
Path planning for an unmanned terrestrial vehicle in an

obstacle ridden environment

by

Thomas Ignatius Ferreira

Thesis presented at the University of Stellenbosch in
partial fulfilment of the requirements for the degree of

Masters of Engineering

Department of Electrical Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Study leader: Dr I.K. Peddle

March 2009

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is

my own original work and that I have not previously in its entirety or in part

submitted it at any university for a degree.

Signature: .

T.I. Ferreira

Date: .

i

Copyright © 2009 University of Stellenbosch

All rights reserved.

Abstract

This thesis relates to the successful development of an unmanned terrestrial

vehicle (UTV) capable of operating in an obstacle ridden environment. The

primary focus of the project is on the specific path planning algorithms. It

is shown that specific methods of populating the obstacle-free space can be

combined with methods of extracting the shortest path from these popula-

tions. Through use of such combinations the successful generation of optimal

collision-free paths is demonstrated.

Previously developed modular architectures are combined and modified to

create a UTV platform which meets all the requirements for implementation

of navigational systems and path planning algorithms on board the platform.

A two-dimensional kinematic state estimator is developed. This estimator

makes use of extended Kalman Filter theory to optimally combine measure-

ments from low cost sensors to yield the vehicle’s state vector. Lateral guid-

ance controllers are developed to utilize this estimated state vector in a feed-

back control configuration. The entire system is then successfully demon-

strated within a simulation environment. Finally, practical results from two

days of test runs are provided in both written and interactive form.

iii

Opsomming

Hierdie tesis handel oor die suksesvolle ontwikkeling van ’n onbemande

grond voertuig (OGV) wat instaat is om te funksioneer in ’n hindernis be-

saaide omgewing. Die primêre fokus van die projek is op die spesifieke pad

beplannings algoritmes. Dit word gewys dat spesifieke metodes waardeur

die hindernis-vrye gedeelte van die omgewing bevolk word gekombineer kan

word met metodes waardeur die kortste pad vanuit hierdie bevolking ontgin

word. Deur middel van sulke kombinasies word die suksevolle voortbring-

ing van optimale botsings-vrye paaie gedemonstreer.

Vroeër ontwikkelde modulere argitekture word gekombineer en aangepas

om ’n OGV platform te skep wat voldoen aan al die vereistes vir imple-

mentering van navigasie en pad beplanning stelsels aanboord die platform.

’n Twee-dimensionele kinematiese toestandsafskatter word voorgedra. Die

afksatter maak gebruik van uitgebreide Kalman Filter teorie om op ’n opti-

male manier die metings van lae koste sensors te kombineer en sodoende die

voertuig se toestandsvektor af te skat. Laterale beheerders word voorgedra

wat hierdie afgeskatte toestandsvektor gebruik in ’n terugvoer beheer kon-

figurasie. Die hele stelsel word dan gedemonstreer in a simulasie omgewing.

Laastens word praktiese resultate van twee dae van toetslopies voorgedra in

geskryfde vorm asook in interaktiewe vorm.

iv

Acknowledgements

The author would like to thank the following people for their contribution

towards this project.

• Dr I.K. Peddle for his guidance and enthusiasm throughout the project

as well as being a consistent driving force. It is much appreciated Iain.

• My parents. Dad, thanks for showing interest, proofreading this thesis

and calling it a nice piece of "rocket science". More importantly, thanks

for all the opportunities and for being a great dad. Mom, thanks for

the countless cups of coffee, great food, continuous love and support,

general concern for my health and for being a great mom.

• My grandmother, Hilda, for her love and support and continuous up-

dates about rising or falling fuel prices. Without this I might have lost

complete touch with the outside world during the writing up of this

dissertation.

• My friend, Christo, whose house paid a heavy price during the practical

preparations for this project. Thanks for aiming the frustration at the

Lithium-Polymer battery and not at me Stof, you are a dear friend.

• The late Willie van Rooyen for his administrative and technical help

which was always accompanied by a friendly face. We will all miss

you dearly Willie.

• ESL friends for being a great bunch of guys.

• Last, but not least, Quintis Brandt for his help in tracking down com-

ponents on more than one occassion

v

Contents

Declaration i

Abstract iii

Opsomming iv

Acknowledgements v

Contents vi

Nomenclature ix

List of Figures xi

List of Tables xv

1 Introduction and Overview 1

1.1 Background . 1

1.2 UTV Overview . 2

1.3 Thesis Outline . 4

2 Test Vehicle and Avionics 5

2.1 System Overview . 6

2.2 PC104 Stack . 6

2.3 Inertial Measurement Unit . 10

2.4 Undercarriage and Drive Systems 15

2.5 Summary . 32

3 Path Planning Algorithms 33

3.1 Overview . 33

vi

CONTENTS vii

3.2 Population Algorithms . 36

3.3 Shortest Path Algorithms . 58

3.4 Performance Summary . 78

3.5 Summary . 80

4 Control and Simulator 81

4.1 Overview . 81

4.2 Drive System Controller . 82

4.3 Yaw Rate Controller . 86

4.4 Heading Controller . 90

4.5 Guidance Controller . 92

4.6 Controller Scheduling . 94

4.7 Non-linear Simulator . 98

4.8 Summary . 104

5 State Estimation and Simulation Results 106

5.1 Overview . 106

5.2 Optimal State Estimation Theory 108

5.3 Approximated Inertial Reference Frame 113

5.4 Implementation of the EKF . 114

5.5 Simulation . 123

5.6 Summary . 127

6 Test Runs 129

6.1 Overview . 129

6.2 Telemetry Analysis . 135

6.3 Summary . 139

7 Summary and Recommendations 140

7.1 Summary . 140

7.2 Recommendations . 142

Appendices 148

A Hardware and Software Details 149

A.1 Data Files . 149

A.2 Communication . 151

A.3 Batteries . 155

CONTENTS viii

A.4 Angle Conditioning . 157

B UTV Parameters 158

B.1 Transfer Function . 160

B.2 State-Space . 164

B.3 Discrete State-Space . 165

B.4 Calculating the Yaw Rate Slip Gain 166

C Ground station 168

C.1 Overview of Components . 168

C.2 Ground station Software and GUI 169

D DVD Videos 180

Bibliography 181

Nomenclature

Units

V Volt

A Ampere

Ah Ampere hour

m meter

cm centimeter

Hz Hertz

s Seconds

ms Miliseconds

ns Nanoseconds

us Microseconds

kHz Kilohertz

◦/s Degrees per second angular rotation

◦ Degrees measure of angle

rad/s Radians per second angular rotation

m/s Meters per second measure of translational speed

rad Radians measure of angle

Acronyms

2D Two-dimensional

AC Alternating Current

ADC Analog to Digital Converter

BST Binary Search Tree

C High-level Programming Language

CAN Controller-area network

ix

NOMENCLATURE x

CCP Capture/Compare/PWM

CPR Counts per revolution

DARPA Defense Advanced Research Projects Agency

DC Direct Current

DLQR Discrete Linear Quadratic Regulator

ECCP Enhanced Capture/Compare/PWM

ECEF Earth Centred Earth Fixed geocentric system

EKF Extended Kalman Filter

ESL Electronic Systems Laboratory, University of Stellenbosch

GPS Global Positioning System

IC Integrated Circuit

IMU Inertial Meaurement Unit

ISA Industry Standard Architecture

ISR Interrupt Service Routine

LAN Local Area Network

LQR Linear Quadratic Regulator

MOSFET Metal-oxide-semiconductor field-effect transistor

NE North-East reference system

NED North-East-Down reference system

OBC Onboard Computer

PCB Printed Circuit Board

PI Proportional Integral

PIC Programmable Intelligent Computer

PWM Pulse width modulated

RF Radio Frequency

SI International System of Units

TUGV Tactical Unmanned Ground Vehicle

UART Universal Asynchronous Receiver and Transmitter

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UTV Unmanned Terrestrial Vehicle

ZOH Zero Order Hold

DVD Digital Video Disc

List of Figures

1.1 Dragon Runner (top left), Stanley (top right), Gladiator (centre),

Crusher (bottom left), Sojourner Rover (bottom right) 2

1.2 Project stages . 4

2.1 Binky . 5

2.2 SystemOverview . 6

2.3 PC104 Stack(left) and IMU(right) 7

2.4 Rear view of UTV and Cooling Fans 9

2.5 Magnetometer (at the end of wooden extension) 12

2.6 Ampere’s Integral Law of Magnetic Field Intensity 13

2.7 UTV Drive Systems . 15

2.8 Turns Ratio of Sprocket System [10] 16

2.9 Drive System Overview . 17

2.10 Flowchart of Main Function on board the PIC microprocessor . . 19

2.11 DC-DC Full Bridge Voltage Converter 20

2.12 Basic operation of the Encoder . 24

2.13 Effects of disturbances on encoder measurements 27

2.14 Flowchart of Angular Velocity Measurement ISR 28

2.15 Flowchart of Low Priority ISR . 30

3.1 Two Disjoint Obstacles . 34

3.2 Example of a Convex Hull . 34

3.3 Simple Example of a Voronoi Diagram 37

3.4 Voronoi diagram of the vertices of a square 37

3.5 A line is projected by the curve of intersection of two cones [7] . . 39

3.6 Plane π and L sweeps toward x → ∞ and cuts the cones [7] . . . 39

xi

LIST OF FIGURES xii

3.7 Viewed from x ≈ −∞, the bold curve represents the parabolic

front [7] . 40

3.8 The parabolic front in the xy-plane [9] 40

3.9 Degenerate parabola when new cite is encountered [9] 41

3.10 Degenerate parabola grows wider as sweep line moves [9] 41

3.11 Parabolic arc shrinks and then disappears [9] 42

3.12 Circle event when parabolic arc disappears [9] 42

3.13 Call for a Voronoi Population from the Path Planning Module . . . 45

3.14 Pruning of Voronoi Edges . 47

3.15 Voronoi Edges after Pruning . 47

3.16 Incorrect collision with obstacle . 48

3.17 Simple Visibility Graph . 49

3.18 Sweep line at its initial position [9] 52

3.19 How obstacle edge intersections are stored in a BST [9] 52

3.20 Special cases where the sweep line contains more than one vertex

[9] . 53

3.21 Flowchart of O(n2 log n) Visibility Algorithm 54

3.22 Flowchart of implemented O(n3) Visibility Algorithm 55

3.23 Visibility Graph generated by O(n3) algorithm with convex obstacles 57

3.24 Visibility Graph generated by O(n3) algorithm with square obstacles 57

3.25 Paint spreading uniformly through Visibility Edges in discrete steps 60

3.26 Main Flow Diagram of Implemented Dijkstra Algorithm 62

3.27 Update F and T . 63

3.28 Extract Path from T . 64

3.29 Different stages of implemented Dijkstra Algorithm 66

3.30 Path found with implemented Dijkstra Algorithm 66

3.31 Path found with Dijkstra Algorithm for Convex obstacles 67

3.32 Path found with Dijkstra Algorithm on Voronoi population 67

3.33 Different stages of Dijkstra Algorithm on Voronoi population 68

3.34 Simple example of an A*Star search with Euclidean Heuristic . . . 71

3.35 Example of an A*Star search with detours 72

3.36 Equivalent Discrete Dijkstra steps 73

3.37 Main Flowchart of implemented A*Star Algorithm 74

3.38 Flowchart of A*Star Update F and T block 75

3.39 A*Star Search on Square Obstacle Visibility Population 76

3.40 A*Star Search on Square Obstacle Voronoi Population 77

LIST OF FIGURES xiii

3.41 A*Star Search on Convex Obstacle Visibility Population 77

3.42 A*Star Search on Visibility Population with no line of sight 78

3.43 Performance summary of population algorithms 79

3.44 Performance summary of shortest path algorithms 79

4.1 Integral Control with full-state feedback and added zero [1] . . . 83

4.2 Closed Loop Drive System’s Response 85

4.3 Motion of the UTV in 2 Dimensional Inertial Reference Frame . . 86

4.4 Block Diagram of Yaw Rate and Forward Velocity Plant 88

4.5 Closed Loop Yaw Rate Controller 89

4.6 Step Response of Closed Loop Yaw Rate System 90

4.7 Block Diagram of closed loop Primary Heading Controller 91

4.8 Step Response of Primary Heading Controller 92

4.9 Flowchart of Path Planner Module State-Machine 95

4.10 Flowchart of Controller Module State-Machine 96

4.11 Flowchart of Calculate Path Function 98

4.12 Highest Level of Simulink Simulator 99

4.13 Graphical Simulator Interface . 101

4.14 UTV Model Block of Block Diagram Simulator 102

4.15 Sensor Model Block of Block Diagram Simulator 103

4.16 Convert to Sensed Values Block of Sensor Model Block 104

5.1 State Estimator Kinematics . 107

5.2 Path Obtained from a Visibility population 123

5.3 EKF States (left) and State Errors (right) - Visibility Path 124

5.4 Estimated Path vs True Path during Visibility Graph Navigation . 125

5.5 Path Obtained from a Voronoi population 125

5.6 EKF States (left) and State Errors (right) - Voronoi Path 126

5.7 Estimated Path vs True Path during Voronoi Navigation 126

5.8 EKF Estimated East Position State Error 127

6.1 Setting up the obstacles . 130

6.2 UTV Navigation in Progress . 131

6.3 Estimator positional states accurately trace out the Visibility path

in real-time on the ground station 136

6.4 Magnetometer Heading during navigation of a Visibility path . . 136

6.5 GPS Measurements during navigation of a Voronoi path 137

LIST OF FIGURES xiv

6.6 Estimator positional states accurately trace out the Voronoi path in

real-time on the ground station . 138

6.7 Magnetometer Heading Measurements during navigation of a Voronoi

path . 138

7.1 Construction of the Trapezoidal Map [9] 142

7.2 Path found from a Trapezoidal Map [9] 143

7.3 Calculating the Configuration Space from the Work Space [9] 145

A.1 Format of Voronoi Obstacles Spreadsheet 150

A.2 Format of Visibility Obstacles Spreadsheet 150

A.3 Battery Charger Schematic in memory of Willie van Rooyen . . . 156

A.4 Flowchart of the Condition Angles Routine 157

B.1 Schematic representation of DC Motor 158

B.2 Open loop plant and disturbance torque of DC motor 160

B.3 Uniform weight distribution on wheels of UTV 162

B.4 Step responses of system plant and modified system plant 163

B.5 Pole locations of system plant before and after modification . . . 164

B.6 Step Response of Discrete Plant with Sample Time 0.04 s 166

B.7 Linear Fitting of Measured Yaw Rate vs. Theoretical Yaw Rate . . 167

C.1 Logitech Cordless Console Used for Manual Operation of the UTV 169

C.2 Main Page of the Ground station GUI 170

C.3 Manual Control Page of the Ground station GUI 171

C.4 Sensor Page of the Ground station GUI 173

C.5 Estimator Page of the Ground station GUI 174

C.6 Path Planning Page of the Ground station GUI 176

C.7 Path Planning Page after the Estimator and Autopilot have been

Armed . 179

List of Tables

2.1 IR2110 . 22

2.2 IRFZ44V . 22

3.1 Status of the tree T once the destination is reached 61

6.1 Path segments of practical Visibility path 136

A.1 Contents of Primary Packet . 151

A.2 Contents of GPS Packet . 151

A.3 Contents of Secondary Packet . 152

A.4 Contents of EKF Packet . 152

A.5 Contents of Path Planning Packet 153

A.6 Contents of Encoder Packet . 153

B.1 Measured Physical Motor Parameters 161

B.2 Theoretical vs Measured Yaw Rate 167

xv

Chapter 1

Introduction and Overview

1.1 Background

In a modern age, where there is a general trend toward automization, there

has been significant interest in the field of unmanned ground vehicles (UGV),

also referred to as unmanned terrestrial vehicles (UTV). The use of UGV’s to

reach potentially hazardous and sometimes humanly unreachable environ-

ments is becoming an attractive and ever more realistic alternative. Exam-

ples include the ’Sojourner Rover’: developed by NASA for exploration of

the planet Mars during the ’Mars Pathfinder’ mission, the ’Gladiator Tacti-

cal Unmanned Ground Vehicle’: a remotely operated TUGV employed by

the United States Marine Corps to support dismounted units in all environ-

ments and terrain with a modular design to allow for mission specific pay-

loads, ’The Dragon Runner’: developed for the US Marine Corps Warfighting

Laboratory, designed to increase situational awareness, and Stanford Univer-

sity’s Volkswagen-based autonomous vehicle ’Stanley’ which won DARPA’s

Grand Challenge for autonomous vehicles in America in 2006. These UGV’s

can be seen in Figure 1.1

Motivated by these ongoing developments and several successes the Depart-

ment of Electronic Engineering’s UAV research group, at the University of

Stellenbosch, have had recently, it was decided to investigate further and

possibly contribute to this UGV field.

1

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

Figure 1.1: Dragon Runner (top left), Stanley (top right), Gladiator (centre), Crusher
(bottom left), Sojourner Rover (bottom right)

1.2 UTV Overview

Although hardware implementation and control methods are vital elements

which contribute to the success of the test vehicle’s autonomous navigation,

the core of this project relies heavily on the success of the respective path

planning algorithms. The global aim of this project is to successfully demon-

strate more than one path planning algorithm, whilst at the same time pre-

senting a successful practical implementation of these algorithms in conjunc-

tion with the state estimation and control methods used.

Autonomous navigation of a UTV is defined as its ability to move from pre-

specified point A to point B without any human aid and taking into account

that the area between points A and B is obstacle ridden. Several algorithms

exist for successfully finding the shortest route between two points when

obstacles are present between them. This project focusses on methods of cre-

ating populations in obstacle-free space and then finding combinations of line

segments from these populations which provide the shortest possible route.

Two population algorithms as well as two shortest route algorithms are investi-

gated and, as will be evident in this thesis, the respective algorithms display

different characteristics and inherently different advantages and disadvan-

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

tages. Ultimately a trade-off exists between them which will be presented.

The scope of this project does not include obstacle detection and all obstacles

are therefore pre-loaded onto the onboard computer from the ground sta-

tion through RF communication. To a certain extent this lacks purpose and

practicality and only seems feasible if unmanned ground vehicles were to

download area information from strategically placed servers each time they

entered new area grids. For this reason flexibility is increased and the UTV

is made more accessible to follow-up projects by strategically implementing

all algorithms in such a way as to allow for the addition of sensors for obsta-

cle detection. All algorithms implemented allow for the interrupt, caused by

the addition of an obstacles while the navigation systems are running, and

therefore simulates the process of, for example, an ultrasonic sensor detect-

ing a new obstacle while the UTV is moving toward its destination.

In order to maximize the autonomous capability of the UTV all processing is

done onboard and the ground station merely serves as a monitoring medium,

a way to define desired waypoints and a way to initialize all onboard sys-

tems. This implies that even if communications with the ground station is

lost, during navigation, the UTV will simply continue on its calculated route

until it reaches its destination after which it will come to a halt.

Although the testing of a UTV provides much more flexibility than the testing

of a UAV, where errors or inaccuracies could lead to devastating results and

possibly the complete destruction of equipment when an aeroplane crashes,

the goal in this project is still set to fully exhaust simulation resources before

attempting test runs. This is done for the purpose of maintaining a strategic

approach throughout the project rather than simply trying to achieve results

through a process of trial and error. As will be evident in this thesis, this pro-

cess of simulation before testing proves to be highly advantageous. Through

careful debugging within simulation and accurate modelling, very few test

runs are necessary to duplicate what is seen in simulation in reality.

The realization of the actual UTV is divided into 5 stages, which are designed,

simulated and implemented separately but with a continuous mutual aware-

ness, throughout the respective design processes, in order to be successful in

the final stage of integration. During the final integration process it is how-

ever still occasionally necessary to refer back to the individual designs when

conflicts occur during integration. The order in which these counterparts are

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

implemented in this project is shown in Figure 1.2.

Assembly and design
of hardware

Implementation of
guidance controller

Implementation of state
estimator

Implementation of path
planning algorithms

Implementation of drive
system control

Software integration of all
subsystems through use of
a state-machine and on-
board computer

Figure 1.2: Project stages

The use of relatively low cost sensors and their inherent poor measurement

characteristics lead to minor inaccuracies which does effect the overall per-

formance of the UTV. It will be shown however that with the aid of an EKF,

poor measurements can be compensated for with other measurements by op-

timally weighing the two measurements and, provided the testing grid is not

too small, successful obstacle avoidance can still be achieved. It is evident

however that the GPS used has a rather low accuracy in terms of this project

and its requirements and the integration, of velocity and yaw rate measure-

ments, is therefore vital.

1.3 Thesis Outline

This thesis covers the implementation of an autopilot for an unmanned ter-

restrial vehicle, operating in an obstacle ridden environment, and includes

the preparation of hardware, investigation into path planning algorithms,

the implementation of control algorithms and finally practical demonstra-

tions. Chapter 2 is dedicated to a discussion on the hardware used and gives

a sense of the physical UTV as a whole. Hardware problems that were en-

countered and the chosen solutions are also presented. Chapter 3 presents

the path planning algorithms and features a discussion on the advantages

and disadvantages of each algorithm. In Chapter 4 the focus is primarily

on software implementation and the control strategies are introduced. This

chapter also features a discussion on the non-linear simulator used to verify

the entire system before practical implementation. Chapter 5 presents the

development of a simplified two-dimensional state estimator and simulation

results of the simulator from Chapter 4, with the state estimator included,

are presented. Finally, a discussion on the practical results are provided in

Chapter 6.

Chapter 2

Test Vehicle and Avionics

The implementation of an autonomous navigation system, onboard the UTV,

requires a software counterpart which is carefully weaved with a hardware

counterpart. This chapter focusses on giving an indepth look at the project

from a hardware perspective and in doing so will also give clarity about how

the software algorithms merge with the hardware.

A picture of the UTV in its entirety can be seen in Figure 2.1. The UTV makes

use of batteries as source of power, charging circuitry, electrical motors, di-

gital drive systems to achieve desired wheel speeds, an inertial measurement

unit, onboard GPS and RF modules, CAN protocol hardware and an onboard

computer.

Figure 2.1: Binky

5

CHAPTER 2. TEST VEHICLE AND AVIONICS 6

2.1 System Overview

Figure 2.2 shows an overview of the hardware system which is implemented

on the test vehicle and how it interacts with the ground station. The sections

to follow will give a discussion on each component and give more clarity

about each component’s relevance in this project. Hardware problems that

were encountered and possible solutions are also presented.

GROUNDSTATION

UTV

CAN Bus 800kbps

PC104 Stack

RF ModuleGPS Module

OBC

UART

PC104/CAN
Controller

ISA
Bus

57.6 kbps 9.6 kbps

1.575Ghz 2.4 Ghz

LAN

IMU
NODE

Left
Drive

System

Right
Drive

System

12V Sealed Lead
Acid Batteries x 2

Charging
Circuitry

RF Module
9.6 kbps

UART

Ground Station
Software running

on a Microsoft
Windows based

computer

2.4 Ghz

Wireless controller
pad

2.4 Ghz

2.4 Ghz

Figure 2.2: SystemOverview

2.2 PC104 Stack

The PC104 stack used in this project is based on a previous design in the

UAV research group, at the University of Stellenbosch. The stack can be seen

in Figure 2.3 and more detailed information about the architecture can be

found in [12] and [8]. The only component which is changed is the OBC

and this is done due to the previous model no longer being available at the

time of the project. This architecture is adopted because of the flexibility

CHAPTER 2. TEST VEHICLE AND AVIONICS 7

and extendibility it inherits from its use of a CAN bus to communicate with

various control nodes.

Figure 2.3: PC104 Stack(left) and IMU(right)

The PC104 stack consists of the elements listed below and the following sub-

sections will give a brief discussion on each element and how it fits into this

project.

• Onboard Computer (OBC)

• PC104/CAN Controller

• GPS and RF daughter board

2.2.1 OBC

The OBC serves as the main processing unit on board the UTV. All path plan-

ning algorithms and control algorithms, excluding wheel speed control and

CAN protocol implementation, are implemented in C (programming lan-

guage) on the OBC. The OBC is an Intel 400 MHz Ultra Low voltage Celeron

processor, presented in PC104 form factor, and it supports a Compact Flash

Disk of up to 4GB. The hard disk used in this project is a 256 MB Compact

Flash disk which provides more than enough storage space for logging errors

and telemetry data during UTV navigation. An indepth look at the technical

specifications of the OBC can be found at [18].

Communications with the GPS module and RF module are done directly

through use of the OBC’s dual UART communication ports, while commu-

nications with the sensor node and drive system nodes are routed through

the PC104/CAN Controller via the Industry Standard Architecture (ISA) bus.

The OBC also has a Local Area Network Connection (LAN) which is used for

CHAPTER 2. TEST VEHICLE AND AVIONICS 8

downloading and uploading of data to and from a laptop or desktop com-

puter.

As far as control algorithms go the OBC has more than enough processing

power. Certain path planning algorithms implemented in this project are

however more computationally expensive, especially when the area in which

the UTV operates has a large number of obstacles. This implies that, while

path planning algorithms are running on the OBC, periods might occasion-

ally occur during which the processor is heavily loaded and the sample time

for the control system might be exceeded. This only occurs during the addi-

tion of a new obstacle, in real time when obstacle detection is simulated, and

a new path planning cycle is scheduled. One possible solution is to spread

the calculations of the path planning algorithms over more than one sample

time, by storing the current status of the path planning variables, when the

sample time becomes threatened, and then continuing the process during the

successive cycles. This is however not a trivial task with the path planning

algorithms, discussed in Chapter 3, and an alternative solution is therefore

considered. Since these processing blackouts can jeopardize the integrity and

validity of the control system, the decision is made to make the UTV stop

entirely and maintain its current position and attitude every time a new path

planning cycle is scheduled. Justification for this is found in the fact that a

UTV, unlike a UAV, can intermittently be completely stationary.

During practical tests however, it becomes evident that with relatively few

obstacles, the margin with which the sample time is exceeded is negligible if

not absent. Seeing as it only occurs during one cycle, the overall effect on the

control system is also negligible. The significance is further lowered by the

fact that the UTV moves relatively slowly in comparison with the sampling

frequency on which the implemented control system is based. Nevertheless,

with an increasing amount of obstacles the effects on the control system could

become significant and it is therefore decided to leave the failsafe in place.

As previously mentioned, in Chapter 1, the scope of this project does not

include obstacle detection. The effect of the UTV stopping momentarily is

therefore only seen in this project when a new obstacle is uploaded from

the ground station during navigation. More information about this and the

control algorithms implemented on the OBC can be found in Chapter 4.

CHAPTER 2. TEST VEHICLE AND AVIONICS 9

2.2.2 PC104/CAN Controller

The CAN Controller board is positioned right above the OBC in the PC104

stack. It is responsible for the timing of the entire system and also includes

voltage regulators, which step down the supplied 12 V rail to 5 V and 7 V

respectively, and then supply power to the entire PC104 stack and nodes on

the CAN bus. Due to the combined power consumption of the PC104 stack

and CAN nodes these regulators tend to experience significant increases in

temperature and two DC cooling fans are therefore directed onto the PC104

stack as can be seen in Figure 2.4.

The PC104/CAN Controller communicates with the OBC via the ISA bus and

also controls the flow of data packets on the CAN bus which is connected to

the drive systems and IMU node. The protocol onboard the PC104/CAN

Controller was developed by [12] and takes 20 ms to complete one cycle. It is

implemented on a PIC microcontroller onboard the PC104/CAN Controller

and remains unchanged from [12], with the exception of the specific CAN

packets which are issued during each 20 ms cycle.

Figure 2.4: Rear view of UTV and Cooling Fans

In order to accommodate the left and right drive systems the CAN packet

structure is altered in C (programming language) on board the PIC microcon-

troller. CAN packets are now addressed to the IMU node, left drive system

and right drive system respectively while the global synchronization packet

remains unchanged. In previous UAV applications, at the University of Stel-

lenbosch, CAN packets were also issued for servo commands which are dis-

carded in this project since they are replaced by two drive systems.

CHAPTER 2. TEST VEHICLE AND AVIONICS 10

2.2.3 GPS and RF daughter board

The GPS and RF daughter board can be seen clearly at the top of the PC104

stack in Figure 2.3. The respective RF and GPS modules used are listed below.

• MaxStream XStream 2.4 GHz OEM Transceiver

• u-Blox RCB-LJ OEM Receiver

The RF module is used as means of wireless communication between the

OBC and a laptop computer which serves as ground station, which is also

connected to an RF transceiver. In previous UAV applications at the Univer-

sity of Stellenbosch this MaxStream module has proven itself to be highly

reliable with a communications range far beyond what is necessary for the

success of this project. Successful determination of the UTV’s position is

done by means of an Extended Kalman Fliter (EKF) which combines sen-

sor measurements to obtain a best estimate of the vehicle’s state vector in

a noisy environment. The use of a GPS in this project is debatable and the

size of the area grid in which the UTV operates plays a big role. Due to the

limited accuracy of this GPS it only becomes useful when the UTV traverses

a long distance where accumulated errors from the propagation of encoder

and rate gyroscope measurements become significant. Over small distances

however it relies heavily on these propagations and is not sensitive to GPS

measurements. This insensitivity to GPS measurements creates the possibil-

ity for indoor usage of the UTV over small distances.

2.3 Inertial Measurement Unit

The IMU, seen in Figure 2.3, was developed by [5] and [12]. At the bottom it

has a baseboard on which a PIC microcontroller resides. This baseboard is re-

sponsible for incoming sensor measurements from the printed circuit board

(PCB) above it on which the inertial sensors reside. The measurements ob-

tained are analogue filtered, sampled by an Analogue to Digital Converter

(ADC) and then digitally low pass filtered to suppress noise. The inertial

sensors on the top PCB include:

• 3 x ADXRS150 Single-Axis Rate Gyroscopes from Analog Devices

• 2 x ADXL210E Dual-Axis Accelerometers from Analog Devices

• 1 x HMC2003 Three-Axis Magnetometer from Honeywell

The sensors listed above provide enough measurements for motion in a full

six degree of freedom application. Although this project only requires enough

CHAPTER 2. TEST VEHICLE AND AVIONICS 11

measurements to accommodate motion in three degrees of freedom, full func-

tionality of the IMU was still implemented so as to allow for its use in future

projects. The modularity of the design makes it easily transferable to another

platform and it could therefore be re-used in future UAV applications if the

need arises.

It should be noted that the rate gyroscopes used in this project, unlike the

ones used in [15], are only capable of measuring maximum angular rates of

±150◦/s. The ±150◦/s angular rate is also mapped over 3 V as in [15] and

therefore provides a higher resolution. These rate gyroscopes are chosen to

accommodate the UTV’s much slower yaw rates.

Attitude of the UTV is only required in a two dimensional (2D) plane. For

this reason and due to the additional availability of encoders to determine

wheel speeds, the inertial sensors listed above are only partially used. The

sensors used by the UTV are listed below.

• 1 x Single-Axis Yaw Rate Gyroscope

• 1 x Three-Axis Magnetometer (only 2 horizontal axes used)

These two sensors are used to determine the UTV’s yaw angle (heading an-

gle). Through use of an EKF, the measurement from a single yaw rate gyro-

scope is combined with the measurements from the two horizontal axes of

the magnetometer to provide a best estimate for the current yaw angle of the

UTV.

A measurement of the yaw angle is obtained from the magnetometer, seen in

Figure 2.5. The magnetometer provides a vector measurement of the earth’s

magnetic field and in doing so, the UTV’s heading angle relative to the hor-

izontal component of this field can be determined. Pre-determined speci-

fications of where exact North is, relative to Magnetic North, is taken into

account and this then provides enough information for the successful de-

termination of the yaw angle in a North-East (NE) reference frame. More

technical information about how the HMC2003 magnetometer operates can

be found in [15].

During implementation it was observed that strong magnetic fields, emanat-

ing from the UTV’s chassis, cause disturbances in the magnetometer mea-

surements. This can easily be observed by holding a compass in close prox-

imity above the UTV and observing the incorrect measurement of North on

CHAPTER 2. TEST VEHICLE AND AVIONICS 12

the compass. Occasional random rotations, without settling, of the com-

pass needle may also be observed. For this reason the magnetometer was

mounted on a wooden extension of the UTV’s chassis in order to isolate the

magnetometer from these disturbances.

Figure 2.5: Magnetometer (at the end of wooden extension)

An indepth investigation to find the exact sources of these electromagnetic

disturbances is beyond the scope of this project. Calculating the exact mag-

netic field around the UTV would require a complex use of Ampere’s Inte-

gral Law of Magnetic Field Intensity and possibly Gauss’ Integral Law of

Electric Field Intensity [3], especially when the layout and non-uniform and

non-symmetric wiring of the UTV’s drive systems are considered. A brief

investigation is however presented which gives a sound indication of what

the source of the magnetic field disturbances might be.

According to [3], Ampere’s Integral Law states that the line integral (circula-

tion) of the magnetic field intensity H around a closed contour is equal to the

net current passing through the surface spanning the contour plus the time

rate of change of the net displacement flux density ε◦E through the surface

(the displacement current). This law is shown mathematically below and an

illustration can be seen in Figure 2.6.

∮

C
H ds =

∫

S
J da +

d

dt

∫

S
ε◦E da (2.3.1)

Note that J is the current density enclosed by the contour and an integral of

this density yields the net current.

Using this law the magnetic field around a line current can be expressed in

terms of specific radii around the line current. A line current is formally de-

CHAPTER 2. TEST VEHICLE AND AVIONICS 13

da

ds

Contour C

Figure 2.6: Ampere’s Integral Law of Magnetic Field Intensity

fined as the limit of an infinite current density distributed over an infinitesi-

mal area

i = lim
|J|→∞
A→0

∫

A
J da (2.3.2)

where i is a current, constant over the length of a thin line.

If the assumption is made that one of the conductors connecting the UTV’s

motors to the power supply (through the drive systems) can be modeled as

a line current, then a consideration of a single such conductor yields a good

indication of what the induced magnetic field intensity might be at the mag-

netometer’s mounting position on the UTV.

Wheel speeds and loads on the DC motors vary over time and the current

through such a conductor is thus dependent of time. However, for the sake

of this argument and to obtain an indication of one possible magnetic field

strength at a specific moment in time, at a constant wheel speed, the assump-

tion is furthermore made that the current through this wire is independent

of time and therefore also the fields. This implies that the second term on the

right of Equation 2.3.1 is zero and the equation reduces to

∮

C
H ds =

∫

S
J da (2.3.3)

Since the wire is modeled as a thin line current, substitution of 2.3.2 into 2.3.3

yields
∮

C
H ds = i (2.3.4)

CHAPTER 2. TEST VEHICLE AND AVIONICS 14

After calculation of the integral, having taken into account that H only has an

azimuthal component [3], a final equation is obtained which yields magnetic

field strength at a radius r.

Hφ =
i

2πr
(2.3.5)

The magnetometer measures flux density which is in units of Gauss (µ◦Hφ).

The current at which the DC motors stall is 18 A [10] and will induce the

maximum magnetic field intensity around the conductor. Using 17 A as the

line current and noting that the magnetometer was initially mounted approx-

imately 10 cm from the main conductors on the UTV, Equation 2.3.5 yields a

flux density of 0.000034 Gauss.

When taking into account that the earth’s magnetic field at Stellenbosch has

components, with the magnetic flux densities listed below, it becomes evi-

dent that this calculated disturbance field is 3 orders of magnitude smaller

and cannot solely be responsible for the disturbances.

Earth’s Magnetic Field

• North = 0.093904 Gauss

• East = -0.04136.6 Gauss

• Down = -0.236304 Gauss

However, when considering the fact that there are multiple conductors run-

ning from the batteries to drive-systems to DC motors, inside the UTV’s chas-

sis, the figure calculated above is significantly increased.

As will be shown in Section 2.4.3, the UTV’s drive systems control the DC

motors’ supply voltage by switching between -12 V and + 12V at a frequency

of 25 kHz and varying the duty cycle. This implies that there is a change

in current over time, even at a constant wheel speed, and more importantly

a significant time rate of change of the net electric displacement flux density

(displacement current). The previous assumption that the second term on the

right of Equation 2.3.1 is zero, is therefore not entirely accurate and further

contribute to a larger disturbance flux density. The flux density figure above

is further altered by the fact that the conductors inside the UTV are not line

currents in reality.

A final consideration is the fact that the plate, separating the UTV’s under-

carriage and drive systems from the IMU, is made from Aluminium which is

CHAPTER 2. TEST VEHICLE AND AVIONICS 15

paramagnetic [21] and therefore allows a magnetic field to pass through with

ease. This is not a good magnetic shield and a ferromagnetic material used in

its stead might decrease disturbance fields at the magnetometers mounting

position.

Choosing a ferromagnetic material for this separation plate might have an

influence on the measured Z (Down) component of the earth’s magnetic field

but this is acceptable when one considers the fact that in a 2D application only

the East and North components of the earth’s magnetic field are required for

successful determination of the UTV’s yaw angle.

2.4 Undercarriage and Drive Systems

Figure 2.7 shows the positioning of the relevant hardware components in

the UTV’s undercarriage. The remainder of this chapter will focus on these

components as well as the vehicle chassis.

Left Drive System

12V Motorcycle
Battery

Transformer

Right 12V DC
Motor

Battery Charging
Circuitry

FRONT

REAR

Figure 2.7: UTV Drive Systems

2.4.1 Vehicle Chassis

The chassis of the UTV, originally designed by [10], is manufactured from

3mm Aluminium sheeting. Movement of the UTV is made possible by four

200 mm wheels with pneumatic tyres which are mounted without a steering

mechanism since the UTV steers itself using a skid steer principle. Using a

CHAPTER 2. TEST VEHICLE AND AVIONICS 16

skid steer platform provides the benefit of simplicity when the UTV is re-

quired to turn on one spot.

Torque is relayed from the motors to the wheels via a chain sprocket system.

Since the motors provide more torque than what is required the sprocket sys-

tem is designed with a turns ratio of 1.5 : 1 as shown in Figure 2.8. This leads

to higher wheel speeds at lower corresponding motor speeds and results in

a more efficient utilization of the motors’ torque capabilities.

Figure 2.8: Turns Ratio of Sprocket System [10]

2.4.2 Batteries and Charging Circuitry

Power is supplied to all systems on board the UTV by two 12 V, 8 Ah motor-

cycle batteries which are located in the front and back of the UTV as can be

seen in Figure 2.7. Since each motor is capable of drawing up to 18 A when

it stalls these batteries are connected in a parallel configuration to maximize

current output capacity.

Charging of the batteries is done through use of a Sealed Lead-Acid battery

charger configuration, designed by [16]. The circuit configuration also in-

cludes a 5 V DC regulator and a full circuit schematic can be found in Ap-

pendix A.

A standard domestic 220 V AC power supply is connected to a transformer

to obtain a 16 V AC output which is fed into an AC-DC converter to obtain

a 23V DC output. Through use of a Texas Instruments UC2906 Lead-Acid

Linear Charge Management IC this 23 V is then utilized to obtain appropri-

ate voltages and currents for charging of the batteries. Light emitting diodes

are also implemented which make the charging process more user friendly

CHAPTER 2. TEST VEHICLE AND AVIONICS 17

by indicating normal charging cycles, over charging cycles and completion

of charging cycles. In addition to charging of the batteries the circuit config-

uration provides a 5 V regulated DC output alongside the unregulated 12 V

battery output. These outputs can be seen on the front panel of the UTV in

Figure 2.7.

2.4.3 Drive Systems

The purpose of this section is to introduce the drive system medium through

which the UTV gains controlled mobility. The drive systems on board the

UTV each consist of three core component categories. On each side the com-

ponents include a DC motor, a microprocessor alongside a full bridge DC-DC

converter, and an encoder and current transducer. These three component

categories act as actuator, controller and measurement devices respectively

and through their use a closed loop control system is implemented for each

side of the UTV. The hardware architecture, originally designed by [10], is

reviewed and modified in this project to improve performance and compati-

bility with the hardware discussed in Sections 2.2 and 2.3.

A basic layout of the drive system on each side of the vehicle and how the

components interface with each other can be seen in Figure 2.9.

Full Bridge
DC-DC

Converter

CAN Driver

CAN Bus 800kbps

PWM x 2

Angular Velocity
Encoder

12V Battery Supply

PIC 18F458
Microprocessor

Motor

Hall Effect Current
Transducer

Armature
Current

12V DC
Motor

Figure 2.9: Drive System Overview

In Figure 2.9 all lighter shadings indicate the electronic, low current side of

the system which is isolated from the heavy current side of the motor, Full

Bridge DC-DC converter and Hall Effect current transducer. The purpose of

this hardware configuration is to create a closed system which fully controls

motion of the UTV while only requiring communication with higher level

CHAPTER 2. TEST VEHICLE AND AVIONICS 18

hardware through use of the CAN bus.

PIC Microprocessor

The PIC18F458 Microprocessor is responsible for internal communications

within the drive system. It also implements two way communication with

higher level hardware through use of an onboard CAN module and exter-

nal CAN driver. Wheel rotation speeds are received digitally via the CAN

bus and the PIC then uses this as reference speed. Through use of angular

velocity encoders and current transducers, actual wheel speeds and DC mo-

tor armature currents are measured and used in control algorithms on board

the microprocessor. Using this state feedback configuration, the control al-

gorithms, which are discussed in Chapter 4, provide an appropriate pulse

width modulated (PWM) input to the full bridge DC-DC converter which, in

turn, produces an appropriate control input voltage to the DC motor.

Communication on the CAN bus with the PC104/CAN Controller (Section

2.2.2) is done through a protocol which includes the following data packets.

Received by Drive System

• Global Synchronization Package

• Disable/Enable Drive Systems

• Angular Velocity Setpoint

Sent by Drive System

• Rotation Speed, Direction and Status

The global synchronization packet is transmitted every 20 ms by the PC104/

CAN controller to all nodes on the CAN bus. This packet serves as a signal

for all nodes to reply with their current measurement values and status. In

the case of the drive systems a packet is transmitted, in reply to this message,

which contains the current measured rotation speeds obtained from the en-

coders, the current direction of rotation and the current status of the specific

drive system, whether it be enabled or disabled.

During each 20 ms cycle a setpoint value for each drive system is also ob-

tained from the OBC and transmitted by the PC104/CAN Controller. The

drive system receives this packet and extracts its commanded reference speed

CHAPTER 2. TEST VEHICLE AND AVIONICS 19

from the received data. A special command packet can also be received by

the drive system which enables or disables the drive system. This happens

during initialization of the UTV autopilot or when explicitly requested by the

ground station during manual control of the UTV. More information on this

protocol and the actual data packets can be found in Appendix A.

BEGIN Main
Configure and

Initialize Timers

Configure and Initialize
CCP module and

PWM module

Setup Interrupts
and Clear Flags

Initialize Counters and
Global Variables

While TrueEND Main
CAN

Interrupt

CAN RX Buffer 0 Full
(Synchronization message)

CAN RX Buffer 1 Full
(Special Command)

Clear CAN RX
Buffer 0 Full Flag

Read Measured Angular
Velocity

Read Direction Flag

Read Motor
Enable/Disable

Status

Combine into
CAN Packet

Transmit Telemetry
Packet

True

False

True

True

False
False

True

FalseClear CAN
Interrupt Flag

Setpoint
True

False

Motor Enabled

Read Direction Flag
from RX CAN Packet

Data

Read Setpoint from
RX CAN Packet Data

True

False

Disable/EnableEnable

Disable

TrueSet Enabled
Flag

Set Reference
Setpoint = 0

Set PWM Duty
Cycle to 50%

Reset Control
Variables

Clear Enabled
Flag

Set Reference
Setpoint = 0

Set PWM Duty
Cycle to 50%

Reset Control
Variables

True

True

False

False

False

Figure 2.10: Flowchart of Main Function on board the PIC microprocessor

Figure 2.10 shows a flowchart of the main repetitive loop implemented in C

code on the PIC microprocessor. As seen this main function is responsible for

servicing received CAN packets as well as transmission of telemetry packets

whenever a global synchronization message is received from PC104/CAN

Controller. All control algorithms and measurements are done in low prior-

CHAPTER 2. TEST VEHICLE AND AVIONICS 20

ity and high priority service interrupts respectively and will be discussed in

the sections to follow.

DC-DC Converter

A full bridge DC-DC converter is used to regulate the input voltage to each

motor in accordance with the control algorithms executed on the PIC micro-

controller. The PWM signal and its inverse, obtained from the PIC micro-

controller, are used as logical inputs for two dual channel high speed IR2110

power MOSFET drivers. The outputs of these IR2110 drivers are in turn con-

nected to four metal-oxide-semiconductor field-effect transistors (MOSFET).

This configuration can be seen in Figure 2.11.

D

S

G

A B
VAB

+
_

IRFZ44V

VD

IR
2
1
1
0 IR

2
1
1
0

PWM
A

PWM
B

PWM
A

PWM
B

1 2

34

Figure 2.11: DC-DC Full Bridge Voltage Converter

Through utilization of the PWM signals obtained from the PIC microcon-

troller, and appropriate connections, controlled switching of the four indi-

vidual transistors is achieved. At any moment in time only two of the tran-

sistors, also referred to as switches, will be closed and conducting while the

other two will represent open-circuits. When taking a closer look at Figure

2.11 it becomes apparent that the switches are diagonally grouped in pairs

with respect to their switching behaviour, i.e. transistor 1 and 3 will be con-

ducting when 2 and 4 are open-circuits and vice versa. VD represents the

unregulated supply voltage from the batteries of the UTV while VAB repre-

sents the voltage which is connected across the terminals of the DC motor.

The voltage across the DC motor will therefore continuously be switched be-

tween -VD and +VD. By varying the duty cycle of the supplied PWM signal

CHAPTER 2. TEST VEHICLE AND AVIONICS 21

the DC component, of this signal which is being switched between the neg-

ative and the positive of the battery supply, can be changed accordingly and

this is ultimately how the rotation speeds of the DC motors are controlled.

In [10] a frequency of 9.8kHz is used for the PWM signal supplied to the

IR2110 drivers from the PIC microcontroller. This leads to undesirable high

frequency audible noise while the MOSFETS are switching. Since the audible

range of humans is approximately 20 Hz - 20 kHz [22] a decision was made in

this project to increase the switching frequency to 25 kHz. A further benefit

of increasing the switching frequency is the reduction in ripple currents in

the motors which in turn reduces torque pulsations. This can be shown with

Equation 2.4.1 from [10]

(∆Ip−p)max =
VD

2La fs
(2.4.1)

where Ip−p is the peak to peak ripple current, La is the armature inductance

and fs is the switching frequency. An increase in fs clearly implies a decrease

in ripple current Ip−p.

This increase in frequency is made feasible by the change in crystal oscillator

to 9.6 MHz and usage of the High-Speed Crystal/Resonator Phase Locked

Loop mode of the PIC18F458 which results in a clock frequency of 38.4 Mhz

on the microcontroller. The higher clock frequency allows for higher PWM

frequencies while still maintaining high PWM resolution. Equation 2.4.2,

from the Microchip PIC18F458 datasheet, shows how no resolution is sac-

rificed from [10] while achieving higher PWM frequencies.

PWMMAX =
log(fosc

fpwm
)

log(2)
bits (2.4.2)

fpwm = 25 kHz

fosc = 38.4 MHz

PWMMAX = 10.585 bits

This 10 bit resolution leads to accurate speed control with 0.02 V voltage

increments in supplied voltage to the DC motors as shown in Equation 2.4.3.

Vincrement =
24

210
V (2.4.3)

CHAPTER 2. TEST VEHICLE AND AVIONICS 22

In addition to PWM resolution the timing limitations of the IR2110 drivers

and IRFZ44V MOSFET’s also have to be taken into account. The timing spec-

ifications for these components are obtained from the International Rectifier

datasheets and presented below.

Symbol Definition Maximum Units

ton Turn-on propagation delay 150 ns

to f f Turn-off propagation delay 125 ns

tsd Shutdown propagation delay 140 ns

tr Turn-on rise time 35 ns

t f Turn-off fall time 25 ns

Total 475

Table 2.1: IR2110

Symbol Parameter Maximum Units

ton Turn-on delay time 13 ns

to f f Turn-off delay time 40 ns

tr Rise time 97 ns

t f Fall time 57 ns

Total 207

Table 2.2: IRFZ44V

The maximum accumulated delay of 0.475 us from the tables above is now

compared to the 40 us period of the chosen 25 kHz PWM signal. This com-

parison shows that during each cycle of the PWM signal there must be an im-

posed dead time (1.2% of the PWM period) between switching of the MOS-

FETS to prevent cross over current. A dead time of 0.7 us is therefore set

using the microprocessor’s dedicated register for this. This dead time is de-

creased from the initial dead time of 1.2 us implemented by [10].

As mentioned in [10], the non-linearity due to blanking time is minimized by

using an internal current loop where the armature current of the DC motor

is also sampled for feedback. This measurement of current implemented by

[10] was not functioning at the time and the printed circuit boards were in

bad condition. The Full Bridge converter PCB was therefore redesigned and

assembled.

CHAPTER 2. TEST VEHICLE AND AVIONICS 23

Equation 2.4.4 shows how the supplied voltage to the DC motors is a function

of duty cycle D, with range 0 to 1, and through use of this equation the PWM

duty cycle and consequently the voltage to the DC motor, is automatically

varied during control execution on board the microprocessor.

VAB = (2D − 1)VD (2.4.4)

Encoders

As previously mentioned two Agilent angular velocity optical encoders are

used for the measurement of wheel speeds on board the UTV. These encoders

each contain a lensed LED source with a code wheel which rotates between

an emitter and detector IC. Through use of this configuration two square

waves in quadrature are obtained from each encoder which represent counts

per revolution. The quadrature signals are connected to the PIC18F458 and

by using the capture module on the microprocessor the time between rising

edges of these signals are calculated to provide a measure of angular velocity.

Since these signals are 90◦ out of phase with each other, it can be determined

which signal is leading the other and consequently direction of rotation is

also determined.

On the PIC18F458 microprocessor Timer 3 is setup for association with the

capture/compare/PWM (CCP) module, which is used for the capturing of

angular velocity from the encoders, while Timer 2 is setup for association

with the Enhanced/Capture/Compare/PWM (ECCP) module which is used

for the PWM output. Timer 1 is additionally utilized during the encoder mea-

surements and a discussion on this will follow shortly.

Timer 3 is reset every time a rising edge of the incoming square wave from

the encoder is detected and the timer then starts counting in increments of

833 ns until the next rising edge occurs. The capturing of rising edges oc-

curs asynchronously and the measurement update rate is a function of the

current wheel speed. Special attention therefore has to be given to extremely

low wheel speeds where the measurement update rate becomes slow in com-

parison with the bandwidth of the drive system.

The measurement of slow wheel speeds is further complicated by a 16 bit

limitation on the PIC18F458. Since Timer 3 on the microprocessor has a 16 bit

width an overflow occurs after every 65535 counts and the counter is then re-

set to 0. The possibility therefore exists that extremely low wheel speeds will

CHAPTER 2. TEST VEHICLE AND AVIONICS 24

Emitter

Detector

Square waves
in quadrature

Codewheel

Figure 2.12: Basic operation of the Encoder

cause the timer to exceed 65535 counts, reset to zero and consequently mea-

sure an incorrect period between the corresponding rising edges. A simple

solution to this would be to increase Timer 3’s pre-scaler value and hence the

counting period of 833 ns is also increased but according to the PIC18F458

datasheet the maximum prescaler for either Timer 1 or Timer 3, which can

be associated with the CCP or ECCP modules, is 1 : 8. Raising the counting

period is further not desired since it would decrease the resolution of time

between rising edges and thus the resolution of the angular velocity mea-

surement.

From the Agilent Technologies’s datasheet for the HEDS-5500 A-13 encoder

it is found that the code wheel has a resolution of 500 counts per revolution

(CPR) and a count of 65535 therefore, when taking the 1.5 : 1 sprocket system

ratio into account, corresponds to a wheel speed of

ωwheel =
2π(1.5)

500(65535)(833 × 10−9)
(2.4.5)

= 0.35 rad/s

and a measurement update rate of

fmeas =
1

65535(833 × 10−9)
= 18.32Hz (2.4.6)

Wheel speeds below this threshold have to be accounted for by storing the

CHAPTER 2. TEST VEHICLE AND AVIONICS 25

amount of overflows in memory and adding a corresponding multiple of

65535 for every subsequent count until the next rising edge is detected, af-

ter which the overflow counter is reset again. However, theoretically this

implies that should the UTV come to a complete halt or slow down drasti-

cally between rising edges the counter will increment itself indefinitely until

the overflow counter overflows itself and a further overflow counter is re-

quired. While it has the advantage of accurate measurement of extremely

low wheel speeds it has the disadvantage of an asymptotic approach to zero

wheel speeds and hence a measurement of zero wheel speed is never ob-

tained.

This asymptote at zero and measurement update rates below the system

bandwidth at extremely low wheel speeds ultimately compromise the in-

tegrity of the control system. In this region the control system operates with

significantly delayed measurements and the effect is most severe when the

UTV is stationary and a zero measurement can not be obtained. This causes

the control system to continuously reduce actuator input, when a zero set-

point is received via the CAN bus, in an attempt to achieve zero motor speed,

until ultimately a negative non-zero speed occurs and the process is reversed

causing a limit cycle. Slower measurement rates at slower wheel speeds can

be accommodated by reducing the update rate of the control system, while

staying well above the bandwidth of the drive system, or by modelling the

variable measurement delay somehow but ultimately the asymptote at zero

still remains.

Since the UTV in this project is only required to turn with a maximum yaw

rate on one spot when finding the heading of a new path segment, and to

track a straight line path segment at a chosen common mode speed by su-

perimposing differential wheel speeds on top of this common mode speed,

the decision is made to regard all measurements below the threshold from

Equation 2.4.5 as zero since the operating range of the UTV falls outside this

region.

However, since the OBC and PC104/CAN Controller operates at 50 Hz the

new chosen sample rate has to be an integer multiple of 0.02 s to make easy

implementation feasible without altering the already implemented protocols.

A multiple of 3 would imply a sample rate of 16.67 Hz which is rather low

in comparison with the system bandwidth. The decision is therefore made

to choose a sample rate of 25 Hz which is easily implemented on the OBC

CHAPTER 2. TEST VEHICLE AND AVIONICS 26

by updating control after every second multiple of the 50 Hz protocol rate.

This allows for the simple addition of a counter which allows update of UTV

control at a slower rate by simply updating after every multiple of 2 of the

50 Hz rate. This implies that the threshold from Equation 2.4.5 has to be

increased further so that no wheel speed measurement update rates slower

than the chosen 25 Hz sample rate occurs. A sample time of 25 Hz equates

to a minimum wheel speed of 0.48 rad/s from Equation 2.4.5 which is still

outside the operating range of the UTV and this new threshold and sample

rate is therefore decided on. A reference wheel speed between −0.48 rad/s

and 0.48 rad/s is therefore serviced by a hard-coded exception function on

the microcontroller which sets the PWM output to an exact 50 % duty cy-

cle (resulting in zero wheel speeds after proper calibration) and any encoder

measurement between −0.48 rad/s and 0.48 rad/s, which is indicated by

an overflow in 16 bit Timer 3 or measurement update rate below the cho-

sen threshold, is regarded as zero. This measurement threshold speed can

be lowered as required by the specific application but at the expense of an

overall decreased control sample rate. Within the scope of this project lower

speed measurements are not required for the reasons mentioned, as well as

the fact that ripple currents due to Mosfet switching and inadequate motor

sensitivity to fine voltage increments limit the maximum resolution in con-

trolled wheelspeeds which can be achieved. This measurement update rate

of 25 Hz is relatively high in comparison with the drive system bandwidth

which will be shown to be 3.15 Hz, and therefore makes the decision even

more attractive.

A further complication arises from the fact that if the UTV were to come to a

standstill with the code wheel in close vicinity of a transitional edge, ripple

currents from the switching Mosfets and consequent torque pulsations could

cause slight vibrations which lead to high frequency capturing of rising edges

and a sudden deviation from zero in measured speed even though the UTV is

stationary. During testing this phenomenon is best observed when the UTV is

placed on an elevated platform and the wheels are not grounded giving them

more freedom to rotate without the frictional load which is present when the

UTV’s weight rests on the wheels. The freedom of movement causes the

wheels to be more sensitive to ripple currents and hence vibrations occur

more easily. Disturbances are also present on encoder measurements during

operation of the UTV when torsional vibration and terrain disturbances such

as small rocks or slippery terrain cause non-uniform rotational motion of the

wheels.

CHAPTER 2. TEST VEHICLE AND AVIONICS 27

An illustration of the effects of these disturbances can be seen in Figure 2.13

where an encoder output for the minimum, maximum and an intermediary

angular speed of the wheels are shown in conjunction with the correspond-

ing calculated angular velocity of the wheels after each rising edge. Also

illustrated in this figure is the variable sample rate which is a function of the

angular velocity of the wheels.

A
n
g
u
la

r
V

el
o
ci

ty
 [

ra
d
/s

] 8

4

0.48

0Time [ms]

40 80 120

00

3.1 12.6 1.6 26.7

25 Hz 318.27 Hz 636.54 Hz

Encoder output

65.4

0.49 rad/s

8 rad/s

0.97 rad/s

3.15 rad/s

Average over
40 ms
(25 Hz)

Disturbance pulse

10.6 rad/s

6.56 rad/s
Average over 24.8 ms
(Computes to 4.7 rad/s
over 40 ms assuming
no further disturbances
until end of 40 ms
period)

5.02 rad/s

Disturbance pulse

Figure 2.13: Effects of disturbances on encoder measurements

It is clearly visible that the measurement of angular velocity is more sensitive

to disturbances at lower speeds since the measurement update rate is sig-

nificantly slower. Assuming that the control rate is of the same order as the

higher measurement rates, at higher speeds, it can be seen that the effects of

an incorrect measurement due to disturbances has a significant duration at

slow speeds where there is an increased measurement delay and the control

system will thus react accordingly to an incorrect measurement. However

at higher angular speeds with faster measurement update rates an incorrect

measurement is quickly corrected by a successive measurement and the ef-

fects are therefore less significant on the control system. Since lower speeds

also have to be accommodated, and it is difficult to model a variable mea-

surement delay in the control system design, the maximum control rate is

limited to 25 Hz. A solution therefore has to be found for utilizing the faster

measurement rates at higher angular velocities while still maintaining con-

trol system integrity at lower speeds by keeping the control rate below or at

25 Hz.

CHAPTER 2. TEST VEHICLE AND AVIONICS 28

To accomplish this the decision is made to do averaging of the measurements

at a rate of 25 Hz. By doing this, measurement noise at higher angular ve-

locities is significantly attenuated through utilization of the higher sample

rates. At lower angular velocities noise is also attenuated but to a lesser ex-

tent since there exists no excess measurements for averaging and averaging is

just achieved of measurements and the possible disturbance measurements

between them. Figure 2.13 also illustrates this. It is clearly visible that at

4 rad/s the process of averaging attenuates noise more efficiently than at the

minimum drive shaft angular velocity of 0.48 rad/s.

High Priority
ISR

CCP Interrupt
Set

Flag

Atleast
One CCP Timer 3 Overflow Total = 0

Calculate Angular
Velocity from Timer 3

Encoder
Channel B
Leading

Sign Velocity
Negative

Sign Velocity
Positive

Total = Total + Velocity

Increment number
of Measurements

Reset Timer 3

Clear CCP Interrupt Flag

Timer 1 (25 Hz)
Interrupt

Disable
Interrupts

Atleast
One CCP

Output Velocity = 0

Reset Timer 1

Clear Timer 1
Interrupt Flag

Enable
Interrupts

Output Velocity =
Total Number of Measurements/

Total = 0

Number of
Measurements = 0

Atleast
One CCP

Atleast One CCP = 0

True

False

True

False

True

False

True

False

True

False

END of ISR

Call CAN ISR

Figure 2.14: Flowchart of Angular Velocity Measurement ISR

CHAPTER 2. TEST VEHICLE AND AVIONICS 29

Figure 2.14 shows the flow diagram of the Angular Velocity Measurement

Interrupt Service Routine. This ISR has a high priority and therefore over-

rides any low priority interrupts which may be in the process of executing.

Software polling is done within the ISR to distinguish between sources of

the interrupts which occurred. As shown in Figure 2.14, all interrupts are

disabled during execution of the ISR to avoid recursive interrupts. The soft-

ware polling can however still accommodate the scenario where one inter-

rupt source goes active shortly after the other has gone active since interrupt

flags for specific sources are set when they occur, regardless of whether the

particular interrupt is enabled, as pointed out in the PIC18F458 datasheet.

The scenario of one interrupt source going active shortly after the other there-

fore does not require an exit and re-entry into the ISR and consequently pro-

cessing time is not wasted.

An illustration of the averaging process previously mentioned is also shown.

Averaging is done with signed (according to direction) angular velocity mea-

surements and the disturbances due to vibrations, when the UTV is station-

ary, are therefore attenuated since they correspond to fast successive negative

and positive measurements which cancel to approach a zero measurement.

During UTV movement the direction of rotation is favoured by the measure-

ments and sudden disturbance measurements of an opposite direction is at-

tenuated by the the process of averaging.

Timer 1 is set up to overflow and cause a high priority interrupt at a rate of

25 Hz and determines the interval over which averaging is done. All counters

and flags shown in Figure 2.14 are initialized to zero in the main function on

the microprocessor. Timer 3 and Timer 1 is also reset and started in the main

function and the first capture of a rising edge, when the UTV starts moving,

will therefore correspond to the overflow flag of Timer 3 having been set,

since no rising edges occurred for a significant time since initialization, and

thus a zero measurement is obtained (assuming vibration disturbances while

stationary did not cause premature captures of rising edges since the UTV

was under frictional load). The very first sample of angular velocity once the

UTV has started moving therefore only occurs after the second rising edge is

captured.

Current Transducers

As previously mentioned, the armature currents of the DC motors are also

CHAPTER 2. TEST VEHICLE AND AVIONICS 30

measured for feedback. This is accomplished with the same Hall Effect cur-

rent transducers used by [10]. These Hall Effect sensors provide a voltage

output which is proportional to the current which flows through it. Figure

2.15 shows a flowchart of the Low Priority interrupt service routine imple-

mented on the PIC mircoprocessor.

Low Priority
ISR

Reset Timer 0

Counter = 0

Start Conversion on ADC
Channel 0 (connected to
current transducer output)

Conversion Done
Flag Set

Increment
Counter

Read ADC Data from
ADRESH and ADRESL

Registers

Total_I = Total_I + ADC DataWait 2TAD

Counter 4≥ ADC measured = Total_I/Counter

Calculate Current
from ADC measured

Calculate Angular velocity of wheels
with Sprocket System ratio taken into

account

Set Global Direction Flag
from the sign of measured

velocity

Motor Enabled

END Low
Priority ISR

-0.49 rad/s ≤ ≤Setpoint 0.49 rad/s Setpoint = 0

Run Control
Algorithms

Disable Interrupts

Set Duty Cycle to 50%

Run Control Algorithms and
obtain new duty cycle

Duty Cycle
Saturated

Assign New
Duty Cycle

Assign minimum
or maximum
Duty Cycle

Disable Interrupts

Set New Duty Cycle

Enable Interrupts

Clear Timer 0
Interrupt Flag

False

True

True

False

True

False

True

False

False

True

Figure 2.15: Flowchart of Low Priority ISR

Timer 0 on the microprocessor is setup to cause a low priority interrupt every

CHAPTER 2. TEST VEHICLE AND AVIONICS 31

40 ms (25Hz). When this low priority interrupt occurs the measurement of

output voltage from the current transducer is done through use of the PIC

microprocessor’s Analog to Digital Converter (ADC) Channel 0. As can be

seen in Figure 2.15, 4 successive measurements are taken and the average of

these measurements calculated. This is done to decrease the effects of a pos-

sible incorrect analog to digital conversion measurement if one should occur.

There exists a slight delay during each analog to digital conversion and a

repetitive while loop executes until the Conversion Done Flag has been set.

According to the PIC18F458 datasheet the conversion time per bit (TAD)

must be bigger than or equal 1.6 us and a delay of 2TAD must be allowed

for between successive analog to digital conversions. TAD is therefore setup

as 64TOSC resulting in a value of 1.67 us and as seen in Figure 2.15 a delay

of 2TAD is implemented between successive measurements. Since the ADC

module on the microprocessor has a 10 bit resolution the total delay per mea-

surement is therefore 12TAD or 20.4 us. The averaging process requires 4

measurements and the total delay per Timer 0 cycle is therefore 80.16 us. In

comparison with the sample rate of 40 ms this delay is a factor 499 times

smaller and is therefore acceptable.

After a measurement of current is obtained the angular velocity obtained

from the encoders is converted to a wheel speed by taking into account the

ratio of the sprocket system. Depending on whether the motor is enabled or

not and whether the setpoint is not within the previously discussed lowest

threshold speeds the control algorithms are then executed to obtain an up-

dated duty cycle for the PWM output. It should be noted that the minimum

UTV reference speed is marginally increased from 0.48 rad/s to 0.49 rad/s so

as to ensure that as soon as movement commences the encoder measurement

update rate is faster than the 25 Hz averaging rate.

It should also be noted that a ripple current exists on the armature current

of the DC motor, due to the previously mentioned MOSFET switching, and

this causes high frequency components (25kHz) on the current transducer’s

voltage output signals. The output of the current transducers is therefore

analogue filtered before being fed into the microprocessor’s ADC input pin.

The filtering is done with a low-pass Butterworth filter at 25Hz, implemented

in hardware on the PCB.

CHAPTER 2. TEST VEHICLE AND AVIONICS 32

2.5 Summary

In this chapter the hardware components used on the UTV were introduced

as well as problematic areas which were encountered and their correspond-

ing solutions. The hardware was categorized into three major components

which includes the PC104 Stack, Inertial Measurement Unit and all systems

relevant to the drive systems of the UTV. The interdependence of the systems

were discussed while also presenting the UTV as a whole. Brief discussions

were also given on where specific software algorithms fit into the hardware.

This chapter is therefore concluded and lays the foundation for control and

path planning algorithms, from chapters to come, to be implemented upon.

Chapter 3

Path Planning Algorithms

In order to achieve successful navigation through an obstacle ridden environ-

ment path planning algorithms are a necessity. The concept of path planning

has received significant attention in applications which range from motion

planning for robots to route calculation for units in strategy computer games.

This chapter is by no means a summary of all the methods available but aims

to present a discussion on the methods chosen for this project. The specific al-

gorithms used are introduced as well as a comparison between their respec-

tive performances. With the availability of the vehicle and hardware plat-

form, discussed in Chapter 2, a decision is made to investigate algorithms

which yield paths, consisting of straight line segments joined at successive

nodes. Once this decision is made the path planning problem can be sepa-

rated from the rest of the project with the only stipulation being that, paths

yielded must consist of straight line segments where each line segment is

fully defined by length, starting position, endpoint and heading angle in the

commonly defined North-East(NE) axis system. This path data is required

by the control algorithms presented in Chapter 4. The path planning coun-

terpart of the project can then be viewed as a closed module with obstacle

coordinates, starting point, and destination as inputs, and an optimal path as

output.

3.1 Overview

The path planning problem can be solved through implementation of sev-

eral different algorithms, each displaying different characteristics and inher-

ently different advantages and disadvantages. These algorithms are required

to make use of known obstacle coordinates and then calculate an optimal

path from starting position to destination, which avoids all obstacles at all

times. Obstacles are defined in terms of the coordinates of their vertices in

33

CHAPTER 3. PATH PLANNING ALGORITHMS 34

a 2-dimensional plane and within the scope of this project the following as-

sumptions are made,

• Obstacles are disjoint which implies that no two obstacles overlap and

each obstacle is uniquely and separately defined. An example of two

disjoint obstacles is shown in Figure 3.1.

Free space between obstacles

Obstacle 1

O
bs

ta
cl

e
2

Figure 3.1: Two Disjoint Obstacles

• Obstacles are convex polygons. This concept is best visualized when

thinking of the obstacle vertices as nails pointing upwards out of the

plain. When an elastic rubber band is held around these nails and re-

leased it will take on a shape which represents the convex hull of the

vertices. Stated in different terms, no two edges of the obstacle will

meet at a vertex to form an exterior angle which is less than 180◦. An

example of a convex obstacle is shown below,

Vertex

Convex Hull

θ °> 180

Figure 3.2: Example of a Convex Hull

These assumptions are necessary since the majority of computational geom-

etry algorithms are based on these two stipulations. Extended techniques

are available to accommodate obstacles which do not adhere to these stipu-

lations but increases the complexity and computational cost of the problem.

The reader is referred to [7] and [9] for more information on handling these

special cases. Although these assumptions seem limiting, justification within

the scope of this project is found in the fact that any two obstacles which are

not disjoint can be redefined as one larger obstacle which encloses the two

non-disjoint obstacles to form a new obstacle which is disjoint from the re-

mainder of the obstacles. The second assumption is also justified since no

CHAPTER 3. PATH PLANNING ALGORITHMS 35

limitations were placed on the size of the obstacles in this project and once

again a non-convex obstacle can be represented by a larger convex obstacle

which encloses the non-convex obstacle completely.

Through use of computational geometry techniques the obstacle-free space is

populated with a map consisting of line segments joined at specified nodes

within the free space. By extracting a certain combination of these line seg-

ments, from the populated set, a path through the obstacle ridden environ-

ment is found. However, several different feasible paths can be extracted

from this populated set and won’t necessarily always yield the shortest path.

An additional shortest path algorithm is therefore used which determines the

combination of line segments from the populated map which will yield the

shortest possible path. It is important to note that the shortest path algorithm

does not necessarily calculate the absolute shortest path through the obsta-

cle ridden environment but merely the shortest possible path which can be

constructed from the specific set of line segments generated by the specific

population algorithm. The nature of the population algorithm therefore deter-

mines whether the final shortest path will be the actual shortest path through

the environment.

The following two population algorithms are implemented in this project,

• Voronoi diagram

• Visibility graph

and both these population algorithms are tested in co-operation with both of

the following shortest path algorithms,

• Dijkstra’s algorithm

• A*Star search

An additional note should be made about the nature of the obstacles defined

for the Voronoi algorithm. For reasons which will become apparent when the

Voronoi algorithm is discussed, only square obstacles can be accommodated

by this population algorithm. This has its origin in the fact that the Voronoi dia-

gram is not specifically formulated as a solution to the path planning problem

and has many other applications in diversified fields of interest. The problem

therefore has to be translated in such a way as to allow the Voronoi diagram

to offer a solution. Although inefficient, the stipulation of all obstacles be-

ing square is justified once again by the fact that any convex obstacle can

CHAPTER 3. PATH PLANNING ALGORITHMS 36

be enclosed by a larger square obstacle and the new square obstacle is then

used in the algorithm. Although not implemented in this project, an attrac-

tive alternative to the Voronoi diagram was found which is briefly discussed

in Chapter 7.

3.2 Population Algorithms

This section will introduce the two population methods implemented in this

project. The characteristics and reasoning behind both methods are pre-

sented and the problem is then translated from an intuitive idea to a com-

putational algorithm which can be implemented on a computer. Arguments

are based on the discussions in [9] and [7]. Flow diagrams will also be shown

which display the basic structure of the implementations.

3.2.1 Voronoi Diagram

Theory of the Voronoi Diagram

The Voronoi diagram is chosen in this project due to its fundamental charac-

teristic which makes it a candidate for an algorithm with maximum clearance

from obstacles. The Euclidean distance between two points, q and p, can be

denoted as,

R(q, p) =
√

(qx − px)2 + (qy − py)2 (3.2.1)

where R is the Euclidean distance between the two points. Consider a 2-

dimensional plane which contains n distinct points, {p1, p2, ..., pn}, where

these points are defined as sites. The Voronoi diagram is defined as a sub-

division of this 2-dimensional plane into n cells, one for each site, with the

unique property that at any point, q, within one cell corresponding to site pi,

the distance to pi is always shorter than the distance to any other site, pj, that

is R(q, pi) < R(q, pj). A simple example of this Voronoi diagram is shown

in Figure 3.3 which shows how each site corresponds to a cell in which all

points are closer to the specific site than to any other site.

From this definition of the Voronoi diagram another observation can be made

which is ultimately exploited in this project during the implementation of

the Voronoi diagram for path planning purposes. It follows from simple ge-

ometric intuition that 4 sites representing the vertices of a square will have

the Voronoi diagram shown in Figure 3.4, and it is clearly visible that the

Voronoi edges will always pass through the exact centre of the square in or-

CHAPTER 3. PATH PLANNING ALGORITHMS 37

Figure 3.3: Simple Example of a Voronoi Diagram

Vertex of a square

Voronoi edges

Figure 3.4: Voronoi diagram of the vertices of a square

der to satisfy the characteristics of the Voronoi diagram. If all obstacles in

the path planning problem are considered as square then a simple method

is found for applying the Voronoi diagram in such a way as to yield a popu-

lated graph which only has line segments in the free space of the plane. This

is achieved by specifying each vertex of each square obstacle as a site during

Voronoi calculation and then adding a pruning process after calculation which

eliminates all Voronoi edges, which pass through the centre coordinates of the

square obstacles. A populated line segment map is then achieved which ap-

proximates maximum clearance from all obstacles. It should be noted that

this implementation is not always efficient and special scenarios exist where

a discontinuity between start and goal is present, as well as scenarios where

the maximum clearance characteristic disappears. These occurrences will be

shown later in this section. As mentioned, an improved population method

was found in hindsight which is briefly introduced in Chapter 7.

Fortune’s Algorithm

With the definition of the Voronoi diagram available, the next step is the de-

velopment of an algorithm which calculates this diagram. Several algorithms

have been proposed over the years of which the most efficient one is based on

a proposal from Fortune in 1985. A summary of this algorithm is presented

below, which is based on the discussions in [7] and [9].

Before introducing Fortune’s ideas a brief discussion is required on plane-

CHAPTER 3. PATH PLANNING ALGORITHMS 38

sweep algorithms. These kind of algorithms follow an approach where a vir-

tual sweep line is passed over the plane, leaving at any point in time the

problem solved for the portion of the plane already swept, and unsolved for

the portion of the plane which still has to be swept. Plane-sweep algorithms

are attractive since they yield lower computational complexities, generally of

O(n log n). However, the difficulty of using a plane-sweep algorithm comes in

when one considers the fact that in order to construct the Voronoi diagram,

knowledge of the sites beyond the sweep line, yet to be encountered, is re-

quired. Stated in different terms, the sweep line will encounter edges of the

Voronoi diagram before encountering the sites which are responsible for those

edges.

Fortune proposes an ingenius solution to this problem through consideration

of a 3-dimensional space while solving the 2-dimensional Voronoi problem.

Consider the two cones erect over the xy-plane, with infinite height, and

sides sloped at 45◦, shown in Figure 3.5. These two cones each have their

apex over a point, Pi, which represents one of the sites in the xy-plane, on

which the Voronoi diagram is to be constructed. The bisector of P1 and P2 is

defined as the bisector perpendicular to the line segment P1P2. When one

considers the fact that both cones are identical in rate at which the circu-

lar diameter increases, in an ascending horizontal xy-plane, it is easy to see

that these two cones intersect in a vertical plane which is exactly the verti-

cal projection of the bisector of P1 and P2. In turn it then follows from simple

geometric intuition that this vertical intersection plane does indeed represent

the Voronoi edge between the two sites, when viewed from z = −∞. Fortune’s

proposal exploits the fact that the intersection of these cones, when viewed

from z = −∞, represents the Voronoi diagram. Instead of using a simple

sweep line, as is the general case in plane-sweep algorithms, Fortune makes

use of a sweep line, L, and sweep plane, π, which is slanted at 45◦ to the xy-

plane, as shown in Figure 3.6.

When viewing the two cones and the plane in Figure 3.6 from z = −∞, all

sites and cones to the right of the sweep line, L, that is the portion x > l, are

obscured by the slanted plane which cuts the xy-plane at L. These sites repre-

sent the portion of the plane which still needs to be swept. The portion of the

plane, x < l, is however visible from z = −∞, up to the intersection of the

slanted plane, π, with the positive frontier of the cones. From the basic prop-

erties of conic sections the intersection of the slanted plane with any one of

the cones is a parabola. The intersections of all cones with the slanted plane

CHAPTER 3. PATH PLANNING ALGORITHMS 39

P1 P2

x

z

y

Figure 3.5: A line is projected by the curve of intersection of two cones [7]

-4 -2 0 2 4 x

0

4

z

2

L

π

Figure 3.6: Plane π and L sweeps toward x → ∞ and cuts the cones [7]

therefore represents a parabolic front, which consists of pieces of parabolas,

when projected onto the xy-plane.

This idea is shown in Figure 3.7 which shows a view of the cones and sweep

plane from z = −∞, with only the x < l portion of the plane visible. It

is clearly visible how the two parabolas of intersection between the sweep

plane, π, and each cone, together form a parabolic front. At the specific point

where these two parabolas join, to form the parabolic front, the edge of the

Voronoi diagram is traced out as the plane sweeps toward x = ∞.

Through use of this slanted plane Fortune solves the problem of the sweep

line encountering Voronoi edges before the sites which generate them are en-

countered. The portion of the diagram to the left of the sweep line is therefore

not constructed at all times but rather the portion of the diagram underneath

the plane, π. The sweep plane is sloped at exactly the same angle as the sides

of the cones and as soon as a new site is encountered by the sweep line, L,

the sweep plane simultaneously encounters the cone for that site.

CHAPTER 3. PATH PLANNING ALGORITHMS 40

L

π

x

y

Figure 3.7: Viewed from x ≈ −∞, the bold curve represents the parabolic front [7]

The most valuable observation which is made from this 3-dimensional con-

sideration of the problem is the fact that the Voronoi diagram can be traced

out by the points where parabolas meet, in a parabolic front, as a sweep line

is moved across the plane. When returning to the problem in 2-dimensional

space the idea of this parabolic front can be utilized to develop an algorithm.

The parabolic front, consisting of parabolic arcs is called the beach line and is

represented by the bold arc in Figure 3.8. This arc represents the projections,

of the intersections of 3-dimensional cones and the slanted plane, onto the

xy-plane. The beach line also represents the locus of points that are closer to

any site above the sweepline, L, than to the sweep line itself.

L

Figure 3.8: The parabolic front in the xy-plane [9]

The algorithm is now based on a process of maintaining this beach line as the

sweep line moves. The beach line changes continuously, however, an explicit

maintenance at all times is not required but merely an identification of special

events which changes the structure of the beach line in terms of its parabolic

CHAPTER 3. PATH PLANNING ALGORITHMS 41

arcs. Two such events exist, one being the event in which a new parabolic arc

appears on the beach line, and the second being the event in which a parabolic

arc shrinks to a point and then disappears.

The first event, where a new parabolic arc appears on the beach line, is caused

when the sweep line encounters a new site. In this event the parabola which

is defined by the site is at first a degenerate parabola as shown in Figure 3.9.

As the sweep line continues to move downwards the new parabola grows

and becomes wider as shown in Figure 3.10.

L L

Figure 3.9: Degenerate parabola when new cite is encountered [9]

The breakpoints where this new parabola meets the old parabola start to trace

out a new Voronoi edge in opposite directions which is at first not connected

to the Voronoi diagram. Eventually this edge meets up with another edge

and becomes connected to the Voronoi diagram. In [9] it is shown that this is

indeed the only way a new arc can appear on the beach line and this event is

referred to as a site event.

L

Figure 3.10: Degenerate parabola grows wider as sweep line moves [9]

The second type of event occurs when an existing arc of the beach line shrinks

to a point and then disappears. Consider the 3 parabolic arcs, α, αi and αii,

shown in Figure 3.11. Three sites, pi, pj and pk, are shown as well as the mov-

ing sweep line, L. The arc shown by the dotted line represents the parabola of

site pj denoted by αi and is still shown in the second two diagrams of Figure

3.11 to indicate how this parabola "falls out" of the beach line. At the point in

time denoted by the second diagram, from the left, in Figure 3.11, parabola αi

shrinks to a mere point, q, on the beach line. This point, q is equidistant from

CHAPTER 3. PATH PLANNING ALGORITHMS 42

the sweep line and each of the three sites, and a circle can therefore be drawn

through the three sites, with lowest point on the sweep line. This point, q,

indeed represents a vertex of the Voronoi diagram and there can not be any

sites within this circle. This is easy to comprehend when one considers the

fact that the arc, αi, disappearing implies the meeting of two breakpoints and

hence the meeting of two Voronoi edges. This scenario where the sweep line

reaches the lowest point of a circle through 3 sites which define 3 consecutive

parabolic arcs is defined as a circle event as shown in Figure 3.12. In [9] it is

shown that this is the only way an arc can disappear from the beach line.

L
αi

αii

pi

pj

pk

L

pi

pj

pk

q

L

pi

pj

pk

q
α

Figure 3.11: Parabolic arc shrinks and then disappears [9]

L

αi

αii

pi

pj

pk

α

Figure 3.12: Circle event when parabolic arc disappears [9]

Two explicit events have thus been defined which represent the only two

ways in which the structure of the beach line can change. These changes in

structure in turn represent the discrete times at which information about the

Voronoi diagram is updated. The problem is therefore reduced from a contin-

uous problem of maintaining the ever changing beach line to a discrete prob-

lem where only certain events need to be identified and processed in order

to calculate the Voronoi diagram.

It should be noted that the discussions of this section were by no means a de-

tailed presentation of Fortune’s Voronoi algorithm, but rather a brief summary

of the core ideas. Several proofs and technical details have been omitted and

the reader is referred to [9] for a detailed discussion. The implementation of

an algorithm which makes use of the circle and site events, defined above,

to calculate the Voronoi diagram requires a complex use of data structures.

CHAPTER 3. PATH PLANNING ALGORITHMS 43

Fortunately many versions of Fortune’s algorithm have been implemented

and perfected, in a wide variety of programming languages, over the years

and are freely available. A decision was therefore made to make use of an

already available C implementation of the algorithm which can be found at

[24]. Only slight modifications were required to make this implementation,

in C, fit into the project, as will be shown in the implementation section to

follow.

A brief summary can however be given about the data structures used in the

implementation [9]. Each component of the implementation is listed along

with a brief description.

• The Voronoi diagram under construction - Stored in a doubly-connected

edge list where the representation of the beach line allows access to rele-

vant parts of the doubly-connected edge list.

• The Beach line- Represented by a balanced binary search tree where its

leaves correspond to the arcs of the beach line. Each leaf stores the site

of the arc which it represents. The internal nodes of this balanced bi-

nary tree represent the breakpoints where parabolic arcs meet by stor-

ing ordered couples of sites which correspond to the two consecutive

parabolic arcs.

• The Event Queue - Implemented as a priority queue where the events

are prioritized in terms of their respective y-coordinates from top to

bottom. Site events are simply stored as the site itself since this is the

only information required to know when this event will occur. Circle

events are however not as easily identified. The algorithm makes sure

that for every three consecutive sites (corresponding to three consecu-

tive arcs on the beach line) the corresponding circle event is in the queue

if the circle intersects the sweep line. This implies that the circle event

is yet to occur since the sweep line has not yet reached the lowest part

of the circle. The circle event is stored as the lowest point of the circle

in terms of its y-coordinate. Any circle which contains another site in

its interior or any circle which is completely above the sweep line is

regarded as a false alarm and not added to the event queue.

It should be noted that during each event another event in the queue can be

destroyed or created. A site event for instance will cause the appearance of a

new arc on the beach line which implies new consecutive triples of arcs and

hence new circle events. It is therefore imperative that all data structures are

updated appropriately during each event which occurs. The way in which

CHAPTER 3. PATH PLANNING ALGORITHMS 44

these structures are updated can be seen in [9].

The concepts of this algorithm remain abstract and difficult to visualize when

merely presented in writing. The reader is therefore referred to [20], where

an animated version of the algorithm is shown which greatly aids in under-

standing how the algorithm executes.

Implementation

The C implementation of Fortune’s algorithm, found at [24], yields an output

which fully defines the Voronoi diagram. It produces an output consisting

of several rows of data where each row consists of an array which denotes

specific information about the Voronoi diagram. One of four different types

of arrays can be present in each row of the data output and these four types

are summarized below,

• [s a b] - Indicates that an input site, number s, was seen at x-coordinate,

a, and y-coordinate, b.

• [l a b c] - Indicates a straight line, number l, represented by y = − a
b x +

c
b .

• [v a b] - Indicates a vertex, number v, of the Voronoi diagram at x-

coordinate, a, and y-coordinate, b.

• [e l v1 v2] - Indicates an edge, number e, of the Voronoi diagram which

is a subsegment of line number l, and has end points at vertices num-

bered, v1 and v2. If v1 or v2 is −1 a line to infinity is indicated.

In the above summary all x-coordinates correspond to the East axis and all y-

coordinates correspond to the North axis in the NE reference frame discussed

in Chapter 5. This output of the algorithm is slightly modified so that each

row of the output is defined by a number which denotes its type. From top

to bottom, in the summary above, the integer numbers 1 − 4 were used to

denote the specific type of array and all arrays are then packed into a matrix

which has its rows as these arrays.

A flow diagram of the entire Voronoi implementation is shown in Figure

3.13. The call for a Voronoi population is made from the Path_Planner.c module

shown. The specific routines inside the Path_Planner.c module are obscured

in this figure, and the figures of the following sections, in order to focus solely

on the specific algorithm’s implementation. These routines will be shown in

CHAPTER 3. PATH PLANNING ALGORITHMS 45

more detail in Figure 4.9. It should be noted that the entire implementation

shown in Figure 3.13 represents the contents of the Calculate Voronoi Graph

block in Figure 4.11. The focus in this chapter is on the specifics of the indi-

vidual algorithms and not on how these algorithms are integrated into the

rest of the project. The reader is therefore referred to Figure 4.11 if at any

time more information is required about the role of each algorithm within

the entire UTV implementation.

Voronoi_Population.c

Path_Planner.c
main_vor.c

Calculate Voronoi diagram
with implementation of

Fortune’s algorithm
obtained from [22]

Calculate sites from received
obstacle data (the vertices of
square the obstacles)

Calculate Voronoi construction
boundaries from received integer
distance beyond furthest obstacle

coordinate

-Group Sites
-Group Lines
-Group Vertices
-Group Edges

Remove all edges completely
outside the calculated boundaries

-Clip edges going to infinity
at the boundaries
-Clip edges with endpoints
beyond the boundaries at the
boundaries

Prune all edges which go through points
that are within a certain defined tolerance
of the centers of the square obstacles

-Square obstacles in terms
of centers, side lengths and
angle with the x-axis
-Integer number of obstacles
-User-selected integer distance
beyond furthest obstacle
coordinate from the origin
-Departure position
-Destination

Input Parameters

Pruned Voronoi edges

Output Parameters

-x-coordinates of the sites
-y-coordinates of the sites
-Number of sites

Input Parameters

Output Parameters

Matrix consisting of :
-[s a b]

-[l a b c]
-[v a b]

-[e l v1 v2]

Entry

Exit

Figure 3.13: Call for a Voronoi Population from the Path Planning Module

Figure 3.13 shows how the C implementation of Fortune’s algorithm, obtained

from [24], is utilized to generate a preliminary Voronoi diagram, with the ver-

tices of square obstacles defined as the sites for the calculation. The user

specifies an integer value which represents a distance beyond the obstacle

coordinate which is furthest from the origin of the two-dimensional reference

frame. This value is then used to determine the bounding box of the Voronoi

diagram and all Voronoi edges are clipped by this bounding box. Voronoi

edges which fall completely outside the bounding box are removed from the

populated set of line segments.

CHAPTER 3. PATH PLANNING ALGORITHMS 46

The final step then requires a pruning of all calculated Voronoi edges which

pass through the centers of the square obstacles. Due to floating point oper-

ations minute offsets are occasionally present and thus line segments which

are intuitively known to pass through the centres of the squares are not rec-

ognized as edges which should be pruned. A slight tolerance of 0.001 m

was therefore implemented to ensure edges which should be pruned are not

missed. The tolerance used is not a set constant value and depending on

the scale of the area on which the Voronoi diagram is calculated the tolerance

value can be increased and decreased accordingly. A value of 0.001 m yielded

good results in this project. It should be noted however that when the square

obstacles and the distances between them become infinitesimally small the

possibility arises that other Voronoi edges will also fall within this tolerance

and be pruned when they should not be pruned. The allowed tolerance is

therefore a function of the size of the obstacles and the validity of the al-

gorithm is bounded by the maximum accuracy which can be achieved with

floating point operations. Within the scope of path planning for a UTV typi-

cal values are much larger and a minimum size can be stipulated for objects

which are recognized as obstacles, during future implementations of obstacle

detection. The algorithm therefore remains valid in this application, with the

exception of singularities shown in the next section.

Results

With a Voronoi population algorithm implemented the only step remaining

is an investigation into the performance of this algorithm. Routines were

written in Matlab which write data to text files at different stages during ex-

ecution. These text files were then used to write a routine which plots the

execution of the algorithm in an animated fashion while also creating an .avi

video. These videos can be seen on the DVD included with this thesis. Fig-

ure 3.14 shows the stage of the algorithm where the Voronoi diagram has been

calculated and all appropriate edges marked for pruning.

After a removal of the pruned edges the populated diagram represents only

line segments in the obstacle free space as shown in Figure 3.15. In this

figure two characteristics of the algorithm are immediately identified. The

first characteristic is the fact that the populated diagram, after pruning, dis-

plays characteristics very similar to the original Voronoi diagram, in the sense

that segments tend toward the ideal situation where maximum distance is

achieved from two adjacent obstacles simultaneously, by tracing out seg-

CHAPTER 3. PATH PLANNING ALGORITHMS 47

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

E

N

Voronoi edges to be pruned

Voronoi edges not pruned

Vertices of obstacles

Start

Destination

Figure 3.14: Pruning of Voronoi Edges

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Voronoi edges after pruning

Obstacles

E

N

Destination

Start

Figure 3.15: Voronoi Edges after Pruning

ments which are equidistant from obstacles on either sides of the segment.

This in turn implies a maximum clearance from obstacles which makes the

algorithm attractive, but at the cost of the second characteristic which is also

identified. This second characteristic is the tendency of the populated dia-

gram to be represented by a large number of short line segments with se-

vere variation in heading angles. This ultimately implies a path which is not

smooth and in turn implies less efficient motion of the UTV.

The UTV in this implementation is regarded as a point vehicle and the as-

sumption is made that no two obstacles are in such close vicinity of each other

that a Voronoi edge between them will imply a path segment with insufficient

clearance for the UTV, due to the vehicle’s size. Even under this assumption

occasional failures of the algorithm can still occur. The algorithm generally

tends to achieve maximum clearance from obstacles. However, when large

CHAPTER 3. PATH PLANNING ALGORITHMS 48

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

E

N

Start

DestinationVoronoi edges after pruning

Obstacles

Problematic edge

Figure 3.16: Incorrect collision with obstacle

obstacles are in close vicinity of each other and orientated as shown in Figure

3.16 the populated diagram can include an edge which enters the interior of

an obstacle. This ultimately voids the validity of the algorithm since such

a segment could imply a collision of the UTV with an obstacle. A method

therefore needs to be found for pruning these edges as well. However, exces-

sive pruning of edges is not desired since this could lead to scenarios where

the start and destination points are no longer connected by the populated

diagram. An example of this discontinuity is immediately evident when

considering the fact that a single square obstacle would generate a Voronoi

diagram which only consists of line segments going through its centre, and

consequently have to be pruned, leaving no connection between start and

destination. To accomodate this scenario a simple routine was implemented

in both shotest path algorithms which are discussed later in this chapter. The

routine constructs a rectangular path around the obstacle environment when

no connection between start and destination is found. This Voronoi algorithm

is therefore considered effective when the environment includes many obsta-

cles which are not in close vicinity of each other and not orientated as shown

in Figure 3.16.

A final note should be made about how the start and destination points are

included in the algorithm. In order to connect these two points with the pop-

ulated Voronoi diagram they are represented by two virtual square obstacles.

These "obstacles" are defined with vertices which are 0.4 m apart, with the

starting point and destination as their center points respectively. The value

of 0.4 m is arbitrarily chosen, since this is the width of the UTV, but is of no

consequence since any 4 vertices of a square will generate Voronoi edges ex-

actly through the centre, if no other sites are in the interior of this square.

CHAPTER 3. PATH PLANNING ALGORITHMS 49

These virtual obstacles are orientated at the angle which is found when con-

necting the start and destination with a straight line. In doing this 4 Voronoi

edges are yielded, for start and destination, which connects into the diagram

and good results were also obtained with the start and destination amidst the

obstacles. During the pruning process the Voronoi edges which are generated

by these virtual squares are regarded as exceptions and not pruned.

This therefore concludes the Voronoi implementation of a population algo-

rithm. As was noted in this section this algorithm is unfortunately not valid

at all times but only yields good results under certain circumstances. The

problematic areas therefore have to be addressed through modification of

the algorithm or an entirely new algorithm should be considered. In Chapter

7 a better algorithm is briefly suggested as substitute for the Voronoi diagram.

3.2.2 Visibility Graph

Theory of the Visibility Graph

The previous section showed the implementation of a population method which

yields line segments that approximate maximum clearance from obstacles, at

the cost of longer paths and the limitation of only square obstacles being

used. This section focuses on a population method in direct contrast to this.

The Visibility graph is a method which can be applied directly to the path

planning problem and accommodates not only square obstacles but convex

polygon obstacles as well. The Visibility graph is a population method which

is based on the concept of constructing straight lines between the vertices of

obstacles in the two-dimensional plane. Consider the simple example of a

Visibility graph shown in Figure 3.17.

Obstacle 1

O
bs

ta
cl

e
2

O
b
stacle 3

Visibility edge

A

B

Figure 3.17: Simple Visibility Graph

In Figure 3.17 it is shown how the edges of the Visibility graph represent the

straight lines from each vertex to each of the other vertices. An additional

characteristic should however be noted which is the core reason why Visi-

bility graphs can be considered for path planning purposes. As seen in Fig-

CHAPTER 3. PATH PLANNING ALGORITHMS 50

ure 3.17, each vertex is only connected, by means of the Visibility edges, to

all other vertices which are visible. Edges which pass through obstacles are

therefore ignored during the construction of the graph.

An additional characteristic can be identified when analyzing Figure 3.17.

The populated Visibility graph represents a set of line segments which can

be regarded as a road map. In order to get from any one vertex, A, to any

other vertex, B, a path can be obtained from this road map. The important

characteristic to note here is that, at all times the absolute shortest path be-

tween points A and B, without passing through obstacles, will be represented

by a specific combination of the Visibility edges. This is best visualized when

considering an elastic rubber band with endpoints fixed to points A and B

respectively. If several such elastic bands are connected between A and B,

each forced along the shape of a different possible path, and then released,

all rubber bands will contract to become as short as possible. The shortest

path from A to B will therefore be represented by one of these elastic rubber

bands. All these rubber bands are indeed represented by the Visibility graph

and by calculating the combination of Visibility edges which yields the short-

est path in the populated diagram, the absolute shortest path is also found.

For a formal proof of this refer to [9].

A note should be made about the obstacle clearance of the Visibility graph. As

seen in Figure 3.17, a diagram which includes line segments which represent

the absolute shortest path, between points A and B, comes at the cost of min-

imal clearance from obstacles. In fact, all line segments lie either on the edges

of obstacles or pass through the vertices of obstacles, unless a straight line of

visibility is present between points A and B. This implies paths which will

not achieve obstacle avoidance but rather cause the UTV to collide partially

or completely with obstacles. A method is therefore required to account for

the fact that the UTV is not a point vehicle in reality and additional clear-

ance from obstacles should be added. A simple method was used in the

implementations of this project where all square obstacles were simply made

virtually larger before being passed to the Visibility algorithm. This method

is however not optimal and in the case of complex convex obstacles it be-

comes difficult to simply expand the size of the obstacles without an explicit

algorithm. An efficient method for this purpose, the Minkowski Sum, was

however found in hindsight, and is briefly discussed in Chapter 7.

CHAPTER 3. PATH PLANNING ALGORITHMS 51

Visibility Graph Algorithm

Several algorithms exist for calculating the Visibility graph. In this project

an intuitive approach was followed during implementation of such an al-

gorithm which will be discussed in the next section. This implementation

yielded a computational cost of O(n3), where n is the total amount of obsta-

cle vertices. In hindsight however, it was found that a more optimal algo-

rithm exists which achieves a cost of O(n2 log n). Since an optimal Voronoi

algorithm was implemented, this section will introduce the optimal Visibil-

ity algorithm so that a comparison between the two population methods can

be done without the one algorithm being unfairly disadvantaged due to poor

implementation. This comparison is presented later in this chapter. The sum-

mary of this optimal algorithm, to follow, is based on the discussions in [9].

Consider a two-dimensional plane with disjoint polygonal obstacles, S, which

have n vertices in total. In order to check whether any one vertex, wi, is vis-

ible from a current vertex, Pj, it is intuitively obvious that an investigation

into whether the line segment, Pjwi, intersects any of the obstacle edges, is

required. All obstacle edges therefore have to be checked for intersection

with line segment, Pjwi, yielding a computational cost of O(n). Degenerate

cases where Pjwi intersects the interior of an obstacle, without intersecting it’s

edges and only passing through its vertices, also have to be checked for and

will be addressed shortly. The computational cost is further increased when

considering that all line segments, Pjwi (i=1.. n), have to be checked against all

obstacle edges, increasing the cost to O(n2). Furthermore, when considering

that all obstacle vertices have to be used as the origin, Pj (j=1.. n), when check-

ing visibility to all other vertices, the cost is increased even more to O(n3)!

However, the optimal implementation of a Visibility algorithm attempts to re-

duce this computational cost of the problem by taking an ordered approach

when considering the visibility between obstacle vertices. From each point,

Pj, all surrounding vertices are sorted in clockwise order of angles with the

starting position of a sweep line, ρ0, shown in Figure 3.18.

The approach consists of moving the sweep line around the point, Pj, in a

clockwise direction, while maintaining information about the edges which

are currently intersecting the sweep line as well as information about the

visibility of the previous vertex, wi−1, which was checked. In doing so the

process is accelerated since the visibility to the previous vertex, wi−1, is used

CHAPTER 3. PATH PLANNING ALGORITHMS 52

Pj
θ

ρ0

Figure 3.18: Sweep line at its initial position [9]

when deciding the visibility to the current vertex, wi. Should both wi−1 and

wi therefore lie on the same segment, invisibility of wi−1 immediately implies

invisibility of wi. Visibility of wi−1 however, does not imply visibility of wi,

and additional tests have to be performed which will be discussed shortly.

The information about the obstacle edges which intersect the sweep line is

stored in a balanced binary search tree, τ, where each leaf represents the edge

which is intersected. From left to right the edges which are intersected are

stored in ascending order of distance, along the sweep line, Pjwi, from the

current vertex, Pj, from which visibility is checked.

e1

e1 e2 e3 e4

e3

e2

e4

e5

e4

e5 e6

e1

e2

e3

e4

e5 e6

Pj

Figure 3.19: How obstacle edge intersections are stored in a BST [9]

This binary search tree (BST) can be seen in Figure 3.19. As shown, each in-

ternal node of the tree represents the rightmost leaf, elr, in the left subtree

below it and all edges in the right subtree of this node are therefore further

than elr from Pj, while all edges in its left subtree are closer or the same dis-

tance from Pj. Therefore when checking for the visibility of a vertex, instead

of checking all obstacle edges for intersection with the sweep line, Pjwi, in a

random manner, all that is now required is a check whether the edge in the

leftmost leaf of the tree intersects the sweep line Pjwi.

As mentioned previously, degenerate cases where more than one obstacle

vertex lie on the sweep line are indeed a possibility. Examples of these sce-

narios can be seen in Figure 3.20 where the previous vertex which was tested

CHAPTER 3. PATH PLANNING ALGORITHMS 53

Pj Pj

Pj Pj

wi-1

wi-1wi-1

wi-1

wi

wi
wi

wi

Figure 3.20: Special cases where the sweep line contains more than one vertex [9]

is denoted by wi−1 and the current vertex being tested is wi.

These scenarios are treated as follows,

• If wi−1 is invisible, wi is also invisible

• When wi−1 is visible there are two ways in which wi can be invisible. If

neither of these apply the vertex is visible. The two tests for invisibility

are shown below

– Is the segment wi−1wi intersected by an edge in τ?

– Does wi−1wi lie within an obstacle of which both wi−1 and wi are

vertices?

A flow diagram of the entire implementation can be seen in Figure 3.21. It

should be noted that the discussions in [9] do mention an added degenerate

case. This is the case where the current vertex, Pj, falls on an obstacle vertex

and the sweep line, Pjwi, falls entirely within an obstacle, since wi falls on an-

other vertex of the same obstacle. This case is however not addressed in the

algorithm presented in [9] since the discussions are of a more general nature

where Pj is not necessarily on one of the obstacle vertices.

A simple additional test is therefore required in the implementation shown

in Figure 3.21. The additional test should test obstacle edges incident to Pj to

determine whether the sweep line lies within an obstacle which has a vertex

at Pj.

CHAPTER 3. PATH PLANNING ALGORITHMS 54

Visibility
Graph

j = 1

S

Parameters

Extract Pj

-Sort obstacle vertices in
clockwise order around

-When identical :
Vertices which are closest
to come first

P according to

P

j

j

θ

θ

In store the obstacle

edges which intersect in
order, from left to right in

which they intersect

τ
ρ0

0ρ

Initialize WPj

i = 1

Visible(w)i Add wi to jWP

Insert into

which lie on the clockwise side
of

τ obstacle edges incident

to wi

Pj iw

Delete from

to which lie on the counterclockwise
side of

τ obstacle edges incident

wi

Pj iw

i = 1

i ++i n - 1≥

Add WPj to V

j ++

j n>

Return V

False

False

True

True

False

True

Visible(w)i

True

False

Does P intersect the interior
of the obstacle of which
is a vertex, locally at ?

j i

i

i

w
w

w

(i = 1)
OR

(w wi-1 is not on Pj i)

wi-1 not
visible

Search in for edge

in leftmost leaf

τ
e

Search in

which intersects

eτ for edge

w wi-1 i

e exists
AND

P intersectsj iw e

e exists

Return
True

True

Return
False

True

Return
False

False

TrueTrue

TrueFalse

False

False

Start

S

WP

- Polygonal obstacles defined in terms of vertices

- Matrix containing Visibility diagram edges

- Current vertex to which visibility is checked

from

- Current vertex from which visibility is checked

- Balanced Binary Search Tree storing obstacle

edges which intersect with sweep line

- Sweep line at horizontal starting position

- Clockwise angle of sweep line,

- Number of obstacle vertices

V

j j

i

j

j

j

j i

j i,

- Matrix containing visible vertices from

Previous vertex to which visibility was checked

from

,

with

P

P

-
P

P

P

P

w

w

w

w

i-1

τ

ρ

θ ρ

0

0

n

Legend

Figure 3.21: Flowchart of O(n2 log n) Visibility Algorithm

Implementation

As previously mentioned the implementation of an algorithm to calculate the

Visibility graph was done in an intuitive brute force manner with a compu-

tational cost of O(n3). Although not optimal, the Visibility graph was still

constructed accurately, and with the relatively small amounts of obstacles

used during simulation and practical tests, heavy loads were not present on

CHAPTER 3. PATH PLANNING ALGORITHMS 55

the OBC or computer used for simulation. The entire implementation can be

seen in Figure 3.22.

i = 1

j ++ i n - 1≥
FalseTrue k n≥

False

True

-Number of obstacles
-Obstacles in terms of
vertices where last vertex of
each obstacle is denoted by
-900000
-Amount of vertices of
obstacle with most vertices
for initialization of matrices

Input Parameters

Entry

Path_Planner.c

Exit

Visibility_Population.c

Calculate obstacle edges
+

for straight line
representing each edge
a b c

Start

Sort vertices in clockwise
order around Pj

k = 1

-Check for intersection
between andek Pj iw

-Check for degenerate case
with which causes
invisibility

-Store

ek

R

Intersection

Degenerate
case

OR

Add toR ρD

k ++

j = 1

R() ≤Pj iw ρD[1.. m]
False

True

Add P to if not already inj iw V V

i ++

j n≥
FalseTrue

Return V

False

True

Initialize

with value >

ρD

R()Pj iw

P

R() P

P

P

j

j i

j i

j i

Pj iw w

w

w

ρD at which

invisibilities occur

- Current obstacle edge

at which invisibility occurs

ek

- Current vertex from which visibility is checked

- Matrix containing Visibility diagram edges

- Current vertex to which visibility is checked

from

- Number of obstacle vertices

- Distance along

V

- Euclidian length of line segment

Arrary with distances along

wi

jP

-

n

R

Legend

Figure 3.22: Flowchart of implemented O(n3) Visibility Algorithm

Similarly to the presentation of the Voronoi diagram, the routines inside the

Path_Planner.c module are obscured to avoid complexity and the reader is

once again referred to Figure 4.11. The nested while loops which lead to the

O(n3) cost can clearly be seen in Figure 3.22. The basic approach toward

CHAPTER 3. PATH PLANNING ALGORITHMS 56

computing the Visibility graph in this implementation is a calculation of all

the points along the line segment, Pjwi, at which an obstacle edge causes in-

visibility. These invisibilities can either be caused by simple intersections of

an obstacle edge, ek, with the line segment, Pjwi, or by degenerate cases such

as the ones discussed in the previous section.

Should an invisibility boundary be found along Pjwi the corresponding dis-

tance from Pj is stored in an array, ρD. After comparing all obstacles edges,

ek, with the current sweep line, Pjwi, all values in the array, ρD, are com-

pared to the distance of wi from Pj. Should any of the values found in ρD be

smaller than the Euclidean distance, R(Pjwi), an invisibility is implied and

the edge is not added to the matrix representing the Visibility graph. In the

opposite scenario Pjwi is added to the Visibility graph under construction.

This is then repeated for every vertex, representing wi (i=1.. n), and then also

repeated for every vertex, representing Pj (i=1.. n). In order to include the start

and destination points in the Visibility graph they are simply defined as two

additional obstacle vertices. It should be noted that the linear calculation

methods used in this implementation only accommodate convex obstacles as

stated in the beginning of this chapter. The Visibility algorithm can however

be constructed for obstacles which are not convex, as shown in [9].

Results

Results that were obtained with the implemented O(n3) algorithm are now

presented. Similarly to the Voronoi implementation, data is written to a text

file during the execution of the algorithm, and then used in a different mod-

ule to plot the Visibility edges against the obstacles. As shown in Figure

3.23 all possible Visibility edges are accurately constructed for a set of con-

vex polygonal obstacles in the two dimensional plane. In contrast to the

Voronoi population method there will always be a connection between start

and destination, even in the degenerate case where there are no obstacles. In

this scenario the Visibility graph simply consists of a straight line from start

to destination. In this simple degenerate case the tendency of the algorithm

to find the shortest possible path can already be identified. It is also seen

how minimal clearances from obstacles are achieved and how some Visibility

edges actually lie along the edges of the obstacles. The obstacles which are

passed as parameters to the algorithm therefore have to be marginally larger

than the actual obstacles during UTV operation and a method for ensuring

this is suggested in Chapter 7.

CHAPTER 3. PATH PLANNING ALGORITHMS 57

E

N

Visibility edges

Obstacles

Start

Destination

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Figure 3.23: Visibility Graph generated by O(n3) algorithm with convex obstacles

E

N

Visibility edges

Obstacles

Start

Destination

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Figure 3.24: Visibility Graph generated by O(n3) algorithm with square obstacles

In Figure 3.24 the results of the same algorithm being used on a set of square

obstacles is shown. At first glance, when comparing to the Voronoi populations

previously presented, it is immediately evident how the computational cost

of the algorithm has increased due to the increase in population edges which

need to be found. Stated in different terms, for a certain amount of obstacle

CHAPTER 3. PATH PLANNING ALGORITHMS 58

vertices, n, the Visibility graph consists of a significantly larger number of

line segments than the Voronoi diagram. The guarantee of a path existing

and that this is indeed the shortest path therefore comes at the cost of higher

computational complexity. A final thing to note is the fact that in general the

Visibility algorithm tends toward straighter paths with longer and less line

segments in comparison with the Voronoi diagram, when trying to move from

a point A to B. The Visibility graph population method is therefore attractive

when smoother motion of the UTV is desired and the time it takes to move

from A to B is important.

3.3 Shortest Path Algorithms

In the previous section the implemented population algorithms were discussed.

However, the problem of finding an optimal path through the obstacle rid-

den environment is not yet solved. As mentioned in the beginning of this

chapter, an additional step of finding the shortest path is required after hav-

ing populated the free space in the two-dimensional plane. These algorithms

are required to find a combination of the line segments from the populated

sets, obtained from either the Voronoi or Visibility diagrams, which represents

the shortest possible path available in the population, to get from points A to

B. This section features a discussion on the two shortest path algorithms which

were implemented in this project.

3.3.1 Dijkstra

Algorithm

An attractive solution to the problem of finding the shortest path between

two points, A and B, where both A and B represent specific nodes in a pop-

ulation set, is proposed by Dijkstra (1959). In [7] the idea behind Dijkstra’s

algorithm is discussed by means of an effective analogy which makes it easy

to understand and conceptually visualize the behaviour of the algorithm. A

similar approach is therefore followed in the discussions to follow.

Consider the simple example of a Visibility graph shown in Figure 3.25. All

the Visibility edges are shown along with their respective Euclidean lengths.

Suppose the shortest possible path is required between two nodes, A and

B, which are both nodes of the Visibility graph, also shown in Figure 3.25.

If all edges are considered as hollow pipes in the horizontal xy-plane, with

identical diameters, then one can imagine a process of pouring paint into the

CHAPTER 3. PATH PLANNING ALGORITHMS 59

pipes at the starting node, A. The paint is assumed to spread evenly through

these imaginary pipes at a uniform rate of one unit of length for one unit of

time. When thinking about this process intuitively it becomes obvious that

as soon as the paint reaches a specific node for the first time, the time which it

took to reach that node, along the shortest possible path, is known, since the

paint moves through all pipes at the same rate, and more specifically the time

which it took to reach that node represents the length of the shortest path. By

storing information at each node about the node which paint reached it from,

the path can be found as soon as the destination node is reached, by tracing

back the path to the starting point A. In [7] an insightful comment is made,

’This is roughly equivalent to tagging each paint molecule with its path so far, so that

when the first molecule reaches t, it’s path is known’, where t denotes B within the

scope of these discussions.

Dijkstra exploits this by proposing an algorithm which simulates the process

of paint spreading through the edges of the populated map. The algorithm

he proposes further exploits the fact that the simulation of the paint spread-

ing process can be done in discrete time steps rather than in continuous time.

The basic principle of the algorithm is to maintain a paint frontier, F, which

represents all the nodes which have currently been reached by the imaginary

paint. The next step then requires looking for nodes, outside of F, which can

be added to the paint frontier along one of the edges of the populated map.

After finding all candidates the node which is added to F is the one or sev-

eral which will yield the same shortest total distance increase from the origin.

Throughout the process a tree, T, is also maintained which stores all the edges

which have currently been filled with paint. These edges are added to T in

the order in which the paint fills them. Edges which are first filled with paint

therefore have a lower index in the tree. This is ultimately how the shortest

path can be found. As soon as an edge is added to the tree, which has its one

node (vertex) as the destination, the previous node from which paint reached

it can be found by looking at the opposite node of this edge in T. A search can

then be done in T from the opposite side (from the lowest index in T) for an

edge which has an endpoint corresponding to this edge’s starting point. The

process is then repeated until the first edge connected to the origin is found.

Once again consider the four discrete time steps shown in Figure 3.25. As

seen in I, paint is being poured into the pipes at the origin, A. The node

which is first reached by the paint is node a. At this point in time a is added

to F and the distance, 1.4, is stored in this index of F. At the same time the

CHAPTER 3. PATH PLANNING ALGORITHMS 60

edge Aa is added to T. It is also seen how the paint has only partially filled

the two adjacent pipes.

5.51.4

2
.7

4.2

1
.2

5.8

2.5

1.4

a

L = 1.4

1.4

2
.7

c

2.5 L = 5.5

5.5

d

B

1.4

2
.7

b

A

L = 2.7

B

1.4

2
.7

c

2.5 L = 3.9

A

B

A

B

The paint in this edge
has not yet reached B

L - Distance from start to current
frontier node being added to F

I II

IIIIV

A

Figure 3.25: Paint spreading uniformly through Visibility Edges in discrete steps

After the next discrete time step, shown in II, the paint reaches node b. Node

b is then added to F and the distance, 2.7, is stored in this index of F. The

edge Ab is then added to T. In step III the same node is reached by the paint

along a different pipeline. This indeed represents a special case which has to

be accounted for in the algorithm. At this step the node c is not added to F

since it is already in F with a corresponding shorter distance from the origin

along a different path. The edge ac is however marked as filled with paint

and added to T with the node a as starting point since this node was first

reached by the paint. In the last discrete step shown by IV the paint reaches

the destination B. After this step the node d is added to F with the distance,

5.5, and the edge Ad is added to T. Since the destination has been reached

by the paint the shortest possible path is immediately known.

Consider Table 3.1 which represents the current status of the tree, T. As men-

tioned all that is required is a check from the front (lowest index) of T for

edges, with endpoint nodes corresponding to the starting node of the last

CHAPTER 3. PATH PLANNING ALGORITHMS 61

Index in T Visibility edge Starting node Endpoint node

1 Aa A a

2 Ab A b

3 ac a c

4 Ad A d

Table 3.1: Status of the tree T once the destination is reached

edge in T, and then repeating the process until the origin node is found.

When looking at Table 3.1 no such search is required in this case and the

shortest path is immediately identified as Ad. Intuitively it is known that

the shortest path between two points is a straight line between them and

although this simple example does not claim to prove the validity of the al-

gorithm it serves as insightful way of bridging the gap between the methods

of the algorithm and simple intuition.

Implementation

An implementation of the algorithm was done in C programming language

as shown in the Flowchart of Figure 3.26. The Update F and T block contains

the routines shown in Figure 3.27 while the Extract Path block contains the

routines shown in Figure 3.28. The flow diagram was split into these com-

ponents to avoid clutter. When looking at these flow diagrams it becomes

evident that it is not easy to identify the time complexity of the algorithm

since the while loops are dependent on the amount of population edges passed

to the algorithm. Also, some loops execute with varying repetitions since

they are dependent on the size of the frontier matrix, F, which grows in size as

the algorithm progresses toward the destination point.

If n is still regarded as the amount of obstacle vertices, and information is

available about how many population edges are generally yielded by a spe-

cific population algorithm, then a crude bound of the time complexity of the

implementations shown in these flowcharts can be determined. Consider

the fact that a Visibility graph generally yields a quadratic number of edges,

O(n2). [7] Assuming the worst case scenario where all nodes, except the

destination node of the Visibility graph, are already in the frontier matrix, and

considering the fact that there are n nodes in a Visibility graph, it becomes ev-

ident that the internal loop with regards to the size of F, shown in Figure 3.26,

can have a time complexity of approximately O(n). However this loop grows

from O(1) to O(n) since at first there is only one node in F. When noticing this

CHAPTER 3. PATH PLANNING ALGORITHMS 62

Start

F

E

F

P

Frontier Matrix representing nodes reached by paint

Tree rooted at origin containing edges filled with paint

New candidate flag

-
-

-

population edge

Flag indicating whether population edge

Length of population edge

-

-

-

-

-

T

LT

NC

FN -

Total length to origin along edges of T

Index in which corresponds to a vertex of

candidate

is filled with paint

Linkbox flag indicating no connection between

start and destination. To accomodate degenerate
cases with Voronoi population

Flag indicating whether destination has been

reached by paint

Population edge, index, with vertices

Integer storing current size in rows of the tree,

Integer storing current size in rows of the frontier

matrix,

Integer storing size in rows population edges,

Flag indicating whether new candidate

was found

Current node in

Calculated Path Matrix

-

LB -

DF -

-

SizeT -

SizeF -

SizeE -

NCF -

-

-

0 - Population edge is not a candidate

1 - Population edge is a candidate with vertex in

left column corresponding to node in

2 -

F

Population edge is a candidate with vertex in

right column corresponding to node in F

F

E

E

T

F

E

F

Ek

PF

L

k

k

k k,

i

V V1 2and

LCV -

RCV -

Flag indicating left column vertex of , , was

found which corresponds to a node in

Flag indicating left column vertex of , , was

found which corresponds to a node in

E V

F

E V

F

k

k

1

1

Legend
-Number of population edges
-Population edges in terms of
vertices V
-Starting point
-Destination point

1 2and V

Input Parameters

Entry

Path_Planner.c

Exit

Store population edges in
structure with each row:

[]V V1 2 L PF NC FN

LB = 0 DF = 0
SizeT = 0 SizeF = 1
Store in first row of :
[OriginE OriginN (0)

F
LT

NCF = 0k = 0

LCV = 0
RCV = 0

Ek[] = 1PF
True

False

i = 0- Check if node F corresponds
to either or of

i

V V1 2 E
E

V V

V F
V F

E

k

k

i

i

k

. If it does
set [] in accordance with
either or
- NCF = 1
- If = then LCV = 1
- If = then RCV = 1
- Store in []

NC

i FN

1 2

1

2

i ++

i > SizeF

True

False

LCV & RCV = 1
True

False

- Store

nodes
- = Lower index in of
the two

E
F

F
E

k

k

[] in accordance
with node on with the lower
index of the two

[]

NC

FN F

k ++

k > SizeE
False

True

NCF = 1

True

DF = 1
LB = 1

Minimum
= 1000000

k = 0Ek[] > 0NC

New total length < Minimum

True

- Get distance of node
[] from origin

- Add length of current
candidate edge,

F Ek FN

k

[]

E []L

False

True

False

Minimum = New total length

False

True

k > SizeE

k ++

False

True

Update andF T

DF = 1

Extract Path

False

Return P

Dijkstra_Shortest_Path.c

Figure 3.26: Main Flow Diagram of Implemented Dijkstra Algorithm

loop is nested within another loop with regards to the amount of population

edges, and remembering there are generally n2 edges in a Visibility graph,

the total complexity of the two inner loops can possibly grow from O(n2) to

O(n3). Both these loops are nested within the main loop which represents the

flow of paint through the pipes. A crude worst case time complexity bound

of more than O(n3) is therefore found for the implemented algorithm, when

a Visibility graph is used as population method. This implementation is how-

ever far from optimal and in [7] it is mentioned that the algorithm can be

implemented to run with a complexity of O(n2).

This optimal time complexity will therefore be used during comparisons

CHAPTER 3. PATH PLANNING ALGORITHMS 63

True

False

k ++

DF = 1

k = 0

Ek[] = 1NC

True

False

k SizeE≥

DF = 1

SizeT++

Get total length to
current node

F[]Ek FN[]

LT = Minimum

Ek[] = 1PFE Fk[] in
already?

V2SizeF++

Add E F

F

k

LT

[] to and
store new total distance

in [][]

V2

SizeF

Add E E
T V

T

k k[] and [] on new
row of , where is stored in
the left column of the row in
and denotes the start of the line
segment

V V1 2

1

F reached destination?

True

FalseFalse

True

True

False

DF = 1

Ek[] = 2NC

True

False

SizeT++

Get total length to
current node

F[]Ek FN[]

LT = Minimum

Ek[] = 1PFE Fk[] in
already?

V1SizeF++

Add E F

F

k

LT

[] to and
store new total distance

in [][]

V1

SizeF

Add E E
T V

T

k k[] and [] on new
row of , where is stored in
the left column of the row in
and denotes the start of the line
segment

V V2 1

2

F reached destination?

True

FalseFalse

True

True

False

False

True

- Reset all E
E

k NC

k FN

[]
- Reset all []

Update andF T

Figure 3.27: Update F and T

since all algorithms thus far have been quantified in terms of their optimal

implementation. When considering the case where the Voronoi diagram is

used as population method the time complexity of the problem drastically de-

creases. As stated in [9] a Voronoi diagram has at most 3n − 6 edges. Since

constants are ignored when analyzing time complexities the amount of edges

of the Voronoi diagram can be regarded as n. The total time complexity of

CHAPTER 3. PATH PLANNING ALGORITHMS 64

the implemented Dijkstra’s algorithm is therefore reduced to a crude bound

above O(n2) in this non-optimal implementation of the algorithm. With the

algorithm mentioned in [7] it can possibly be decreased even more toward

O(n). Once again this optimal time complexity will be used in comparisons.

True

False

LB = 1
Construct rectangular path around obstacle environment.
This is done to prevent infinite loops with Voronoi.

Extract Path from by noting the last entry in
and then searching from the lowest index

side of for a paint-filled edge with endpoint
corresponding to the starting point of the last
entry in . Repeat process until the origin is
found in on a row in

T
T

T

T
V T.1

Remove Path segments with length below a certain
user specified tolerance and connect the path
segments between which the removed segment
resided

Extract Path

Figure 3.28: Extract Path from T

A final note can be made about the Extract Path block with the contents shown

in Figure 3.28. These routines represent the final stages of the algorithm

where the populated tree, T, is used to extract the shortest path calculated by

the algorithm. This is done in a manner as discussed previously where the

path is traced back from the destination to the origin, by finding lowest index

entries in T, which have endpoints as the starting points of the previous edge

treated in T, where the last index in T is treated first. Two additional routines

were implemented to accommodate the degenerate cases of the Voronoi algo-

rithm where the populated set yields no connection between starting point

and destination. In such a case the linkbox flag is set and a rectangular path

is simply constructed around the entire two-dimensional reference system

along the boundaries defined.

The other routine was implemented to remove path line segments from the

extracted path which have lengths below a certain user specified thresh-

old. This was implemented so that the UTV is not unnecessarily burdened

with infinitesimally short path segments before stopping and turning to new

headings. It should be noted that when this tolerance is too large path seg-

ments may be removed which were required to avoid a certain obstacle, since

the previous path segment and next path segment in the sequence, before and

CHAPTER 3. PATH PLANNING ALGORITHMS 65

after the path to be removed, are connected by simply making the endpoint

of the previous segment the starting point of the next segment. Care should

therefore be taken when deciding this tolerance and the scale of the obstacle

ridden environment is an important factor to consider. This routine is gen-

erally only applicable when using a Voronoi population where very short line

segments can occur. In the case of a Visibility population however paths are

generally represented by longer line segments and short path line segments

which may occur are most often compulsory for obstacle avoidance. The rou-

tine therefore becomes redundant in the case of a Visibility population.

Results

In order to test the implemented Dijkstra algorithm the entries in the tree,

T, were written to a text file during execution. From the same plotting rou-

tines used for the Voronoi and Visibility diagrams, these edges of T are then

extracted in the same order they were added to T, and superimposed, one by

one, on the corresponding populated graph. The speed at which the edges in

T (the edges filled with paint thus far) are plotted can be varied by the user

so as to avoid excessively long delays when the populated graph has a large

number of edges. The edges are therefore plotted in an animated fashion to

give a visual representation of how the algorithm executes.

Consider Figure 3.29. The 4 plots in this figure can be thought of as "still

frames" that were captured at 4 specific moments in time during the algo-

rithm’s execution. In plot I it is seen how the paint frontier has progressed

only partially into the populated set. In plot II the paint frontier progresses

further with more nodes added to F and more edges present in T. The paint

frontier then progresses further through plots III and IV.

As soon as the paint frontier reaches the destination point the path is known

and extracted from T in the manner discussed previously. Figure 3.30 shows

this extracted path. As shown, the path approximates a straight line and

gives a good indication that the algorithm functions correctly. In this fig-

ure the heavy, O(n2), load on Dijkstra, with respect to the amount of Visibility

edges, can also be seen. This heavy computational cost of Dijkstra’s algorithm

can be contributed to the fact that the algorithm actually achieves more than

what is required. When taking a closer look it is seen that this algorithm not

only computes the shortest path to the destination but in fact the shortest

path to any node in F! Stated in different terms the shortest path to any point,

CHAPTER 3. PATH PLANNING ALGORITHMS 66

N

Figure 3.29: Different stages of implemented Dijkstra Algorithm

which is the node of any line segment already filled with paint, can be found

through a simple search in T.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Destination

Start

Path

Figure 3.30: Path found with implemented Dijkstra Algorithm

Dijkstra’s algorithm can therefore be considered as a brute force method for

CHAPTER 3. PATH PLANNING ALGORITHMS 67

calculating more than what is required for a path planning application where

the destination is known. In the next section it will be seen how Dijkstra’s al-

gorithm can be modified slightly to yield a new algorithm with a much lower

computational cost. In Figure 3.31 it is seen how the implemented Dijkstra’s

algorithm also yields good results when convex polygonal obstacles are used

in conjunction with the Visibility graph. In this plot it is seen how the larger

convex obstacles imply less edges of visibility and therefore a marginally de-

creased load on Dijkstra. The computational cost is however still high.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Destination

Start

Path

Figure 3.31: Path found with Dijkstra Algorithm for Convex obstacles

In order to see the drastically decreased load on Dijkstra, when the Voronoi

diagram is used as population method, refer to Figure 3.32. It is clearly seen

how the large decrease in population edges drastically decreases the load on

the Dijkstra implementation. As mentioned previously, the time complexity

of the algorithm is decreased (with an optimal implementation) toward O(n)

when Voronoi is used.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

V

Obstacles

Voronoi Edges

Paint Frontier

Path found

Figure 3.32: Path found with Dijkstra Algorithm on Voronoi population

CHAPTER 3. PATH PLANNING ALGORITHMS 68

The 4 still frames which show the progress of the paint frontier is also shown

for the Voronoi case in Figure 3.33. This section on Dijkstra’s algorithm can

therefore be concluded with a brief summary on the characteristics of the

algorithm. As shown, the algorithm is capable of accurately determining

the shortest path from a populated set generated by either the Voronoi or

the Visibility population method. The algorithm however proves cumbersome

and computationally expensive when used in conjunction with the Visibility

graph. In the case of the Voronoi diagram however, it is much more efficient

and yields good results at an acceptable computational cost.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

IV

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Destination

Start

I

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

II

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

III

Obstacles

Voronoi Edges

Paint Frontier

Figure 3.33: Different stages of Dijkstra Algorithm on Voronoi population

A final note can be made about Dijkstra’s algorithm and the fact that it "over

calculates" the problem by finding the shortest routes to all nodes in F rather

than just to the destination. Although of no use in this project, this character-

istic can be exploited in a different unmanned terrestrial vehicle application

where several possible destinations exist and the route to the nearest one

is required. An example of this would be a robotic UTV which is required

to gather resources from any one of several known resource points. This is

merely a vague example but encourages thought on the large number of pos-

sible applications of Dijkstra’s algorithm.

CHAPTER 3. PATH PLANNING ALGORITHMS 69

3.3.2 A*Star

Algorithm

As noted in the previous section, Dijkstra’s algorithm achieves more than

what is required for this path planning application. In this project only a

shortest path to a known destination is required and yet Dijkstra’s algorithm

calculates the shortest path to several nodes while finding the shortest route

to the destination. This proves inefficient due to high computational costs,

especially when used on the Visibility graph, and is not application specific

but rather a solution to a more general problem. A highly attractive alterna-

tive is the A*Star search.

A*Star can also be visualized as an algorithm simulating the process of paint

spreading through pipes, and is in fact very closely related to Dijkstra’s al-

gorithm. However, in the A*Star case the algorithm can conceptually be re-

garded as spreading paint through the pipes (population edges) in a biased

manner by favouring certain pipes over others. A*Star accomplishes this by

adding a certain cost function, also known as a heuristic, which is continu-

ously minimized while deciding on which population edge should be filled

with paint next. This cost function is referred to as a heuristic because it is

generally an approximation of a certain cost yielded when a certain popula-

tion edge is chosen. The heuristic function which is chosen differs from appli-

cation to application and is strongly dependent on the environment in which

the algorithm is used. Since an optimal path is the main consideration in this

project, a heuristic was chosen which bases its cost on the Euclidean distance

to the destination, should a certain population edge be chosen. It should be

noted that this is not the only possible heuristic and in fact there are a wide

variety of heuristics to choose from. In some applications for instance the

cost is not only based on the length of the path but also on the specific terrain

where a UTV would for instance prefer a path along a road rather than a path

going through hazardous terrain. Another attractive possibility, for airborne

applications, is a heuristic which adds a penalty to paths which imply severe

changes in heading angle.

Since this algorithm no longer "spreads paint" uniformly and evenly through

the populated grid a more appropriate way of referencing the paint frontier

would be to consider it a closed set of edges which have been forcefully and

selectively filled with paint. The nodes of F now represent the nodes of this

closed set and all population edges incident to these nodes of F are regarded

CHAPTER 3. PATH PLANNING ALGORITHMS 70

as the open set. The closed set indeed also represents the tree, T, from which

the path is ultimately extracted in the same way as is the case in the Dijkstra

implementation.

The heuristic function, f, used in this project, is defined as follows,

f = G + H (3.3.1)

where G is defined as the cost to go, and H is the cost remaining after having

gone. Stated in more specific terms, G is the new accumulated distance from

the origin, along the population edges in T, should a specific new population

edge candidate be selected and added to the closed set. It can already be noted

that G is in fact merely the cost function minimized by Dijkstra’s algorithm.

The only difference with A*Star is the addition of the term, H, to the cost

function, which is chosen in this project as the Euclidean distance from the

other end of the new candidate edge (the node of this edge not yet in F) to

the destination. When considering the fact that A*Star attempts to minimize

this cost function with the selections it makes, it is already evident that the

algorithm will favour straight paths over paths implying large detours, since

the shortest distance between two points, A and B, is a straight line, and an

optimal candidate to minimize this cost function is in fact a population edge

lying on this straight line between start and destination.

Consider the simple example of a Visibility graph shown in Figure 3.34. The

Euclidean lengths of all Visibility edges between starting point, A, and des-

tination, B, are shown. Consider the discrete point in time, labeled 1, in this

figure. The first step of the algorithm is to initialize the closed set frontier ma-

trix, F, with the starting node, A. At this point in time all edges incident to

the nodes of F are considered, as indicated, and their corresponding f scores

calculated. The f scores are calculated as the sum of each edge’s length and the

Euclidean length between its node, not in F, and the destination. The edge

incident to F yielding the lowest f score is then added to the closed set, as seen

in the second discrete time step. At this point in time all the new edges, in-

cident to F, are considered again and their corresponding f scores calculated.

Immediately the edge incident to F, from the destination, is found to yield

the lowest f score, added to the closed set and the path is found.

When remembering the way in which Dijkstra executes, it becomes evident

that several of the edges in Figure 3.34 would have been filled with paint be-

fore the path was found. This simple example illustrates how A*Star, with

CHAPTER 3. PATH PLANNING ALGORITHMS 71

an Euclidean heuristic, always directs itself toward the goal along a path ap-

proximating a straight line.

A

BHeuristic

Edges in closed set T

Current open set

Nodes in F

Obstacles

Visibility edges

2.9 1.5

2.7

1.3

2.2

5.
0

3.6

3.8

1.
61
.8

0.5

2
.2

2.
7

3.5

3.2

3
.2

2.1

3.9

2.9

5.
0

3.6

3.8

4.2

3.9

3.5 4.7

f s
co

re
 =

 9
.2

f score = 7.3

f sc
ore = 7.5

2.9

5.
0

3.6

3.8

4.2

3.9

4.7

f s
co

re
 =

 9
.2

f sc
ore = 7.5

f score = 7.6
f score = 7.6

0.5

1.3

1.
6

3.5

3.2

2.
7

f
sc

or
e

=
10

.1

f score =
 8.3

f score = 7.3

f sc
ore

=
8.6 2.1

f score = 8.2

A

B3.5

1 2

3

3.8

Shortest Path Found

Figure 3.34: Simple example of an A*Star search with Euclidean Heuristic

In some cases however a path approximating a straight line does not exist

due to large obstacles forcing shortest paths which consist of detours. Con-

sider the discrete steps shown in Figure 3.35. In this figure a Visibility graph is

shown for two obstacles where one large obstacle prevents straight line paths

from being available. The progress of the algorithm is the same in these steps

as in the previous example. It should however be noted how nodes, which

are already in F, are not added to F again, as shown in discrete step 5. This is

done for the same reason stated during the discussions on Dijkstra. In steps

5 and 6 the new edges are therefore added to the closed set, T, with starting

points defined as the node, of the specific edge, which was first added to the

closed set but the nodes are not added to F.

In this figure it is seen how A*Star once again attempts to find a shortest path

along a straight line but fails in doing so and then starts to add more edges

to the closed set before finding the shortest path. The algorithm is therefore

CHAPTER 3. PATH PLANNING ALGORITHMS 72

6.9

7.2

4.2

4.
1

4.1

1
.2

3.7
4.

1

4
.0

3.2

3.5

1.2

1.4

7
.0

7
.0

0.4

0.4

6.9

7.2

3.2

3.5

4.6

4.
3

5.7

5.4

6.9

7.2

4.2

4.
1

4.1

1
.2

3.7
4.

1

4
.0

3.2

3.5

1.2

1.4

7
.0

7
.0

0.4

0.4

6.9

7.2

3.2

3.5

4.6

4.
3

5.7

4.3

1
.2

1.2

4.
1

21

6.9

7.2

3.5

1
.2

4.
1

3.2

4.1

5.4

4.3

5.7

4.
3

4.6

3

6.9

7.2

3.5

1
.2

4.
1

3.2

4.1 4.
3

4.6

3.7

4
.0

5.7
4.3

5.4

4

6.9

7.2

3.5

1
.2

4.
1

3.2

4.1 4.
3

4.6

3.7

4
.0

5.7

5.4

Not added to
again

F

5

6.9

7.2

3.5

1
.2

4.
1

3.2

4.1 4.
3

4.6

1.4

3.7

4
.0

1.2

Not added to
again

F

6

6.9

7.2

3.5

1
.2

4.
1

3.2

4.1 4.
3

4.6

1.4

3.7

4
.0

5.7

1.2

7

4.
1

4.34.3

6.9

7.2

3.5

1
.2

4.
1

3.2

4.1 4.
3

4.6

3.7

4
.0

5.7

1.2

8

4.
1

0.4

7
.0

7
.0

4.3

6.9

3.5

1
.2

3.2 1.4

1.2

4.
1

0.4

Shortest Path Found

9

A B

4

Heuristic

Edges in closed set T

Current open set

Nodes in F

Obstacles

Visibility edges

1.4

1.2

1.4

1.2

1.4

1.2

1.4

Figure 3.35: Example of an A*Star search with detours

slowed down and this can be contributed to the fact that in this case the ap-

proximations of the Euclidean heuristic function are inaccurate. More specifi-

cally the heuristic function drastically underestimates the true cost after hav-

ing gone, H. When noting that Dijkstra is in fact a degenerate case of an A*Star

algorithm, where H is simply zero, it becomes evident that a heuristic, which

underestimates H, approaches a Dijkstra expansion. Relatively good results

are however still obtained and although not as fast as in the first example the

path is still found in less steps than what would have been the case if Dijkstra

was used. To illustrate this the steps taken by Dijkstra in finding the shortest

path in the same obstacle environment is shown in Figure 3.36. It can clearly

be seen that A*Star accomplishes what Dijkstra accomplishes in less discrete

time steps by adding fewer edges to the closed set whereas Dijkstra fills the

majority of the edges with paint before finding the optimal path.

CHAPTER 3. PATH PLANNING ALGORITHMS 73

Shortest Path Found

1 2 3

456

7 8 9

101112

13 14

Edges in T

Obstacles

Visibility Edges

Figure 3.36: Equivalent Discrete Dijkstra steps

As mentioned at [19], another important characteristic to note is the fact that

a heuristic which overestimates H will not always yield the shortest path. The

Euclidean heuristic is therefore an effective choice in this implementation be-

cause it will never overestimate H, but only underestimate it and in some

circumstances be a very accurate estimation. It therefore has a worst case

bound with the same time complexity as Dijkstra, O(n2), with an optimal im-

plementation of Dijkstra, but is generally much faster. As an added bonus it

favours straight paths which is in accordance with the preferences for motion

of the UTV.

Implementation

The implementation of this algorithm was done according to the flowchart

shown in Figure 3.37. As seen the implementation is similar to the Dijkstra

implementation with the exception of the added heuristic function. The rou-

tines contained in the A*Star Update F and T block are shown in Figure 3.38

while the routines of the Extract Path block are identical to the one used with

the Dijkstra implementation.

An additional note should be made about the scenario where two candidates

in the open set have identical f scores. To accommodate this scenario, which

CHAPTER 3. PATH PLANNING ALGORITHMS 74

is most certainly a possibility, a certain tie-breaker function has to be imple-

mented. Similarly to the choice in Heuristic this tie-breaker function is also

application specific and can be chosen in many ways. The reader is referred

to [17] for some suggestions. As shown in the flow diagram of Figure 3.37,

ties are simply broken in this implementation by choosing the edge with the

lowest heuristic score, H.

-Number of population edges
-Population edges in terms of
vertices
-Starting point
-Destination point

V1 2and V

Input Parameters

Entry

Path_Planner.c

Exit

A*Star_Shortest_Path.c

V F1 = []i N

f f< Min

kmark k
f = f

=

Min
Min H = H

f f= Min

H < Min H

E Ek NC k FN[] = 1 [] =
= G + H LCV = 1

i
f

False

True

False

True

True

True

False

V F2 = []i N

f f< Min

kmark k
f = f

=

Min
Min H = H

f f= Min

H < Min H

False

True

False

True

True

True

False

False

E Ek NC k FN[] = 2 [] =
= G + H RCV = 1

i
f

False

Start

Store population edges in
structure with each row:

[]V V1 2 L PF NC FN

LB = 0 DF = 0
SizeT = 0 SizeF = 1
Store in first row of :
[(0)]

F
N0 LT

NCF = 0k = 0

LCV = 0
RCV = 0

Ek[] = 1PF

True

False

i = 0

i ++

i > SizeF
True

False

LCV & RCV = 1
True

False

- Store

nodes
- = Lower index in of
the two

E
F

F
E

k

k

[] in accordance
with node on with the lower
index of the two

[]

NC

FN F

k ++k > SizeE
False

True

NCF = 1

True

DF = 1
LB = 1

False

True

A*Star Update
andF T

DF = 1

Extract Path

False

Return P

Min = 10000000f
Min H = 10000000

F

E

Frontier Matrix representing nodes on closed set

Tree rooted at origin containing edges in closed set

New candidate flag

-
-

-

population edge

Flag indicating whether population edge

Length of population edge

-

-

-

-

-

T

LT

NC

FN -

Total length to origin along edges of T

Index in which corresponds to a vertex of

candidate

is in closed set

Linkbox flag indicating no connection between

start and destination. To accomodate degenerate
cases with Voronoi population

Flag indicating whether destination has been

reached

Population edge, index, with vertices

-

LB -

DF -

-

0 - Population edge is not a candidate

1 - Population edge is a candidate with vertex in

left column corresponding to node in

2 -

F

Population edge is a candidate with vertex in

right column corresponding to node in F

F

E

E

Ek

PF

L

k

k

k k, V V1 2and

LCV - Flag indicating left column vertex of , , was

found which corresponds to a node in

E V

F

k 1

Legend

RCV - Flag indicating left column vertex of , , was

found which corresponds to a node in

Integer storing current size in rows of the tree,

Integer storing current size in rows of the frontier

matrix,

Integer storing size in rows population edges,

Flag indicating whether new candidate

was found

Current node in

Calculated Path Matrix

Cost to new node >>>

Heuristic function. In this case the Euclidian

distance to the destination from V

V depending on which node of

corresponds

Node stored in

Index of candidate which yields the

lowest score

Node of the origin

E V

F

T

F

E

F

k 1

1

2

0

SizeT -

SizeF -

SizeE -

NCF -

F -

-

- = G + H
G = [] + []
H =

[] or
[]

-

-

-

i

i LT k L

k

k k

i

i

kmark k

P

F E

E
E E

F

N F

E

N

f f

f

Figure 3.37: Main Flowchart of implemented A*Star Algorithm

CHAPTER 3. PATH PLANNING ALGORITHMS 75

In the case of ties, population edges are therefore favoured which yield end-

ing nodes closer to the destination. Should the heuristic scores also match,

the first candidate in the open set, which was marked, is simply chosen. Ulti-

mately the choice in tie-breaker simply has the ability to speed up the search

if it is wisely chosen.

True

False

DF = 1

E [] = 1NCkmark

True

False

SizeT++

Get total length to
current node
F[]Ekmark[]FN

E [] = 1PFkmark
E F[] in

already?
V2kmarkSizeF++

Add E F

F

[] to and
store new total distance

in [][]

V2

SizeF LT

kmark

Add E E
T V

T

[] and [] on
new row of , where is stored
in the left column of the row in

and denotes the start of the line
segment

V V1 2

1

kmark kmark

F reached destination?

False

True

True

False

DF = 1

E [] = 2NCkmark

True

False

SizeT++

Get total length to
current node
F[]E []FNkmark

E [] = 1PFkmark
E F[] in

already?
V1kmarkSizeF++

Add E F

F

[] to and
store new total distance

in [][]

V1

SizeF LT

kmark

Add E E
T V

T

[] and [] on
new row of , where is stored
in the left column of the row in
and denotes the start of the line
segment

V V2 1

2

kmark kmark

F reached destination?

False

True

- Reset all E
E

k NC

k FN

[]
- Reset all []

A*Star Update andF T

Figure 3.38: Flowchart of A*Star Update F and T block

Results

In order to illustrate the performance differences between the A*Star algo-

rithm and the Dijkstra algorithm, simulation results are once again presented.

Consider the results of the algorithm on a Visibility population with square ob-

stacles, shown in Figure 3.39. As seen the A*Star algorithm completely out

performs Dijkstra in this example. A bare minimum of the population edges

are added to the closed set before the same optimal path is found and this

can be attributed to the fact that a path approximating a perfect straight line

CHAPTER 3. PATH PLANNING ALGORITHMS 76

is available in this population set. Once again the tendency of the Euclidean

heuristic to approximate straight paths is demonstrated and the immense per-

formance improvements in comparison with Dijkstra, when this Euclidean

heuristic closely resembles the actual cost, H, is clearly visible. Since a Visibil-

ity graph generally has n2 edges, and the inner loop with regards to the closed

set, F, in the implementation shown in the previous section, only executes a

small constant amount of times in this example (since T grows minimally),

the complexity of the implementation is suddenly reduced from above O(n3)

(with the non-optimal Dijkstra implementation) to possibly O(n2). Since this

is a non-optimal implementation and the optimal implementation of Dijkstra

has a time complexity, O(n2), the complexity could possibly be lowered even

more toward O(n)!

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Path

Closed Set

Visibility Edges

Obstacles

Start

Destination

Figure 3.39: A*Star Search on Square Obstacle Visibility Population

To see how an Euclidean A*Star search becomes less effective and tends to-

ward the slower performances of Dijkstra, when straight paths are not avail-

able, refer to Figure 3.40. In this figure it is clearly visible that there is only a

marginal performance increase from the simulation on the same obstacle set

presented during the discussions on Dijkstra. It is visible how the tendency

of a Voronoi population to represent paths which are not straight degrades the

performance of the Euclidean A*Star search. However, when considering

the fact that Voronoi populations have a much lower complexity than Visibility

graphs, in the order of n edges, as proposed in [9], the overall performance

still comes close to a Visibility graph and A*Star combination, and might in

some cases be even better when A*Star performance is degraded on a Visibil-

ity population (discussed in the next paragraph).

CHAPTER 3. PATH PLANNING ALGORITHMS 77

Start

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Path

Closed Set

Visibility Edges

Obstacles

Destination

N

E

Figure 3.40: A*Star Search on Square Obstacle Voronoi Population

Two simulation results with a convex obstacle set are presented in Figures

3.41 and 3.42. These figures effectively illustrate the drastic performance

degradation a mere change in start and destination around the same obstacle

set can cause. Although a clear line of site is not available in Figure 3.41 it

is seen how A*Star still performs relatively well with a minimal growth in,

T, compared to the performance of Dijkstra on the same population, shown

in Figure 3.31. However, when the start and destination is moved in such a

way that the shortest path is forced into being a large detour, shown in Figure

3.42, the Euclidean heuristic drastically underestimates, H, and the algorithm

degenerates toward the Dijkstra algorithm where, H, is simply zero. This is

clearly seen in the amount of edges which are added to the closed set in Fig-

ure 3.42 which more closely resemble a Dijkstra expansion.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Destination

Start

Path

Closed Set

Visibility Edges

Obstacles

N

E

Figure 3.41: A*Star Search on Convex Obstacle Visibility Population

CHAPTER 3. PATH PLANNING ALGORITHMS 78

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Destination

Start

Path

Closed Set

Visibility Edges

Obstacles

N

E

Figure 3.42: A*Star Search on Visibility Population with no line of sight

To summarize, the A*Star algorithm with an Euclidean heuristic greatly im-

proves performance in an application where the destination is known. In the

worst case it can only be as computationally expensive as Dijkstra and never

worse and in most cases better. It still accurately determines the shortest pos-

sible path since the cost, H, is not overestimated but at most accurately ap-

proximated and generally underestimated. A*Star therefore proves to be the

more attractive algorithm in this project. Dijkstra should however be given

credit for its efficiency in other applications where one specific destination

is not known (the type of application this particular A*Star implementation

will not be able to accommodate).

3.4 Performance Summary

In order to give a summary of the respective algorithms investigated, tables

are presented as shown in Figures 3.43 and 3.44. These tables are based on an

intuitive scoring system to give a rough indication of which algorithm com-

bination is optimal in this path planning application.

It should be noted that all time complexities listed are not those of the imple-

mented algorithms but rather the complexities of these algorithms assuming

optimal implementations, as discussed previously. This is done to ensure one

algorithm is not unfairly disadvantaged. From these tables it is visible that

as far as computational cost goes a Voronoi and A*Star combination is opti-

mal. However, Voronoi yields non-optimal, non-straight paths as a price for

achieving maximum clearance from obstacles. This alone could possibly be

CHAPTER 3. PATH PLANNING ALGORITHMS 79

overlooked to place Voronoi higher on the scoreboard since Visibility graphs

have the reciprocal downside of minimum clearance from obstacles in order

to yield optimally straight and short paths, and significant increases in com-

putational cost.

Voronoi Diagram Visibility GraphConsideration Score Score

Clearance Generally maximum clearance

Only square obstacles

Paths not straight and imply detours.
Absolute shortest path never found.

Occasional degeneracies due to
pruning and then no path is found.
Also non-valid collision paths in
some cases. Stable when large
number of well separated obstacles
are present.

O()n log n

Minimum clearance

Square and convex polygons

Paths resembling straight lines and
shortest possible path always
found.

Stable under any amount of
obstacles. Insufficient clearances
however and Minkowski sum is
required. High computational costs
when large amount of obstacles.

O()n log n

Obstacles

Paths

Stability

2

+1 -1

-1 +1

-1 +2

-2

+1

0

-1

TOTAL -2 Optimal

2Complexity +1 -1

TOTAL -2 +1Optimal

Figure 3.43: Performance summary of population algorithms

Dijkstra A*StarConsideration Score Score

Always stable

Very high computational cost due to

Less computationally expensive but
still not optimal.

Dijkstra’s

heuristics

n

n

tendency to over calculate
the problem.

More than one destination can be
accommodated and the route to the
nearest one found. Constant cost
function G which simplifies the
algorithm since no are
required.

O()

Closer towards to O()

Always stable

Application specific and only one
destination can be accommodated.
Choice in also application
specific and in some cases hard to
choose. Ultimately the
should estimate the actual cost as
accurately as possible.

Worst case boundary O().
Generally much faster.

Marginally lower than

Extremely effective with the
exception of scenarios where
approximate straight paths are not
possible.

Not as effective as with
edges but still faster than

Visibility
Dijkstra.

heuristic

heuristic

n

Dijkstra

Stability

Complexity
with

population
Visibility

+1

-1

Complexity
with
population

Voronoi

Visibility used

Voronoi used

-2 +2

+1

0 0

General

2 2

+1

0 +1

0 0

TOTAL 0 +3Optimal

Figure 3.44: Performance summary of shortest path algorithms

Voronoi however has an added deficiency which scores it much lower than

Visibility graphs. This is the possibility of it not finding a path or occasion-

ally yielding paths which would imply collisions. From a stability point of

view Visibility graphs are therefore the better choice and when considering

CHAPTER 3. PATH PLANNING ALGORITHMS 80

the generally low computational cost of an A*Star search on a Visibility popu-

lation, the increased O(n2 log n) population complexity of the Visibility graph

is a small price to pay. As an added bonus a method is available for ensuring

improved obstacle clearance when a Visibility graph is used and will be dis-

cussed briefly in Chapter 7. The optimal combination, of the implemented al-

gorithms in this project, is therefore a Visibility and A*Star combination, with

the only requirement being, an algorithm to ensure sufficient clearances.

3.5 Summary

This chapter featured an in depth discussion on the specific path planning

algorithms used in this project. It was shown that a population method is

first used to construct a roadmap representing several feasible paths through

the obstacle environment. Two shortest path algorithms were then introduced

which are used on these populations to find the optimal path consisting of a

combination of these line segments in the obstacle-free space. The basic the-

ory behind these algorithms were presented, followed by a discussion on the

implementations thereof and finally results were shown. A comparison was

then given between the respective algorithms and of the algorithms imple-

mented in this project it was decided that the optimal combination is a Visi-

bility population used in conjunction with an A*Star search. For an interactive

demonstration of these algorithms please refer to Appendix D. This chapter

is therefore concluded and a closed path planning module is now available

for use by the UTV’s controllers. This is indeed the topic of the next chapter.

Chapter 4

Control and Simulator

This chapter features a discussion on the controllers implemented to steer

the UTV along a calculated path consisting of straight line segments. All

state measurements used by these controllers are obtained from a state es-

timator on the OBC, which is discussed in Chapter 5, with the exception of

the wheel speed measurements and current measurements for the drive sys-

tem controllers which are obtained from the encoders and current transducer

respectively, as discussed in Chapter 2. The simulator for the entire system

implemented in Matlab is also presented toward the end of this chapter.

4.1 Overview

The UTV’s controller hierarchy consists of several levels, each level serving

a specific purpose through utilization of controllers on lower levels. Before

attempting the design of these controllers a clear understanding of what is

required from the UTV, in order to achieve its purpose, is necessary. The

UTV is required to perform the following tasks.

• Be manually operatable from a ground station through RF communica-

tion - Appendix C.

• Receive the autopilot initialization command and start all algorithms

and control sequences - Appendix C.

• Calculate a path consisting of straight line segments through an obsta-

cle ridden environment given a point of departure and destination -

Chapter 3.

• Commence navigation of the calculated path. Throughout navigation,

stop momentarily at the end of each line segment and turn on the cur-

81

CHAPTER 4. CONTROL AND SIMULATOR 82

rent position to achieve the heading of the next line segment - Chapter

4.

• Repeat this until the destination is reached, after which coming to a

halt and going into standby, awaiting further instructions - Chapter 4

and Appendix C.

• Be able to receive coordinates of additional obstacles during tracking

of a path. In such a scenario come to a halt, recalculate the new best

path and then resume tracking until the destination is reached - Chapter

4 and Appendix C.

• While doing tasks log telemetry and provide a real-time stream of teleme-

try data to a ground station through RF communication - Appendix C.

To achieve these goals the UTV requires the design of several controllers

which range from the lowest level of wheel speed control to the highest level

of path planning and guidance control. The approach consists of designing a

feedback controller on each level and then moving up to the next level with a

successive loop closure, thereby obtaining a new higher level reference input

to the system. At the level where only a specific heading angle and line seg-

ment length is required as input, decision making responsibility is given to

a state-machine which activates and deactivates certain controllers in accor-

dance with the current activity on the path-planning module and the current

UTV state vector.

The chapter will start off at the lowest controller level which is the angu-

lar wheel velocity controller of the drive systems and then progress through

higher levels up to the state-machine.

4.2 Drive System Controller

The lowest level of control is the drive system feedback control which serves

the sole purpose of achieving a reference wheel speed under varying loads.

The plant characteristics of this system is presented in Appendix B and a con-

troller is designed with the assumption that both DC motors are identical.

The decision is made to implement full state feedback control to achieve a

desired response since all states are available for measurement and an es-

timator is not required. It should be noted that this is the only control loop

which does not make use of measurements obtained from the state-estimator,

CHAPTER 4. CONTROL AND SIMULATOR 83

discussed in Chapter 5. This is done since the drive systems’ control loops

run on the PIC microcontrollers, separately from the OBC, as discussed in

Chapter 2 and provide a proverbial black box for higher level controllers to

interface with.

Integral control is further added to the full-state feedback configuration to

provide disturbance rejection and eliminate steady-state errors on the re-

sponse. Since this plant has a bandwidth of 2.83 Hz which is only a factor

8.8 times smaller than the sample rate of 25 Hz, as discussed in Chapter 2,

the decision is further made to follow a direct discrete design approach. This

is done since a factor 30 is recommended for design by emulation as men-

tioned in [4].

Figure 4.1 shows a block diagram of the controller configuration. The con-

troller is designed in the discrete domain and then used to control the contin-

uous plant through use of a zero-order hold D/A converter as can be seen.

As mentioned in [1] this configuration of integral control, with the feed for-

ward, N, introduces a new zero to the system which can be made to cancel the

added closed-loop pole of the integrator state and thereby cancels the excita-

tion of this pole from the reference command input. The zero is introduced

with a choice of N where, N = KI
1−zI

, and zI is the closed loop integrator pole.

-KI

z - 1

Integrator

N

ΣΣΣ

-K

Saturation

ZOH

ΣG Σ

F

1
s H

Bω

x
ωref(k)

ωout(k) ωout

TL

-12

12

T

x(k) x

T

Figure 4.1: Integral Control with full-state feedback and added zero [1]

It should also be noted that the control input is limited to between −12 and

12 V by a saturation block since the maximum and minimum inputs to the

system are 12 V and −12 V respectively from the Sealed Lead Acid Batteries

introduced in Chapter 2. The controller therefore has to be designed with a

balance between use of control and speed of the step response as main pri-

ority. For this reason Matlab’s DLQR function is used to design the feedback

CHAPTER 4. CONTROL AND SIMULATOR 84

gain K for full state feedback.

The Linear Quadratic Regular (LQR) method is used since it serves as a way

of finding an optimal balance between response and control usage. It does

this by minimizing a cost function which consists of the weighted squares of

the states of the system as well as the weighted squares of the inputs to the

system. More information about this method can be found in [1] and the cost

function is simply listed here for convenience.

J =
1

2

N

∑
k=0

[xT(k)Q1x(k) + uT(k)Q2u(k)] (4.2.1)

Before using this method the discrete state-space matrices of the system plant,

from Appendix B, are augmented to include the integral state. This then

yields the following augmented plant model

[

xI(k + 1)

x(k + 1)

]

=

[

1 H

0 Φ

] [

xI(k)

x(k)

]

+

[

0

Γ

]

u(k) −

[

1

0

]

r(k) (4.2.2)

and the augmented control law for state feedback is,

u(k) = −
[

KI K
]

[

xI(k)

x(k)

]

+ Nr(k) (4.2.3)

Substitution of Equation 4.2.3 into 4.2.2 then yields the state-space matrices

for the closed loop drive system with ωre f (k) as input and ωout(k) as output

as seen in Figure 4.1.

[

xI(k + 1)

x(k + 1)

]

=

[

1 H

−ΓKI Φ − ΓK

] [

xI(k)

x(k)

]

+

[

−1

NΓ

]

r(k)

y(k) =
[

0 H
]

[

xI(k)

x(k)

]

(4.2.4)

The goal is now to choose weighting matrices Q1 and Q2 in Equation 4.2.1 in

such a way that a fast response is obtained while not exceeding the saturation

limits, in Figure 4.1, on the actuator input. Through a process of trial and

error in Matlab with the DLQR function the following matrices were found

which yielded a feedback gain, K, which resulted in a satisfactory closed

CHAPTER 4. CONTROL AND SIMULATOR 85

loop response while not exceeding actuator limits.

Q1 =







236 0 0

0 10 0

0 0 10






Q2 =

[

100
]

(4.2.5)

The maximum rotational velocity of the wheels was recorded as 8 rad/s and

the system must therefore be capable of achieving this step without satu-

rating the controls. Figure 4.2 shows how a relatively fast step response is

obtained while keeping the control usage below the saturation limit of 12 V.

An angular velocity disturbance step, due to a load torque, is also applied to

the system after 4 seconds and the disturbance rejection effect of the integral

control on the steady state response can be seen.

Step Response

Control Voltage

Disturbance Torque

Step input

Time [s]

A
m

p
li

tu
d

e
[r

ad
/s

]

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Figure 4.2: Closed Loop Drive System’s Response

As confirmation of accuracy the response of the closed loop discrete state-

space model of Equation 4.2.4 was compared to the response from the Simulink

model shown in Figure 4.2. These responses matched and a transfer function,

GDrive(z), is found for the closed loop drive system with the following poles,

z1 = 0.4231 + 0.2366i

z2 = 0.4231 − 0.2366i

z3 = 14.44 × 10−12

and a system bandwidth of 3.15 Hz, as previously mentioned in Chapter 2.

CHAPTER 4. CONTROL AND SIMULATOR 86

4.3 Yaw Rate Controller

The next higher level of control is the yaw rate controller. The yaw rate con-

troller is required to receive a certain yaw rate reference command and then

force the UTV to achieve this yaw rate, with zero steady state error, by si-

multaneously sending reference angular wheel velocities to the right and left

drive systems of the UTV which have closed loop characteristics as presented

in the previous section.

Before continuing with the design of the yaw rate controller a discussion on

the UTV’s motion in a two-dimensional North-East (NE) reference frame is

required. In order to fully define motion of the UTV in this plane the North-

ern, N, and Eastern, E, coordinates are required as well as the heading angle,

ψ, of the UTV. In Figure 4.3 the differential equations of motion for the UTV

are shown. From inspection it is visible that the inputs to the system are the

forward velocity, V, and the yaw rate, r.

ψ

V
N

E

N = Vcosψ

ψ = r

E = Vsinψ
U

TV

d

r

Figure 4.3: Motion of the UTV in 2 Dimensional Inertial Reference Frame

Since the UTV has no steering angle and simply steers using a skid steer

principle the side-slip angle is regarded as zero and the velocity vector, V,

is in line with the heading angle of the UTV. The task at hand is to find the

relationship between the V and r reference inputs and the wheel speed ref-

erences so as to be able to design a yaw rate controller, with a combination

of the closed loop drive systems in the previous section as plant. The diffi-

culty comes in when one considers the fact that wheel speeds are dependent

on both the yaw rate command as well as the forward velocity command

and both V and r affect both left and right wheel speeds of the UTV. The

yaw rate, r, can be thought of as being proportional to a differential wheel

speed, which is superimposed on a common mode wheel speed, V. As will

be shown shortly, the system can be decoupled through definition of two

virtual inputs and individual controllers can then be designed for V and r

CHAPTER 4. CONTROL AND SIMULATOR 87

respectively.

However, when one considers that the UTV in this project is only required to

track a straight line path at a set forward velocity the V input can be regarded

as a constant over the durations of the yaw rate controller being active. For-

ward velocity is therefore operated in an open loop configuration since ut-

most accuracy is not required in the velocity at which each line segment is

tracked, and the system reduces to a yaw rate controller superimposed on

open loop forward velocity reference commands. It should be noted that a

simple secondary controller is activated after each line segment, which does

not make use of the yaw rate controller, to turn the UTV on its current lo-

cation until the new line segment’s heading is achieved. In hindsight it was

realized that this secondary controller is redundant and one heading con-

troller being used throughout will have sufficed. Since the state machines,

presented later in this chapter, were already implemented at this time a de-

cision was made to leave the secondary controller in place but it should be

noted that it is not required. More about this secondary controller and the

open loop operation of V will follow later in this chapter.

In order to aid with finding expressions for the left and right wheel speeds in

terms of V and r the following virtual inputs are defined,

Vcm =
VL + VR

2

Vdm =
VL − VR

2
(4.3.1)

where Vcm is the common mode forward velocity, Vdm is the differential mode

velocity, VL is the forward velocity of the left side of the UTV and VR is the

forward velocity of the right side of the UTV. From Equations 4.3.1 the left

and right wheel speeds can now be expressed in terms of these two virtual

inputs,

ωL = ωcm + ωdm

ωR = ωcm − ωdm (4.3.2)

where the common mode angular wheel velocity is denoted by ωcm and the

differential mode angular wheel velocity by ωdm. V and r can be defined in

terms of these virtual inputs and vice versa. The yaw rate of the UTV can be

CHAPTER 4. CONTROL AND SIMULATOR 88

expressed as,

r =
VL − VR

d
=

0.2ωdm

d
(4.3.3)

where d is the width of the UTV’s chassis and it is taken into account that the

wheels have a radius of 0.1 m. It therefore follows that,

ωdm =
rd

0.2
ωcm = 10Vcm = 10V (4.3.4)

The block diagram in Figure 4.4 shows a representation of these equations.

The velocity input is a constant as previously mentioned and the constant

tracking velocity for each straight line segment of the path is chosen as 4.5 rad/s

or 0.45 m/s.

Σ

Σ

Σ10

d
0.2

G (z)L

G (z)R

d
0.1 Kslip

V

rref

rout

ωcm

ωdm

ωRref

ωLref

ωRout

ωLout

Σ
1

20 Vout

Constant

0.45 m/s

Figure 4.4: Block Diagram of Yaw Rate and Forward Velocity Plant

Also seen in this block diagram is a slip gain, Kslip, which is used to calibrate

the system model by commanding certain yaw rates and recording actual

measured yaw rates of the UTV. This gain serves as a means of accounting

for the fact that the UTV does not operate with no slip of the wheels in real-

ity and a value of Kslip = 0.53 was found through calibration. The calibration

process is shown in Appendix B. GR(z) represents the transfer function of the

right closed loop drive system while GL(z) represents the left drive system.

A transfer function from the reference yaw rate to the yaw rate output is

found for this plant. From Figure 4.4 the following equation holds.

rout =
0.1

d
[10VGL(z) +

rre f d

0.2
GL(z) − 10VGR(z) +

rre f d

0.2
GR(z)]Kslip (4.3.5)

With the previously mentioned assumption that both DC motors are identical

and that the differences in their responses are negligible, GL(z) = GR(z) =

GLR(z) = GDrive(z), and Equation 4.3.5 reduces to,

Gr(z) =
rout

rre f
= KslipGLR(z) (4.3.6)

CHAPTER 4. CONTROL AND SIMULATOR 89

The yaw rate controller is designed with Equation 4.3.6 representing the plant

dynamics. Intuitively it can be seen in Equation 4.3.5 that differences in dy-

namics between GL(z) and GR(z) are amplified by an increase in reference

forward velocity, V. Since slight inaccuracies exist in the plant models and

due to the assumption that both closed loop drive systems are identical in dy-

namic response, which is not entirely true, the decision is made to design a

proportional integral (PI) controller. The integral part of the controller serves

as way of rejecting steady-state disturbances and also negates the effects of

inaccuracies in the plant model.

Through use of Matlab’s root locus design tools on the plant in Equation 4.3.6

a PI controller is found. A PI compensator is defined in Matlab’s SISOTOOL

and the proportional gain then varied along the root locus to yield a step

response with minimum settling time without producing any overshoot. In

reality the UTV has a maximum yaw rate which corresponds to the wheels

on one side of the UTV rotating at maximum angular velocity and the wheels

on the other side rotating at maximum angular velocity in the opposite di-

rection. This maximum yaw rate was found during practical calibration as

1.06 rad/s. To protect against integrator wind-up in the yaw rate controller it

must be ensured that yaw rate references above this saturation limit does not

occur. Prolonged disturbances such as heavy torque loads, which prevent the

UTV’s wheels from turning, can however still cause integrator wind-up and

it is assumed that such loads are not present during test runs. As will be seen

in the next section, the heading controller which is responsible for yaw rate

reference commands is merely a proportional controller and saturation lim-

its can therefore be imposed there without any integrator wind-up occurring.

The closed loop block diagram of the yaw rate controller is shown in Figure

4.5. The saturation limits on the yaw rate output is shown. Also present is a

yaw rate disturbance input, w, which serves as elementary way of simulat-

ing possible steady state disturbances due to plant model inaccuracies and

torque loads due to the terrain on which the UTV is operated.

Σ G (z)rΣz - 1
0.3177

w

rref(k) rout(k)
-1.06

1.06u(k)

Figure 4.5: Closed Loop Yaw Rate Controller

CHAPTER 4. CONTROL AND SIMULATOR 90

This closed loop system has the step response shown in Figure 4.6.

Step Response

Control

Disturbance

Step Input

Time [s]

A
m

p
li

tu
d
e

[r
ad

/s
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Step Response of Closed Loop Yaw Rate System

Also shown is the rejection of a step disturbance at 3 seconds by the integral

term of the compensator and as seen the overshoot is minimal. The closed

loop yaw rate input to yaw rate output transfer function, Grcl(z), yielded a

bandwidth of 1.25 Hz.

4.4 Heading Controller

The next level of control is the heading controller. Similarly to the approach

in [4] a yaw rate command is generated from the heading error signal. The

task at hand is therefore to design a sufficient controller in another closed

loop configuration with the yaw rate controller from the previous section as

plant while just adding the natural integrator to yield heading angle from

yaw rate.

Ideally a compensator integrator term is also optimal in this compensator to

reject disturbances such as biases on the yaw rate gyro. However, if yaw rate

gyro biases can be ignored, then the natural integrator is sufficient to allow

tracking of heading commands with zero steady state error. Since the rate

gyros on the UTV are calibrated (set to zero while the UTV is stationary with

appropriate measurement gains and offsets) before each test run, the possi-

bility of biases due to temperature differences are reduced. As will be seen

in chapters to follow an Extended Kalman Filter is used in providing best

estimates of all the UTV’s states, heading angle included. Since this implies

a heading measurement by weighing both the direct measurement from a

magnetometer as well as the integral of the yaw rate gyro the possibility of

CHAPTER 4. CONTROL AND SIMULATOR 91

steady state heading errors is further decreased. During practical demonstra-

tions it was found that proportional control alone is sufficient in allowing the

tracking of heading commands with negligible steady state heading errors.

A further advantage of using only proportional control is the feasibility of

implementing saturation limits on the yaw rate command, which is obtained

from the heading controller, and thus decreasing the possibility of integrator

wind-up in the yaw rate controller. As mentioned in the previous section

the UTV makes use of two heading controllers which are activated respec-

tively depending on whether the UTV is at the end of a line segment or busy

tracking a line segment. Figure 4.7 shows a block diagram of the closed loop

heading controller which is active while the UTV is busy tracking a straight

line segment.

Σ G (z)rclψref(k) ψout(k)
-1.06

1.06

1.611
z - 1

1

Natural
Integrator

Figure 4.7: Block Diagram of closed loop Primary Heading Controller

The other heading controller is activated when the UTV has reached the end

of a line segment and is required to turn on its current location to find the

heading of the next line segment. As mentioned, this controller is unneces-

sary but was left in place due to the state-machine, to be discussed later in

this chapter, already having been implemented at the time of realizing the re-

dundance of a secondary heading controller. The alternative controller runs

separately from the yaw rate controller in an open loop configuration. The

controller simply checks the sign of the yaw rate reference obtained from the

heading controller in Figure 4.7 and then demands −3 rad/s from the one

closed loop drive system and 3 rad/s from the opposite closed loop drive

system accordingly. This command is issued until a heading measurement

within a certain tolerance of the heading angle of the next line segment is

obtained, after which control is given back to the guidance controller, which

makes use of the heading controller in Figure 4.7, and tracking of the next

line segment commences.

Figure 4.8 shows the step response of the closed loop system in Figure 4.7.

The heading compensator proportional gain, KH , was once again found using

CHAPTER 4. CONTROL AND SIMULATOR 92

Step Response

Control

Step Input

Time [s]

A
m

p
li

tu
d
e

[r
ad

]

Figure 4.8: Step Response of Primary Heading Controller

Matlab’s SISOTOOL to plot the root locus of the open loop system and then

varying the gain along this root locus until the fastest step response with no

overshoot was obtained. No overshoot is preferable since overshoot would

imply the UTV displaying oscillatory motions when a step to a new heading

occurs, before settling on the new heading in the steady state. As seen the

the saturation limits on the control (the yaw rate command) simply enters the

UTV into a constant maximum yaw rate for the turn, when large heading step

commands are issued, and since only a proportional compensator is used

no integral wind-up occurs, provided large prolonged torque loads are not

present.

4.5 Guidance Controller

The guidance controller is based on the work done by [4]. The approach is to

generate a heading command from a cross track error signal, which is simply

the lateral distance of deviation from a straight line path. The calculation of

this cross track error signal is done through use of the position measurements

obtained from the state estimator discussed in Chapter 5. This is done by cen-

tering the coordinate system at the start of the current straight line segment,

which the UTV is required to track, and then rotating it until the new OX-

axis lies along the heading of the current straight line path segment. Rotation

is done by setting the beginning of the current line segment as the origin

of the coordinate system and then multiplying the new position vector with

the following transformation matrix which follows from simple geometric

inspection,

Transformation =

[

cosψps sinψps

−sinψps cosψps

]

(4.5.1)

CHAPTER 4. CONTROL AND SIMULATOR 93

where ψps is the heading angle of the current path segment to be tracked.

The cross track error is then simply the OY-axis coordinate of the transformed

UTV location. The transformed OX-axis directly represents the distance trav-

eled by the UTV along its current path segment. Checking for when the end

of a line segment is reached is therefore simply done by checking whether the

current transformed OX-axis measurement is equal to or exceeds the length

of the path segment obtained from the path planner. When this occurs a flag

is set and the state-machine, to be discussed in the next section, activates a

new controller.

Through use of a closed loop feedback configuration, with the heading con-

troller from the previous section as plant and a proportional compensator,

Ktrack , and continuously commanding a zero reference, a guidance controller

is implemented. A proportional gain, Ktrack = 1, was found to yield good

results. This guidance controller forces the UTV to remain on its current

straight line path by continuously adjusting the heading reference in an at-

tempt to achieve the zero track error reference input. A block diagram of the

closed loop guidance system can be found in [4]. Also mentioned in [4] is

the effect of rate gyroscope biases and how the addition of an integral term

to the heading controller alone can nullify these effects. Since satisfactory re-

sults were obtained during test runs, without an integral term in the heading

controller, and since an integral term is undesirable due to previously men-

tioned integrator wind-up possibilities, the decision is made to make use of

only a proportional heading compensator in this project. The rate gyroscopes

are also calibrated before each test run, as previously mentioned, which fur-

ther reduces the possibility of rate gyroscope biases.

The guidance controller therefore completes the final successive loop closure

of the controllers and represents the highest level of control which encapsu-

lates the dynamics of all lower level controllers. This controller makes use

of the following inputs obtained from the path planning module still to be

discussed,

• Pd - Departure coordinates of current path line segment

• Pa - Destination coordinates of current path line segment

• ψps - Heading angle of current path line segment

• Lps - Length of current path line segment

and the following measurements obtained from the state estimator,

CHAPTER 4. CONTROL AND SIMULATOR 94

• N - Northern location measurement

• E - Eastern location measurement

• ψ - heading angle measurement

and only operates during tracking of a straight line path segment and not

during transitions from one line segment to the next. A final note should be

made about the sample rate of these controllers. Although the PC104/CAN

controller, has an update rate of 50 Hz, all UTV controllers can only have

an update rate of 25 Hz due to the limitations presented in Chapter 2. All

software routines on the OBC therefore still run at 50 Hz to accommodate the

PC104/CAN Controller protocol, as in [15], but the UTV control and the state

estimator are only updated in multiples of 2 of 20 ms (50 Hz) and as a result

the required lower sample rate of 25 Hz is obtained.

4.6 Controller Scheduling

In order to accomplish the requirements stated in Section 4.1 the UTV needs

a state-machine which continuously monitors the current mode of operation.

This state-machine sets and clears flags accordingly such that the end of a

current mode cycle is recognized, transitions from one mode to the next is

triggered and special events are serviced. The operation of the UTV during

calculation of a path and tracking of the calculated path is therefore con-

trolled by this state machine. The state machine provides a pre-defined se-

quence in which routines must execute and in doing so enables the UTV to

accomplish the tasks from Section 4.1 which are required during autopilot

navigation.

The state-machine can be subdivided into two modules. The two modules

are the Path Planner module and the Controller module. Flowcharts for these

modules are shown in Figures 4.9 and 4.10 respectively. These two flowcharts

show the logical flow of events of each module, during each 25 Hz cycle,

where the code, represented by the flowchart of Figure 4.9, executes before

the code represented by Figure 4.10. The approach consists of defining sev-

eral boolean flags which are updated during each 25 Hz sample time interval.

The status of these flags indicate the current mode of operation of the UTV,

and control the order in which routines and algorithms execute.

The Path Planning module is responsible for the calculation of paths through

use of specific user-selected algorithms as well as passing the path line seg-

CHAPTER 4. CONTROL AND SIMULATOR 95

ments to the Controller module incrementally. The Controller module is re-

sponsible for updating the UTV controllers as well as activating and deacti-

vating controllers appropriately in order to track the path obtained from the

Path Planning module.

BEGIN

END

Segment_Done = 1

PC = 1 NPS = 1 SC++

SC > NS

Extract Next
Line Segment

Pd, Pa, HLS, LLS
‘s

NPS = 1

PC = 0

PC = 0

Halt = 1
PC = 0

Halt = 0

StartE = EM
StartN = NM

Calculate
Path

PC = 1
SC = 0

Extract First
Line Segment

Pd, Pa, HLS, LLS
‘s

True False

True

False

True

False

True

False

True

False

True

False

NM - Measured UTV Northern coordinate

EM - Measured UTV Eastern coordinate

StartE - Eastern coordinate of UTV Departure Point

StartN - Northern coordinate of UTV Departure Point

Pd - Departure coordinates of current line segment

Pa - Destination coordinates of current line segment

LLS - Length of current line segment

HLS - Heading angle of current line segment

Halt - Stop the UTV

NPS - New Path Scheduled flag

PC - Path Calculated flag

SC - Counter to indicate current segment number of path

NS - Number of segments in path

Legend

Initialize Path Stuctures
and Variables

PC = 0
SC = 0
NS = 0

NPS = 0
Halt = 0

During Initialization on OBC

Figure 4.9: Flowchart of Path Planner Module State-Machine

The order of routines in one module is partially determined by the status of

flags which are only set in the other module and vice versa. Certain flags

are also set externally through user input from the UTV’s RF ground station

and further determine the flow of events. The most vital external flag being

CHAPTER 4. CONTROL AND SIMULATOR 96

the new path scheduled flag which is set as soon as a new obstacle is uploaded

from the ground station to simulate the process of obstacle detection.

Initialize Controller Variables to 0
UTV_Mode = 1

Segment_Done = 1
HF = 0

During Initialization on OBC

OX-axis measurement > LLS

BEGIN

UTV_Mode = 1

Calculate
Track Error

HF = 0
V = 0ref

PC = 1
Segment_Done = 0

V = 0
HR = HLS

ref

Condition
Angles

AbsoluteValue(HR - HM) < 0.2

Segment_Done =1
UTV_Mode = 1

V = 0
HR = HM

ref
UTV_Mode = 1

UTV_Mode = 0

HF = 1
PC = 1

Segment_Done =0
UTV_Mode = 0
Obtain HR from

Guidance Controller

True

False

True

True

True

True

True

False

False

False

False

True

False

False

V = 0ref

Condition
Angles

Update Secondary
Heading Controller

HF = 1

Update Primary
Heading Controller

HR - Heading Reference

HLS - Heading of the current
line segment of the path

HM - Current Measured Heading

HF - Heading Found Boolean

PC - Path Calculated Boolean

Legend

LLS - Length of line segment

W - Left wheel speed referenceL

W - Right wheel speed referenceR

V = 0.45
W = 0
W = 0

ref

L

R

END

Update Yaw Rate
Controller

Set W and WL R

W = 3
W = -3

L

R
> 0

< 0

= 0

HR - HM

W = -3
W = 3

L

R

W = 0
W = 0

L

R

BEGIN

END

True

False

True

True

False

False

Figure 4.10: Flowchart of Controller Module State-Machine

The selection between the primary and secondary heading controllers, dis-

cussed previously, can be seen in Figure 4.10. The primary controllers in this

figure contain the difference equations digital implementation of the con-

trollers previously discussed in this chapter. The yaw rate controller also

contains the mathematical relationships to yield wheel speeds from reference

common mode speed, V, and yaw rate controller output, u(k), as shown in

CHAPTER 4. CONTROL AND SIMULATOR 97

Figure 4.4 and Figure 4.5.

Also shown is the guidance controller and how the end of a line segment is

simply indicated by the OX-axis measurement exceeding the length of the

current line segment obtained from the path planning module. The sec-

ondary heading controller consists of the simple routine shown in dotted

lines. The flow diagram also indicates how it is determined whether the UTV

has achieved the heading angle of the next line segment with this secondary

controller, after which the UTV_Mode is changed to 0 to indicate that straight

line segment tracking should be started with the primary controllers.

Figure 4.10 also shows the Condition Angles routine. These routines are imple-

mented due to the non-unique nature of heading angle measurements. An

angle of for instance 70◦ can also be represented with 430◦ due to the 360◦ du-

plicate mapping characteristic of angles. Since the state estimator, discussed

in Chapter 5, makes use of integral routines on the yaw rate measurement

to obtain heading measurements, the possibility of angles below −360◦ and

above 360◦, which is equally representable by an equivalent angle between

−360◦ and 360◦, is present. Since the path planning algorithms make use of

the four quadrant inverse tan function all line segment headings will always

be between −180◦ and 180◦. The UTV heading controller could therefore

compare angles, smaller than −360◦ or bigger than 360◦, with angles below

360◦ to obtain heading error signals which would lead to full revolutions of

the UTV to achieve the commanded heading reference, when less than a full

revolution is always sufficient. A further difficulty is the fact that the UTV

can either turn anti-clockwise or clockwise to achieve it’s new heading but

the one which is preferable is the one which causes the UTV to only turn

through an acute or obtuse (smaller than 180◦) angle. All angles are there-

fore conditioned to be between 0◦ and 360◦ and further conditioned so that

heading differences are never bigger than 180◦ and the smallest possible turn

to achieve the new heading is always chosen by the UTV. This was however

just implemented in simulation and not on the actual UTV for reasons which

will be stated in the Practical Results chapter. The flowchart of this routine

can be seen in Appendix A.

The Calculate Path routine, indicated in bold print in Figure 4.9, is the core

routine of the path planner module which makes use of the path planning

algorithms, discussed in Chapter 3, to calculate an optimal path through the

obstacle ridden environment. This routine is responsible for the selection

CHAPTER 4. CONTROL AND SIMULATOR 98

of a certain population algorithm in conjunction with a specific shortest path

algorithm, according to the user selection from the RF ground station.

Shortest Path Method?

True

False

Calculate Visibility
Graph

BEGIN

END

Visibility Graph?

Voronoi Graph?

Extract number of
Visibility Edges

Extract
Visibility Edges

Dijkstra?

A*Star?

Calculate path
using Dijkstra

Calculate path
using A*Star

Extract number of
path segments

Extract path

Population Method?

Shortest Path Method?

Calculate Voronoi
Graph

Extract number of
Voronoi Edges

Extract
Voronoi Edges

Dijkstra?

A*Star?

Calculate path
using Dijkstra

Calculate path
using A*Star

True

False

False

True

True

False

True

False

False

True

Figure 4.11: Flowchart of Calculate Path Function

A flowchart of this routine can be seen in Figure 4.11 which shows how the

specific algorithms are selected. Upon exit from this routine the amount of

segments present in the calculated path is returned, as well as the calculated

path in matrix format with each line of the matrix representing one line seg-

ment of the path with its departure and destination coordinates, heading an-

gle and length.

4.7 Non-linear Simulator

As mentioned in Chapter 1, simulation plays a big role in minimizing the

amount of test runs which are necessary for the UTV to accomplish what

CHAPTER 4. CONTROL AND SIMULATOR 99

is required. Instead of using a process of trial and error with direct imple-

mentation on the OBC, a preliminary stage of simulation is used to verify

designs and perform as much debugging as possible before attempting ac-

tual implementation on the UTV. The simulator integrates all the controllers,

algorithms and models developed and serves as way of judging the autopi-

lot’s performance as a whole. Simulation was done in Simulink where system

blocks were predominantly implemented through use of Matlab’s S-Function

blocks. The use of S-Function blocks is preferred since it implies implemen-

tation of all systems in C programming language which is the same language

used for implementation on the OBC. This makes transfer of routines from

simulation to actual hardware possible with minimal effort. The similarity

in implementation also allows for consistent debugging on simulation and

OBC alike.

4.7.1 Entire Simulation

Telemetry selector

Actual Telemetry

N

E

PSI

OpenGL

Interface

In1

In2

In3

Unit Delay

z

1

UTV Model

Left Wheel Speed

Right Wheel Speed

Telemetry without noise

Controller Module

Sensor Model

Noiseless Telemtry Sensor Data

Pulse new obstacle

present

1

Path Planning Module

New obstacle

pulse logic
Inactive

0

EKF

Sensor Data States

State selector

States Selected States

InOut

Figure 4.12: Highest Level of Simulink Simulator

The Simulink block diagram of the entire system can be seen in Figure 4.12.

The simulator can be subdivided into two categories of components, these

categories being, components which represent the algorithms to be imple-

mented on the OBC, and components which act as a model of the physical

UTV. The modelling components are implemented predominantly through

use of lower level Simulink blocks with occasional use of S-Function blocks.

CHAPTER 4. CONTROL AND SIMULATOR 100

These components include the UTV Model and Sensor Model shown in Fig-

ure 4.12 which are not to be implemented on the OBC but merely serve as

a means of predicting how the actual UTV will respond to the control algo-

rithms during test runs.

The other category includes the Path Planning, Controller and EKF blocks in

Figure 4.12. These system blocks are all simulated through use of Matlab

S-Functions and are to be implemented on the OBC. Further notice should

be taken of the unit delay block which represents the fact that the status of

boolean flags updated on the Controller module state-machine, discussed

previously in this chapter, are only recognized by the Path Planning module

during the next 25 Hz cycle on the OBC, due to the fact that the code of the

Controller module executes after the code of the Path Planning module.

Figure 4.12 also shows the New Obstacle Pulse Logic components. These blocks

are used to simulate the process of a new obstacle being uploaded from the

ground station, while the UTV is busy navigating a path, by setting the new

path scheduled flag, in Figure 4.9. The logical block makes use of simple com-

ponents to ensure the pulse is only present for the duration of one cycle, since

this is what will happen during test runs. That is, a new obstacle is uploaded

from the ground station, the new path scheduled flag is set and then cleared

again after the Path Planning module has taken notice.

One final system block remains which is the OpenGL Interface. This block

links the real-time telemetry of the UTV to a graphical interface and serves

as way of monitoring the behaviour of the UTV model while the simulation

executes. Since more attention is given to the two-dimensional path plan-

ning algorithms in this project, the graphical simulator is merely used as a

supplementary way of debugging, and other graphical plots were used and

discussed Chapter 3. The interface was therefore not altered from [4] and [15]

and still contains a 3D aeroplane model. The aeroplane now merely taxi’s

around on the ground surface without taking off but still provides valuable

insight into the path traveled when the tracking feature of the graphical in-

terface is activated. Figure 4.13 shows the graphical interface with some color

alteration for improved printing. The aeroplane represents the UTV in this

case and the white path is drawn as the UTV navigates toward its destina-

tion, providing valuable insight into whether the path is being tracked well

enough with the Extended Kalman Filter (state estimator) being used in con-

junction with noisy measurements. Insight is also gained into how the UTV

CHAPTER 4. CONTROL AND SIMULATOR 101

executes turns and whether the angle conditioning previously mentioned is

functioning correctly.

Figure 4.13: Graphical Simulator Interface

4.7.2 Path Planning, Controller and EKF Simulation Blocks

As mentioned the Path Planning, Controller and EKF simulator blocks are

implemented with S-Functions. The S-Function for the Controller block is an

implementation of the flowchart in Figure 4.10 in C programming language.

This block has the path calculated flag and path line segment data from the

Path Planning module as inputs, as well as the telemetry obtained from the

Extended Kalman Filter S-Function. In turn the controller block updates all

the controllers previously discussed in this chapter to arrive at appropriate

wheel speed commands as outputs to the UTV Model. The segment done flag

is also included in the outputs and is relayed back to the Path Planning block

through a unit sample time delay.

The Path Planning block contains an S-Function implementation of the flow-

chart in Figure 4.9 and has the segment done flag from the Controller block, the

telemetry from the EKF block and the new path scheduled flag from the exter-

nal source as inputs. The choice in population algorithm and shortest path

algorithm is passed to the block through the S-Function block parameters

and these parameters are altered in a user entry M-file. The Path Planning

Block has the outputs previously mentioned as the Controller block’s inputs

and arrives at these outputs by executing the user’s choice of path planning

algorithm, as shown in Figure 4.11. After this it continuously updates the

state-machine flags, in accordance with the flowchart of Figure 4.9, until the

destination has been reached or a new path is scheduled.

CHAPTER 4. CONTROL AND SIMULATOR 102

The EKF block is an implementation of the Extended Kalman Filter (state esti-

mator) discussed in Chapter 5. It has the noisy sensor measurements from the

Sensor Model as inputs and the estimated states of the UTV as output. All rel-

evant data such as noise correlation matrices are passed to this block through

use of the S-Function block parameters. These three S-Function blocks were

easily transferred to the OBC after debugging and only minor adjustments

and modifications to the structure of the code was required.

4.7.3 UTV Model Block

Vo (Common mode velocity)

r (Yaw rate)

Telemetry without

noise

1

UTV DC Motors

Left

Right

Omega Left Wheels

Omega Right Wheels

Kslip * u

2 DEGREES OF

FREEDOM BLOCK

Vo

r

N

E

PSI
0.1/d* u

1/20* u

Right Omega

2

Left Omega

1

Figure 4.14: UTV Model Block of Block Diagram Simulator

The UTV Model block of the simulator consists of the components shown in

Figure 4.14. The DC Motors block contains the model of the closed loop drive

systems shown in Figure 4.1. Both DC motors are represented equally by this

model and the slip gain can also be seen in Figure 4.14, which was found

through calibration as previously mentioned. Also shown are the gains re-

quired to arrive at a yaw rate and common mode forward velocity output and

these gains are the same as shown in Figure 4.4. The yaw rate and common

mode velocity outputs enter a two degree of freedom block which calculates

the UTV’s telemetry through utilization of the equations shown in Figure 4.3.

This then provides a sound model of the UTV, its behaviour and the actual

telemetry which will be obtained in response to wheel speed references dur-

ing test runs.

4.7.4 Sensor Model

In order to test the functionality of the Extended Kalman Filter, sensor mea-

surements such as the ones used on the actual UTV need to be simulated.

These sensor measurements are accompanied by noise which also needs to

be included in the simulation. The approach is to take the telemetry values

CHAPTER 4. CONTROL AND SIMULATOR 103

obtained from the UTV model, discussed in the previous section, and obtain

sensor measurements with noise from these values.

Sensor Data

1

Sensor Models (Add Noise)

Encoders and rate gyros

Magnetometer

GPS

Encoders and
rate gyros_mes

Magnetometer_mes

GPS_mes

Convert To Sensed Values

Euler
(phi,theta,psi)

Position (N,E)

Magnetometer
(mx, my, mz)

GPS (lat,long)

Noiseless Telemetry

1

Vcm,p,q,rVcm,p,q,r

Figure 4.15: Sensor Model Block of Block Diagram Simulator

As shown in Figure 4.15 the process consists of two stages. During the first

stage reverse calculation is done from the noiseless telemetry signals to arrive

at the raw signals provided by the actual sensors. During the second stage

band-limited white noise is added to these raw signals to represent the noise

present on the measurements obtained from the UTV’s low cost sensors.

The components of the first stage can be seen in Figure 4.16. The func-

tions used to calculate the magnetometer’s body reference measurements

and GPS latitude and longitude measurements are both implemented with

S-Functions. These two functions are the same as those used by [15]. A

constant block is also shown which represents the Earth’s Magnetic Field at

Stellenbosch in the NED axis system. The Trim GPS block is used to set the

reference origin of the navigational system and is chosen arbitrarily. During

physical implementation the trim coordinates are obtained by taking the av-

erage of several successive GPS measurements at the UTV’s first stationary

position, before navigation commences. The pitch rate and roll rate of the

vehicle as well as the pitch and roll Euler angles are assumed to be zero and

simply connected to the zero constant blocks which are not shown in Figure

4.16.

The components of the second stage of the Sensor Model simply consist of

band-limited white noise blocks with their outputs being added to the sig-

CHAPTER 4. CONTROL AND SIMULATOR 104

GPS(lat,long)

3

Magnetometer(mx,my,mz)

2

Trim GPS

-C-

Constant Earth magnetic field
(In NED axis)

-C-

Calculate Magnetometer Sensed Values

calcMagnetometerSensedValues

Calculate GPS Sensed Values

calcGPSSensedValuesPosition
(N,E)

3

Euler

(phi,theta,psi)

2

Vcm,p,q,r

1

Vcm,p,q,r

1

Figure 4.16: Convert to Sensed Values Block of Sensor Model Block

nals obtained from stage one of the Sensor Model. The covariances of the

sensors on the UTV were determined partially from measurements and par-

tially from datasheets and used as parameters in these band-limited white

noise blocks.

4.7.5 Simulator Results

The simulator provided invaluable insight into the feasibility of the con-

trollers, navigation algorithms and co-operation of the individual system

components. Through careful debugging and several iterations in simulation

the implementation of the controllers and algorithms on the OBC was made

possible with minimal effort. During test runs the UTV displayed behaviour

similar and to a certain extent even identical to what was seen in simula-

tion and the importance of this intermediary simulation stage can therefore

not be emphasized enough. Telemetry results obtained with this simulator

were plotted and are presented with the development of the state estimator

in Chapter 5 since they also provide valuable insight into the functionality

of the estimator. Although the graphical simulator mentioned earlier in this

chapter was not given much attention it should be credited for providing a

very efficient, intuitive tool for identifying problem areas quickly and estab-

lishing immediately whether the algorithms implemented are fundamentally

sound.

4.8 Summary

In this chapter a discussion was given on the controllers implemented, from

the lowest level of drive system control to the highest level of guidance con-

trol. The design methods used during implementation of the controllers were

CHAPTER 4. CONTROL AND SIMULATOR 105

presented as well as the step response characteristics of some of the con-

trollers. The state-machine responsible for combining these controllers and

scheduling UTV activity was presented and gives insight into how the UTV

accomplishes the tasks, mentioned in the beginning of this chapter, which re-

late to movement of the UTV during navigation. The tasks mentioned which

were not addressed is discussed in Appendix C on ground station implemen-

tation. Finally a non-linear simulator was presented which provided invalu-

able insight into the system as a whole and ensures proper preparation before

implementation on the OBC.

Chapter 5

State Estimation and Simulation

Results

The required states of the UTV are directly available from sensor measure-

ments. In fact, an excess of measurements are available since the architecture

adopted from [12] and [8] accommodates three dimensional motion, and en-

coder measurements are also available. Although it is possible to make use of

only the required sensor measurements directly in the adopted control strat-

egy, a more optimal approach would be to combine these measurements in an

optimal way such that sensitivity to noise is reduced. The presence of noise

is inevitable when considering the low cost sensors used. An efficient way of

doing this is through implementation of a recursive extended Kalman Filter.

A full six degree of freedom filter such as this has already been introduced by

[15]. This chapter is therefore dedicated to the development of a simplified

two dimensional version of this filter with new non-linear kinematic equa-

tions. The theory of this extended Kalman Filter is based on discussions in

[13] and is only briefly introduced before the application thereof is shown.

5.1 Overview

Although optimal measurements in a noisy environment can be regarded as

the main motivation for use of an EKF in this project, a more specific driving

factor is also present. The GPS measurements alone have an accuracy too low

to justify its sole use in obtaining position coordinates of the UTV, especially

when considering the tolerances for obstacle avoidance which is in the or-

der of a meter or less within the scale of the testing terrain used for practical

demonstrations in this project. A supplementary method therefore needs to

be introduced to provide position measurements of a higher resolution. The

106

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 107

implementation of an EKF allows the addition of a "dead-reckoning" system

while still making use of the GPS measurement updates as will be shown

shortly.

As seen in Chapter 4 the control strategies used require measurements of the

following states of the UTV for feedback

• N - Northern position coordinate

• E - Eastern position coordinate

• ψ - Yaw angle

• r - Yaw rate

In order to optimally obtain these measurements through use of a state es-

timator kinematic equations are derived which fully define the UTV’s mo-

tion in a two dimensional NE reference fame. These kinematic equations are

shown in Figure 4.3. When using these equations and considering the avail-

able measurements from sensors on the UTV, a structure for the kinematics of

the state estimator is easily found. A representation of this kinematic struc-

ture is shown in Figure 5.1.

Rate
Gyroscopes

Left Drive System

Right Drive System

r

VL

VR

Σ

1
s

sin()

cos()

1
s

1
s

X

X

1
2

Vcm

ψ

N

E E

N

Corrected by GPS
measurements

Corrected by magnetometer
measurements

V

Figure 5.1: State Estimator Kinematics

The figure shows a measurement of the vehicle’s yaw rate obtained from a

platform, in a strapdown configuration, which is equipped with rate gyro-

scopes and accelerometers (not used in this project). The yaw rate obtained

from the Z-body-axis gyroscope is integrated to yield the UTV’s heading an-

gle directly. The angular velocities of the wheels on both side of the UTV are

obtained from the encoders, discussed in Chapter 2, and through a simple

averaging sequence the common mode forward velocity, Vcm, of the UTV is

found which is also defined as V. With the trigonometric relationships of the

equations in Figure 4.3 the two axis components of the UTV’s velocity is then

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 108

found. The velocity components are then integrated to yield the two dimen-

sional position of the UTV in the NE reference frame.

The heading angle state and position states are therefore functions of integra-

tion processes in terms of the rate gyroscope measurement, encoder measure-

ments and propagated heading angle state. This implies that the accuracy of

these states will deteriorate with time due to noise on the measurements and

approximations made when using discrete integration routines. As shown in

Figure 5.1 a solution to this is the correction of the accumulated deterioration

in states, at slower intervals, by making use of the direct GPS measurements

of position and the indirect measurement of the heading angle provided by

the magnetometer. The benefit of a finer resolution in positional states at

25 Hz, through use of a "dead-reckoning" integration process, is therefore

combined with the GPS measurements at 4 Hz to ensure positional state de-

terioration is bounded. It should be noted that the yaw rate is not estimated

but simply used as an input to the kinematic plant of the EKF. The yaw rate

controller, from Chapter 4, therefore makes use of the raw rate gyroscope

measurement in a direct feed through configuration on the EKF.

5.2 Optimal State Estimation Theory

The theory presented in this section comes directly from the discussions of

[13] and is presented in a fashion very similar to the presentation in [15].

Nevertheless, a presentation of the application of this theory will have no

meaning to the reader if the basic concepts are not introduced first. The the-

ory behind optimal state estimation is therefore briefly summarized again to

provide a foundation for this chapter. Some equations will not be listed here

and the reader is referred to [15] for a more detailed discussion.

A discrete linear plant is represented by the following equations,

x(k + 1) = Φx(k) + Γu(k) + Γww(k) (5.2.1)

y(k) = Hx(k) + v(k) (5.2.2)

where v(k) represents the measurement noise and w(k) represents the plant’s

process noise. These noises are randomn processes which have a zero mean

and are uncorrelated. The discrete process noise covariance matrix is defined

by Q(k) and the measurement noise matrix by R(k). The state error vector,

e(k), is defined as the difference between the estimated and actual state vec-

tors. An error covariance matrix can now be defined as shown in Equation

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 109

5.2.4.

e(k) = x(k) − x̂(k) (5.2.3)

P(k) = E[e(k)eT(k)] (5.2.4)

where E[·] represents the expected value operator. A recursive algorithm is

used which implements the Kalman Filter equations and performs real-time

optimal estimation for the states of a discrete linear plant. The steps of this

algorithm are summarized below.

1. Through use of the plant dynamics and the deterministic input, u(k),

the previous best estimate, x̂(k), is propagated forward in time to yield

x(k + 1). The error covariance, M(k + 1), of the propagated state is also

calculated.

x(k + 1) = Φx̂(k) + Γu(k) (5.2.5)

M(k + 1) = ΦP(k)Φ
T + Q(k) (5.2.6)

2. The filter gain, L(k + 1), is calculated whenever a measurement update

from the GPS or magnetometer is available. This is done by noting the

uncertainties of both the propagated state and the actual measurements

and then yielding a filter gain which weighs one of the two more heav-

ily in such a way as to optimize accuracy of the estimated state.

L(k + 1) = M(k + 1)HT[HM(k + 1)HT + R(k + 1)]−1 (5.2.7)

3. By using the current calculated filter gain, L(k + 1), and the error be-

tween the actual and propagated measurements in a recursive weighted

least squares manner, the states of the estimator are now updated. The

error covariance of the newly acquired best state estimate is also calcu-

lated,

x̂(k + 1) = x(k + 1) + L(k + 1)[y(k + 1) − Hx(k + 1)] (5.2.8)

P(k + 1) = [I − L(k + 1)H]M(k + 1)[I − L(k + 1)H]

+L(k + 1)R(k + 1)L(k + 1)T (5.2.9)

where I represents the identity matrix. The algorithm then repeats dur-

ing the next sample time instant and these newly acquired error covari-

ance and state matrices are used once again to propagate to the next

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 110

states and so the process continues.

As seen in Figure 4.3 the kinematic equations which define motion of the

UTV in the NE reference frame are non-linear. A method for linearizing the

non-linear system, so that the recursive algorithm just discussed can be ap-

plied, is therefore required. The Extended Kalman Filter provides a solution

to this problem by approximating the non-linear system as a linear time vari-

ant system. The way in which this linearization process is approached will

now be discussed briefly and is once again based on the discussions in [13]

and [15].

A continuous non-linear system can be represented in the following form,

ẋ = f (x, u) + w (5.2.10)

y = h(x) + v (5.2.11)

where f is a non-linear function in terms of the state and control vector and

h is a non-linear function in terms of the state vector. The continuous pro-

cess noise, w, is white and has a power spectral density (PSD), Qc, while the

measurement noise has a PSD, Rc. The linearization and discretization steps

required to implement an Extended Kalman Filter for a non-linear, continu-

ous plant such as this one, which defines motion of the UTV in a NE reference

frame, are now summarized.

1. The non-linear dynamics of the plant, represented by Equation 5.2.10,

are linearized about the previous best estimate of the state vector by

calculating the Jacobian matrices and evaluating them at x̂(k) and u(k),

Fk =

[

∂f (x, u)

∂x

]

x̂(k),u(k)

(5.2.12)

Gk =

[

∂f (x, u)

∂u

]

x̂(k),u(k)

(5.2.13)

2. These linearized matrices are then converted to the discrete time do-

main using the discrete sample time, Ts, which is 40 ms in this project.

Certain approximations can be used in this discretization process which

are valid when the sample time is much shorter than the system time

constants. As stated in [1] these approximations are as follows,

Φ(k) ≈ I + FkTs (5.2.14)

Γ(k) ≈ GkTs (5.2.15)

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 111

3. The continuous process and measurement noise covariance matrices

now need to be converted to equivalent discrete covariance matrices.

As mentioned in [15], the process noise for a system often includes both

a process noise component, due to unmodeled kinematics, as well as a

component originating from noise on the input vector, u, which is not

completely deterministic in nature. The low cost sensors used in this

project which provide the input measurements, V and r, to the sys-

tem is shown to display significant noise figures and the assumption is

therefore made that noise contributions due to unmodeled kinematics

are small in comparison. The discretization of the continuous process

noise therefore only involves a discretization of the continuous inputs’

PSD matrix, Quc, to obtain Qu(k). The noise properties of the matrix are

then mapped onto the states of the system through use of the discrete

input matrix Γ(k)as follows,

Q(k) = Γ(k)Qu(k)Γ(k)T (5.2.16)

According to [1] the continuous process noise PSD matrix is related

to its discrete covariance counterpart, when the sample time is much

shorter than the system time constants, as follows,

Qu(k) =
Quc

Ts
(5.2.17)

Since the transpose of a scalar is the same scalar, and the transpose, of a

multiplication of a matrix and a scalar, is the same as the multiplication

of the transposes of the scalar and the matrix respectively, Equation

5.2.16 can be rewritten, by making use of Equations 5.2.15 and 5.2.17,

as follows,

Q(k) = GkQucGT
k Ts (5.2.18)

Equation 5.2.18 is ultimately used in the implementation of the EKF,

as shown later in this chapter. According to Equation 5.2.11 the mea-

surement updates are available continuously. As mentioned in [15] this

is however not the case in practice and EKF’s are mostly updated spo-

radically. The noise properties for the sensors are also usually provided

as discrete noise covariances. A discretization of a continuous measure-

ment noise covariance matrix is therefore assumed unnecessary and the

measurement noise properties are directly represented with the discrete

covariance matrix R(k).

4. The next step is to propagate the previous best state estimate forward

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 112

in time by integrating the non-linear system dynamics over one sample

time with a simple Euler integration,

x(k + 1) = x̂(k) + ˙̂x(k)Ts (5.2.19)

where

˙̂x(k) = f (x̂(k), u(k)) (5.2.20)

The error covariance on the propagated states are also calculated by

making use of the linearized discrete system dynamics, and noise prop-

erties obtained from Equation 5.2.18,

M(k + 1) = Φ(k)P(k)Φ(k)T + Q(k) (5.2.21)

5. With the propagation of states completed for this sample time instance

the filter checks for availability of a measurement update from the mag-

netometer and GPS. If a new measurement update is available the non-

linear measurement/output matrix, h(x), is linearized about the prop-

agated state vector shown in the previous step,

H(k + 1) =

[

∂h(x)

∂x

]

x(k+1)

(5.2.22)

and the new filter gain is calculated,

L(k + 1) = M(k + 1)H(k + 1)T[H(k + 1)M(k + 1)H(k + 1)T + R(k + 1)]−1

(5.2.23)

6. Similarly to the innovation update for the linear Kalman Filter previ-

ously shown, the states of the estimator are now optimally updated

with the newly acquired filter gain and the accompanying error covari-

ance matrix is also updated,

x̂(k + 1) = x(k + 1) + L(k + 1)[y(k + 1) − h(x(k + 1))] (5.2.24)

P(k + 1) = [I − L(k + 1)H(k + 1)]M(k + 1)[I − L(k + 1)H(k + 1)]

+L(k + 1)R(k + 1)L(k + 1)T (5.2.25)

When no measurement updates are available the output matrix, H(k + 1),

is simply set to zero and consequently the filter gain also goes to zero. In

between measurement updates the current best state estimate by the EKF

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 113

is simply the propagated state. This propagated state represents the "dead-

reckoning" system which calculates position coordinates with an integral pro-

cess on the encoder measurements and yaw rate measurement, as previously

mentioned. The steps presented are followed to implement and extended

Kalman Filter which estimates the states of the UTV, required for the control

strategies of Chapter 4, in real-time. To start the process the following initial

states are required,

• The continuous process noise covariance matrix, Quc

• The discrete measurement noise covariance matrix, R(k)

• The initial state vector, x̂(0), and error covariance matrix, P(0)

5.3 Approximated Inertial Reference Frame

Before presenting the implementation of the EKF a brief discussion is given

on the reference frame used. The UTV’s position and heading angle is de-

fined in an approximated inertial reference frame identical to the North-East-

Down (NED) system introduced by [15], with the exception of a few added

stipulations and reductions for two-dimensional use. This NED system is

fixed at a certain point on the earth’s surface and can be defined at specific

positions within an Earth Centered Earth Fixed (ECEF) geocentric system,

which is also shown in [15]. The surface of the earth is assumed flat within

the area of definition of the NED system and the UTV is assumed to operate

on a surface small enough for this assumption to be justified. The assumption

is also made that rotational velocities of the vehicle are much larger than the

earth’s angular rotation and the duration of operation of the UTV is small in

comparison and the NED system is therefore assumed to have a non-rotating

surface.

During initialization of the EKF a fixed trim position is therefore required

from the GPS, in ECEF coordinates, which defines the point at which the NED

system is fixed. The aim of this EKF is to estimate the North and East states

directly and with the fixed trim position determined, the measurements from

the GPS can therefore be converted to NED coordinates, prior to being used

as a measurement update in the EKF. This conversion requires the radius

of the earth at the origin of the NED system and within the scope of this

project a round earth model is assumed which implies that the radius is a

constant denoted by R. Since the UTV will always remain grounded on the

earth’s surface the Down component of the NED system can be regarded as a

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 114

constant and the system therefore reduces to a North-East (NE) system. This

NE system is ultimately the two-axis reference frame used in the kinematic

equations of the estimator.

5.4 Implementation of the EKF

5.4.1 Non-Linear State Equations

By making use of the defined NE reference frame non-linear equations can

now be written for this system in the form of Equation 5.2.10. These equa-

tions are shown in Figure 4.3 and are stated again here,

Ṅ = V cos ψ (5.4.1)

Ė = V sin ψ (5.4.2)

ψ̇ = r (5.4.3)

where r is the rate gyroscope yaw rate measurement and V is the common

mode forward velocity from the encoders. These two terms represent the in-

puts to the system which are used for state propagation as earlier stated. The

heading angle is denoted by ψ, and N and E denote the respective position

components in the NE reference frame. These terms are in turn the states of

the system and are to be updated with the magnetometer and GPS measure-

ments respectively, when measurements become available.

As stated in [15] the GPS receiver used has a measurement time delay in the

order of 310 ms. As mentioned in Chapter 2, the same architecture is adopted

in this project and the same GPS receiver used. The delay is therefore also

present in this project and should not be left unmodeled. Contrary to the high

velocity platform of [15] the UTV platform of this project represents a much

lower velocity platform and it could therefore be argued that the effects of

this delay are negligible. With the exception of a little added effort, modelling

the delay can only prove advantageous and the decision is therefore made to

model the delay once again. As shown in [15] this delay is easily modeled

with a first order Padé approximation of the form,

xd(s)

x(s)
=

−s + τp

s + τp
(5.4.4)

where τp denotes the approximation’s zero/pole location and the subscript,

d, indicates the delayed version of the signal. More detail about this approx-

imation can be found in [15] where it shown that the approximation is valid

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 115

for an airframe’s position and velocity motion variables. It is therefore most

certainly valid for this UTV platform where the bandwidths of position and

motion variables are significantly less. The measurements obtained from the

GPS which are affected by the delay are therefore the N and E position mea-

surements. The difference equation of the Padé approximation, stated above,

is,

ẋd = τpx − ẋ − τpxd (5.4.5)

and can be applied to Equations 5.4.1 and 5.4.2 to yield,

Ṅd = τpN − V cos ψ − τpNd (5.4.6)

Ėd = τpE − V sin ψ − τpEd (5.4.7)

The kinematics, excluding rate gyroscope biases, have now fully been mod-

eled and the state vector can be defined as,

x = [N E ψ Nd Ed]T (5.4.8)

and the input vector as,

u = [V r]T (5.4.9)

The non-linear state equation for the UTV is thus,

ẋ = f (x, u) = [f1 f2 f3 f4 f5]T (5.4.10)

where f1 to f5 are the non-linear functions in terms of the control and state

vector, shown by Equations 5.4.1 to 5.4.3, as well as Equations 5.4.6 and 5.4.7,

and is summarized below,

















Ṅ

Ė

ψ̇

Ṅd

Ėd

















=

















V cos ψ

V sin ψ

r

τpN − V cos ψ − τpNd

τpE − V sin ψ − τpEd

















(5.4.11)

5.4.2 Non-Linear Measurement Equations

The non-linear measurement equations for the system, denoted by h(x) in

Equation 5.2.11, are now defined. As discussed in Section 5.3 the GPS lati-

tude and longitude measurements are converted to NE measurements prior

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 116

to being used in the EKF. The conversion is done as follows,

Nd = (λd − λtrim)R (5.4.12)

Ed = (φd − φtrim)R cos λtrim (5.4.13)

where λd and φd denote the delayed latitude and longitude measurements

from the GPS, while the trim GPS latitude and longitude measurements, ob-

tained during initialization, are denoted by λtrim and φtrim respectively. The

constant round earth model radius of the earth is denoted by R. It should be

noted, these equations are only valid under the assumption that the distances

traveled by the UTV are small in comparison with the scale of the ECEF in-

ertial reference frame and all assumptions made in Section 5.3 are valid.

The GPS can therefore be regarded as providing delayed measurements of

the position states of the UTV directly and can therefore be treated as linear

measurements. The GPS components of the non-linear measurement equa-

tions, represented by h(x) in Equation 5.2.11, are therefore,

h1 = Nd h2 = Ed (5.4.14)

The magnetometer provides measurements of the earth’s magnetic field in

each body axis component of the UTV. These body axis component’s consist

of components along each of the following defined axes,

• OXB-axis - An axis parallel to some longitudinal reference line which

points toward the front of the UTV in line with the forward velocity

vector V.

• OYB-axis - Perpendicular to the OXB-axis, going through the centre of

gravity and pointing toward the starboard side of the UTV.

• OZB-axis - Perpendicular to the XBYB-plane, going through the centre

of gravity and pointing downward.

and the magnetometer measurements are denoted by mx, my and mz respec-

tively. Although the earth’s magnetic field varies with position along the

earth’s surface the assumption is once again emphasized that the UTV trav-

els relatively short distances and within the scope of this project the earth’s

magnetic field can therefore be regarded as constant. Through use of the

Euler angle transformation matrix the earth’s magnetic field in the NED ref-

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 117

erence frame can be coordinated in the body axes defined above,







mx

my

mz






= Tφθψ







BN

BE

BD






(5.4.15)

where Tφθψ denotes the Euler angle transformation matrix and BN , BE and BD

denote the earth’s constant magnetic field components in the NED reference

frame. Since the UTV is assumed to be operated on a level surface the pitch

and roll Euler angles can be regarded as zero at all times. The transformation

matrix therefore reduces to a matrix in terms of only the yaw angle, ψ, and

only the mx and my magnetometer measurements are used. This reduced re-

lationship between magnetometer measurements and the earth’s horizontal

magnetic field components is,

[

mx

my

]

= Tψ

[

BN

BE

]

(5.4.16)

where Tψ denotes the reduced transformation matrix in terms of only the

yaw Euler angle as shown below,

Tψ =

[

cos ψ sin ψ

− sin ψ cos ψ

]

(5.4.17)

The remaining components of the non-linear measurement equations are there-

fore determined as,

h3 = cos ψBN + sin ψBE (5.4.18)

h4 = − sin ψBN + cos ψBE (5.4.19)

and the non-linear measurement equations are summarized as,

h(x) = [h1 h2 h3 h4]T (5.4.20)

It should be noted that a simpler definition of the measurement equations

was identified in hindsight. Consider the fact that the two magnetometer

measurements in body-axes, mx and my, provide enough information to cal-

culate the heading angle, ψ, prior to use in the EKF. This can be done with

the following equation,

ψ = tan−1

[

mxBE − myBN

myBE + mxBN

]

(5.4.21)

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 118

The measurement equations could therefore be redefined as making direct

use of the heading angle measurement, ψ, and the entire measurement ma-

trix, including the delayed GPS measurements, could therefore be repre-

sented with linear equations. Although not implemented in this manner it

is definitely a simplification worth mentioning.

5.4.3 Implementation

With the non-linear continuous system defined an Extended Kalman Fil-

ter can now be implemented by using the optimal state estimation theory

discussed earlier in this chapter. The first step requires a linearization and

discretization of the non-linear plant dynamics of Equation 5.4.11. As men-

tioned the linearization is done by calculating the Jacobian matrices and eval-

uating them at the previous best estimate of the state vector and the current

inputs. The evaluation simply requires a substitution of values which change

continuously on the EKF and only the calculation of the Jacobian matrices are

therefore shown here. A linearized discrete matrix for the plant dynamics is

found from Equations 5.2.12, 5.4.11 and 5.2.14 as follows,

Fk =







































∂Ṅ
N

∂Ṅ
E

∂Ṅ
ψ

∂Ṅ
Nd

∂Ṅ
Ed

∂Ė
N

∂Ė
E

∂Ė
ψ

∂Ė
Nd

∂Ė
Ed

∂ψ̇
N

∂ψ̇
E

∂ψ̇
ψ

∂ψ̇
Nd

∂ψ̇
Ed

∂Ṅd
N

∂Ṅd
E

∂Ṅd
ψ

∂Ṅd
Nd

∂Ṅd
Ed

∂Ėd
N

∂Ėd
E

∂Ėd
ψ

∂Ėd
Nd

∂Ėd
Ed







































x̂(k),u(k)

(5.4.22)

Φ(k) ≈ I + FkTs

≈





































1 0 −VTs sin ψ 0 0

0 1 VTs cos ψ 0 0

0 0 1 0 0

τpTs 0 VTs sin ψ 1 − τpTs 0

0 τpTs −VTs sin ψ 0 1 − τpTs





































x̂(k),u(k)

(5.4.23)

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 119

A linearized discrete version of the input matrix is found from Equations

5.2.13, 5.4.11 and 5.2.15 as follows,

Gk =







































∂Ṅ
V

∂Ṅ
r

∂Ė
V

∂Ė
r

∂ψ̇
V

∂ψ̇
r

∂Ṅd
V

∂Ṅd
r

∂Ėd
V

∂Ėd
r







































x̂(k),u(k)

(5.4.24)

Γ(k) ≈ GkTs

=





































Ts cos ψ 0

Ts sin ψ 0

0 Ts

−Ts cos ψ 0

−Ts sin ψ 0





































x̂(k),u(k)

(5.4.25)

The continuous process noise covariance matrix needs to be converted to its

discrete equivalent. As mentioned earlier the process noise is assumed to

have its origin only in the noise on the input vector and noise due to un-

modelled kinematics are neglected. The continuous inputs noise covariance

matrix is therefore defined as,

Quc =

[

σ2
V 0

0 σ2
r

]

(5.4.26)

where σV and σr denote the standard deviations on the forward velocity mea-

surement from the encoders and yaw rate measurement from the rate gyro-

scope respectively. These standard deviations were determined by recording

yaw rate data from the rate gyroscope and common mode velocity data from

the encoders and then analyzing the sets to determine their standard devia-

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 120

tions. The following values were found,

σV = 0.02 m/s

σr = 0.496 ◦/s

This continuous input noise is then mapped onto the states of the system by

making use of the continuous input matrix of the plant, Gk, and then dis-

cretized, as shown in Equation 5.2.18, to yield Q(k).

As discussed earlier the measurement noise is assumed to be directly rep-

resented as discrete and the measurement noise covariance matrix is found

as,

R(k) =













σ2
N 0 0 0

0 σ2
E 0 0

0 0 σ2
mx 0

0 0 0 σ2
my













(5.4.27)

where σN and σE represent the standard deviations on the converted N and

E measurements from the GPS. The standard deviations on the magnetome-

ter measurements are denoted by σmx and σmy respectively. With a method

similar to the rate gyroscopes and encoders these values were found as,

σN = σE = 4 m

σmx = σmy = 0.02 Gauss

After propagation of the previous best state estimate as well as the corre-

sponding state covariances, the non-linear measurement matrix, h(x), is lin-

earized about the propagated state vector, x(k + 1). From Equations 5.2.22

and 5.4.20 the linearized matrix is found, as shown in Equation 5.4.28. The

updated filter gain is then found using Equation 5.2.23.

The final step involves an optimal update of the estimator states with Equa-

tion 5.2.24 and an update of the corresponding state error covariances matrix

with Equation 5.2.25.

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 121

H(k + 1) =





























∂h1
N

∂h1
E

∂h1
ψ

∂h1
Nd

∂h1
Ed

∂h2
N

∂h2
E

∂h2
ψ

∂h2
Nd

∂h2
Ed

∂h3
N

∂h3
E

∂h3
ψ

∂h3
Nd

∂h3
Ed

∂h4
N

∂h4
E

∂h4
ψ

∂h4
Nd

∂h4
Ed





























x(k+1)

=



























0 0 0 1 0

0 0 0 0 1

0 0 −BN sin ψ + BE cos ψ 0 0

0 0 −BN cos ψ − BE sin ψ 0 0



























x(k+1)

(5.4.28)

With all the necessary matrices and sensor data at hand a recursive extended

Kalman Filter algorithm, as previously discussed, was implemented. The

filter was implemented with an execution rate of 25 Hz with GPS measure-

ment updates occurring at 4 Hz. Magnetometer measurement updates are

available at much higher rates and the option therefore exists to update mag-

netometer measurements only, when GPS measurements are not available. It

is however important to ensure the system is observable when implementing

any form of estimator, prior to calculating the filter gain.

A brief investigation into this observability is therefore required to determine

whether updating only the magnetometer measurements at a faster rate is

justified. Consider the linearized measurement matrix when only magne-

tometer measurements are updated and not the GPS measurements. This

implies a reduced measurement matrix where the 1 entries on the 1st row,

4th column and on the 2nd row, 5th column are forced to zero when no GPS

measurements are available and the rest of the matrix remains unchanged.

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 122

To ensure observability the observability matrix, defined as,

ϕ =













H

HΦ

...

HΦ
n−1













has to have full rank, n, where n is the number of rows in Φ. To investigate

the observability matrix was setup with the reduced measurement matrix,

H(k + 1), and the linearized and discretized plant matrix, Φ(k). For the test

a control and state vector were chosen, with values which can be expected

during operation of the UTV, in order to evaluate the matrices. These values

were,

• V = 0.45 m/s

• ψ = pi
4 rad

• τp = 6.452

• Ts = 0.04 s

• BN = 9390.4 × 10−5

• BE = −4136.6 × 10−5

where the constant NE magnetic field components of the earth, at Stellen-

bosch, were used for BN and BE and the pole/zero location of the Padé ap-

proximation was determined from the 310 ms measurement delay of the GPS.

The observability matrix is now calculated for both the non-reduced mea-

surement matrix, with both GPS and magnetometer measurements available,

as well as the reduced measurement matrix with only magnetometer mea-

surements available. The rank of these two observability matrices were then

calculated to yield the following,

• Non-reduced H(k + 1) yields an observability matrix with full rank

• Reduced H(k + 1) yields an observability matrix with incomplete rank

From this simple sample test it can therefore already be deduced that the sys-

tem is not always observable when only the magnetometer measurements

are updated. It was therefore decided to update both the GPS and magne-

tometer measurements at 4 Hz only. It should be noted that this test does

not attempt to prove the observability of the non-reduced measurement ma-

trix when both magnetometer and GPS measurements are updated. In that

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 123

regard the observability is only confirmed for this specific sample with the

chosen parameter values. The non-reduced measurement matrix did how-

ever perform effectively and several parameter values were used in this ob-

servability test which all yielded a confirmation of observability. A formal

proof of observability for the non-reduced measurement matrix is therefore

omitted but notice is taken that on stricter terms, with a more complex EKF,

observability should be investigated vigorously.

Initialization of the state vector, during practical implementation, is done by

taking the average of several successive GPS and magnetometer measure-

ments, while the UTV is stationary. More information about the initialization

procedure can be found in Appendix C.

5.5 Simulation

The simulator of the entire system is presented in Chapter 4 and shows how

the state estimator is included in the simulation through use of a Simulink S-

Function, which is an implementation of the discussions in this chapter. The

performance of the state estimator is evaluated by making use of the UTV

model in the simulation to generate a noiseless reference state vector. This

vector is then corrupted by white noise and the appropriate delays are in-

troduced on the GPS signals. The estimator is driven with these corrupted

and delayed signals and comparisons are then made between the noiseless

reference state vector and the estimated state vector. While evaluating the

performance of the estimator the validity of the entire system is also eval-

uated under the influence of measurements corrupted with noise, since the

estimated states are used for feedback in the controllers. This section presents

the performance of the implemented EKF, along with the rest of the system,

and ultimately the successful navigation of a path obtained from the path

planning algorithms.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

E

N

Start

Destination

Figure 5.2: Path Obtained from a Visibility population

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 124

In order to gain insight, the entire system was simulated, with a set of obsta-

cles as shown in Figure 5.2, where the path calculated by the path planning al-

gorithms is also shown. Figure 5.3 shows the estimated states obtained from

the EKF as well as the error between these estimated states and the noiseless

reference state vector. Also shown in dashed lines are the 2σ error bounds

which were obtained from the state error covariance matrix, P(k), which is

calculated on the EKF throughout the simulation. The simulation was run

for a duration of 350 s in order to monitor EKF performance throughout nav-

igation of the entire Visibility path. As stated in [15], by definition 95 % of the

state errors should fall within the 2σ bounds if a filter is completely linear but

this does not hold for an EKF though since the non-linear transformation of

a Guassian probability density function is no longer Guassian. In Figure 5.2

it can be seen that this stipulation does however indeed hold in this imple-

mentation.

Time [s]

State Error

2Sigma Error Bound (95%)State

ψ
E

rr
o
r

[
]

ra
d

E
 E

rr
o

r
[m

]
N

 E
rr

o
r

[m
]

Time [s]

ψ
[

]
ra

d
E

ra
d

[
]

N
ra

d
[

]

0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350
-100

-50

0

50

100

0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350
-100

-50

0

50

100

0 50 100 150 200 250 300 350
-0.2

-0.1

0

0.1

0.2

0 50 100 150 200 250 300 350
0

0.5

1

1.5

Figure 5.3: EKF States (left) and State Errors (right) - Visibility Path

To gain insight into the overall performance of the system and the kind of

inaccuracies which can be expected from the EKF, the estimated path of the

UTV is plotted versus the actual path obtained from the noise-free state vec-

tor. As seen in Figure 5.4 the actual path is very accurately estimated with

only slight occasional deviations. This figure also represents the successful

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 125

functioning of the control algorithms since the path traveled is clearly an ac-

curate representation of the desired path from Figure 5.2.

N

E

Estimated Path

True Path

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 5.4: Estimated Path vs True Path during Visibility Graph Navigation

As seen in Chapter 3, there is a vast difference in the type of paths which can

be expected from the two different population algorithms. Since the Voronoi

algorithm usually yields paths which are less straight, with rigorous turning

manoevres required, the same simulation procedure was also followed for

the obstacles and path shown in Figure 5.5. This path is obtained from the

Voronoi algorithm and shows the jagged edges characteristics of the paths this

algorithm yields.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Start

Destination

E

N

Figure 5.5: Path Obtained from a Voronoi population

As seen in Figure 5.6 the EKF again yields satisfactory results with positional

errors in the order of less than 0.5 m. The different characteristics of this path

is also evident in the higher contrasts of ψ measurements.

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 126

Time [s]Time [s]

ψ
[

]
ra

d
E

ra
d

[
]

N
ra

d
[

]

0 50 100 150 200 250 300 350 400 450 5000 50 100 150 200 250 300 350 400 450 500
-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

State Error

2Sigma Error Bound (95%)State

N
 E

rr
o
r

[m
]

E
 E

rr
o
r

[m
]

ψ
E

rr
o
r

[
]

ra
d

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500
-0.1

-0.05

0

0.05

0.1

0 50 100 150 200 250 300 350 400 450 500
-1

0

1

2

3

-1

-0.5

0

0.5

1

Figure 5.6: EKF States (left) and State Errors (right) - Voronoi Path

N

E

EKF Path

True Path

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 5.7: Estimated Path vs True Path during Voronoi Navigation

Figure 5.8 shows a zoomed version of the East error state in Figure 5.6. In this

figure it can be seen how the error covariance grows in between GPS mea-

surements, at 4 Hz, and is continuously pulled back toward zero when GPS

measurements become available on the EKF. As mentioned in Chapter 2, the

estimator relies heavily on propagation of the encoder, V, and rate gyroscope,

r, measurements and is not sensitive to GPS update measurements over short

distances. This is evident in this chapter when comparing the noise variance

figures of the encoders and yaw rate gyroscopes with the variances of the

GPS measurements.

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 127

E
 E

rr
o
r

[m
]

2σ Error Bound

State Error

209 210 211 212 213 214 215 216 217 218

0.49

0.5

0.51

0.52

0.53

0.54

0.55

Time [s]

Figure 5.8: EKF Estimated East Position State Error

Although the noise variances can not be compared directly, due to them be-

ing quantified in terms of different units, it is still evident that a significant

duration of propagation is required before variances on positional states,

obtained from propagation, become as large as the variance of 4 m on the

GPS measurements. Stated in different terms, the certainty of propagation

is higher than the certainty of the measurements, and consequently the EKF

"trusts" the propagation process more. Although indefinite indoor use of the

UTV will not be possible, due to the accumulating effect of errors during in-

tegration (propagation), it could be argued that the UTV will function well

enough without GPS updates, given the time of operation and area of oper-

ation is relatively small. This was confirmed during test runs since the EKF

still functioned relatively well when no GPS fix and hence no GPS measure-

ments were available. The UTV is therefore capable of outdoor operation

with occasional GPS blackouts occurring. This creates the possibility for si-

multaneous indoor and outdoor usage, provided the UTV does not operate

within a building for too long before exiting it again in such a fashion that a

GPS fix is once again available.

A final note should be made about rate gyroscope biases. This EKF was sim-

ulated under the assumption that gyroscope biases can be ignored since tem-

perature variations are compensated for, as discussed in Appendix C. Biases

can however have deteriorating effects on performance and should be kept

in mind and modeled when unexpected results are obtained during practical

implementation. Within the scope of this project, where only one rate gyro-

scope is used, biases proved to have little or no effects during test runs and

are therefore left unmodelled.

5.6 Summary

In this chapter, the implementation of a two-dimensional Extended Kalman

Filter was presented. An overview of the estimator kinematics was shown

CHAPTER 5. STATE ESTIMATION AND SIMULATION RESULTS 128

and the structuring of the kinematics within the measurement platform of

the project was introduced. Next the optimal estimation theory used for

the implementation was briefly summarized. A discussion was given on the

NE reference frame used and the application of the optimal estimation the-

ory was presented. Finally simulation results and corresponding discussions

were given.

Chapter 6

Test Runs

This chapter features a presentation of the results obtained from practical

tests. An overview of the tests which were performed is given, followed

by a discussion on the results of each day’s tests and finally an analysis is

provided of the telemetry obtained during the navigation of two paths, one

calculated by the Visibility population algorithm and the other by the Voronoi

population algorithm. Both these population algorithms were tested in con-

junction with the A*Star shortest path algorithm, since it was established in

Chapter 3 that this is the optimal choice, as far as computational cost goes,

and yields exactly the same results as use of the Dijkstra shortest path algo-

rithm.

6.1 Overview

Test runs were conducted on a sports recreational field (rugby field), on Sun-

day the 29th of June 2008, as well as on Monday the 30th of June 2008. All

systems of the UTV were tested within a practical obstacle environment to

confirm the UTV’s ability to navigate itself from a starting position to a desti-

nation, autonomously (with the exception of initialization procedures on the

ground station GUI) while avoiding all represented obstacles on the rugby

field.

It should be noted that these tests were performed under adverse circum-

stances. On the 18th of May 2008, the uncompiled code of the ground station

GUI and OBC user control application (UCA) was lost in a fire caused by

a faulty Lithium-Polymer battery. Only the versions of these two software

modules which were already loaded onto the OBC and ground station PC,

at the time, were therefore available for test runs, and improvements could

not be made on the practical implementations. Relatively good results were

129

CHAPTER 6. TEST RUNS 130

however still obtained with the exception of minor anomalies which will be

addressed and appropriate solutions provided. Estimated telemetry was not

directly available on these preliminary implementations but an alternative

representation of the estimated telemetry is available on the ground station

GUI as will be seen shortly. To supplement the limited telemetry which is

available, video recordings are presented on the DVD included with this the-

sis. The reader is strongly urged to view these videos since it provides an

effective interactive medium through which the results of practical tests can

be evaluated. It should be noted that all videos referenced from this chapter

can be found in the practical demonstrations videos folder on the DVD.

6.1.1 Sunday the 29th of June 2008

On Saturday the first step was a definition of a set of obstacles for the test

runs. The positional coordinates of these obstacles’ vertices, within the NE

reference frame discussed in Chapter 5, were then recorded for use during

the tasks of the following day. On Sunday morning all equipment was taken

to the test site. The first practical step was a definition of an origin for the NE

axis system. The origin was marked by means of a threaded rod. The N-axis

and E-axis were then represented with red and white hazard tape through

use of an accurate compass and this marked position as origin.

Figure 6.1: Setting up the obstacles

The next task was accurately locating all the defined obstacle vertices, through

use of a 50 m measuring tape and the compass, and marking each obstacle

vertex with another threaded rod. Hazard tape was wrapped around the

four vertices of each obstacle to represent the edges (sides) of each obstacle

clearly. Only square obstacles were defined to avoid complexity during this

process.

CHAPTER 6. TEST RUNS 131

With a complete representation of the obstacles in place, the attention was

shifted to the actual task of navigation. The ground station laptop com-

puter was set up, a video camera was prepared and the UTV was placed

at the starting location on the rugby field and its power switched on. From

the ground station the OBC executable was started, screen capturing soft-

ware initialized, and all necessary initialization procedures were performed

on the ground station GUI. These initialization procedures are discussed in

Appendix C and can be seen on the DVD discussed in Appendix D. After

initialization the estimator was armed and a green dot on the virtual NE axis

system, on the ground station GUI, immediately indicated the UTV’s current

position with good accuracy. For the first test the Voronoi population algorithm

was selected on the ground station GUI. The autopilot was armed, a Voronoi

path calculated on board the UTV, and the coordinates of the line segments

of this path were almost instantaneously communicated back to the ground

station, and displayed on the GUI. This confirms the correct functioning of

the path planning module and the insignificant computational load on the

OBC, due to a combination of the Voronoi population and A*Star shortest path

algorithms.

Figure 6.2: UTV Navigation in Progress

After this the focal point was shifted to the control algorithms. Immediately

after the path was calculated the UTV started turning, on its current location,

to aim itself in the direction of the first line segment’s heading. This heading

CHAPTER 6. TEST RUNS 132

was achieved and tracking of the first path line segment commenced. During

the navigation of the first straight line segment the correct functioning of the

guidance controller was confirmed.

Throughout the navigation the UTV stopped momentarily at the end of each

line segment and then turned to the heading of the next line segment. It

should be noted however that an anomaly was observed during the transi-

tion from one of the line segments to the next. As stated in Chapter 4, all

heading angles are conditioned so as to prevent full rotations of the UTV

during transitions. The OBC executable which was loaded onto the UTV at

the time did not yet have this conditioning implemented and therefore dis-

played such a full revolution during navigation. To confirm this was indeed

the cause, the exact same obstacle environment was simulated after the day’s

tests to try and duplicate the anomaly in simulation. The full revolution was

indeed observed on the OpenGL graphical simulator. It is at this point that

the conditioning routines were implemented in simulation and after imple-

mentation the simulation executed flawlessly. These conditioning routines

are shown in Appendix A. The anomaly is also indicated at 2 minutes into

the video, labeled 1st, in the DAY ONE folder on the DVD. Navigation did

however continue successfully after the anomaly and the UTV reached its

destination to within an accuracy of 1.5m on the scale of a 50 by 50 m rugby

field.

The effectiveness of the state estimator was shown by the green dot which

is continuously superimposed, in real-time, on the virtual NE axis system

on the ground station GUI, in accordance with the estimated positional state

vector. This green dot accurately traced out the calculated path on the ground

station GUI with occasional minor deviations, especially during the full ro-

tation anomaly just discussed. A vast improvement from the raw GPS posi-

tional measurements to the estimated positional states is evident as will be

seen in the Telemetry Analysis section to follow shortly. It will additionally be

shown that the estimated path indeed represents the actual path traveled by

the UTV.

The next test was dedicated to the results of a Visibility population and A*Star

shortest path combination. To ensure obstacle avoidance, with this population

algorithm being used, all square obstacles were virtually increased in size

with the addition of 2 m to the length of the sides of each square obstacle.

Similarly to the Voronoi case all systems functioned correctly and during this

CHAPTER 6. TEST RUNS 133

test run no full revolution anomalies were displayed. The computational

load was slightly increased on the OBC but to no significant extent and nav-

igation also commenced shortly after the path was displayed on the ground

station GUI. The longer straight line characteristics, with minimal changes

in heading throughout the navigation, due to the Visibility population method

being used and a path approximating a straight line being available from

the specific obstacle environment, was clearly evident. Successful obstacle

avoidance was still achieved since all obstacles passed to the path planning

module were virtually larger than their actual sizes and this can be seen in

the video, labeled 2nd, in the DAY ONE folder.

The focus was then shifted to a test run during which an additional obstacle is

uploaded in real-time during navigation, to simulate the process of obstacle

detection. This test was performed with the use of the Visibility population al-

gorithm. The new obstacle was uploaded while the UTV was in close vicinity

of the obstacle to be added and therefore realistically represents the process

of obstacle detection. It should be noted that the additional obstacle was not

physically represented on the rugby field but merely virtually added to test

the UTV’s response. This test was partially successful and can be seen in the

video, labeled 4th, in the DAY ONE folder. A minor anomaly should how-

ever be mentioned. The version of the OBC code, loaded onto the UTV at the

time, was not yet correctly configured to use the UTV’s current position as

the starting point for the path planning algorithms in the case of a new path

planning cycle being scheduled. The new path being calculated is therefore

once again a path from the original starting point to the destination, with the

new obstacle avoided. It is however shown in the video that relatively good

results were still obtained. Instead of the UTV commencing navigation from

a new starting point, the UTV now sees the change in path, to avoid the ob-

stacle in its close vicinity, as a sudden track error and the guidance controller

forces the UTV onto the new line segment. Although this is not in accordance

with the intended operation of the algorithms and the author does not claim

the unconditional validity of this, it still gives an indication of the robustness

of the guidance controller. Test runs for Sunday the 29th of June 2008 were

then concluded.

6.1.2 Monday the 30th of June 2008

Upon arrival at the test site the following day, a disappointing discovery was

made. All the threaded rods and hazard tape which represented the obstacles

had been removed. With the successes from the previous day a decision was

CHAPTER 6. TEST RUNS 134

therefore made to spend the day testing other aspects of the system. The first

test was based on testing the UTV’s ability to navigate a Visibility path to the

destination and then navigate its way back to the starting point, all with the

stipulation of no human interference except for configurations on the ground

station GUI. The navigation to the destination was conducted in the same

manner as the tests of the previous days. However, once the UTV reached

its destination the OBC executable was not stopped. Instead the autopilot

was disarmed as well as the estimator. The start and destination positions

were then exchanged on the ground station GUI and uploaded to the UTV

by means of RF communication. The estimator was once again initialized

and the autopilot armed. Once again the calculated path was communicated

back to the ground station and the UTV started navigating itself toward the

original starting position. After the navigation the UTV stopped within rea-

sonable distance of the new destination (the previous point of departure) but

with decreased accuracy. This can be attributed to the fact that the UTV was

not precisely at the original destination when the estimator was initialized.

A certain offset is therefore imposed which causes degraded accuracy during

navigation back to the original departure point. Relatively good results were

still obtained which can be seen in the video, labeled 1st, in the DAY TWO

folder. This test therefore confirms the continuity of the system.

The next test was dedicated to monitoring the estimator’s performance in

real-time during navigation. This was done by initializing a Voronoi naviga-

tion process and then switching to the Estimator tab on the ground station

GUI during navigation. The test is seen in the video, labeled 2nd, in the DAY

TWO folder and shows the correct functioning of the estimator. A diagram

which indicates the UTV’s heading in real-time can also be seen. It should be

noted that a full revolution anomaly was also recorded during this Voronoi

test, for the same reasons stated previously.

The day was concluded by demonstrating manual control of the UTV from

the ground station GUI, seen in the video labeled 3rd, in the DAY TWO folder

on the DVD. The remainder of this chapter is dedicated to an analysis of the

telemetry results obtained from a Visibility and Voronoi navigation respec-

tively.

CHAPTER 6. TEST RUNS 135

6.2 Telemetry Analysis

This section provides a presentation of telemetry results obtained during two

test runs. For the reasons previously mentioned direct estimator telemetry is

not available. An effective substitute is however available which is a screen

capture of the ground station GUI after the completion of each path. This

diagram, updated in real-time on the GUI, makes use of the estimator posi-

tional states to plot a green dot in a NE reference frame during navigation.

The green dot represents the current estimated position of the UTV while the

estimated path traveled thus far is traced out with a cyan coloured line. This

path is superimposed on the NE diagram on the ground station GUI which

also displays the calculated path plotted in blue.

6.2.1 Navigation of a Visibility path

The telemetry presented in this section was obtained during the test run

shown in the video, labeled 1st, in the DAY TWO folder on the DVD. As

seen this test run was conducted without actual representations of the ob-

stacles on the rugby field. The actual path followed by the UTV in practice

is therefore not easily visible for comparison with state estimator and GPS

positional states. This telemetry section therefore focuses on the the heading

angle measurements and the performance of the guidance controller while

the next section will focus on a comparison between the performances of the

state estimator and GPS. Consider the path traced out on the ground station

GUI in accordance with the estimated positional states, shown in Figure 6.3.

Next, consider the raw magnetometer heading angle measurements obtained

during navigation, shown in Figure 6.4. These heading angles were calcu-

lated through use of Equation 5.4.21. In this figure the three distinct heading

angles of the calculated path can be observed. The line segments of this path

are shown in Table 6.1 for clarity. A distinct observation can be made when

considering Figure 6.4. As shown, a sinusoidal like signal is superimposed

on the the three distinct steps in heading angle. This indeed represents the

continuous attempts of the guidance controller to achieve a zero track error.

It is noticeable how these oscillations are relatively large in amplitude which

suggests lateral guidance controller gains which are too high. These gains

could therefore be iterated upon and the system tuned in order to obtain an

improved response.

CHAPTER 6. TEST RUNS 136

Figure 6.3: Estimator positional states accurately trace out the Visibility path in real-
time on the ground station

50 100 150 200 250 300
100

110

120

130

140

150

160

H
ea

d
in

g
 a

n
g
le

 [
d
eg

]

Magnetometer Heading Measurement

Time [s]

Figure 6.4: Magnetometer Heading during navigation of a Visibility path

North Start East Start North End East End Heading Angle Length

25.10 m -24.83 m 21.54 m -18.00 m 2.05 rad 7.70 m

21.54 m -18.00 m 9.90 m 0.00 m 2.14 rad 21.43 m

9.90 m 0.00 m 0.00 m 9.90 m 2.36 rad 14.00 m

0.00 m 9.90 m -25.00 m 25.00 m 2.60 rad 29.21 m

Table 6.1: Path segments of practical Visibility path

CHAPTER 6. TEST RUNS 137

6.2.2 Navigation of a Voronoi path

To observe the insufficient accuracy of the GPS measurements alone consider

Figure 6.5. In this figure it is seen how the raw GPS measurements deviate

quite significantly from the calculated path. In fact, the accuracy of these

GPS measurements are even worse than expected and could possibly be at-

tributed to a poor GPS fix being available at the time.

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

E [m]

N
 [

m
]

GPS Measurements

Voronoi Path Calculated

Actual Size Obstacles

Figure 6.5: GPS Measurements during navigation of a Voronoi path

Again consider the estimated positional states traced out in cyan on the ground

station GUI, shown in Figure 6.6. It is seen that the estimated path closely re-

sembles the calculated path. Now refer to the video, labelled 1st, in the DAY

ONE folder on the DVD, at exactly 2 minutes and 56 seconds. In this video

the position of the path, indicated in Figure 6.6, is clearly represented by the

actual UTV at this stage during its navigation. When comparing this portion

of the path with the non-existence of that specific portion, in the GPS path

of Figure 6.5, it is confirmed that the estimator indeed accurately represents

the UTV’s actual position more so than the GPS. The insensitivity of the esti-

mator to GPS measurements is therefore demonstrated and it is seen that the

estimator still performs relatively well under the circumstances of degraded

GPS accuracy. Stated in different terms, the certainty of propagation of yaw

rate and encoder measurements are higher and consequently weighed more

heavily by the estimator.

As previously mentioned all angles are not conditioned properly on the ver-

sion of the OBC executable, loaded at the time, and consequently full revolu-

CHAPTER 6. TEST RUNS 138

Indicated position

Full revolutions

Figure 6.6: Estimator positional states accurately trace out the Voronoi path in real-
time on the ground station

50 100 150 200 250 300 350 400
-200

-150

-100

-50

0

50

100

150

200

H
ea

d
in

g
 a

n
g
le

 [
d
eg

]

Magnetometer Heading Measurement

Time [s]

Full rotations due to
unconditioned angles

Figure 6.7: Magnetometer Heading Measurements during navigation of a Voronoi
path

tions occur. The point at which this occurs can be seen in Figure 6.6. This is

also evident in the magnetometer heading measurements, shown in Figure

6.7. In Figure 6.7 the cause of this revolution is clearly illustrated at approxi-

mately 140 s where the four quadrant inverse tan function causes an instan-

CHAPTER 6. TEST RUNS 139

taneous jump from an angle above a 180◦ to its duplicate negative mapping

of more or less −175◦. It is therefore purely a numerical problem which was

easily solved in simulation by conditioning all angles, as stated in Chapter 4.

The flowchart of these conditioning routines can be seen in Appendix A.

6.3 Summary

This chapter featured a presentation of the practical results obtained during

test runs conducted with the fully integrated UTV system. It was shown that

even with immature practical implementations good results were still ob-

tained which can largely be attributed to the vigorous exhaustion of simula-

tion resources before attempting test runs. Anomalies that were encountered

were discussed and addressed. Limited telemetry results were available and

reference was therefore made to video recordings, included with this thesis,

where necessary.

Chapter 7

Summary and

Recommendations

7.1 Summary

This thesis reported the work done on the development of an autonomous

unmanned terrestrial vehicle, operating in an obstacle ridden environment.

The project was the first to focus on the automation of a ground vehicle at the

Electronic Systems Laboratory, at the University of Stellenbosch.

The preparation of a UTV hardware platform was presented. It was shown

how a previously developed modular architecture, which makes use of the

CAN protocol, can be utilized and modified to serve the purpose of inte-

grating all systems required for autonomous navigation of a UTV. The hard-

ware was introduced from the lowest level of drive systems, which interface

with two direct current motors, to the highest level of an on board computer

which interfaces with a ground station GUI via a RF communication link,

while serving as main control node for all systems on board the UTV.

With a hardware platform in place attention was shifted to the software im-

plementation of path planning algorithms which yield optimal paths through

a two-dimensional obstacle ridden environment. The first step was an in-

vestigation into algorithms which populate the obstacle-free space of the en-

vironment with straight line segments connected at specified nodes. Two

such algorithms were investigated and it was determined that the Visibil-

ity graph is a more stable and appropriate solution than the implemented

Voronoi population method. The next step required the investigation into al-

gorithms which filter out the shortest path, consisting of a combination of the

140

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 141

line segments from these populations. It was established that in this type of

application, where the destination of the path is defined, the A*Star search is

optimal as far as computational cost and stability goes. Both population algo-

rithms and both shortest path algorithms were implemented and successfully

demonstrated. Four closed modules were then available for use by a path

planning module.

The focal point was then shifted to the development of controllers which

translate the data obtained from the path planning module into reference

commands which ultimately determine the wheel speeds on each side of the

UTV. It was shown how the dynamics of lower level controllers can be en-

capsulated through a process of successive loop closures until only reference

command inputs are required for a guidance controller. The hierarchy of con-

trollers were then integrated into a controller module which interfaces with

the path planning module via a state-machine. It was shown that through

use of this state-machine an obstacle detection unit is accommodated in fu-

ture projects.

A simplified two-dimensional state estimator was then introduced. It was

shown how all required states of the UTV are accurately estimated through

the use of an extended Kalman Filter which combines the measurements

from low cost sensors in an optimal manner. It was further shown how the

estimator displays an insensitivity to GPS measurements and is able to func-

tion well without GPS measurements for a limited duration of operation.

Through use of a non-linear simulator, which makes use of a developed dy-

namic model of the UTV, the path planning and controller modules were

evaluated in conjunction with the state estimator. After numerous simula-

tions the desired results were obtained. A ground station GUI was then de-

veloped to accommodate all initialization procedures and interactions which

are required with the UTV and its on board modules. At the same time the

controller and path planning modules were implemented on the UTV plat-

form. Finally, practical tests were conducted and it was shown that relatively

good results were obtained. This rapid success during test runs can largely

be attributed to a thorough process of development within simulation, prior

to implementation on the actual hardware platform.

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 142

7.2 Recommendations

Recommendations on how the UTV can be improved and extended are now

given,

7.2.1 Trapezoidal Map

As noted in the discussions of Chapter 3 the Voronoi implementation in this

project yields occasional collision paths and at times no path at all. An at-

tractive alternative to using a Voronoi population is the Trapezoidal Map. This

section will give a brief description of how this algorithm can be used for

path planning purposes. For additional information refer to [9]. The basic

principle of a Trapezoidal Map is shown in Figure 7.1.

Figure 7.1: Construction of the Trapezoidal Map [9]

The method consists of first defining a bounding box around the obstacle

environment. Vertical extensions are then drawn from each vertex of the ob-

stacles, represented by polygons, upward until another obstacle edge or the

bounding box is encountered. Extensions are also drawn downward in the

same manner. This then yields a subdivision as shown on the left side of Fig-

ure 7.1. It becomes clear why the subdivision is called a Trapezoidal Map. As

shown in this figure, the faces represented by the space between these vertical

extensions, with the horizontal boundaries being the edges of the obstacles,

or the bounding box, represent trapezoidal-like polygons, where some are tri-

angles which is in fact a degenerate trapezoid with one edge of zero length.

By making use of these vertical extensions a population can be constructed

in the obstacle free space of the environment. Consider the diagram on the

right in Figure 7.1. In this diagram all Trapezoidal Map edges which lie in the

interior of obstacles have been removed. This is easily done when consider-

ing that the algorithm presented in [9] provides information about the edge

bounding each trapezoid from the top. A simple check therefore has to be

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 143

done on whether this same edge bounds the obstacle from the top or from

the bottom. If it bounds the obstacle from the top it is known that the vertical

extensions of this trapezoid, also bound from the top by this edge, are in the

interior of an obstacle and need to be removed. For more information refer

to [9].

With the remaining Trapezoidal Map, representing only vertical extension in

the obstacle free space, a population can now be calculated which will yield

yield a roadmap with similar characteristics to the Voronoi implementation of

this project but without the degenerate cases where collisions are implied or

no connection found between start and destination. It achieves this with the

only stipulation being that the start and destination are both not unrealisti-

cally defined within the interior of an obstacle, and are located in the obstacle

free space.

In Figure 7.2 it is shown how a node was placed in the centre of each of the

remaining trapezoids, after removing vertical extensions inside obstacles, as

well as in the middle of each vertical extension. The method for finding a pop-

ulated set now simply requires a connection between each node in the middle

of a trapezoid and the nodes surrounding it on the edges of that specific

trapezoid. After this has been done a population is yielded as shown in Fig-

ure 7.2. All that now remains is simply connecting the start and the destina-

tion to the node in the centre of the respective trapezoids, in the obstacle-free

space, in which the start and destination reside.

Tstart

Tgoal

Ps

Pg

Path

Population

Trapezoid edges

Figure 7.2: Path found from a Trapezoidal Map [9]

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 144

It is shown in [9] that an implementation of this algorithm will always find a

collision free path for a point vehicle, if one exists. It therefore suffices to say

that this algorithm is a better option than the implementation of the Voronoi

population presented in this project since it also yields paths with maximum

clearance from obstacles, due to the nodes being placed exactly in the middle

of the edges of the Trapezoidal Map in free space. In fact the population closely

resembles the Voronoi populations presented in Chapter 3, with the added ad-

vantage that collision free paths are guaranteed and convex obstacles are also

accommodated. Furthermore, in [9], it is shown that this algorithm can be

implemented with a O(n log n) complexity which is exactly the same as the

Voronoi diagram’s complexity, with the further advantage that pruning is not

required afterward as was the case with the Voronoi population method pre-

sented in this thesis. It is therefore recommended that either this algorithm

be investigated further or an alternative implementation of the Voronoi algo-

rithm be found for path planning purposes.

7.2.2 Visibility-Voronoi Complex

It suffices to mention one such possible alternative implementation of the

Voronoi algorithm. In fact, not a purely Voronoi orientated implementation

but a hybrid implementation referred to as the Visibility-Voronoi-Complex. This

population method has received significant attention recently. The method is

based on a hybrid implementation of the Voronoi diagram and Visibility graph

where a variation in a certain parameter varies the output of the algorithm

between a pure Voronoi diagram and a pure Visibility graph. The algorithm

seems very attractive since with an optimal choice of this parameter an op-

timally short smooth path with maximum clearance from obstacles can be

found which combines the strengths of both population methods. This algo-

rithm could possibly outweigh any of the algorithms discussed thus far, as

far as optimal paths go, and more information can be found at [23].

7.2.3 Minkowski Sum

It was shown in Chapter 3 that a Visibility population yields insufficient clear-

ances from obstacles. A pre-processing algorithm, known as the Minkowski

Sum, exists which can be used in conjunction with the Visibility graph to yield

an optimal path with sufficient obstacle clearances. This algorithm can po-

tentially be used in conjunction with any population method and any shortest

path algorithm. It is not an algorithm specifically involved in the process of

determining an optimal path through the obstacle environment but rather an

algorithm which pre-processes the original obstacle environment, referred to

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 145

as the work space, to yield a modified obstacle environment, the configuration

space [9]. The pre-processing algorithm makes use of the Minkowski Sum be-

tween the polygon representing the vehicle or object, which path planning

is done for, and the original obstacle environment. In doing this the obsta-

cle shapes are virtually modified and marginally increased in size to ensure

that any population method used on this virtual configuration space, even the

Visibility graph with minimal clearances, will yield a population which only

represents paths in the obstacle free space and ensures that collisions will

never occur. This algorithm is strongly recommended, especially in the case

of the Visibility graph being used as population method. To gain a general idea

of the approach refer to Figure 7.3.

Work Space Configuration Space Visibility Graph

Polygonal
vehicle

Figure 7.3: Calculating the Configuration Space from the Work Space [9]

7.2.4 Rate Gyroscope and Encoder Combination

A further improvement is recommended which will aid in reducing the ef-

fects of possible rate gyroscope biases. As discussed in Chapter 4, a slip gain

is introduced, during simulation, which adjusts the theoretical yaw rate of

the UTV (obtained from a linear expression in terms of the respective left and

right wheel speeds) to more closely resemble actual recorded yaw rates of

the UTV at certain wheel speeds. There is however still a level of uncertainty

when yaw rates are calculated from the wheel speeds since terrains on which

the UTV operates differ. A valuable observation can however be made. Al-

though the wheel speed measurements from the encoders do not provide a

high level of certainty when measuring non-zero yaw rates they do indeed

represent an exact accurate measurement of zero yaw rates. An improved im-

plementation of yaw rate measurements would therefore be a combination of

encoder and rate gyroscope measurements where yaw rates are regarded as

zero when indicated as zero by the encoders and simply taken as the rate

gyroscope measurement when the encoders do not yield zero yaw rates. In

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 146

doing this the effects of bias drifts on the rate gyroscope during zero yaw

rates are eliminated.

7.2.5 Reducing Computational Cost

As seen in Chapter 3, all algorithms were not implemented in an optimal

manner. Computational cost can therefore be reduced through optimal im-

plementations.

7.2.6 Future Implementations of Obstacle Detection

It was shown in this project how the process of obstacle detection is simu-

lated by setting a flag which triggers a new path planning cycle. In future

applications where obstacle detection is added the system can be initialized

by defining a preliminary path which simply consists of a straight line be-

tween start and destination. As the UTV then progresses along this straight

line obstacles will or will not be detected. As soon as an obstacle is detected,

all which is required is that the new path scheduled flag be set and the obstacle

added to a data structure which stores the current set of known obstacles in

the environment. This will then bring the UTV to an immediate halt during

which a new path is calculated, which avoids this obstacle and all previously

stored obstacles, after which navigation continues.

7.2.7 Extensions to a 3D Environment

Although there is a vast difference between the control of a UAV in three-

dimensional space and the control of a UTV in two-dimensional space, it was

shown in this project how the same hardware platform, used by the UAV Re-

search Group, is easily utilized for the automation of a UTV. Through use of

such modular hardware platforms an environment is created where a UTV

group can possibly serve as preliminary testing platform for ideas which

could be extended to the three-dimensional problem of path planning for

UAV’s. As stated in Chapter 3, the path planning module can be regarded

as a closed module which requires a certain set of inputs to yield a specific

set of outputs. With the addition of certain path-smoothing techniques, and

the implementation of an A*Star heuristic function which introduces penalties

on paths which imply large heading angle changes, the path planning mod-

ule could therefore be extended to accommodate way-point navigation for a

UAV in an elevated two-dimensional plane. It should further be noted that

a Visibility graph and A*Star shortest path combination can be implemented

in three-dimensional space, at the cost of increased computational cost, and

CHAPTER 7. SUMMARY AND RECOMMENDATIONS 147

therefore creates the possibility of three-dimensional path planning for use

in the UAV Research Group.

Appendices

148

Appendix A

Hardware and Software Details

This appendix features details specific to the hardware of Chapter 2 and soft-

ware of Chapter 4 and Appendix C.

A.1 Data Files

Since this project does not include obstacle detection, obstacles have to be

defined prior to simulation. These obstacles are defined in a Microsoft Ex-

cel spreadsheet, imported into MATLAB and also written to a .dat file dur-

ing simulation. The .dat file is then copied to a folder named C:\Vehicle on

the computer which is used for the simulation. This Vehicle folder is where

the finalized OBC executable (written in C code) resides and the vehicle and

estimator specifications file is also written to this folder during simulation.

During use of the ground station GUI the folder needs to be present on the

ground station PC and located in the C: root. For convenience the .dat obsta-

cle files, which are written during simulation, can be imported on the ground

station GUI during UTV operation. The reader is referred to the DVD in-

cluded with this document for a demonstration.

As mentioned in Appendix C, the two obstacle files are defined in different

formats for the respective population algorithms. This is done to provide a

convenient way of defining square obstacles in the case of the Voronoi pop-

ulation algorithm. The format in which both obstacle files are defined in an

Excel spreadsheet is shown in Figures A.1 and A.2 respectively. In Figure A.1

it is shown how the square Voronoi obstacle coordinates are defined in terms

of side length, centre location and angle with the horizontal reference line.

Figure A.2 on the other hand shows how the vertex locations of convex poly-

gons are defined as obstacles for the Visibility algorithm. These obstacles are

separated by the number 1000000 since the amount of vertices of each ob-

149

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 150

stacle can vary and when extracting the data the end of each obstacle needs

to be indicated. The number 1000000 is used since it falls well outside the

boundaries of expected coordinates within the NE reference frame discussed

in Chapter 5.

DATE: 2007/02/10

VEHICLE: Binky Voronoi Obstacles

VALUE

NUMBER OF OBSTACLES 35

ONE

Sidelength 4

Midpoint North 0

Midpoint East -30

Angle with equator 0.785

TWO

Sidelength 4.00E+00

Midpoint North 5

Midpoint East -20

Angle with equator 2.85

THREE

Sidelength 4

Midpoint North 0

Midpoint East -10

Angle with equator 0.44

FOUR

Sidelength 4

Midpoint North 0

Midpoint East 10

Angle with equator 7

FIVE

Figure A.1: Format of Voronoi Obstacles Spreadsheet

VEHICLE: Binky Obstacles Visibility Graph Method

Each obstacle is entered in a group of its vertices' coordinates,

in clockwise order. The number 1000000 is used as seperation character

between obstacles when data is read in Matlab.

VALUE

NUMBER OF OBSTACLES VERTEX NR 23

ONE 1000000

Vertex X 1 -30

Vertex Y 1 -30

Vertex X 2 -30

Vertex Y 2 -25

Vertex X 3 -27

Vertex Y 3 -20

Vertex X 4 -20

Vertex Y 4 -25

Vertex X 5 -20

Vertex Y 5 -30

TWO 1000000

Vertex X 1 -30

Vertex Y 1 30

Vertex X 2 -30

Vertex Y 2 25

Vertex X 3 -27

Vertex Y 3 20

Vertex X 4 -20

Vertex Y 4 25

Vertex X 5 -20

Vertex Y 5 30

THREE 1000000

Figure A.2: Format of Visibility Obstacles Spreadsheet

The physical parameters of the vehicle are also defined in a Microsoft Excel

file and then extracted for use in simulation, as well as written (along with

estimator and natural constant parameters) to a .dat file in the Vehicle folder

previously mentioned. This .dat file is uploaded to the OBC as discussed in

Appendix C.

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 151

A.2 Communication

A.2.1 Serial Communication Protocol

The serial communication between ground station and RF module on board

the UTV is established through use of a protocol introduced by [4]. This pro-

tocol ensures data integrity during transfers and functions well in this project

under the load of up to 30 square obstacles’ coordinates being uploaded se-

quentially while idle ground station operations are in progress.

A.2.2 Ground Station Telemetry

Description Bytes

Time stamp 4

Rate gyroscope measurements 6

Accelerometer measurements 6

Magnetometer measurements 6

TOTAL 22

Percentage of bandwidth 4.6 %

Table A.1: Contents of Primary Packet

Description Bytes

Latitude 4

Longitude 4

Altitude 2

Heading 2

NED velocities 6

Fix and differential GPS indicator 1

TOTAL 19

Percentage of bandwidth 4 %

Table A.2: Contents of GPS Packet

Similarly to the discussion in [15] the packets which are transmitted from the

UTV to the ground station, during navigation, are analyzed. These packets

are sent sequentially at a rate of 2 Hz and a limit therefore exists on how

many bytes can be sent during each 2 Hz cycle.

As stated in [15] the RF link can handle approximately 480 bytes of data at

2 Hz. Each telemetry packet transmitted from the UTV is shown in Tables

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 152

Description Bytes

Rate gyroscope reference voltage and temperature 2

Magnetometer reference voltage 1

Main battery voltage 1

CAN bus voltage 1

OBC voltage 1

OBC temperature 1

Megabytes logged 1

Autopilot, Estimator and Fan status 2

TOTAL 10

Percentage of bandwidth 2.1 %

Table A.3: Contents of Secondary Packet

Description Bytes

Estimated N 2

Estimated E 2

Estimated ψ 2

r measurement 2

V measurement 2

State error covariances 6

TOTAL 16

Percentage of bandwidth 3.5 %

Table A.4: Contents of EKF Packet

A.1 to A.6, along with the corresponding usage of the available bandwidth.

When summing the bandwidth usage of all the individual packets it is ev-

ident that the transmission of telemetry ultimately makes use of approxi-

mately 25.5 % of the available bandwidth. A relatively large portion of the

bandwidth is therefore still available. This proves advantageous due to the

presence of the Upload all obstacles button on the ground station GUI. Usage

of this button implies the transmission of a large amount of obstacle coordi-

nates at once and could require significant bandwidth. As was seen during

practical implementation, not all obstacle coordinates are always successfully

received by the UTV, when this button is used, and a threshold of approxi-

mately 30 square obstacles was found. When an amount of obstacles beyond

this threshold needs to be uploaded to the OBC it is recommended that only

the first 30 obstacles be uploaded in a batch and the remainder of the obsta-

cles uploaded individually.

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 153

Description Bytes

Number of Voronoi obstacles 4

Number of Visibility obstacles 4

Population algorithm selected 1

Shortest path algorithm selected 1

Starting point N 4

Starting point E 4

Destination N 4

Destination E 4

Voronoi calculation span 4

Visibility calculation span 4

TOTAL 34

Percentage of bandwidth 7.1 %

Table A.5: Contents of Path Planning Packet

Description Bytes

Wheel speed 4

Translational speed 4

Direction 1

Motor enabled/disabled 1

TOTAL 10

× 2 (Left and Right) 20

Percentage of bandwidth 4.2 %

Table A.6: Contents of Encoder Packet

A.2.3 CAN Bus Communication

As mentioned in Chapter 2 communication between drive systems, OBC and

the IMU is established through use of the CAN bus. CAN messages are trans-

mitted and received by these nodes and all messages are uniquely identified

by a 29-bit CAN 2.0B identifier. Each CAN message can also contain a max-

imum of 8 bytes of data in addition to the identifier. An indepth discussion

of the the original CAN protocol can be seen in [12] and the messages in this

project is only slightly adjusted to accommodate the drive systems. This sec-

tion presents the CAN messages used as well as a short description of each

message. Each node is shown along with the messages which are generated

by the specific node.

PC104/CAN Controller Node

• 0x1E8F010A: Received by left drive system node where 1st byte of data

indicates the following,

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 154

– 0x01 - Reference wheel speed

– 0x02 - Disable drive system

– 0x03 - Enable drive system

• 0x1A8F010C: Received by right drive system node where 1st byte of

data indicates the following,

– 0x01 - Reference wheel speed

– 0x02 - Disable drive system

– 0x03 - Enable drive system

• 0x010101FF: Received by all nodes and requests each node to reply with

its telemetry

• 0x0B8F0102: Received by IMU node and toggles self-test function

• 0x0B8F0104: Received by IMU node and triggers magnetometer set/reset

function

IMU Sensor Node

• 0x0A800201: Received by PC104/CAN Controller Node and contains

IMU ADC filtered measurements

• 0x0A810201: Received by PC104/CAN Controller Node and contains

IMU ADC filtered measurements

Left Drive System

• 0x0E800A01: Received by PC104/CAN Controller Node and contains

the following data,

– Byte 2 - Angular wheel velocity

– Byte 4 - Direction flag

– Byte 7 - Enabled/disabled status

Right Drive System

• 0x0A810C01: Received by PC104/CAN Controller Node and contains

the following data,

– Byte 2 - Angular wheel velocity

– Byte 4 - Direction flag

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 155

– Byte 7 - Enabled/disabled status

It should be noted that the angular wheel velocities, shown above, represent

a factor 16 scaled version of the actual measured angular wheel speed. Since

the wheel speeds are comparatively low, with a maximum value of 8 rad/s,

resolution in measurements would be insufficient if the measurements were

simply transmitted in the envelope of the unsigned character variable used.

This would only yield an integer resolution in speed measurements since

decimal places would be truncated during cast from floating point variable

to unsigned character variable on the PIC microprocessor. The measurement

is therefore multiplied by 16 on the microprocessor, before transmission, and

decimal places are included in the integer transmitted value. By dividing the

received values on the OBC by 16 again the decimal places are extracted and

a resolution of 1
16 rad/s is achieved. This is feasible since the maximum wheel

speed of 8 rad/s is known and hence a multiplication by 16 will never cause

the unsigned character data byte to overflow.

A.3 Batteries

A.3.1 Sealed Lead-Acid Batteries

Figure A.3 shows a schematic of the Sealed Lead-Acid battery charger imple-

mented by [16]. This charger proved to be very efficient and the discussions

on this charger, in Chapter 2, are useful when viewing the schematic.

A.3.2 Lithium-Polymer Batteries

As mentioned in Chapter 7, the author of this document lost valuable data

during a fire, on the 18th of May 2008, at the residence where he was com-

pleting this dissertation. The author would like to emphasize the importance

of correct use of Lithium-Polymer batteries during charging cycles and dis-

charging cycles as it was established that this was the cause of the fire. It is

highly recommended that Lithium-Polymer batteries never be charged unat-

tended and that a concrete fire resistant surface is used as platform for the

battery during charging cycles. A reliable microprocessor charger should

also be used, which is designed for the specific battery, and batteries should

never be overcharged!

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 156

Figure A.3: Battery Charger Schematic in memory of Willie van Rooyen

The Lithium-Polymer battery was being used as light weight high density

power source for the ground station RF module discussed in Appendix C.

Successful test runs were however still conducted with the use of an alternate

RF module, courtesy of [4]. This RF module was left unaltered and only the

RF module on the UTV was reconfigured for communication with the newly

acquired ground station RF module.

APPENDIX A. HARDWARE AND SOFTWARE DETAILS 157

A.4 Angle Conditioning

The flowchart shown in Figure A.4 represents the conditioning routines which

were implemented on the heading angles of path line segments and the cur-

rent measured heading of the UTV. The approach consists of representing all

angles with their equivalent mapping within 0◦ and 360◦, and these condi-

tioned angles are then adjusted in such a way that the heading difference be-

tween measurement and reference is never bigger than 180◦. This ensures the

UTV will only turn through acute and obtuse angles when trying to achieve

a new headings.

Angle = (Angle ,2)
Angle = 2 + Angle

1 1

1 1

fmod π

π

Angle = (Angle ,2)1 1fmod πAngle > 21 π

Angle < 01

True

False

False

True

BEGIN

END

Angle = (Angle ,2)2 2fmod π Angle > 22 π

Angle < 02
Angle = (Angle ,2)
Angle = 2 + Angle

2 2

2 2

fmod π

π

False

False

True

True

Angle - Angle >1 2 π

Angle - Angle < -1 2 π

Angle = +2 Angle 22 π

Angle = +1 Angle 21 π

True

False

True

False

FalseFalse

Figure A.4: Flowchart of the Condition Angles Routine

Appendix B

UTV Parameters

This appendix has the purpose of presenting the development of a theoret-

ical model of the UTV’s DC motors for use with the control algorithms of

Chapter 4. The approach consists of mathematically modelling and finding

a transfer function for one of the DC motors on the UTV, with a supply volt-

age as input and angular wheel velocity as output. The transfer function is

further presented in state-space form so as to allow for state-space control

design techniques. The determination of the slip gain discussed in Chapter 4

is also shown.

TM

bθ

θ

J
TL

R L

V e = Kθ

Figure B.1: Schematic representation of DC Motor

Figure B.1 shows a representation of the electric circuit of the armature and

a free body diagram of the rotor of a DC motor acting under load. The rotor

and the shaft are assumed to be rigid. Through use of Kirchoff’s voltage law

and Newton’s law of rotational motion, equations can be derived to represent

the operation of the DC motor. These equations are used to form a transfer

function which relates the rotational output speed of the motor to the sup-

plied input voltage. In Figure B.1 the symbols shown represent the physical

parameters listed on the next page.

158

APPENDIX B. UTV PARAMETERS 159

• J - moment of inertia of the rotor [kg m2

s2]

• b - Damping ratio of the mechanical system [Nms]

• K = Ke = Kt - Electromotive force constant [Nm
A]

• R - Electrical resistance [Ohm]

• L - Electrical inductance [H]

• V - Input voltage [V]

• i - Armature current [A]

• θ - Output position of rotor shaft [rad]

• θ̇ - Output angular velocity of rotor [rad
s]

• TM - Motor torque [Nm]

• TL - Load torque [Nm]

• e - Back EMF voltage [V]

As shown in [25] the motor torque is related to the armature current, i, by a

constant factor Kt as shown in the following equation.

TM = Kti (B.0.1)

The back EMF, e, is related to the angular velocity of the rotor by

e = Ke θ̇ (B.0.2)

Since Kt is equal to Ke in SI units one constant variable K can be used to

represent both. Through use of Kirchoff’s voltage law and Newton’s law of

rotational motion the following equations can now be written from Figure

B.1 by making use of Equations B.0.1 and B.0.2. The angular velocity of the

wheels are represented by ω which equals θ̇. The 1.5 : 1 sprocket system ratio

is also taken into account and the factor 1.5 is apparent in Equations B.0.3 and

B.0.4.

Ki − TL = J
ω̇

1.5
+ b

ω

1.5
(B.0.3)

L
di

dt
+ Ri = V − K

ω

1.5
(B.0.4)

APPENDIX B. UTV PARAMETERS 160

B.1 Transfer Function

By taking the Laplace Transforms of Equations B.0.3 and B.0.4 new equations

are obtained in terms of the complex Laplace operator, s, and after substitu-

tion and rearranging of these equations a transfer function is yielded which

relates output angular velocity of the UTV’s wheels to input voltage and

gives insight into the frequency characteristics of the system. The equations

after taking the Laplace Transforms are shown below.

(
1

1.5
)ω(s)[sJ + b] = KI(s) − TL (B.1.1)

I(s)[sL + R] = V(s)− (
K

1.5
)ω(s) (B.1.2)

The following equation is then found by eliminating I(s) from the equations

above through substitution.

ω(s) =
1.5K

(sL + R)(sJ + b) + K2
V(s) −

1.5(sL + R)

(sL + R)(sJ + b) + K2
TL

As stated in [10] the damping is negligibly small and is therefore ignored.

The equation therefore reduces to

ω(s) =
1.5K

s2 JL + sJR + K2
V(s) −

1.5(sL + R)

s2 JL + sJR + K2
TL (B.1.3)

In Equation B.1.3 the second term on the right represents the way in which

the load torque, TL, couples into the system. TL is regarded as a disturbance

torque on the system and the open loop block diagram of this equation is

shown in Figure B.2. A voltage input to angular velocity output transfer

function, for the system plant, is therefore obtained and shown in Equation

B.1.4. A determination of the physical system parameters remains. These

parameters were determined by [10] and a brief discussion is presented on

how this was accomplished.

sL + R
K

s JL + sJR +2

1.5 K
ω(s)V(s)

TL

K
2

Figure B.2: Open loop plant and disturbance torque of DC motor

APPENDIX B. UTV PARAMETERS 161

G(s) =
ω(s)

V(s)
=

1.5K

s2 JL + sJR + K2
(B.1.4)

The resistance and armature inductance of each motor was determined ex-

perimentally through use of an accurate multimeter. The electrical motor

constant, Ke, was determined by applying several voltages to the terminals

of the motor and recording an angular velocity of the motor shaft at each

applied voltage with a tachometer, which measures revolutions per minute.

These RPM measurements are easily converted to rad/s measurements and

by taking an average of the calculated Ke values at each applied voltage an

accurate representation of the electrical motor constant is obtained. As pre-

viously mentioned, the electrical motor constant and armature constant are

equal in SI units and an experimental determination of Kt is therefore not

required. A measurement of the armature current at each applied voltage

was also taken to aid in calibration of current measurements by the current

transducer mentioned in Chapter 2. A summary of the parameters obtained

is listed below. As can be seen in Table B.1, there exists slight differences

between the parameters of DC motor A and B. These differences are how-

ever negligible when considering the hierarchy of higher level controllers

discussed in Chapter 4. The parameters of DC motor B are therefore used

and the assumption is made that the motors are identical in response.

Parameter Motor A Motor B

R 0.7 Ω 0.5 Ω

L 766 µH 785 µH

Ke 1.9 V
rad/s 1.9 V

rad/s

Kt 1.9 V
rad/s 1.9 V

rad/s

Table B.1: Measured Physical Motor Parameters

One last parameter remains which is the motor inertia, J. As mentioned in

[10] the inertia of the vehicle in its entirety is substantially larger than the

inertia of the motor itself. The inertia of the vehicle reflected back to the mo-

tors is therefore used in determining the transfer function of the DC motors.

The assumption is made that weight is distributed uniformly over the UTV’s

chassis and a mass of 6.25 kg therefore rests on each wheel. By approximating

the point of contact between each wheel and the ground as a point mass of

APPENDIX B. UTV PARAMETERS 162

6.25 kg, acting at the radius of the wheel, as shown in Figure B.3, the inertia

can be found with Equation B.1.5.

r = 0.1 m

M = 6.25 kg

Wheel

Figure B.3: Uniform weight distribution on wheels of UTV

Jwheel = Mr2 (B.1.5)

= 0.0625 kg.m2

The total inertia seen by each motor on the UTV is calculated by summing the

reflected wheel inertia, of the front and rear wheels on one side of the UTV, at

the motor axle. For utmost accuracy the inertia of the sprocket system, wheel

axles and motor axles also need to be taken into account and the exact weight

on each wheel calculated. This higher accuracy is however sacrificed to avoid

complexity. Calibration and practical measurements provide a reference and

once the plant model is theoretically determined it can be compared to actual

plant measurements and calibrated so as to match the physical plant exactly

with a step response. Practical methods of determining the exact inertia also

exists but is beyond the scope of this project.

The total reflected inertia at the motor axle is therefore determined with the

following equation which makes use of the sprocket system ratio N.

Jrotor =
Jrear wheel

N2
+

J f ront wheel

N2

N =
1

1.5

Jrotor = 0.281 kg.m2 (B.1.6)

APPENDIX B. UTV PARAMETERS 163

All physical system parameters have now been determined and are substi-

tuted into Equation B.1.4 to yield the transfer function of the system plant for

frequency analysis.

G(s) =
ω(s)

V(s)
=

12920

s2 + 637s + 16360
(B.1.7)

The step response of this plant is compared to the actual step reponse of a sin-

gle UTV motor. The actual step response is recorded with the hardware con-

figuration discussed in Chapter 2. Since the inertia parameter is most likely

to be responsible for inaccuracies in the plant model, the inertia parameter

is varied until the simulated plant step response matches the measured step

response.

A
m

p
li

tu
d
e

[r
ad

/s
]

Time [s]

G(s)

G (s)2

Figure B.4: Step responses of system plant and modified system plant

In Figure B.4 the original theoretical plant step response, G(s), is shown

alongside the actual measured step response, G2(s). The actual plant clearly

has a slower settling time which indicates an inaccuracy in the plant model.

The inertia parameter, J, is varied and the corresponding step responses ob-

tained in MATLAB. Through a process of trial and error an inertia parameter

value was found which matches the simulated step reponse with the mea-

sured step reponse. This value for J and the new plant transfer function is

shown below.

Jrotor = 0.4157 kg.m2

G2(s) =
ω(s)

V(s)
=

8734

s2 + 636.9s + 11060
(B.1.8)

APPENDIX B. UTV PARAMETERS 164

Figure B.5 shows the pole locations of the original plant and the matched

plant. The bandwidth of the matched plant is reduced to 2.83 Hz.

Im
ag

in
ar

y
A

x
is

0.16

Modified System Plant G (s)2

Theoretical System Plant G(s)

Real Axis

Figure B.5: Pole locations of system plant before and after modification

B.2 State-Space

In order to make use of state-space control methods during the design of the

drive system controller the system plant is also presented in state-space form.

The states of the second order system are chosen as

• i - Armature Current

• ωwheels - Angular velocity of wheels

The input to the system is the applied voltage on the motor

• V

The disturbance input to the system is the load torque

• TL

Equations B.0.3 and B.0.4 are rearranged to yield the following differential

equations which are in standard state-space format,

di

dt
= −

K

1.5L
ω −

R

L
i +

1

L
V

dω

dt
=

1.5K

J
i −

1.5

J
TL −

b

J
ω

APPENDIX B. UTV PARAMETERS 165

and the standard state-space matrices are easily found as,

F =

[

−R
L − K

1.5L
1.5K

J − b
J

]

G =

[

1
L

0

]

H =
[

0 1
]

BW =

[

0

− 1.5
J

]

(B.2.1)

where

ẋ = Fx + Gu + BWW

y = Hx

The assumption is made that the measurement noise is negligibly small with

the averaging process during encoder measurements, and filtering process

during current measurements, taken into account (as described in Chapter

2).

B.3 Discrete State-Space

The continuous state-space model is further represented in discrete state-

space to allow for discrete control design methods to be applied. The reason

for this is stated in Chapter 4. With the help of MATLAB a discrete equivalent

plant is found by including a zero order hold circuit with the sample time of

0.04 s, as discussed in Chapter 2, to yield the following discrete state-space

matrices

Φ =

[

−0.01454 −1.313

0.00558 0.5038

]

Γ =

[

1.037

0.3917

]

H =
[

0 1
]

Γω =

[

0

− 1.5
J

]

(B.3.1)

where

x(k + 1) = Φx(k) + Γu(k) + Γωω(k)

y(k) = Hx(k)

The step response of this discrete state-space plant is finally investigated in

MATLAB and the expected response obtained as shown in Figure B.6. The

bandwidth is once again 2.83 Hz and the effect of the zero-order hold dis-

cretization process is visible.

APPENDIX B. UTV PARAMETERS 166

Time [s]

A
m

p
li

tu
d
e

Step Response of Discrete Plant

Figure B.6: Step Response of Discrete Plant with Sample Time 0.04 s

B.4 Calculating the Yaw Rate Slip Gain

In Chapter 4 the slip gain for the yaw rate controller was introduced. The cal-

culation of this gain is done by commanding certain reference wheel speeds

from the UTV which make it turn clockwise and anti-clockwise at varying

yaw rates. With the equations presented in Chapter 4 the theoretical expected

yaw rate is calculated and then compared to the actual yaw rate of the UTV.

The actual yaw rate is determined by recording the time it takes for 10 full

rotations of the UTV to be completed and then calculating the yaw rate. By

making use of 10 rotations instead of just one more accurate results are ob-

tained due to the inherent averaging characteristics of this process. Table B.2

shows a comparison of these recorded yaw rates and the theoretical yaw rates

at corresponding wheel speeds. It is clearly visible that the actual yaw rates

are consistently less than the theoretical yaw rates. These figures were also

checked on different surfaces and on a carpet in the ESL laboratory for in-

stance, which has a high frictional constant, the recorded yaw rates dropped

significantly. The gain can therefore also be interpreted as a load gain seeing

as it was evident that slip of wheels was not the only cause for reduced yaw

rates but also frictional loads. Ultimately the specific origin of the reduced

yaw rates is beyond the scope of this project and an accurate slip gain is only

required for the surface on which the UTV is tested.

By plotting these theoretical values and actual recorded values opposite each

other, a value for the slip gain can be found by doing a linear fitting on this

plot, as shown in Figure B.7. The offset of this linear fitting is negligibly

small and therefore omitted in the design of the yaw rate controller due to

the integral terms in higher level controllers, as shown in Chapter 4.

APPENDIX B. UTV PARAMETERS 167

WL WR Measured r [rad/s] 0.1(WL−WR)
d [rad/s]

−4 4 -1.151 -2.286

−3 3 -1.005 -1.714

−2 2 -0.671 -1.143

2 −2 0.671 1.143

3 −3 0.976 1.714

4 −4 1.109 2.286

Table B.2: Theoretical vs Measured Yaw Rate

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

y = 0.53x - 0.012

Measurements

Linear Fitting

Theoretical Yaw Rate [rad/s]

M
ea

su
re

d
Y

aw
 R

at
e

[r
ad

/s
]

Figure B.7: Linear Fitting of Measured Yaw Rate vs. Theoretical Yaw Rate

Appendix C

Ground station

This appendix is dedicated to the ground station implementation which is

used to communicate wirelessly with the UTV. The ground station plays a

significant role in this project and serves as the medium through which the

user interfaces with the UTV. The ground station is responsible for activation

of initialization routines, provides real-time data and telemetry from the UTV

during autopilot navigation, makes manual wireless operation of the UTV

possible and gives a general visual indication of activity on the UTV which

would not otherwise be easily accessible during operation.

C.1 Overview of Components

As shown in Figure 2.2 the ground station consists of a PC (preferably a Lap-

top for increased mobility) which runs the ground station software, a RF com-

munications module [4] and a RF controller pad. The RF communications

module provides a wireless link with the RF module on the UTV while the

ground station PC communicates serially with the RF module via the UART

protocol at 9600 baud. The ground station software provides a GUI to the

UTV’s onboard computer and allows real-time updating of variables on the

OBC. Since the UTV does not make use of a RC transmitter, as is the case in

previous UAV projects [4][15], an alternative form of manual control of the

UTV needed to be implemented. Although manual control of the UTV is eas-

ily established through software implementation on the ground station PC,

as will be discussed shortly, it proved inconvenient to be restricted to within

the vicinity of the ground station PC and the PC keyboard during manual

wireless control of the UTV, since the ground station PC is not easily carried

around like a RC controller. A RF Logitech Cordless Rumblepad which also

operates at 2.4 Ghz, shown in Figure C.1, was available for use. This cordless

controller pad comes with manufacturer software which allows the rerouting

168

APPENDIX C. GROUND STATION 169

of controller buttons to simulate specific keyboard buttons on the ground sta-

tion PC being pressed. By setting up this software to intercept the controller

buttons which are pressed and then simulating certain keyboard buttons be-

ing pressed, while the ground station software is running, manual control of

the UTV is relayed from this controller pad to the UTV’s onboard RF mod-

ule via the ground station software. Both the RF controller pad and ground

station RF module was found to operate simultaneously without conflicts.

Figure C.1: Logitech Cordless Console Used for Manual Operation of the UTV

C.2 Ground station Software and GUI

As mentioned the ground station software provides a Graphical User Inter-

face to the onboard computer of the UTV. This GUI is implemented with

Borland C++ Builder 6 and the GUI implemented by [15] was used as a ba-

sic foundation to work from with a communications protocol already imple-

mented. The GUI is a vital component used during test runs in this project.

Due to the geometrical and graphical nature of path planning algorithms and

the complexity of these algorithms being used in conjunction with control

algorithms, the GUI had to be modified significantly to accommodate path

planning, manual control of the UTV, and a two dimensional state estimator

instead of the six degree of freedom estimator used in previous UAV projects.

The GUI is also made more graphical to provide intuitive insight into activity

on the UTV. Each interface page of the ground station GUI is now presented

with a discussion on the various responsibilities of the components on each

page.

C.2.1 Main Ground Station Page

The first page of the ground station GUI is shown in Figure C.2. This page

is minimally altered from the one used by [15]. It shows basic information

APPENDIX C. GROUND STATION 170

from the sensors on the PC104/CAN Controller board on the UTV such as

voltage and temperature levels. A timer is also used to indicate how long the

OBC control loops have been running and how many megabytes of telemetry

data have been logged. These basic information boxes give an indication of

the overall health of systems on board the UTV. The OBC Fan box is inactive

in this project since alternative fans were used for the avionics package, as

discussed in Chapter 2.

Figure C.2: Main Page of the Ground station GUI

Buttons are also shown which are used to start the OBC autopilot executable

file, stop the autopilot and clean the logged data after use. The Download data

button is used to download the C executable autopilot file, created and com-

piled on a Linux operating system with the gcc compiler, from the ground

station PC to the UTV’s avionics. This button also downloads the reference

data file to the OBC which contains physical constants and estimator noise

covariances. The Upload data button is used for uploading the error log file

and telemetry log file from the UTV to the ground station PC after test runs.

A Reboot button was added for quickly rebooting the OBC during debugging

and the OBC Shutdown button is still present. The Command History list box

displays all the commands which are issued by the pressing of any of the

buttons on the ground station GUI, and also displays confirmation messages

APPENDIX C. GROUND STATION 171

which are received from the OBC if a command is recognized or an error

message if the command is not recognized. General error messages are also

displayed here. The Command Line box is used to upload predefined com-

mands to the OBC. Finally two text boxes are also shown which display the

current status of the estimator and autopilot on the OBC, whether it be Armed

or Disarmed.

C.2.2 UTV Manual Control Page

Figure C.3: Manual Control Page of the Ground station GUI

Manual control of the UTV is established through the page of the ground sta-

tion GUI shown in Figure C.3. The autopilot on board the UTV is set up to

recognize the instructions, which are transmitted when any of the buttons on

this page is clicked, and then reacts by setting the respective wheel speeds

of the UTV accordingly. The Forward button, when pressed, simply increases

both the left and right commanded wheel speeds of the UTV in increments

of 0.625 rad/s but does not exceed 8 rad/s. The Reverse button decreases both

wheel speeds in the same increments but does not command wheel speeds

below −8 rad/s. The Left button increases right wheel speed and decreases

left wheel speed in the same increments and the Right button does the op-

posite. The Stop button brings the UTV to an immediate halt. These com-

APPENDIX C. GROUND STATION 172

mands can also be sent to the UTV by pressing the corresponding keys on

the Numpad of the keyboard, as shown in Figure C.3, and these keys can be

pressed with any page of the GUI being active and still be registered. This

provides immediate manual control of the UTV during any stage of naviga-

tion and activity on the GUI and also makes the manual control with the con-

troller pad, previously mentioned, possible. Additional text boxes are also

provided to allow immediate upload of exact left and right wheel speed ref-

erences which is convenient during calibrations. Before any of these keys can

be used to control the UTV the drive systems need to be activated with the

Enable Drive Systems button. The drive systems can also be disabled should

the need arise. Finally this page provides real-time telemetry of the left and

right wheels speeds of the UTV in rad/s as well as forward velocity of the

UTV in m/s. The direction in which the wheels are turning is also shown as

well as the enabled or disabled status of the drive systems.

C.2.3 Sensor Page

The sensor page of the GUI is shown in Figure C.4 and is based on the one

implemented by [15]. This page provides real-time measurements of all sen-

sors on the UTV which were discussed in Chapter 2. Buttons are also present

for calibration of the IMU sensors by calculating the appropriate gains and

offsets for all sensor measurements on the OBC, while the UTV is stationary

before any navigation is attempted. This provides good compensation for

rate gyroscope biases due to temperature variation. The magnetometer also

has a Reset/Set Cycle button which activates a routine in which the magne-

tometer is purged of any residual magnetic polarizations.

The only additions on this page are the drive systems telemetry which is also

shown here for convenience and the diagram which indicates the current

heading of the UTV. This diagram is updated every 3.5 seconds whenever

the UTV is stationary and displays a line vector corresponding to the current

heading of the UTV, calculated through use of the TRIAD method, discussed

in [15], through utilization of the magnetometer and accelerometer measure-

ments in 3 axes. This algorithm therefore provides the exact 3 dimensional

attitude of the UTV when stationary. A similar diagram is used on the esti-

mator page of the GUI as shown in the next section. This diagram also shows

the heading of the UTV but is however updated with the heading obtained

from the 2 dimensional state estimator which only makes use of the horizon-

tal X-axis and Y-axis measurements of the magnetometer. Therefore, should

the UTV be on non-level terrain the Z-component of the earth’s magnetic

APPENDIX C. GROUND STATION 173

Figure C.4: Sensor Page of the Ground station GUI

field will couple in on the horizontal measurement axes of the magnetometer

and consequently the estimator will yield an incorrect heading. A compari-

son of these two diagrams, before the UTV’s autopilot has been armed and

only the estimator has been armed, therefore provides an elementary way of

checking whether the UTV is indeed on a level surface, which is a require-

ment of this project where all algorithms are based in 2 dimensional space.

Should the vector on the diagram on this page therefore differ from the one

on the estimator page of the GUI, a reconsideration of the UTV’s testing grid

is necessary. During test runs it was seen that a significant slope in testing

terrain is required to corrupt the 2 dimensional algorithms of this project and

successful testing was accomplished on a rugby field which is not perfectly

level. A comparison between these two diagrams is therefore redundant in

this project but still provides insight and emphasizes the 2 dimensional re-

striction on the algorithms implemented.

C.2.4 Estimator Page

The estimator page of the UTV, shown in Figure C.5, is dedicated to the op-

eration of the two-dimensional estimator discussed in Chapter 5. The page

provides text boxes for entry of reference vectors and a button to upload

these references to the UTV through the RF link. These reference vectors are

APPENDIX C. GROUND STATION 174

however already uploaded within the reference data file which is uploaded

when the Download Data button is pressed on the main page of the ground

station GUI and new references are therefore only uploaded should the UTV

be operated in an area other than Stellenbosch. The page also contains text

boxes and a button to upload noise covariances, for the process noise and

measurement noise of the estimator, should the need arise to fine tune the

estimator’s performance.

Figure C.5: Estimator Page of the Ground station GUI

The Initialize Estimator button is used prior to arming the estimator and au-

topilot and commands the OBC to run an initialization routine which calcu-

lates the initial values of the states of the estimator. These initial states are

calculated by taking the average of several successive GPS measurements

and magnetometer measurements. The starting position of the UTV is also

defined and uploaded on the Path Planning page of the GUI, prior to initial-

ization of the estimator, and places the UTV at a certain point in a virtual

two-dimensional grid used for the path planning algorithms. When the Ini-

tialize Estimator button is pressed the initial averaged GPS measurements are

therefore used as the trim coordinates and all further GPS measurements are

taken relative to these initial coordinates, then converted to meters and then

shifted with the offsets obtained from the starting position defined on the

APPENDIX C. GROUND STATION 175

Path Planning page of the GUI to arrive at the UTV’s position in the virtual

path planning axis system.

After the Initialize Estimator button has been pressed a short delay occurs for

the averaging process on the OBC and the initial values of the states are then

seen in the corresponding text boxes. These text boxes also display the states

of the estimator in real-time while the estimator is armed. As mentioned

in the previous section a diagram is also present which only displays when

the estimator is armed and shows the real-time heading obtained from the

estimator in a NE axis system.

C.2.5 Terminal Page

The terminal page of the GUI is the same as the one used by [15] with the

exception of the buttons, on the main page of the GUI, also included here for

convenience during configuration of the OBC. When the sealed lead acid bat-

teries of the UTV go flat during operation of the UTV unexpected shutdowns

can occasionally cause corrupted data on the flash disk since the error log file

and telemetry log file on the flash disk were not properly closed. This file

corruption is easily remedied through this page of the ground station GUI by

running the OBC Linux Kernel’s extended file system check with the e2fsck

command and then rebooting the system.

C.2.6 Path Planning Page

The core of the ground station GUI in this project resides on the Path Planning

page shown in Figure C.6. This page is responsible for the wireless configu-

ration of all variables on the OBC regarding the path planning algorithms. It

also serves as a graphical medium through which UTV activity can be mon-

itored throughout the autopilot navigation. Monitoring all these variables

and ensuring a proper order in which variables are uploaded to the OBC can

become rather complex and could lead to corrupted data on the OBC, should

the proper sequence not be followed, which will ultimately cause failure of

the path planning algorithms. A text box is therefore implemented which

shows confirmation messages and warning messages throughout the process

when the upload of data is attempted in an incorrect manner. This section

will go through the steps required to set up the path planning algorithms on

the UTV through use of the Path Planning page of the GUI.

Due to the nature of the path planning algorithms, discussed in Chapter 3, a

predefined format for how obstacle coordinates are uploaded is necessary for

APPENDIX C. GROUND STATION 176

Figure C.6: Path Planning Page of the Ground station GUI

each specific algorithm. As discussed in Chapter 3 this project implements 2

different population algorithms and two different shortest path algorithms. In

order to calculate a path, one of the population algorithms need to be chosen

and one shortest path algorithm need to be chosen. The shortest path algorithm

is used on the results of the population algorithm to yield the shortest path.

The first step on the GUI page of Figure C.6 is to set the values for the bound-

aries of the virtual NE axis system in which the UTV will be operating. A

message will be displayed in red in the black text box which indicates that all

boundaries need to be set. Included in the boundaries group box is the Voronoi

and Visibility boundary text boxes. These two boxes are used to set the popu-

lation algorithms’ calculation boundaries, in meters beyond the obstacle ver-

tex which is the furthest from the origin of the NE axis system. After these

boundaries have been set the ground station software has enough informa-

tion to draw the NE axis system. This is done automatically when the Upload

button is pressed, or the page is refreshed, in the larger black box shown and

a grid is drawn which is marked in increments up to the boundaries defined.

At this stage the message box will state that the OBC executable needs be

started, if it has not already, and this is done on the main page of the ground

station GUI or on the terminal page.

APPENDIX C. GROUND STATION 177

The next step is to define the starting point of the UTV as well as the desired

destination within the boundaries previously defined. A simple form of error

checking is implemented which disallows the upload of an identical starting

and destination location and the message box displays a warning message

when the user attempts this. A confirmation message is shown if these co-

ordinates were successfully uploaded. The user can verify correct upload

of the algorithm calculation boundaries, starting location and destination at

this point by viewing the text boxes at the top of the page which displays the

current variables on the OBC.

The most important step on this page of the GUI is the upload of obstacle

coordinates. This can either be done by uploading the obstacles one at a time

or with a batch upload of more than one obstacle. The GUI gives the user

the option, with the Upload to OBC as well check box, to choose whether the

current obstacle is just being uploaded to the local obstacle database on the

ground station, for later upload to the OBC, or whether the obstacle is di-

rectly being uploaded to the OBC as well. All obstacles in the local database

are drawn on the GUI’s NE axis system while the current number of obsta-

cles on the OBC is shown in the text boxes at the top of the page. The user

can therefore monitor these two interfaces to ensure the obstacles on the OBC

are synchronized with the obstacles on the ground station.

The obstacles are further uploaded in a specific format according to the cho-

sen population algorithm, whether it be the Voronoi or Visibility graph algo-

rithm. Voronoi obstacles are always square in form, as discussed in Chap-

ter 3 and are defined by the, Northern and Eastern coordinates of its center,

length of one of its edges and the angle which it makes with the N-axis. Vis-

ibility obstacles can take on the form of any convex polygon and the user

has the option of defining the vertex locations of the obstacle or defining a

square obstacle in the same format as the Voronoi obstacles, which is then

converted to vertex format. The selection in population algorithm is made in

the group boxes underneath the Select Population Algorithm heading by check-

ing the appropriate check box. Error checking with corresponding warning

messages are implemented which prevents the user from selecting neither of

the population algorithms, both of the algorithms or the opposite algorithm

once obstacles have already been uploaded in the format of the one algo-

rithm. If an obstacle was uploaded incorrectly or the user wishes to use the

alternate population algorithm, all obstacles have to be cleared first with the

APPENDIX C. GROUND STATION 178

Clear all obstacles button. The GUI also ensures that at least one and not both

of the shortest path algorithms is selected and displays appropriate warning

messages. The current selection in population algorithm and shortest path al-

gorithm on the OBC is also shown in the OBC status text boxes at the top of

the page.

As mentioned, several obstacles can also be uploaded in a batch. This is done

with the Upload all obstacles to OBC button which transmits the coordinates of

all obstacles, currently shown locally on the NE axis system, to the OBC in

the format of the selected population algorithm. The obstacles can also be im-

ported in a batch from an obstacle data file which is generated during Matlab

simulation. The user has the option of importing a pre-defined Voronoi or

Visibility obstacle file and care should be taken to ensure the corresponding

population algorithm is selected in the check boxes under the Select Population

Algorithm heading. Single obstacles can then be added to these imported ob-

stacles locally before all obstacles are uploaded with the Upload all obstacles to

OBC button. Should the data transmission be corrupted when large amounts

of obstacles are uploaded to the OBC, with the Upload all obstacles to OBC but-

ton, the user also has the option to keep obstacles in the local database and

clear only the obstacles on the OBC with the Clear only OBC Obstacles button.

This is convenient when many obstacles have been added individually to an

imported file and quick retransmission of all obstacles is all which is desired.

Once these steps have been followed correctly the UTV is ready for naviga-

tion. The first step is to initialize the estimator after calibrating all sensors, as

previously mentioned, and enabling the drive systems. The estimator is then

armed by checking the Enable Estimator check box and clicking the Update

Autopilot button. A confirmation message will be displayed showing that the

estimator has been armed and the autopilot is still disarmed. The current

estimated position of the UTV is also drawn with a green dot on the NE axis

system and the estimated heading of the vehicle can be seen visually on the

Estimator page of the GUI as previously mentioned.

At this point all systems are ready for navigation to be started. The autopi-

lot is now armed by checking the Arm Autopilot check box and clicking the

Update Autopilot button. The path planning and control algorithms execute

immediately after this, on the OBC, in accordance with the flowcharts of the

state-machine discussed in Chapter 4 and the calculated path is transmitted

back to the ground station and drawn on the NE axis system. The UTV then

APPENDIX C. GROUND STATION 179

Figure C.7: Path Planning Page after the Estimator and Autopilot have been Armed

starts navigating this path and it’s current location along the path is drawn

on the NE axis grid with the help of the estimator telemetry. At this point

the state-machine previously discussed has taken over and the UTV is fully

on autopilot. Figure C.7 shows a typical display of the GUI at this stage. The

calculated path is shown in blue and the current position of the UTV can be

seen as the small green dot. The user now has the option of uploading an

additional obstacle, while navigation is in progress, which triggers an imme-

diate halt of the UTV and a recalculation of the path, after which navigation

continues automatically along the new path.

Included with this thesis is a DVD featuring recordings of the actual UTV

as well as the activity on the ground station during navigation. The reader

is urged to watch this DVD in order to supplement the discussions of this

appendix. It is recommended that reference be made to Appendix D before

attempting to view these videos.

Appendix D

DVD Videos

All the videos mentioned in this thesis can be viewed on the DVD attached

to the back page of this document. The DVD contains three main folders,

• 1 - A folder with videos regarding the practical demonstrations which

relate to the discussions of Chapter 6 and 7

• 2 - A folder with videos regarding the path planning algorithms which

relate to the discussions of Chapter 3

• 2 - A folder with supplementary software which may be required to

play these videos

Please note that the videos regarding practical demonstrations are best viewed

with VLC Media Player, included in the Supplementary Software folder. Alter-

natively the DivX 5.0.5 codec, also in the Supplementary Software folder, can be

installed and the practical demonstrations videos then viewed with Windows

Media Player. Please be patient during installation of the DivX 5.0.5 codec

since it might install slowly.

The videos regarding the path planning algorithms are best viewed with

Windows Media Player. The TechSmith Screen Capture Codec (TSCC) is however

required and can also be found in the Supplementary Software folder. When

viewing the path planning videos with VLC Media Player unexpected arti-

facts might be displayed which inhibits proper viewing. On some systems

these videos did however display correctly in VLC as well.

180

Bibliography

[1] G.F. Franklin, J.D. Powell, M. Workman. Digital Control of Dynamic Sys-

tems - Third Edition. Addison Wesley Longman. 1998.

[2] F.P. Emami-Naeini. Feedback Control of Dynamic Systems - Fourth Edition.

Prentice Hall. 2002.

[3] H.A. Haus, J.R. Melcher. Electromagnetic Fields and Energy. Prentice Hall.

1989.

[4] I.K. Peddle. Autonomous Flight of A Model Aircraft. Masters dissertation,

University of Stellenbosch, 2005.

[5] J. Bijker. Development of an Attitude Heading Reference System for an Air

Ship. Masters dissertation, University of Stellenbosch, 2006.

[6] J.G. Proakis, D.G. Manolakis. Digital Signal Processing - Principles, Algo-

rithms and Applications. Prentice Hall. 1996.

[7] J. O’Rourke. Computational Geometry in C - Second Edition. Cambridge

University Press. 2001.

[8] J. Venter. Development of an Experimental Tilt Wing VTOL Unmanned Aerial

Vehicle. Masters dissertation, University of Stellenbosch, 2006.

[9] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. Computa-

tional Geometry - Algorithms and Applications. Springer. 1997.

[10] M. Köpke. The Development of a Drive System for an Unmanned Terrestrial

Vehicle. Mechatronic Project 488, University of Stellenbosch, 2005.

[11] R.L. Shackelford. Introduction to Computing and Algorithms. Addison

Wesley Longman. 1998.

[12] S. Groenewald. Development of a Rotary-Wing Test Bed for Autonomous

Flight. Masters dissertation, University of Stellenbosch, 2006.

181

BIBLIOGRAPHY 182

[13] T. Jones. Advanced Estimation 813 - Course Notes. University of Stellen-

bosch. 2006.

[14] T. Wildi. Electrical Machines, Drives, and Power Systems. Prentice Hall.

2002.

[15] W. Hough. Autonomous Aerobatic Flight of a Fixed Wing Unmanned Aerial

Vehicle. Masters dissertation, University of Stellenbosch, 2007.

[16] W. Van Rooyen. Design of a Sealed Lead Acid battery charger. Electronic

Systems Laboratory Project, University of Stellenbosch, 2005/2006.

[17] Amit Patel’s web page on the use of Heuristics.

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S12.

2008.

[18] OBC datasheet on Arbor-USA web page.

http://www.arbor-usa.com/pub/datasheet/computer_on_module/Em104-

i613.pdf. 2008.

[19] Web page on A* Pathfinding for Beginners.

http://www.policyalmanac.org/games/aStarTutorial.htm. 2005.

[20] A visual implementation of Fortune’s Voronoi algorithm.

http://www.diku.dk/hjemmesider/studerende/duff/Fortune/. 2001.

[21] Web page on Ferromagnetism by Glenn Elert.

http://hypertextbook.com/physics/electricity/ferromagnetism/. 1998-2008.

[22] Web page on Sensitivity of the Human Ear by R Nave.

http://hyperphysics.phy-astr.gsu.edu/Hbase/sound/earsens.html. 2008.

[23] The Visibility-Voronoi Complex by Ron Wein and Dan Halperin.

http://acg.cs.tau.ac.il/projects/internal-projects/the-visibility-voronoi-

complex/project-page. 2008.

[24] Fortune’s 2D Voronoi diagram C code.

http://www.cs.sunysb.edu/~algorith/implement/fortune/implement.shtml.

2008.

[25] Web page on DC Motor Speed Modeling by the University of Michigan.

http://www.engin.umich.edu/group/ctm/examples/motor/motor.html. 1997.

