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Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at
room temperature by femtosecond transient absorption spectroscopy in the visible spectral range.
The complex spectrally overlapping transient absorption traces of single crystals were systematically
deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were
identified including singlet exciton fission into two triplet excitons. Fission is generated through
both, direct fission of higher singlet states S, on a sub-picosecond timescale, and thermally acti-
vated fission of the singlet exciton S; on a 40 ps timescale. The high energy Davydov component
of the S exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of
triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867696]

. INTRODUCTION

For more than half a century polyacene crystals, such
as naphthalene, anthracene, tetracene, and pentacene have
been prototypes for the investigation of the basic elec-
trical and optical properties and processes of many or-
ganic semiconductors.'»> Within the past decade special
emphasis was given to crystalline tetracene (Tc), which
has been used as the active semiconductor in developing
novel organic electronic devices including ambipolar or-
ganic light emitting transistors (OLETSs),? organic field-effect
transistors (OFETs),*”’ and organic solar cells (OSCs).%’
In order to understand the fundamental electronic proper-
ties and their dynamics upon photo-excitation steady state
absorption,'%!? emission,'*!3-1® photoemission,'” and tran-
sient absorption'82 spectroscopy studies on both Tc crystals
and Tc polycrystalline thin films have been used.

The relevant electronic excitations in polyacene crystals
are the lowest singlet (S) and triplet (7 ) Frenkel excitons be-
low the electronic transport gap and charge transfer excitons
with total spin quantum numbers S = 0 and S = 1 for singlet
and triplet excitons, respectively. Both, singlet and triplet ex-
citons are excitations of the crystal unit cell containing two
translationally invariant molecules. Singlet and triplet exci-
tons have the ability to diffuse through the crystal during their
lifetime, thereby transporting their excitation energy. The ra-
diative 71 — Sy transition to the Sy ground state is spin for-
bidden. Therefore, lifetimes of 7) in all polyacene crystals
are orders of magnitude longer compared to lifetimes of ;.
Due to the van der Waals interaction of the two translation-
ally invariant molecules in the unit cell all these excitons ex-
hibit Davydov splitting (DS).'% 226 The DS for the 0-0 vibra-
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tional band of the optically allowed transition S; <— Sy with
polarization normal to the ab plane of the Tc crystal is about
0.08 eV.!0-12

A further unique optical property generating interest in
the development of photovoltaic cells is singlet exciton fis-
sion. Singlet fission in tetracene is a radiationless process,
in which one singlet exciton on a tetracene dimer decays
via an intermediate multiexciton state into two triplet ex-
citons (Fig. 1), which subsequently diffuse apart.”’-?® Sin-
glet exciton fission (SEF) is spin allowed since the two re-
sulting triplet excitons initially emerged from the same sin-
glet state.””-2%31 SEF is known to exist in Tc crystals as a
very fast process since decades.”’-?%3% It has also been ob-
served in crystalline anthracene,*® polycrystalline Tc'3-2! and
pentacene thin films, and single crystals.?>2%:33-35 Covalently
linked Tc dimers have also exhibited SEF but with very low
triplet exciton yield.*® A condition for the occurrence of SEF
is that the energy of the first excited singlet state must be
at least twice that of the first excited triplet state, i.e., E(S})
> 2E(T)), at least at temperature T = 0 K.2” This condition
is readily met in pentacene but for Tc the process should be
thermally activated since E(S;) — 2E(T)) ~ —0.2 eV.?%3437
However, recent time resolved two-photon photon-emission
experiments on tetracene crystal surfaces suggest an entropy
driven singlet fission process through a multiexciton state:
S, — ME —2T1,."7

An application of singlet exciton fission relies on the su-
perior diffusion length of the generated triplet excitons and
the potential to surpass the Shockley-Queisser limit for sin-
gle junction photovoltaic cells by a factor of 1.5 if the excess
solar energy photons above the band gap are converted into
more than one electron-hole pair per photon.*¥*' This poten-
tial has led to an increased research focus on how SEF oc-
curs in Tc!82227:37 and pentacene (Pc).?*2?%? The opposite
process, exciton fusion of the two triplet excitons forming a

© 2014 AIP Publishing LLC
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FIG. 1. Singlet fission schematic. (1) An Sj exciton state (left) is initially
excited in the tetracene crystal. (2) This exciton then shares its energy with
an adjacent ground state (right) and in the process two triplet excitons 7' are
created per absorbed photon.?’

singlet exciton can also occur. The formed singlet then un-
dergoes radiative relaxation to the ground state, referred to as
delayed fluorescence, the specific magnetic field dependence
of which acts as perfect proof of intermediate formation of
triplet excitons.'®2-28 Tc is an ideal material for femtosec-
ond time resolved studies of the interaction between singlet
and triplet excitons, since unlike pentacene, once the triplets
have been formed they can interact leading to their annihila-
tion and reforming back singlet excitons.

The main focus of our experimental work to be presented
in this paper was the study of the ultrafast dynamics of singlet
and triplet excitons, including SEF, in free standing Tc single
crystals by femtosecond transient absorption spectroscopy.
The transient absorption spectra were systematically decon-
voluted in order to identify excited and transition states, and
to follow their evolution on a femtosecond to nanosecond time
scale.

Il. EXPERIMENTAL

Tc single crystals were grown by horizontal physical va-
por growth*? under an inert gas atmosphere of 99.9999% pure
nitrogen. The material’s sublimation temperature amounts to
200°C at standard pressure. Platelets with extended (ab)-
facets and lateral dimensions of several millimeters up to
1 cm and thicknesses between 100 wm and 500 m have been
obtained. Figure 2(a) shows three examples of about 500 um
thickness. Furthermore, the high absorptivity of polyacene
crystals (of the order of 10° cm™! at the maximum of their
S1 < Sp absorption) requires very thin specimen for trans-

+ 4
+
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FIG. 2. Images of (a) Tc as grown crystal platelets of thickness ~500 um
on a blue square grid with 1 mm divisions and (b) a 300 nm thick Tc single
crystal supported on a copper wire mesh with squares of dimensions 150 pm.
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mission spectroscopy measurements. Therefore, the as grown
crystals were cleaved using a microtome and were supported
on a TEM copper wire grid with squares of lateral dimension
150 pm as shown in Figure 2(b).

Both steady state and transient absorption (TA) measure-
ments have been carried out under ambient condition at room
temperature on the same experimental setup which closely
follows the design described in detail in Ref. 44. The light
source for absorption measurements was a single filament
femtosecond white light continuum (WLC) generated by fo-
cusing a femtosecond laser pulse (ClarkMXR, CPA2101)
onto a 3 mm thick calcium fluoride (CaF,) crystal (laser pulse
duration ~150 fs, wavelength 775 nm, repetition rate: 1 kHz).
The CaF, crystal was continuously moved to prevent photo
damage and to ensure stability of the femtosecond white light
continuum. The generated WLC spectrum extended from
340 nm to the near infrared (NIR). The beam transmitted
through the sample was dispersed in a spectrometer (Andor
SR163) and detected at a 1 kHz rate with a 1024 pixel pho-
todiode array. Samples in solution were pumped through a
1 mm path length quartz cuvette.

For the transient absorption measurements, the sample
was excited by a pump laser pulse and the absorption of the
white light continuum was detected at a variable delay time.
The pump laser pulses are either centered around 387 nm
(fundamental laser pulse frequency doubled in a beta-barium
borate BBO crystal) or tunable between 450 nm and 700 nm,
generated in a non-collinear parametric amplifier delivering
30 fs pulses. Pump intensities below 4 GW/cm? were applied
in order to avoid nonlinear excitation, and to assure an ap-
preciable signal-to-noise ratio. This corresponds to a pump
fluence in the order of 100 pJ/cm?, which might induce a
nonlinear singlet deexcitation in the crystal, see below. The
pump beam was chopped at the rate of 500 Hz before over-
lapping with the probe beam at the sample position, resulting
in alternating absorption spectra of excited (pumped) and not
excited (unpumped) sample. Changes in the sample’s optical
density (AOD(A, t)) were then calculated. The time delay be-
tween the probe and the pump pulses was varied by moving
a retroreflector on a computer controlled delay line in the op-
tical beam path of the pump pulse. The temporal resolution
of the setup was ~200 fs, mainly governed by the duration
and accuracy of chirp correction on the WLC probe pulses.**
A Glan-Taylor calcite polarizer and an achromatic half wave-
plate in the laser beam path allow polarization control of the
white light. For the Tc molecules in solution a magic angle of
54.7° was set between the probe and the pump beams in order
to eliminate effects due to re-orientation of transition dipole
moments.*

lll. RESULTS AND DISCUSSION
A. Steady state absorption and Davydov splitting

Figure 3(a) displays the steady state absorption spectrum
(SSA) of Tc in toluene (concentration 4.7 x 10~° moles/cm?).
It reveals a vibronic progression of the S; < Sy transition,
arising from the collective C = C/C — C stretching mode*¢—
with energy of 0.17 eV. The center wavelengths of the



114501-3 Birech et al.
energy / eV
3z 3 2.8 2.6 2.4 2.2
03 1 1 1 1 1 1
| (a) Solution 0-0
0-1
0.2

Solution
to crystal
shift

°
P
1

1 —3g® (b) Crystal, 200 nm

optical density
L ]
o
1

s
o
1
P ™
W N =D
@ o N o
© o o

o
3
1

0.0

T o T o T ¥ T »—-‘,—
400 450 500 550
wavelength / nm

FIG. 3. Steady state absorption spectrum of Tc in solution (a) and the
200 nm thick single crystal (b). The spectra marked the S} <« Sy transition
(v = vibrational band). The solution to crystal shift is indicated. The crys-
tal spectra were measured at an interval of 8° rotation of an achromatic half
wave-plate which varied the polarization of the exciting optical field. Spectra
at some selected polarization angles are displayed in (b).

0-0, 0-1, 0-2, and 0-3 vibrational bands are displayed in Table
I and agree well with published data.

Absorption spectra of the 200 nm thick single crystal are
displayed in Figure 3(b) for different angles of polarization of
the exciting optical field within the ab-plane of the crystal (see
below). The solution to crystal redshift arises due to aggre-
gate formation accompanied by non-resonant interactions of
excited and neighboring ground state molecules.>?% Its value
ranges from 0.15 eV to 0.23 eV in the 0-0 vibrational band,
depending on polarization, as shown in Table .

The polarization dependence of the crystal spectra re-
veals the Davydov splitting (DS) which is a consequence of
overlap of the wavefunctions of the two translational invari-
ant molecules in the unit cell forming two dimer wavefunc-
tions with orthogonally polarized optical transitions. These
two bands, the high and the low energy Davydov components
in the S state, are excitable with optical fields polarized per-
pendicular and parallel to b axis of Tc, respectively.?® This
corresponds to the spectra labeled 56° (red) and 136° (cyan) in
Figure 3(b) giving minimum and maximum absorbance val-
ues in the 0-0 vibrational peak, respectively (the experimental

TABLE 1. Table giving the center wavelengths for the vibrational bands of
the S; < S transition in both, Tc in solution and Tc single crystals, Davydov
splittings (DS) and solution to crystal (SC) shift energy values.

Sample Pol. (0-0) (0-1) (0-2) (0-3)
Solution (nm) 474 444 418 395
Crystal 200 nm 1 b (nm) 503 472 444

|| & (nm) 519 477 443
DS (eV) 0.08 0.03 0.01
SC shift 1b (V) 0.15 0.17 0.17
SC shift b (V) 0.23 0.19 0.17

J. Chem. Phys. 140, 114501 (2014)

angle difference is not exactly 90° due to the large step size
used). The obtained DS energy of 0.08 eV from the lowest
vibrational band in §; compares well with those reported by
Tavazzi et al.'’ and Yamagata et al.'> implying that our sam-
ples do not get significantly modified during microtoming and
subsequent handling and storage.

B. Femtosecond transient absorption spectroscopy

Femtosecond transient absorption (TA) was employed to
study dynamics of photogenerated states in Tc in solution as
well as in Tc single crystals.

1. Tetracene in toluene

Figure 4 displays TA spectra of Tc in toluene between
390 nm (3.2 eV) and 570 nm (2.2 eV) for different times
after photo-excitation with a 150 fs pump pulse centered at
A = 387 nm and a rescaled steady state absorption spectrum
for reference. The TA spectra (AOD(X, 1)) display changes of
absorption with reference to steady state absorption.

The observed spectra are positive throughout the spec-
tral window, indicating a dominating broad band excited state
absorption (ESA). Comparison with the steady state absorp-
tion (SSA) reveals that the minima at 474 nm and 444 nm
are caused by the depopulation of Tc ground state (ground
state bleach). A similar spectrum was reported by Burdett
et al.'® The insert displays the TA spectrum after 10 ns: the
intense ESA around 418 nm (2.97 eV) has decayed, signify-
ing a transfer of excitation energy to low energy states, most
likely lying outside our spectral window or being of dark state
character. The radiative lifetime of S; in Tc solution was pre-
viously reported to be 23 ns.’® The dominant broad positive
signal detected within the temporal region of our experiment
was therefore due to S, < S; transitions.

A notable feature is a small maximum at 465 nm
(2.67 eV) appearing on a 20 ps time scale, which is even
more pronounced after 10 ns (see inset of Figure 4) indicating

0.020 |
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n 0.03 4 4
o 0.015 |-
<
o . / 465 nm BETEL
e 465 nm
8 002 4 A S S S
3] 420 440 460 480 500 520
2 : wavelength / nm
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FIG. 4. Femtosecond TA spectra traces of Tc in solution at different times af-
ter excitation. The signal is dominated by a broad positive ESA contribution.
Dips on this signal represent ground state bleaching (GSB) signals as they
are at exactly same positions as those of the steady state absorption (SSA).
A small maximum is noticed at 465 nm 20 ps after excitation and is more
prominent in the 10 ns trace displayed in the inset.
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FIG. 5. Proposed model to explain the observed signal attributed to the
T, < T transitions in the monomer 20 ps after excitation. The energy of
S1 was higher than 7, which then made ultrafast inter-system crossing more
probable competing with internal conversion. The broad positive peak must
be caused by S,, < S transitions as shown.

its long living nature. This maximum was situated where a
triplet-triplet absorption (7,, <— T;) was identified before by
Bensasson and Land et al.*’ through flash photolysis exper-
iments on Tc (termed naphtacene in Ref. 49) in benzene. A
possible explanation of this surprisingly fast triplet state pop-
ulation is dimerization or aggregation of Tc molecules which
then facilitate singlet exciton fission (SEF). Covalently linked
Tc dimers have previously displayed exciton fission but with
very low yields.?® If this were so, then the positions of the vi-
brational peaks in the SSA spectrum were expected to be red-
shifted relative to those established in literature,!?26:36.50.51
This however, was not observed.

A more likely explanation is an excited triplet state 7,
close to the first excited singlet state S;, which might facili-
tate the occurrence of an ultrafast intersystem crossing (ISC)
into the triplet manifold. The observed signal at 465 nm is
thus ascribed to either 7, < T transitions or 7,, <— T tran-
sitions assuming a radiative life time longer than our experi-
mentally accessible temporal window, while the broad ESA
signal (400-600 nm) was due to S, <« S; transitions (see
Figure 5). Burdett et al. have identified a triplet state with a
similar spectral feature at a delay of 20 ns.'®

2. Tetracene single crystals, 387 nm and 530 nm
excitation

Figure 6 displays the changes in optical density (AOD(2,
1)) of the 200 nm thick single crystal as function of probe
pulse wavelength (vertical axis) and temporal delay (hor-
izontal axis) after excitation with 387 nm, 150 fs laser
pulses. Red/yellow areas indicate increased absorption (ESA),
while blue areas represent decreased absorption (ground state
bleach, GSB or stimulated emission, SE). Green indicates no
absorption change compared to the steady state absorption
spectrum. The probe pulse is polarized || b axis of the (ab)
crystal facet. It is apparent that the different spectral compo-
nents in the TA spectrum strongly overlap. Therefore, a suit-
able deconvolution procedure must be applied. We reproduce
the TA spectra at every time step as a sum of Gaussian shaped
spectral components

G =Y (Ai x expl—((h — Ai0)/0:)*].

J. Chem. Phys. 140, 114501 (2014)
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FIG. 6. Map of the entire transient dynamics on the 200 nm thick crystal
displayed on a two-dimensional array AOD(2, t). The red/yellow bands rep-
resent wavelength regions of increased absorption (ESA) while blue bands
represent regions of decreased absorption (GSB) or stimulated emission (SE).

with variable amplitude A;, center wavelength A;, and width
o;. Figure 7 shows the signal at t = 1 ps and the result of
a fitting procedure with nine Gaussian components. Apart
from the amplitudes of these Gaussians, the parameters do not
change significantly when the fit is applied on traces at differ-
ent probe delays. The fit reproduces pretty well the general
profile of the transient spectra.

Each spectral component of the deconvolution corre-
sponds to a specific electronic transition, and is proportional
to its respective oscillator strength. These transitions can be
absorption of excited or transient states, ESA, which render
positive AOD signals, stimulated emission, SE, probing flu-
orescence channels rendering negative AOD, or again nega-
tive AOD proportional to depleted Tc ground state, labelled
ground state bleach GSB. The first step of the analysis is
the comparison of transient and steady state spectra, see
Figures 8(a) and 8(b). A positive signal in the steady state
(ground state) absorption spectrum, appears as a negative sig-
nal in AOD just after excitation. The remaining positive tran-
sient signals must then be due to ESA, the remaining negative
signals due to SE. The result of the deconvolution is given in

energy / eV
3 2.8 2.6 2.4 22

optical density change AOD

-0.02 4 individual Gauss
G1to G9
exp data
i sum of Gauss
. T ¥ T ) J '
400 450 500 550 600

wavelength / nm

FIG. 7. TA spectrum trace of the 200 nm thick crystal at 1 ps after excitation
deconvolved by fitting with a sum of Gaussians. The obtained fit reproduced
the general profile pretty well. The positions of the Gaussian peaks G1 to G9
are also shown.



114501-5 Birech et al.

energy / eV
3 238 26 2.4 22

1ps \

& =
3

-0.02 - Spe

| —20ps

" | =—200ps |

0.03 | ——600ps

-0.04 Ry —

T T T T T T T
400 450 500 550 600

wavelength / nm

FIG. 8. The femtosecond TA signal traces from the 200 nm thick crystal
pumped at 387 nm and probed with WLC polarized parallel to the b axis of
the ab plane of the crystal unit cell. The signal consisted of GSB, ESA, and
SE contributions. The GSB contributions at 444 nm, 478 nm, and 520 nm
were located at the positions of the vibrational bands in steady state absorp-
tion (SSA) spectrum displayed in the upper panel. A short lived (10 ps) stim-
ulated emission (SE) was observed at 533 nm. Long living excited state ab-
sorption (ESA) signals were observed at around 468 nm and 499 nm.

Table II with GSB signals identified, and SE and ESA still to
be interpreted.

3. Excited state absorption and singlet exciton fission

Transient absorption spectra at various times are dis-
played in Figure 8, demonstrating dynamics on different time
scales. We first focus on the dynamics and assignment of
the ESA signals at 468 nm (2.65 eV, G3) and at 499 nm
(2.49 eV, G5). Their temporal evolution is plotted in Figure 9,
black data points. Both traces show an ultrafast rise and de-
cay, followed by an increase on a 40 ps scale and a nanosec-
ond final decay. For quantitative analysis, we model the traces
with a sum of three exponential functions for the first decay
(1), the increase after the minimum (t,), and the final decay
(73). The initial ultrafast rise is assumed to be instantaneous
within the experimental temporal resolution. The fit is con-
voluted with a Gaussian function reflecting the instrument re-
sponse function with a width of 200 fs. The resulting traces
are plotted as red lines in Fig. 8, the respective time constants
and relative amplitudes are summarized in Table III. For in-
terpretation we recall that the Tc singlet exciton life time at
room temperature is about 145 ps®? unlike triplet excitons

J. Chem. Phys. 140, 114501 (2014)
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FIG. 9. The multi-exponential fit on the long decay dynamics (at around
468 nm and 499 nm) of the 200 nm thick crystals excited at 387 nm repre-
sented by the red line. The probe beam was polarized parallel to the b axis.

which live beyond ns.'®2!:2 The long life time 73, being sev-
eral nanoseconds, therefore suggests that the signal originates
from triplet absorption. Our ESA signal at 499 nm is there-
fore most likely due to 7,, < T, transitions. The signal at
468 nm displays similar temporal behavior and is attributed
to a higher vibronic state of 7,,. This assignment is supported
by femtosecond TA studies on polycrystalline Tc thin films
by Grumstrup et al. who ascribed the origin of an absorptive
feature at 496 nm (which is close to 499 nm in our crystals)
to the T state.?!

The temporal profiles of the triplet ESA signals are con-
sistent with the model where a large population of singlet
excitons is created in S, states upon excitation at 387 nm
(3.21 eV). These excitons relax on a sub-ps time scale via two
channels, by internal conversion to S; and by direct Singlet
Exciton Fission (SEF) via the multiexciton state ' (7} T} ) form-
ing 2 triplet excitons S, — YT\ T)) — 2T as schematically
depicted in Figure 10. The ME state is an optically dark in-
termediate state resulting from triplet exciton twin with over-
all singlet spin multiplicity.*”->> These initial S, relaxations
are thought to account for the rapid rise in the ESA signals.
If a dense population of 7' excitons is created soon after re-
laxation, then triplet exciton-exciton annihilation is probable.
The initial decay represented by t; (see Table III) is then
thought to represent this annihilation. This interpretation is
supported by varying the excitation fluence: since annihila-
tion requires the collision of two T excitons, a higher triplet
density accelerates annihilation.> ' The life time of the initial
ESA signal centered at 468 nm decreases from 4 ps to 2 ps
upon increase in fluence from 240 puJ cm™2 to 410 puJ cm™2,
respectively, and its amplitude increases more than linear with
the excitation fluence, see Figure 11, confirming the above as-
signment. A similar direct SEF process on a 300 fs time scale

TABLE II. The parameters used for the sum of Gaussian fits applied in Figure 7 for the 200 nm thick crystal.
The Gaussians were grouped into GSB, ESA, and SE signals.

GSB ESA SE
Gaussian Gl G2 G4 G3 G5 G6 G7 G8 G9
2o (nm) 443 450 482 468 499 508 533 549 565
o (nm) 7 11 12 14 13 8 15 9 35
A (au) —0.005 —0.008 —0.012 0006 0003 0034 —0.003 —0.002 —0.002
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TABLE III. The long decay dynamics exponential fit results for the crystals
excited at center wavelengths (A.x) 387 nm and at 530 nm and crystals of
thicknesses (x) 200 nm and 300 nm. A Gaussian response function of width
200 fs was used.

Aexc X ESA

(nm) (nm) (nm) T (ps) Tw2(ps) T(ps) Al Az Az
387 300 467 6 39 2000 0.08 002 —0.097
496 5 40 3000 0.03 0.04 —0.31
200 468 3 40 2000 0.07 0.006 —0.03
499 5 37 1000  0.04 0.022 —0.057
530 300 468 8 73 1000 0.04 —0.03 —0.03
498 14 72 1000 0.04 —005 —0.07

was recently proposed for Tc single crystals to explain a near
infrared feature in a fs transmission experiment.”” This re-
sult is also in agreement with what was reported by Burdett
et al. in polycrystalline thin films.'"” However, in thin poly-
crystalline Tc films two polymorphs might co-exist leading to
different time scales.”

The subsequent rise observed on a 40 ps timescale, see
Figures 9 and 10, represents an increasing triplet yield due to
thermally activated SEF S; + AE — (T,T;) — 2T;. Com-
parable values of 7, 7, and 73, describing the ESA sig-
nal’s temporal dynamics, are obtained for both the 200 nm
and 300 nm thick crystals excited at 387 nm, see Table III.
Thermally activated singlet fission has been reported to oc-
cur with a 37.5 ps time constant®! in polycrystalline Tc and in
50 ps?? in near infrared signatures of Tc single crystals. In sin-
glet fluorescence measurements, probing the loss of S; form-
ing Sy (prompt fluorescence) and 7 (delayed fluorescence),
the process has been reported to occur on 100 ps'®3* and
75 ps'®2! timescales in polycrystalline thin films, if the pump
fluence and thus the exciton density are sufficiently high to
support singlet-singlet exciton annihilation processes. These
time scales were approximately twice those obtained from TA
studies which on the other hand probes absorption from T}
states.

S

0

FIG. 10. A schematic showing the states involved in exciton fission with the
two Davydov states, high energy and low energy, in S; shown. The high en-
ergy Davydov state is close to the multi-exciton (ME) state ! (T T}). Exciton
fission occurs through two channels, one from S, — '(T1T}) occurring in
sub-ps timescale and the other through a thermally activated (AE) first ex-
cited singlet exciton fission S} + AE — W) — 2T, occurring on 40 ps
timescale. The two coupled triplet excitons in the ME (or optically dark) state
then diffuse apart resulting in two triplet excitons localized on individual
molecules. Then the observed ESA signal refers to the T, <— T transition.
Stimulated emission (SE) occurred from the vibrationally relaxed first excited
state, here thought to be the low energy Davydov state, on 8 ps timescale.
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FIG. 11. The influence of increase in excitation fluence on the initial de-
cay of ESA signal at 468 nm in the 300 nm thick crystal. The decay time
constant changed from 4 ps to 2 ps with increase in excitation fluence from
240 T em~2 to 410 uJ cm~2, respectively. The amplitudes were also seen
to increase.

The long living component might also originate from de-
fect states. Defect states, with the most common being dis-
locations, vacancies, or guest molecules, are known to trap
excitons.!>1® The exact signatures of their influence in TA
signals are debatable. The long living weak positive signal ob-
served after 20 ps at around 540 nm (see Figure 8) might be
attributed to absorption at defect’s excited states.

The temporal profiles of GSB signals given by traces G4-
482 and G1-443 are oppositely correlated with those of the
ESA signals so far attributed to absorption from the 7 state
(traces G5-499 and G3-468) in Figure 12. This indicates that
the bulk of the photogenerated excited states in Tc are indeed
triplet excitons.

The stimulated emission signal represented by trace G7-
533 displays two decay components, a fast one on a 8 ps
timescale, see Figure 12, inset and Figure 10, and a slower
component of about 200 ps. This SE signal is thought to em-
anate from the low energy Davydov state (2.39 eV, 520 nm
in the steady state absorption). The fast component might be

o

o

b
1

1

0.00 A

-0.01

optical density change AOD

-0.02 4

7 1 T T T T T
0 100 200 300 400 500 600

time t / ps

FIG. 12. The TA kinetic decay traces from the 200 nm thick crystal. The
traces obtained at 443 nm, 468 nm, 482 nm, 499 nm, and 533 nm representing
centers of Gaussians G1, G3, G4, G5, and G7, respectively, are displayed.
The ESA (G3 and G5) and GSB (G1 and G4) signal traces were long living.
The SE (G7) signal trace displayed an initial fast decay (10 ps) followed by
a slow one that lasted for about 200 ps. The inset shows the initial dynamics
within the first 30 ps after excitation. These signals are generated rapidly
(sub-ps) soon after excitation.
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FIG. 13. The TA kinetic traces obtained from the 300 nm thick crystal ex-
cited with pump pulses centered at (a) 387 nm and (b) 530 nm both probed
with white light continuum polarized || b axis of the crystal unit cell’s (ab)
facet. The ESA signals at 468 nm and at 498 nm for both excitations dis-
played similar initial (1) and final (73) decay dynamics as those of the
200 nm thick crystal. The subsequent rise (72) was however different in the
530 nm excited crystal.

attributed to a superradiant S; — Sy transition, as it was sug-
gested by Burdett ef al.'® for fluences above a certain thresh-
old. The latter component reflects the radiative decay of sin-
glet excitons in Tc single crystals and is comparable to earlier
reported 145 £ 50 ps.*?

So far the results discussed in this work involved only
387 nm (3.21 eV) excitation which accessed S, states and
therefore the extra energy needed to overcome the activation
barrier AE = 0.15-0.24 eV??>3*37 for SEF in Tc was read-
ily available, at least initially. This explained the sub-ps rise
in the Kinetic traces associated with 7,, <— T transitions. Vi-
brationally hot states of S; with a total energy above 2E(T))
undergo SEF as well.?!-3* If the excess excitation energy plays
a key role in ps dynamics (i.e., optically induced SEF), then
we would expect these to be sensitive to the photon energy of

0.5

-0.01

-0.02

optical density change AOD optical density

400 450 500 550 600
wavelength / nm

FIG. 14. The TA spectra traces obtained from the 200 nm thick crystal
pumped at 387 nm and probed with WLC polarized _Lb axis of the (ab) crys-
tal face. The signal is dominated by GSB contributions which lay at exactly
the same positions as those of the vibrational bands obtained from steady
state absorption SSA (upper panel).
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TABLE IV. Thermally assisted singlet fission time constant 7, and ratio
between direct and thermally assisted fission for pump photon energies of
3.21 eV and 2.34 eV. Data are taken from analytical fits of ESA signals as-
cribed to T, <— T transitions at 498 nm and 468 nm in Figure 13.

Excitation 3.21 eV, 387 nm 2.34 eV, 530 nm
T (thermal fission) 40 ps 80 ps

ESA (nm) 499 nm 468 nm 498 nm 468 nm
Direct:thermal 2 1 1.8 1

the exciting pulse. To ascertain this point, 30 fs long pulses
centered at 530 nm (2.34 eV) are used to excite the 300 nm
thick crystal. The obtained kinetic decay traces of the G3 and
G5 ESA signals (at 468 nm and 498 nm) are displayed in
Figure 13. The overall temporal profiles are similar for both
excitation energies, in particular the short and the long time
constants (7 and t3) are unchanged. However, 7, of the ther-
mally activated fission process and the ratio between the ini-
tial direct singlet exciton fission and the thermally activated
process significantly differ for the two excitation photon ener-
gies: The fraction of direct singlet fission decreases at longer
wavelength excitation, because the initial exciton energy is
lower. At the same time thermally activated singlet fission
(72) slows down from 40 ps to 80 ps with reduction of the
excitation energy, presumable again due to less excess energy
for fission after vibrational relaxation within the excited sin-
glet manifold, see Table I'V.

Figure 14 displays TA spectral traces obtained with
387 nm excitation and probed with beams polarized L b axis
of the (ab) crystal face. Thus the probe interrogates the high
energy Davydov component whose transition dipole moment
is perpendicular to the b axis. Its 0-0 vibrational band is cen-
tered at wavelength 503 nm (2.47 eV), close to the interme-
diate ME state accessible with pulses centered at wavelengths
between 472 nm (2.63 eV) and 489 nm (2.54 eV).?23%37 It
is therefore expected that a substantial fraction of singlet ex-
citons readily undergoes SEF. Noticeably, the amplitudes of
the GSB signals in the obtained TA spectral traces are larger
by a factor of 4 than those obtained with || b probing (com-
pare GSB signals in Figures 14 and 8). This observation sup-
ports the idea of optically induced SEF being highly proba-
ble from this state in agreement with earlier results by Vaubel
and Baessler.’* In addition, the large amplitude of the trace at
500 fs after excitation implies that fission of singlets in the
high energy Davydov state occurs rapidly. Weak ESA signals
are also observed at 465 nm and 491 nm showing that the
dominant 7,, <— T} transitions are mainly || b polarized.

IV. CONCLUSION

We studied photo induced dynamics of singlet and triplet
excitons in optically thin tetracene single crystals using ultra-
fast transient absorption spectroscopy in the visible spectral
range. We observe fission of fs laser excited singlet excitons
fission into triplet excitons occurring on different pathways
and time scales. The spectral signature of the Tc triplet in the
visible spectral range was identified by systematic deconvolu-
tion of the complex transient absorption spectra. As the singlet
energy in tetracene is slightly lower than twice the triplet
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energy E(S1) — 2E(T,) &~ —0.2 eV, the additional energy must
be provided by the initial laser excitation or thermal energy.
We identified ultrafast fission channels from the higher Davy-
dov state, from vibrationally excited S; and from higher sin-
glet states, which are suppressed in case of laser excitation
into the lowest vibration of Sy. This interpretation is supported
by the fact that thermally assisted singlet exciton fission oc-
curs faster from higher than from lower lying singlet states.
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