tested. For this purpose, the same communicator
holon (discussed in section 5.5.7) that was developed for the station controller was
effortlessly reused forthe cell controller. Onlynetwork settings such as the IP address,
port numberand a recipient’sname had to be specified.

To put the communicator’s abilities to the test, the stacking station was given several

tasks to complete along with the productinformation required to complete those tasks.
The cell controller was then intentionally disconnected to prevent messages from the
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station controller from getting through. Inthis disconnected state, the station controller
continued to execute all tasks for which the required parts were available and tried to
informthe cell controllerof its progress. Afterawhile the connection was re-established
and shortly thereafter all the messages which the station controller had tried to send
came through without any message gettinglost. This showed thatthe holons canrelyon
asynchronous communication overthe network.

6.4.2 Addinga similar buffer

Anotherbufferwasaddedtosee how the system performed interms of scalability. Due
to limited resources, asecond buffer was not physically built. Instead, the existing 18-
slot buffer was used to serve as two separate identical buffers, of which each consisted
of 9slotsas shownin Figure 27.
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Figure 27 Buffer added to demonstrate scalability
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The second bufferwasinternally represented as a pole storage holon which required a
unique workspace number, which the buffer managerassigned toit. The coordinates of
the slotsrelative tothe chosen reference point (see Figure 27) had to be obtained from
the buffer’s CADfile which took about 10 minutes.

The additional bufferformed an extraworkspace thatthe robot had to interact with and
therefore had to be calibrated. Aswas already described in section 6.3.3, this procedure
takesabout 15 minutesforwhich the controller must go offline.

As aramp-uptest, a few polesshould be placed into and picked up out of various slots
of the added buffer. This test would ensure that the correct reference point was used
whenthe coordinates have been obtained from the CAD file and that the workspace has
been calibrated accurately. The ramp-up test together with the foregoing calibration
procedure will cause production to be interrupted for about 40 minutes.
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6.4.3 Customization test

Customization refers to a product changeover where the new product is part of the
same product family that has been catered for previously and therefore requires no
additional functionality. In the context of the case study, this means that only stacking
and buffering capabilities were required by the new product. However, different
parameters hadto be used for some of the hardware.

When a different circuit breaker model has to be manufactured, then the individual
parts it consists of would be different to that of other models. Likewise, different
knowledge is required for the assembly process. The fixtures capable of holding the
different parts would also be differentand would therefore be on other pallets.

Figure 28 shows a pallet with products that were already known (type A) and a pallet
with a new type of product (type B) that had to be introduced to the station controller.
The new poles that have been used were physically the same poles as those used before
but were represented as a different type of pole by rotating the pallet on which they
arrived by 90°. This rotation made it appear as if the pallet itself was different too.
Further, fortype B poles, the fixtures had different coordinates relative to the pallet’s
reference point and type B poles had different pickup coordinates relative to those
fixtures.

Since poles of type B have different pickup coordinates (indicated by the turquoise
markers in Figure 28), new partinfo product holons were needed to store their pickup
coordinates. New assemblyRecipe product holons wererequired to hold information for
assemblies that make use of type B poles.

Pallets carrying type B poles have their fixtures arranged differently relative to the
reference point (bottom left corner) of the pallet. New pallet holons for the source and
destination pallets were therefore required with different sets of fixture coordinates.

Lastly, new stacking task holons were needed which, when an order for type B
assemblies has been placed, would ensure that the assemblies were being produced
accordingto the planinthe assemblyRecipe holon.

Y A
Type) |Type, |Type
B B B
Type) [Type) Type
B B B
X

Figure 28 Pallet turned 90° to represent new type of product
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The new information regarding part info, assembly instructions and the pallets’ fixture
coordinates was delivered by the cell controllerin XMLformat, and the stackingstation
controllerdynamically instantiated the corresponding partinfo holons, assemblyRecipe
holons and pallet holons. Whenever a pallet arrived with type B holons, then pole
holons have beeninstantiated torepresentthose poles. Assoonasan order had been
placedfortype B assemblies, a stacking task holon was created to drive the production
for type B assemblies.

Since type B assemblies required no additional functionality, no changesto the station
controller software were required to accommodate the new product. For this reason,
and because all of the abovementioned holons were instantiated dynamically, the
station controller did not need to be restarted. The information for type B poles
nevertheless had to be fed into the system at the cell controller from where it was
distributed to other stations requiring that information (i.e. the stacking station). For
this purpose, a GUI for the cell controller (Appendix A) was developed, allowing the
operatorto specify the assemblyRecipe, and place orders for the new productand send
thisinformation over Ethernetto the station controller.

Since type B and type A poles were transported on pallets which arrived on the same
transverse conveyers, it was not necessary to define and calibrate new workspaces.
However, the fixtures on those pallets were arranged differently and therefore the
coordinates for those fixtures first had to be obtained from a CAD file so that the cell
controller could send the pallet information to stations which needed to interact with
those pallets (i.e. the stacking station).

Once the cell controllerhad all the part info, assembly instructionsand pallet info, the
system could seamlessly switch between type A and type B products without requiring
further human intervention since the station controller was able to handle
customization changes dynamically. If type B poles would have had a different pole-
width, thenthe sensoronthe gripperwould need to be re-calibrated manually, which
would take 4 minutes, but would require no special skills.

6.4.4 Throughput rate tests

To determine whether the system achieved the desired throughput rate of 1 pole per
second, and to determine which conveyer configuration yielded the highest throughput
rates, the throughputrates for three differentlayouts were measured. Forthese tests, it
was assumed that the destination conveyerwould neverformthe bottleneck, but that
the throughput rate could only be impacted by the source conveyer, which is the con-
veyer from which the robot had to pick up poles. Therefore, only the source conveyer
was configured for different layouts to determine the effect on the throughputrate.

The three layouts that were considered for the source conveyer are shown in Table 3:
using one transverse conveyer; using two transverse conveyers; and using a parallel
conveyer. For each of those three layouts, two different cases were tested, resultingina
total of six different scenarios. Forthe first case (reportedinblack), no poles had failed
at the electrical test station and the buffer did not need to be used but poles could be
transferred directly from the source pallet to the destination pallet. Forthe second case
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Table 3 Conveyer configurations yielding different throughput rates

Robot Throughput

Configuration Timing diagram
g g dlag utilization time per pole

a) One transverse conveyer
P 6 poles handled every 23.4 s _
waiting = = T - 42.2% 3.90s
Robot E A 1
ok — —
l | P 6 poles handled every 26.4 s -
in use P . 48.7% 4.40s
Robot E a 1
b) Two transverse conveyers B 12 poles handled every 23.4 s -
Pallet | e— s s anmsnnnnnnnnnnnnmnnns 84.4% 1.95 s
Pallet 2 cueassunsunnsnnnsunsnnnnnnnnsn
—_— ] - I =»> | Robot A 7 Z|
l | l | P 12 poles handled every 26.4 s ._
One pallet mOVe.Sina.nd OUt,While .. Pa”etl EEEEEEEEEEEEEEEEEEEEEEEEEEEER 97.4% 2.205
the other pallet is being offloaded & & Pallet 2 waesvesssssssssnnssanssnnnsas
‘ [ Robot E W7 7|
c) Parallel conveyer
6 poles handled every 14.5 s
pallets heading for another station Pallet  — v 68.3% 2.42s
— Robot g A
waiting in use _ 6poles handled every 17.4s
— R ___ R __ Pallet —oo " 73.6% 2.91s
o & o & Robot & .
o & o &
Pallet stationary Robot active when at least one pallet is stationary  Black — all poles are transferred directly from source pallet to destination pallet
........ Pallet moving —1 Robot idle when all pallets are moving Red —33% of poles are transferred to buffer and obtained from buffer
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(reported in red), 33% of the poles had to be transferred to the buffer and retrieved
from the buffer, while 67% were transferred directly to the destination pallet.

The main conveyerinthe laboratory only had one transverse conveyer but a positioning
unit located on the main conveyer was used to imitate a second transverse conveyer.
The parallel conveyer configuration could not be built with the available hardware and
the associated throughputrate could therefore not be measured directly. However, the
existing hardware configuration was used to measure the duration of various pallet
movementsand these measured values were used to calculate the throughput rates of
the other configurations and to construct the timing diagrams shown in Table 3.

The robot can only pick up poles from pallets which are stationary and aligned on a
positioning unit. When all six poles can be transferred directly from the source to the
destination pallet, it takes 9.89 seconds to unload a pallet. When only four of the six
polescan be transferred directly to the destination pallet, while the remaining two poles
have to be transferred to the buffer, and two other poles have to be retrieved from the
buffer, then it takes 12.84 seconds for the robot to unload a pallet. In contrast, it takes
13.4 seconds fora palletto move out of a transverse conveyerand a next pallet to move
in and become aligned. Since the overall pallet motion takes longer than the robot
motion, the robotisidle more than 50% of the time while waiting forthe next pallet to
move in (whenonlyone transverse conveyeris used). Itistherefore advisable to use a
second transverse conveyersothatthere can always be at least one source pallet from
which poles canbe picked upfrom.

The results show that when two transverse conveyers are used, the robot has to wait
the leastamount of time, which resultsin the fastest throughput ratesof 1.95 seconds
per pole. This is about half the speed that CBI requires. By letting another identical
stacking and buffering station work in parallel, the combined throughputrate wou ld be
fasterthan the desired rate of one pole persecond. The KUKA KR16 robot that was used
for these experimentsisabigrobotand consequently relatively slow. Smaller variants,
or SCARA robots, would be able to transfer poles much quicker. Toexploit the benefits
of a faster robot, more than two transverse conveyers should be used to ensure that a
pallet would always be ready for the robot.

6.4.5 Scalability test - adding another transverse conveyer

Forimproved throughputrates, the robot should always be able todowork (i.e. handle
poles) and neverhave to beidle while waiting for a pallet. Forthisreason, there should
be more than one source pallet within reach from the robot, so thatthe robot can pick
up polesfromthe first pallet while the second pallet simultaneously is movinginor out,
and vice versa. The laboratory setup only contained one transverse conveyer with a
positioning unit, but the main conveyer system was also equipped with a positioning
unit within the robot’s reach, which was used to represent the additional transverse
conveyer.

Changesthat had to be made to the software to accommodate the additional transverse
conveyer were minimal, since the controller was programmed to handle this type of
scalability from the ground up. It was only necessary to change the value of a variable
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that represented the number of stopping positions for source pallets, and to calibrate
the workspace forthe additional transverse conveyer on the KUKA. The newly calibrated
workspace coordinates were then transferred to the station controller by using the GUI
showninAppendix A. The controller had to be restarted.

6.4.6 Alterations to operational holon

For the initial implementation of the robot holon, the path thatthe end effector had to
follow was specified by a series of coordinates, which the robot had to accurately move
to. It was observed that the robot did not maintain full speed alongthe entire path from
the pickup to the place position, but slowed down significantly wheneverit came close
to any of the specified coordinates describing its path (blue line in Figure 29). For
optimal throughput rates, the robot should be able to transfer poles as quickly as
possible. Therefore, the robot holon was re-programmed such that the robot would
accurately visitonly the first and last coordinate of the path, while the other coordinates
alongthe path would be visited with some deviations, thereby allowing it to maintain
higherspeeds (redlinein Figure 29).

\ Reduced speeds when coordi

Pick up: nates Place:
p: have to be visited preusM

.E“ More rounded paths

Fixture allowfor higher speeds Fixture

Figure 29 Effects of path contour on robot speed

The KUKA controller has built-in capabilities for movements along rounded paths and
movementsto exact coordinates. To change the way the robot had to move, both halves
of the robot holon had to be changed. The part residing on the C# station controllerhad
to be able to send two different commands: one for sending exact coordinates to spedcify
the starting and end points, and another command for sending approximate coordi-
nates. The part of the robot holon which resides on the KUKA controller, hadto be able
to receive the additional commands viaRS232 and invoke the corresponding method on
the KUKA controller. None of the other holons required any changes.

This experiment showed that the rest of the station controlleris completely unaffected
by the change in the operational holon, and that holons can therefore be easily altered
independently from one another, which enhances modularity. Forexample, the KUKA
robot could have beenreplaced with aSCARA robot without effecting other parts of the
system.

6.4.7 Disturbance handling tests

The stacking station controller was programmed to inherently handle disturbances
arising from interrupted supplies of poles due to failures at the electrical test station.
Whenever poles arrive on pallets which cannot (yet) be used to build a stack, they are
transferred to the buffer. The following scenarios could all result in poles being
transferred to the buffer:
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e When the pole is useful for a placed order, but the other poles which are
neededtoforma complete stack have not arrived at the station yet. The “early”
pole must wait for matching poles butthe source pallet must be emptied to give
way for the next pallet.

e Whennone of the placed orders specifies the usage forthose poles.

e Whenallthe poles which togetherformacomplete stack have already arrived
at the station but the recipe which specifies how they must be stacked is notyet
available. The requestforthat recipe would have been sentto the cell controller
but the response to that request might be delayed because of a temporary
network fault orthe cell controller being over utilized.

e When poleshave arrived onthe source pallet but no destination palletis at the
station, or the fixtures on the destination pallet do not have the heightrequired
for the stack.

Whenever a pole is transferred to the buffer so that the buffer becomes full, an
appropriate message is senttothe cell controller.

Since the functioning of the station relied on Ethernet communication, the robustness of
the communication protocol had to be tested. The cell controller and stacking station
were both run, and the cell controller gave some orders to the stacking station. The cell
controllerthen was terminated. None of the messages thatthe stackingstation had to
send were lost but were keptin the outbox until the cell controllercame backonline. It
couldtherefore be concluded that the station controller could handle disruptions on the
network without requiring human intervention ora restart.

6.4.8 Ramp-up tests

To testwhetherworkspaces were calibrated accurately or not, poles have to be picked
up out of a pallet fixture, and brought to a known position on the buffer to see if the
polesfitwithoutinterference. Thistestshould be done foracouple of positions (say the
three or four corner positions, which are farthest apart). Once all four of those positions
have been confirmed to be placeable withoutinterference, thenitcanbe deduced that
the pick-up positionsinthe middle of the pallet would also be accurate.

To ensure the robot can reach all pick-up and place positions accurately without
collisions occurring, the system should be runin Ramp-up-test mode. Inthismode, the
critical coordinates of the pole-storage devices (such as buffersand pallets) are tested
for whether or not the robot can successfully remove a pole and put it back into that
position.

6.5 Results

The series of experiments have tested various aspects of the station controller. It was
shown that when hardware changes were required (i.e. for convertibility and scalability
tests) the controller must go offline and the technician must have KUKA and C# skills.
After such changes, ramp-up tests are necessary to ensure proper working before
resuming full-scale production. The system will be offline foratleastan hour to perform
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the controller changes and hardware calibrations, and ramp-up tests can take another
10 minutes.

Customization tests have shown that the system need not be restarted when a new
product is being introduced which is part of the same product family that has been
catered for previously and requires the same hardware functionality. The controller
could handle such customizations dynamically without humaninteraction ora restart.

Convertibility experiments, when reverting to a previously taught configuration, can
happenbya few mouse clicks, and need nottake longif the required hardware is still in
place and does not need to be re-calibrated. Nevertheless, the controller needs to be
restarted evenif the configuration has been used previously.

6.6 Recommendation for shorter reconfiguration times

For the hardware setup that was built forthe experiments, the gripper on the robotwas
equipped with only one digital sensor which could sense with certainty only the
presence of products of a certain width. If another product with a different width has to
be catered for, then the sensor needs to be readjusted, recalibrated, and thereafter
undergo a couple of ramp-up tests to confirm its proper functioning. To avoid this
unnecessary recalibration of the proximity sensor after each product changeover, two
approaches could be taken. One approach would be to install an array of proximity
sensors on the gripper which could sense the width of a larger number of products.
Another approach would be to use a single analogue sensor capable of reporting the
exact distances by which the jaws are apart. Using one of these approaches canobviate
the needfor manual sensor calibration and allow the system to seamlessly change over
to different products because the control software could use the positional data to
determine whether or not the poles have been picked up correctly. Furthermore, the
chance of human error can be reduced and consistent gripper behaviour can be
ensured.

6.7 C# evaluation

Using C#, beingahigh-level OOP language, made itan easy and intuitive taskto develop
the control software, and make alterations to it at a later stage. Automatic garbage
collection took a major load off the programmer and ensured that memory leakage
would notoccur as easily. None of the hardware that had to be controlled was causing
interfacing difficulties. DLL files supplied by automation vendors could be wrapped
inside a class and then reused easily. .NET libraries with built-in support for the more
rudimentary functionalities such as Ethernet communication, thread-safe linked lists,
XML handlingand userforms shortens development time and allows the programmerto
focus more on the application-specific tasks.

Some of the benefits of C#can be attributed to the fact that C# isan OOP language, and
therefore also apply toany other OOP languages such as Java, C++, etc. As discussed in
earliersections, OOP characteristics allowed for the intuitive implementation of holons.
Also, during reconfigurations, it was intuitive where changes to the software had to be
made, and software had to be changed only locally. Diagnosticfunctionalities built into
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the basic genericholon have helped drastically during the development phase already,
and alsoto pointout hardware errors in normal operation mode.

Encapsulation allowed hardware-specific drivers to be wrapped inside operational
holons, thereby hiding the implementation detail and providingastandardinterface to
the surrounding holons. This allowed for changes to be made to operational holons,
without affectingany of the other holons.

Having parts of the system run synchronously, while other parts communicate
asynchronously, enhanced the system’s robustness. The station controller could
continue operating without requiring human intervention even when the connection to
the cell controller has beenlost, orwhen the cell controller would be restarted.

Dynamic memory allocation allowed for the system to continue running while
performing reconfigurations for which no hardware calibration or changes to the control
software was required. For customization, where for new products only existing
functionalityis required, not havingto reprogram and restart the controller means that
ongoing productionis notimpacted atall, and that no human intervention was required
since the station controller was able to handle all the changes dynamically.
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7 Conclusions and Recommendations

The Agent Based Control (ABC) approach is the de facto standard for controllers for
Reconfigurable Manufacturing Systems. However, due toindustry's reluctance toadopt
ABC, an object-oriented programming (OOP) approach using C# was considered in this
thesis as an alternative. OOP is more widely used and has many capabilities that are
valuable when implementing an RMS.

The research has shown that ABC's advantages can be decisive in complex, highly
dynamicsystems requiring autonomous reconfiguration. However, insimpler systems
and systems where timing and sequencing is important, OOP will have significant
advantages. For CBI, the industry partner of this research, the advantages of OOP
exceed that of ABC, primarily since autonomous reconfiguration and emergent
behaviour are not high priorities in their situation, while OOP provides better
integrability with hardware. The learning curve for C# is not as steep as for ABC.

OOP concepts such as inheritance and polymorphism made it possible to efficiently
reuse code and to compartmentalize code, thereby enhancing modularity. When a
physical device is to be exchanged with another of similar capabilities, and the same
interfaces is enforced on the new holon, then the new holon can seamlessly be
integratedintothe rest of the code, and no otherholonsneedtobe reprogrammed at
all. All of the hardware that was used for the case study could easily be integrated since
C# has built-in supportforhardware interfacing and serial communication, unlike Java.
Java could have been used forthe core of the control software, but additional interfaces
would thenneedto be writteninanotherlanguage (such as C#) whereas when C# was
used fromthe beginning, then no otherlanguagesforinterfacing would be required.

Experiments have shown that reconfigurations such as customization canbe done with
no human effort at all as long as the physical hardware can cater for allthe needs of the
added products. Using C#, which is an OOP language, the system can easily be
expanded, since inheritance provides for code re-use. Further, interfaces allow for
integrability.

Object-oriented concepts make OOP languages well suited for imple menting holonic
architectures. Dynamicmemory allocation makes it possibleto caterfor any amount of
orders, resources or products without requiring changes to the code tobe made. Since
CH is a strongly typed programming language and very strict, the chances of
programming errors during development is very scarce. Multi-threading capabilities
allow hardware-critical processes to runin (near) real-time, while at the same time allow
asynchronous communication overthe network via TCP/IP.

It was found that when trying to debug code while running multiple threads, it becomes
difficulttosee which threadis runningin which part of the code.

The pre-defined objects designed for graphical-userinterfaces allow the developer to
effortlessly produce an HMI in a short amount of time. The reconfiguration tests have
shown that all six core characteristics of RMSs can be addressed using an OOP-based
controller.
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The system could successfully handle orders forsingle, double, triple- orfour-poles and
could use the buffer effectively when certain poles have failed the electrical testto pair
matching poles and assemble them to complete the desired order. Furthermore, the
controllerwas able to provide some diagnostictools and had the ability totrace poles,
and thisinformation can be used forfurther diagnostics.

Dynamic creation of holons made it possible to add as many holons as needed at
runtime. Having no fixed memory limitations makes the system more flexible for
reconfigurations.

For future research, diagnostic holons could be developed, which run the entire time
and use the data of traced poles to determine wherein the system possible faults could
lie.Onanotherthread, an optimizer can be run to prevent collisions betweenrobots in
case more than one robot is to be used within the same station. To reduce ramp-up
time, an automatic calibration device could be developed, such as an eye-in-hand
camera, to let the robot autonomously calibrate the workspace after equipment was
moved around on the factory floor. This would make itunnecessary forthe operator to
require KUKA skills.
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Appendix A - Human-Machine Interface screenshots

This section contains screenshots of the graphical userinterfaces that were developed forthe stacking station and the cell controller.
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Figure 30 Stacking station human-machine interface
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Figure 31 Cell controller human-machine interface

87



Stellenbosch University https://scholar.sun.ac.za

Appendix B - Flow diagrams

This appendix contains various flow diagrams that have been referred toin chapter 5.
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Figure 32 Kuka controller flow diagram
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Appendix C - Code for Gripper Holon

To give thereaderan idea of how the code was designed, the code forthe Festo Gripper
Holonis provided below. Since it has been derived from the genericgripperclass which
inturn implements the IGripperinterface, the code forthe interface and parentclass is
alsoshown.

Table 4 Code for Gripper Holon

interface IGripper

void Open();
void Close();
bool SensePart();

}

public abstract class GripperGen : OperationalHolon, IGripper  //generic
gripper
{
public GripperGen(string name, int type) : base(name, type) { }
public abstract void Open();
public abstract void Close();
public abstract bool SensePart();

protected Boolean CurrentlyOpen = false; //Boolean used to store the
state that the gripper is SUPPOSED to be in.

protected System.Collections.Generic.List<toolConfiguration> tools = new
List<toolConfiguration>(); //Holds coordinate of tool that was used to
calibrate bases

protected int selectedToolConfig; //0ut of the tools list, which entry
is being used

protected System.Collections.Generic.LlList<gripperConfiguration> grippers
= new List<gripperConfiguration>(); //Holds coordinate of gripper that is
attached to end effector

protected int selectedGripper; //0ut of the grippers list, which
gripper is currently mounted to the end effector

public toolConfiguration getSelectedTool()
{

return tools[selectedToolConfig];

public gripperConfiguration getSelectedGripper()
{

}

return grippers[selectedGripper];

}

public class FestoGripper : GripperGen
{
private DAQin sensor; //senses state of gripper
private DAQout actuator;//digital out for opening/closing gripper valve
private Boolean withoutAir; //Gripper holon continues with normal
operation even when valve is not supplied with air

public FestoGripper() //runs before UserForm is shown
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: base("Festo DHPS-20-A gripper", HMI.HolonType_RH)

if (FileHandling.FileExists(this)) //retrieve last used
configurations from HDD

string[] Lines = FileHandling.ReadAllLines(this);
int lineCounter = 0;
HMI.gripperOutputChannel_SelectedIndex =
Convert.ToInt32(Lines[lineCounter++]);
HMI.gripperInputChannel_SelectedIndex =
Convert.ToInt32(Lines[lineCounter++]);

int numGrippers Convert.ToInt32(Lines[lineCounter++]);
selectedGripper = Convert.ToInt32(Lines[lineCounter++]);
for (int t = @; t < numGrippers; t++)
{
grippers.Add(new gripperConfiguration(Lines[lineCounter],
Coord.toCoord(Lines[lineCounter + 1])));
lineCounter += 2; //2 lines of information per gripper in the

file
}

int numTools = Convert.ToInt32(Lines[lineCounter++]);
selectedToolConfig = Convert.ToInt32(Lines[lineCounter++]);
for (int t = @; t < numTools; t++)
{
tools.Add(new toolConfiguration(Lines[lineCounter],
Convert.ToInt32(Lines[lineCounter + 1]), Coord.toCoord(Lines[lineCounter +

21)));

lineCounter += 3; //3 lines of information per tool in the file
}
HMI.KUKA_tools = tools; //links tools on HMI form to tools within
gripper holon

}
}

public void Initialize() //runs as soon as user clicked Start. Writes
user selected values to configuration file and initializes DAQ I/O's

{
string lines = HMI.gripperOutputChannel_SelectedIndex + "\t\t;DAQ:
Selected Output channel\r\n" +
HMI.gripperInputChannel_SelectedIndex+"\t\t;DAQ: Selected Input channel”;
lines += "\r\n\r\n" + grippers.Count() + "\t\t; number of grippers" +
"\r\n" + selectedGripper + "\t\t; currently attached to end effector"”;
foreach (gripperConfiguration gripperConfig in grippers)

{
lines += "\r\n\r\n" + gripperConfig.description + "\r\n" +
gripperConfig.offset.ToString();
}

lines += "\r\n\r\n\r\n;======= TOOLS ==================\pr\n" +
tools.Count() + "\t\t; number of tools" + "\r\n" + selectedToolConfig +
"\t\t; currently selected";

foreach (toolConfiguration toolConfig in tools)

{
lines += "\r\n\r\n" + toolConfig.description + "\r\n" +
toolConfig.ToolNumber + "\r\n" + toolConfig.TCP.ToString();
}
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FileHandling.Write(lines, this);

//values for HMI.gripperOutputChannel & HMI.gripperInputChannel are
obtained from GUI before Start button is pressed

actuator = new DAQout(HMI.gripperOutputChannel, "gripperJawControl™);

sensor = new DAQin(HMI.gripperInputChannel,
"gripperPositionSensing");

if (HMI.simAir) return;
if (SensePart()) //If the gripper is holding a pole while the station
is powered on,

CurrentlyOpen = true;
Close(); //let the grippers hold on tight, to prevent pole
from slipping out
HMI.log("ERROR", "An unknown pole seems to be gripped by the
gripper. Please remove", this);
if (!'HMI.simMode)
while (SensePart()) ; //wait for operator to remove pole from

gripper
}
Open(); //0Open up the jaws to prevent collisions when picking
up the first pole
}
override public void Open()
{

if (CurrentlyOpen) //If gripper is already open, but again sent
command to open
HMI.log("WARNING", "Consecutive calls for opening the gripper have
been made", this);
HMI.gripperStatus = "open";
CurrentlyOpen = true;
if (!HMI.simAir && !HMI.simMode) //Don't activate hardware when in
Simulation mode or no air supply
actuator.write(true);
HMI.HWlog("Gripper opened");

}

override public void Close()

if (!CurrentlyOpen) //If gripper is already closed, but again sent
command to close
HMI.log("WARNING", "Consecutive calls for closing the gripper have
been made", this);
HMI.gripperStatus = "closed";
CurrentlyOpen = false;
if (!HMI.simAir && !HMI.simMode) //Don't activate hardware when in
Simulation mode or no air supply
actuator.write(false);
HMI.HWlog("Gripper closed");

}

override public Boolean SensePart()
{
Boolean GripperHalfway = false;
if (HMI.simMode || HMI.simAir)//When in Simulation mode or when
testing without air supply:
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return !CurrentlyOpen; //assume gripper always manages to pick
up parts as intended
GripperHalfway = sensor.Read();
if (!CurrentlyOpen && GripperHalfway)
HMI.gripperStatus = "Item MIS-GRIPPED!";
HMI.HWlog("Gripper closed halfway: " +
Convert.ToString(GripperHalfway));
return GripperHalfway;
}

}
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Appendix D - Inter-station messages

Appendix C contains information relating to the messages that were interchanged
between the stacking station and the cell controller.

Table 5 XML message structure for inter-station communication

<Message>
<Recipient>
Intended recipient of message
</Recipient>
<Sender>
Sender of the message
</Sender>
<Port>
Number of the port through which the message has been sent
</Port>
<Type>
Type of message
</Type>
<CID>
UniqueID of the conversation of which the message forms part
</CID>
<Msg>
Message content
</Msg>
</Message>
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Table 6 Type of messages that the station controller can receive

PlaceOrder

PalletArrive

PalletAway
Palletinfo

Productinfo

ReqReportStatus

When the cell controllerplaces a (batch) order.

Indicates that a pallet has arrived, and conveys information as to
whatitemsare loadedinto which position of the pallet.

To confirmthat pallet has beentransported away.

Contains the fixture coordinates of a pallet. To reduce
communication overhead, usually only the pallet ID is used as
reference for the above three commands. When the fixture
coordinates of a particular palletare notknownyet, butare needed,
the stacker will requested them first.

Information regarding assemblies or their parts.

Request to report on status, for diagnostic purposes and for
scalability purposes: If several stacking stations were working in
parallel the cell controller would place orders with stations that have
the smallest workload. Or when a lot of failures occurred at the e-
test, then those pallets with the most irregularities can be sent to
the station which has the most available space inthe buffers.

Table 7 Type of messages sent out by the station controller

OrderComplete

SendPalletAway

OrderOverdue

RegPole

ReqProductinfo

BufferCap

TaskCount

Inform the cell controller of the ID’s of poles being matched.

When all fixtures on the pallet have beenfilled, the pallet can be sent
away. The cell controllerisinformed of the exact pallet contents, i.e.
which products are placed into which positions of the pallet.

A warning beingsentwhenan ordercould notbe completed within
itsdesired completiontime.

When a pole for an orderis needed but not present at that station, it
will be requested by the task holon in need of that pole.

When an order has been placed, but the corresponding product info
isnot yetavailable onthe stacking station, it will be requested.

Warns the cell controller that the buffer is getting full and that its
capacity has reached a percentage of 75%, 90% or 100%.

Notifies the cell controller of the number of pending orders on the
station controller.
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Appendix E - Calibration procedures

Some of the reconfigurations require calibration of hardware. Those procedures are
describedinthissection.

E.1 Calibrating the proximity sensor

When a new part with a different widthis to be picked up, thenthe sensors should be
re-adjusted to output the correct signals. True should be signalled wheneverthe part is
properly gripped and false otherwise, such as when the grippers are completely open or
completely closed (i.e. when the part has not been properly gripped).

The sensoris equipped with an LED which turns on when the proximity sensorgives out

a true signal.
Steps:
1. Letthegrippersgripthe productin the properway.
2. Loosenthe screw of the sensor.
3. Adjustthe position of the sensoruntil the LED comes on while the product is still
being held.
4. Tightenthe screw to fix the sensorposition.
5. Openthejawsand remove the product.
6. If the jaws are almost completely open or almost completely closed while the

product is held properly, it could happen that the region being sensed as
“gripped” overlaps with the region being sensed as “fully open” or “fully closed”
due to some tolerance of the sensors. To ensure that the sensor does not give
out a high voltage when the jaws are completely open or completely closed,
move the sensora small distance away fromthe incorrectly sensed position by
repeating steps 1-5above until three distinct positions can be measured.

Sensor which can be moved

to anywhere in the slotto
sense a specific position

Figure 35 Adjustable proximity sensor
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E.2 Calibrating tools, such as the gripper

On-board the KUKA controller, dimension-data for 16 different tools can be stored
inside anarray called TOOL_DATA[].

When calibrating the gripper fingers (the “tool”), make sure the jaws are in a fully
opened position. Chooseareference point atthe edge of the fingertip. When a certain
tool is selected, the reference point will become the tool centre point (TCP) and any
subsequent rotations will be executed about that point.

1.

Place an object with a sharp point at a fixed position within close reach of the
robot.

On the KUKA controller, terminate any running programs and navigate to
Setup > Measure > Tool > XYZ 4-Point.

Selectthe index of the TOOL_DATA array inside whichthe tool coordinates are
to be stored and specify aname for the tool.

Use the X, 1Y, +Z, +A, +B, and #C buttons on the pendant to move the end-
effector and let the reference point on the tool only just touch the tip of the
sharp object.

On the pendant, select “Measure” and “Continue”.

Repeatsteps 4 and 5, approachingthe tip from four different directions, which
should all be different”to one another.

On the pendant, select “Accept” to store the data.

The procedure may be cancelled at any stage by selecting “Cancel” on the
pendant.

On the station controller, select “Add new tool” and follow the instructions on
the screen. Thisisto ensure thatthe settingsfilefor the gripperholon reflects
the correct tool index chosenin step 3. Recording such changes allowstorevert
back to a previously calibrated tool during any future reconfigurations.

IM

* The bigger the difference between the lines of approach, the more accurately the
controllerwill be able to calculate the relative position of the reference point.

The tool calibration procedure described above takes about 10 minutesandadding the
tool to the range of tools on the controller (Figure 36) takes another 30 seconds.

Add New Toal ==

Tool description:  Aluminium grippers for Qé-range v.1

Toolindex on KUEA: (T012- [1-16] element of toal_datal] array halding coordinate

Mo coordinates received pet. Click button to the left

| Discad || AddTool

Figure 36 HMI for adding a new tool
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E.3 Calibrating workspaces such as the buffer, and pallets

The XYZ 3-pointmethodis used to define aplane unambiguously inthe 3D space:

On-board the KUKA controller, dimension-data for 32 different workspaces (planes) can
be storedinside an array called BASE_DATA[].

Some reference point on the workspace should first be chosen whichwill serve as the
origin of the plane, and with respect to which the CAD dimensions can easily be
expressed.

Also, a previously calibrated tool must be attached to the end effector

1.

On the KUKA controller, terminate any running programs and navigate to
Setup > Measure > Base > 3-point

Select the index of the BASE_DATA array inside which the workspace
coordinates are to be stored and specify aname forthe workspace.

From a list, select a previously calibrated tool which is to be used for the
workspace calibration procedure. This tool must also be attached to the end
effector.

Use the #X, 1Y, +Z, A, B, and *C buttons on the pendant to move the
reference point on the tool (the TCP) to the reference point of the workspace
(the origin of the plane).

On the pendant, select “Measure” and “Continue”.

Move the TCP to any point on the positive X-axis of the plane and select
“Measure” and Continue”.

Move the TCP to any point on the plane which has a positive Y-value, and Select
“Measure” and “Continue”.

On the pendant, select “Accept” to store the data.

On the station controller, select “Add new workspace” and follow the
instructions on the screen. This is to ensure that the settings file for the
corresponding operational holon reflects the correct workspace indexchosenin
step 2. Recording such changes allows to revert back to a previously calibrated
workspace during any future reconfigurations.

The workspace calibration procedure takes about 12 minutes to complete.

Add a Mew Workspace EI@

Workspace name:  Transverse conveyer 2 [added 2015-07-27)

Base index on KIUKA: |28 [1-32] element of base_data[] aray holding coardinate

| Dizcard | | Add workspace |

Figure 37 HMI for adding a new workspace
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Addingan entirely new workspace onto the station controller(Figure 37), takesabout a
minute, and defininganew configuration foran already existing workspace (Figure 38)
takes 2 minutes.

Adding another configuration forworkspace 2 "Source pallet” EI@

“'ou are about to add anather configuration for workspace "Source pallst”
Itz coordinates must be stored on the KUKA in BASE_DATA[24]
If pou have calibrated the new base already and stored the coordinate on the KIUES in BASE_DATA[24], vou can skip stepz 1 to 4:

1. Terminate ary program that might be running an the KUEA

2. Select: Setup > Measzure > Baze » 3-Point

3. For Baze Mo. choose 24 and leave the Base system name as is

4. Follow the instructions on the KUKA pendant to calibrate the new position of the workspace and make sure the coordinates are saved

5. On the KUKA, start running the program "RG_stacker.zre' in T2 mode

E. Click on "Retrieve Coordinate"

7. Fillin a description far the workspace

2. If you want to add the work space configuration ta the list, select "Add configuration ta list"”

9. The operation can be cancelled at any time [Click Discard] - then no new configuration will be added to the list.

Deszcription for workspace;  Transverse conwewer 1 (added 2015-07-05)

Select tool uzed for calibration: 10 - Aluminium grippers for La-range .1 - | Add new kool |
Mo coordinates received pet. Click button ta the left | Cloze gripper |
| Digcard | | Add configuration to list |

Figure 38 HMI for adding new workspace configuration
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