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Abstract

Super-resolution Imaging

S.J. van der Walt

Applied Mathematics

Stellenbosch University

Private Bag X1, Matieland 7602,

South Africa

Dissertation: PhDEng

December 2010

Super-resolution imaging is the process whereby several low-resolution pho-

tographs of an object are combined to form a single high-resolution estimation.

We investigate each component of this process: image acquisition, registra-

tion and reconstruction. A new feature detector, based on the discrete pulse

transform, is developed. We show how to implement and store the transform

e�ciently, and how to match the features using a statistical comparison that

improves upon correlation under mild geometric transformation. To simplify

reconstruction, the imaging model is linearised, whereafter a polygon-based in-

terpolation operator is introduced to model the underlying camera sensor. Fi-

nally, a large, sparse, over-determined system of linear equations is solved, using

regularisation. The software developed to perform these computations is made

available under an open source license, and may be used to verify the results.
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Samevatting

Super-resolusie Beeldvorming

S.J. van der Walt

Toegepaste Wiskunde

Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid-Afrika

Proefskrif: PhDIng

Desember 2010

In super-resolusie beeldvorming word verskeie lae-resolusie foto's van 'n onder-

werp gekombineer in 'n enkele, hoë-resolusie afskatting. Ons ondersoek elke

stap van hierdie proses: beeldvorming, -belyning en hoë-resolusie samestelling.

'n Nuwe metode wat staatmaak op die diskrete pulstransform word ontwikkel

om belangrike beeldkenmerke te vind. Ons wys hoe om die transform e�ektief

te bereken en hoe om resultate kompak te stoor. Die kenmerke word vergelyk

deur middel van 'n statistiese model wat bestand is teen klein lineêre beeld-

vervormings. Met die oog op 'n vereenvoudigde samestellingsberekening word

die beeldvormingsmodel gelineariseer. In die nuwe model word die kamerasensor

gemodelleer met behulp van veelhoek-interpolasie. Uiteindelik word 'n groot, yl,

oorbepaalde stelsel lineêre vergelykings opgelos met behulp van regularisering.

Die sagteware wat vir hierdie berekeninge ontwikkel is, is beskikbaar onderhewig

aan 'n oopbron-lisensie en kan gebruik word om die gegewe resultate te veri�eer.
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Chapter 1

Introduction

�Unlike many other branches of science, students of digital image

warping bene�t from the direct visual realization of mathematical

abstractions and concepts. As a result, readers are fortunate to have

images clarify what mathematical notation sometimes obscures. This

makes the study of digital image warping a truly fascinating and en-

joyable endeavor.�

� George Wolberg [Wol90] in a quote equally valid for computer

vision and digital image processing.

Satellites cannot be re-launched and, as far as we are aware, time travel is not

possible1. These constraints indicate two situations in which super-resolution

imaging could be applied. For example, a satellite designed to monitor crop

growth may later be retargetted for military observation. For the latter purpose,

the resolution (or sampling interval) of recorded signals, such as photographs or

videos, need to be much higher. In most cases, it would not be cost-e�ective to

refurbish the satellite camera with a new lens (although this is sometimes done,

as with NASA's Hubble service missions). Another example is security footage,

typically taken with a low-cost camera. A criminal act is committed, but the

face of the perpetrator cannot be distinguished due to the low resolution of the

footage. In both these situations, a signal that would otherwise be of little use

may yield important information after applying image super-resolution.

The Reginald Denny case was the �rst time that super-resolution techniques

were used in a United States courtroom [Mor97]. Denny, a truck driver, was

nearly beaten to death during the 1992 Los Angeles riots, but his assailants

were captured on video by a news helicopter. To prove the identity of one of

the mobsters, super-resolution-like techniques were applied to a video segment

showing a rose tattoo on his arm [NYN93]. In the end, this evidence was not

enough for a conviction, but it paved the way for similar image processing

technology in the American courtroom.
1This statement may be refuted by future time-travellers.
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CHAPTER 1. INTRODUCTION 2

No matter how high the resolution of a camera system, there often exists

the need to improve it. This was the driving force for research done at NASA

Ames that led to the �rst mathematical super-resolution formulation [CKK+93].

Making the best of the existing situation, they applied their techniques to pho-

tos taken during the Path�nder mission, the result of which is shown at the

beginning of Chapter 6 in Figure 6.1.

We should point out that �resolution� is a nebulous concept. It is easy

to increase the resolution of an image by simply scaling (resizing) it, possibly

using an interpolation method such as Lanczos or cubic interpolation. While

this increases the number of pixels, it does not add any information to the

image. In this work, we think of improved resolution as an increase in high-

frequency information�the detail that provides de�nition on a small scale. We

aim to make blurred text legible, or to recognise faces that were previously

unrecogniseable.

We can therefore describe image super-resolution as a class of algorithms

that combine several low-resolution (LR) images into a single high-resolution

(HR) image of improved detail. If all low-resolution images are identical, no

improvement is possible, but in practice even images taken of a static object from

the same camera position contain di�ering information due to signal noise. For

example, a common technique used by amateur astronomers is to photograph

a section of the sky with an inexpensive CCD-camera mounted on a tracking

telescope. Any one of the resulting images is of little value on its own, but by

adding them together the contribution of the signal is raised with respect to

zero-mean noise; stars and galaxies appear as if by magic.

To perform super-resolution imaging, we need to model the entire photo-

graphic process: from the time the light re�ects o� a surface until digital data

arrives on our computers. This process encompasses a large number of distor-

tions, noise processes and other non-linear transformations�too many to model

realistically. We therefore make numerous assumptions and simpli�cations to

�nd a suitable linear model that leads to viable computation. Our model is

expressed simply as the (overdetermined) set of linear equations,

Ax = b,

where x is a representation of the scene in high-resolution (this is what we

would like to estimate), b are our low resolution images and A is a matrix that

encompasses the entire photographic process.

Almost all our e�ort is spent �nding the matrix A that models the relation

of the available low-resolution photographs to the desired high-resolution scene

photograph all the way down to individual pixel level. Thereafter, �nding x is



CHAPTER 1. INTRODUCTION 3

Figure 1.1: An overview of the super-resolution process.

a matter of solving a large, sparse linear system.

The results shown in Chapter 7 provide convincing evidence that super-

resolution does work�maybe not as well as in the popular television series

Crime Scene Investigation�but well, nonetheless.

Structure of this document

Super-resolution imaging is not a single operation, but rather a combined se-

quence of algorithms, each of which is discussed in a separate chapter of this

dissertation (see Figure 1.1). Each chapter opens with a concise introduction to

the topic, accompanied by a list of references to existing literature. Due to the

generic nature of these subjects, a comprehensive list is not feasible; instead, we

attempt to collect a representative sub-set of in�uential papers in each �eld.

An important complement to this document is the accompanying software

package. Developed under a free, open source license, this Python and C based

library implements all the fundamental algorithms required to continue further

research on super-resolution. Snippets of code are given throughout the text to
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illustrate its use. Functions are documented more completely in Appendix B-1.

Chapter 2 discusses image acquisition, the process of capturing digital data

from photographic hardware such as cameras or scan-sensors. We introduce

the di�erent degradations experienced during digital image formation, in an-

ticipation of an imaging model required for reconstruction. Suitable camera

con�gurations are discussed, and noise suppression techniques are suggested.

Chapter 3 gives an overview of the Discrete Pulse Transform (DPT), as

well as its e�cient implementation in two dimensions, in preparation for the

identi�cation of features in the next chapters.

Chapters 4 and 5 go hand in hand, and describe how to align two images

where one has undergone a geometrical transformation. Chapter 5 discusses

two popular methods: direct and feature based registration. For the latter

purpose, Chapter 4 develops a feature detector based on the Discrete Pulse

Transform of Chapter 3. Chapter 5 also treats photometric correction: adjusting

the histogram of two images to be more similar.

Once all images are accurately aligned, Chapter 6 constructs the super-

resolution problem, based on a model of the image acquisition pipeline from

Chapter 2. It also lists a number of fast heuristic super-resolution meth-

ods. Chapter 7 shows how to set up the super-resolution problem as an over-

determined set of linear equations, and how to solve the least squares problem

using iterative sparse methods.

The appendices, starting on page A-1, treat topics that are deemed ancillary

to the main discussion.

Contributions

The basic ideas in super-resolution are well established; for example, the frame-

work provided by Cheeseman et al. in 1993 [CKK+93] is still used today. Close

investigation of seemingly di�erent approaches such as [Ban09] often reveals

similar strategies, and, unless a revolutionary new approach is discovered, im-

provement lies in the detail of existing algorithms. We therefore carefully in-

vestigate each component of the existing super-resolution framework, and make

improvents where possible. These contributions are listed below, and are further

detailed in corresponding chapters of the dissertation.

Acquisition

Pre-processing is avoided in the literature due to its tendency to remove or de-

stroy the information required to perform super-resolution reconstruction. We

show how certain noise-removal techniques, popularised in astronomical and
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forensic signal processing, can be used without adversely a�ecting reconstruc-

tion.

Registration

For feature-based registration, we introduce a new feature detector, based on a

two-dimensional extension of the discrete pulse transform. Feature correspon-

dences are found using a statistical matching algorithm.

Reconstruction

To obtain a super-resolution estimate, a large, sparse system of linear equations,

Ax = b, has to be solved. The solution is obtained using an iterative method

such as LSQR, while forcing the result to be close to a prior estimate. It is posed

that the camera process can be modelled simply using a linear interpolation

operator. The bilinear interpolator causes oversmoothing and the appearance

of artefacts, therefore we introduce a new linear interpolator, based on polygon

geometry, to ameliorate these problems.

Software

�For the computational scientist, code is an embodiment of science,

a way to test and use ideas to make predictions, and a way to gain

insight via obtained data.� � D.E. Stevenson [Ste99]

A super-resolved image is the result of a series of computations done by a com-

plex piece of software. Usually, we would not trust experimental outcomes with-

out examining the methodology followed in accompanying papers and there is

no reason why software should be treated any di�erently [HR94].

A free and open source Python-based software framework was written to

obtain the results shown in this dissertation. We hope this will encourage others

to inspect our methods so that they may improve upon them. We welcome the

use of our code in research and teaching, and appreciate contributions in the

form of suggestions, bug reports or �xes. We include algorithms for:

� Accurate image alignment via feature matching, dense registration or the

log polar transform.

� Feature detection using the Discrete Pulse Transform.

� Super resolution using a selection of operators, norms, optimisation meth-

ods and other adjustments.

� Wavelet image denoising.
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� Miscellaneous tasks, such as image warping, RANSAC, polygon clipping,

chirp z-transformation, phase correlation, normalised cross-correlation,

summed area tables, joint histogram and mutual information computa-

tions.

S
o
ft
w
ar
e Super Resolution Software (http://mentat.za.net/supreme)

Throughout the text, boxes like these appear with instructions on how to use

the accompanying software. Please ensure that the following dependencies

are satis�ed:

Python (http://www.python.org))

A free and open-source, general purpose programming language popular

in scienti�c computing.

NumPy (http://numpy.scipy.org)

An N-dimensional array package.

SciPy (http://scipy.org)

Scienti�c computing tools.

IPython (http://ipython.org)

An enhanced interactive shell.

Matplotlib (http://matplotlib.sf.net)

A package for 2- and 3-dimensional plotting.

These packages are available under three prominent platforms (Linux, Mac

OS X and Windows). They are pre-packaged under almost all Linux dis-

tributions. For Windows a single-executable installer can be obtained from

either http://pythonxy.com or http://code.enthought.com. At the

same URL, Enthought provides a DMG for Mac OS X.
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Chapter 2

Image acquisition

�Everyone is likely to be familiar with the concept of image resolu-

tion, but unfortunately, too much emphasis is often placed on this

single metric. Resolution only describes how much detail a lens is

capable of capturing � and not necessarily the quality of the detail

that is captured. Other factors therefore often contribute much more

to our perception of the quality and sharpness of a digital image.�

� Sean McHugh, Cambridge in Colour, http: // cambridgeincolour.

com .

2.1 Introduction

The path a photon follows from where it is re�ected o� an object to where

it �nally reaches the camera sensor is in�uenced by many factors. The initial

direction of scattering is determined by the object surface, whereafter temper-

ature di�erences and particles in the atmosphere in�uence it further. When

the camera is reached, several lense elements have to be traversed, and at the

aperture variation due to di�raction may be witnessed. Once at the sensor the

photon excites a charge which may be o�set by noise from the electronics.

The description above is hardly a comprehensive overview of all factors in-

volved, but it emphasises the complexity of image formation. In order to perform

super-resolution image reconstruction, we either need to model these e�ects or

choose to ignore them. The following chapter mentions a few prominent e�ects,

and motivates our choice for ignoring most of them in our imaging model.

For a detailed overview of image formation, we refer to Sidney F. Ray's

comprehensive �Applied Photographic Optics� [Ray02].

8
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2.2 Digital photography

2.2.1 Lens distortions

Radial distortion

The camera lens may introduce a number of distortions, the most common of

which is radial (or barrel) distortion. Radial distortion occurs when a lens is

not symmetrically designed with regard to the aperture stop. Figure 2.1 shows

radial distortion in a real photograph.

Radial distortion can be measured and removed before reconstruction, but

this destroys some super-resolution information. Instead, the parameters may

be included in the transformation model [CJAE05]. We choose to neglect radial

distortion, since super-resolution is almost always executed on a small region

inside a much larger image, where the distortion is negligible.

Vignetting

The e�ect of reduced peripheral image illumination is known as vignetting.

Vignetting occurs naturally (see [Ray02, p. 131], the �cos4 θ law of illumination�),

due to lens design or due to part of the camera extending into the �eld of view.

It is not hard to measure and correct for vignetting, but in our data-sets most

objects of interest are in the centre of the frame.

Chromatic aberration

The refractive indices of optical objects vary according to wavelength. In di�er-

ent colour band objects may therefore appear at slightly di�ering positions, as

seen in Figure 2.2. In our experiments, we assume that chromatic aberration is

not severe.

2.2.2 E�ects due to motion

Geometric transformation

Rotating or translating a camera causes similar changes in the resulting pho-

tographs. As part of our model, we need to estimate these changes so that pixels

in di�erent input photos may be related to one another (the topic of Chapter 5).

This estimation process is much simpli�ed if we assume that the transforma-

tion is linear, a valid assumption if the object lies on a plane or far away from

the camera. The need for super-resolution often arises in these circumstances,

when photographs of a far-away object is taken, yielding only low-resolution

representations.
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Figure 2.1: Barrel distortion. A test pattern (top left) was photographed; a small
section of the photo is shown on the right. On the photo, the black line is curved,
as seen when comparing to the superimposed dashed white line. Radial (or barrel)
distortion, shown on the diagram at the bottom left, is witnessed.
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Figure 2.2: Chromatic aberration, prominently visible as coloured bands around
edges.

Parallax

When the target object is close, movement of the camera may introduce par-

allax. By carefully rotating the camera around its pivot point (not its front

or rear nodal point), parallax can be avoided as illustrated in Figure 2.3. Fig-

ure 2.4 shows a practical example. If parallax is present, two images are no

longer related by a linear transformation, and a more complex motion model

is required. In our experiments, it is assumed that objects are either far away

from the camera, or that the camera was rotated around its pivot point so that

no parallax occurs.

Motion blur

If either the camera or the target object moves while the shutter is open, a

single scene point illuminates multiple sensor pixels. This causes a smearing

e�ect, known as motion blur. Techniques such as deconvolution, more suited to

this problem than super-resolution, are often used to remove this e�ect.

Lighting changes

Movement of the target object, camera or light sources may introduce vary-

ing object lighting. To address this problem requires �nding the positions of

light sources and the structure of an object based on lighting�both ill-posed

problems. We therefore assume that lighting remains constant across all in-

put frames; a reasonable assumption given that frames are often taken in quick

succession (e.g., in video footage).
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Figure 2.3: �Rotation of camera with 'behind the lens' aperture stop� reproduced
from The Proper Pivot Point for Panoramic Photography [Ker08] by Douglas A. Kerr
with permission of the author.



CHAPTER 2. IMAGE ACQUISITION 13

(a) Rotating the camera around any point other than its pivot point introduces parallax. Note
how the bunny's hand disappears behind the bus.

(b) The camera is rotated around a point nearby the pivot point. Parallax is noticably reduced.

Figure 2.4: Rotating a camera may introduce parallax. Here we show what happens
when the camera is rotated around an arbitrary point (top) or the pivot point (bottom).
The pivot point was estimated by eye, so some parallax may still be present in (b).

2.2.3 Sensor layout

In colour imaging there are three predominant ways of separating light into

red, green and blue. The �rst is to use a beam splitter to redirect incoming

light through three separate �lters. These days, a more integrated approach

is followed whereby the light is �ltered once it arrives at the imaging sensor.

This leads to the second approach, patented in the 1970s by B.E. Bayer of

the Eastman Kodak Company (see Figure 2.5), of placing a mask over the

imaging sensor (Figure 2.6) so that alternating pixel elements capture di�erent

colours. The resulting image has slightly lower resolution, since the di�erent

colour values must be combined (�demosaicked�) to form a full-colour image.

The third approach, used in Foveon's X3 sensor, makes use of silicon's color

absorption properties to read red, green and blue values from a single pixel

element. Data from an X3 sensor can be handled as three separate monochrome

images, unlike the values obtained from a Bayer �ltered sensor.
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While this dissertation only treats monochrome images, we aim to model

the Bayer demosaicking process as part of future research into colour super-

resolution.

2.2.4 Di�raction limited photography

Even with a perfect lens, the resolution of a photograph is limited by di�raction.

Di�raction occurs whenever a wave encounters an obstacle; for example when

light is forced through a small opening, such as a camera's aperture. Instead of

travelling in a straight line, the light spreads out resulting in the interference

pattern known as an Airy disc. For very small apertures, the width of the Airy

disc is wide relative to individual sensor pixels; the resulting overlap causes a

loss of contrast. The impulse response of an imaging system, known as its Point

Spread Function (PSF), is an Airy disc if di�raction is the only limitation. The

Gaussian function approximates the Airy disc well, and is used as the camera

PSF in our imaging model.

2.2.5 Noise processes

The operation of a CCD is often compared to measuring the spatial

distribution of rainfall over a �eld by placing an array of buckets on

the �eld. Following a storm, the buckets are systematically trans-

ferred by conveyor belts to a metering station where the amount of

water in each bucket is measured. Each measurement then repre-

sents the amount of rainfall at a particular location on the �eld.

� G.E. Healey and Raghava Kondepundy [HK94], paraphrasing J.

Kristian and M. Blouke [KB82], memorably describe the functioning

of a CCD shift register.

Imaging noise depends on the underlying sensor technology. This discussion

treats the noise characteristics of CCD (Charge-coupled device) sensors, which

are commonly found in consumer digital cameras and are used extensively for

astro-photography. The same reasoning, but with di�erent speci�cs, may be

applied to CMOS (Complementary metal-oxide-semiconductor) sensors.

In [FM06] it is shown that the prevalence of noise sources change for di�erent

exposure levels. At low intensities, readout noise (also known as ampli�er noise)

is prominent, overshadowed at medium intensities by shot noise, in itself a

combination of photon and dark noise. At high exposure levels, �xed pattern

noise due to slight variations in pixel geometries and sensitivities is most relevant

[Jan01].
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Figure 2.5: Front page of B.E. Bayer's US patent.
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Figure 2.6: Pixel colouring in the Bayer pattern.

Figure 2.7: The Airy disc (2D and 3D representations) which shows the intensity
distribution of light that travelled through a circular aperture.

Readout noise is modelled as white noise, while photon and dark noise are

Poisson-distributed�often approximated as Gaussian in the literature. Fixed

pattern noise is a gain factor that di�ers for each pixel element.

Noise removal

Super-resolution estimation depends on the combination of input frames to pro-

vide missing high-frequency content, destroyed due to aliasing. Slight shifts in

camera position yield small, localised changes which we exploit to do the recon-

struction. Notably, any noise removal process that combines neighbouring pixels

destroys this information. The process combines pixels from di�erent frames,

corresponding to the same scene position, a process in some ways similar to

averaging. As such, noise from zero-mean processes often do not disturb the

reconstruction signi�cantly.

Of the above, the only process modelled as having a non-zero mean is �xed

pattern noise [HK94], which can be detected and removed, as described below.

Note that care has to be taken with noise removal: it is easy to distort other

zero-mean noise sources to have non-zero means. This might be the reason why

noise removal is not applied in super-resolution literature.
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Flat-�eld correction

The technique described here for removing �xed pattern noise, called �at-�eld

correction, is commonplace in astro-photography�so commonplace, in fact,

that we were unable to trace the �rst paper on the topic. It is not as well

known in images restoration, so we elaborate below, following the description

and notation from [Fri09] (note their use of bold capital letters to indicate vec-

tors).

Neglecting noise, the camera response function is often modelled as

Iopt = (gY)γ

where Y (whose elements lie between 0 and 1) is the light incident on the

sensor, Iopt is the ideal output image, g is a channel gain (di�erent for red,

green and blue) and γ is a gamma correction factor. The gamma correction

factor models the sensors' tendency to compress high intensity values and to

expand low intensities. Adding noise, separating the zero-average �xed pattern

noise gain, K, from all other sensor noise sources, Ω, yields

I = gγ [(1 + K)Y + Ω]
γ
.

All multiplications are point-wise. An additional term, Q, is added to model

process noise such as quantisation or JPEG compression:

I = gγ [(1 + K)Y + Ω]
γ

+ Q.

Using the Taylor series expansion of (1 + x)γ = 1 + γx +O
(
x2
)
at x = 0, the

above becomes

I = (gY)γ [1 + K + Ω/Y]
γ

+ Q

≈ (gY)γ [1 + γK + γΩ/Y] + Q

= Iopt + IoptγK + Θ

= Iopt + IoptN + Θ

= (1 + N)Iopt + Θ

where N = γK, and Θ represents the modelling noise, γIoptΩ/Y + Q. Given d

di�erent images, Id, we intuitively estimate N as

N̂ =
∑
d

(
Id − Îd,opt

)
Îd,opt
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where Îd,opt is an estimation of the ideal, noise-free version of Id. This assumes

that Θ is independent of Iopt and distributed normally with zero-mean. Of

course, Θ is not independent of Iopt, but since it is so much smaller in amplitude

the assumption has no noticable impact. The corrected image is

Icorrected =
I

1 + N̂
.

It can be shown that the variance of N is proportional to the variance of the

input image, and is inversely proportional to its amplitude squared [Fri09]. This

observation suggests that N is best estimated from a smooth photo of a bright

object (although the sensor must not saturate). A bright area of the sky with

the camera set out of focus works well.

S
o
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An estimate of Îd,opt, the ideal, noise-free version of Id, is obtained by

applying a denoising �lter to Id. The wavelet �lter suggested in [Fri09] and

described in [MKRM99] is implemented as supreme.noise.dwt_denoise.

In practice, astronomers follow a di�erent procedure. They point their tele-

scopes at a region of uniformly lit sky during sunrise or sunset, or a sheet inside

the dome. This produces a ��at-�eld image� of the form

Iflat = (1 + N)C + Θ

where C is the mean photo intensity. Given this data, it is no longer necessary

to estimate N, since a corrected image is simply

Icorrected = C
I

Iflat

= C
(1 + N)Iopt + Θ

(1 + N)C + Θflat

≈ Iopt + Θ′.

This procedure, which corrects for �xed pattern noise, can be applied with-

out destroying sensitive super-resolution information. Note that some modern

cameras perform �at-�eld correction as part of the built-in image processing

pipeline.
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Chapter 3

The Discrete Pulse Transform

Parts of this chapter were excerpted from [FRV09], co-authored with I. Fabris-

Rotelli, University of Pretoria.

3.1 Introduction

The Discrete Pulse Transform (DPT) decomposes a signal into a collection of

pulses. In one dimension, a pulse is characterised by its start and end position

as well as by its amplitude. In other words, a pulse is a number of adjacent

positions that have a constant value. Similarly, in two dimensions, a pulse

describes a connected region (adjacent values in the 4- or 8-connected sense)

over which function values are constant (see Fig. 3.1).

The Discrete Pulse Transform is related to morphological image processing

techniques, of which an overview is given in [SW09]. Unlike the discrete Fourier

and wavelet transforms, the DPT is not a discretization of a continuous model

[RL06], but is developed entirely in the discrete domain. Its ability to construct

an image scale space is used in Chapter 4 to identify feature points.

The DPT is based on the LULU -operators, �rst suggested by CH Rohwer

(his book, [Roh05], gives a thorough overview). The name LULU derives from

the L and U operators that are combined to produce the DPT�we'll examine
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Figure 3.1: Pulses in one and two dimensions. For the two-dimensional pulse, the
amplitude is indicated by the z-axis, whereas the position is determined by x and y.
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these in more detail. The one-dimensional DPT was extended to two dimensions

and higher by Anguelov and Fabris-Rotelli [AFR08].

In this chapter, we detail a fast and memory-e�cient implementation of the

two-dimensional discrete pulse transform.

3.2 Background theory

For a rigorous mathematical overview of the theory involved, we refer to the

sources cited in the introduction. Here, we simply give a brief overview of the

L and U operators in one dimension and how they can be extended to two

dimensions.

De�nition 1. In [LR06], the one-dimensional Lm and Um operators, applied

to a sequence X =
[
x0 x1 . . . xN−1

]
, is de�ned as

Lm = ∨m ∧m
Um = ∧m∨m

where

(∧mX)j = min
k=j−m,...,j

xk and (∨mX)j = max
k=j,...,j+m

xk.

The simplest way of handling k outside [0, N−1] is to neglect those values in the

running minimum and maximum. Importantly, note that Lm removes all peaks

of duration m, while Um removes all troughs of duration m. After application

of L and U , the sequence has fewer extrema than before, which leads to the

naming LULU -smoother.

The Lm and Um operators are applied in succession to form the levels of the

one-dimensional discrete pulse transform, Dk. Starting with X0 = X (where

the 0 in X0 indicates an iteration number, not an index),

X1 = L1U1(X0)

D1 = X0 −X1,

whereafter the process is repeated to give

Xk = LkUk(Xk−1)

Dk = Xk−1 −Xk.

Note that Dk contains only pulses (consecutive elements with the same value)

of duration k, and is otherwise zero. After a number of iterations, the sequence



CHAPTER 3. THE DISCRETE PULSE TRANSFORM 22

X becomes monotone (or constant), whereafter the LU operator has no e�ect.

The original sequence is reconstructed by summing the di�erent levels of the

decomposition:

X =
∑
L

DL.

Extension to two dimensions

The two-dimensional discrete pulse transform is obtained in much the same way,

although the de�nitions of Lm and Um have to be adapted. The extension to

the two-dimensional case is given by Anguelov and Fabris-Rotelli (we refer to

[AFR08] for an overview).

In two dimensions, we say that two pixels are connected if they are neighbours�

typically in a 4- or 8-connected sense, i.e., North, South, East, West and possibly

the diagonal directions. A connected set on (x, y) is the set including (x, y) and

pixels connected to (x, y) via any other connected pixel. For example, f(x, y) is

connected to f(x+ 2, y) via f(x+ 1, y). We call such a connected set N (x, y).

Speci�cally, a connected set containing n+ 1 elements (that is, (x, y) itself plus

n connections) is denoted Nn(x, y).

De�nition 2. The two-dimensional operators, Ln and Un, are de�ned as

Lnf(x, y) = max
V ∈Nn(x,y)

min
(i,j)∈V

f(i, j), (x, y) ∈ Z2,

Unf(x, y) = min
V ∈Nn(x,y)

max
(i,j)∈V

f(i, j), (x, y) ∈ Z2.

3.3 Implementation

The implementation given here was designed for the two-dimensional case and

was �rst presented as [FRV09]. In the meantime, D. Laurie (who, together

with C. Rohwer, �rst described a fast algorithm for calculating the discrete

pulse transform in one dimension [LR06]) proposed a more general graph-based

representation of the process that should allow an e�cient implementation in

higher dimensions. At the time of writing, no optimised implementation is

available for comparison. In [SW09], a similar idea is discussed in the context

of connected operators.

When decomposing an image into pulses using the DPT, the number of

pulses may vary from approximately 30,000 for a typical 300 × 300 image to

over a hundred thousand for a 500 × 500 image. We need an e�cient storage

scheme to represent such a large number of pulses in memory. Furthermore,

we need to be able to calculate certain attributes of the pulses (such as the
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area and the boundary values) rapidly, which excludes other common storage

schemes such as run-length encoding.

Section 3.3.1 describes how to represent pulses e�ciently in memory, how to

calculate their area and boundaries, and how to merge two adjacent pulses. Sec-

tion 3.3.2 then outlines a procedure for computing the two-dimensional discrete

pulse transform.

3.3.1 Pulse representation and manipulation

Storage

The storage scheme used is based on the popular Compressed Sparse Row (CSR)

format, [DGL89, BBC+94], for representing sparse matrices. Using this scheme,

the matrix
5 0 1 2 0

0 0 0 3 0

0 0 0 0 0

0 6 0 9 0

 is written as

'

&

$

%

� values =
[

5 1 2 3 6 9
]

� columns =
[

0 2 3 3 1 3
]

� row−offset =
[

0 3 4 4 6
]

The values of the non-zero elements are stored in values, and their column-

positions given by columns. Each entry of row−offset speci�es an o�set into

columns, indicating the starting position of a new row. In the example above,

we see that the second row (second element of row−offset) starts at position 3

of columns. The number of elements in row j is given by row−offset[j + 1]−
row−offset[j].

When storing two-dimensional pulses, we know that the pulse

� may only occupy a small portion of the image,

� has a single amplitude value across the pulse and

� consists of regions connected horizontally (as well as vertically and diag-

onally, but that is not relevant here).

We therefore modify the storage structure, so that the pulse
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0 0 0 0 0

1 1 1 1 1

0 1 1 0 1

0 1 1 1 0

 is written as

'

&

$

%

� value = 1

� columns =
[

0 5 1 3 4 5 1 4
]

� start−row = 1

� row−offset =
[

0 2 6 8
]

Instead of specifying column values, columns now indicates the start and past-

end indices of the one-dimensional pulses that comprise the rows. The values

of row−offset, as in the previous example, specify where in columns each new

row starts. The pulse may only cover a few rows of the entire image, therefore

we use start−row to indicate the �rst occurrence, saving us from storing every

single row.

As an example, consider the third row of the two-dimensional pulse above,

which consists of two one-dimensional pulses: the �rst stretching from column 1

up to (but excluding) 3, the other from 4 up to 5. Since we are interested in the

third row (row number 2), and we only start recording rows at start−row = 1,

we �nd the corresponding column indices in row_offset[2−1] = 2. At position

2, columns contains 1, 3 and 4, 5 as expected.

An advantage of this storage scheme is that it can also be used to store

connected regions, a capability we exploit later to initialise the algorithm.

Queries

Given a pulse in the above format, we would like to calculate the following

queries rapidly:

Area / number of non-zeros The area of the pulse is the sum of the lengths

of the one-dimensional pulses comprising its rows. Each such length is given as

the corresponding di�erence between the pulse start-end positions in columns.

In the example above, the area would be (5− 0) + (3− 1) + (5− 4) + (4− 1) =

5 + 2 + 1 + 3 = 11.

Adjacent Set / Boundary positions Each pulse has four or more boundary

positions � connected to the pulse in a 4- or 8-connected sense (see Fig. 3.2 for

an illustration of the 4-connected case) � that form the adjacent set. To �nd the
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Pulse Boundary

Figure 3.2: Boundary positions of a pulse.

Figure 3.3: Scanlines used to �nd boundary positions.

boundary positions, we follow a scanline approach, with three scanlines moving

from the top of the pulse to the bottom (see Fig. 3.3). Here, we describe the

operation once the scanlines have entered the pulse (in other words, neglecting

top and bottom boundaries, which need to be handled separately):

1. The scanlines are centred around row j and are formed by constructing

the pulse at rows j− 1, j and j+ 1. The scanline is wider by one pixel on

each side than the pulse itself.

2. For each element of the central scanline that does not belong to the pulse,

determine whether any of its neighbours (above, below, left, right or diag-

onally, in the 8-connected case) belong to the pulse. If they do, then the

current element lies on the boundary. Note that only elements covered by

the central scanline are analised at any stage.

3. Move the scanlines one row down and repeat (it is only necessary to re-

calculate the bottom scanline at each step).
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Another way to implement this algorithm would have been using interval trees,

but the structures and memory allocations involved are more complex, so it is

not obvious without a benchmark whether that would be bene�cial.

Operations

Merging Two Pulses Later on, when performing the Discrete Pulse Trans-

form, we are required to merge two pulses that touch. This is done on a row-

by-row basis. In the trivial case where a row is contained in only one of the two

pulses, we simply include that row in the output. Otherwise, we need to sort and

join the one-dimensional pulses that comprise the row carefully. Note, however,

that these one-dimensional pulses cannot overlap in our problem description.

We therefore:

1. Extract the stop-start intervals that form the one-dimensional pulses in

row j.

2. Sort the intervals according to their starting position.

3. Step over the intervals and link (join) them if they touch.

4. Save the linked intervals as the representation of row j.

5. Repeat for row j + 1.

3.3.2 Algorithm for computing the 2D Discrete Pulse

Transform

Each step of the Discrete Pulse Transform is now described in more detail. We

use the following terms:

Input image The input image or data � an M × N matrix of integer values

between 0 and 255.

Label image An M ×N array of integer values that indicate the connectivity

of pixels in an image. If neighbouring pixels have the same value (i.e. are

4-connected), then they are assigned the same label value.

Intermediate reconstruction An M × N image can be decomposed into

pulses with areas ranging from 1 through MN . When added together,

these pulses reconstruct the input image. It is also possible to only add

pulses with area > k. We call this an intermediate reconstruction, as it

only approximates the image up to a certain level.

The algorithm consists of three steps:
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Figure 3.4: Two trees with labelled nodes.

1. Find all connected regions / adjacent sets in the image. Among these sets

we �nd all pulses of size 1, which form the �rst level of the decomposition.

2. Apply the L1 and U1 operators, that remove peaks and troughs of size 1,

to the adjacent sets. Removed parts of the signal is stored as the level 1

(or area 1) pulses.

3. Repeat this process with L2 and U2 to extract pulses of area 2 (the second

level of the decomposition), then L3 and U3, etc.

Here follows a more detailed overview of each step involved.

Finding Connection Regions

First, we identify all 4 or 8 connected regions in the image (these are the initial

pulses that are processed to yield the Discrete Pulse Transform). This is done

using the Union-Find connected component algorithm of Fiorio and Gustedt

[FG96], with the connectivity tree stored in an array as suggested by Wu et al.

in [WOS05]. It is further shown in [WOS05] that this algorithm executes in

O(N), and we give a brief overview of its functioning1:

Representing a tree using an array One or more trees consisting of N

nodes can be stored in an array of length N . Examine the trees shown in

Figure 3.4 with nodes labeled n = 0, . . . , 8. These trees can be represented as

the array

x =
[

0 0 2 1 0 4 4 2 2
]

1Note on Graphics Processing Unit (GPU) implementation: Algorithms are well suited
to a GPU if elements of the solution can be calculated in isolation. When �nding connected
components, each element depends on its neighbours, and possibly all the other pixels in the
input, consequently the problem is not easy to parallelise.
In his master's thesis [O'C09], S. O'Connell adapted the connected component algorithm

for implementation on a GPU. For the reason given above, the performance on the GPU is
less than optimal and roughly similar to that of the CPU (9ms for a 512 × 512 image � the
same timing achieved by our CPU-based implementation).
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where xn gives the parent of node n. For example, x3 = 1, which tells us that

the parent of node three is node one. Similarly, x2 = 2 implies that node two

has no parent�it is the root of a tree.

Labelling connected regions as trees The goal of the connected compo-

nents algorithm is to assign unique labels to each connected region in anM×N
image I. An array, L, of length MN is used to store trees as indicated in the

paragraph above.

The image is traversed in raster scan order (i.e. along rows). A region

counter, k, is initialised to zero. At each pixel position (r, c):

1. Calculate the o�set into the tree array as t = rN + c.

2. If the pixel is not connected to (does not have the same value as) the pixel

above it or to the left, assign Lt = t, e�ectively creating a new tree.

3. If the pixel is connected to the pixel above, assign Lt = Lt−N , joining

node t to its parent in the previous row.

4. If, in addition, the pixel is connected to the left, assign Lt−1 = Lt−N .

5. If the pixel is only connected to the left, assign Lt = Lt−1.

Appropriate care needs to be taken in the �rst row and column to prevent

indexing errors on the image boundary.

The label vector, L, can also be seen as the �attened version of a label image

so that Lr,c = LrN+c. From this image, all connected regions are extracted as

pulses and stored in the format discussed in Section 3.3.1.

We then proceed to perform the Discrete Pulse Transform as discussed next.

Identifying Pulses to Merge The Discrete Pulse Transform is performed

by alternately executing the Lk (lower) and Uk (upper) operators that extract

pulses of area k. If you think of the image as a height-map, then the U1-operator

removes all valleys of area one. Here, a valley is de�ned as a connected area

that is surrounded only by higher values. Similarly, the L1-operator removes

peaks of area one, where peaks are connected areas surrounded only by lower

values.

After applying the L1- and U1-operators and storing the removed peaks and

valleys (those form the �rst level of the DPT), we need to merge pulses that

were joined in the process. Note that, at each decomposition level, we have the

intermediate reconstruction available. It is obtained by setting the image values

corresponding to the removed positive (negative) pulses equal to the maximum

(minimum) value on the adjacent set.
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For each pulse, we calculate its boundary positions using the method de-

scribed in Section 3.3.1. We then examine the boundary values on the interme-

diate reconstruction, and if any of those values are equal to the pulse value, a

merge is required. After examining all boundary positions, a list is drawn up

of all coordinates that fall on merge boundaries. At each of those positions, a

merge is performed as described in Section 3.3.1, after which the label image is

updated.

The Lk+1 and Uk+1 operators are now applied, repeating the merging process

for higher values of k until the image has been entirely decomposed (in other

words, until the �nal MN -sized pulse has been removed). All the removed

pulses together form the Discrete Pulse Transform or decomposition.

3.3.3 Benchmark

The decomposition algorithm described was implemented an executed on a Intel

Core Duo 3.16GHz processor. Memory utilisation peaked at less that 150MB

during decomposition of Airplane and roughly 60MB while processing Chelsea

(including the memory required to store the decomposition itself). Computation

times were 3.73s (Airplane) and 1.51s (Chelsea). Reconstruction executed in a

few milliseconds.

Figure 3.6 shows benchmark times for the discrete pulse transform applied

to random matrices. Random matrices with a large number of discrete values

seem to be the worst case�execution times are much lower for real photographs

and for signals limited to, say, 255 discrete values. Both these observations are

explained intuitively: a random matrix has many more pulses than a typical

photograph and limited discrete values cause merging of pulses that would oth-

erwise remain separated. It would be interesting to investigate whether a link

exists between image entropy and the number of pulses generated.
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e The Discrete Pulse Transform is implemented as supreme.lib.dpt.

The decomposition is obtained as follows:

import supreme.api as sr

image = sr.test_data ()

# Perform the decomposition -- this may take

# 5-10 seconds

pulses = sr.lib.dpt.decompose(image.astype(int))

# Reconstruct the original from the pulses

Z = sr.lib.dpt.reconstruct(pulses , image.shape)

# Display the two images side -by-side

sr.show(image , Z)

The returned `pulses` is a dictionary indexed by area, i.e., pulses[2]

contains all pulses of area 2 (those that form the second level of the de-

composition).

The reconstruction simply adds all the pulses together, and can

also be done manually, as illustrated below. Note the use of the

connected_region_handler to calculate pulse values and to add pulses

to the output array. This is necessary because the pulse itself is stored in a

sparse format, as discussed later in this chapter.

import numpy as np

from supreme.lib.dpt import \

connected_region_handler as crh

# Create an output image

out = np.zeros(image.shape , dtype=int)

# Reconstruct output by adding all the pulses

for area in pulses:

for p in pulses[area]:

crh.set_array(out , p, crh.get_value(p), 'add')

sr.show(out)
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Figure 3.5: Two test images used for benchmarking the 2D DPT. On the left is
Chelsea the Cat ( 300× 351) and on the right is Airplane (512× 512).
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Figure 3.6: Benchmark of the discrete pulse transform on random images of varying
size. Values on the x-axis indicate the total number of pixels, i.e., N2 for an N × N
matrix. In the bottom curve, labeled �recombination�, the number of discrete input
values were limited to 255. For large images, this causes the algorithm to execute more
quickly than expected due to accidental merges.
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Chapter 4

Feature detection and

matching

4.1 Introduction

Super-resolution imaging consists of three important steps: image acquisition,

registration (or alignment) and reconstruction. Under most circumstances, the

accuracy of image registration, discussed in detail in Chapter 5, has a profound

impact on the quality of the reconstruction. As such, it deserves to be treated

with care.

The reconstruction process relies on the registration to indicate correspond-

ing positions in the di�erent low-resolution input frames. Without this infor-

mation, the problem becomes intractable. In this chapter, we develop a feature

detector, used to locate signi�cant features in the image. Of course, the de�ni-

tion of �signi�cant� may change, depending on a speci�c application. Here, we

simply refer to a point that can be consistently detected by an algorithm over

multiple images that undergo geometric, photometric or other distortions.

After features have been found, the surrounding pixels are usually analysed

to construct a feature descriptor that facilitates matching (�nding corresponding

features across multiple images). This is a good idea. However, in this chapter

we would like to focus only on two fundamental ideas: 1) locating features

using the Discrete Pulse Transform and 2) matching those features based on

the surrounding pixels (or image patches).

Some excellent feature detection/representation routines, such as SIFT [Low04]

and SURF [BTV06], exist, but these are patent encumbered. Maximally Stable

Extremal Regions (MSER) [FL07] looks promising. Detectors that work well in-

clude FAST [RD06] (included in the accompanying software) and the enhanced

Harris detector proposed in [MS05]. While the commonly used Harris corner

detector [HS88] is starting to show signs of age, it still has the advantage of

being easy to implement. A review of feature detectors is given in [TM07] and

of feature descriptors in [MS05].

34
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4.2 Feature detection using the discrete pulse

transform

4.2.1 Scale space

The discrete pulse transform decomposes an image into a sum of di�erently

sized pulses (see Chapter 3). Pulses of a �xed size form a single level of the

DPT, and the di�erent levels a scale space, similar in concept to the well known

Gaussian scale space, on which many feature detectors such as SIFT rely.

Given all pulses pk,i(x, y) ∈ Dk belonging to the di�erent levels k = 1 . . .K,

the original signal can be reconstructed using

f(x, y) =
∑
k

Dk(x, y) =
∑
k

∑
i

pk,i(x, y).

The range of i varies according to the number of pulses at any speci�c level.

A single pixel, (x, y), belongs to zero or more pulses of di�erent sizes (in other

words, it is included in zero or more levels of the decomposition). A partial

reconstruction of the signal that suppresses higher levels of detail is given by

f̂L = f −
L−1∑
k=1

Dk or equivalently f̂L(x, y) = f(x, y)−
L−1∑
k=1

∑
i

pk,i(x, y).

This is the image reconstructions at scale L. Scale 1 represents the original

image, while level K represents only the largest pulses. At scale L, only size

L and larger pulses are used in the reconstruction. The di�erence between two

layers, L and L+ 1, is DL =
∑
i pL.

4.2.2 Pulse strength

According to the Cambridge Advanced Learner's Dictionary, a feature is �a

typical quality or an important part of something�. Indeed, we hope to isolate

features that are robust, i.e. they remain recognisable under moderate geometric

and photometric transformations.

The DPT provides an easy way to identify prominent features: we simply

count the number of pulses in which a pixel occurs. The strength of pixel (x, y)

is

s(x, y) =
∑
k

∑
i

δx,y(pk,i)
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(a) L=1 (b) L=100

(c) L=1000 (d) L=10000

Figure 4.1: Reconstruction of Chelsea at di�erent scales. The changes in brightness
are due to automated scaling, done to make pulses (especially in the higher levels) more
visible.

(a) Input Image (b) Pulse strength.

Figure 4.2: The pulse strength of an image, used to identify important segments. In
this case, the pulse strength was calculated for all pulses of size less than 100. Darker
values indicate stronger pulses.
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where the Dirac-measure,

δx(V ) =

1 if x ∈ V

0 if x /∈ V,

indicates whether a pixel x belongs to a given pulse V . We may choose to limit

k to small values (say k < 100) since we do not expect good features to be

larger than roughly 10× 10, and even if they are, we are not interested in their

pulse attributes until the pulses become fairly small (to be useful, features need

to be well localised). As we can see from the examples shown in Fig. 4.2, the

pulse strength alone is not enough to isolate features. Rather, the pulse strength

highlights areas in which we may expect to �nd strong features. The question

then becomes: what di�erentiates a good feature from the rest?

Intuitively, we set two criteria:

1. A good feature has a large pulse strength (i.e., occurs in many layers of

the scale space).

2. As we traverse the scale space from K down to 1, a good feature rapidly

shrinks in size and culminates in a sharp point.

While it is possible to use shape descriptors to analyse larger features (as done

in [FL07]), we limit ourselves to sharp peaks for simplicity.

If we visualise a feature as a pyramid rising from the ground, then ideally it

should be built with sunken edges as shown in Fig. 4.3. Relative to the pulse

size, the amplitude should increase rapidly. We use the following measure of a

feature's sharpness (again, we may choose to restrict k < 100):

t(x, y) =
∑
k

∑
i

∣∣pk,i(x, y)
∣∣

√
k

.

Finally, we combine the two criteria,

m(x, y) = t(x, y)s(x, y),

to form a feature map. Peaks are located by examining the closest surrounding

neighbours, and those with the highest values are chosen as features. The result

is shown in Fig. 4.4.

At this stage, with the feature positions determined, a feature descriptor

can be calculated based on the surrounding pixels. This usually also includes

a �ltering step, where highly symmetric and other �dangerous� features (that

easily mismatch) are also removed (see [HS88] for a technique commonly used).
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Figure 4.3: Pulse localisation of features. Features that quickly form a thin, sharp
point are more desirable than slower growing ones.
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Figure 4.4: Feature map of House with the 1000 best features highlighted. Note how
the features are located on corners and other areas of interest.
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In the next section, we discuss matching image patches cut out around the

detected features. The DPT decomposition provides a hint as to what the sizes

of those patches should be: if a feature is composed mainly of large pulses, then it

describes a larger part of the image, and its image patch should, correspondingly,

cover a similar area. We calculate the feature area as an average over pulse sizes,

A(x, y) =
1

s(x, y)

∑
k

kδx,y(pk,i(x, y)).

In the correspondence matching that follows, the window size is set to the

average feature area, Ā =
∑
x,y A(x, y). In our implementation, we also limit

the values of Ā to be no larger than 100 to reduce matching computation time.

S
o
ft
w
ar
e A feature map based on the discrete pulse transform can be calculated

using the features function from supreme.feature.dpt.

from supreme.feature.dpt import features

# Calculate image features , based on pulses from the

# DPT. The parameter 'max_area ' indicates the largest

# pulses taken into account when calculating the

# feature characteristics.

fmap , farea = features(pulses , img.shape , max_area =100)

4.3 Matching and correspondence

This section presents a statistical method for �nding feature correspondences,

based on surrounding pixel values (or image patches). This method is well suited

to situation where small to moderate geometric changes occur (as is often the

case with most super-resolution sequences). For ways of robustly matching

features over large geometric distortions, see [TRD09].

4.3.1 Statistical feature comparison

A number of methods have been proposed that rely on classi�ers to do feature

matching [SD01, RD06]. Other methods rely on statistical moments of the

pixels surrounding a feature [She07]. We present a statistical method that is

extremely fast and simple to implement. The idea is to compare the rows of

two candidate image patches (think of them as matrices of pixels) by calculating

matching scores for each corresponding pair. The correspondence likelihood is

based on a Quantile-Quantile score, derived from QQ plots.
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Quantile-Quantile (QQ) plots

A QQ-plot is a graphical technique used to determine whether two data se-

quences are drawn from the same distribution. The quantiles (the fraction of

points below given probability thresholds) of the �rst data set are plotted against

those of the second. If the data sets come from the same distribution, the result

should be a straight line.

When the two data-sequences to be compared, let's say x and y, are equal

in length N , a simple way to form the QQ-plot is by sorting the sequences from

small to large and then connecting points (xi, yi) from i = 0 to N − 1. The

deviation from the straight line can be measured as

∆ = x− y.

Since both x and y contain only positive elements, we can normalise ∆ using

the norms of the components,

∆1 =
‖∆‖2

max(‖x‖2 , ‖y‖2)
.

The higher the value of ∆1, the larger the mismatch in distribution between

the two sequences. The algorithm for calculating correspondences, based on this

principle, is given as Algorithm 4.1.

To understand why the 2-norm of Q (as referred to in the algorithm) is a

good indication of the patch deviation, consider using the 1-norm,

‖Q‖1 = max
n

∑
m

∣∣qm,n∣∣ ,
the maximum absolute column sum. This is akin to measuring the maximum

error over all quantiles. The ∞-norm,

‖Q‖∞ = max
m

∑
n

∣∣qm,n∣∣ ,
gives the maximum absolute row sum�which measures the maximum deviation

across patch rows. The 2-norm,

‖Q‖2 = max
x 6=0

‖Qx‖2
‖x‖2

,

lies somewhere in between, in the sense that

1√
N
‖Q‖1 ≤ ‖Q‖2 ≤

√
N ‖Q‖∞ .
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Algorithm 4.1 Calculating point-correspondences using Quantile-Quantile
comparisons.
Given the features in two images, A and B, calculate likely feature correspon-
dences (i.e., which feature in A is represented by which feature in B).

1. Cut out image patches centered around the features in both A and B. The
patches in A are called PA,i and those in B are PB,i�they form N × N
matrices. The size of patches can be determined using the discrete pulse
transform as described above, or alternatively set to the expected size of
the average image feature (roughly between 10× 10 and 50× 50).

2. For each patch, sort the component of its rows, i.e.

PA,i =

 3 9 2
1 8 3
4 4 1

 =⇒ PA,i =

 2 3 9
1 3 8
1 4 4

 .
3. For each patch PA,i, calculate the distribution deviation against all patches

from B:

(a) Construct the matrix

Q =


e0

e1

...
eN−1


where en = PA,i(n, ∗)−PB,j(n, ∗) with PA,i(n, ∗) being the n-th row
of PA,i.

(b) Calculate the patch deviation between patch PA,i and PB,j as

Di,j =
‖Q‖2

max(
∥∥PA,i∥∥2

,
∥∥PB,j∥∥2

)
.

4. The best correspondence for patch PA,i in B then is

argmin
j

Di,j .
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Figure 4.5: Correspondence matching on a picture of the Hubble Space Telescope
(taken from the NASA archives). The second frame is a rotated version of the �rst.
Note that the majority of, but not all, correspondences are correct.

Figure 4.6: Correspondence matching on real-world data. These photos were taken
by NASA during the Path�nder missions.

Because the algorithm does not compute pixel intensity di�erences, but rather

compares intensity distributions, it is fairly robust to mild geometric trans-

formations. The output of the algorithm, applied to both an arti�cial and a

real-world data set, is shown in Figures 4.5 and 4.6.

4.3.2 Other matching methods

After image patches have been cut out around detected features, several algo-

rithms are available to �nd correspondences. We mention a few.
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Cross-Correlation

The cross-correlation between two M × N patches, A(m,n) and B(m,n), is

de�ned as

C(i, j) =
∑
m

∑
n

A(m,n)B(m+ i, n+ j).

Unfortunately, the cross-correlation function has no well de�ned range, and is

sensitive to changes in patch luminosity.

Normalised Cross-Correlation

The normalised cross-correlation aims to address problems with standard cross-

correlation, and is de�ned as

γ(m,n) =
1

MN

∑
x,y

[
A(x, y)− Āu,v

] [
B(x− u, y − v)− B̄u,v

]√∑
m,n

∣∣A(m,n)− Āu,v
∣∣2∑

m,n

∣∣B(m− u, n− v)− B̄u,v
∣∣2 ,
(4.1)

where Āu,v and B̄u,v are the means of the overlapping parts of A and B and

γ ∈ [−1, 1]. Unfortunately, the order-complexity of the calculation is high at

O(M2N2).

Suggestions have been made for speeding up its direct calculation [Lew95,

TL03] (other methods are available to derive an estimate), based on summed

area tables (SAT). The SAT of an image f(x, y) is

S(m,n) =
∑

i≤m,j≤n

f(i, j),

so that S(m,n) is the sum of all elements to the top and left of the current

element (including the element itself). It can be calculated e�ciently in a single

pass, since

S(m,n) = f(m,n) + S(m− 1, n) + S(m,n− 1)− S(m− 1, n− 1).

The SAT can then be used to sum any block-shaped area in the image, since∑
m0<m<m1

∑
n0<n<n1

f(m,n) = S(m0, n0) + S(m1, n1)− S(m0, n1)− S(m1, n0).

For random variables, we know that

E([X − X̄]2) = E(X2)− X̄2.
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In a similar way, we can rewrite (4.1) to become

γ(u, v) =
1

MN

∑
x,y

[
A(x, y)− Āu,v

] [
B(x− u, y − v)− B̄u,v

]√[∑
x,y A

2(x, y)−
(∑

x,y A(x, y)
)2
] [∑

x,y B
2(x, y)−

(∑
x,y B(x, y)

)2
] .

The summed area tables of A and A2 can then be used to calculate the entire

denominator and the means in the numerator. Especially for larger patches,

this may lead to signi�cant speed-ups.

When it comes to determining patch correspondence, any form of correlation

is problematic in the sense that it does not account for geometric transformations

other than shifts in the x and y directions. It may be successful for small patch

sizes, but for larger sizes we suggest the statistical approach above, or using it

in combination with the log-polar transform, outlined in the next chapter.

Phase correlation

Phase correlation is similar to standard correlation, except that it operates in

the phase domain. It can be calculated rapidly using the discrete Fast Fourier

Transform as

C = F−1

{
F {A}} F∗ {B}
|F {A}} F∗ {B}|

}
,

where F is the Fourier-transform (in two dimensions) and } indicates point-

wise multiplication. In fact, this calculates the circular convolution (i.e., values

that �exit� on one side �enter� on the other). It is based on the observation

that two sequences, circularly shifted with respect to one another, have a phase

di�erence in the Fourier domain. In this ideal case, C is the Kronecker delta

δ(x+ dx, y + dy)

indicating the shift. In the next section, where we discuss the log-polar trans-

form, the circular property is needed. In most other practical cases, the shift is

not circular, so that the patches have to be zero-padded to dimensions (2M −
1)× (2N − 1) before transforming.

Extensions of phase correlation, aimed at registering rotated as well as trans-

lated images, have been proposed [DM87, RC96].
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S
o
ft
w
ar
e The algorithms listed here are available as:

� supreme.register.ncorr (normalised cross-correlation)

� supreme.register.phase_corr (phase correlation)

4.4 Conclusion

This chapter details several pixel-based techniques of determining feature cor-

respondence. With the feature correspondences between two images A and B

known, we now turn to the next problem: how to estimate the geometric trans-

formation that takes pixels from A to B. It is unlikely that all correspondences

are determined correctly, so Chapter 5 also shows how to deal with outlier cor-

respondences robustly, using techniques such as RANdom SAmple Consensus

(RANSAC).
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Chapter 5

Accurate image registration

5.1 Introduction

Image registration is an important part of super-resolution: it provides an esti-

mate of the geometric relationship between the input frames, thereby informing

us as to which pixels from which frames describe a certain part of the scene.

It has been shown that a minute amount of misregistration helps to regularise1

the super-resolution estimate [CB09] , but it is easy to argue that inaccurate

registration should be avoided at all cost (adding regularisation is easy, as we

shall see in Chapter 6, but �xing misalignment is not).

In the previous chapter, we show how to �nd corresponding features across

two frames, say f0(x, y) and f1(x, y). With those tentative correspondences (we

call them tentative, because they may not be correct) at our disposal, we are

interested in estimating a geometric transformation, T , such that

f0(x, y) = f1(T (x, y)).

The function T can be very complex�the image formation process likely yields

images that vary non-linearly in their geometry (radial lens distortion, for exam-

ple, varies non-linearly as a function of the radius from the centre of the image).

As discussed in Chapter 2, though, these e�ects may be of little consequence

for super-resolution since

� images are taken from afar,

� the regions involved are small parts of a larger image,

� neither the camera nor the object moves any signi�cant amount.

Of course, these assumptions are not required for super-resolution, but they do

make the registration problem more tractable. Given these circumstances, we

are able to model the changes in geometry for the majority of super-resolution
1As discussed in later chapters, maximum likelihood estimators tend to be overzealous

sometimes, yielding oscillating results.

47
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problems as a linear coordinate transformation, x0

y0

z0

 = H

 x1

y1

1

 ,
where the 3×3 matrixH represents a projection, encompassing rotation, scaling,

skew and perspective. Note the use of homogeneous coordinates, for which the

equivalence  x0

y0

z0

 ≡
 x0/z0

y0/z0

1


holds. Homogeneous coordinate are returned to Euclidean form simply by di-

viding with the last element.

Estimating the transformation matrix H accurately is the main topic of

this chapter. We study its properties, and then explore registration algorithms.

These come in two �avours: those that operate in the spatial domain, and

those that use a transformed domain, such as the Fourier, wavelet or log-polar

domains. Within the spatial domain, methods can be divided further into cat-

egories of dense and sparse registration. Dense methods generally examine

images as a whole to determine geometric relationships between pixels, whereas

sparse methods rely on features, such as described in the previous chapter.

To conclude, we brie�y discuss photometric registration�determining the

di�erences in exposure between frames�used to equalise di�erences in input

frame exposures.

For further reading, we refer to two review articles, [Bro92] and [ZF03].

In [Bro92], one of the �rst thorough surveys of registration methods, Brown

characterises algorithms based on their choice of four components: a feature

space, a search space, a search strategy and a similarity metric. More recently,

[ZF03] gives a thorough overview of recent developments, including the use of

mutual information.

5.2 The transformation matrix

The ability of the transformation matrix, H, to represent a projective trans-

formation is made possible by extending the two-dimensional position vector,

[x, y]T , to three components. The value of the last dimension may vary, and
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de�nes an equivalence class so that zx

zy

z

 ≡
 x

y

1

 .
Due to this property, these are known as homogeneous coordinates.

The form of the transformation matrix H determines the type of geometric

transformation represented. For example,

H =

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 =

[
R 0

0T 1

]

represents a rotation of angle θ. Making use of the �1� in the homogeneous

coordinate, we can add translation

H =

 cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1

 =

[
R t

0T 1

]
,

and multiply the rotation matrix by s to get scaling:

H =

 s cos(θ) −s sin(θ) tx

s sin(θ) s cos(θ) ty

0 0 1

 =

[
sR t

0T 1

]
.

Skewing can be introduced by multiplying the x and y parameters a and b, e.g.,

H =

 sa cos(θ) −sb sin(θ) tx

sa sin(θ) sb cos(θ) ty

0 0 1


while perspective is adjusted in the �nal row,

H =

 sa cos(θ) −sb sin(θ) tx

sa sin(θ) sb cos(θ) ty

p0 p1 1

 .
In total, then, there are 8 parameters encoded in the H-matrix. Its elements
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are

H =

 H00 H01 H02

H10 H11 H12

H20 H21 1


and, since H operates on homogeneous coordinates, it is homogeneous itself

(we can always divide H by a constant without changing its function). Linear

transformation matrices can be combined. For example, say we want to rotate

an image around its centre at (xc, yc). We can express that operation as shifting

the image upward and to the left, until its centre lies on the origin, rotating the

image and then translating it back to its original position. The transformation

matrix for this operation is

H = H−1
S HRHS

where

HS =

 1 0 −xc
0 1 −yc
0 0 1


and

HR=

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 .
The inverse H−1

S has the same function as HS , except that it translates in the

opposite direction. Note that the order of applying transformations matters;

each additional transformation must be pre-multiplied with the existing H.

5.3 Sparse registration: Estimating a

homography from correspondences

Feature based registration methods are an excellent way to avoid the local max-

ima encountered during dense registration [CKK+93] (see Section (5.4)). We

discuss two popular homography estimation techniques, and show how outliers

(data-points that do not �t the registration model well) are handled.

5.3.1 Least-squares estimation

Direct method

We wish to estimate the 8 unknown parameters of the transformation matrix

H, based on known point correspondences. The transformation of a source
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coordinate, x, in Euclidean form (i.e., normalised so that z = 1) to a target

coordinate x′ = Hx yields

x′ = H00x+H01y +H02

y′ = H10x+H11y +H12

z′ = H20x+H21y +H22.

By also converting x′ to Euclidean form, we can compare the source and target

coordinates,

x′

z′
− H00x+H01y +H02

H20x+H21y +H22
= 0

y′

z′
− H10x+H11y +H12

H20x+H21y +H22
= 0.

Multiplying by the denominator yields

x′

z′
(H20x+H21y +H22)−H00x−H01y −H02 = 0

y′

z′
(H20x+H21y +H22)−H10x−H11y −H12 = 0

which can also be written as the system

Ah =


−x −y −1 0 0 0 x′x

z′
x′y
z′

x′

z′

0 0 0 −x −y −1 y′x
z′

y′y
z′

y′

z′

...





H00

H01

H02

H10

H11

H12

H20

H21

H22


= 0.

Each feature correspondence �lls two rows of A, so that n point correspondences

yields a 2n× 9 matrix.

We now have to solve the homogeneous set of linear equations,

Ah = 0 h 6= 0.

For 4 point correspondences, the solution is the one-dimensional null-space of
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A. For more correspondences, we seek the solution to

arg min
‖h‖=1

‖Ah‖ = arg min
‖h‖=1

hTATAh = λmin (5.1)

where λmin is the smallest eigenvalue of ATA. This is easily shown, given the

eigenvalues λi and corresponding eigenvectors qi of B = ATA. For

Q =
[

q1 q2 . . . qn

]
and D =


λ1

λ2

. . .

λn


it is true that BQ = QD or B = QDQT . Rewriting (5.1) in terms of this

factorisation yields

arg min
‖h‖=1

hTQDQTh = arg min
‖y‖=1

yTDTy = arg min
‖y‖=1

λ1y
2
1 + λ2y

2
2 + . . .+ λny

2
n.

With λi = λmin, a minimum is achieved when all components of y are set to

zero except for yi = 1. Since y = QTh, we �nd that h = Qy = qmin, the

eigenvector of B that corresponds to its smallest eigenvalue.

To �nd this eigenvector, examine the structure of the singular value decom-

position (SVD),

A = UΣV T ,

where the columns of U contain the eigenvectors of AAT and the columns of

V the eigenvectors of ATA corresponding to the singular values of A on the

diagonal of Σ. Recall that we are interested in the eigenvectors of ATA since

the vector h we are solving for is one such an eigenvector with its eigenvalue

closest to zero.

The SVD can be (and usually is) computed so that the singular values appear

in decreasing order on the diagonal of Σ. Note that the eigenvalues of the normal

matrix ATA are the squares of the singular values of H. If the system is exactly

determined (i.e., with 4 point correspondences), there will be exactly one zero

singular value in the last position, which corresponds to the last column of V�

our solution. For an over-determined system, we choose the solution as the last

column of V , corresponding to the smallest eigenvalue of ATA.

Often, when the skew and perspective distortion is small, we can limit H to
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an a�ne transformation,

H =

 H00 H01 H02

H01 H11 H12

0 0 1

 ,
where we only need to solve for 6 unknown parameters.

S
o
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ar
e The least-squares solution to the projection matrix coe�cients can be

calculated using supreme.register.sparse with the keyword argument

mode='direct'.

Iterative method

In the following discussion, denote the Euclidean form of the coordinate x as

xe, so that

x =

 x

y

z

 and xe =

[
x/z

y/z

]
.

In the previous section, we set out to �nd the transformation matrix, H, so

that x′e and (Hx)e lie close to one another over all feature correspondences,

and �nd the least squares solution that minimises the forward error squared,

‖x′e − (Hx)e‖22 (it is called the forward error because coordinates are trans-

formed �forward�, using Hx, and then compared to the target coordinates x′).

Sometimes, it is useful to minimise the error in both directions, yielding the

error function ∥∥x′e − (Hx)e
∥∥2

2
+
∥∥xe − (H−1x′)e

∥∥2

2
.

This minimisation is achieved using any quadratic minimisation algorithm.

A third method is to minimise the reprojection error, as discussed in [HZ04],

whereby the coordinates themselves are included in the parametrisation of the

minimisation.
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S
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e Homography estimation is provided as

supreme.register.sparse. The open source package �homest�

(http://www.ics.forth.gr/~lourakis/homest/) provides similar

functionality.

# x0 is a list of x-coordinates in the first image

# y0 is a list of y-coordinates in the first image

# x1 is a list of x-coordinates in the second image

# y0 is a list of y-coordinates in the second image

# We would like to find the matrix , H, such that

# [x0] [x1]

# H [y0] = [y1]

# [1 ] [1 ]

import supreme.register as sr

# The mode parameter can be 'direct ' or 'iterative '

H = sr.sparse(y0, x0 , y1 , x1, mode='iterative ')

5.3.2 Estimation in the presence of outliers

Sadly, no feature correspondence algorithm is perfect, consequently we have to

deal with a number of incorrect correspondences amongs those provided. By far

the most common approach is Random Sample Consensus, or RANSAC [FB80].

RANdom SAmple Consensus (RANSAC)

In fact, RANSAC is so popular that, in 2006 for the 25th anniversary of the

algorithm, a special session was held at the International Conference on Com-

puter Vision and Pattern Recognition to discuss all the variations that had been

proposed.

Probably the best known extension is MLESAC [TZ00], but recently Chum

[CM05] published a number of improvements including LO-RANSAC and PROSAC.

A review of many extensions is available in [CKY97].

Given noisy data to �t to some model (e.g., a straight line, a linear trans-

formation, or anything else), the sample-verify steps that form the RANSAC

algorithm are outlined in Algorithm 5.1.
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Algorithm 5.1 The RANdom SAmple Consensus (RANSAC) algorithm.
RANSAC aims to �nd the best parameters, p, for a model M , such that the
number of outliers on a data-set X,∑

i

[M(xi|p) ≥ K]

is minimised (K is a user set threshold). For example, the straight line model
has the form

M(x, y|m, c) = y −mx− c.

Repeat, for a pre-determined number of times (see [FB80]), the following pro-
cedure:

1. Randomly draw, without replacement (i.e., without drawing any point
twice), N samples from the noisy data-set. Here, N is the minimum
number of points required to �t the model, M (e.g., 2 in the case of a
straight line).

2. Estimate the model parameters, p, that best �t the N randomly drawn
samples.

3. Based on the model parameters, determine the number of data-points
(from the entire data-set) that qualify as inliers (i.e., those data points
that �t the model well):

Q =
∑
i

[M(xi|p) < K]

If the number of inliers exceeds those found in previous runs, store the
current model parameters.

After termination, the model parameters associated with the largest set of inliers
are available.

MSAC: It is noted in [TZ00] that the RANSAC minimises an error of the

form

C =
∑
i

ρ(ei)

where

ρ (ei) =

0 ei < T

1 ei ≥ T
.

Thus, the cost function counts the number of outliers, but does not take the

model error of each sample, ei, into account. We can modify step 3 of RANSAC

to read:

Based on the model parameters, evaluate the cost function

C =
∑
i

ρ (ei)
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where

ρ (ei) =

ei ei < T

1 ei ≥ T

and

ei = M(xi|p).

If the value of the error function, C, is lower than in previous runs,

store the current model parameters.

This approach is known as m-estimator sample consensus, or MSAC.

LO-RANSAC: In [CM05] it is suggested to execute an inner loop of RANSAC

on the inliers every time a new minimum error is obtained. The last sentence

of the MSAC description above then becomes

If the value of the error function, C, is lower than in previous runs,

proceed to do another RANSAC run, this time only sampling from

the best set of inliers, but still verifying against the entire data-set.

In his dissertation, Chum showed that this leads to quicker convergence at a

small increase in computational cost.

Early termination Fischler & Bolles [FB80] estimate the number of itera-

tions required to draw an inlier-only set to be

k = ε−M

where ε is the expected probability of choosing an inlier, andM is the number of

samples drawn. Since the value of ε is usually unknown, we set it conservatively

low, increasing the number of iterations and (hopefully) ensuring a good match.

The number of iterations is therefore unnecessarily high, but can be updated

during each run as we learn more about our data set [Cap05]. For example,

given that a run has encountered N inliers in a size L dataset, we set

k =

(
N

L

)−M
if the new k is smaller than the existing value but larger than some prede�ned

minimum.
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e The MSAC variant of RANSAC, with the local-optimisation step of LO-

RANSAC as well as an early-exit strategy suggested by in [Cap05], is imple-

mented in the module supreme.feature.ransac. The following example

estimates the parameters of a straight line, given noisy data-points.

from supreme.feature.ransac import RANSAC

class Line:

ndp = 2 # number of model parameters

def __init__(self , m, c):

self.m = m

self.c = c

def __call__(self , data , confidence =0.8):

""" Calculate how well the given data matches

the model. Return the error for each data -

point , as well as whether it is an inlier.

The method used below to determine whether

a point is an inlier is just a heuristic

for illustrative purposes.

"""

# `data ` consists of two columns: x, y

x = data[:, 0]

y = data[:, 1]

err = np.abs(y - self.m * x - self.c)

return err , err < (1 - confidence) * self.m

def estimate(self , data):

""" Given data , estimate the line parameters.

"""

x = data[:, 0]

y = data[:, 1]

m, c = np.polyfit(x, y, deg=1)

return m, c

# Assuming we have noisy data , an Mx2 array

m_est , c_est = RANSAC(model=Line(3, 4))( data)
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Estimating the transformation matrix

The combined MSAC, LO-RANSAC and early-termination variant of RANSAC

is used in combination with the direct transformation matrix estimation method

discussed earlier. Applied to the putative point-correspondences shown in Fig. 5.1,

the transformation shown in Fig. 5.2 is obtained.

Graph Matching

In [TKR08], feature correspondence is formulated as a graph matching problem,

which is NP-hard. Several optimisations are suggested to improve execution

speed, and, for standard problems, the authors claim to achieve optimal matches

within reasonable time limits (minutes, not hours).

5.4 Dense registration methods

In smooth or low-resolution images, it is hard to locate features, so the methods

developed in the previous chapter and sections cannot be used. Instead, we opt

to match entire images based on their pixel content. This approach is called

dense registration.

Next, we discuss common registration procedures, and then mention a pop-

ular similarity measure called mutual information.

5.4.1 Error minimisation

Again, we are faced with the problem of solving the unknown geometric trans-

formation T between two images such that

f0(x, y) = T (f1(x, y)).

This time, however, we have no features to assist us. Fortunately, since com-

puters are hard workers, we can solve the problem using brute force by letting

the algorithm guess T -functions until it arrives at a good answer. There are

two pieces of information missing from this approach: one, how to know when

a �good� estimate has been made and, two, which T -function to guess next.

A su�cient measure of the likeness between two images is the mean square

error,

‖f0 − T (f1)‖22 .

We say �su�cient� because, as we mentioned in Chapter 7, the L-norms are

not ideal in some ways�also the reason why we suggest mutual information in

Section 5.4.3.
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Figure 5.1: Putative feature matches for the panorama in Fig. 5.2.

Figure 5.2: Panoramic stitch of two photos. Features are extracted, using the discrete
pulse transform, whereafter RANSAC is used to �nd a homography that �ts inliers.
The images are warped accordingly (top, left and right) and blended according to a
Laplacian pyramid scheme (bottom) (we use the Enblend package; the algorithm is de-
tailed at http: // enblend. sourceforge. net/ details. htm ). Photos taken at location

34°23'52.00"S, 20°50'52.09"E.

http://enblend.sourceforge.net/details.htm
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As in the previous section, we can model the transformation function as a

3 × 3 matrix operating on homogeneous coordinates. We need to determine 8

parameters for a full projective transformation, or 6 for an a�nity. Given an

estimate of those parameters, h, we rewrite the error between our two images

as

ε(f0, f1|h) = ‖f0− T (f1|h)‖22 . (5.2)

A standard non-linear optimiser, such as the Levenberg-Marquardt algorithm

(see [Van05] for a detailed overview), can then be used to estimate the parame-

ters h. Since the derivative of the error function is often hard to derive, Powell's

derivative free methods [Pow07, Pow06] may be more suitable.

The interpolation method employed to calculate T (f1) is important. Lower-

order functions, such as bilinear interpolation may over-smooth the image,

whereas certain higher order functions could introduce ringing or edge arte-

facts. In [TU00], the third-order B-spline is suggested as a good compromise.

Note that smoothing, in the context of image registration, is especially harmful,

since it further �attens the error function, which may not have a prominent

minimum to start with.

S
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ar
e The Levenberg-Marquardt non-linear minimisation algorithm is available as

scipy.optimize.leastsq. A modi�ed version of one of Powell's deriva-

tive free methods is available as scipy.optimize.fmin_powell.

5.4.2 Pyramidal methods

The error function minimised in Section 5.4.1 may (and often does) have several

local minima [CKK+93]. Methods employing random jumps in search space,

such as simulated annealing, may be able to �nd a global minimum, but a

simpler idea is suggested by Anandan et al. [Ana89, BAHH92]

The images to be registered are downsampled by 2k for k = 0 . . . N − 1

to form a pyramidal hierarchy. Starting from the lowest resolution level, the

images are aligned using the procedure outlined above. The next level is then

registered, using the solution from the previous level as starting parameters.

The pyramidal approach avoids local minima, which disappear when the error

function is measured over smoothed images.

Alternative formulations include di�erent downsampling factors, qk for k =

0, . . . , N − 1, or including an upsampling step, k = −1, . . . , N − 1. The upsam-

pling step aims to facilitate sub-pixel registration accuracy. For this step to be

e�ective, a higher-order interpolation function that preserves detail is required.
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5.4.3 Mutual information

Viola �rst applied the concept of mutual information to image registration

[Vio95], whereafter Thevenaz and Unser re�ned its application [TU96]. The

mutual information between two random variables, X and Y , is de�ned as

I(X,Y ) = H(Y )−H(Y |X)

where H(Y ) is its entropy,

H(X) = −Ex [logP (X)]

= −
∑
x

(logP (x))P (x). (5.3)

The mutual information describes the reduction in entropy of Y given X. Al-

ready, we can see how it is applicable to image registration: if, when we witness

an image X, we suddenly know a lot more about Y , then the two images must

be intimately related.

We cannot calculate the quantity H(Y |X) easily, so, following Viola, we

rewrite the mutual information as

I(X,Y ) = H(X) +H(Y )−H(X,Y ).

The quantity H(X,Y ) can be computed from the joint-histogram of X and

Y using (5.3). Since the joint-histogram may be sparsely populated, we can

convolve it with a discretised Parzen window to get a better approximation of

the unpopulated values.

Mutual information is employed instead of the mean square error in the

minimisation of (5.2), using a derivative-free method by Powell. Note that the

optimisation can be executed more e�ciently by employing the mutual infor-

mation derivatives found in [TU00].

S
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e The joint histogram (with an adjustable Parzen smoother)

is implemented as supreme.register.joint_hist. Based

on the the result, mutual information can be computed using

supreme.register.mutual_info. Registration via mutual informa-

tion is done using supreme.register.dense_MI.
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5.4.4 Log-polar registration

Log-polar registration [ZW00] is based on the observation that, under certain

coordinate transformations, rotations and scalings become translations. Specif-

ically, this property is observed in the transformed image

f(log(R), θ)

where (R, θ) are polar coordinates. Scaling the image by a factor s yields

f(log(R) + log(s), θ)

whereas rotation by an angle φ results in

f(log(R), θ + φ).

To construct the log-polar transform, we �rst convert cartesian coordinates to

polar coordinates,

R =
√

(x− xc)2 + (y − yc)2

θ =

arctan
(
y−yc
x−xc

)
x− xc 6= 0

π/2 x− xc = 0

where (xc, yc) are the centre coordinates. The log axis of the log-polar transform

becomes

L = logbR.

Denote the height or width of the input image, whichever is largest, by w. We

would like the log-axis of the transformed image to have the same dimension.

The maximum value of R occurs at the corner points, where R = Rmax =√
x2
c + y2

c . Setting L = logbR = w, we calculate b as

b = eln(Rmax)/w = R1/w
max.

Warping in reverse When warping images, it is not practical to use this

�forward� transform. Some cartesian coordinates may, under integer roundo�,

map to the same log-polar position, and, worse, some log-polar positions may

have no integer cartesian counterparts, leaving empty patches in the transformed

image. Instead, we take each coordinate in log-polar space, calculate its (non-

integer, �oating point) position in cartesian space, and interpolate the image to
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obtain its value.

Given L and θ, we therefore want to calculate x and y. First, we compute

R as

R = eln(b)L = eL ln(d)/w

after which x and y is recovered as

x = R cos(θ) + xc

y = R sin(θ) + yc.

Registration using the log-polar transform

As shown in Figure 5.3, changes in rotation and scale cause shifts in the log-

polar domain. To detect these shifts, we calculate the correlation between two

transformed images (either traditional correlation or phase correlation). The

position of the correlation peak, (∆x,∆y), gives the scale and rotation as

s = eb∆x

φ = ∆y,

assuming the transform was performed over 360◦. Note, then, that the log

polar transform gives 4 of the 6 parameters required for a�ne registration�the

2 translation parameters must be �xed beforehand.

Extensions

Computing feature correspondence The log-polar transform lies on the

boundary of feature-based and dense registration methods. In [VH07], we sug-

gest a modi�cation of the algorithm suggested in [ZW00] to place it �rmly in

the feature-based category:

� Filter the input image to detect regions of interest.

� In each region, pick a point of interest that responded most strongly to

the �lter.

� Compare all points of interest in the source image to those in the target

image.

� Use the strongest correlation to determine registration parameters.

The log-polar transform has two drawbacks. First, it needs to be performed

on fairly large image patches to be of use, and, second, the transform is more

expensive to calculate than the statistical quantile-quantile method proposed in
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Chapter 4. The adaptive polar transform discussed next claims to address these

concerns, although we have not veri�ed that it does so in practice.

The adaptive polar transform (APT) The log polar transform non-uniformly

samples the source image, causing oversampling near the fovea and undersam-

pling in the outer regions. The adaptive polar transform [MZE09] aims to ad-

dress this problem. Due to the uniform sampling employed, a straightforward

correlation can no longer be used to register images. Instead, the APT of the

each image is projected to two one-dimensional signals�one representing scale,

the other rotation angle. By correlating these image projections over di�er-

ent frames, the registration parameters are recovered. The authors of [MZE09]

claim that this can be done with fewer operations than the traditional log polar

transform. They also describe a feature search strategy, similar in principle to

the one given above in �Computing feature correspondence�.

S
o
ft
w
ar
e The log polar transform is implemented as

supreme.transform.logpolar. Registration parameters are calcu-

lated using supreme.register.lp_patch_match.

5.5 Photometric registration

Almost all digital cameras provide functionality to ensure properly exposed

photographs. This entails adjusting parameters such as the sensor gain, aperture

size and exposure time. Furthermore, scene radiance is modi�ed by the non-

linear camera response function, whereby high intensity values are compressed

and low intensity values are expanded.

When performing super-resolution imaging, we relate each pixel to its coun-

terpart in other input frames. As such, we prefer a speci�c point in the scene

to have equal pixel intensity values over all frames.

Estimating the parameters of these processes is known as photometric regis-

tration. We can loosely distinguish between relative and absolute photometric

registration, as used in astronomy [PSF+08]. In absolute registration, the goal

of is to determine the true �ux incident on the CCD. In relative registration, we

merely wish to establish this quantity relative to some known reference (such as

the exposure in a chosen frame).

For super-resolution, we aim to establish a crude photometric relationship

between input frames, and luckily the accuracies needed are not anything near

those required in astronomy. Given a reference and a source input frame, fR
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(a) Input image, Chelsea the Cat.

(b) Log-polar transform (LPT) of input image. (c) LPT after scaling by 2.

(d) LPT after rotating by 30◦. (e) LPT after scaling by 2 and rotating by 30◦.

Figure 5.3: The log-polar transform. Note how changes in scale and rotation cause
translation in the transform domain.
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and fS respectively, the problem is simply modeled as

fR = q(fS) (5.4)

where q is a non-linear function that maps intensities in fS to match those in

fR.

The typical camera response function can be modelled as a power-law ex-

pression,

g(r|γ) = rγ ,

where r is the scene radiance (a value in [0, 1]) and γ is a shape parameter.

When the camera shutter remains open for longer, or when the camera gain is

adjusted, the function becomes

g(r|γ, s) = (rs)
γ

where s represents the gain resulting from increased shutter time or gain ad-

justment. After registration, the measured images are

fR = g(r|γ, 1) = rγ

fS = g(r|γ, s) = rγsγ .

Combining the above response functions and adding an o�set parameter, b, we

rewrite (5.4) as

fR =q(fS) = afS + b (5.5)

where a is an intensity multiplier (replacing sγ). In [Cap01], MLESAC (a variant

of RANSAC) is used to estimate these parameters, but an easier route is to

observe how the mean, µS , and variance, σS , of fS are modi�ed by (5.5) [HW79].

For example, µS and µR are now related by

µR = aµS + b,

while σR, the standard deviation of fR, becomes

σR = aσS .

The parameters are now given by

a = σR/σS

b = (µRσS − µSσR)/σS .
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The means and variances are calculated using those entries where both images

have intensity values in [10, 200] (for 255 level greyscale images). This is done to

avoid clipping at high intensities, noise at low intensities and zeros introduced

by out-of-boundary values during warping.

S
o
ft
w
ar
e Photometric registration is implemented as

supreme.photometry.photometric_adjust. To modify an image,

source, to look like the image target, use:

from supreme.photometry import photometric_adjust

a, b = photometric_adjust(source , target)

source = source * a + b

Histogram Adjustment The above procedure relies on the camera response

function being rγ . If we are unsure of this modelling, we may instead estimate

p using histogram matching. One of the �rst uses of histogram matching on

multi-sensor data is that of Horn and Woodham in their 1979 paper on removing

stripes from LANDSAT imagery [HW79].

We assume that the radiance distribution of two registered images is the

same, at least in the overlapping region. The function q is known to be monotone

increasing (i.e., q(x0) < q(x1) if x0 < x1), so that the standard method for

transformation of a random variable can be applied.

Given values x ∈ fS and corresponding y ∈ fR, we seek

y = q(x).

This introduces a relationship between the distribution functions (the cumula-

tive probability density functions),

PX(x) = PY (y).

The function q(x) is determined as

y = q(x) = P−1
Y (PX(x))

where P−1
Y is the inverse of PY . Since both the distribution functions, PX and

PY , can be measured from fS and fR, calculating q(x) should pose no problem.

The only hurdle is that, instead of continuous distributions, PX and PY are
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discrete, so that

PY (y) =
∑
∀t:t≤y

p(t)

where p is the histogram of y ∈ fR. The inverse, P−1
Y (z), can then be formulated

as follows:

Calculate the value y for which the discrete distribution function

PY (y) is closest to z.

Since y can only be one of several discrete values, the function maps a continuous

z to a discrete y. For our speci�c application, the calculation of the histogram

neglects zero-values, since those are introduced during warping when out-of-

boundary coordinates occur. Results are shown in Figure 5.4.

S
o
ft
w
ar
e Histogram matching is implemented as

supreme.photometry.histogram_adjust. To modify an image,

source, to look like the image target, use:

from supreme.photometry import histogram_adjust

q = histogram_adjust(source , target)

source = q(source)

Photometric registration for super-resolution

Super-resolution input frames are often small, cropped areas of a larger scene.

As such, they may contain few grey-levels, resulting in a poor density function

estimate when applying the histogram method. The discretisation of function

q(x) furthermore causes unacceptable quantisation errors. It may be possi-

ble to approximate the distribution functions locally and to calculate a more

exact inverse, but we have not investigated this possibility further. Until we

do, we recommend the a�ne model, ax + b, which is linear, robust, fast and

parametrised by only two variables. Other interesting research include estima-

tion of the camera response function from a single image [NCT07].
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(a) Reference frame. (b) Source frame.

(c) Source frame, photometrically adjusted to
�t reference using an a�ne intensity transfor-
mation.

(d) Absolute di�erence between reference frame
and a�ne adjusted source frame. Note that
over-exposed areas could not be corrected.

(e) Source frame, photometrically adjusted to
�t reference using histogram matching.

(f) Di�erence between reference frame and his-
togram adjusted source frame.

Figure 5.4: Minimising exposure di�erence using histogram matching. These pho-
tographs are from [vWNA06].
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Chapter 6

Super-resolution image

processing

6.1 Introduction

The general super-resolution problem can be stated as follows: Given a number

of digital photos of an object, can we combine these images to form a new image

with increased detail? To answer this question, we need additional information:

� Were the images degraded by factors such as motion blur, excessive sensor

noise or lighting changes? (Pertains to image formation)

� What is the relative position of the camera and the object? (Pertains to

image formation and registration)

� Did the camera or the object move, and how? (Pertains to registration)

� How many photos of what sizes are available? (Pertains to registration

and reconstruction)

Image formation (see Chapter 2) is the process whereby light, re�ected from

a scene, travels through an optical system and causes accumulation of charge

in a photosensitive sensor element. The charge values are read out, ampli�ed,

discretised and possibly processed before being stored as image intensity values.

Super-resolution relies on slight shifts in camera (or object) positions be-

tween several input frames to provide high-frequency information lost during

sampling. Before reconstruction can take place, images must be aligned or

registered (i.e., the e�ect of camera motion must be negated), preferably to

sub-pixel accuracy (see Chapter 5).

Once images are accurately aligned, one of several reconstruction processes

can be applied to restore high-frequency detail.

73
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Image acquisition model

The image acquisition process is often represented as the simpli�ed model

g = S ↓ (h(T (f))) + η

where

� g is the resulting low-resolution (LR) digital image (also referred to as the

frame or photograph),

� f is a high-resolution (HR) representation of the scene,

� T is a geometric transformation dependent on camera position,

� h is the camera point-spread function,

� S ↓ is the downsampling operator and

� η is normally distributed noise.

This model makes the following assumptions, among others:

� The LR frame can be reproduced from the HR frame. In reality, the

camera generates images based on the scene radiance instead, so the as-

sumption holds only if the HR image is a fairly good representation of the

true scene radiance.

� No non-linear noise sources are present, and the additive noise is Gaussian.

This assumption is explored in Chapter 2.

Estimating the HR image from a set of LR images only becomes a tractable

problem once further assumptions are made. For example, the model is often

linearised as

g = Af + η,

which yields the solutions presented in Chapter 7.

This chapter presents the original super-resolution paper [CKK+93], where

super-resolution is posed as a maximum a posteriori (MAP) estimate of the

high-resolution image, whereafter novel heuristic methods are listed.

6.2 The dawn of super-resolution

Super-resolution as we know it was introduced in a 1993 paper by NASA Ames's

Cheeseman, Kanefsky, Hanson and Stutz [CKK+93]. One of their results, based

on data from the Mars Path�nder mission, is shown in Figure 6.1. Even today,
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(a) Enlarged input image, one of 25. (b) Super-resolved image.

Figure 6.1: A high-resolution image of a rock named �Wedge�, calculated using the
�rst super-resolution algorithm. The technique, developed by NASA Ames's Cheese-
man, Kanefsky, Hanson, and Stutz [CKK+93], here combines 25 images taken as part
of NASA's Path�nder mission.

(a) An image, obtained by sampling on
a grid (the blue dots).

(b) An overlay of multiple, rotated images, each
sampled on a grid.

Figure 6.2: Sampling a signal multiple times may lead to an increase in sampling
rate. In this case, notice how a denser sampling is obtained in the overlapping image
regions.

the best algorithms still seek a maximum a posteriori estimate much like they

did. One of the �rst papers on MAP image restoration was [Bes86], while

another MAP approach to super-resolution was published in [HC90]. What

follows is an overview of [CKK+93].
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6.2.1 Why is super-resolution possible?

Imagine having a device that samples a 1Hz signal once every second. Because

the sampling rate is slower than the Nyquist rate, a perfect reconstruction is not

possible. Making use of another two identical devices can be bene�cial: each is

activated 0.3 seconds after the previous, and, by combining the resulting data,

a sampling rate of 3Hz is achieved.

We use a similar experimental setup for super-resolution imaging; the sam-

pling device (a camera), while moving slightly, samples the scene radiance1 by

taking several photos. Unlike the �rst experiment, we do not have control over

the sampling �delay� (the relative movement of the camera), resulting in a dense

but irregular sampling (see Fig. 6.2).

During super-resolution post-processing, the photographs taken (called low-

resolution or LR frames) are combined to form an estimate of the scene radiance

(called the high-resolution or HR frame). The high-resolution frame itself is a

sampled version of the scene radiance, albeit at higher resolution.

6.2.2 Maximum a posteriori estimate

Given a number of low-resolution frames, concatenated to form the vector b,

and the accompanying camera parameters, c, the super-resolution problem is

the estimation of a high-resolution image, x, such that the posterior

P (x|b, c)

is maximised. Finding a high-resolution image from a number of low-resolution

image is no easy task; we prefer to rewrite the maximisation, making use of

Bayes's theorem, as

P (x|b, c) =
P (b|x, c)P (x|c)

P (b|c)
. (6.1)

The likelihood P (b|x, c) is easier to maximise, since it inverts the problem and

asks the question: �Given a high-resolution image and camera parameters, how

would the low-resolution images look?�. The denominator is not important in

the maximisation, since it is independent of x.

If the prior P (x|c) is set to a constant, the problem reduces to the maximum

likelihood estimator. We can think of the maximum a posteriori estimator as

the maximum-likelihood (ML) estimator, regularised by the term P (x|c).

1In reality, we sample image irradiance�the visible-light energy incident on the image
sensor. Under some mild assumptions, and especially in narrow-�eld imaging systems, scene
radiance is proportional to image irradiance [AMK07].
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6.2.3 Pixel probabilities

Experiments show [Cap01, CKK+93] that the per-pixel probability, P (b|x, c)

with b ∈ b, can be approximated as a Gaussian distribution,

P (b|x, c) = N (b̄, σb) =
1√

2πσ2
b

e−(b−b̄)2/(2σ2
b).

The x-dependence is through b = Ax, as explained below. The probability has a

maximum when b = b̄, the �true� pixel value as derived from the scene radiance.

If the high resolution image is a good representation of the scene radiance, it can

be used to determine b̄ accurately. The low-resolution pixel becomes a weighted

sum of high-resolution pixels in the same vicinity; the weights are determined by

the camera point-spread function while the necessary geometric transformations

are described by some of the camera parameters in c.

We assume that pixel perturbations across di�erent low resolution frames are

independent�a reasonable assumption, given that there are multiple factors at

play (e.g., noise and registration errors), uncorrelated over frames. Further-

more, we assume independence over neighbouring pixels. The assumption is

reasonable, because the neighbourhood in�uence is highly localised. The above

distribution can then be vectorised as

P (b|x, c) =
1

|2πΣ|1/2
exp

(
−1

2
(b− b̄)TΣ−1(b− b̄)

)
,

with Σ = σ2I a spherical covariance matrix, k the dimensionality of b and b̄

the values of the low-resolution pixels, estimated from the high-resolution image

x. Since the values in b̄ are modelled to be a linear combinations of those in x,

we can write

b̄ = Ax.

The properties of the matrix A are studied in the next chapter.

It follows that

arg max
x

P (b|x, c) = arg max
x

{
−‖b−Ax‖2

}
. (6.2)

When the prior is included in (6.1), we have

arg max
x

P (x|b, c) = arg max
x

P (b|x, c)P (x|c)

P (b|c)

= arg max
x

P (b|x, c)P (x|c).

Taking the log and combining with (6.2) while assuming a spherical covariance



CHAPTER 6. SUPER-RESOLUTION IMAGE PROCESSING 78

yields

arg max
x

P (x|b, c) = arg max
x

[logP (b|x, c) + logP (x|c)]

= arg max
x

[
−‖b−Ax‖2 + λ logP (x|c)

]
,

where various constants are absorbed by λ.

When choosing the prior as Gaussian with zero mean and spherical covari-

ance we have

arg max
x

P (b|x, c) = arg max
x

[
−‖b−Ax‖2 − λxTx

]
= arg min

x

[
‖b−Ax‖2 + λxTx

]
. (6.3)

Knowing that our pixel values are not centred around zero, the zero-mean Gaus-

sian distribution does not seem appropriate. In the next chapter, we show how

to manipulate our input data to �t this model.

The form of (6.3) is well known as the regularised solution to the least-

squares problem Ax = b.

6.2.4 Camera parameters

Our camera parameters, c, are de�ned as all the known information about

the image formation process. This therefore includes registration information,

parameters of the point-spread function, and so forth. Usually, the number of

registration parameters is very small compared to the data-set; this forms the

basis for the following argument.

Is it satisfactory to pre-calculate the camera parameters during registration,

or should they be included in the MAP estimation? For example, we could

determine the parameters that maximise

arg max
x,c

P (x, c|b).

This approach, however, involves the di�cult process of modelling the joint

distribution, as done in [PCRZ07b]. Cheeseman et al. motivates why this is

unnecessary [CKK+93]: the small number of registration parameters are ob-

tained from a large number of data-points (all image pixels); as such, c is highly

over-determined and can be pre-computed accurately without modelling its dis-

tribution.
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6.2.5 Boundary e�ects

In the description above, we model the pixels in the low-resolution vector b as

weighted combinations of those in x, written as

b = Ax.

For a single value of b ∈ b we write

b =
∑
k

xk

where k represents all high-resolution pixels in the vicinity of b. However, close

to the image boundaries, these pixels could lie outside x. To handle the problem,

four approaches have been suggested:

1. Treat values outside the boundary as zero. This is the approach

used in our implementation and in the next chapter. Due to regularisation

and the smoothing e�ect of either bilinear or polygon interpolation (see

Chapter 7), boundary e�ects have little impact on the reconstruction,

especially in areas where numerous low-resolution frames overlap.

2. Perform super-resolution on subimages, cut from the low-resolution

input frames [CKK+93]. This way, boundary values are always available.

3. Stack all input frames, and use this as an estimate of pixels outside

the boundary [Cap01].

4. Use traditional boundary extension, such as mirroring or periodic

extension.

6.2.6 The point-spread function

Another important consideration is the weights in A. Usually, A represents

two operations: sampling�parameterised by the camera point-spread function

(PSF)�followed by downsampling. (Note that, in the next chapter, we describe

a parameter free construction of A.)

The camera point-spread function can be measured in a laboratory [CKK+93]

or determined experimentally [Cap01].

We �nd that it can even be estimated during reconstruction, since unsuit-

able PSFs cause oscillatory behaviour. For example, the PSF is often modelled

as a Gaussian kernel. If the kernel is too wide, it oversmooths the solution;

to compensate, high-amplitude components are added to the solution during

reconstruction in an attempt to reduce ‖Ax− b‖2 . If, on the other hand, the
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kernel is too narrow, it acts as a high-pass �lter, emphasising noise. Minimising

the absolute sum of gradients of the solution often yields a good point-spread

parameter.

6.2.7 Solving the linear system

It is not always necessary to write super-resolution as a linear problem, but

when we do a whole arsenal of tried-and-tested algorithms become available.

In [CKK+93], the system is constructed to be square (done by choosing the

correct increase in resolution) and solved using Jacobi iteration. It is often

more practical to solve the least squares problem, as shown in Chapter 7, where

we solve a large, sparse and over-determined linear system using either steepest

descent, conjugate-gradients or damped LSQR.

6.3 Other approaches

The techniques that follow are commonly used to improve image quality.

6.3.1 Averaging

Given measurements of the form

xi = x̄+ η

where the actual value, x̄, is corrupted by normally distributed noise, η ∼
N (0, σ2), we can show that the summed variable

y =
1

N

∑
i=0...N−1

xi

is also distributed normally as

y ∼ N
(
x̄,
σ2

N

)
.

This result explains why image stacking is commonplace in astronomy: it re-

duces zero-mean noise signi�cantly. Astronomers are also plagued by �seeing�,

the e�ect of the Earth's turbulent atmosphere on the path of light; one way

to avoid it is to take a number of short exposures, and to stack only the best

frames, a process known as �lucky imaging�.

Stein and James [JS61, Ste81] show that, in terms of the overall mean-

squared error, a better estimate is given by their biased estimator.
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(a) Source image (1 of 60),
shape 38× 34.

(b) Average of 5 times en-
larged input images.

(c) A �super-resolution� result
from literature, showing no im-
provement over the average im-
age.

Figure 6.3: Zero-mean noise reduction by averaging.

In the next chapter, we use the average image to regularise our super-

resolution estimate.

6.3.2 Map and deblur

This method, published in 1999 [GR99], is the �rst step in Bannore's recently

published �iterative-interpolation super-resolution� [Ban09]. All low-resolution

pixels are mapped to a high-resolution reference frame to form a sparse recon-

struction (some pixels are not assigned values). The remaining �holes� are �lled

using interpolation or weighted averaging. Finally, a de-blurring operator is

applied to sharpen the high-resolution estimate.

Capel [Cap01] explains the reasoning behind this method, given that a low

resolution frame can be represented as

gn = s ↓ (h ∗ Tn(f))

where f is the high-resolution image, Tn is a Euclidean geometric transforma-

tion, h is an isotropic point spread function, and s ↓ is a downsampling operator.

The order of the the convolution and the transformation operators can be re-

versed to obtain

gn = s ↓ (Tn(h ∗ f)).

This process is then inverted by upsampling, removing the transformation and

deblurring.



CHAPTER 6. SUPER-RESOLUTION IMAGE PROCESSING 82

6.3.3 Pan-sharpening

In satellite imagery, the situation arises where two images of a scene are avail-

able: a high-resolution, monochromatic (grey-scale) version, and a low-resolution,

multispectral (colour) version. The process of �colouring in� the high-resolution,

monochromatic image is known as pan-sharpening, a form of image fusion. It re-

minds strongly of a well-initialised version of the colorisation process suggested

in [LWL04]. A review of pan-sharpening techniques is given in [GNA+].

6.3.4 Compressive sampling / compressed sensing

When a camera is under our control, compressive sampling can be applied to

reconstruct a dense representation of a scene, based on sparse samples [MW08].

In practice, super-resolution is applied in situations where the camera cannot

be in�uenced (otherwise, simply changing lenses would provide the resolution

improvement required).

In [WH08], a single-frame super-resolution algorithm is developed from the

perspective of compressed sensing.
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Chapter 7

Super-resolution as a sparse

linear problem

7.1 Introduction

In the previous chapter we state that the super-resolution problem is often

modelled as

Ax = b + η

where x represents a high-resolution (HR) discretisation of the scene radiance,

A models the camera process, η is zero-mean Gaussian noise and b is a vector of

all resulting low-resolution (LR) images concatenated. Using Bayes's theorem,

we �nd a maximum a-posteriori (MAP) estimate of the solution x by minimising

the error

‖b−Ax‖2 + λxTx.

This corresponds to the damped solution of the linear system Ax = b.

It is useful to familiarise ourselves with the dimensions of the vectors and

matrices involved. First, examine the noiseless model for a single frame,

A(i)x = b(i)

where i is the frame index. The �rst LR output image, b(0), is the P ×Q output

image unpacked in lexicographic order. We assignM = PQ as the dimensional-

ity of b(0). The vector x is the high-resolution image of dimensionality zP×zQ,
again unpacked in lexicographic order. The zoom factor, z with z > 1, repre-

sents the increase in resolution; e.g., if z = 2 then the high-resolution image has

twice as many pixels as the low-resolution image along each axis. The dimen-

sionality of x is N = z2M . Given the dimensions of b(0) and x, the shape of

the matrix A has to be M ×N = M × z2M .

Since M < N , the system A(0)x = b(0) is underdetermined, but when we

85
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combine all k camera matrices and input images to form

A =


A(0)

A(1)

...

A(k)

 and b =


b(0)

b(0)

...

b(k)


the resulting system Ax = b is overdetermined if k > z2. Note that, even when

combining a large number of frames, there is no guarantee that each additional

frame provides independent information (imagine, for example, the case where

k identical frames are combined). In practice, the values of x can only be

determined accurately in positions where multiple frames overlap.

The goal of this chapter is to explore the structure and formation of the ma-

trix A, and to study di�erent methods of solving x in the least-squares problem

where Ax = b is overdetermined.

7.2 The camera matrix, A

The camera matrix A, which represents the image formation process, is the only

customisable parameter in the linear problem Ax = b, and has to be chosen

with care. In the previous chapter we discuss a simpli�ed expression for image

formation,

b(i) = S ↓ (h(T (i)(x))) + η(i),

approximated as

b(i) = A(i)x + η(i). (7.1)

Note that here we examine the formation of a single image, b(i), while the

camera matrix that produces all low-resolutions frames is simply

A =


A(0)

A(1)

...

A(i)


as mentioned above. From (7.1) we note that the camera matrix encapsulates

three processes: geometrical transformation, the e�ect of the point-spread func-

tion and down-sampling. How, then, should A(i) be calculated?

Each row of A(i) represents weights applied to values in x to form a single
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Figure 7.1: The sparse matrix structure of a convolution operator. In this example,
the convolution mask is 3× 3 and the target image is 10× 10.

pixel of b(i), the m-th pixel being

b(i)m =
∑
n

A(i)
m,nxn. (7.2)

If we combine the e�ect of transformation and down-sampling, A(i) can be

approximated as

A(i) = T (i)C or A(i) = CT (i)

where C represents the e�ect of the point-spread function as a convolution,

while T (i) represents geometric transformation accompanied by interpolation.

The sparse nature of these operators are illustrated in Figures 7.1 and 7.2.

While not visible in the above description, note that the geometric transfor-

mation itself is expressed as a linear transformation, p′ = Hp where p is a

homogeneous coordinate, as discussed in Chapter 5. The order of the opera-

tors is not arbitrary, and either choice presents certain di�culties. Importantly,

the operator T (i) transforms a high-resolution image to a low-resolution image.

Therefore, when convolution is applied �rst (to the high-resolution image), for-

shortening due to the geometric transformation may lead to certain areas being

more densely sampled than others. If the geometric transformation is applied

�rst, with the convolution operator acting on the resulting low-resolution image,
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Figure 7.2: The sparse matrix structure of a geometric transformation operator,
employing bilinear interpolation. In this example, the transformation is a clockwise
rotation by 5◦. Gaps appear when boundary pixels are met, and the interpolator returns
zero (by design).

some samples in the high-resolution image may not be taken into consideration

at all. In [Cap01, p. 126], this problem is addressed by designing the camera

matrix as follows:

1. Construct a convolution kernel (representing the camera point-spread func-

tion) that operates on the low-resolution image.

2. Use the known geometric transformation, H, to modify the kernel for op-

erating on high-dimensional images. For example, each kernel coordinate

will change from  x

y

1

 to H

 x

y

1

 ,
thereby also altering the kernel shape and the convolution path. Con-

versely, we can think of it as �fetching� all high-resolution pixels that

contribute to a speci�c low-resolution pixel.

The approach works well, but introduces some challenges of its own:

� What should the shape and size of the convolution kernel be? The camera
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response function is well modelled as a Gaussian kernel, but even so the

optimal variance, σ2, is unknown.

� How should the transformed kernel be represented and applied? Capel

models the kernel as a piecewise bilinear surface, allowing easy transfor-

mation and integration.

As mentioned in the previous chapter, the kernel variance parameter, σ2, can

be established experimentally. Reconstructions are made while varying σ2 until

the result shows little oscillatory behaviour. Still, we prefer not to have the free

parameter at all.

In the next section, we examine the simpli�ed operator, A(i) = T (i), which

no longer requires such a parameter.

7.3 Linear interpolation operators

Note that, from here onwards, we neglect the frame number to simplify notation,

i.e., A = A(i) and T = T (i).

The camera matrix can be approximated simply by bilinear interpolation,

A = T,

introducing the obvious �aw that only 4 high-resolution pixels are used to cal-

culate the value of any low-resolution pixel. In reality, a low-resolution pixel

may (and probably will) depend on more high-resolution pixels; the exact num-

ber being determined by the resolution increase, z, and the severity of the

transformation, H. If, however, the zoom ratio is chosen conservatively, the

approximation may be a good one, as illustrated in Figure 7.3.

Next, we examine the bilinear interpolation operator, whereafter polygon-

based interpolation is introduced allowing any appropriate number of high-

resolution pixels�irrespective of the zoom factor or the severity of the transformation�

to contribute to the low-resolution pixel.

7.3.1 Bilinear interpolation

The bi-linear transformation/interpolation operator, A = T , is near-Toeplitz

with interpolation coe�cients appearing on the diagonals, as shown in Fig-

ure 7.2. The coe�cients in Equation (7.2) are derived from bilinear interpolation

as follows:

Suppose a function is known at four grid coordinates, namely f00 = f(0, 0),

f01 = f(0, 1), f10 = f(1, 0), and f11 = f(1, 1). We need to calculate f(x, y)
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(a) Input image (one of ten), upscaled. (b) Reconstruction at 5× zoom with bi-linear
interpolation. A high-resolution reconstruction
is made, but the result is oscillatory due to the
bilinear operator's small footprint.

(c) Reconstruction at 1.8× zoom with bi-linear
interpolation. Note that, while the resolution of
this reconstruction is low, the detail is at least as
good as the 5× reconstruction above, but with-
out oscillations. The small footprint of the bi-
linear super-resolution operator is adequate for
such low zoom factors.

(d) Reconstruction at 5× zoom with polygon
interpolation. This operator has a variable size
footprint, and is therefore capable of handling
any size zoom factor.

Figure 7.3: The e�ect of the zoom factor on bilinear and polygon super-resolution
operators.

with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. An exact answer is impossible to �nd, but linear

interpolation gives the approximation

f(x, y) ≈
[

1− x x
] [ f00 f01

f10 f11

][
1− y
y

]
.

This method is known as bi-linear interpolation (even though the successive

combination of two linear operators is no longer linear). In the more general

case, where (x, y) falls inside an arbitrary cell (again with surrounding function

values f00, f01, f10, and f11 known), we de�ne two location variables,

u = x− bxc and t = y − byc ,

so that

f(x, y) ≈
[

1− u u
] [ f00 f01

f10 f11

][
1− t
t

]
= f00(1− u)(1− t) + f01(t)(1− u) + f10(u)(1− t) + f11(u)(t). (7.3)



CHAPTER 7. SUPER-RESOLUTION AS A SPARSE LINEAR PROBLEM 91

Figure 7.4: A low-resolution pixel, transformed to the high-resolution image. The
centre of the transformed pixel (big dot) is used to �nd the nearest surrounding pixel
centres (small dots), indicating which pixels in the high-resolution image are interpo-
lated to inform the value of the low-resolution pixel.

If all known grid-values of f(x, y) are placed in a vector, x, then

f(x, y) = aTx, (7.4)

where a is a sparse vector of interpolation coe�cients derived from (7.3) (a has

mostly zero entries, except where elements correspond to f00, f01, f10, or f11 in

x). When computing f(x, y) for several coordinate pairs, (xi, yi), (7.4) becomes

b = Ax, b =


f(x0, y0)

f(x1, y1)
...

f(xN−1, yN−1)

 , (7.5)

analogous to (7.2).

For super-resolution reconstruction, we need to warp (and down-scale) the

high-resolution image to produce a given low-resolution image. The transfor-

mation matrix that warps the high-resolution frame to the i-th low-resolution

frame is

M =
(
Hi,0

)−1
S with S =

 1/z 0 0

0 1/z 0

0 0 1


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(a) The high-resolution input image. A vector representa-
tion, x, is obtained by unpacking the values in lexicographic
order.

(b) The matrix-vector product,
Ax, reshaped to form an image.

Figure 7.5: E�ect of the transformation and bilinear interpolation operator A on x.
Here, A was constructed to rotate by 5◦ and to downsample by 2.

and Hi,0 being the transformation matrix for warping the i-th frame to the

reference frame (see Figure. 7.4), as derived in Chapter 5. We can now rewrite

(7.5) as

b = Ax, b =


f(M−1c0)

f(M−1c1)
...

f(M−1cN−1)


where ci, i = 0, . . . , N − 1 represent all coordinates in the low-resolution frame.

With knowledge of these coordinates, the matrix A can be constructed as in

(7.3). Figure 7.5 shows the matrix-vector product Ax where x is a high-

resolution image and A performs bilinear interpolation after rotating by 5◦.

7.3.2 Polygon-based interpolation

In [VH07], a polygon intersection scheme is presented as a linear interpolator.

Subsequently, a member of the Space Telescope and Science Institute brought

to our attention a related algorithm called Drizzle [FH02], used by NASA

to fuse Hubble Space Telescope photographs (see http://stsdas.stsci.edu/

multidrizzle). However, while both methods rely on intersecting quadrilat-

erals (four-cornered polygons that represent pixels) to determine pixel weights,

formulating polygon intersection as a linear operator proves to be fundamental

in its application to super-resolution reconstruction.

As in the previous section, we want to express a low-resolution output image,

http://stsdas.stsci.edu/multidrizzle
http://stsdas.stsci.edu/multidrizzle
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Figure 7.6: The sparse matrix structure of a geometric transformation operator, em-
ploying polygon interpolation. In this example, the transformation is a clockwise
rotation by 5◦. The structure is very similar to that of the bilinear interpolator, ex-
cept that the polygon interpolator has a wider �footprint�, resulting in more rejected
boundary pixels.

b, as

b = Ax

or, equivalently, each pixel in b as

bm =
∑
n

Am,nxn.

Each pixel value, bm, depends on a number of pixels from the high-resolution im-

age, x, weighted by the coe�cients in row m of the operator A. The motivation

for the polygon interpolation operator is as follows:

A camera sensor is a grid of photo-sensitive cells (think of them as photon

buckets, each representing a pixel). Due to micro-lenses, the gaps between the

cells are negligible. During imaging, the sensor irradiance is integrated over

each cell for the duration of exposure, after which the values are read out as a

matrix. Now, imagine two sensors, one with large cells (low-resolution) and the

other with small cells (high-resolution), rotated relative to one another. How

are the cell values for the di�erent sensors related? Our proposed solution is to
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measure the overlap between the larger and smaller cells, as shown in Figure 7.7.

The value of a (large) low-resolution cell is set to a weighted sum of all (small)

high-resolution cells; the weights depend on their overlap.

Algorithm 7.1 outlines the calculation of the coe�cients in A.

Algorithm 7.1 Calculating the coe�cients of the polygon interpolation oper-
ator A. Also see Figure 7.7.

For each low-resolution pixel, bm:

1. Create a quadrilateral (four-node polygon) from the corner-points of bm.
For example, the pixel at (0, 0) would correspond to the polygon with
nodes

xmL = (−0.5, 0.5, 0.5,−0.5)

ymL = (−0.5,−0.5, 0.5, 0.5).

The subscript L indicates �low-resolution� and the super-script is the pixel
number.

2. Transform the polygon to the high-resolution frame, using the transfor-
mation matrixM−1 given in the previous section. The new corner coordi-
nates are x̂mL , ŷmL . If any of the coordinates fall outside the high-resolution
image, break this loop and continue to the next low resolution pixel (there
may be other ways to handle boundary problems, but this is simple and
works well).

3. Determine the bounding box of the newly formed polygon:

xBB =
(⌊

minx′L
⌋
,
⌈
maxx′L

⌉
,
⌈
maxx′L

⌉
,
⌊
minx′L

⌋)
yBB =

(⌊
miny′L

⌋
,
⌊
miny′L

⌋
,
⌈
maxy′L

⌉
,
⌈
maxy′L

⌉)
4. For each high-resolution pixel inside the bounding box:

(a) Assign the pixel number n = iN + j where (i, j) is the grid position
of the high-resolution pixel and N is the total number of columns in
the high-resolution frame.

(b) Create a quadrilateral from the corner-points of the high-resolution
pixel with vertices xnH and ynH .

(c) Measure the area of overlap between the polygons (xmL ,y
m
L ) and

(xnH ,y
n
H), and assign the value to Am,n.

5. Divide each row Am,∗ by its sum so that the weights add to one.

This operator has the advantage that it is parameter free, and has a variable

size footprint that covers all the necessary high-resolution pixels. Furthermore,

it has less of a smoothing e�ect than the bi-linear interpolator.



CHAPTER 7. SUPER-RESOLUTION AS A SPARSE LINEAR PROBLEM 95

Computing the coe�cients of A is more expensive for polygon interpola-

tion than for bi-linear interpolation, due to the many polygon area intersection

calculations (called �clipping� operations) involved. However, two conditions

improve execution time when clipping:

1. One of the polygons is aligned with the grid.

2. Both polygons are convex.

The �rst observation is particularly important, since it allows the use of algo-

rithms that clip polygons to a �viewport� (this is typically used to determine

which part of a polygon falls inside the screen). The second means that a sim-

pler class of algorithm can be employed. We use the Liang-Barsky algorithm

[LB83], which is optimised for rapidly clipping convex polygons against a view-

port. Another approach is that by Maillot [Mai92].

The area of the resulting non-self-intersecting clipped polygon is easily de-

termined as given by [Bou];

a =
1

2

N−1∑
i=0

(xiyi+1 − xi+1yi),

where x and y are the polygon vertices in clock-wise (or anti-clock-wise) order.

The clipping of the entire collection of pixels can easily be parallellised. If

only the result of the operator, Ax, is required, it can be rapidly rendered

via the graphical processing unit without explicitly calculating any polygon

intersections (pixels are simply warped and added, while the GPU takes care of

any clipping in its �xed pipeline).

Figure 7.8 illustrates the e�ect of A on a vector x.

Note that the polygon interpolation operator has several advantages over

bilinear interpolation: it accurately models the underlying sensor physics, it is

easy to compute and it has a variable footprint that automatically adjusts to

the underlying transformation.

It is important to realise that this interpolation model is only accurate before

Bayer demosaicking takes place (a process which destroys much of the super-

resolution information in any case).
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Figure 7.7: Polygon interpolation �footprint�. The dot indicates the centre of a low-
resolution pixel, transformed to the high-resolution pixel grid. All high-resolution pixels
touching the transformed pixel are used to interpolate the value of the low-resolution
pixel.

(a) The high-resolution input image. A vector representa-
tion, x, is obtained by unpacking the values in lexicographic
order.

(b) The matrix-vector product,
Ax, reshaped to form an image.

Figure 7.8: E�ect of the transformation and polygon interpolation operator A on x.
Here, A was constructed to rotate by 5◦ and to downsample by 2.
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S
o
ft
w
ar
e Polygon Clipping and Geometry

The following geometric functions are available in supreme.ext:

� line_intersect: Calculate the point of intersection between two

lines.

� npnpoly: Given a collection of points, determine which fall inside

a given polygon.

� poly_clip: Clip a convex polygon to a given viewport (a rectan-

gular polygon).

� poly_interp_op: Construct a linear interpolation operator as de-

scibed in this section.

The following example generates the product Ax shown in Figure 7.8.

from supreme.ext import poly_interp_op

from supreme.io import imread

from supreme.api import show

# Zoom factor

z = 1/2.

# Construct the transformation matrix

C = z * np.cos(5 / 180 .* np.pi)

S = z * np.sin(5 / 180 .* np.pi)

H = np.array ([[C, -S, 0], [S, C, 0], [0, 0, 1]])

# Read the input image and convert to grey -scale

x = imread('chelsea.jpg', flatten=True)

# Construct the operator , A

M, N = x.shape

B = poly_interp_op(M, N, H, M//2, N//2)

# Apply the operator and reshape to an image

b = (B * x.flat). reshape ((M/2, N/2))

show(x, b)
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(a) Multi-frame polygon interpolation opera-
tor.

(b) Multi-frame polygon interpolation oper-
ator in standard form.

Figure 7.9: Sparsity pattern of interpolation operators. When the operator A is
applied to the high-resolution image vector x a number of low-resolution images are
produced (10 in this case).

7.4 Solving the large, sparse least-squares

problem Ax = b

The previous chapter gives the solution to the least squares problem as

arg min
x
f(x) with f(x) = ‖Ax− b‖22 (7.6)

or, with damping,

arg min
x
f(x) with f(x) = ‖Ax− b‖22 + λxTx. (7.7)

The operator A produces all low-resolution frames from a given high-resolution

frame; its structure is shown in Figure. 7.9.

Like many other inverse problems, our problem is often ill-posed, especially

when data is lacking. Given enough image frames with di�erent geometric

transformations, the solution is su�ciently constrained. Otherwise, without

some form of regularisation, no usable result can be computed.

As a thought experiment, imagine reconstructing a high-resolution image

from a single low-resolution image. In the low-resolution image, all high-frequency

information has been removed. It is therefore impossible to determine a one-to-

one correspondence between the two frames (i.e., many di�erent high-resolution
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images may map to the same low-resolution image). The more low-resolution

frames we add, the better we are able to estimate the high-frequency informa-

tion. Our ability to recover such information is limited by the accuracy of the

parameters provided and the nature of our data set.

Robust approaches allow some form of damping that prevents the solution

from moving too far away from a pre-speci�ed x0. In the case of (7.7), x0 = 0.

Regularising toward an arbitrary vector

We solve for x in

arg min
x

{
‖Ax− b‖22 + λxTx

}
, (7.8)

or its algebraic equivalent,

(ATA+ λI)x = ATb. (7.9)

We can easily modify the problem so that x is constrained not to 0 but to an

arbitrary given vector x0. We �rst transform the right-hand side to

b̂ = b−Ax0.

If x0 is a good estimate of x, then we expect the solution of

arg min
δx

{∥∥∥Aδx− b̂
∥∥∥2

2
+ λ(δx)T (δx)

}
to lie close to 0. We �nd our �nal solution by adding back x0 to obtain

x = δx + x0.

Conditioning

The regularisation parameter in (7.9) improves the conditioning of the linear

system. Given the eigenvalues λi forM = ATA, the condition number is de�ned

as

κ(M) =
max(λi)

min(λi)
=
λmax
λmin

.

For M = (ATA+ αI) this becomes

κ(M) =
λmax + α

λmin + α
.

The improved conditioning comes at a cost: we no longer solve the same linear

system as before.
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Solving

Equation (7.9) can be solved with a direct sparse solver. A common alternative

is to approach the optimisation problem in (7.8) using any standard gradient-

based iterative minimisation algorithm. In contrast to direct methods, such an

algorithm may be terminated early as soon as a satisfactory solution is found.

The next section lists a number of iterative minimisation methods: steepest

descent (solves Equation 7.6), conjugate gradients (solves a variant of Equation

7.7), L-BFGS and LSQR (solves Equation 7.7).

For an in depth overview of iterative least-squares methods, we refer to

[Bjo96].

Choice of norm

The 2-norm is not a very e�ective way of measuring the error between two

vectors and the 1-norm, often suggested as an alternative, su�er from many of

the same de�ciencies. However, while the 2-norm severely penalises individual

outliers, the 1-norm is more tolerant, and may lead to a noisier but slightly more

detailed reconstructions. Since the 1-norm is discontinuous at zero, it has been

suggested in [BR96] that it be replaced by the 2-norm around the origin.

In [KKL+07] an interior point method is proposed for solving the least

squares problem (2-norm) with L1-regularisation.

Later in this chapter (see Section 7.5) we discuss recently developed alter-

native norms.

7.4.1 Iterative optimisation methods

Gradient descent

Gradient descent (also known as �steepest descent�) minimises a function by

taking steps down its gradient. Following an initial estimate, x0, the solution

is estimate by iteratively improving x to

xk+1 = xk − α∇f(xk)

where

f(x) = ‖Ax− b‖22 + λxTx

and

∇f(xk) = 2(Axk − b)TA+ 2λxT .

The step size is adjusted using α. It is possible to include a prior term, although

in practice we found this to be unnecessary, given a small enough α. Gradient
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Figure 7.10: Steps taken during function minimisation. The elliptical lines indicate
contours of the target function, while the steps taken using gradient descent and conju-
gate gradients are shown as thich dashed and solid lines respectively. This �gure is de-
rived from an illustration released into the public domain by Oleg Alexandrov (http: //
commons. wikimedia. org/ wiki/ File: Conjugate_ gradient_ illustration. svg ).

descent may take long to converge if the function minimum lies at the bottom

of a long, narrow trough.

Conjugate gradients

The conjugate gradient method is often used to solve large systems of linear

equations where the matrix is positive semi-de�nite. This is the case for the

normal least squares equation, where

xT (ATA)x = (Ax)T (Ax) ≥ 0.

The conjugate gradient method improves upon gradient descent since each step

is taken in a direction conjugate to those taken before (see Figure 7.10). To

save memory and to improve conditioning, forming the entire normal matrix

ATA can be avoided; we simply require the matrix-vector products Av and

ATv to be computed. The Preconditioned Conjugate Gradient method is often

recommended to improve convergence. It solves the system

M−1ATAx = M−1b

http://commons.wikimedia.org/wiki/File:Conjugate_gradient_illustration.svg
http://commons.wikimedia.org/wiki/File:Conjugate_gradient_illustration.svg
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where M−1 is some approximation of the inverse of ATA. A common choice is

to take M as the diagonal of ATA (this is called the Jacobi preconditioner).

Bayesian prior An alternative approach is to use the conjugate gradient

method simply as a nonlinear minimiser, armed with a cost function ‖Ax− b‖2
and its gradient, 2(Axk − b)TA.

In our software, we make use of an open-source implementation (scipy.optimize.fmin_cg)

of a non-linear conjugate gradient minimiser formulated by Polak & Ribiere and

described in [NW00]. In the linear case, this approach reduces to the standard

conjugate gradient method without incurring additional cost.

As mentioned above, we can ensure that a good solution is found by adding

a penalisation term to the cost function:

f(x) = ‖Ax− b‖22 + λ ‖x− x0‖22 . (7.10)

This ensures that the solution never deviates far from x0. A good initial esti-

mate for x0 is obtained by upscaling and stacking (averaging) all low-resolution

frames.

LSQR (least squares)

LSQR [PS82b, PS82a] is a method similar to conjugate gradients for solving

large sparse least squares problems. According to the authors, it is algebraically

equivalent to the symmetric conjugate gradient method applied to

(ATA+ λI)x = ATb,

but has better numerical properties. Since our A matrix is often ill-conditioned,

this improves conditioning. Like the conjugate gradient method, LSQR never

needs to form ATA explicitly, as long as the matrix-vector products Av and

ATv are available.

It is worth noting that sparse matrix-vector products can be computed very

e�ciently on modern Graphics Processing Units, as shown by Bell and Garland

[BG09].

L-BFGS (Memory-limited Broyden-Fletcher-Goldfarb-Shanno)

This quasi-Newton algorithm takes steps based on an estimated Hessian, and

allows speci�cation of bounds on each variable. While the authors warn that

convergence may be slow [ZBLN97], we've seen extremely rapid convergence

(typically 20 to 40 function calls) speci�cally when minimising the square of the

2-norm.
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7.4.2 Iterative-interpolation super-resolution

In [Ban09], a method named �iterative-interpolation super-resolution� (IISR) is

decribed. We show that this method is equivalent to the standard formulation,

given in [Cap01].

The algorithm produces iterative updates to a trial solution, xk, so that

xk+1 = xk +R0(b−Axk). (7.11)

The matrix R0 is �the superposition of three consecutive operations, that is,

translation and up-sampling of the LR frames, followed by interpolation of the

HR image� [Ban09, p. 30]. In other words, R0 is a close approximation of AT .

Substituting back into (7.11), with AT replacing R0, the update equation be-

comes

xk+1 = xk +AT (b−Axk)

= xk +ATb−ATAxk.

Close to convergence, xk+1 = xk, so that we have

ATAx = ATb

which is the normal equation for the least squares problem

argmin
x
‖Ax− b‖2 .

7.5 Structural metrics

In the above examples, we minimised the mean squared error (the two-norm

squared) between two vectors. Interestingly, the behaviour of norms change as

dimensionality increases, as explored in [Sco92]. Following [LV07], we see that

the volume of a sphere in D dimensions is [Weg90]

V (r) =
π

D
2 rD

Γ
(
1 + D

2

) .
Therefore, the relative volume contained in a spherical shell of thickness ε is

V (r)− V (r(1− ε))
V (r)

=
1D − (1− ε)D

1D
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(a) x, 512× 512 (b) Ax, 170×
170

(c) ATAx, 512× 512

Figure 7.11: The e�ect of A and AT on images. In this example, the operator
A represents convolving the image by a Gaussian window with standard deviation 2,
followed by rotation through 30◦, translation, and a factor 3 downsampling. The input
image, (a), is multiplied by A to give (b), which is multiplied by AT to form (c). Note
how AT warps loe-resolution pixels back to the high-resolution grid, and �lls out regions
in between high-resolution pixels.

which becomes one as D strives to in�nity. In other words, almost the entire

volume of a high-dimensional hypersphere is located in close proximity to its

outer shell. This result highlights a weakness of the norms in high dimensions.

All error vectors vi, relative to an image f , of the form vi = (f − gi) lie close

to the outer surface of the hypersphere centred around f�their p-norms, ‖v‖p,
are therefore all very similar. This attribute is known as the concentration

phenomenon. In his dissertation [Dem94], Demartines shows that, as dimen-

sionality increases, the mean norm of a random vector grows proportionally to√
D, while the variance stays approximately the same.

Despite this glaring de�ciency, the family of p-norms is a popular choice due

to their simplicity, and the ease of deriving their gradients�especially important

in light of our minimisation process.

In [WB09], the authors introduce a new similarity index called the Struc-

tured Similarity Index Metric, or SSIM. The SSIM takes the structural content

of the image into account when calculating the di�erence between two images.

This method is also usable in optimisations, since the gradient can be calcu-

lated as shown in [WS08]. A wavelet-based extension of SSIM is also available

[SWG+09].

We have not yet implemented this metric in the accompanying software.
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7.6 Sensitivity to photometric registration

As shown in Figure 7.12, photometric registration is not of great importance

in areas where most input frames overlap. However, neglecting photometric

registration introduces prominent artefacts around frame edges. Under severe

illumination changes (which are uncommon in super-resolution data-sets), the

simple method proposed in Section 5.5 may not be adequate; this situation is

explored in [GG07].

7.7 Recursive implementation

Above, we seek an x that minimises ‖Ax− b‖22 + λ ‖x− x0‖22, where b rep-

resents all low resolution images and x0 is our prior estimate of the response

(usually, simply the upscaled average of all low-resolution frames). This is a

convenient formulation when all frames are available, and when we have enough

computer memory at our disposal.

If that is not the case, we need a procedure that processes a single frame

at a time. This saves memory and requires only one image per iteration. The

recursive implementation uses the output of a single run as the prior to the next:

x1 = arg min
x
‖A0x− b0‖22 + λ ‖x− x0‖22

x2 = arg min
x
‖A1x− b1‖22 + λ ‖x− x1‖22

...

xk = arg min
x
‖Ak−1x− b‖22 + λ ‖x− xk−1‖22 .

7.8 Results

Results on a thirty-frame video sequence, with and without photometric reg-

istration, is given in Figure 7.12. Figure 7.13 illustrates reconstruction using

the 1-norm as well as frame-by-frame updates. Figure 7.14 compares di�erent

optimisation methods.
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(a) Example input frame, upscaled (one of thirty).

(b) All input frames, upsampled and stacked, after photometric registration.

(c) All input frames, upsampled and stacked, after multiplying by a random, uniformly dis-
tributed exposure factor between 0.75 and 1.25. Note the edges introduced in the region of
sky.

(d) Super-resolution result after photometric registration.

(e) Super-resolution result after disturbing the exposure as in (c).

Figure 7.12: The e�ect of photometric registration on super-resolution results. Note
that, in the areas where there is signi�cant frame overlap, the photometric registra-
tion has little e�ect. Edge e�ects, however, are markedly visible when photometric
registration is neglected.
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(a) Super-resolution result: 4× resolution increase, polygon interpolator, 2-norm, λ = 0.05 and
photometric adjustment. Note how even the bricks on the walls are resolved. This is not simply
an oscillation, since the pattern is clearly tilted and aligned with the text and is absent in areas
other than the wall. To be certain, we con�rmed that the George Edwards Library of Surrey
University has brick walls.

(b) Super-resolution result: 4× resolution increase, polygon interpolator, 2-norm, λ = 0.01 and
photometric adjustment, updated a single frame at a time. This result is very similar to the
direct calculation above.

(c) Super-resolution result: 4× resolution increase, polygon interpolator, 1-norm, λ = 0.2 and
photometric adjustment. Note how the 1-norm restoration is noisier than that of the 2-norm in
(a).

Figure 7.13: Super-resolution results on library data-set.
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(a) Original image, upscaled (one of ten).

(b) Gradient descent. Step size λ = 0.5

(c) Conjugate gradient method, λ = 0.05.

(d) LSQR, λ = 0.2.

(e) L-BFGS, λ = 0.05.

Figure 7.14: Comparison of optimisation methods. In all frames a polygon interpo-
lation operator is used, after applying photometric registration. The 2-norm is used
and a single calculation is made (not a frame-by-frame update). The algorithms all
return similar results.
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S
o
ft
w
ar
e Super-Resolution

All reconstructions shown in this chapter were performed using the

super_resolve.py script located in the doc/examples subdirectory:

Usage : s up e r_ r e s o l v e . py [ o p t i o n s ] vgg_dir

Opt ions :

−h , −−he l p show t h i s h e l p message and e x i t

−s SCALE , −−s c a l e=SCALE
Re s o l u t i o n improvement r e q u i r e d

[ d e f a u l t : 2 ]

−d DAMP, −−damp=DAMP Damping c o e f f i c i e n t −−
s u p p r e s s e s o s c i l l a t i o n s [ d e f a u l t : 0 . 1 ]

−m METHOD, −−method=METHOD

`CG` , `LSQR` , `L−BFGS−B` or ` de scent ` .

S p e c i f i e s o p t im i s a t i o n a l g o r i t hm

[ d e f a u l t : CG]

−o OPERATOR, −−op e r a t o r=OPERATOR
` polygon ` or ` b i l i n e a r ` . The camera model

i s approx imated by t h i s i n t e r p o l a t i o n

scheme . [ d e f a u l t : po l ygon ]

−u , −−update Use images as i n c r emen t a l e v i d e n c e

[ d e f a u l t : F a l s e ]

−p , −−photo−a d j u s t Do not per fo rm pho tomet r i c ad jus tment

[ d e f a u l t : True ]

−L NORM, −−norm=NORM The norm used to measure e r r o r s .

[ d e f a u l t : 2 ]

−c PREVIOUS_RESULT, −−conve rgence=PREVIOUS_RESULT
Use a p r e v i o u s l y c a l c u l a t e d r e s u l t to t r a c k

conve rgence i n " update "−mode . The image

f i l e shou l d be s p e c i f i e d as the paramete r .

− i IGNORE , −−i g n o r e=IGNORE
I gno r e t h i s f rame nr . May be s p e c i f i e d more

than once .
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Chapter 8

Conclusion

This study explores each component of super-resolution image reconstruction.

First, an object is photographed from slightly di�erent viewpoints; the relative

object-camera motion causes light to illuminate the sensor di�erently in each im-

age, providing the information that allows super-resolution. We discuss several

common distortions that arise during acquisition, and focus on noise removal,

which proved to be bene�cial under certain circumstances.

Next, the input images are aligned; our emphasis is on feature-based registra-

tion. We provide a new feature detector, based on the discrete pulse transform,

and show how to implement the transform e�ciently. A statistical matching

algorithm is introduced that is more robust than correlation under mild geo-

metric transformations. Images are also photometrically registered by reviving

an a�ne lighting model developed for correcting LANDSAT images.

The well-established maximum a-posteriori framework is used to obtain a

super-resolution reconstruction. The underlying imaging model is linearised,

wherafter possible simpli�cations to the model matrix are considered. We in-

troduce a linear interpolation operator that models the individual pixels of the

camera sensor using polygons. Based on this interpolation operator, a new

model matrix is constructed at low cost; unlike other approaches, no parame-

ters need to be speci�ed.

Using one of several least-squares techniques, the over-determined system is

solved using regularisation. The results obtained with the new polygon inter-

polation operator are highly satisfactory.

The entire software stack developed for these experiments is made available

under an open source license, and may be used to verify the results presented

in this dissertation.

Future directions

Colour super-resolution

In this work, the polygon-based interpolation operator, introduced to model

sensor pixels, is applied to grey-level images only. However, there is no reason

why the same model cannot be applied to colour sensors that use Bayer-masks.

113
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Owing to the mask, not all colours are equally represented in the raw camera

data. We propose seeking a solution, x, that represents a high-resolution colour

image as

x =

 xR

xG

xB

 .

Unlike any of the input frames, x has a red, green and blue value at each pixel

position.

For each colour band C ∈ {R,G,B}, the linear system

xC = ACbC

can be set up, based on the overlap of the low resolution pixels in bC with the

high-resolution pixels in xC . Since xC covers the entire sensor, no special care

needs to be taken of �holes� introduced by the Bayer mask. Given enough input

images, a solution for x can be found.

A better norm for reconstruction

As discussed in Chapter 7, the two-norm is not well suited to comparing high-

dimensional vectors. It would be interesting to compare suggested replacements,

such as SSID, in order to see how reconstructions di�er.

Non-linear geometric transformations

Our polygon-based interpolation operator models each pixel using a quadrilat-

eral (a polygon with four vertices). This is well suited to the homographic

transformation model used, but more advanced transformation models (that

include radial distortion, for example), require a higher number of vertices. A

comparison to current distortion models should prove interesting.



Appendix A

Data-set format

Directory Structure

The data-sets distributed with this package have been converted to the for-

mat used by Oxford's Vision and Geometry Group (http://www.robots.ox.

ac.uk/~vgg/data/data-various.html). Each data-set has the following di-

rectory structure:

data_set/

data_set/png

data_set/png/data_set.000.png

data_set/png/data_set.001.png

data_set/H/data_set.000.001.H

The images are stored in the directory �data_set/format� where �format�

is one of png, jpg or pgm. For each sequential image pair, a homography is

provided in the �data_set/H� directory. For example, data_set.000.001.H is

a text �le containing 3 lines with 3 coe�cients each, forming the 3 × 3 trans-

formation matrix, H0,1, which transforms a coordinate c0 from image 0 to a

coordinate c1 in image 1:

c1 = H0,1c0

Pre�xing image and homography names with the data-set name is optional (i.e.,

a homography �le may be named either data_set.000.001.H or 000.001.H).

Converting relative to absolute homographies

Given the relative homographies H0,1, H1,2, H2,3, etc., we can relate all these

transformations to a �xed reference. Such a reference is needed, for example,

when we stack images (i.e., transform them to the same reference frame and

add them together). Noting that H0,1 = H−1
1,0 ,

HK,0 = H−1
0,K =

(
HK−1,K . . . H2,3H1,2H0,1

)−1
. (A.1)

A-1

http://www.robots.ox.ac.uk/~vgg/data/data-various.html
http://www.robots.ox.ac.uk/~vgg/data/data-various.html
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While this could be written as

HK,0 = H−1
0,1H

−1
0,2H

−1
0,3 . . . H

−1
k−1,K

it is numerically more accurate to avoid the multiplication of multiple inverses

by using (A.1).

In a similar fashion, given the transformation HK,0 and Hk,0∀k < K (or,

equivalently, HK−1,0), we can compute the relative transformation, HK−1,K :

H0,K = HK−1,K . . . H2,3H1,2H0,1

=⇒ HK−1,K = H0,K(HK−2,K−1 . . . H2,3H1,2H0,1)−1

= H−1
K,0(HK−2,K−1 . . . H2,3H1,2H0,1)−1

= H−1
K,0HK−1,0.

S
o
ft
w
ar
e Loading VGG data-sets

>>> from supreme.io import load_vgg

>>> data = load_vgg('path/to/vgg/data_set ')

The resulting data is an ImageCollection, which can be accessed like any

container or iterator. The �rst image is data[0], the second data[1] and

so forth. Each image has an information dictionary, which contains two

associated homographies:

data[i].info['H']

A 3× 3 transformation matrix that maps image i onto image 0.

data[i].info['H_rel']

A 3× 3 transformation matrix that maps image i onto image i+1.
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B.1 Overview

B.1.1 Introduction

SupReMe, short for Super Resolution Methods, is a library that implements the algorithms necessary to
perform super-resolution imaging.

Super-resolution imaging is a process whereby several low-resolution photographs of a single object are
combined to form a single, high-resolution reconstruction.

An overview of the underlying theory is given in the accompanying dissertation.

B.1.2 License

This software is released under the following free and open source license.

Copyright (C) 2007 Stefan van der Walt <stefan@mentat.za.net>

Please contact the author if you wish to license this work for use in
BSD-licensed software or commercial applications.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA
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B.1.3 Installation from source

Obtain the source from the git-repository at http://dip.sun.ac.za/~stefan/code/supreme.git.

The package can be installed system-wide using

python setup.py install

or locally, using

python setup.py install --prefix=${HOME}

If preferred, you may use it without installing, by simply adding the source path to your PYTHONPATH
variable and compiling the extensions in-place:

python setup.py build_ext -i

B.2 API Reference

B.2.1 Image Acquisition and I/O

Denoising (supreme.noise)

supreme.noise.dwt_denoise(X[, wavelet, ...]) Denoise an image using the Discrete Wavelet Transform.

dwt_denoise(X, wavelet=’db8’, levels=4, alpha=2)
Denoise an image using the Discrete Wavelet Transform.

Parameters
X : ndarray of uint8

Image to denoise.

wavelet : str

Wavelet family to use. See supreme.lib.pywt.wavelist() for a complete list.

levels : int

Number of levels to use in the decomposition.

alpha : float

Parameter used to tweak the Wiener estimator. A larger value of alpha results
in a smoother output.

Returns
Y : ndarray of float64

Denoised image.

Notes

Implemented according to the overview of [R4] given in [R3].

References

[R3], [R4]
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I/O (supreme.io)

supreme.io.Image Image data with tags.
supreme.io.ImageCollection(file_pattern[, ...]) Load and manage a collection of images.
supreme.feature.SIFT.fromfile(f[, mode]) Read SIFT or SURF features from a file.
supreme.io.imread(name[, flatten]) Read an image file from a filename.
supreme.io.imshow
supreme.io.load_vgg(path) Load a VGG super-resolution data-set.
supreme.api.show(*images) Display images on screen.
supreme.api.test_data() Return an image for testing purposes.

class ImageCollection(file_pattern, conserve_memory=True, grey=False)
Load and manage a collection of images.

ImageCollection.__init__(file_pattern[, ...]) Load image files.
ImageCollection.__getitem__(n[, _cached]) Return image n in the queue.
ImageCollection.__iter__() Iterate over the images.
ImageCollection.__len__() Number of images in collection.

load_vgg(path)
Load a VGG super-resolution data-set.

Parameters
path : str

Path to the data-set.

Returns
ic : ImageCollection

An imagecollection of all the images, with the homographies stored in
x.info[’H’] for each x in ic.

Notes

A VGG data-set stores the transformations from one frame to the next. This loader modifies all the
homographies to be relative to the first frame.

References

[R6]

fromfile(f, mode=’SIFT’)
Read SIFT or SURF features from a file.

Parameters
f : string or open file

Input file.

mode : string

‘SIFT’ or ‘SURF’

Returns
data : record array with fields

• row: int
row position of feature

• column: int
column position of feature
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• scale: float
feature scale

• orientation: float
feature orientation

• data: array
feature values

imread(name, flatten=0)
Read an image file from a filename.

Optional arguments:

•flatten (0): if true, the image is flattened by calling convert(‘F’) on

the resulting image object. This flattens the color layers into a single grayscale layer.

show(*images)
Display images on screen.

test_data()
Return an image for testing purposes.

Returns
I : ndarray of uint8

512x512 test image.

B.2.2 Discrete Pulse Transform

supreme.lib.dpt

connected_regions Return ConnectedRegions that, together, compose the whole image.
decompose Decompose a two-dimensional signal into pulses.
reconstruct Reconstruct an image from the given connected regions / pulses.

connected_regions()
Return ConnectedRegions that, together, compose the whole image.

Parameters
img : ndarray

Input image.

Returns
labels : ndarray

img, labeled by connectivity.

c : dict

Dictionary of ConnectedRegions, indexed by label value.

decompose()
Decompose a two-dimensional signal into pulses.

Parameters
img : 2-D ndarray of ints

Input signal.
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Returns
pulses : dict

Dictionary of ConnectedRegion objects, indexed by pulse area.

See Also:

reconstruct

reconstruct()
Reconstruct an image from the given connected regions / pulses.

Parameters
regions : dict

Impulses indexed by area. This is the output of decompose.

shape : tuple

Shape of the output image.

min_area, max_area : int

Impulses with areas in [min_area, max_area] are used for the reconstruction.

Returns
out : ndimage

Reconstructed image.

class ConnectedRegion()
A 4 or 8-connected region is stored in a modified Compressed Sparse Row matrix format.

Since the region is connected, we only have to store one value. Along a single row, connected regions
are stored as index pairs, e.g.

—00-000– would be represented as [3, 5, 6, 9]

This class should be queried using the methods in connected_region_handler.

Parameters
shape : tuple

Shape of the region.

Attributes

row-
ptr

list
of int

rowptr[i] tells us where in colptr the elements of row i are described

colptr list
of int

Always contains 2N elements, where N are the number of connected regions (see
description above). Each entry describes the half-open interval (start_position,
end_position].
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supreme.lib.dpt.connected_region_handler

boundary_maximum Return the maximum value on the boundary of the connected region.
boundary_minimum Return the minimum value on the boundary of the connected region.
bounding_box Return the bounding box of the connected region.
contains Does the connected region contain an element at (r, c)?
copy Return a deep copy of the connected region.
get_colptr
get_rowptr
get_shape Return the shape of the connected region.
get_start_row Return the first row where values of the connected region occur.
get_value Return the value of the connected region.
merge Merge b into a.
nnz Return the number of non-zero elements.
outside_boundary Calculate the outside boundary using a scanline approach.
reshape Set the shape of the connected region.
set_array Set the value of the array over the entire connected region.
set_start_row Set the first row where values occur.
set_value Set the value of the connected region.
todense Convert the connected region to a dense array.
validate Check the validity of the connected region descriptor.

B.2.3 Feature detection and matching

supreme.feature

dpt.features Find feature points, using the discrete pulse transform.
match(features, featureset[, threshold]) For each given feature, find the nearest feature from a feature-set.
ransac RANdom SAmple Consensus

features()
Find feature points, using the discrete pulse transform.

Parameters
pulses : dict

The pulses dictionary returned by the discrete pulse transform.

shape : tuple of ints

Shape of the image on which the DPT was performed.

win_size : int

Do not return more than one feature from any win_size x win_size shaped
area.

Returns
weight : ndarray of float

An array of the same shape as the image, with values indicating the likelihood
of any pixel being a feature.

area : ndarray of float

The estimated area of the feature at each pixel.
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See Also:

supreme.lib.dpt

match(features, featureset, threshold=0.59999999999999998)
For each given feature, find the nearest feature from a feature-set.

Parameters
features : (M,N) array

M row-wise features of length N.

featureset : (Q,N) array

Q row-wise features of length N. This is typically the field ‘data’ of the record
array produced by SIFT.fromfile.

Returns
nearest : Length M integer array.

Indices into featureset.

distances : Length M floating point array.

distances[i] is the distance between features[i] and featureset[nearest[i]], i.e. the
distance between features[i] and the nearest feature in the feature-set.

valid : boolean array

A boolean array indicating whether the given feature match is valid, according
to the criterion described in the SIFT README. It states that a match is valid
when the match is less than 0.6 times the distance to the second-closest match.

See original implementation of vector quantisation by Tim Hochberg at :

http://thread.gmane.org/gmane.comp.python.numeric.general/8459/focus=8459
:

supreme.feature.ransac

class RANSAC(model=None, p_inlier=0.5)
RANdom SAmple Consensus

RANSAC.__init__([model, p_inlier]) Construct a RANSAC model fitter.
RANSAC.__call__([data, inliers_required, ...]) Execute RANSAC.

class IModel()
IModel.__call__(data[, confidence]) Evaluate data fit.
IModel.estimate(data) Estimate model parameters from data.

supreme.register

correspond(fA, A, fB, B[, win_size]) Given coordinates of features in two images, determine

correspond(fA, A, fB, B, win_size=9)
Given coordinates of features in two images, determine possible correspondences using a Quantile-
Quantile comparison.

Parameters
fA : list of tuple (x,y)

Coordinates of the features in the source image.

B-8



A : (m,n) ndarray of type uint8

Source image.

fB : list of tuple (x,y)

Coordinates of the features in the target image.

A : (m,n) ndarray of type uint8

Target image.

Returns
matches : list

[((coord_source), (coord_target)), ...]

supreme.lib.fast

Features from Accelerated Segment Test (FAST) corner detection.

Rosten and Drummond, “Fusing points and lines for high performance tracking.” IEEE International Con-
ference on Computer Vision, 2005

Rosten and Drummond, “Machine learning for high-speed corner detection”, European Conference on Com-
puter Vision, 2006

http://mi.eng.cam.ac.uk/~er258/work/fast.html

corner_detect(image[, barrier, size]) Detect corners.

corner_detect(image, barrier=10, size=12)
Detect corners.

Parameters
image : array of uint8

Input image.

barrier : int

Resistance to finding nearby corners.

size : int

Size of operator, must be in [9,12].

Returns
xy : Mx2 array

The M returned coordinates.
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B.2.4 Registration

supreme.register

PointCorrespondence(ref_feat_rows,
...)

Estimate point correspondence homographies.

affine_tm([theta, tx, ty, scale,
scale_x, ...])

Return the transformation matrix for an affine transformation.

dense_MI(A, B[, p, levels, fast, std,
...])

Register image B to A, using mutual information and an image
pyramid.

joint_hist Estimate the joint histogram of A and B.
lp_patch_match(a, b[, angles, Rs,
plot_corr])

Align two patches, using the log polar transform.

mutual_info Given the joint histogram of two images, calculate their mutual
information.

ncc Circular normalised cross-correlation of source and template
image.

phase_corr(A, B) Phase correlation of two images.
radial_sum Sum the elements of an array outward along 360 directions

(1-degree increments).
refine(reference, target, M_ref,
M_target)

Refine registration parameters iteratively.

register Perform image registration.
sat Summed area table / integral image.
sat_sum Using a summed area table / integral image, calculate the sum

over a given window.
sparse(ref_feat_rows,
ref_feat_cols, ...)

Compatibility wrapper.

class PointCorrespondence(ref_feat_rows, ref_feat_cols, target_feat_rows, target_feat_cols, **args)
Estimate point correspondence homographies.

Methods

RANSAC() Estimate the homography using RANSAC.
estimate() Estimate the homography.

PointCorrespondence.estimate() Estimate the homography.
PointCorrespondence.RANSAC() Estimate the homography using RANSAC.

affine_tm(theta=0, tx=0, ty=0, scale=None, scale_x=None, scale_y=None)
Return the transformation matrix for an affine transformation.

Parameters
theta : float

Rotation angle in radians.

tx, ty : float

X and Y translations.

scale : float

Scaling in both the X and the Y directions. Defaults to 1.

scale_x : float

Scaling in the X direction. Cannot be used together with scale.
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scale_y : float

Scaling in the Y direction. Cannot be used with scale.

Returns
M : ndarray of float

Transformation matrix with the supplied parameters. Can be used to transform
any homogeneous coordinate p = [[x, y, 1]].T by np.dot(M, p).

dense_MI(A, B, p=None, levels=3, fast=False, std=1, win_size=5, translation_only=False,
fixed_scale=False)

Register image B to A, using mutual information and an image pyramid.

Parameters
A, B : ndarray of uint

Images to register.

levels : int

Number of levels in the image pyramid. Each level is downsampled by 2.

p : list of floats, optional

The five initial parameters passed to the optimiser. These are rotation angle,
skew in the X direction, skew in the Y direction, translation in x and translation
in y.

fast : bool

If true, the histogram is not smoothed.

std : float

Standard deviation used by the smoothing window.

win_size : int (odd)

Window size of the smoother.

translation_only : bool

Whether to use a translation-only motion model. By default, a full homography
is estimated.

fixed_scale : bool

Limit the scale of the motion model to 1.

Returns
M : (3,3) ndarray of float

Transformation matrix that transforms B to A.

joint_hist()
Estimate the joint histogram of A and B.

Parameters
A, B : (M, N) ndarray of uint8

Input images.

L : int

Number of grey-levels in histogram.

win_size : int
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Width of Gaussian window used in the approximation. A larger window can
represent the Gaussian kernel somewhat more accurately.

std : float

Standard deviation of the Gaussian used in the Parzen estimation. The higher
the standard deviation, the smoother the resulting histogram. win_size must
be made large enough to accommodate an increased standard deviation.

fast : bool

Calculate the classical histogram, instead of using a Parzen Window. Fast, but
does not estimate the PDF as accurately.

Returns
H : (256, 256) ndarray of float

Estimation of the joint probability density function between A and B.

lp_patch_match(a, b, angles=360, Rs=None, plot_corr=False)
Align two patches, using the log polar transform.

Parameters
a : ndarray of uint8

Reference image.

b : ndarray of uint8

Target image.

angles : int

Number of angles to use in log-polar transform.

Rs : int

Number of radial samples used in the log-polar transform.

plot_corr : bool, optional

Whether to plot the phase correlation coefficients.

Returns
c : float

Peak correlation value.

theta : float

Estimated rotation angle from a to b.

scale : float

Estimated scaling from a to b.

mutual_info()
Given the joint histogram of two images, calculate their mutual information.

Parameters
H : (256, 256) ndarray of double

Returns
S : float

Mutual information.
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ncc()
Circular normalised cross-correlation of source and template image.

Parameters
imgS : ndarray of uint8

Source image.

imgT : ndarray of uint8

Template image. The dimensions of the template image must be smaller or equal
to that of the source.

Returns
ncc : ndarray of float

Normalised correlation coefficients, of the same shape as the source image.

Notes

While integral images are used, not all the suggestions made in [2] have been investigated.

References

[R13], [R14], [R15]

phase_corr(A, B)
Phase correlation of two images.

Parameters
A, B : (M,N) ndarray

Input images.

Returns
out : (M,N) ndarray

Correlation coefficients.

Examples

Set up test data. One array is offset (10, 10) from the other.

>>> x = np.random.random((50, 50))
>>> y = np.zeros_like(x)
>>> y[10:, 10:] = x[0:-10, 0:-10]

Correlate the two arrays, and ensure the peak is at (10, 10).

>>> out = phase_corr(y, x)
>>> m, n = np.unravel_index(np.argmax(out), out.shape)
>>> print m, n
(10, 10)

radial_sum()
Sum the elements of an array outward along 360 directions (1-degree increments).

Parameters
img : (M,N) ndarray of double

Input image.
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Returns
R : (360,) ndarray of double

Summed elements of img along each of 360 directions. The central element,
which belongs to all directions, is discarded.

Examples

>>> x = np.array([[2, 0, 1],
... [0, 5, 0],
... [3, 0, 4]], dtype=np.double)
>>> R = radial_sum(x)
>>> R[[45, 135, 225, 315]] == [1, 2, 3, 4]

refine(reference, target, M_ref, M_target)
Refine registration parameters iteratively.

register()
Perform image registration.

sat()
Summed area table / integral image.

The integral image contains the sum of all elements above and to the left of it, i.e.:

S[m, n] =
∑
i≤m

∑
j≤n

X[i, j]

Parameters
X : ndarray of uint8

Input image.

Returns
S : ndarray

Summed area table.

References

[R16]

sat_sum()
Using a summed area table / integral image, calculate the sum over a given window.

Parameters
sat : ndarray of uint64

Summed area table / integral image.

r0, c0 : int

Top-left corner of block to be summed.

r1, c1 : int

Bottom-right corner of block to be summed.

Returns
S : int

Sum over the given window.
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sparse(ref_feat_rows, ref_feat_cols, target_feat_rows, target_feat_cols, **kwargs)
Compatibility wrapper. Calculate the PointCorrespondence homography which maps reference features
to target features.

See also: PointCorrespondence

Parameters
ref_feat_rows, ref_feat_cols : array of floats

Coordinates in the reference image.

target_feat_rows, target_feat_cols : array of floats

Coordinates in the target image.

mode : {‘direct’, ‘iterative’, ‘RANSAC’}, optional

Method used to estimate the correspondences. See also PointCorrespondence.
Use direct by default.

RANSAC_mode : {‘direct’, ‘iterative’}, optional

Whether RANSAC should estimates homographies directly or iteratively.

supreme.register.stack

with_transform(images, matrices[, weights, ...]) Stack images after performing coordinate transformations.

with_transform(images, matrices, weights=None, order=1, oshape=None, save_tiff=False,
method=’interpolate’)

Stack images after performing coordinate transformations.

Parameters
images : list of ndarray

Images to be stacked.

matrices : list of (3,3) ndarray

Coordinate transformation matrices.

weights : list of float

Weight of each input image. By default, all images are weighted equally. The
merging algorithm takes into account whether images overlap.

order : int

Order of the interpolant used by the scaling algorithm. Linear, by default.

oshape : tuple of int

Output shape. If not specified, the output shape is auto determined to include
all images.

save_tiff : bool

Whether to save copies of the warped images. False by default.

method : {‘interpolate’, ‘polygon’}

Use standard interpolation (default) or polygon interpolation. Note: Polygon
interpolation is currently disabled.
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Notes

For each image, a 3x3 coordinate transformation matrix, A, must be given. Each coordinate, c =
[x,y,1]^T, in the source image is then translated to its position in the destination image, d = A*c.

After warping the images, they are combined according to the given weights. Note that the overlap of
frames is taken into account. For example, in areas where only one image occurs, the pixels of that
image will carry a weight of one, whereas in other areas it may be less, depending on the overlap of
other images.

supreme.photometry

histogram_adjust(source,
target)

Transform the histogram of the source so that it is similar to that of
the target.

photometric_adjust(source,
target)

Adjust the intensity of source to look like target.

histogram_adjust(source, target)
Transform the histogram of the source so that it is similar to that of the target.

Parameters
source, target = ndarray :

Source and target images.

Returns
source_adj : callable, f(x)

When applied to the source image, an image with similar response to target is
generated.

photometric_adjust(source, target)
Adjust the intensity of source to look like target.

Parameters
source, target : ndarray

Source and target images.

Returns
a, b : float

Adjustment factors so that source * a + b approximates target.

B.2.5 Super-resolution

supreme.resolve

initial_guess_avg(images,
tf_matrices, ...)

From the given low-resolution images and transforms, make an initial
guess of the high-resolution image.

lsqr.lsqr(A, b[, damp, atol,
btol, conlim, ...])

Find the least-squares solution to a large, sparse, linear system of
equations.

solve(images, tf_matrices,
scale[, x0, tol, ...])

Super-resolve a set of low-resolution images by solving a large, sparse
set of linear equations.

initial_guess_avg(images, tf_matrices, scale, oshape)
From the given low-resolution images and transforms, make an initial guess of the high-resolution
image.
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Parameters
images : list of ndarray

Low-resolution images.

tf_matrices : list of (3, 3) ndarray

Transformation matrices that warp the images to the reference image (usually
images[0]).

scale : float

The scale of the high-resolution reconstruction relative to the low-resolution
frames. Typically between 1 and 2.

oshape : tuple of int

Shape of the high-resolution reconstruction.

lsqr(A, b, damp=0.0, atol=1e-08, btol=1e-08, conlim=100000000.0, iter_lim=None, show=False,
calc_var=False)
Find the least-squares solution to a large, sparse, linear system of equations.

The function solves Ax = b or min ||b - Ax||^2 or ‘‘min ||Ax - b||^2 + d^2 ||x||^2.

The matrix A may be square or rectangular (over-determined or under-determined), and may have any
rank.

1. Unsymmetric equations -- solve A*x = b

2. Linear least squares -- solve A*x = b
in the least-squares sense

3. Damped least squares -- solve ( A )*x = ( b )
( damp*I ) ( 0 )

in the least-squares sense

Parameters
A : LinearOperator or equivalent

A representation of an mxn matrix. It is required that the linear operator can
produce Ax and A.T x.

b : (m,) ndarray

Right-hand side vector b.

damp : float

Damping coefficient.

atol, btol : float

Stopping tolerances. If both are 1.0e-9 (say), the final residual norm should be
accurate to about 9 digits. (The final x will usually have fewer correct digits,
depending on cond(A) and the size of damp.)

conlim : float

Another stopping tolerance. lsqr terminates if an estimate of cond(A) exceeds
conlim. For compatible systems Ax = b, conlim could be as large as 1.0e+12
(say). For least-squares problems, conlim should be less than 1.0e+8. Maximum
precision can be obtained by setting atol = btol = conlim = zero, but the
number of iterations may then be excessive.
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iter_lim : int

Explicit limitation on number of iterations (for safety).

show : bool

Display an iteration log.

calc_var : bool

Whether to estimate diagonals of (A’A + damp^2*I)^{-1}.

Returns
x : ndarray of float

The final solution.

istop : int

Gives the reason for termination. 1 means x is an approximate solution to Ax
= b. 2 means x approximately solves the least-squares problem.

itn : int

Iteration number upon termination.

r1norm : float

norm(r), where r = b - Ax.

r2norm : float

sqrt( norm(r)^2 + damp^2 * norm(x)^2 ). Equal to r1norm if damp == 0.

anorm : float

Estimate of Frobenius norm of Abar = [[A]; [damp*I]].

acond : float

Estimate of cond(Abar).

arnorm : float

Estimate of norm(A’*r - damp^2*x).

xnorm : float

norm(x)

var : ndarray of float

If calc_var is True, estimates all diagonals of (A’A)^{-1} (if damp == 0) or
more generally (A’A + damp^2*I)^{-1}. This is well defined if A has full col-
umn rank or damp > 0. (Not sure what var means if rank(A) < n and damp =
0.)

Notes

LSQR uses an iterative method to approximate the solution. The number of iterations required to
reach a certain accuracy depends strongly on the scaling of the problem. Poor scaling of the rows or
columns of A should therefore be avoided where possible.

For example, in problem 1 the solution is unaltered by row-scaling. If a row of A is very small or large
compared to the other rows of A, the corresponding row of ( A b ) should be scaled up or down.
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In problems 1 and 2, the solution x is easily recovered following column-scaling. Unless better infor-
mation is known, the nonzero columns of A should be scaled so that they all have the same Euclidean
norm (e.g., 1.0).

In problem 3, there is no freedom to re-scale if damp is nonzero. However, the value of damp should
be assigned only after attention has been paid to the scaling of A.

The parameter damp is intended to help regularize ill-conditioned systems, by preventing the true
solution from being very large. Another aid to regularization is provided by the parameter acond,
which may be used to terminate iterations before the computed solution becomes very large.

If some initial estimate x0 is known and if damp == 0, one could proceed as follows:

1.Compute a residual vector r0 = b - A*x0.

2.Use LSQR to solve the system A*dx = r0.

3.Add the correction dx to obtain a final solution x = x0 + dx.

This requires that x0 be available before and after the call to LSQR. To judge the benefits, suppose
LSQR takes k1 iterations to solve A*x = b and k2 iterations to solve A*dx = r0. If x0 is “good”,
norm(r0) will be smaller than norm(b). If the same stopping tolerances atol and btol are used for each
system, k1 and k2 will be similar, but the final solution x0 + dx should be more accurate. The only
way to reduce the total work is to use a larger stopping tolerance for the second system. If some value
btol is suitable for A*x = b, the larger value btol*norm(b)/norm(r0) should be suitable for A*dx =
r0.

Preconditioning is another way to reduce the number of iterations. If it is possible to solve a related
system M*x = b efficiently, where M approximates A in some helpful way (e.g. M - A has low rank
or its elements are small relative to those of A), LSQR may converge more rapidly on the system
A*M(inverse)*z = b, after which x can be recovered by solving M*x = z.

If A is symmetric, LSQR should not be used!

Alternatives are the symmetric conjugate-gradient method (cg) and/or SYMMLQ. SYMMLQ is an
implementation of symmetric cg that applies to any symmetric A and will converge more rapidly than
LSQR. If A is positive definite, there are other implementations of symmetric cg that require slightly
less work per iteration than SYMMLQ (but will take the same number of iterations).

References

[R20], [R21], [R22]

solve(images, tf_matrices, scale, x0=None, tol=1e-10, iter_lim=None, damp=0.10000000000000001,
method=’CG’, operator=’bilinear’, norm=1, standard_form=False)

Super-resolve a set of low-resolution images by solving a large, sparse set of linear equations.

This method approximates the camera with a downsampling operator, using bilinear or polygon in-
terpolation. The LSQR method is used to solve the equation Ax = b where A is the downsampling
operator, x is the high-resolution estimate (flattened in raster scan/ lexicographic order), and b is a
stacked vector of all the low-resolution images.

Parameters
images : list of ndarrays

Low-resolution input frames.

tf_matrices : list of (3, 3) ndarrays

Transformation matrices that relate all low-resolution frames to a reference low-
resolution frame (usually images[0]).

scale : float
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The resolution of the output image is scale times the resolution of the input
images.

x0 : ndarray, optional

Initial guess of HR image.

damp : float, optional

If an initial guess is provided, damp specifies how much that estimate is weighed
in the entire process. A larger value of damp results in a solution closer to
x0, whereas a smaller version of damp yields a solution closer to the solution
obtained without any initial estimate.

method : {‘CG’, ‘LSQR’, ‘descent’, ‘L-BFGS-B’}

Whether to use conjugate gradients, least-squares, gradient descent or L-BFGS-
B to determine the solution.

operator : {‘bilinear’, ‘polygon’}

The camera model is approximated as an interpolation process. The bilinear
interpolation operator only works well for zoom ratios < 2.

norm : {1, 2}

Whether to use the L1 or L2 norm to measure errors between images.

standard_form : bool

Whether to convert the matrix operator to standard form before processing.

Returns
HR : ndarray

High-resolution estimate.

supreme.resolve.operators

bilinear Represent the camera process as a simple bilinear interpolation.
convolve A linear operator that represents a convolution operation.
block_diag Linear operator that represents diagonal block stacking.
op_repeat Apply the given operator to N identically sized images.

bilinear()
Represent the camera process as a simple bilinear interpolation.

Parameters
MM, NN : int

Shape of the high-resolution image.

HH : list of (3,3) ndarray

Transformation matrices that warp the high-resolution frame to the individual
low-resolution frames.

M, N : int

Dimensions of a single low-resolution output frame.

boundary : {0, 1}

Outside boundary use zero (0) or mirror (1).
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Returns
A : (len(HH) * M * N, MM * NN) ndarray

Linear-operator representing bilinear interpolation from the HR image to the
different LR images.

convolve()
A linear operator that represents a convolution operation.

Parameters
M, N : int

Shape of the output image.

mask_arr : (K,K) ndarray where K is odd

Mask to convolve with.

Returns
A : (M*N, M*N) sparse array

Linear operator that performs a convolution.

block_diag()
Linear operator that represents diagonal block stacking.

Repeats an (M, N) matrix diagonally to fit into and (MM, NN)-shaped matrix.

op_repeat()
Apply the given operator to N identically sized images.

supreme.ext.poly_operator

poly_interp_op Construct a linear interpolation operator based on polygon overlap.

poly_interp_op()
Construct a linear interpolation operator based on polygon overlap.

Parameters
MM, NN : int

Shape of the high-resolution source frame.

H : (3, 3) ndarray

Transformation matrix that warps the high-resolution image to the low-
resolution image.

M, N : int

Shape of the low-resolution target frame.

search_win : int

Search window size. Note TODO: this parameter should be automatically de-
termined.

Returns
op : (M*N, MM*NN) sparse array

Interpolation operator.
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B.2.6 Miscellaneous

supreme.geometry

Grid(rows, cols) Regular grid.
Polygon(xp, yp) Polygon class ..
window.gauss([size, std]) Discretised Gaussian window.

class Grid(rows, cols)
Regular grid.

__init__(rows, cols)
Create a grid given rows and columns.

coords()
Return an array of all coordinates.

class Polygon(xp, yp)
Polygon class

Methods

area() Return the area of the polygon.
centroid() Return the centroid of the polygon
inside(xp, yp) Check whether the given points are inside the polygon.

__init__(xp, yp)
Given xp and yp (both 1D arrays or sequences), create a new polygon. The polygon is closed at
instantiation.

gauss(size=5, std=1.0)
Discretised Gaussian window.

Parameters
size : int

The generated window has dimensions (size, size).

std : float

Standard deviation.

Returns
w : (size, size) ndarray

Discretised Gaussian window.

supreme.ext

interp_bilinear(grey_image[, ...]) Calculate values at given coordinates using bi-linear
interpolation.

interp_transf_polygon(grey_image,
transform)

Compute an image transformation using polygon
interpolation.

line_intersect(x0, y0, x1, y1, x2, y2, x3,
y3)

Calculate the intersection between two lines.

npn_poly
poly_clip(x, y, xleft, xright, ytop,
ybottom)

Clip a polygon to the given bounding box.

B-22



interp_bilinear(grey_image, transform_coords_r=None, transform_coords_c=None, mode=’N’,
cval=0, output=None)

Calculate values at given coordinates using bi-linear interpolation.

The output is of shape transform_coords_*. For each pair of values (trans-
form_coords_r,transform_coords_c) the input image is interpolated to give the output value
at that point.

interp_transf_polygon(grey_image, transform, oshape=None)
Compute an image transformation using polygon interpolation.

Parameters
grey_image : ndarray of uint8

Input image.

transform : 3x3 matrix of float

Transformation matrix.

oshape : tuple, optional

Shape of output image. Equal to input size if not specified.

Notes

This operation may also be performed by constructing a sparse polygon interpolation operator using
poly_interp_op.

line_intersect(x0, y0, x1, y1, x2, y2, x3, y3)
Calculate the intersection between two lines.

The first line runs from (x0,y0) to (x1,y1) and the second from (x2,y2) to (x3,y3).

Return the point of intersection, (x,y), and its type:
0 – Normal intersection 1 – Intersects outside given segments 2 – Parallel 3 – Co-incident

poly_clip(x, y, xleft, xright, ytop, ybottom)
Clip a polygon to the given bounding box.

x and y are 1D arrays describing the coordinates of the vertices. xleft, xright, ytop and ybottom specify
the borders of the bounding box. Note that a cartesian axis system is used such that the following
must hold true:

x_left < x_right y_bottom < y_top

The x and y coordinates of the vertices of the resulting polygon are returned.

supreme.transform

chirpz(x, A, W, M) Compute the chirp z-transform.
homography(image, matrix[, output_shape, ...]) Perform a matrix transform on an image.
logpolar(image[, angles, Rs, mode, cval, ...]) Perform the log polar transform on an image.

chirpz(x, A, W, M )
Compute the chirp z-transform.

The discrete z-transform,

X(z) = sum_{n=0}^{N-1} x_n z^{-n}

is calculated at M points,

z_k = AW^-k, k = 0,1,...,M-1
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for A and W complex, which gives

X(z_k) = sum_{n=0}^{N-1} x_n z_k^{-n}

homography(image, matrix, output_shape=None, order=1, mode=’constant’, cval=0.0, _coords=None)
Perform a matrix transform on an image.

Each coordinate (x,y,1) is multiplied by matrix to find its new position. E.g., to rotate by theta degrees
clockwise, the matrix should be

[[cos(theta) -sin(theta) 0]
[sin(theta) cos(theta) 0]
[0 0 1]]

or to translate x by 10 and y by 20,

[[1 0 10]
[0 1 20]
[0 0 1 ]].

logpolar(image, angles=None, Rs=None, mode=’M’, cval=0, output=None, _coords_r=None, _co-
ords_c=None, extra_info=False)

Perform the log polar transform on an image.

Returns
lpt : ndarray of uint8

Log polar transform of the input image.

angles : ndarray of float

Angles used. Only returned if extra_info is set to True.

log_base : int

Log base used. Only returned if extra_info is set to True.

References

[R8]

supreme.register

window_wrap Calculate the corner-coordinates of the sub-windows resulting when wrapping one window
around another.

window_wrap()
Calculate the corner-coordinates of the sub-windows resulting when wrapping one window around
another.

No wrapping:

.________.
| ___ |
| | | |
| |___| |
|________|

Column wrapping:
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.________.
|_ _|
| | | |
|_| |_|
|________|

Row wrapping:

.________.
| |___| |
| |
| .___. |
|__|___|_|

Diagonal wrapping:

.________.
|__| |__|
| |
|__. .__|
|__|__|__|

Notes

The algorithm works as follows:

•Assume that all wrappings take place

•Calculate the corners for each resulting window

•Remove windows with negative coordinates

•Clip all coordinates to the clipping window boundary
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