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Abstract

Tree-based Gaussian Mixture Models for Speaker Verification

F.D. Cilliers

Department of Electrical and Electronic Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: M.Sc.Eng. (Electronic with Computer Science)

December 2005

The Gaussian mixture model (GMM) performs very effectively in applications

such as speech and speaker recognition. However, evaluation speed is greatly

reduced when the GMM has a large number of mixture components. Various

techniques improve the evaluation speed by reducing the number of required

Gaussian evaluations. These techniques are based on the observation that only

a few mixture components contribute significantly to the final model likelihood.

One technique that shows promise beyond the basic speed improvement, is

the use of tree-based GMMs. The mixture components are used as leaf nodes

in a tree structure. Groups of leaf nodes are represented by approximating

Gaussian density functions. This approximation is repeated for each layer of

the tree, up-to the root node. The group of mixture components that contribute

the most to the model likelihood can then be found quickly by searching through

the approximating nodes that also have the highest contributions.

We introduce a new version of the model, called a tree-based adaptive GMM,

and apply it to the task of speaker verification. This model not only searches

for the components with the highest likelihood contributions, but it produces

a virtual GMM using the approximating nodes for the rest of the model. No

significant extra computation is required, because those approximating nodes

are already evaluated during the search procedure. This new model can also

be used to improve the speed of model training. We show that performance

similar to the regular GMM can be obtained with an execution time that is

logarithmically related to that of the regular GMM.
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Opsomming

Boom-gebaseerde Gaussiese Mengselmodelle vir

Sprekerverifikasie

F.D. Cilliers

Departement Elektriese en Elektroniese Ingenieurswese

Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: M.Sc.Ing. (Elektronies met Rekenaarwetenskap)

Desember 2005

Die Gaussiese mengselmodel (GMM) lewer hoë werkverrigting vir toepassings

soos spraak- en sprekerherkenning. Maar, berekeningspoed word drasties ver-

minder vir ’n GMM met baie mengselkomponente. Verskeie tegnieke verbeter

die berekeningspoed deur die hoeveelheid benodigde Gaussiese berekeninge te

verminder. Die tegnieke berus op die waarneming dat slegs ’n klein aantal

mengselkomponente beduidend bydra tot die finale modelwaarskynlikheid.

’n Tegniek wat belowend lyk vir meer as blote spoedverbetering, is die ge-

bruik van boom-gebaseerde GMM’e. Die mengselkomponente word as blaar-

nodusse in ’n boom gebruik. Groepe blaarnodusse word verteenwoordig deur

benaderende Gaussiese digtheidsfunksies. Die benadering word herhaal vir elke

vlak van die boom, tot-en-met die wortelnodus. Die groep mengselkomponente

wat die meeste bydra tot die modelwaarskynlikheid, word vinnig gevind met ’n

soektog deur daardie benaderende nodusse wat ook die grootste bydraes toon.

Ons stel ’n nuwe model bekend, die boom-gebaseerde aanpasbare GMM,

en gebruik dit vir sprekerverifikasie. Die model soek nie net vir die kompo-

nente met die hoogste bydraes nie, maar skep ’n virtuele GMM deur gebruik te

maak van die benaderende nodusse. Geen beduidende bykomende berekeninge

word benodig nie, omdat die benaderende nodusse alreeds bereken word tydens

die soektog. Hierdie nuwe model kan ook afrigspoed verbeter. Ons wys dat

werkverrigting soortgelyk aan die van ’n gewone GMM behaal word, maar met

’n uitvoertyd wat logaritmies verwant is aan die van ’n gewone GMM.
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Chapter 1

Introduction

1.1 Motivation

In the modern age of digital computers, a vast amount of useful functions have

already been developed to process signals in digital form. Speaker recognition

is a technique of digital signal processing (DSP) regarding the correct identi-

fication of people by analysing their speech. It has a wide variety of useful

applications in the broad areas of access control, transaction authentication,

law enforcement and more [1]. Some of these applications, in combination with

other technologies, might someday help to narrow the digital divide by provid-

ing computer-illiterate people easy access to technology.

In the past few decades, important contributions have been made in the field

of speaker recognition. Among these contributions, the Gaussian mixture model

(GMM) has proved extremely efficient for characterising speaker identity at the

acoustic level [2]. One big disadvantage of using GMMs, is that the computation

time of model evaluations can become very expensive. This is especially true

in research and development where large numbers of trials must be executed to

determine the performance of a verification system.

This thesis examines current, advanced techniques surrounding Gaussian

mixture modelling in the focus area of acoustic text-independent speaker veri-

fication. These techniques transform the GMM into a tree structure that can

improve the evaluation speed considerably. By building on these techniques,

a new tree-based version of the GMM is introduced. Theoretical prediction

indicate that this new model can achieve nearly a hundred-fold improvement in

evaluation speed. This comes at a cost of requiring only double the amount of

memory. The new model is not restricted to application in speaker verification,

but can also replace the regular GMM in other tasks such as speech recognition.

1
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1.2 Concepts Relating to Modelling in Speaker

Verification

Speaker recognition falls under the general concept of pattern recognition (PR)

or pattern classification [3, 4]. It is sub-divided into two main areas: Speaker

identification (SID) and speaker verification [1]. The latter is also called speaker

detection. For the SID task, it must be determined which person in a known,

fixed-size set is doing the talking. For the speaker verification task, on the other

hand, it must be determined whether a person is whom he or she is claimed

to be. This requires discrimination between the target speaker and a possibly

infinite number of impostor speakers.

For any PR task, features are needed that allow discrimination between the

different classes in the data. For example: the number of wrinkles on a person’s

face might be a good feature for age discrimination. Normally, discrimination

can be enhanced by taking a number of different features into account. This

gives extra dimension (more viewpoints) to the data being studied. In mathe-

matical terms, it thus makes sense to work with features as multi-dimensional

vectors. Each dimension represents a different feature measurement that is

extracted from the data.

Speech data come in the form of time-varying signals. A speech data set is

a collection of sample speech signals. A number of schemes have already been

produced for extracting useful information (to be used as features) from speech

signals. In recent years, cepstral coefficients (of which a few different types

exist) have become the features of choice for speech.

Models in PR are mathematical descriptions of classes, of which the parame-

ters are estimated from feature vectors. On the acoustic level, a speaker model

tries to represent all the possible sounds that the voice of the corresponding

person can make. It is assumed that a person’s voice is unique and therefore

make unique sounds. But, in reality, a given sound might be produced by more

than one person. This obviously makes the modelling process very difficult,

because speaker models might overlap to quite an extent. Also, training data

for any given person are always limited and do not necessarily contain all the

possible sounds that the person can make. Statistical methods that use prob-

ability density functions (PDFs) to model classes are commonly used for PR

tasks. This thesis employs a tree-based version of the Gaussian mixture model

(GMM), which is a statistical model.

The verification task produces a score that indicates how well a given test

sample (or utterance) matches the model of the claimed identity. A threshold
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must be chosen to decide, based on the score, whether or not the test sample was

actually produced by the claimed identity. If the score is above the threshold,

the decision is affirmative, otherwise not.

Two types of errors occur during verification. A false acceptance (FA) (or

false alarm) is the error made when the verification system accepts the claim,

although the claimed identity is not present in the sample. A false rejection

(FR) (or miss) is the error made when the system fails to detect the claimed

identity, although it is present in the sample. The performance of a system is

normally characterised by the equal-error rate (EER). This is the probability

of an error occurring if the threshold is chosen so that the occurrence of both

FA and FR errors are equally likely.

Text-dependent speaker recognition requires the speaker to speak a cue sen-

tence from a fixed set. The number of ways in which these sentences can be

produced by a single person are somewhat limited. This allows the system

to know most of the sounds that can be expected from a test sample. Much

higher accuracies can therefore be obtained than with text-independent speaker

recognition where the speaker may say anything. With this latter method, the

system must be able to deal with sounds that it may not have encountered

during training.

To effectively construct any practical speaker recognition system, a large vol-

ume of training and testing data is required. Speaker models are created from

training data and the system performance (accuracy) is measured from testing

data. The latter are also used to choose appropriate thresholds. Many com-

mercial speech databases are available to satisfy this need. A speech database

is often also called a speech corpus.

1.3 Previous Work Regarding Tree-based GMMs

As used in modern speaker recognition systems, Gaussian mixture modelling

has become a very popular technique since it was first introduced [2]. Apart

from the fact that it gives very good performance, it has an intuitive connection

to the physical properties of a person’s voice. In short, a GMM is a sum of

weighted component Gaussian PDFs. Each component can be thought of as

representing a given group of sounds that a person can produce. The GMM as

a whole can therefore represent all the sounds of a person’s voice with relatively

high accuracy.

Because of data scarcity, early systems used a maximum of 64 components

for speaker models. Later, the technique of Bayesian speaker adaptation (orig-

inally used in speech recognition systems [5]) was applied to create speaker
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models from a universal background model (UBM) [6]. The UBM is trained

using data from a large population of speakers, thereby creating a model rep-

resenting the general (or background) speaker. Because so much training data

are available for the UBM, the number of Gaussian mixture components was

increased to 2048. This allowed much more detailed modelling of the acoustic

space. The drawback of having so many components, however, is that compu-

tation time is also increased considerably.

Recently, researchers have started to develop techniques to improve the

speed of GMM computation by rearranging the components into a tree forma-

tion [7, 8, 9, 10]. The tree is usually constructed so that the nodes in each

level serve as approximations for their respective descendant nodes. When de-

termining the score of a test feature vector for the model, the tree structure

ensures that a quick search can be made to find only those components that

contribute significantly to the score. Chapter 2 describes these developments

in more detail.

In existing techniques, the contributions of approximate nodes to the model

score are used to determine the search path. Only the subtrees of those nodes

with high enough contributions are evaluated further. Normally, the contribu-

tions of these approximate nodes are otherwise ignored, because they are not

actual mixture components and merely exist to facilitate the search.

As a consequence of the research for this thesis, a new version of the tree-

based GMM was produced, called the tree-based adaptive Gaussian mixture

model (T-BAG mixture model, or T-BAGMM). It has the property of includ-

ing the contributions of approximate nodes that have lower contributions to

the score, but only when they are evaluated as part of the search procedure.

These nodes then serve as a cost-efficient approximation to the clusters of mix-

ture components that would otherwise have been discarded. This action costs

nothing extra in computation time, but it is hoped to produce slightly better

performance than other speed improvement techniques. It effectively provides

a multi-resolution GMM that models different regions of feature space with dif-

ferent degrees of detail, depending on the location of the test feature vector.

This gives the model its adaptive nature.
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1.4 Research Objectives

The main concern of this thesis is the improvement of evaluation speed for the

GMM. Although other techniques exist to perform this function, the solution

presented here is believed to have greater potential. The primary aim of this

thesis therefore consists of:

� introducing a new time-efficient version of the GMM, based on recent

advances made by other researchers;

� providing detailed discussions about factors surrounding the construction

and functionality of the model; and

� investigating the new model’s effectiveness in the application of speaker

verification.

The secondary aim is to fully describe the construction of a modern acoustic-

level text-independent speaker verification system. To achieve this second ob-

jective, it is necessary to cover all the components that are used to construct

the verification system. These are:

� front-end processing (signal analysis and feature extraction),

� speaker modelling,

� evaluation and decision making.

In a thesis such as this one, it is not practical to investigate all these system

components in detail. However, detailed descriptions of specific techniques can

be provided. Also, investigations should be performed to discover the influence

of some of these techniques on the system performance. As a consequence of

the primary objective, the speaker modelling component receives the greatest

attention.

1.5 Contributions

Throughout the development process and experimental investigations, a few

important contributions were made by this research:

� A detailed description of the new T-BAGMM was produced. Some addi-

tional insight regarding its implementation was given, and the possibility

of adjusting the speed-accuracy trade-off was discovered and applied.
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� It was discovered that the accuracy of the T-BAGMM is very similar

to the GMM. The T-BAGMM also performs consistently better in the

low false alarm region, although no proper explanation for this has yet

been found. The T-BAGMM was used to perform multiple experiments

successfully while experiencing up-to roughly a 100-fold improvement in

evaluation speed. It was observed that the speed measurement for 2048-

component models was even better than predicted by theory. The reason

for this has also not been found, but inaccuracies in the measurements

and prediction may have a small contribution. Training speed was also

improved considerably.

� Characteristic curves were obtained of the T-BAGMM speed improve-

ment. These can be used by developers as an indication of whether, and

by how much, the T-BAGMM will benefit any particular application.

� Various techniques were investigated under the same challenging condi-

tions of the 2004 National Institute of Standards and Technology (NIST)

speaker recognition evaluation (SRE). These results present the unique

perspective that shows how the different techniques improve performance

relative to each other. In this way, it was seen that channel compensation

plays a dominant role in high-performance systems.

� As an alternative to existing, but more complex software packages, a

simple implementation of process distribution was developed using Linux

shell scripts.

� Experimental work was performed using the PatrecII software suite that

is being developed by the DSP group of the University of Stellenbosch.

During this research work, software components were created for PatrecII

to implement T-BAGMM functionality. Some other PatrecII components

were also improved upon, in order to complete the verification system. Is-

sues regarding the implementation of algorithms are discussed in this the-

sis, but no specifics about the actual software implementation are given.

1.6 Overview of this work

This section describes the organisation of this thesis. Chapter 2 reviews work

done previously by other researchers on the topics of speech processing and

specifically speaker verification in the acoustic domain. The various techniques

used in this thesis are introduced. This covers feature extraction, speaker mod-
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elling and evaluation methods. Special attention is given to modelling tech-

niques regarding tree-based GMMs.

Chapter 3 introduces the concept of speaker modelling for the speaker ver-

ification task. It provides the theory of modelling acoustic space with GMMs.

The structure of the GMM is described, as well as the practical methods for de-

termining its parameters through maximum likelihood (ML) estimation and the

expectation maximisation (EM) algorithm. The method of adapting speaker-

specific models from a more general speaker-independent model, using maxi-

mum a posteriori (MAP) adaptation, is also covered.

Chapter 4 introduces the new T-BAGMM that was developed for this thesis.

Thorough theoretical coverage of the model structure and method of evaluation

is given. Model training is also discussed.

Chapter 5 covers the remaining parts of the speaker verification system. It

shows how the different components work together to produce a verification re-

sult. Detailed descriptions of specific techniques for front-end signal processing,

the feature extraction process and score calculation are given. The theoretical

foundation for making decisions is discussed. The general idea for applying

distributed processing to the verification task is also covered in this chapter.

Chapter 6 describes the various choices and algorithmic specialisations that

were made for this thesis. It investigates the choices for various parameters

of the underlying processes in the system. A discussion is given about the

application of data, and the characteristics that are desired in the data are

pointed out. The actual method of implementation for distributed processing

is described here. Specific additions or alterations to the general algorithms

(which are described in the theoretical sections of this thesis) are also discussed.

Chapter 7 shows the results of a few investigations into the effectiveness of

the new T-BAGMM. Figure 7.2 and Table 7.1 show that the T-BAGMM per-

formance matches closely that of the regular GMM. Specific speed improvement

measurements are summarised for model training in Figure 7.4 and for evalua-

tion in Figure 7.6. The influence of a few other techniques that were employed

are also shown.

Finally, Chapter 8 makes a few conclusions from this research. Some re-

commendations are also given for possible further investigations.
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Literature Study

2.1 Introduction

The general verification (or detection) task requires that a system confirm the

presence of a pattern in a sample of data. In speaker verification, it must be

determined whether the speech of a given person is present in a speech sample.

This task is therefore also referred to as speaker detection. Verification itself

is a form of Pattern Recognition of which general concepts are discussed by

appropriate literature [3, 4].

By 1975, digital computers have been in use for about 30 years or more. The

basic structure for speaker verification systems in use at that time is outlined

as follows [11]: From a test utterance of a specific cue sentence or phrase,

features such as pitch period and intensity were calculated on a per-frame basis.

These features produced parameter contours that represent the utterance. The

contours were then time-aligned to the reference contours of the claimed identity

and the distance between them compared to a threshold value, either accepting

or rejecting the claim.

Many advances have been made in the following years. The modern struc-

ture of speaker verification systems [1] is not very different from the above

description. New kinds of features are extracted from the test utterance on a

per-frame basis during front-end processing. These features are then compared

to the model of the target identity as well as to the models of possible impostors.

The likelihood ratio is the ratio between how well the target model describes

the features and how well the impostor models describe the features. This ratio

is compared to a threshold value that decides whether to accept or reject the

claim. This system structure is also adopted for this thesis. It must be noted

that this system is based on statistical methods and therefore it is assumed that

the reader is familiar with probability theory principles [12, 13].

8
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2.2 Speaker Verification

2.2.1 Front-end Processing

Features in speech signals that can distinguish between speakers are not obvious.

Currently, we do not yet have an exact understanding of speech production

and perception, and especially how speaker identity is conveyed. However,

it is known that the vocal tract is the main (but not the only) physiological

factor that distinguishes different voices from each other. The speech spectrum

[14, 15] (obtained from frequency analysis [16, 15]) contains information about

a person’s vocal tract structure. Consequently, the spectrum has been used

very effectively for speaker recognition in the acoustic domain [17].

In the search for understanding the acoustic properties in speech, feature

extraction processes have spawned from research that try to model speech with

as few as possible parameters (i.e. compress it) with the intention of recon-

structing it as well as possible. One of the early and still widely used methods

of speech modelling is Linear Prediction (LP). This was eventually applied to

speaker verification systems by using LP coefficients as features [11]. More re-

cently, LP cepstral coefficients (LPCCs) (based on analysis of the LP speech

spectrum) have been employed in speech processing applications [18, 19, 8]. A

disadvantage of model-based approaches, is that they can be badly affected by

noise [20].

The most popular features used in speaker verification systems today are

Mel-frequency cepstral coefficients (MFCCs) [2, 6, 9, 10, 18, 21] that are ob-

tained by cepstral analysis [22], using directly computed filter-bank energies

rather than parameters of a speech production model. MFCCs are employed in

this thesis and will be described in Section 5.2.

Also of great importance are the techniques that have been developed to

make the system robust against noise and channel variations. Cepstral mean

subtraction (CMS) [23] is a popular technique that aims to remove linear chan-

nel distortions. It was recently found that prior knowledge about language can

improve the performance of CMS [24]. Although it is not covered by this thesis,

short-time Gaussianisation [25] (or feature warping) has been shown to provide

better channel compensation than CMS.

2.2.2 Evaluation

In general, speaker verification systems make decisions with a likelihood ratio

test, which is based on Bayes decision theory [3]. A score representing how

well the target speaker model matches the test utterance is compared to a score
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representing how well a model for impostors matches the test utterance. When

the ratio of the two scores is above a certain threshold value, the system accepts

the claim that the test utterance was produced by the target speaker. The log-

likelihood ratio is also referred to as the normalised log-likelihood score [26],

because the target score is in effect normalised by the impostor score.

Two major approaches exist for modelling impostors [1, 27, 28]. In the one

case, a world model, or universal background model (UBM) is used to represent

impostors with a general (speaker independent) voice model. This has the

advantage that only a single impostor model has to be trained and evaluated.

The same UBM can also be used for speaker adaptation when training specific

target speaker models. The other case uses a finite set of non-target models,

called cohort models, to compute an impostor score. The simplest method for

using a set of cohort models is to sum their likelihoods for the test utterance and

divide by the number of models in the cohort set. This gives a single impostor

score that can be used in the likelihood ratio. The models in the cohort set can

be selected in a number of ways [27].

The output scores of the system have a certain statistical distribution that

is dependent on both the target speaker model and the test observation ut-

terance. To obtain a single global threshold that can be used for all target

speakers, the score distribution must be scaled (or normalised). Related to the

cohort approach for impostor modelling, the Test normalisation (T-Norm) scal-

ing technique [28, 29] is used in this thesis. T-Norm scales target scores in such

a way that the distribution of all impostor trial scores have zero mean and unity

variance for a given test utterance. Because all impostor trial scores are not

available when scaling must be performed, a subset of impostor model scores is

used to estimate the scaling parameters. T-Norm is able to calculate the scaling

parameters for each test utterance and therefore compensate for differences in

the acoustic environment.

For research purposes, it is necessary to compare the performance (effec-

tiveness) of different system configurations. In recent years, the Detection Er-

ror Tradeoff (DET) curve [30] has become the dominant tool for making such

comparisons. For a given speaker verification system, performance results for

system evaluation may be different for one set of data than for another set. It is

important to take this variability and uncertainty into account when comparing

results of different system configurations. McNemar’s test [31] provides a good

framework for determining whether the difference in the performance of two

systems is statistically significant.
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2.3 Speaker Modelling

Over the years, various different methods have been applied to model speaker

identity for speaker recognition tasks. Some of the more well-known methods

include vector quantisation (VQ) [32], hidden Markov models (HMMs) [33, 34,

35, 36] and Gaussian mixture models (GMMs) [2].

VQ was originally used to encode (or compress) speech. Any given utterance

is translated into a sequence of source vectors that can be used to reconstruct

the original signal. Each source vector is encoded (or approximated) by a

representative vector, called a code-word. The sound is therefore altered, but

remains very close to the original. A collection of code-words is called a code-

book. The utterance can be stored much more efficiently as a sequence of indices

to these code-words rather than storing all the source vectors.

To apply VQ to speaker recognition, each speaker is represented by a sep-

arate code-book. The code-words in a code-book are calculated from training

speech that is representative of the corresponding speaker. This is normally

done by performing some kind of clustering on the source vectors of the train-

ing speech. It is always aimed to minimise the error (or distortion) between

the code-book and the training speech. VQ can also be used to model speaker

voices with feature vectors extracted from the training speech. Speaker recog-

nition is done by calculating which code-book shows the smallest error for a

given test utterance.

In brief terms, an HMM consists of a sequence of connected state proba-

bility density functions (PDFs). Early implementations of HMMs for speech

processing tasks made use of Gaussian PDFs as the state PDFs, but modern

applications normally use GMMs. The state PDFs are connected to each other

by transition probabilities. The latter indicates how likely it is for the model

to change from one state to another. Applied to words, for example, each state

would represent the acoustic properties of a given sound in the word. The tran-

sition probabilities would then determine how likely it is that a speech sample of

the given word will contain a sound of one state followed by a sound of another

state.

Speaker recognition applications that use HMMs are typically text-depen-

dent. The HMM aims to model the sounds and transitions between sounds

for specific words spoken by a speaker. Speaker recognition is performed by

determining how likely it is that the test utterance was generated by the corre-

sponding HMM for each speaker. The HMM approach produced much better

performance than the previous template-based approaches.
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The GMM is widely used in modern, top-performing speaker recognition

systems. Simply put, the GMM is a PDF of which the result is the sum of a set of

weighted Gaussian PDFs, called mixture components. Many researchers prefer

the GMM for acoustic speaker recognition, because it is a reasonably simple,

but very effective model and has an intuitive connection to the distribution of

the data. It also fits well into the likelihood ratio test because it is a stochastic

(statistical) model.

The mixture components are thought to model underlying acoustic classes

in a speaker’s voice. No long-term transition characteristics (i.e. for sequences

of more than two sounds) are modelled as with the HMM. Speaker recognition

determines how likely it is that the sounds present in a test utterance were

generated by the GMM of a given speaker. The work presented in this thesis

is based on the GMM.

Because training data for each speaker are quite scarce, this thesis adopts

the technique of Bayesian speaker adaptation [5, 6]. A good speaker model can

be trained by using its limited amount of training data to adjust the parameters

of a general speaker model, also called a UBM. The UBM itself is trained with

a large amount of data from many different speakers and serves to represent

speakers in general.

2.4 Tree-based Approaches

Similar to many other speech processing techniques, the application of tree-

structured PDFs to the speech recognition task [7] predates its application to

the speaker recognition task. Speech recognition systems typically work with

models of words, phonemes or syllables in the form of HMMs.

A tree structure was applied to speech recognition [7] by regarding all the

component Gaussian PDFs of every state-GMM and every HMM. This large

set of element PDFs were clustered into groups and each group was clustered

again. For each cluster, and at each clustering iteration, the parameters of

a single Gaussian cluster PDF was calculated to serve as an approximation

to the element PDFs in the cluster. By repeating this procedure, a tree was

constructed where each cluster-PDF is attached to a node of the tree.

When applying a test feature vector to the speech recognition system, all the

mixture (component) PDFs in all the HMMs will be calculated to determine

how well any of the HMMs describes the sequence of vectors that has been

observed. The tree-structure makes this process more efficient by calculating

only those element PDFs that are likely to have a large likelihood value for

the particular feature vector. These PDFs are found (at the leaf-node level) by
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performing a search through the tree: at each level, only the child nodes of the

cluster PDFs with the highest likelihoods are selected for further evaluation.

All other element PDFs are approximated by their respective cluster PDFs,

which are calculated as part of the search procedure.

More recently, a tree structure was applied to speech recognition for im-

proving model adaptation efficiency in speech recognition [8]. This technique

was named structural maximum a posteriori (SMAP) adaptation. As described

above, all the mixture PDFs are clustered into groups. For each group the pa-

rameters of a normalised representative (or summarised) Gaussian PDF are

calculated. These representative PDFs are then grouped and summarised fur-

ther until a full tree is constructed. During adaptation, the summarised PDFs

are used as prior PDFs for the group of nodes that they represent. This method

provides improved adaptation performance for situations where very little adap-

tation data are available.

Motivated by this tree-based approach, an hierarchical GMM (HGMM) was

developed with which the SMAP technique was applied to speaker verification

[9]. This HGMM takes a regular GMM and replaces each component Gaussian

PDF with a local GMM. The HGMM therefore models the feature space with

more precision than the original GMM. Each of the original mixture components

serves as a root node for the local GMM it represents. In other words, the

HGMM has two levels: the level for root nodes, and the level for leaf nodes

making up the local GMMs.

The GMMs that are used for speaker recognition can be quite large. The

evaluation of all the mixture components in a model can therefore be very time

consuming. Many researchers apply a simple technique for improving model

evaluation speed [6]. This technique reduces the required number of mixture

component evaluations, based on two principles. Firstly, for large GMMs, it can

be determined that only a handful of components contribute significantly to the

model likelihood. Secondly, speaker models are typically adapted from a UBM

and therefore retain some correspondence with the components of the UBM.

When a feature vector is introduced to the verification system for evaluation, the

UBM is evaluated first to find the C components with the highest contribution

to the UBM likelihood. Only the corresponding components in the specific

speaker models are then evaluated for the same feature vector. This technique

will be referred to here as UBM-based selection.

The structural GMM (SGMM) was developed as a new approach to improve

the speed of model evaluation in speaker verification [10]. The SGMM is defined

with a more general tree structure than the HGMM, but thus far results have
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only been published for SGMM systems using a tree-structure that is very

similar to the HGMM. The SGMM does not incorporate SMAP adaptation, but

it applies an artificial neural network (ANN) for calculating the final scores. The

SGMM is initialised through hierarchical clustering where a group of mixture

components are summarised by a single Gaussian PDF.

The SGMM-based system uses the same principles as the UBM-based selec-

tion by first finding the C components with the highest likelihood contributions

from the structured background model (SBM). But, unlike the GMM, these

components can be found much more quickly by searching through the tree.

The search is performed by finding in each level the node with the highest score

(likelihood contribution) and evaluating only the children of that node further.

The nodes with the highest scores in each level of the SBM, including the C

components found at the leaf-node level, are used for the background (impostor)

scores by the ANN. For each target model only those nodes that correspond to

the background score nodes in the SBM are evaluated and used for the target

scores by the ANN. The ANN is trained to distinguish target speakers from the

background by using the mentioned node scores. The SGMM system reduces

the computational cost by a factor of 17 relative to the UBM-based selection

for GMMs. It also shows little degradation in verification performance when

not using the ANN.

2.5 Performance Differences

It is normally worthwhile to get a general idea of how different techniques

perform relative to each other. This allows a researcher to choose an area of

research where effort would be well-spent.

In general, it is quite difficult to compare different results that are reported

by different researchers. This difficulty is caused by factors such as the kind

of data employed, the different techniques used and non-standard performance

measurements. A few performance results are quoted here for the modelling

techniques discussed above. Only reports that provide comparative results are

quoted.

2.5.1 GMM versus VQ

The introduction of the GMM to speaker recognition [2] was accompanied by

comparative results for a number of modelling strategies. The two techniques

of concern here are VQ and the GMM. The GMM system made use of 64

mixture components and the VQ system made use of 100 code-words. Both
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systems were applied to the same speaker identification (SID) task under the

same conditions. The KING corpus containing clean and telephone-quality

conversational speech from 51 male speakers were used. Identification accuracies

are shown in Table 2.1.

System Accuracy

VQ-100 92.9%

GMM-64 94.5%

Table 2.1: Speaker Identification Accuracies for VQ and GMM

2.5.2 GMM versus HMM

An investigation into fusion techniques for speaker verification [37] also pro-

duced comparative performance results for GMM- and HMM-based systems.

Three experiments were conducted on three different databases that were col-

lected in-house by the researchers. The first database contains 10 enrolled male

target speakers and 80 development speakers. Each target speaker was enrolled

with a unique pass-phrase. The second database contains 56 enrolled target

speakers and 47 development speakers. All target speakers enrolled with the

same phrase (fixed-text). The third database contains 26 enrolled target speak-

ers and 15 development speakers. All of these target speakers also enrolled

with the same phrase, but using a cellular telephone. Thresholds were cho-

sen so that systems operated with 0% false rejections. Only false acceptance

rates were therefore reported, and for the HMM and GMM systems, these are

shown in Table 2.2. The GMM and HMM systems were subjected to the same

conditions.

System Unique pass-phrase Fixed-text Fixed-text cellular

HMM 5.6% 2.8% 9.6%

GMM 5.0% 3.5% 9.6%

Table 2.2: False acceptance rates for HMM and GMM where the false rejection rate

is 0%.

These results suggest that the HMM only performs well when all target

speakers are enrolled with the same utterance. It confirms that the HMM is

not particularly suitable for text-independent speaker recognition applications.
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2.5.3 HGMM versus GMM

The experiment reported for the HGMM [9] made use of the data from the 1999

National Institute for Standards and Technology (NIST) speaker recognition

evaluation (SRE). This corpus contains telephone-quality conversational speech

from 230 male and 309 female speakers. The GMM system made use of 1024

mixture components. The HGMM system had 1024 leaf-nodes, but clustered

into 4 groups, with each group represented by a root node. The GMM and

HGMM systems were applied to the same task under the same conditions. The

equal error rates (EER) for both systems are shown in Table 2.3.

System EER

GMM-1024 14.67%

HGMM-4x256 12.00%

Table 2.3: Speaker verification EER for GMM and HGMM

These results indicate that SMAP definitely provides some advantage. Smaller

versions of these two systems were also applied to the 2002 NIST Multi-modal

Speaker Recognition Development corpus for both speaker verification and iden-

tification. The results are shown in Table 2.4.

System EER SID Accuracy

GMM-512 6.3% 95.2%

HGMM-4x128 4.3% 96.3%

Table 2.4: Speaker recognition results for GMM and HGMM using NIST 2002

Multi-modal data

2.5.4 SGMM/SBM versus GMM

The SGMM was introduced [10] with an experiment that made use of NIST

SRE data from three different years. Four hours of speech from 240 male and

240 female speakers from the 1998 NIST SRE data (Switchboard II, phase 2)

were used to train two gender-dependent SBMs. The 1997 NIST SRE data

(Switchboard II, phase 1) were used as development test data to train the pa-

rameters used in making the verification decision. The systems were evaluated

on the 1999 NIST SRE data (Switchboard-II, phase 3).

The GMM system is a special case of the SGMM system having only one

tree level. All the systems have the same number of leaf-nodes (1024). Only a
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few results are shown here. The SGMM was developed to improve computation

speed and therefore a computational reduction factor F is included in the results

shown in Table 2.5. These results were determined for systems not using the

ANN for making decisions.

System Structure EER F

1x1024 (GMM) 12.9% 1

1x2x256 13.1% 2

1x4x128 13.3% 3

1x4x8x32 13.5% 17

Table 2.5: EER and computational reduction factor (F ) for SGMM

The results show that the SGMM performs slightly worse than the GMM.

However, a multi-level perceptron (MLP) ANN was applied to the systems to

improve performance. The results for these modified systems are shown in

Table 2.6.

System Structure EER

1x1024 (GMM) + MLP 12.7%

1x4x8x32 SGMM + MLP 12.1%

Table 2.6: EER for GMM and SGMM augmented with MLP

2.6 Summary

This chapter discussed various topics available in literature relevant to speaker

verification and speaker modelling. It was learned that the GMM provides the

best verification performance in most circumstances. By arranging mixture

components into a tree, either performance can be improved with SMAP, or

speed can be improved by a fast search through the tree.

These tree-based approaches served as motivation for the work of this thesis.

Although there is probably not much more that can be done for improvement,

a few inadequacies exist in current methods:

1. All tree-based methods perform some kind of clustering and Gaussian dis-

tributions merging or approximation on the mixture components. This

can add to the computational cost, because this clustering and approx-

imating must be performed in addition to training the regular GMM.
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However, the added cost is probably not very large compared to the pos-

sible speed gain.

2. Current tree-based methods use shallow trees with few levels and many

children per node. This can be advantageous when many models are

evaluated for the same feature vector and UBM-based selection is applied.

But, UBM-based selection has the potential of degrading performance

when nodes do not correspond well between the UBM and specific speaker

models. When only a few models are evaluated per feature vector, a

shallow tree does not improve speed as much as is potentially possible.

3. During evaluation of current tree-based models, only the nodes with the

highest likelihood contributions are considered. Two nodes can potentially

have very similar contributions, but only the largest one will be used and

important information can be lost in this way. In one instance (for speech

recognition) [7] the leaf-nodes are approximated by their ancestors when

those ancestor-nodes have low contributions. But, in most cases the lower

contributions are simply discarded. This behaviour is somewhat justified,

because a shallow tree will cause much more nodes to be evaluated per

speaker model if the lower contributions for levels closer to the root node

are included.

4. It seems that the SGMM employs a MLP to compensate for the degraded

performance due to the discarding of lower contributions that possibly

convey important information. This does not feel like a very elegant

approach to improve performance.

This thesis presents a new tree-based model for speaker verification that aims

to address these inadequacies to some extent. It uses a binary tree structure,

although in general it can have any shape. The binary tree is perfectly suited

for applying the technique of binary-split model initialisation. The binary-split

algorithm is one of many techniques that can be used to initialise and train a

regular GMM. So, when it is applied to a tree-based model, this technique does

not require an initial regular GMM to be trained first. The tree is constructed

directly from the data.

Although a binary tree might require more levels to represent a given number

of mixture components, only two nodes have to be evaluated per level during

the search. This allows specific speaker models to be evaluated quickly, without

needing to resort to UBM-based selection. When comparing two sibling nodes,

the children of the node with the highest likelihood contribution are evaluated
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further. But, unlike most other methods, the lower likelihood contribution of

the other node is included in the final model likelihood. This lower contribution

serves to model the underlying feature space with a single low-resolution PDF

instead of multiple high-resolution PDFs.

The effect is that a final likelihood is produced for a virtual GMM that

models feature space at varying resolutions, depending on the location of the

test feature vector. This gives the model an adaptive characteristic and is

therefore called a tree-based adaptive Gaussian mixture model (T-BAG mixture

model, or T-BAGMM).

Including the lower contributions does not add to the computational cost,

because those contributions are calculated as part of the tree search. But,

inclusion of the lower contributions prevents the loss of potentially important

information, such as when two sibling nodes have very similar contributions. It

will be shown in Section 6.4 that a parameter can be included in the evaluation

so that the children of the node with the lower contribution are also evaluated

further when the lower contribution is very similar to that of the sibling node.

Using such a virtual GMM, which is still regarded as a valid PDF, is consid-

ered to be an elegant solution for retaining important information, or preventing

performance degradation. When few models (eg. only one target and one im-

postor speaker model) need to be evaluated per feature vector, the T-BAGMM

will also have a much lower computational cost than other methods that use

fewer tree levels.



Chapter 3

Modelling Acoustic Properties

of Speaker Identity

3.1 Introduction

The Gaussian mixture model (GMM) is a theoretical model that is used widely

in both speech recognition and speaker recognition applications. The main

attraction is its ability to model certain acoustic properties in speech. For speech

recognition, it can model the sounds present in specific words or phonemes. For

speaker recognition, it is used to model the sounds present in a person’s voice.

This thesis covers techniques surrounding the GMM with regard to the ap-

plication of speaker verification. In this chapter, Section 3.2 provides a prelimi-

nary introduction into the mechanics of the speaker verification task. Section 3.3

indicates how the GMM is integrated into the speaker verification system. Sec-

tion 3.4 describes the details of the GMM, while Section 3.5 explains how the

parameters of the model are determined.

3.2 Speaker Verification Overview

The speaker verification system aims to determine whether a person is whom

he or she is claimed to be, based on the speech of that person. Because very

little is known about the relationship between speech signals and the identity of

the corresponding speakers, statistical methods provide a very appropriate and

effective framework for this task. Given the speech segment or utterance X,

and a hypothesised speaker S (the target speaker), verification can accordingly

20
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be formulated as a simple test between two hypotheses:

H0 : X was spoken by S

H1 : X was not spoken by S.

In this thesis, it is assumed that the speech segment contains speech from only

one person. This is called single-speaker detection. Multi-speaker detection

applies to speech segments containing speech from more than one person.

As will be described in Section 5.3.1, the optimum test to decide between

H0 and H1, is the likelihood ratio test

p (X|H0)

p (X|H1)

{

≥ θ accept H0

< θ reject H0,

given that the likelihood functions p (X|H0) and p (X|H1) are known exactly.

The likelihood ratio is compared to a threshold value θ to decide whether or

not the null hypothesis H0 is true.

In practical cases, the likelihood functions in the ratio are not known. A pri-

mary goal in implementing a speaker verification system, is to find estimates for

these functions that make the decision as accurate as possible. Statistical pat-

tern recognition approximates the actual likelihood functions with theoretical

models that are mathematically described using probability density functions.

The GMM is one such theoretical model. It is described in detail in the rest of

this chapter. Other techniques such as discriminative modelling (eg. artificial

neural networks) can also be applied to determine the values of the likelihood

functions.

The parameters of theoretical models are estimated from training data. This

training data, as well as the test data used in the likelihood ratio, are normally

processed in the form of features. These features are chosen for their ability

to help distinguish between speakers. It is required that features contain as

much speaker-dependent information as possible, while discarding other kinds

of redundant information. The process of extracting appropriate features from

raw speech signals is covered in Section 5.2.

It is typical to work with the logarithms of the likelihood functions (also

called log-likelihoods) for computational efficiency. This reduces the likelihood

ratio to a subtraction operation

Λ = log p (X|H0) − log p (X|H1) ,

which is compared to an appropriate threshold. The result of the log-likelihood
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ratio is called the score Λ. It indicates how well the test speech matches the

model of the target speaker. Modern speaker verification systems employ the

technique of score normalisation to allow a single threshold for all evaluations.

In this thesis, Test normalisation (T-Norm) is used. T-Norm requires the eval-

uation of a set of impostor models, in addition to the target model, to obtain

the final score. This is discussed with more detail in Section 5.3.2.

Figure 3.1 illustrates how the components in the verification process fit

together.

Feature

Extraction

Feature

Extraction

Feature

Extraction

Impostor

Model

Ratio

Likelihood

Model

Target

Training speech

(target speaker)

Test speech

Training speech

(impostor speakers)

θ

Λ

Figure 3.1: Simplified block diagram of the speaker verification system.

3.3 Speaker Modelling Overview

The previous section mentioned that speech processing is performed on fea-

tures. Features are normally grouped into multi-dimensional vectors, called

feature vectors. Feature vectors represent certain characteristics of the speech

signal at certain time instances. Mathematically, they can be considered to be

points in a multi-dimensional space, called feature space. A theoretical model

such as the GMM tries to describe the stochastic (random) process responsible

for generating observed points. In doing so, it tries to predict where future un-

seen points will be located. In probabilistic terms, the model can indicate the

probability that a given point was generated by the modelled process. A model
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giving results that match the truth is obviously desired. However, theoretical

models can only provide approximations to reality.

The likelihood function p (X|Hj) that was introduced in the previous section

indicates how likely it is that the hypothesis Hj is true, given that the data X

were observed. An alternative likelihood function p (X|λj) indicates how likely

it is that λj are the true parameters for the model that was supposed to have

generated the observed data X. This likelihood can be used as a practical

substitute for the theoretical likelihood functions in the likelihood ratio.

Choosing an appropriate model typically involves a trade-off between ac-

curacy and the number of parameters. The Gaussian mixture model (GMM)

is a PDF with potentially many parameters, although less than a histogram-

based model for example. It has been shown by numerous examples [2, 6, 21]

that the GMM can produce very high accuracies compared to other models in

text-independent speaker recognition tasks. It can therefore be seen as a good

trade-off between accuracy and the number of model parameters.

3.4 Theory of Gaussian Mixture Modelling

Mathematically, a GMM is a PDF that is defined as the sum ofK weighted com-

ponent Gaussian PDFs [2]. For the D-dimensional vector x, the GMM repre-

sentation of a speaker with model parameters λ = {wk,µk,Σk : k = 1, 2, . . . ,K}

is

p (x|λ) =

K
∑

k=1

wkp (x|λk) =

K
∑

k=1

wkN (x|µk,Σk) . (3.1)

The weight wk (or relative importance) of the kth mixture component obeys

the constraints 0 ≤ wk ≤ 1 and
∑K

k=1wk = 1. This ensures that the function

will be a valid PDF. For each component, the mean and covariance parameters

are collectively represented by λk = {µk,Σk}. The PDF of the kth component

is given by the multivariate (multi-dimensional) Gaussian density

p (x|λk) = N (x|µk,Σk)

=
1

(2π)D/2 |Σk|
1/2

exp

[

−
1

2
(x− µk)

T Σ−1
k (x− µk)

]

, (3.2)

where (x− µk)
T is the transpose of (x− µk).

The GMM can be visualised by the block diagram in Figure 3.2. A feature

vector x is evaluated on each of K Gaussian PDFs pk, k ε {1, 2, . . . ,K} to

produce component likelihoods that are weighed and summed to give the model

likelihood p (x|λ).
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p(x|λ)

Σ

p1 p2 pK

w1 w2 wK

x

Figure 3.2: Block diagram representing a GMM. Each of the Gaussian PDF com-

ponents pk are evaluated for the test feature vector x. Their resultant likelihoods are

then weighed and summed to produce a model likelihood p (x|λ).

GMMs are well suited for applications where the data of a given model have

many modes (or local maxima). Modes are areas where data points are much

more densely packed than in the local surroundings. Each component of the

GMM can model a local mode with a single Gaussian PDF.

GMM components can use three kinds of covariance matrices: full covari-

ance, diagonal covariance and spherical covariance. Full covariance matrices

come directly from theory. They consist of diagonal elements that indicate

the variance of the data in each dimension of feature space, and non-diagonal

elements that indicate correlation between the dimensions. For a diagonal co-

variance matrix only the elements on the diagonal of the full covariance matrix

are kept. The non-diagonal elements are set to zero. Diagonal covariance can

only be applied properly if there is no correlation between the different dimen-

sions in feature space. Spherical covariance matrices are represented by a single

variance value. This value is used for all the elements on the diagonal of the

matrix and all non-diagonal elements are zero. It can be used when it is as-

sumed that there is no correlation between the individual dimensions in feature

space, and that the variance is the same for all dimensions. It can be concluded

that the choice in the type of covariance depends on the accuracy and memory

requirements as well as the application.

There are two main reasons why GMMs are used in speaker verification

systems [2]. It is reasonable to assume that a person’s voice can be charac-

terised by a set of acoustic classes, such as the different phonetic classes. It
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is suggested that the individual component densities in a multi-modal density,

such as a GMM, can model these underlying acoustic classes. Furthermore, the

acoustic classes indicate certain vocal tract configurations that may be speaker-

dependent. From the use of cepstral feature vectors, it can be argued that the

mean parameter µk represents the average spectral shape of the kth acoustic

class. Similarly, the covariance matrix Σk represents the possible variations

from the average spectral shape.

The second reason for using GMMs, is that it can provide smooth approx-

imations of densities that have arbitrary shapes. It is even possible to use di-

agonal covariance matrices when there are correlations between the dimensions

in feature space. A linear combination of diagonal covariance Gaussian PDFs

is able to model such correlations. The only difference is that more mixture

components are required than when using full covariance matrices.

3.5 Model Training

Without an exact understanding of the actual data generating process, the only

method of determining the model parameters, is by regarding observed data.

Therefore any model is only as effective as the selection of observed data that

are used to determine its parameters. Because the correct set of parameters are

unlikely to be found from only a subset of all possible observations, it is said

that the parameters are estimated from the data. The data used for parameter

estimation are called training data.

The parameters of models used in speaker verification systems are usually

determined by a supervised training process. In other words, the identities

corresponding to the data are known at training time, and used accordingly to

train models. When unsupervised training is used, the system must determine

on its own how many identities there are and to which ones the data belong.

To train the parameters of a specific speaker model, as much speech data for

that person must be gathered as possible. For modelling with GMMs, all the

features that were extracted from the speaker’s speech signals can be pooled

into one large speaker-specific set. The GMM makes no provision for time-order

(temporal) information.

3.5.1 Maximum Likelihood Estimation

Maximum Likelihood (ML) estimation is a very popular method for finding

model parameters. It gives very good results when the training data sets of

speakers are large.
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Recall from Section 3.3 that the model likelihood p (X|λ) indicates how

likely it is that λ are the true parameters for the model that was supposed to

have generated the observed data X. Note that λ is the independent variable

and the data X are known and fixed. Suppose that a model with a given set of

parameters λj must be used to describe all possible data generated by a specific

person. The correct set of parameters must be found so that the likelihood

p (X|λj) of the model is higher than the likelihood of any other model, given

speech from the corresponding person. Of course, the best that can be done is

to find the set of parameters λ̃ that maximises the likelihood using the training

data. For this reason, a large amount of training data is desired to cover as

much of a person’s acoustic characteristics as possible.

Formally, the ML-estimated parameters λ̃ are obtained for the sequence of

observed feature vectors X = {xt : t = 1, 2, . . . , T} by maximising the model

likelihood with respect to the parameters λ:

λ̃ = arg max
λ

p (X|λ) .

For simple models, this can normally be done by solving for λ in

d

dλ
p (X|λ) = 0.

Acoustic speaker modelling with GMMs assumes that the feature vectors

X of a certain speaker are statistically independent and identically distributed

(IID). This means that the vectors were produced independently from one an-

other by the same PDF. The joint likelihood of the individual feature vectors

then becomes the product of their likelihood functions:

p (X|λ) =
T
∏

t=1

p (xt|λ) . (3.3)

For analytical simplicity, it is often useful to work with the log-likelihood1

log p (X|λ) =
T
∑

t=1

log p (xt|λ) . (3.4)

This can still be maximised, because the logarithm is a monotonically increasing

function.

1As noted in Section 5.3.1, the natural logarithm (base-e) is normally applied.
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For GMMs, p (xt|λ) is given by eq. (3.1), which results in the log-likelihood

log p (X|λ) =

T
∑

t=1

log

(

K
∑

k=1

wkp (xt|λk)

)

.

Unfortunately, it is very difficult to maximise this function because it contains

the logarithm of a sum. The next section explains how the ML estimates can

be obtained through an iterative procedure by extending the observed feature

vector data with estimates of so-called hidden component labels.

3.5.2 Expectation-Maximisation

When some data are missing, ML estimates of the model parameters λ can

be obtained with the Expectation-Maximisation (EM) algorithm [38]. This

method can be applied to the estimation of GMM parameters by assuming that

the observed data can be extended with missing (hidden) component labels into

what is called complete data [39]. The algorithm consists of iterating through

two steps:

1. the Expectation step (E-step) determines the expectation of the complete-

data likelihood with respect to the hidden data, and

2. the Maximisation step (M-step) maximises the expectation of the complete-

data likelihood with respect to the unknown parameters λ.

Iteration is stopped when some convergence criterion is met.

To apply the EM algorithm to GMMs, consider the GMM from a data gen-

erating perspective. Each mixture component can be regarded as independently

modelling a subpopulation ψk of the data, described by the PDF p (x|λk). Any

subpopulation can generate an observation vector x with a probability that is

determined by the product of the corresponding PDF and a prior probability

P (ψk) = wk (from the Bayes formula). Consequently, the GMM determines

the probability that the vector was generated by any one of its subpopulations.

Let Y = {Yt : t = 1, 2, . . . , T} be the set of unknown discrete random vari-

ables indicating the labels of the components that were responsible for gen-

erating the observed feature vectors X = {xt : t = 1, 2, . . . , T}. Assume the

existence of a complete set of data Z = {X,Y}. Define λ[i] as the estimates for

the model parameters at iteration i. The EM algorithm starts by selecting an

appropriate initial set of model parameters λ[i=0].
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The E-step finds the expected value of the complete-data log-likelihood with

respect to the unknown data Y, given the known data X and the current pa-

rameter estimates:

Q
(

λ|λ[i]
)

= E
[

log p (Z|λ) |X, λ[i]
]

= E
[

log p (X,Y|λ) |X, λ[i]
]

. (3.5)

Q
(

λ|λ[i]
)

is called the auxiliary function. It must be understood here that X

and λ[i] are known constants and λ is a regular variable that must be optimised.

From the definition of expected values [13, 39], eq. (3.5) can be written as 2

Q
(

λ|λ[i]
)

= E
[

log p (X,Y|λ) |X, λ[i]
]

=

∫

L

(log p (X,y|λ)) p
(

y|X, λ[i]
)

dy. (3.6)

The vector variable y = [y1 y2 . . . yT ]T represents realisations of the random

variables in Y that are governed by the joint PDF p (y). Integration is per-

formed over L, which is the space of all possible values for y (i.e. all combina-

tions of labels).

The function log p (X,y|λ) in eq. (3.6) is the complete-data log-likelihood

when the labels are known. This can be written as

log p (X,y|λ) = log

T
∏

t=1

p (xt, yt|λ)

=
T
∑

t=1

log p (xt, yt|λ) . (3.7)

The rules of conditional probability can be used to show that

p (xt, yt|λ) =
p (xt, yt, λ)

P (λ)

=
p (xt|yt, λ)P (yt, λ)

P (λ)

=
p (xt|yt, λ)P (yt|λ)P (λ)

P (λ)

= p (xt|yt, λ)P (yt|λ) .

For GMMs, it is known that p (xt|yt, λ) = p (xt|λyt), because if both the la-

bels and the parameters are known, then the parameters of the corresponding

mixture components are known and can be used as substitutes in the expres-

2Recall that E [g (Y ) |A] =
R

∞

−∞
g (y) p (y|A) dy.
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sion. Similarly, it is also known that P (yt|λ) = P (Yt = yt|λ) = wyt , being the

weight (or prior probability) of the corresponding mixture component. There-

fore, eq. (3.7) results in

log p (X,y|λ) =

T
∑

t=1

log (wytp (xt|λyt)) .

To evaluate eq. (3.6), it is also necessary to find an expression for the PDF

p
(

y|X, λ[i]
)

. Using the data X and the current parameters λ[i], it is easy to

calculate the mixture component likelihoods p (xt|λk) for every t ε {1, 2, . . . , T}

and k ε {1, 2, . . . ,K}. Because the weight of the kth component is the prior

probability wk = P (Yt = k|λ), the Bayes rule can be used to obtain the PDF

for the unobserved labels

p
(

yt|xt, λ
[i]
)

=
p
(

xt|yt, λ
[i]
)

P
(

yt|λ
[i]
)

p
(

xt|λ[i]
) =

w
[i]
ytp
(

xt|λ
[i]
yt

)

∑K
k=1w

[i]
k p
(

xt|λ
[i]
k

) . (3.8)

This gives the result

p
(

y|X, λ[i]
)

=

T
∏

t=1

p
(

yt|xt, λ
[i]
)

=

T
∏

t=1

w
[i]
ytp
(

xt|λ
[i]
yt

)

∑K
k=1w

[i]
k p
(

xt|λ
[i]
k

)

that can be substituted into eq. (3.6).

The M-step finds λ[i+1], the value of λ that maximises Q
(

λ|λ[i]
)

:

λ[i+1] = arg max
λ

Q
(

λ|λ[i]
)

.

The complete derivation [39] is mathematically quite demanding, but results in

the following re-estimation formulas [2, 39]:

Weights:

w
[i+1]
k =

1

T

T
∑

t=1

ckt (3.9)

Means:

µ
[i+1]
k =

∑T
t=1 cktxt
∑T

t=1 ckt

(3.10)

Covariance matrices:

Σ
[i+1]
k =

∑T
t=1 ckt

(

xt − µ
[i+1]
k

)(

xt − µ
[i+1]
k

)T

∑T
t=1 ckt

. (3.11)
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When using diagonal covariance matrices, as discussed in Section 3.4, eq. (3.11)

reduces to:

σ
2 [i+1]
k =

∑T
t=1 cktx

2
t

∑T
t=1 ckt

−
(

µ
[i]
k

)2
. (3.12)

The factor ckt = P
(

k|xt, λ
[i]
)

is called the component responsibility. It is the

probability that k is the label for xt, given the current parameters. In other

words, it is the value obtained when setting yt = k in eq. (3.8). Note that all

of the above re-estimation formulas perform both the E-step and the M-step

simultaneously.

3.5.3 Model Initialisation

The EM-algorithm requires an initial set of model parameters. The choice

of initial parameters is quite crucial because the EM-algorithm can converge

to any local optimum, although convergence to the global optimum is always

preferred. Unfortunately, there are no theoretical rules by which the best set of

initial parameters can be determined.

The binary-split initialisation technique was used in this research to produce

the desired number of GMM components. This technique does not strictly

require any prior knowledge about the data distribution. It is an iterative

procedure that works well with the EM-algorithm. The details [40] are given

by Algorithm 1.

Step 3 of the algorithm requires some explanation. The PDF to select

should be one with a large weight (i.e. it models a large subset of the data)

and a large variance. The variance on the principal axis is typically used for

this. However, performing eigen analysis on all the mixture components can be

computationally expensive. The implementation used in this research calculates

a score value equal to the mixture weight divided by the smallest diagonal

element in the inverse covariance matrix. The component with the smallest

score value is then selected for splitting.

3.5.4 Maximum a Posteriori (MAP) Adaptation

Normally, very little data are available for training the parameters of speaker

models. This has led researchers to adopt the technique of speaker adaptation

[6]. It is related to the technique that was originally used in automatic speech

recognition (ASR) [5], where a model of general speech is adapted to the speech

of a specific person. This is done in order to enhance recognition of words

spoken by that person.
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1. Choose any mean µ and covariance matrix Σ for a single Gaussian PDF
to model all the data

2. Perform one or more iterations of the EM-algorithm to obtain a better fit

3. From all the PDFs produced after step 1, select the one with the ”widest”
variance

4. Determine the principal axis (eigen vector) of the PDF selected in step 3
using Eigen analysis

5. Calculate two new means located along the principal axis, at +0.7979 and
−0.7979 standard deviations away from the original mean

6. Reduce the variance along the principal axis to a fraction 0.363 of the
original variance; make a copy of it

7. Now there are two new means and two new covariance matrices corre-
sponding to two new Gaussian PDFs; Repeat from step 3 until the number
of Gaussian PDFs have doubled

8. Repeat from step 2

Iteration can be stopped once the desired number of mixture components are
obtained.

Algorithm 1: Binary-split model initialisation

For speaker recognition, however, speaker adaptation provides a way of ex-

tending the amount of available training data. A general speaker model, called a

Universal Background Model (UBM), is trained with the speech of many differ-

ent speakers using ML estimation. This model can be trained very well, because

a large set of data is available. The UBM represents characteristics common to

all speakers. This provides possible prior information of what a speaker model

should look like in general. It is assumed that the UBM parameters need only

to be adjusted in a minor way to produce a good model of any specific speaker.

Maximum a Posteriori (MAP) adaptation is a form of Bayesian adaptation.

Where ML estimation maximises the likelihood, MAP estimation maximises

the posterior probability in the Bayes formula, eq. (5.3). In doing so, prior

knowledge is incorporated into the estimation procedure.
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If the parameters λ are taken to be random, MAP estimation is formally

stated as maximising the posterior PDF p (λ|X) with respect to the parameters

λ:

λ̂ = arg max
λ

p (λ|X)

= arg max
λ

p (X|λ) p (λ) , (3.13)

where p (λ) is the prior PDF of the parameters. The evidence factor p (X) is

not included because it is not a function of λ and therefore has no influence

on maximising the posterior PDF. If it is assumed that there are no prior

information about λ, then eq. (3.13) becomes the familiar ML estimation.

Others have determined empirically that the best results for speaker recog-

nition are obtained by MAP adaptation of only the mean vectors in the GMM

[6]. The same strategy is used in this thesis, although an experiment is also

conducted in Chapter 7 that confirms the reports of others. The formal deriva-

tion of the MAP EM re-estimation formulas is quite involved [5], but the results

(excluding weights adaptation) are:

Means:

µ̂
[i+1]
k =

τkµkp +
∑T

t=1 cktxt

τk +
∑T

t=1 ckt

(3.14)

Covariance matrices:

Σ̂
[i+1]
k =

τkΣkp

(

∑T
t=1 ckt

)

Σ
[i+1]
k + τk

(

µkp − µ̂
[i+1]
k

)(

µkp − µ̂
[i+1]
k

)T

τk +
∑T

t=1 ckt

(3.15)

Σ
[i+1]
k is the current ML estimate of the covariance matrix from the adaptation

(training) data. µkp is the prior mean and Σkp is the prior covariance matrix for

the the kth mixture component. These prior parameters are simply taken from

the corresponding component in the UBM. τk symbolises a prior observation-

count associated with the prior mean and is called the relevance factor. The

factor ckt = P
(

k|xt, λ
[i]
)

is defined at the end of Section 3.5.2 as the probability

that k is the label for xt, given the current parameters. It is computed with

eq. (3.8) by setting yt = k.

MAP estimation supplements the scarce data of a specific speaker with

the abundance of data used for training the UBM. The UBM parameters are

weighted with a relevance factor. When more speaker data are available, the

formulas tend to ignore the UBM contribution. When very little data are

available, the model parameters are almost completely defined by the UBM.
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An intuitive derivation [40] for the covariance matrix MAP re-estimation

formula is given in Section A.2 of Appendix A. An implementation based on

this derivation was produced and used during the execution of this research.

3.6 Summary

In this chapter, the likelihood ratio is briefly introduced as a solution to the

speaker verification task. It was shown how the respective probabilities in the

likelihood ratio can be described by theoretical speaker models. The theoretical

aspects of the GMM as one such speaker model was discussed and some detail.

Estimation of the GMM parameters from training data was also discussed.

It was shown that specific speaker models can be adapted from a generalised

speaker model or UBM to produce well-trained models even when training data

are scarce.



Chapter 4

Tree-based Adaptive Gaussian

Mixture Models

4.1 Introduction

4.1.1 The Speed Problem

Many mixture components are normally required when Gaussian mixture mod-

els (GMMs) are used for speaker verification. There can be as much as 2048

components per model when diagonal covariance matrices are used. Typical

performance evaluations require thousands of trials. Each trial can require the

evaluation of 100 or even more GMMs per test feature vector. This roughly

equals the evaluation of up-to 200 000 Gaussian probability density functions

(PDFs) per test feature vector. It is clear that a full performance evaluation

requires an enormous computational capacity.

Section 5.4 will discuss how more than one processor can be employed to

reduce the running time for a full performance evaluation. However, even when

up-to 10 processors are used in this way, the execution of such an evaluation

can take many days to complete. A number of approaches exist for reducing

execution time by reducing the required number of Gaussian PDF evaluations.

These techniques compute only the mixture components that contribute the

most to the model likelihood. This contribution is defined as the component

likelihood multiplied by its mixture weight. The only components that will have

significantly large contributions, are those that model data in the vicinity of the

test vector. The contributions of these selected components are then usually

summed to obtain an approximation to the final likelihood of the model.

34
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4.1.2 Popular Approach to Speed Improvement

To improve speed, many researchers use a technique that selects the C compo-

nents with the highest expected likelihood contribution [6, 28]. This technique

requires that the speaker models are adapted from a universal background model

(UBM). For each test feature vector, all the components in the UBM are eval-

uated. The C components that contribute the most to the UBM likelihood are

selected. It is then assumed that the corresponding components in the speaker-

specific model will also have the highest contribution to the likelihood of that

model. Let K be the number of mixture components per model and N be the

number of models to evaluate (eg. for T-Norm) per test feature vector. This

method requires the evaluation of (K +N × C) rather than (N ×K) Gaussian

PDFs per vector. Speed improvement is increased as N is increased.

Although it has been shown that this method is quite effective, it has a few

obvious problems. In general, the resulting likelihood is only a rough approxi-

mation of the actual likelihood. Also, it might happen that the components of a

speaker-specific model were altered considerably during adaptation. The com-

ponents with the highest contribution to the likelihood of the speaker-specific

model will therefore not necessarily correspond well to those of the UBM. Fur-

thermore, the evaluation of all the UBM components still requires much com-

putation time. It is also necessary to keep a copy of the UBM for use at each

verification trial. Lastly, because the UBM is a required part of this technique,

it can not be applied to some other tasks (eg. phoneme or word recognition)

where it is not possible or practical to adapt models from a UBM.

4.1.3 Tree-based Approach to Speed Improvement

Another approach to reduce the number of Gaussian PDF evaluations consists of

organising the mixture components into a tree structure [7, 8, 9, 10]. Each layer

of the tree represents a more approximate or lower-resolution GMM for the data

than the layers further away from the root node. As mentioned above, only the

components that contribute the most to the model likelihood are evaluated. In

this case, however, those components are found by traversing the tree from the

root node. At each layer, the contributions (likelihood times weight) of sibling

nodes are compared to each other. Only the subtree rooted at the node with

the largest contribution is traversed further. These comparisons are repeated

until the components of the regular GMM are reached in the leaf nodes. If the

tree is constructed and trained properly, these leaf nodes will have the highest

contributions to the model likelihood.
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This type of search can be performed directly on each speaker-specific model.

For models with large component counts, it requires much less computation time

than the UBM-based selection approach. The actual time required depends on

the specific structure of the tree, as shown in Table 4.1. Another important

influence on the actual speed, is whether or not the tree is well balanced [41].

For a perfectly balanced binary tree, the number of Gaussian PDF evaluations

are (2 log2K). The coefficient of 2 indicates that two evaluations must be

performed for the comparison at each layer. There is no comparison made at

the leaf node layer, but the selected leaf node PDFs must also be evaluated.

Finding their contributions is, after all, the main reason for searching through

the tree.

Children per
node

No. of levels
Leaf node

count

Number of
Gaussian PDF

evaluations

2 11 211 = 2048 2 × 11 = 22
3 7 37 = 2187 3 × 7 = 21
4 6 46 = 4096 4 × 6 = 24
5 5 55 = 3125 5 × 5 = 25

Table 4.1: Theoretical trade-offs for different balanced tree structures. These figures

were chosen so that there would be enough leaf nodes to accommodate 2048 mixture

components.

The speed improvement can also be effective in speech recognition appli-

cations. It allows the use of more mixture components (and therefore higher

accuracy) when operating at the same speed.

The main disadvantage of tree-based methods is the increased memory re-

quirement. In modern times, however, this is not much of a problem, because

computer memory is relatively inexpensive. Regardless of this, the speed im-

provement outweighs the cost of memory for speaker verification research. This

is true because many trials must be performed for different system parameters.

With regular GMMs this might take weeks or months, where tree-based GMMs

need only hours or days. Another concern is that, in the unlikely case that the

trees of many models are very badly balanced, the resulting speed improvement

(if any) might not be worth the cost in effort and memory requirements.
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4.1.4 The Tree-Based Adaptive GMM

The current tree-based techniques discard the contributions of nodes that were

not followed during traversal of the tree. This thesis presents an alternative tree-

based GMM that includes the lower contributions of approximate PDFs that

were already evaluated. It was felt that more could be gained by making use

of those otherwise discarded results. As a result, a virtual GMM is constructed

of which the components model the underlying data at different resolutions,

depending on their proximity to the test feature vector. This gives the model

an adaptive property. Consequently, the new model is called a tree-based adap-

tive Gaussian mixture model (T-BAG1 mixture model or T-BAGMM). The

T-BAGMM produces a smooth approximation to the actual model likelihood.

The next section will discuss the theory of T-BAGMM construction and

evaluation. Section 4.3 provides the details of how training is performed for

T-BAGMMs.

4.2 Theory

In this thesis, the T-BAGMM is a binary tree structure (two children per node)

as shown in Figure 4.1. Although Table 4.1 suggests that 3 children per node

would provide the best improvement in speed, the binary structure was chosen

for the sake of algorithmic simplicity. The binary tree structure is also perfect

for the application of the binary-split model initialisation procedure (discussed

in Section 4.3).

p0

p1 p2

p3 p4 p5 p6

g1 g2

g3 g4 g5 g6

Figure 4.1: Tree-based GMM representation. Each node has a node weight gi and a

Gaussian PDF pi = p (x|λi).

1This acronym was selected from a few nominations, because it presents a humoristic play
on the fact that the DSP laboratory at the University of Stellenbosch is famously associated
with high rates of coffee consumption.
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Each node in the tree has a Gaussian PDF that models the collective data

of the node’s descendants with an approximate (or lower-resolution) Gaussian

PDF. The leaf nodes correspond exactly to the components of the equivalent

regular GMM.

Each node has a node weight gi as well as a (virtual) mixture weight wi.

Two sibling nodes can be seen as the mixture components of a two-component

sub-GMM that models a subset of the data. The node weights of the two

sibling nodes are the mixture weights of this sub-GMM. The node weights of

two sibling nodes therefore sum to unity. The mixture weight of a node is used

when the node is selected to be a mixture component in a virtual GMM. It

is calculated by multiplying all the node weights encountered when traversing

back up the tree toward the root node. For example, the mixture weight of

node 5 in Figure 4.1 is w5 = g2 × g5.

To make this calculation easier for algorithms, node weights can also be

indexed according to the tree level. In this case, the level-based node weight g′i is

the node weight at the ith tree level. This only makes sense when traversing back

up the tree towards the root node. To present the same example as previously,

the mixture weight of node 5 is now calculated as w5 = g′1 × g′2, where g′1 = g2

and g′2 = g5. To complement this tree level indexing, a function LT (k) can

be defined to return the tree level of node k. For example, LT (5) = 2 and

LT (2) = 1. These definitions will be used throughout the rest of the chapter.

The mixture weights always sum to unity for all possible virtual GMMs. It

is perfectly possible to only use mixture weights in the tree structure. However,

doing so will make weight estimation much more difficult. To estimate mixture

weights, all the nodes in the same tree level must be accessed at the same time.

It is clear that this would require too much overhead and more calculations

than necessary.

The primary aim of the T-BAGMM is to obtain high evaluation speed by

being able to select the mixture components with the highest contributions to

the model likelihood in a very short time. The secondary aim of the T-BAGMM

is to produce the score of a (virtual) GMM that models data with high detail

in the vicinity of the test feature vector (in feature space) and lower detail in

other regions. Here, detail refers to the number of mixture components that

are used to model a given hyper-volume in feature space. The secondary aim

is accomplished as a by-product of fulfilling the primary aim.

To find the nodes with the highest contributions to the model likelihood, a

search must be performed on the tree nodes. The tree is traversed from the root

node to the leaf nodes and each tree level is visited only once. It is assumed
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that a higher contribution (likelihood of the node PDF multiplied by the node

mixture weight) to the model likelihood will be provided by a node that models

data in closer proximity to the test feature vector than other nodes do. This

also applies to the approximate Gaussian PDFs described above.

Based on this assumption, two sibling nodes are compared at each level

during the search. The children of the node with the highest contribution are

compared to each other at the next level. The node with the lower contribution

is selected to become a mixture component in the virtual GMM. Both siblings

on the leaf-node level are selected to become mixture components in the virtual

GMM. Selecting a node merely refers to the act of including its contribution

in the summation of eq. (3.1). For obtaining valid search results, it is essential

that the children of an approximate node collectively model the same data as

their parent. An example of a virtual GMM is shown in Figure 4.2. The basic

search procedure is described in more detail by Algorithm 2 and a simple visual

example is given by Figure 4.3.

p0

p1 p2

p3 p4 p5 p6

0.2 0.8

0.6 0.4 0.3 0.7

(a)

p2 p3 p4

0.8

Σ

0.6 × 0.2 0.4 × 0.2

(b)

Figure 4.2: Example of a virtual GMM. (a) shows the original tree. Nodes with

solid outlines were selected for the virtual GMM. (b) shows the virtual GMM that was

constructed from the tree in (a). Note that the resulting mixture weights do add up to

one.
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1. Obtain test feature vector xt

2. Start at root node

3. If node is a leaf node, then return the likelihood of the node p (xt|λk) using
the node PDF; otherwise continue with step 4

4. Calculate the approximate likelihood of the left subtree p (xt|λk,left) from
the approximate PDF in the left child node; multiply mixture weight of

left subtree wk,left = gk,left
∏LT (k)

i=1 g′i with this likelihood to obtain left
contribution

5. Calculate the approximate likelihood of the right subtree p (xt|λk,right)
from the approximate PDF in the right child node; multiply mixture weight

of right subtree wk,right = gk,right
∏LT (k)

i=1 g′i with this likelihood to obtain
right contribution

6. If left contribution >= right contribution, then obtain detailed likelihood
of left subtree p (xt|λk,left) by repeating from step 2 for left child node

7. If right contribution >= left contribution, then obtain detailed likelihood
of right subtree p (xt|λk,right) by repeating from step 2 for right child node

8. return (gk,leftp (xt|λk,left) + gk,rightp (xt|λk,right))

Notes on the algorithm:

� The returned value can be produced from any combination of approxi-
mate and detailed contributions. Hence, lower-resolution nodes are also
included in the final model likelihood.

� The indices k, left and k, right refer to the left and right children of node
k.

� In the unlikely situation that the contributions of both sibling nodes are
equal, it is unknown which subtree should be evaluated in more detail. If
an arbitrary selection is made to evaluate only one subtree, that selection
might not be the correct one. The result is that more nodes will be
evaluated than usual.

Algorithm 2: Recursive evaluation of a T-BAGMM
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(f)

Figure 4.3: Very simple example of T-BAGMM evaluation. (a) and (b) show the

regular GMM that will be approximated by a T-BAGMM. The grey dots in the scatter

plot (a) are two-dimensional feature points. The circles in (a) indicate the standard

deviation curves of each component PDF. (c) and (d) represent the comparison between

the two nodes in the first tree level. Here node 2 has a higher likelihood contribution.

(e) and (f) show the final selection of nodes for the resulting 3-component virtual GMM.

The grey curves in (c) and (e) are shown for reference.
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It is possible to define a threshold value against which node contributions

can be compared. Instead of comparing two nodes against each other, they can

be compared to this threshold. If a node’s contribution is above the threshold,

then the children of that node will be subjected to comparison at the next

level. It is therefore possible to extract a more detailed virtual GMM from the

tree. However, it is not very straightforward to define such a threshold. This is

covered in Section 6.4.1.

The improvement in speed of the T-BAGMM over the regular GMM can be

approximated by the ratio of Gaussian PDF evaluations:

speed improvement factor =
Gaussian PDF evaluations for GMM

Gaussian PDF evaluations for T-BAGMM
.

This ratio is dependant only on the number of mixture components. For 2048

components, the speed improvement is a factor of

2048

2 log2 2048
=

2048

22
= 93.

Chapter 7 shows that such a remarkable increase in the practical speed mea-

surement is indeed obtained, while suffering only a slight loss in accuracy.

4.3 Training

Maximum likelihood (ML) estimation and the expectation maximisation (EM)

algorithm can also be applied to the training of a T-BAGMM. This is true for

maximum a posteriori (MAP) adaptation as well. In order for model evaluation

to be successful, every node in the tree must be re-estimated during training.

Unfortunately, this eliminates any advantage in speed improvement obtained

at evaluation time, because too much time must be spent on training.

Fortunately, the EM algorithm allows the use of the T-BAGMM evaluation

algorithm to increase the speed of training as well. For each training feature

vector, as with regular GMM training, all nodes (components) must be eval-

uated to calculate the responsibilities ckt = P
(

k|xt, λ
[i]
)

that are used in the

re-estimation formulas eq. (3.9), eq. (3.10) and eq. (3.11). Note that a node’s

responsibility is merely a normalised form of the node’s likelihood contribution.

With a T-BAGMM, only the nodes with the highest likelihood contributions

(and hence, responsibilities) are taken into account, because very small respon-

sibilities have barely any influence on the final model parameters. For a single

training feature vector, a quick T-BAGMM search can identify those nodes to

which the training vector will contribute significantly. During re-estimation,
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only the vectors with significant contribution to a given node are included in

the calculation of that node’s parameters.

In order to perform this training method efficiently, the re-estimation for-

mulas must be converted to be suitable for on-line estimation. This allows a

vector to be incorporated into the calculation as soon as it is processed, instead

of having to remember which vectors should be included for which nodes. The

derivation of the on-line re-estimation formulas is covered in Section A.3. The

basic procedure for training a T-BAGMM is shown in Algorithm 3.

1. Obtain training feature vector xt

2. Perform T-BAGMM evaluation using xt to obtain likelihoods for the
model and for the individual nodes

3. For each node that was evaluated in step 2,

(a) calculate node responsibility from the likelihood obtained in step 2;
where applicable, the approximate likelihood of a node is replaced by
the higher-resolution likelihood obtained from its children

(b) apply xt and its responsibility to on-line re-estimation formulas for
the specific node

Algorithm 3: Training of a T-BAGMM

As mentioned above, model parameter estimation is similar to that of regular

GMMs. The exact same re-estimation formulas are used. Only the calculation

of node responsibilities differ slightly from the calculation of mixture component

responsibilities. The responsibility of a regular mixture component comes from

eq. (3.8) and is written as

p (k|xt, λ) =
wkp (xt|λk)

∑K
i=1wip (xt|λi)

. (4.1)

On the other hand, the responsibility of a T-BAGMM node is written as

p (k|xt, λ) =

∏LT (k)
i=1 g′ip (xt|λk)

g1p (xt|λ1) + g2p (xt|λ2)
. (4.2)

The numerators of both equations are identical, except for the fact that the

mixture weight of the T-BAGMM node is written as the product of level-based
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node weights, or

wk =

LT (k)
∏

i=1

g′i.

This is explained in the previous section. The denominator of eq. (4.2) is in

practical terms equivalent to that of eq. (4.1). For eq. (4.2), it is only written

as the sum of the likelihood contributions for the two main subtrees. But,

although it represents the model likelihood in both instances, the T-BAGMM

version is an approximation, due to the evaluation algorithm.

Model initialisation is done with the binary-split algorithm, similar to what

is described in Section 3.5.3. Part of the reason for choosing a binary tree

structure for the T-BAGMM, is because it fits so well into the binary-split

algorithm. When applied to the tree structure, each split is responsible for

creating two new child nodes. The parent of these new nodes is, of course, the

node that is being split. Each new child node is assigned an initial node weight

gk,left = gk,right = 0.5 before ML estimation is performed. This satisfies the re-

quirement that the node weights of two sibling nodes must sum to unity. It also

does not make any assumptions about the actual distribution of weights. Some

further issues regarding the implementation of the algorithm for the T-BAGMM

structure is covered in Section 6.4.2. By using the binary-split algorithm for

initialisation of both regular GMMs and T-BAGMMs, models can be trained

that correspond very well between the two structures. This ensures that as little

difference as possible exists for the purpose of comparing performance later.

To train models using MAP adaptation, a T-BAGMM UBM must be trained

first. As for regular GMMs, this is done with the binary-split initialisation

followed by ML estimation using the EM algorithm. MAP adaptation can then

be applied to each node of the UBM individually.

4.4 Summary

In this chapter, the new T-BAGMM was introduced. This new model can

replace the regular GMM in order to reduce execution time. The T-BAGMM

can have any tree structure, but the development of a binary tree version was

discussed. The evaluation algorithm was provided with regard to this binary

tree structure. The model can be used to improve the speed of model training

as well. A simple comparative summary of the main differences between the

different GMM approaches is shown in Table 4.2.
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GMM
UBM-based

component selection
T-BAGMM

component /
node count

K K 2K − 1

eg. 2048 eg. 2048 eg. 4095

evaluations per
feature vector
for one target

and one
impostor model

2K K + C 2 (2 log2K)

eg. 4096 eg. 2048 + 5 = 2053 eg. 2 × 22 = 44

evaluations per
vector for one
target and 100

T-Norm
impostors

101K K + 101C 101 (2 log2K)

eg. 206 848 eg. 2048 + 505 = 2553 eg. 101× 22 = 2222

kind of
approximation

none rough smooth

valid PDF? yes no yes

model
structure

sum of
weighted

PDFs

sum of weighted
PDFs

binary tree of
PDFs with layers

of resolution

Notes on the table entries:

� For the UBM-based selection examples, C is the number of selected com-
ponents and was chosen to be 5. For the T-BAGMM selection examples, 2
components were chosen, but 10 extra lower resolution nodes are included
in the virtual GMM.

� The examples show that for 2048 mixture components, the speed can be
increased roughly by a factor of 93 with the T-BAGMM. The improvement
by UBM-based selection is dependant on the number of T-Norm impostor
models. It requires 119 impostors in order to reach the same improvement
factor.

Table 4.2: Comparative summary between different model evaluation techniques



Chapter 5

The Speaker Verification

System

5.1 Introduction

A general overview of modern speaker verification system construction was al-

ready given in Section 3.2. This chapter fills in some of the detail involved

in performing speaker verification. Section 5.2 will describe the particulars of

transforming raw speech signals to a form suitable for processing by a speaker

verification system. Section 5.3 will then discuss how decisions are made. Lastly,

Section 5.4 will cover the process distribution technique that was used for this

research to reduce the execution time of full system performance evaluations.

5.2 Feature Extraction

Features are numerical measurements used in computations that try to discrim-

inate between classes. Finding features for discriminating between speakers in

the acoustic domain requires in-depth knowledge of speech signals. Currently,

most researchers regard Mel-frequency cepstral coefficients (MFCCs) as the

features that perform the best for acoustic speaker recognition. MFCCs, along

with other signal-enhancing preprocessing techniques were used in this research.

The descriptions that follow are summarised in Figure 5.1.

5.2.1 Front-end Signal Processing

In order to extract useful features, the signal must be transformed into a form

suitable for processing. Signals in DSP are sequences of values, measured at

discrete times. For the continuous-time speech signal s (t), the discrete-time

46
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Removal

Silence

Normalisation

Power

f

f
DCT

s[k]

Mel-scale Filterbank

Pre-emphasis

MFCCs

Figure 5.1: Block diagram of feature extraction.

signal is represented by s [k] = s (kT0) , k = 0, 1, 2, ... where T0 is the sampling

period (the time interval between successive measurements). The discrete time

k can be negative, but it is preferred to work with the starting-time at zero.

In a speech signal, the various types of information that are present can

change rapidly through time. For this reason, the signal is divided into frames

f [n] = {s [nW + k] : k = 0, . . . ,W − 1} ,

each consisting of W samples. By choosing W appropriately, it is then assumed

that the signal is stationary (does not change) inside a frame. This is called the

quasi-stationarity assumption. W must be large enough to include sufficient

information, but it must also be small enough to ensure that the assumption of

stationarity is reasonable. Frames normally overlap with their starting points

following each other by L samples (L < W ), because the signal does in fact

change during the length of one frame. For speech signals, the frame width W

is typically in the effective range of 15-30 ms and the following distance L is

usually set to the equivalent of 10 ms [42].

Only the processing techniques that were used in this research are described

here.

Silence Removal

Silences in speech convey no identity information in the acoustic domain. It

may even have a detrimental effect on the results of some algorithms. A simple

technique to eliminate silences from the signal was employed. The parts of the

signal having very little power can be considered to be silences. These parts are
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identified and removed as follows: The power of each frame is calculated by

F [n] =
1

W

W−1
∑

k=0

|s [nW + k]|2 .

The second percentile is chosen as the power floor φ0 (the minimum power

value for acceptable speech). This means that 2% of the frame-power values

for the entire signal are below this floor value. This technique is robust against

extreme power values (such as those nearing infinity) because they do not have

as great an influence as they would when amplitude-based percentages were

used. A small offset γ is added to the power floor and all the frames having less

power than the value (φ0 + γ) are temporarily removed from the signal. The

second percentile of the remaining frame-power values is then chosen as a new

power floor φ1. All frames in the original signal having less power than φ1 are

discarded.

Pre-emphasis

High-frequency components of the speech spectrum usually carry less energy

than low-frequency components. This does not make the information carried

in the high frequencies less important. However, speech modelling techniques

tend to model the lower-powered high-frequency components badly. For this

reason, a pre-emphasis filter

H (z) = 1 − 0.98z−1

is applied to the signal in order to amplify the high-frequency components.

Power Normalisation

The signal power (loudness) may vary among different signals. It is preferable

to normalise the power so that all speech segments can use the same scale and

therefore be modelled on equal terms. A power normalisation technique is used

that is robust against very large power values. The power is calculated for each

frame (as shown above). The 75th percentile is then selected to become unity

power. In other words, each sample in the signal is divided by the square root

of the 75th percentile of the frame-power values.
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5.2.2 Mel-Frequency Cepstral Coefficients

After processing the signal with the techniques described above, features can

be extracted to characterise the speech. Cepstral coefficients based on the Mel

frequency scale were used in this research.

Each feature vector is extracted from a frame. The frame is passed through

a Hamming filter [16] and converted to the frequency domain using the discrete

Fourier transform (DFT). Mel-scale frequency is related to linear frequency by

the formula

Mel (f) = 1127 ln

(

1 +
f

700

)

.

The frequency range in Mel-scale is divided into a number of equal-sized bands.

In linear frequency, triangle filters are positioned so that the width of each filter

is equal to two bands in the Mel scale. Two successive filters also overlap each

other by one of these Mel-scale bands. The value for energy in each band after

filtering is called a Mel filter bank coefficient.

Cepstral analysis involves working with the spectrum of the spectrum, hence

the term cepstrum (the letters of the first syllable are in reversed order). More

specifically, the inverse Fourier transform is applied to the log-spectrum of the

signal. Mel filter bank coefficients mj come directly from the signal spectrum.

They can be transformed into Mel-frequency cepstral coefficients (MFCCs) ci

by using the discrete cosine transform (DCT), a simplified version of the DFT:

ci =

B
∑

j=1

mj cos

(

πi

B
(j − 0.5)

)

.

B is the number of Mel filter bank coefficients. The resulting MFCCs for each

frame are grouped into a D-dimensional feature vector x.

5.2.3 Channel Compensation

Various acoustic environments, microphones and communication channels can

participate in the speaker verification process. Verification might for example be

required by an automated telephone response system. In that case either land-

line telephones or cellular telephones (indoor or outdoor) could be used. In this

thesis the combination of these factors will simply be called the channel. Each

channel has its own characteristics and distorts the speech signal accordingly.

This presents a problem, because modelling techniques are often sensitive to

such distortions.
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To compensate for linear channel distortions, the popular technique of cep-

stral mean subtraction (CMS) is employed. It has to be assumed that the

channel acts as a linear filter h (t). Let y (t) then be the corrupted signal, which

is the result of convolution between the clean speech signal s (t) and the filter:

y (t) = s (t) ∗ h (t) .

In the frequency domain, this translates to multiplication:

|Y (f)| = |S (f)| |H (f)| .

Applying the logarithm changes this to addition:

log |Y (f)| = log |S (f)| + log |H (f)| .

Using the inverse Fourier transform, the cepstral coefficient vector correspond-

ing to the nth frame is extracted for the corrupted speech, the clean speech and

the filter:

yn = sn + h.

The maximum-likelihood mean estimate of the distorted signal cepstral coeffi-

cient vectors is

µy =
1

N

N
∑

n=1

yn =
1

N

N
∑

n=1

(sn + h) ,

where there are N vectors. It is assumed that the filter is time invariant (does

not change with time), resulting in

µy = h +
1

N

N
∑

n=1

sn = h + µs. (5.1)

It is typical to assume that the speech signal is balanced with respect to the

voiced, unvoiced and plosive sounds [23]. This would mean that the signal

mean tends toward zero (µs → 0) so that eq. (5.1) becomes µy ≈ h. The

cepstral coefficient vector for the clean speech signal can therefore be obtained

approximately by subtracting the cepstral mean

sn = yn − µy.

It must be noted that although CMS is quite effective, it provides only an

approximation to the clean speech. It has also been shown that the assumed
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balance in the clean speech signal varies between languages [24]. CMS also does

not only remove channel effects, but anything that remains constant during the

length of the signal is removed as well. This might even include information

about the speaker.

5.2.4 Dynamic Features

Two different speakers can possibly produce the same sounds. But, depending

on differences in social background and other similar factors, there might be

differences in the transitions between sounds. This information can be incorpo-

rated as dynamic features to further aid in speaker discrimination. Two kinds of

dynamic features can be employed: first derivatives (∆) and second derivatives

(∆∆).

The ∆-features are obtained by simply calculating the difference between

two successive feature vectors. The resultant vector is appended to the second

feature vector, making the procedure causal (i.e. only history is taken into

account). The new feature vector then has double the dimension of the original.

An alternative method uses five successive feature vectors. In this case, the ∆-

features can be obtained by applying the following discrete differential filter:

∆xk = 0.125xk+2 + 0.25xk+1 − 0.25xk−1 − 0.125xk−2. (5.2)

It will be shown in Chapter 7 that eq. (5.2) gives better results than the two-

vector difference.

The ∆∆-features are obtained by the exact same procedure, except that the

difference between the ∆-features of successive vectors are calculated instead.

5.2.5 Feature Normalisation

Features often occupy a wide range of values. This can present a problem with

regard to numerical precision in computers. To prevent such problems, feature

values should be normalised. One simple method for normalising features, is to

divide the value of each feature by some scaling factor:

normalised feature value =
feature value

scaling factor
.

For this thesis, a single scaling vector is calculated for a set of training

feature vectors that were set aside for this purpose. All feature vectors are

then scaled by this same vector before being processed further. The scaling

factor on each dimension is set to be the standard deviation as calculated for
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the corresponding dimension over the training vectors. This results in unity

variance across each dimension for all normalised feature vectors in the training

set. The training set should therefore be as representative as possible, so that

the result will generalise to other feature vectors.

5.3 Evaluation

5.3.1 Bayesian Decision Theory

The problem of deciding which class is responsible for generating a test speech

sample (utterance) can be approached with the statistical method of Bayesian

decision theory [3]. This method assumes that the problem is formulated in

probabilistic terms and that the relevant probabilities are known. In practical

applications these probabilities are not known, but can be estimated as dis-

cussed in Chapter 3. This section will discuss the verification decision by first

regarding the more general classification decision.

As stated in Section 5.2, a feature is a numerical measurement. Normally,

a few features are measured at each discrete time instant. These features

{xd : d = 1, 2, . . . ,D} are grouped into a D-dimensional feature vector

x =













x1

x2

...

xD













.

Let Ω ε {ωj : j = 1, 2, . . . , C} be the discrete random variable representing the

class to which the feature vector x belongs when there are C classes. Also,

for the classification process, there are C hypotheses {Hj : j = 1, 2, . . . , C}. Hj

makes the hypothesis that class ωj is the true value of Ω (i.e. Ω = ωj) for

the vector x. The measurement xd is considered to be represented by a con-

tinuous random variable Xd whose distribution depends on the class ωj. This

can be expressed by the class-conditional probability density function (PDF)1

p (xd|Ω = ωj) = p (xd|Hj). When determining the value of this PDF for all the

features in the vector x, a more compact notation is used to represent the joint

probability density:

p (x1, x2, . . . , xD|Hj) = p (x|Hj) .

1The strict notation for the PDF is pXd
(xd|Ω = ωj), but the shorter version will be used

when no ambiguity exists.
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It is almost always possible to determine the a priori (prior) probability P (Hj)

of encountering each class. With this information, the joint probability density

of finding both the class ωj and the measurements x can be written in two ways:

p (x,Hj) = P (Hj |x) p (x)

= p (x|Hj)P (Hj) .

This can be rearranged to give the Bayes formula:

P (Hj|x) =
p (x|Hj)P (Hj)

p (x)
, (5.3)

where p (x) is the marginal PDF:

p (x) =
C
∑

j=1

p (x,Hj) =
C
∑

j=1

p (x|Hj)P (Hj) .

Informally, eq. (5.3) has the form

posterior =
likelihood × prior

evidence
.

From this it is possible to determine the a posteriori (posterior) probability that

Ω = ωj given the feature measurements x. In other words, the prior probability

is combined with measured information to calculate the probability that the

class ωj is encountered. The likelihood factor is used as an indication that ωj

is more likely to be the true value of Ω if p (x|Hj) is large. The evidence factor

p (x) can be seen as a scaling factor to ensure that the posterior probabilities

across all the classes sum to one.

For the verification task, it must be determined whether the claimed identity

is present in a test utterance. Let there be two actions α0 and α1, corresponding

to accepting and rejecting the claim respectively. Also, let there be loss factors

βij that represent the penalty for taking action αi when the true identity is ωj.

When taking action αi for an observed feature vector x, the expected loss (or

risk) is

R (αi|x) =

C
∑

j=1

βijP (Hj|x) , (5.4)

because P (Hj |x) is the probability that the true identity is ωj.
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Only two identities are used in speaker verification, namely the target ω0 and

all possible impostors ω1. Therefore, eq. (5.4) can be written more specifically:

R (α0|x) = β00P (H0|x) + β01P (H1|x)

R (α1|x) = β10P (H0|x) + β11P (H1|x) .

The best action to choose is the one with the minimum risk. Thus, the claim

is accepted (action α0) if

R (α1|x) > R (α0|x)

β10P (H0|x) + β11P (H1|x) > β00P (H0|x) + β01P (H1|x)

(β10 − β00)P (H0|x) > (β01 − β11)P (H1|x)

and otherwise rejected. Using the Bayes formula, an equivalent rule decides to

accept the claim if

(β10 − β00) p (x|H0)P (H0) > (β01 − β11) p (x|H1)P (H1) .

The p (x) factor cancels out and it is seen that the decision can be made with

only the likelihoods and prior probabilities.

Normally, the cost of making an error is larger than the cost of being correct,

causing the factors (β10 − β00) and (β01 − β11) to both be positive. The decision

to accept the claim can then be made if

p (x|H0)

p (x|H1)
>

(β01 − β11)P (H1)

(β10 − β00)P (H0)
. (5.5)

The ratio on the left-hand side is called the likelihood ratio. The term on

the right-hand side is interpreted as being a threshold value θ that can be

determined independently of the measurements. Other researchers seem to also

allow the acceptance of the claim when the risks of both actions are equal. This

is also done in the rest of this thesis.

With single-speaker detection, it is assumed that an entire utterance con-

tains the speech of only one person. The decision can therefore be based on the

utterance XT = {xt : t = 1, 2, . . . , T} instead of only a single feature vector.

By using the joint probability densities of the individual feature vectors, the

likelihood ratio test becomes

p (x1,x2, . . . ,xT |H0)

p (x1,x2, . . . ,xT |H1)
=
p (XT |H0)

p (XT |H1)

{

≥ θ accept

< θ reject
(5.6)
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For computational purposes, it is often preferred to work with the log-likelihood

ratio2

Λ (XT ) = log p (XT |H0) − log p (XT |H1) .

This log-likelihood ratio of the test utterance is called the score of that utter-

ance. The score is compared to an appropriate threshold to make the decision.

As mentioned in Section 3.2, the PDFs in the likelihood ratio are approximated

by theoretical models, such as the GMM.

5.3.2 Score Normalisation (T-Norm)

For any given target speaker, a number of target and impostor trials can be

performed. A target trial requires the verification system to make a decision for

a test utterance that was spoken by the target speaker (the claimed identity).

An impostor trial requires a decision for a test utterance that was not spoken

by the target speaker. The trials performed for any given target speaker can be

characterised by a target score distribution and an impostor score distribution.

The target score distribution describes the possible scores that can be produced

by target trials according to some PDF. The impostor score distribution does

the same for impostor trials. It is usually assumed that these distributions are

Gaussian.

Except for the identity of the speaker, each test utterance can differ from

other test utterances in many respects. Differences include the various mi-

crophones and communication channels used for recording. This can cause

differences in the score distributions for the different target speakers. These

variations in the score distributions prevent the verifier from effectively com-

paring the output scores to a single threshold for all target speakers. If it is

undesirable to determine a threshold for each target speaker independently,

then every score must be normalised to a global scale.

Test normalisation (T-Norm) [28, 29] is a distribution scaling technique. It

normalises output scores so that the impostor score distribution will have a zero

mean and unit variance for any given test utterance. Because all impostor trial

scores are not available when an output score must be normalised, a subset

of impostor model scores is used to estimate the scaling parameters. More

specifically, the test utterance of a particular trial is used to calculate scores

(log-likelihood ratios) for N non-target speakers. The mean µI and standard

deviation σI for these N scores are then used to transform the score s from the

2The natural logarithm (base-e) is typically applied when working with probability densities
of the exponential family.
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target speaker into a normalised score

s′ =
s− µI

σI
. (5.7)

Section A.1 in Appendix A shows that the log-likelihoods can be used instead

of the log-likelihood ratios to obtain the same normalised score. It is therefore

unnecessary to compute any likelihood ratios while calculating the parameters

used in T-Norm.

T-Norm is able to calculate the scaling parameters for each test utterance.

This means that differences in the acoustic environment between trials will not

play such a large role in degrading performance as is the case with some other

score normalisation methods.

5.3.3 Threshold Selection

Practical verification systems require a threshold θ to make decisions with the

likelihood ratio test. A single fixed threshold must be chosen before deployment,

or it must be adaptable according to some rule while the system is in operation.

Only single fixed thresholds are considered in this thesis.

During the operation of a verification system, two errors can occur. A false

rejection (FR) or miss is the error made when the system fails to detect the

claimed identity, even though the speech of that person is present in the test

utterance. A false acceptance or false alarm (FA) is the error made if the system

accepts the claim when the test utterance was spoken by an impostor.

The choice of an appropriate threshold for making decisions involves a trade-

off between the two types of errors. In Section 5.3.1, the threshold was defined

in terms of loss factors βij. By assigning values to these loss factors the tradeoff

between the two error types can be adjusted. A more direct approach is used

in the National Institute for Standards and Technology Speaker Recognition

Evaluation (NIST SRE) [43]. By minimising the detection cost function (DCF)

Cdet (θ) =CFR × FRR (θ)× P (target)

+ CFA × FAR (θ) × (1 − P (target)) (5.8)

the desired threshold can be found. CFR and CFA are the costs associated

with encountering FRs and FAs respectively. The FRR (θ) and FAR (θ) are

the rates or probabilities of FRs and FAs respectively for a given threshold.

P (target) is the prior probability of encountering a target trial (one where the

target speaker is present in the test utterance). Because a test utterance can

only come from a target speaker or an impostor speaker, the prior probability
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assigned to encountering an impostor is (1 − P (target)).

The FRR (θ) and FAR (θ) have to be measured by running many trials

using a development data set. It is possible that the testing conditions of

the development data set are different from the conditions while the system is

operational. This would mean that the DCF and therefore the optimal threshold

might change. Some researchers [21] take account of an asymmetry around the

minimum DCF point to employ a heuristic threshold selection procedure. A

threshold with a slightly higher DCF value than the minimum is chosen in the

area to the side of the minimum where the DCF slope is smaller. This prevents

the cost from increasing rapidly when the DCF changes so that the selected

threshold moves to the side with the steeper slope.

5.4 Distributed Processing for the Verification Task

The technique of distributed processing is used widely throughout all kinds of

research fields where large numbers of identical computations are required. Dis-

tribution is a very appropriate proposition for applications using GMMs with

large numbers of mixture components, as is typically the case for speaker veri-

fication. Each mixture component could potentially be evaluated on a separate

processor and the results combined to form the final score. This idea can also

be extended to the task of model training. This kind of distribution was not

readily available for the software package that was used for the research of this

thesis.

When working with a large population of models and many test trials, an-

other form of distribution can be applied. A small set of processors can be used

optimally by training a subset of models on each, or by running a subset of trials

on each. This technique was implemented for the research of this thesis using

Linux shell scripts. It was applied to the 2004 NIST Speaker Recognition Eval-

uation (SRE) [43], which is a good example of where this kind of distribution

makes sense. Specific details of how this distribution method was implemented

is provided in Section 6.6.
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5.5 Summary

This chapter, in combination with Chapter 3, described in relative detail the

overall construction and operation of a speaker verification system. MFCC

features are extracted from the raw speech signal and processed for optimum

aid in discrimination. Using statistical models that describe how features are

generated by speakers, the likelihood ratio test, or a normalised version thereof,

is can make the decision of whether or not the target speaker is responsible for

creating the test utterance.



Chapter 6

Implementation Issues

6.1 Introduction

The previous chapters provided the theory necessary for understanding how to

implement a speaker verification system. However, theory does not provide all

the details needed for a working implementation. This chapter aims to discuss

the issues surrounding the implementation of a practical, working speaker ver-

ification system that makes use of the Tree-based adaptive Gaussian mixture

models (T-BAGMMs) for speaker models.

Firstly, Section 6.2 gives a discussion of how the research was approached. It

outlines the steps that were taken for learning how to implement a fully working

speaker verification system.

Practical speaker verification systems must process real-world data. Sec-

tion 6.3 describes the kinds of data that are required as well as how the data

are applied to the system. It gives an overview of the speech databases that

were used for this thesis and also indicates how data were selected for training

purposes.

The implementation for this thesis was made using the PatrecII software

library and executables from the University of Stellenbosch DSP group. In the

fulfilment of the research for this thesis, the T-BAGMM component had to be

added to the library. The implementation of the relevant algorithms and related

issues are discussed in Section 6.4.

For performance evaluation, a baseline system is needed against which al-

ternative system configurations can be compared. Section 6.5 provides a de-

scription of the specific baseline configuration used in Chapter 7. It also gives

parameter values and their justifications.

Finally, the specific implementation of process distribution that was used

for this thesis is discussed in Section 6.6.

59
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6.2 Methodology

Any research requires at least a general guideline to follow in order to produce

useful results. This thesis required the mastering of different levels of skill and

knowledge. The original goal was to construct a GMM-based speaker verifi-

cation system with as high an accuracy as possible. This system would be

used in conjunction with a non-acoustic speaker verification system. Firstly, a

course on pattern recognition was followed in order to learn the underlying con-

cepts and techniques that are used in speaker verification systems. A course on

speech processing was also followed to gain insight and background knowledge

about how speech is processed in digital form. An extensive study on available

literature was also done in order to become familiar with the construction of

current speaker verification systems. Special attention was given to the speaker

modelling component.

The patrecII software library, which is being developed by the DSP group

at the University of Stellenbosch, was chosen for the construction of the system.

It was readily available and included all the important parts that are necessary

to build a complete GMM-based speaker verification system. It was necessary

to learn how to use the library and its accompanying tools in order to construct

a fully working system. A first system was built using regular GMMs, where

each speaker model was trained directly from training data. In other words, the

speaker models were not adapted from a universal background model (UBM).

It was therefore necessary to keep the number of mixture components below 64.

This system used the NTIMIT1 speech database for both training and testing.

This is a fairly small database and not particularly suited for real-world text-

independent applications. It contains telephone-quality speech of predefined as

well as random speech, although all utterances are recited from predefined text.

During the execution of this research, the DSP group of the University

of Stellenbosch participated in the 2004 National Institute for Standards and

Technology (NIST) speaker recognition evaluation (SRE). This was done in

collaboration with Spescom DataVoice (Pty) Ltd. As part of this research, a

process distribution system was implemented and used in the NIST SRE. The

same distribution system would then also be used for the research work of this

thesis. Additionally, the NIST SRE provided an ideal platform for building

a speaker verification system that could be tested on a large set of real-world

natural speech data in international competitive conditions. After becoming

familiar with the NIST SRE rules and data, a UBM/GMM-based system was

1Web page (2005):
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S2
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constructed. The speaker models with up-to 2048 diagonal covariance compo-

nents were trained by mean-only MAP adaptation from the UBM. It was soon

discovered that many days were required to complete the NIST SRE trials, even

when using up-to 10 processors. This was not acceptable if many experimental

investigations were to be performed. This led the research to the consideration

of implementing a tree-based GMM for the obvious speed gains that it would

provide. At this point, the T-BAGMM idea was born [40].

The algorithms for the T-BAGMM component had to be implemented and

integrated into the existing patrecII framework. This integration presented

quite a steep learning curve and therefore required much time. Initially, a soft-

ware component for MAP adaptation of both the mean and covariance matrix

was created as part of the learning process, but also for possible use during

experimentation. Other parts of the patrecII system also had to be improved

during the implementation process.

As mentioned, an implementation of process distribution, based on Linux

shell scripting, was implemented as part of this thesis, and used successfully in

the 2004 NIST SRE. After observing a few problems with the initial implemen-

tation of the scripts, alterations were made before applying it to the research

of this thesis.

Finally, with a fully working system, the T-BAGMM was applied to the 2004

NIST SRE conditions. A considerable improvement in speed was observed, and

it matched closely to the rough theoretical predictions of Section 4.2. It was

decided to perform comparative experiments to characterise the speed gains

with respect to the number of mixture components as well as a parameter called

the node score beam width. This parameter can be used to adjust a speed-

accuracy trade-off in the T-BAGMM (see Section 6.4.1). Afterwards, a number

of other experiments were performed to show how the system performance is

influenced by various techniques.

6.3 Working with data

6.3.1 Applying data to the system

There are two modes in which a speaker verification system can be operated.

These modes are essentially the same, except for the manner in which data

are applied. The first mode (practical mode), is the normal operation where

the system is used by some real client. The speech of the client is presented

to the system for either training or evaluation. Training speech is used to

train (estimate the parameters of) a model for the client. For evaluation, the
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trained model is used to determine whether the evaluation speech belongs to the

corresponding client. The system must record the evaluation speech, perform

the verification process and provide a decision in as short a time as possible.

Note that for text-independent speaker verification, the system has no prior

knowledge about the content of the evaluation speech.

The second mode, is the simulated operation (development mode) where

the performance of the system must be determined. This method of operation

is used by the research presented in this thesis. Here the normal operating

conditions are simulated by applying a large set of pre-recorded data in the

same manner as for normal operation.

Two data sets are used during the development of a practical system: train-

ing data and evaluation (testing) data. The same speakers are present in the

speech of both sets. For strict text-independent speaker verification the speech

content of the two sets must be unrelated (i.e. the evaluation speech must not

be present in the data used to train a model).

During evaluation, the speech of some person is presented to the system.

A claim is made to the identity of the person who produced this speech. The

claimed identity is called the target. The system must then test whether the

evaluation speech truly belongs to the target speaker. If this is in fact true, the

test is called a target trial. If, on the other hand, the evaluation speech was

from someone other than the target, it is called an impostor trial.

For each target, the verification system requires a model that was trained

from corresponding speech in the training set. The system must be able to

discriminate between speech from the target and any possible impostor. This

requires one or more models that represent impostors for every target. Other

target models can be used as impostors for any given target, but there can also

be speech in the training set for many speakers other than the targets. This

can be used to train impostor models that are independent of all target models

and is, of course, much easier to manage. Speaker models can be adapted from

a general speaker model (or UBM). The UBM is trained from the speech of

many different speakers and therefore has an abundance of training data.

A large number of trials are performed with the speech from evaluation

set in order to determine how accurately the system performs. It is normally

possible to get measurements at different operating points (for different decision

thresholds). This allows the developer to select the threshold that would provide

the best error trade-off. Both the training and evaluation data are typically

contained in a single database, called the development database. Once the

system is completed and the decision threshold chosen, new target models can



Chapter 6. Implementation Issues 63

be trained for clients and the system can be activated for use.

6.3.2 Speech databases

Various commercial speech databases (or corpora) have been compiled and are

for sale to researchers and developers. The research of this thesis made use of

two databases that were compiled by the Linguistic Data Consortium (LDC),

hosted at the University of Pennsylvania2. Both databases were obtained by

the University of Stellenbosch during participation in the NIST SREs of 2000

and 2004. The Switchboard-2 database was used in the 2000 NIST SRE. The

data used for the 2004 NIST SRE were collected for the LDC Mixer project.

The latter has not been released to the public yet, but will be called the Mixer

database in this thesis.

Switchboard-2 Phase III

The Switchboard-2 corpus consists of a few separate sub-corpora: Phase I,

Phase II, Phase III. Only Phase III was used for the research of this thesis. This

database contains speech from 292 male and 348 female (640 total) different

people. The speech is recorded telephone conversations. Each conversation has

a duration of 5 minutes and there are 2657 conversations. Both sides of each

conversation are stored in a single 2-channel format file. All silence intervals

have already been removed. The technical specifications of the Switchboard-2

Phase III3 corpus are shown in Table 6.1

LDC Catalog No. LDC2002S06

Authors David Graff, David Miller, Kevin Walker

ISBN 1-58563-222-8

Data Type speech

Sample Rate 8000 Hz

Sampling Format 2 channel µ-law

Data Source telephone

Application speaker identification

Language English

Distribution 20 compact disks (CDs)

Non-member Price US$4000

Table 6.1: Technical specifications of the Switchboard-2 Phase III speech corpus

2Their web site: http://www.ldc.upenn.edu/
3Obtained from web page (2005):

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002S06
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Mixer

The Mixer database is not an officially released database. The data were col-

lected during the Mixer project by making use of LDCs ”Fishboard”platform for

automated call initiation4. The data consist of mostly English conversational

telephone speech, but includes speech from other languages as well. Each side

of a conversation is stored in a separate single-channel file. Each such conversa-

tion side contains the last five minutes of a six-minute conversation. There are

also files that contain only excerpts of about 10 seconds of speech, as well as

some containing excerpts of about 30 seconds of speech. In addition, there are

files where the two sides of a conversation, minus the first minute, were summed

together. No silence removal have been performed. The data includes a lim-

ited number of conversations where speech was recorded using non-telephone

channels and a variety of microphone types. For the conversations that were

recorded over a telephone channel, the type of transmission may be regular

(land-line), cordless or cellular and the instrument used may be regular (hand-

held), ear-bud, head-mounted or speaker-phone.

There are data for 3355 speakers in the database and each person partic-

ipated in various conversations. The data are accompanied by errorful word

transcriptions that were produced by an automatic speech recognition (ASR)

system. Some technical specifications of the Mixer corpus are shown in Table 6.2

Data Type speech

Sample Rate 8000 Hz

Sampling Format 1 channel µ-law

Data Source telephone and non-telephone

Application speaker identification

Language English, Arabic, Mandarin, Russian, Spanish

Distribution 5 DVDs

Table 6.2: Technical specifications of the Mixer speech corpus

6.3.3 Selection of training and evaluation data

The Switchboard-2 Phase III corpus was used as the development database,

but only for training the UBM and impostor models. Although this research is

concerned with performance evaluation according to the 2004 NIST SRE, it is

not necessary for the system to operate in the application mode where decisions

must be made. It was therefore not necessary to train development target

4More information is available at the web page (2005):
http://www.ldc.upenn.edu/Projects/EARS/Fisher/Mixer/
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models and choose a decision threshold. The Mixer database is the evaluation

database that is used to evaluate the system performance. It contains training

and testing data according to the 2004 SRE conditions.

UBM training data

The UBM must model general speaker information. Ideally, it should include all

the different sounds that any person can make. In other words, the UBM models

a speaker-independent distribution of features [6]. The data used to train the

UBM must therefore come from a wide variety of speakers and include a wide

variety of words. Conversational speech seems to be well suited for this purpose.

This thesis uses a simple approach for training the UBM. All the UBM

training data are pooled together. The pooled data are used to find maximum

likelihood estimates for the UBM parameters with the EM algorithm. On the

other hand, if it is known that models of female target speakers will only be

compared to female test speech, then a UBM can alternatively be trained with

speech data from only female voices. All female target and impostor speakers

can then be adapted from this gender-dependant UBM. The same applies to

different languages, dialects and types of communication channels.

However, in the case where there is no prior knowledge about the test speech

samples, the UBM must be trained with a balance between different possible

subpopulations. For example, there should be an equal amount of data for

both male and female speech and likewise for different channels. If this balance

is not achieved, then the UBM and adapted models might be biased and so

reduce accuracies in certain situations. When male models are adapted from a

predominantly female-based UBM, the system might be inclined to reject the

corresponding male’s test speech, even though it matches with the model.

There is no theoretical principle according to which the correct amount

of speech data or the correct number of speakers for the UBM training data

can be determined. The main concern is to have as much variety in speakers

as possible, but the data of each speaker should cover most of the speaker’s

voice characteristics. This thesis uses 60 seconds of speech per person with a

minimum of 200 speakers in the UBM training data. From studying literature

[6], this seemed to be sufficient, although thorough tests could not be performed

to verify it.
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An equal number of male and female speakers were selected for the UBM

training data. It was impossible to regard any other possible subpopulations,

because no training data were available for that purpose. The UBM training

data were taken from the Switchboard-2 Phase III corpus. All of the speech

in this corpus was recorded over a regular (land-line) telephone channel. This

would most likely cause a bias towards this kind of channel, but unfortunately

no training data were available for other channels. The Switchboard-2 Phase III

corpus is otherwise a good choice, because it consists of conversational speech,

which should contain enough variety in speech sounds.

T-Norm impostor data

T-Norm imposter models are used to normalise the target score. These models

serve as examples of any speech other than that of the target and must be largely

independent of the target models. A set of 100 speakers from the Switchboard-2

Phase III corpus were selected as impostors. To prevent a bias in the system,

as with the UBM, an equal number of male and female speakers were selected

for impostors. These speakers are a subset of the speakers that were chosen to

train the UBM. Of course, this means that the target models do share some

information with the impostor models. But, the amount of speech per person

that was used for the UBM was little in comparison to what was used to adapt

the speaker models. The fact that the UBM represents the general speaker

also helps to eliminate much of the remaining dependence, because many other

speakers are also present in the UBM. However, it is unknown whether total

independence between target and impostor models would provide better veri-

fication performance. Such an experimental investigation was planned for this

research, but time constraints did not allow it.

For each of the impostor speakers, a GMM or T-BAGMM model was trained

using 3.6 minutes of speech data. The amount of training data per impostor

model was chosen according to the following criteria:

� enough training data are needed to cover most of the acoustic properties

for the person’s voice,

� it should be easy to implement using the existing software.

The second criterion was the most defining, because the software only allowed

training data set sizes that were multiples of 3.6 minutes. It was decided that

3 minutes of speech should be enough to cover a very substantial range of the

speaker’s acoustic properties, but also that 7.2 minutes might be unnecessarily
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long. This thesis does not cover the evaluation component of the speaker veri-

fication system in enough detail to perform experiments that would determine

the optimum amount of training data for impostor models. For the same rea-

son, in addition to time limitations, it also could not be expected to produce

an implementation for the software that can provide a finer granularity for the

training data set sizes.

Evaluation data

Because this research was mainly performed according to the 2004 NIST SRE

conditions, the evaluation data were selected from the Mixer database. For

each test condition, NIST provided indices to define the training speech for

target models and the test speech for trials. More information will be given in

Section 7.4.

6.4 T-BAGMM algorithms

6.4.1 Evaluation

Implementing the basic algorithm for evaluating a T-BAGMM (see Section 4.2)

is a relatively simple matter. However, for this thesis, it was decided to include a

parameter with which the speed of evaluation can be adjusted. This parameter

determines the number of nodes that are evaluated based on how much the

nodes contribute to the model likelihood. The parameter is called the node

score beam width δ. For each pair of sibling nodes, this beam width is used

to calculate a node score threshold φ. By defining some maximum node score

smax, the threshold is calculated as

φ = smax − δ.

The node score sn (likelihood contribution) of each of the two sibling nodes is

compared to this threshold to determine whether the subtree of the node will

be evaluated in more detail. In other words, a node’s subtree is evaluated if

sn > φ.
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A few implementation iterations were made to determine an appropriate

definition for smax:

1. For the first attempt, the highest score of two sibling nodes was chosen,

giving

smax = max (sn,left, sn,right) .

But, this definition has a fundamental problem. It considers only two

nodes. As the traversal of the tree progresses further away from the

root node, some nodes have extremely low scores. Although these nodes

should not be included in the evaluation, this definition for smax does not

provide for such exclusion when the node score beam width is large. It

is desirable to compare the node scores with those in the higher-scoring

subtree(s). But, this is not possible with this definition. This problem was

observed when nodes with extremely low responsibilities were included for

re-estimation during training.

2. In order to prevent the evaluation of nodes that have very low scores,

it was decided to use a global smax for the entire tree. As the tree is

traversed, the value of smax is updated when a higher node score is en-

countered. The problem with this method, is that comparisons between

nodes of different tree levels are not appropriate (fair). It is incorrect to

compare node scores of a higher resolution with a threshold calculated for

nodes of lower resolution, and vice versa. In practice, this was very clear

during training. At the time, the second tree traversal of the tree (that

is responsible for re-estimation) repeated comparisons with the updated

node score threshold. The result was that none of the more approximate

nodes had a high enough score to enable further traversal. This prevented

the UBM from being trained properly.

3. Finally, a slightly modified version of the first method was used. Again,

an smax was chosen for each pair of sibling nodes. However, the choice

was the highest of either one of the sibling node scores or the smax that

was chosen for their parent. This ensures that the evaluation of nodes in

the lower-scoring subtree stops when the node scores become too small.

It also prevents the comparison of nodes with very different resolutions.

A resolution difference of one tree level seemed close enough to be al-

lowed. For training, it was also decided to ”remember” the threshold that

was used in the first tree traversal (that is responsible for determining

node responsibilities). The same threshold values can then be used in

the second tree traversal. But, it was discovered that evaluation speed
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was far higher than predicted by approximate theoretical calculations. It

was found that the tree was not always traversed up-to the leaf nodes. As

should have been expected, this happened because node scores of different

tree levels were compared to each other. In some cases, both sibling node

scores could be lower than that of their parent, even if they are in the

highest-scoring path. This is a problem, because the purpose of using a

tree, is to find the highest-scoring leaf nodes. The problem was alleviated

by selecting smax to be the highest of the two sibling node scores when

they both were lower than the smax of their parent, but only if they were

in the highest-scoring search path. By forcing traversal up-to the leaf

nodes in this manner, more realistic speed measurements were obtained

as well as better system performance.

The final algorithm for evaluating a T-BAGMM is shown in Algorithm 4.

6.4.2 Training

It was already seen in Section 4.3 how training speed can also be improved by

incorporating the T-BAGMM evaluation algorithm into the estimation process.

Similarly, the speed of training can also be adjusted with the same node score

threshold that was introduced in the previous section. This will allow more

nodes to be re-estimated and should therefore improve the quality of the re-

sulting models. The training algorithm that was given in Section 4.3 remains

the same, because the evaluation algorithm selects the nodes that will be re-

estimated.

The binary-split model initialisation algorithm had to be adapted for appli-

cation to the T-BAGMM. It was decided to keep a vector table with references

to all of the current leaf nodes for any given iteration. This vector table initially

contains only a reference to the root node. When the root node is split, two

child nodes are created and linked to the root node. The root node’s reference

is removed from the vector table and replaced by references to each of the two

new leaf nodes. In this way, the vector table is used to locate the leaf nodes that

should be split. The rest of the algorithm remains the same and this process

continues until the desired number of leaf nodes have been produced.

Finally, provision was made so that the models could have the potential to

grow as large as the data would allow. As the number of leaf nodes increase

through the binary-split algorithm, some new nodes may end up having very

small responsibilities for all feature vectors in the training set. This in turn

would cause the parameters of those nodes to be badly estimated. In such

cases, both that node and its sibling node are removed from the tree and the
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algorithm is prevented from splitting the parent again in the future. If the

target number of leaf nodes is chosen too large for a particular data set, then

this mechanism would provide a resulting model with the maximum complexity

allowed by the data.

1. Obtain test feature vector xt

2. If node is a leaf node, then return the likelihood of the node p (xt|λl) using
the node PDF; otherwise continue with step 3

3. Calculate the approximate likelihood of the left subtree p (xt|λk,left) from
the approximate PDF in the left child node; multiply mixture weight of

left subtree wk,left = gk,left
∏LT (k)

i=1 g′i with this likelihood to obtain left
node score sn,left

4. Calculate the approximate likelihood of the right subtree p (xt|λk,right) from
the approximate PDF in the right child node; multiply mixture weight of

right subtree wk,right = gk,right
∏LT (k)

i=1 g′i with this likelihood to obtain right
node score sn,right

5. Choose smax = max (sn,left, sn,right, smax,parent)

6. If (smax = smax,parent) and this node is in the path where all nodes have
maximum scores, then choose smax = max (sn,left, sn,right)

7. Calculate φ = smax − δ

8. If left score >= φ threshold and left child is not a leaf node, then obtain
detailed likelihood of left subtree p (xt|λk,left) by repeating from step 2 for
left child node

9. If right score >= φ and right child is not a leaf node, then obtain detailed
likelihood of right subtree p (xt|λk,right) by repeating from step 2 for right
child node

10. return (gk,leftp (xt|λk,left) + gk,rightp (xt|λk,right)) as the detailed likeli-
hood

Notes on the algorithm:

� The function LT (k) indicates the tree level in which node k is located.

Algorithm 4: Recursive Evaluation of a T-BAGMM, making use of a node score

threshold
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6.5 The baseline system configuration

6.5.1 Introduction

For research purposes, it is important to have a baseline system configuration

against which alternative system configurations can be compared. It is then

possible to see whether alterations improve or degrade the system performance.

Two baseline systems are used for this thesis. Both are identical, except

that one uses GMM-based speaker models and the other uses T-BAGMM-based

speaker models. The GMM-based configuration is used merely for performance

comparison between the GMM and the new T-BAGMM. All of the other investi-

gations compare performance against the T-BAGMM baseline system. Because

the GMM-based system requires a great amount of time for a full system eval-

uation, it was decided to keep the baseline system complexity at a minimum.

This section gives a detailed description of the baseline configuration used for

this thesis.

6.5.2 Front-end processing

The different channels (or conversation sides) in the Switchboard-2 conversa-

tions had to be separated before actual processing could be performed. In the

Mixer database, the conversation sides are already separated. Although silences

are already removed from the speech in the Switchboard-2 database, the same

front-end processing was applied to both the Switchboard-2 data and the Mixer

data. If the silence removal component had any effect on the Switchboard-2

data, it would be minimal.

Frames with a length of 20 ms was extracted at a rate of 10 ms per frame.

These values were chosen because nearly all other researchers use the same (or

nearly same) values. For every frame, silence removal, power normalisation and

feature extraction was performed. Following in the choice of other researchers,

12 MFCCs were extracted per frame using 22 triangular filters in the frequency

range of 300 Hz to 3300 Hz (the telephone band). These MFCCs were collected

into 12-dimensional feature vectors. Normally, 13 coefficients are calculated

and the zeroth coefficient (energy) discarded, but here the zeroth coefficient is

included in the set of 12. This was done because the actual implementation

of the feature extraction software was not understood properly at the time

when the baseline system was configured. The effect of this is investigated in

Chapter 7, though.
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No cepstral mean subtraction (CMS) or dynamic feature calculation was

performed for the baseline system. A scaling feature normaliser was trained us-

ing speech of the 200 speakers in the UBM data set. This was used to normalise

all feature vectors.

6.5.3 UBM

The UBM is a regular GMM with 2048 components using diagonal covariance

matrices. This is considered as the best choice by other researchers [2, 6]. Not

only is diagonal covariance GMMs computationally (and storage-wise) more

efficient than full covariance GMMs, but it can model data equally as well if

more mixture components are used. Furthermore, the calculation of MFCCs

tend to decorrelate the data, which means that diagonal covariance can be used

without much degradation of performance.

The UBM is trained with 60 s of speech from each of 200 speakers in the

Switchboard-2 Phase III database. This set of speakers consists of 100 male

and 100 female speakers so that the UBM will be gender-balanced (refer to

Section 6.3.3). No training data were available to ensure balance for other

subpopulations. The selection of UBM speakers is essentially random. The list

of speakers was scanned and the first 100 of each gender, of those whom had

enough speech data, were chosen. The list of speakers is in no apparent order.

The UBM is initialised with the binary-split algorithm followed by 9 iter-

ations of maximum likelihood estimation with the expectation-maximisation

(EM) algorithm. Only 5 EM iterations should be necessary for sufficient con-

vergence [6], but another 4 was added for toleration.

6.5.4 Speaker models

Each speaker model was created with mean-only maximum a posteriori (MAP)

adaptation from the UBM. A relevance factor of 16 was used, because other

researchers have determined that this value is a good choice [6]. A maximum

of 9 EM iterations were performed. Training could stop earlier when the im-

provement in the log-likelihood value for the entire training data set of the

corresponding person fell below 5 × 10−4. Such a low improvement value indi-

cates convergence of the EM algorithm. The models of the baseline T-BAGMM

system were trained with a training node score beam width of δtrain = 3 (log-

arithmic scale). This value was empirically determined as a good trade-off

between speed and model quality.



Chapter 6. Implementation Issues 73

Target models were trained according to the conditions of the 2004 NIST

SRE. These conditions are presented later in Section 7.4. T-Norm impostor

models were trained from the same speaker data as the UBM, but with 3.6

minutes of speech per speaker.

6.5.5 Evaluation

Test normalisation (T-Norm) was performed on the test utterance log-likelihood

scores using 20 impostor models. These impostor models were trained as dis-

cussed in the previous section.

6.6 Process distribution

Process distribution was needed to complete the 2004 NIST SRE before the

deadline. Many fully functional software systems already exist to perform this

function. However, at the time, it was decided that it would take too long

to learn the setup and usage procedures of available software. Also, the kind

of distribution that was necessary did not require such a complicated software

implementation.

Consequently, a simple process distribution was implemented with Bash

shell scripts on the Linux operating system. The Secure shell (SSH) software is

used for communication with participating hosts.

6.6.1 First generation

Two main scripts are responsible for handling the distribution: a manager and

a performer. The manager script implements a simple loop to send process

jobs to each participating host. The manager merely executes the performer

script on the remote machine by using the SSH software. The performer script

must then use the information that was passed to it, to locate and process the

correct set of data. This requires that all the data must be available on each

participating host.

The first generation of scripts used a rudimentary file-based lock mechanism

to prevent more than one job to occupy a single processor simultaneously. Such

a locking mechanism was required so that the manager could not send more

than one job to any given processor.

6.6.2 Second generation

After the completion of the 2004 NIST SRE, the distribution scripts were al-

tered to improve its performance. The new scripts were used for the research
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of this thesis. The most important change in the second generation of the dis-

tribution scripts, was the replacement of the file-based lock mechanism. As

trials were executed, it was observed that the file locks did not function prop-

erly. It sometimes happened that a processor would receive a second job before

the lock file for the first job was created. The problem arose mainly because

accommodation was made for machines with multiple processors.

To circumvent the problem, a network pipe was used. Each remote machine

runs a simple server-like script that listens for network connections (by means

of the netcat utility) only when a processor has completed its last assigned job.

The intention was to allow direct connections from the host running the distri-

bution loop (manager), without the use of SSH. But experimentation indicated

that this might not be possible. Instead, the performer tries to connect to the

server script. A successful connection can only be made if the server is listening

and that can only happen when a processor is available. All functionality is

now transfered from the performer script to the server script.

Along with the second generation of distribution scripts, the shell file system

(SHFS) was applied so that each participating host could access the data from

a single machine. The shell file system obtains access to remote files through

the SSH software. No significant performance loss was experienced with this

method of file access.

6.7 Summary

This chapter discussed the practical issues regarding the implementation of a

fully working speaker verification system that use either GMMs or T-BAGMMs

for speaker models. It was seen how the research was approached by first gaining

familiarity with the subject matter and relevant software. The Switchboard-2

Phase III and Mixer databases were introduced and it was shown how data

were selected for application to the research.

The discussion surrounding the implementation of the T-BAGMM algo-

rithms introduced a parameter, called the node score beam width δ, with which

the speed-accuracy trade-off can be adjusted. This parameter requires a max-

imum node score smax for operation and the search for a proper definition of

the latter was described.

A description of the baseline system configuration was given with regards

to all the participating components. Specifics were given about the choice of

parameter values for front-end processing. It was discussed why diagonal co-

variance matrices are best suited for GMMs in speaker verification.
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Finally, it was described how process distribution was implemented using

two Linux shell scripts: a manager and a performer. The manager script is

responsible for executing the performer script on each participating host and

the performer must locate the data and execute the correct process.

The next chapter will show the results of all the experiments that were

performed for this theses, based on the 2004 NIST SRE conditions.



Chapter 7

Experimental Investigation

7.1 Introduction

It is important to determine whether theoretical expectations are matched in

practice. This chapter covers the experimental investigation of a few of the im-

portant parts in the speaker verification system. It especially aims to show how

the new T-BAGMM performs against the GMM with regard to speed and ac-

curacy. Investigations are also made to determine how the other parts influence

the system performance. Section 7.2 explains the technique for visually inter-

preting the results obtained from verification trials in a sensible way. Section 7.3

describes the formal method for determining whether seemingly improved re-

sults have any true significance. Section 7.4 gives an overview of how evaluation

was performed for the rest of the chapter.

7.2 The Detection Error Trade-off (DET) Curve

Two errors can occur during verification. A false rejection (FR) or miss is the

error made when the system fails to detect the claimed identity, even though

the speech of that person is present in the test utterance. A false acceptance

or false alarm (FA) is the error made if the system accepts the claim when the

test utterance was spoken by an impostor.

The choice of an appropriate threshold for making decisions involves a trade-

off between the two types of errors. For this reason, the performance of a system

can not be represented by a single performance number. A more complete

characterisation is given by some performance curve such as the detection error

trade-off (DET) curve [30].

The DET curve indicates the false alarm rate or probability (FAR) on the

horizontal axis and the false rejection rate (FRR) on the vertical axis. A normal

76
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deviate scale is used on both axes to better distinguish between different well-

performing systems. This scale tends to produce near-linear curves.

To generate values for the DET curve, a large number of trials must be

executed to produce output scores. These scores are then compared to various

thresholds and the FAR and FRR are calculated for each threshold. These

rates (or probabilities) are usually calculated and shown as percentages. Each

of these percentages is viewed as a percentage of area beneath the normal PDF

(i.e. zero mean and unit variance), with the area filling up from −∞. The

standard units (multiple of the standard deviation σ) corresponding to these

areas are then plotted on the DET curve. If, for example, FAR = 84% and

FRR = 16%, then the standard unit corresponding to FAR is +1 and the

standard unit for FRR is −1. This would give the point (x, y) = (+1,−1) on

the DET curve.

The DET curve was used to evaluate the system performance for all the

experimental investigations that are presented in Sections 7.5 through 7.11. It

must be noted that the DET curve is not restricted to the application of speaker

verification systems, but can be used for any type of detection system.

7.3 Significance Testing (McNemar’s Test)

When comparing the performance measurements between two system configu-

rations, it might seem as though one system performs better than the other. In

order to determine whether the difference is not simply due to chance effects,

it is necessary to subject the results to a statistical significance test [12]. One

such test, called McNemar’s test [31], is appropriate for verification tasks. It

is important to note that a significance test can not determine the cause of a

difference, but only whether the difference is real.

Let there be a comparison between two systems A1 and A2. These systems

are subjected to the same N trials. The performance of the two systems can

be represented by the following random variables:

N00 =Number of trials that A1 verifies correctly and A2 verifies correctly

N01 =Number of trials that A1 verifies correctly and A2 verifies incorrectly

N10 =Number of trials that A1 verifies incorrectly and A2 verifies correctly

N11 =Number of trials that A1 verifies incorrectly and A2 verifies incorrectly.
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Although these variables are random, they satisfy the constraint N = N00 +

N01 + N10 + N11. The following probabilities are defined:

q00 =probability that A1 verifies correctly and A2 verifies correctly

q01 =probability that A1 verifies correctly and A2 verifies incorrectly

q10 =probability that A1 verifies incorrectly and A2 verifies correctly

q11 =probability that A1 verifies incorrectly and A2 verifies incorrectly.

The probability that system A1 makes an error is p1 = q10 + q11 and the prob-

ability that system A2 makes an error is p2 = q01 + q11.

The null hypothesis H0 states that there is no difference between the two

systems. In other words, they have the same chances for making an error:

p1 = p2

q10 + q11 = q01 + q11

q10 = q01.

It is the aim of the significance test to determine whether the null hypothesis is

true. Define q = q10/ (q10 + q01) to be the probability that A1 makes an error

when only one of the systems makes an error. The null hypothesis then states

that q = 1
2 , or that it is equally likely for either system to make an error when

only one system makes an error.

Let K = N01 +N10 be the random variable representing the number of trials

where only one system makes an error. When N trials are executed, a possible

observation can be made that K = k and also that N10 = N10. These trials can

be seen as being Bernoulli trials. The probability that A1 makes an error while

A2 does not, for N10 times out of k trials, is

P (N10 = N10) =

(

k

N10

)

qN10 (1 − q)k−N10 .

The random variable N10 therefore has the Binomial distribution

p (n10|k, q) =

k
∑

m=0

(

k

m

)

qm (1 − q)k−m δ (n10 −m) .
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Here, n10 is a regular variable representing the possible realisations of the ran-

dom variable N10. Under the null hypothesis H0, this PDF becomes

p

(

n10|k,
1

2

)

=
k
∑

m=0

(

k

m

)

(

1

2

)m(

1 −
1

2

)k−m

δ (n10 −m)

=

k
∑

m=0

(

k

m

)

(

1

2

)k

δ (n10 −m) ,

and the expectation holds that E [N10] = k
2 (i.e. it is expected that N10 = N01,

because k = N10 + N01). If the actual observation N10 is very close to k
2 (i.e.

∣

∣N10 −
k
2

∣

∣→ 0), then H0 is more likely to be true. Similarly, if
∣

∣N10 −
k
2

∣

∣� 0,

then H0 is less likely to be true. A two-tailed test is applied to H0 because it

does not matter to which side of k
2 the observation N10 lies. It is only important

to consider how far away the observation is. The probability of H0 being true

can therefore be computed as

P (H0) = 2

N10
∑

m=0

(

k

m

)

(

1

2

)k

when N10 <
k

2

= 2
k
∑

m=N10

(

k

m

)

(

1

2

)k

when N10 >
k

2

= 1.0 when N10 =
k

2
.

When P (H0) < α for some significance level α, the null hypothesis (that there

is no difference between the systems) is rejected. Typical significance levels are

0.001, 0.01, 0.05 or 0.1.

For speaker verification systems, significance tests must be performed with

regard to the system performance. The system performance is characterised by

the FRR and FAR, which are calculated for many different operating points

(choices of thresholds). It is therefore sensible (or fair) to compare two systems

at operating points where the ratio of their FRRs to FARs are equal [44].

The FRR and FAR values are calculated for different thresholds. Each sys-

tem uses its own set of thresholds, and the number of thresholds may differ

among the various systems. Suppose that n is the index of a given thresh-

old value in the set of thresholds for system A1. Similarly, m is the index

for a given threshold value in the set of thresholds for system A2. Now, let

r1 (n) = FRR1 (n) /FAR1 (n) be the error rate ratio for system A1 using the

nth threshold. Also, let r2 (m) = FRR2 (m) /FAR2 (m) be the error rate ratio

for system A2 using the mth threshold. The two systems should be compared
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with McNemar’s significance test where r1 (n) = r2 (m) for all appropriate m

and n. It is most likely that there are no thresholds for which such matching

error rate ratios can be found in both systems.

To alleviate the problem, the closest matches are compared. The procedure

used to find these closest matches, iterates through the set of thresholds for one

of the systems. For the sake of explanation, the thresholds of system A1 are

chosen. For the nth threshold θ1 (n), the error rate ratio r1 (n) is determined for

system A1. The closest matching r2 (m) ≈ r1 (n) must then be found. Lastly,

the error counts N10 and N01 used in the significance test is computed for A1

at threshold θ1 (n) and for A2 at threshold θ2 (m). From these counts, P (H0)

can be calculated to determine the level at which differences in the systems are

significant. This procedure is performed for every threshold θ1 (n) (i.e. for all

appropriate n). With this method, the results of the significance tests can be

combined with the DET curve for visual presentation.

7.4 General System Evaluation: 2004 NIST SRE

7.4.1 Overview

All of the important investigations for this research were performed according

to conditions that were defined for the 2004 National Institute of Standards and

Technology (NIST) speaker recognition evaluation (SRE) [43]. The data used

in the 2004 SRE were collected for the Mixer project by the Linguistic Data

Consortium (LDC) and is covered by Section 6.3.

Many test conditions were defined for the SRE, but only one particular test

condition was chosen for this research. It involved training target models with 8

(eight) conversation sides and performing a trial with 1 (one) full conversation

side as test speech. Each conversation side contains the speech of one side of a

6 (six) minute conversation from which the first minute was removed. In other

words, target models were trained with 40 minutes of conversational data from

(ideally) one person.

The signal includes both speech and silences, and sometimes background

noise as well. The test utterance consists of 5 minutes of speech with the same

characteristics as the training speech. Because silences often make a substantial

part of the signal, the duration of actual speech can be approximated to be

about two thirds of the quoted times.

Some conversation sides are dominated by silences and some contain no

speech at all. Some even have nothing but telephone control tones. These

signals were included in the database, because no (or very little) auditing was
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done on the data prior to its release to the sites that participated in the SRE.

These signals obviously cause degraded results, but fortunately they are rare

and probably do not have a significant influence.

Because the important investigations of this research were performed only

after the 2004 NIST SRE had been completed, there was no need to select a

decision threshold. The SRE was simply used as a platform for performing the

investigations.

Apart from the DET curve, two more specific performance measurements

were chosen. Firstly, the popular equal error rate (EER) shows how a system

performs when it is equally likely to make either false alarms (FAs) or false

rejections (FRs). Many researchers quote improvements in this figure in order

to convey benefits of new techniques. Secondly, the FR rate (FRR) where the

FA rate (FAR) equals 1% is an indication of system performance in the region

where verification systems operate for applications such as access control. This

is not a standard performance figure, but it was used for this thesis to investigate

effects that were produced by the T-BAGMM in that region.

The University of Stellenbosch participated in the 2004 NIST SRE in collab-

oration with Spescom DataVoice (Pty) Ltd. The DataVoice system was rated

among the better performing systems in that particular SRE. This system is

used by this thesis as a reference system. Although this reference system was

configured and trained much better than can be achieved by this research, its

performance is used as a target goal for improvements to the baseline system.

7.4.2 Brief Description of the Reference System

The reference system was developed with data from the 1998 to 2002 NIST

SREs, as well as some telephone conversations recorded locally by DataVoice.

Front-end processing

Speech signals were analysed with 32 ms frames, their starting points follow-

ing 10 ms after each other. For each frame, 20 triangular band-pass filters

were used in the 300 Hz to 3200 Hz range to extract 12 Mel-frequency cepstral

coefficients (MFCCs) after discarding the zeroth coefficient. Each speech seg-

ment was subjected to short-time Gaussianisation [25] using a 3-second sliding

window. ∆-features were then calculated with a 5-frame window to provide

24-dimensional feature vectors.

Silences were removed from the Mixer data by examining frame energies.

Energy peaks and valleys were used to segment the speech into sections. The

low energy frames of each section were discarded. Within each section, these
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low energy frames acts as separators for what is called syllable nuclei. The

mean energy of each syllable nucleus is examined further and those nuclei with

very low energy are discarded.

A 5-component GMM is trained with the expectation maximisation (EM)

algorithm using the log energies of the remaining nuclei for the entire speech

segment. If a mixture component is found to have a small mean value (low

energy) and a small variance, but also a large mixture weight, then that com-

ponent is assumed to represent the background noise. A threshold is then set to

3 standard deviations above the mean of that component. All frames below this

threshold are discarded. This step is not used for very short speech segments.

The entire silence removal process retains an average of 25% of the frames.

Universal Background Model (UBM)

A single 512-component GMM-based UBM was trained using the pooled data

from the 1999 to 2002 NIST SREs. Only the test segments were used. The

speech segments were shortened by using only every 20’th frame. The model

was trained with LBG1 k-means initialisation, followed by 5 iterations of the

EM algorithm.

Speaker Models

Speaker models were trained with 5 iterations of mean-only MAP adaptation,

using a relevance factor of 16. Training was accelerated by a variation of the

UBM-based selection procedure. For each feature vector, the 5 components

that contribute the most to the UBM likelihoods were selected. Only these

components were re-estimated for the corresponding feature vectors.

Evaluation

Models were evaluated using the UBM-based selection procedure to compute

only 5 mixture components for every test feature vector. Test normalisation

(T-Norm) was applied with impostors consisting of 50 male and 50 female,

randomly selected speakers from the 2002 NIST SRE data.

1The Linde, Buzo, and Gray vector quantisation method
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7.4.3 Procedure for Full Performance Evaluation

To execute a full performance evaluation, the following steps must be performed:

1. Create a data set for all of the speech data and perform front-end pro-

cessing and feature extraction on the data

2. Create a UBM training data set and train the UBM

3. Create a training data set for each impostor model and train impostor

models

4. Create a training data set for each target model and train target models

5. Create a data set for the test speech and verify the test speech against

the appropriate target models

Fortunately, it is not necessary to repeat all of these steps for every new exper-

imental investigation.

7.5 The Baseline System Performance

7.5.1 Motivation

The first experimental evaluation that was based on the NIST SRE conditions,

was executed to determine the performance of the baseline system. The result

can be compared to that of the reference system to get an indication of how

much room there is for improvement. The result can also be used in further ex-

perimental work to determine how much certain techniques improve or degrade

system performance. Because this was the first evaluation, it also served as a

platform for gaining familiarity with working under the NIST SRE conditions

and system evaluation in general.

A second evaluation was also performed where the GMMs in the baseline

system were replaced with T-BAGMMs. The results were compared to the

GMM-based baseline system in order to determine whether the tree-based ap-

proximations showed any evidence of degraded performance.

7.5.2 Setup and Execution

The details of configuring the baseline system were already discussed in Sec-

tion 6.5. Each of the tasks outlined by Section 7.4.3, except for the UBM

training, was distributed among 10 to 12 computers having different speed and
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memory capabilities. The least capable machine had a 700 MHz processor and

256 Mb primary memory.

A full system evaluation was performed for the baseline GMM system as well

as the baseline T-BAGMM system. A testing node score beam width δtest = 0

(refer to Section 6.4.1) was used for T-BAGMM trials. This means that for each

pair of sibling nodes, only the subtree of the node with the highest likelihood

contribution will be traversed further. The results are shown in the next section

and discussed in Section 7.5.4.

7.5.3 Results
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Figure 7.1: DET curve showing the difference between the performance of the baseline

and the reference systems.

System FRR at 1% FAR (in %) EER (in %)

Baseline GMM 83.68 32.00

Baseline T-BAGMM 82.22 33.55

Reference GMM 35.81 11.60

Table 7.1: Comparison of error rates between the baseline GMM, the baseline

T-BAGMM and the reference system
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Figure 7.2: DET curve showing the difference between the performance of the baseline

GMM and the baseline T-BAGMM system.
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Figure 7.3: DET curve showing the statistical significance of differences between the

performance of the baseline GMM and the baseline T-BAGMM system. A significance

level of 5 % (α = 0.05) was used for this figure. Areas with thick lines show significant

difference and areas with thin lines indicate were differences are doubtful.
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7.5.4 Interpretation

A clear performance gap between the baseline GMM and the reference system

can be seen. This was expected, because the baseline system has such a low

complexity compared to the reference system. The rest of this chapter will show

how much of this performance gap can be closed by various improvements.

At a first glance, it seems as though the performance of the T-BAGMM

system is virtually identical to that of the GMM system. However, closer in-

spection reveals that there is a slight degradation in the EER, but also a slight

improvement in the low FAR regions. The results of the McNemar statisti-

cal significance test shown in Figure 7.3 indicate that these differences are not

merely due to chance effects, but are in fact significant. The numerical values

for these differences, as shown in Table 7.1, turns out to be relatively small,

though. The difference in the EER is less than 2 %.

The fact that there is an improved performance for low FAR regions is

unexpected, but intriguing. Practical speaker verification systems typically

operate at low FARs when used for applications such as access control. It is

possible that the approximations that are introduced by the T-BAGMM may

prevent some kind of bias caused by over-training, but this is only speculation.

Although it seems to be worthwhile to investigate, it was not yet possible to find

the true cause of this phenomenon within the extent of this research. However,

it is interesting to note the resemblance with the effect that Test normalisation

(T-Norm) has in rotating the DET curve counter-clockwise [29].

7.6 Computational Characteristics of the

T-BAGMM

7.6.1 Motivation

The new T-BAGMM was designed to increase computation speed. In the pre-

vious section, initial performance differences were seen between the GMM and

this new T-BAGMM. This section will take investigations one step further to

study the speed differences in detail. Performance differences will also be shown

in relation to the speed differences.

The speed increase is dependent on the number of mixture components

(leaf nodes), as well as the node score beam width δ. This section investigates

these dependencies in detail and presents a characterisation of speed improve-

ment with regard to each. These characterisations should be useful to other

researchers when a choice for trade-off between accuracy and speed must be
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made.

7.6.2 Setup and Execution

During this investigation, matching GMM and T-BAGMM systems were com-

pared to each other with regard to execution time. Two speed comparisons were

made: one regarding the UBM training, and the other regarding the completion

of all the trials for the test condition. Differences in accuracy were also noted

for these speed comparisons.

The systems that were subjected to these comparisons had the same basic

configuration as that of the baseline system described in Section 6.5. The base-

line configuration (having such low complexity) was chosen so that evaluation

of the GMM-based systems could be performed in the shortest possible time.2

Training speed improvement was characterised by using the UBM training

time. The UBM training time was measured as the total number of elapsed

CPU clock cycles for 9 iterations of the EM algorithm. These were the 9

iterations directly after the model was completely initialised via the binary-

split procedure. Measurements were made for component counts of Kε{2, 4, 8,

16, 32, 64, 128, 256, 512, 1024, 2048}. For each of these component counts, the

training node score beam width was set to each of δtrainε{0, 1, 3, 7, 10} for the

T-BAGMM UBM. All of these training runs could be performed because the

UBM training time was reasonably short for each of them.

Evaluation speed improvement was characterised by means of the trial ex-

ecution time. The trial execution time was measured as the number of CPU

cycles elapsed while calculating the score of the given test utterance. Obtain-

ing the score of an entire test utterance consists of evaluating the target model

and the 20 impostor models for each feature vector in the test utterance. This

excludes the loading of data and models into the computer’s memory.

For the characterisation of evaluation speed improvement, T-BAGMM mod-

els were trained with a training node score beam width of δtrain = 3. For the

T-BAGMM systems, measurements were made for each of the testing node

score beam widths δtestε{0, 1, 3, 7, 10}. This required so many full system

evaluations that it was decided to obtain measurements only for component

counts of Kε{2, 8, 32, 128, 512, 2048}.

From the full system evaluations that had to be performed for characterising

evaluation speed improvement, information about accuracy could also be ob-

tained. This information, together with the speed characterisations, can be used

2Full execution of training and testing with a 2048-component GMM system takes about
two weeks when distributing the work among 10 processors.
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to find suitable trade-offs for different situations. Unfortunately, these measure-

ments for accuracy could only be gathered for T-BAGMM models trained with

one specific δtrain. It would be good to have accuracy measurements for dif-

ferent δtrain in order to find suitable trade-offs for model training. But, that

would require too much time to complete, and so it was decided to leave the

exercise for future investigations.

However, a compromise can be made by regarding the model log-likelihood

for the training data. It is thought reasonable to suppose that if models of

similar structure fit the same training data similarly (have similar likelihoods),

then they should produce similar system performance. Therefore, if the training

data log-likelihood for T-BAGMMs are nearly equal to that of the GMMs,

then they should exhibit nearly equal system performance. Of course, it is

expected that their performance will differ, but this technique can say nothing

about the manner in which they differ. For different δtrain, the UBM training

data log-likelihood was available after training of both the GMM and the T-

BAGMM UBMs. The difference in these likelihoods was used as an indication

of performance differences.

The software used for this research included a component score beam width

for GMM training, δtrain,GMM . This is similar to the training node score beam

width of the T-BAGMM, δtrain. It is used to ignore component contributions

during training when their responsibilities are too low. To compare the T-

BAGMMs to well-trained GMMs, a value of δtrain,GMM = 10 (logarithmic scale)

was chosen for training the GMMs.

As mentioned above, it was decided to measure evaluation times with T-

BAGMMs that were trained with a δtrain = 3. This applied to both UBM

training and specific speaker model training. This value was chosen (after

considering the results obtained from UBM training measurements), because

it seemed to be a good trade-off between accuracy and speed of training. It

was essential to train good models as quickly as possible, because so many full

system evaluations were required.
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7.6.3 Results

Training Results
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Figure 7.4: Training times for the T-BAGMM UBM relative to that of GMM UBM.

Lower values are better. Where the ratio is unity, the training times for both models

are the same.
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UBM and that of GMM UBM. Zero values indicate identical performance. Positive

values represent a better fit of the training data by the T-BAGMM.
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Evaluation Results

Figure 7.6 and Figure 7.7 show the relative difference in evaluation time between

the T-BAGMM and the GMM. Also shown, is a curve indicating the theoretical

lower boundary for the reduction in evaluation time. In Figure 7.7, it is a upper

boundary on the speed improvement. This boundary only takes into account

the number of components or nodes that are evaluated:

number of nodes evaluated for T −BAGMM

number of components evaluated for GMM
.

The theoretical lower boundary is calculated for a test node score beam width

of δtest = 0, because it is impossible to theoretically determine the number of

evaluated nodes for any other beam widths. This means that only the subtree

of the node with the highest score will be evaluated further when two sibling

nodes are compared to the node score threshold.

It is interesting to note in Figure 7.7 that the measured speed increase for

2048 mixture components can be seen to exceed the theoretical upper boundary.

This is discussed further in Section 7.6.4.
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Figure 7.6: Evaluation time for the T-BAGMM relative to that of the corresponding

GMM, shown with respect to the mixture component count. Curves for different test

beam widths are shown. The theoretical lower boundary is also shown.
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Figure 7.7: Evaluation time for the GMM relative to that of the corresponding

T-BAGMM (base-2 logarithmic scale), shown with respect to the mixture component

count. Curves for different test beam widths are shown. This figure shows more clearly

how the measured speed increase exceeds the theoretical upper boundary.

Component count 2 8 32 128 512 2048

GMM 40.01 35.88 34.07 33.01 32.36 32.00

T-BAGMM, δtest = 0 40.01 35.78 34.22 33.71 33.79 33.55

T-BAGMM, δtest = 1 40.01 35.79 34.13 33.58 33.53 33.49

T-BAGMM, δtest = 3 40.01 35.78 34.15 33.53 32.86 33.40

T-BAGMM, δtest = 7 40.01 35.62 34.06 33.16 32.82 32.12

T-BAGMM, δtest = 10 40.01 35.58 33.98 33.08 33.08 32.19

Table 7.2: EER measurements (values in %)

Component count 2 8 32 128 512 2048

GMM 94.56 90.06 87.27 85.44 83.71 83.68

T-BAGMM, δtest = 0 94.56 88.60 86.22 84.61 83.21 82.22

T-BAGMM, δtest = 1 94.56 88.26 86.69 84.36 83.18 81.46

T-BAGMM, δtest = 3 94.56 87.92 86.66 84.39 82.24 81.63

T-BAGMM, δtest = 7 94.56 88.03 87.26 85.33 83.92 83.25

T-BAGMM, δtest = 10 94.56 87.88 87.28 85.69 83.82 84.38

Table 7.3: FRR measurements where FAR=1% (values in %)
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Figure 7.8: EER for the T-BAGMM relative to that of the corresponding GMM,

shown with respect to the mixture component count. Lower values are better. This

figure shows that the accuracy of a T-BAGMM system differs very little from that of

a regular GMM system.
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Figure 7.9: FRR at 1% FAR for the T-BAGMM relative to that of the corresponding

GMM, shown with respect to the mixture component count. Lower values are better.

This figure shows that the accuracy of a T-BAGMM system using a low beam width

is consistently better in this region than that of a regular GMM system.
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Figure 7.10: Absolute evaluation time given as the number of processor clock cycles

(CPU ticks). This figure shows how the evaluation times differ in reality between

systems using different component counts. These differences are not visible on the

figures that show relative times.
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Figure 7.11: Absolute evaluation time given as the number of processor clock cycles

(CPU ticks). This is a close-up of the previous figure. It can be consulted to avoid a

speed penalty when more mixture components are needed (i.e. higher accuracy) for a

particular application.
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Figure 7.12: Evaluation time of the T-BAGMM relative to that of the corresponding

GMM, shown with respect to the testing node score beam width. Curves for different

mixture component counts are shown. This figure gives an alternative perspective to

the speed-accuracy trade-off.

7.6.4 Interpretation

Before considering the results, three points must be noted. Firstly, the speed

improvement curves do not present very precise measurements. Measuring with

regard to CPU clock cycles was considered to be the most accurate. But, differ-

ent processors with different architectures were used co-operatively. A difference

in architecture means that one processor might execute more instructions per

clock cycle than another one. Fortunately, many jobs were distributed among

the processors. This would hopefully produce an average time measurement

and ensure that the mentioned differences do not affect the results significantly.

Yet, the results that were obtained can at least be used as an indication of

possible trade-offs.

Secondly, the program code for the T-BAGMM was not yet optimised by the

time these investigations were made. Therefore, the speed improvements shown

here can be regarded as a worst-case instance. Furthermore, the T-BAGMM

structure prevents the application of certain optimisation techniques that were

used for the GMM program component. In turn, this will probably prevent the

speed improvement curve from matching the theoretical predictions exactly.

Thirdly, the accuracy measurements should not be regarded as being gen-

erally applicable. It is most likely dependent on the specific kind of data that
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were used. However, the accuracy measurements should correspond well with

that of data having similar quality (i.e. conversational telephone speech).

From Figure 7.4 and Figure 7.6, it can be seen that large gains in speed are

observed, especially when using a large number of mixture components. For

larger node score beam widths and low component counts, the speed for both

training and testing is decreased considerably. This was expected, because many

more nodes must be evaluated. Also, in the case where 2 mixture components

are used per model, the difference in overhead is clearly seen. For this case, the

structures of the GMM and T-BAGMM are conceptually exactly the same, but

more overhead is required for managing the T-BAGMM structure. The fact

that the T-BAGMM program code was not optimised also plays a role here.

Figure 7.6 shows that the practical result converges with the theoretical

prediction. However, the alternative perspective of Figure 7.7 indicates that the

practical measurements for 2048 components are even better than predicted.

One possible explanation for this regards the number of tree levels that are

traversed per test feature vector. The program code allowed the binary-split

algorithm to stop the splitting of nodes for which too little training data were

available (i.e. when the combined responsibilities of the training vectors were

not large enough). It seems that many such nodes may have been located in

the 9’th or 10’th tree level. Furthermore, many test feature vectors may have

caused the model evaluation to traverse up-to those nodes. This would then

result in a time measurement for the T-BAGMMs corresponding more to the

situation where the trees have 9 or 10 levels rather than the expected 11 levels.

Tree levels Speed improvement factor

11 (measurement) 113.81

9 2048
9×2 = 113.78

10 2048
10×2 = 102.40

11 2048
11×2 = 93.09

Table 7.4: Speed improvement factors for the case where a GMM has 2048 mixture

components and the corresponding T-BAGMM has a depth of either 9, 10 or 11 levels.

Unfortunately, this could not be verified properly in the time given, but

an approximate verification can be made. From Table 7.4, it can be seen that

the measured speed improvement does correspond somewhat (taking note of

measurement inaccuracies) to the prediction when making use of the above

explanation. This does not mean that the given explanation is true, and it also
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does not explain why models with 1024 mixture components do not exhibit the

same behaviour. Further investigation is required.

When looking at Figure 7.5, it is seen that the likelihoods of the T-BAGMM

UBMs have no more than a 5% relative difference from the corresponding GMM

likelihoods. This indicates that the T-BAGMM should provide nearly the same

accuracy as the GMM. In the previous section, this fact has already been verified

to a certain extent for a specific case. Figure 7.8 shows that the maximum

relative difference in the EER is less than 5%. For that case, this difference

translates to 5% of 32%, which is effectively a 1.6% difference in the absolute

EER values. For higher testing node score beam widths, the EER for the T-

BAGMM approaches that of the GMM to a certain extent.

It is interesting to note that the measured EER values for T-BAGMMs with

8 mixture components are better than that of the corresponding GMMs. Fig-

ure 7.9 also shows better performance in the low FAR region for this case. Yet,

it is observed that the execution speed is lower than that of the 8-component

GMMs. These differences in accuracy are very small and probably nothing more

than interesting. However, for models with more than 8 components, the larger

node score beam widths definitely produce accuracies that are closer to that of

the regular GMM. It seems that performance is consistently better in the low

FAR region when using a small testing node score beam width. Overall, there

is very little difference in accuracy between the GMM and T-BAGMM.

The capability of the T-BAGMM can be summarised by the following exam-

ple: For the regular GMM, a reduction in the number of mixture components

from 2048 to 32 will provide a speed increase factor of 64. This will increase the

EER from 32% by 2% to 34%. However, by using a T-BAGMM with a testing

node score beam width of δtest = 1, the speed can be increased by a factor of

86. The EER will increase from 32% by 1.5% to 33.5%, but the FRR reading

where FAR=1% will decrease from 83.7% by 2.2% to 81.5%. Although more

memory will be required, this example indicates that the T-BAGMM would be

much more preferred for increasing speed if accuracy is important for a given

application. Unfortunately, a similar comparison with other speed improvement

techniques could not be made. The result of this example might also differ when

other improvements to the baseline verification system are considered.

Overall, these time characteristics can be a valuable tool. For any given

application, it is possible to determine whether any speed gains will be seen

when the T-BAGMM is used. By looking at the different curves, it is also

possible to find out how much speed improvement should be observed. In

conjunction with the accuracy measurements, a suitable trade-off can be chosen.
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7.7 Influence of Mixture Component Count

7.7.1 Motivation

The structure of the GMM is defined by the number of mixture components.

It is already known that the number of mixture components have some kind of

influence on the performance of a speaker verification system. This section con-

tinues the investigation of Section 7.6 by providing some more detailed results

that show this influence on the baseline system performance. It is, of course,

possible that the exact influence might be different for more complex systems,

but the general behaviour can be observed in this case.

7.7.2 Setup and Execution

The results of this section were obtained in Section 7.6. But, for this section,

only the GMM systems and the T-BAGMM systems with δtest = 0 are of

interest.

7.7.3 Results

The Gaussian Mixture Models
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Figure 7.13: DET curve showing the influence of the number of GMM components.
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Figure 7.14: DET curve close-up showing the influence of the number of GMM com-

ponents in the low FAR region.
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Figure 7.15: DET curve close-up showing the influence of the number of GMM mix-

ture components at the EER.
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The Tree-based Adaptive Gaussian Mixture Models
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Figure 7.16: DET curve showing the influence of the number of T-BAGMM leaf

nodes.
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Figure 7.17: DET curve close-up showing the influence of the number of T-BAGMM

leaf nodes in the low FAR region.
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Figure 7.18: DET curve close-up showing the influence of the number of T-BAGMM

leaf nodes at the EER.
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Figure 7.19: Comparison of the EER between the GMM and T-BAGMM, shown with

respect to the number of mixture components (leaf nodes).
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Figure 7.20: Comparison of the FRR between the GMM and T-BAGMM where the

FAR=1%, shown with respect to the number of mixture components (leaf nodes).

7.7.4 Observations

As expected, the results show a decrease in system performance for both GMMs

and T-BAGMMs when the number of mixture components are reduced. It can

also be observed that 512 and 2048 mixture components result in virtually

identical performance for the GMM case. This is also true for the T-BAGMM

at the EER, but not entirely so in the low FAR region. It can again be seen that

the T-BAGMM performs consistently better in the low FAR region than the

GMM, but also consistently worse at the EER (except for 8-component models,

of course). The results of this section presents nothing new, but it serves as a

good reference for making decisions about system configuration.

7.8 Influence of Front-end Processing

7.8.1 Motivation

One objective of this thesis involves the construction of a fully working speaker

verification system. It is therefore logical to investigate the influence of the var-

ious system improvements so that informed decisions can be made about the

system’s construction. This section investigates the influence of a few front-

end processing techniques. These include cepstral mean subtraction (CMS),

dynamic features and alternative cepstral feature selection. CMS is a chan-
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nel compensation technique aimed at removing differences in speech that were

caused by various channel conditions. Dynamic features incorporate the dynam-

ics of the speech signal into features that can contribute to better recognition.

Alternative cepstral feature selection refers to the popular technique of discard-

ing the zeroth cepstral feature coefficient, which represents the energy of the

frame.

7.8.2 Setup and Execution

For this investigation, different combinations of the mentioned techniques were

applied to the baseline T-BAGMM system. CMS is simply performed by cal-

culating the average (mean) feature vector for each conversation side and sub-

tracting it from each feature vector of the corresponding conversation side. The

average feature vector is calculated by adding the values for any given dimension

across all the feature vectors and dividing the sum by the number of vectors. By

doing this for every dimension of the feature vectors, a new vector can be con-

structed with the same dimension. This calculation is the maximum likelihood

(ML) estimation of the mean vector for the data set.

Dynamic features were calculated as described in Section 5.2.4 after applying

CMS to the MFCC features. The calculation was attempted for both a 2-

point window (difference between two vectors) and a 5-point window (discrete

differential filter). In the results that are shown here, the indicator ”24-dim”

refers to a feature vector of 12 MFCC features that is supplemented with 12

∆-features. Similarly, the indicator ”36-dim” refers to a ”24-dim” feature vector

that is supplemented with 12 ∆∆-features.

For alternative cepstral feature selection, 13 MFCCs were calculated instead

of the usual 12. However, the zeroth coefficient is discarded to produce a 12-

dimensional feature vector. This will be indicated with the label ”13-1”.

A new scaling feature normaliser was trained with the speech from the 200

UBM speakers after any different combination of CMS and dynamic features

was applied to the data. These were used to normalise all features in the

different experiments presented here.
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7.8.3 Results

Cepstral Mean Subtraction
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Figure 7.21: DET curve showing the influence of CMS.
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Figure 7.22: DET curve showing the statistical significance of differences between

the performance of the baseline T-BAGMM system with and without CMS applied. A

significance level of 5 % (α = 0.05) was used for this figure. Areas with thick lines show

significant difference and areas with thin lines indicate were differences are doubtful.
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Dynamic Features
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Figure 7.23: DET curve showing the influence of ∆-features without CMS applied.

Curves are shown for calculation of ∆-features with a 2-point window.
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Figure 7.24: DET curve showing the influence of ∆-features, with CMS applied.

Curves are shown for calculation of ∆-features with a 2-point window as well as with

a 5-point window.



Chapter 7. Experimental Investigation 105

0.1 0.3   1   2   5  10  20  40  60  80  90  97  99

0.1

0.3

  1

  2

  5

 10

 20

 40

 60

 80

 90

 97

 99

False Alarm Probability (in %)

F
al

se
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y 

(in
 %

)

Reference GMM 512, 24−dim, 100 T−Norm impostors
Baseline T−BAGMM 2048, 12−dim, 20 T−Norm impostors
T−BAGMM 2048, CMS, 24−dim
T−BAGMM 2048, CMS, 36−dim

Figure 7.25: DET curve showing the influence of ∆∆-features. Only 5-point windows

were used here.

Alternative Cepstral Feature Selection

0.1 0.3   1   2   5  10  20  40  60  80  90  97  99

0.1

0.3

  1

  2

  5

 10

 20

 40

 60

 80

 90

 97

 99

False Alarm Probability (in %)

F
al

se
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y 

(in
 %

)

Reference GMM 512, 24−dim, 100 T−Norm impostors
Baseline T−BAGMM 2048, 12−dim, 20 T−Norm impostors
T−BAGMM 2048, CMS, 36−dim
T−BAGMM 2048, CMS, 36−dim, 13−1

Figure 7.26: DET curve showing the influence of alternative cepstral feature selection

(13 MFCCs minus the zeroth coefficient).
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Figure 7.27: DET curve showing the statistical significance of differences between

the performance of the T-BAGMM system using basic or alternative cepstral feature

selection. A significance level of 5 % (α = 0.05) was used for this figure. Areas with

thick lines show significant difference and areas with thin lines indicate were differences

are doubtful.

7.8.4 Interpretation

It is clear that CMS provides an enormous improvement in the general sys-

tem performance. In this specific case, an 8.49% improvement in the EER is

seen, decreasing from 33.55% to 25.06%. It is unfortunate that performance is

worsened in the very low FAR regions. The result of the McNemar statistical

significance test speaks for itself.

If ∆-features are calculated with a 2-point window and used without CMS,

then a slight improvement in the middle and lower FRR regions is observed.

This is confirmed by the McNemar test. However, when CMS is applied, the

calculation of ∆-features with a 2-point window degrades performance overall.

But, when using a 5-point window with CMS, the performance is improved,

especially in the lower FAR region. This seems to act as compensation for

the degrading effect that CMS has in that area. Using ∆-features in this way

provides a further 2.01% improvement in the EER, from 25.06% to 23.05%.

When adding ∆∆-features that were also calculated with a 5-point window,

the performance is improved still, and again more so in the lower FAR region.

An additional improvement of 1.69% is observed for the EER, from 23.05% to

21.36%.
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The overall improvement in the EER from the baseline T-BAGMM, is

12.19%, decreasing from 33.55% to 21.36%. The overall improvement in the

FRR (where FAR=1%) from the baseline T-BAGMM, is 21.9%, decreasing

from 82.22% to 60.32%.

It seems as though the alternative cepstral feature selection does not improve

the system performance very significantly, or even at all. There is a slight

improvement of 0.16% in the EER, from 21.36% to 21.20%. The FRR where

FAR=1% does show a very small improvement of 0.24% from 60.32% to 60.08%,

but the McNemar test shows doubt about its significance.

All of these results seem to indicate that front-end processing, and especially

channel compensation, plays a very important role in obtaining good system

performance. CMS, or any similar or better channel compensation, seems to be

a requirement rather than an option. Also, the discrete differential filter using

the 5-point window seems to be the preferred method for calculating dynamic

features.

7.9 Influence of the T-Norm Impostor Set Size

7.9.1 Motivation

When using test normalisation (T-Norm), it is important to know how many

impostor models should be used. Each impostor model is a complete speaker

model. The required memory space increases with the number of impostors,

but the accuracy might not follow the same trend. It is therefore preferred

to find a suitable trade-off between memory requirements and accuracy. This

section presents a simple investigation into the effect of the impostor set size

on accuracy.

It seems reasonable to assume that the amount and quality of the impos-

tor training data also has an influence on accuracy. But, this could not be

investigated in the extent of this thesis.

7.9.2 Setup and Execution

For this investigation, the baseline T-BAGMM system including various com-

binations of CMS, ∆- and ∆∆-features were used. The large memory require-

ments of the models necessitated a reduction of the model size to 512 mixture

components (or leaf nodes) when using 36-dimensional feature vectors and more

than 50 impostor models. According to the results of Section 7.7, this model

size seems to be sufficiently accurate to provide sensible results for this investi-

gation.
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The original memory management strategy had to be altered to make me-

mory available so that more impostor models could be accommodated. Orig-

inally, all impostor models and all target models for all the trials in a given

distributed job were loaded into main memory. Many of the trials shared the

same target models. The ratio of trials to unique target models is anything

between 20:1 and 70:1 (possibly even higher). But, an instance for each target

model was loaded into main memory for each trial in which it was required.

This is obviously not a very clever strategy, and it soon became apparent that

too much memory is required for this scheme. It was therefore decided to load

only unique instances of target models into main memory.

It was necessary to keep all the impostor models in main memory for all

trials. If this was not done, then it could happen that one or more impostor

models had to be loaded from disk storage for the evaluation of every new test

feature vector. Because disk access is slow, this would eliminate any speed gains

that the T-BAGMM provides.

It was also required that no memory paging (disk swapping) be allowed,

because all of the hosts that participated in the distribution were used for

normal desktop work by other users. The constant swapping of data between

main memory and disk storage would cause a computer to become unresponsive.

7.9.3 Results
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Figure 7.28: DET curve showing the influence of the number of T-Norm impostors

using CMS and ∆-features.



Chapter 7. Experimental Investigation 109

0.1 0.3   1   2   5  10  20  40  60  80  90  97  99

0.1

0.3

  1

  2

  5

 10

 20

 40

 60

 80

 90

 97

 99

False Alarm Probability (in %)

F
al

se
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y 

(in
 %

)

Reference GMM 512, 24−dim, 100 T−Norm
Baseline T−BAGMM 2048, 12−dim, 20 T−Norm
T−BAGMM 2048, CMS, 36−dim, 20 T−Norm
T−BAGMM 512, CMS, 36−dim, 20 T−Norm
T−BAGMM 512, CMS, 36−dim, 50 T−Norm
T−BAGMM 512, CMS, 36−dim, 100 T−Norm

Figure 7.29: DET curve showing the influence of the number of T-Norm impostors

using CMS and both ∆- and ∆∆-features.
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Figure 7.30: DET curve close-up showing the influence of the number of T-Norm

impostors at low FAR.
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Figure 7.31: DET curve close-up showing the influence of the number of T-Norm

impostors at the EER.

7.9.4 Interpretation

Firstly, it is seen that 512-component models produce slightly lower performance

than 2048-component models. This was already observed in the low FAR region

before CMS and dynamic features were applied. Now that CMS and dynamic

features have been included, there is also a performance loss at the EER when

fewer mixture components are used. Recall that in Figure 7.18 there was no

perceptible difference. The difference here is very small, though.

Secondly, there is virtually no difference in performance around the EER as

the number of impostor models increase. But, in the low FAR region, there is

a definite increase in performance. Using up-to 100 impostor models therefore

seems like a good idea when the system will operate in the low FAR region.

This ”tilting” of the DET curve is discussed by other researchers [29]. A full

system evaluation for 2048 components per model and 100 impostor models

could not be performed, because it would require too much reading from disk

storage. An alternative strategy for managing the memory usage might help

to alleviate the problem, but such a strategy could not be implemented in the

allocated time.
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7.10 Influence of the UBM Data Set Size

7.10.1 Motivation

The entire effort of this thesis is based on the correct processing of actual

data. Therefore, it seems sensible to examine the effects of certain data-centred

parameters. Training data are the only data that can be controlled to some

extent. Although more thorough investigation is desired, only a simple pre-

liminary study could be made to determine the effect of different numbers of

training speakers in the UBM data set. This parameter was chosen, because in-

tuition suggests that having more speakers in the UBM training data set should

provide a more general UBM and hopefully better trained models giving bet-

ter performance. Another parameter that might have been investigated, is the

length of training speech samples for each speaker in the UBM data set, as well

as for each speaker in the T-Norm impostor set.

7.10.2 Setup and Execution

For this experiment, the baseline T-BAGMM system was used with CMS and

both ∆- and ∆∆-features included. Recall that the UBM of the baseline system

was trained with speech from 100 male and 100 female speakers (a total of

200). For comparison, another evaluation was performed with a UBM that

was trained with 200 male and 200 female speakers (total of 400). The same

comparison was also made for two other systems: both using 512-component

models, but one also using 100 T-Norm impostors instead of 20.
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7.10.3 Results
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Figure 7.32: DET curve showing the difference between a system using 200 UBM

speakers and one using 400 UBM speakers. Here, 2048 mixture components are used

with 20 T-Norm impostors.
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Figure 7.33: DET curve showing the difference between a system using 200 UBM

speakers and one using 400 UBM speakers.Here, 512 mixture components are used

with 20 T-Norm impostors.
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Figure 7.34: DET curve showing the statistical significance of differences between

the performance of the T-BAGMM system using 200 or 400 UBM speakers with 512

mixture components. A significance level of 5 % (α = 0.05) was used for this figure.

Areas with thick lines show significant difference and areas with thin lines indicate were

differences are doubtful.
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Figure 7.35: DET curve showing the difference between a system using 200 UBM

speakers and one using 400 UBM speakers. Here, 512 mixture components are used

with 100 T-Norm impostors.
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7.10.4 Interpretation

It is fairly obvious that there is no practical difference between training a UBM

with the speech of 200 people or 400 people. According to other research [6],

there should be no difference between the system performance when using a

UBM trained with one hour of speech and one trained with six hours of speech.

For the results presented here, 60 seconds of speech were used per person.

With 200 speakers, the total is 200 minutes, or 3 hours and 20 minutes. For

400 speakers, the total is six hours and 40 minutes. These results therefore

seem to correlate well with the observations of others.

Some improvement in performance is observed in the low FAR region for a

system with 512-component models, 20 T-Norm impostors and a UBM trained

with 400 speakers. The McNemar test shows that this difference is significant.

However, the cause of this effect is not known yet. It might be a good idea

to conduct a much more thorough investigation into the effects of the UBM

training data parameters.

7.11 MAP Adaptation for both Means and

Covariance Matrices

7.11.1 Motivation

MAP adaptation can be used to train GMM speaker models by adapting any

combination of means, covariance matrices and mixture weights from the UBM.

It is now commonly known that the best performance is achieved when adapt-

ing with regard to only the means of mixture components. However, it was

considered that this might be due to the use of the popular UBM-based com-

ponent selection for speed increase [40]. Because the UBM is used to select

components that should be evaluated for speaker models, it seemed that adap-

tation with regard to more parameters than the mean would cause the speaker

models to become substantially different from the UBM. This would then cause

the UBM-based selection to select inappropriate components and cause perfor-

mance degradation.

The T-BAGMM is not as dependent on the UBM for selecting components

with high scores. Speaker models only inherit their tree structure from the

UBM. It was thought that the T-BAGMM might therefore show an improved

performance when models were adapted with regard to the means and the

covariance matrices. This section presents the result of such an investigation.
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7.11.2 Setup and Execution

For this experiment, the baseline T-BAGMM system was used with CMS and

both ∆- and ∆∆-features included. The alternative cepstral feature selection

was used, although it was seen in Section 7.8 that this provides no significant

advantage. Recall that speaker models of the baseline T-BAGMM system are

trained using mean-only MAP adaptation with a relevance factor of 16.

An alternative system was configured which is identical to the one mentioned

above, except that speaker models were trained using MAP adaptation with

regard to both the mean and covariance matrix. Two tests were made with this

system, where the one test used models adapted with a relevance factor of 16

and another with a relevance factor of 72. A higher relevance factor indicates

that more of the UBM characteristics are retained in the speaker models.

7.11.3 Results
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Figure 7.36: DET curve showing the difference between a system using mean-only

MAP adaptation and one using MAP adaptation with regard to both the mean and

the covariance matrix. The second system was tested with a relevance factor of 16 and

again with a relevance factor of 72, as shown in parentheses.

7.11.4 Interpretation

The higher relevance factor definitely degrades performance. But more impor-

tantly, these results confirm again that mean-only MAP adaptation produces

better performance. However, this may only indicate that the T-BAGMM
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speaker models are not as independent on the UBM as originally thought. It is

possible that the models that were adapted with regard to more parameters do

not fit well into the tree structure that was inherited from the UBM.

On the other hand, it may just as well indicate that the cause lies somewhere

else. It might be due to the limited amount of adaptation data, although this

is unlikely. At least is is now known that the T-BAGMM behaves similar to

the GMM in the aspect of MAP adaptation as well.

7.12 Summary

The best performance that was obtained by this research, is still far off from

that of the reference system from DataVoice. It seems as though the front-end

processing plays a very important role in this respect. A large factor is most

likely the difference between using CMS and the superior short-time Gaussian-

isation. Another factor that may contribute to the performance difference, is

the specific way in which development data are selected and applied.

However, this research aimed to increase the execution speed by means of the

T-BAGMM, rather than to focus on factors that provide better performance.

The results show that speed improvement measurements correspond well to

theoretical predictions. For 2048-component models, the speed improvement

is even better than predicted, reducing the GMM execution time by a factor

of about 113! A possible explanation for this unexpected result was given,

although further investigation may shed light on the true cause. It also seems

that there is very little performance loss. Performance is even slightly better in

the low FAR region, which is where systems typically operate for applications

such as access control. No reason could yet be found for this behaviour, but

it seems to resemble the effect that T-Norm has in rotating the DET curve

counter-clockwise.

The T-BAGMM was successfully used to execute a fairly large number of

experiments. Although these experiments are not exhaustive, they covered all

the components that are used to construct a verification system: front-end

processing, modelling, evaluation and data usage. The results can be used to

make informed decisions about the construction of an acoustic speaker verifi-

cation system. Without the speed improvement, the completion of all these

experiments would not have been possible in the short time allocated for this

research.

The most important investigation provided detailed results that charac-

terise the T-BAGMM speed improvement. These characteristics can be used

to determine whether the use of the T-BAGMM will be beneficial to any given
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application. It can further be used to see how much of an improvement in

speed should be observed. With the accompanying accuracy measurements, it

is possible to select a good trade-off between speed and performance.

The investigations performed for this thesis are similar to that of previous

research by some other researchers. This thesis served as a good platform

to evaluate the various techniques on newly released data that were provided

for the 2004 NIST SRE. The experiments were also conducted according to

conditions that were defined for the 2004 NIST SRE. The results therefore

provide information on how the corresponding techniques perform under these

challenging conditions.

The investigations were performed for the various techniques on a single

set of data under the same conditions. This gives a researcher the ability to

observe how much different techniques alter performance relative to each other.

For example, it is very clear that some form of channel compensation such as

CMS is a very important requirement for a high-performance system.

It was not possible to perform a thorough T-Norm investigation for T-

BAGMMs with 2048 mixture components. This was due to a shortage of com-

puter memory. A few suggestions for an alternative memory management strat-

egy are given here. Some memory could be freed by keeping only one target

model in main memory at any given time. The trials are arranged in such a

way that all trials using a given model will follow each other in a sequence.

However, this will only allow about a handful of extra impostor models to be

loaded for most cases.

A totally different strategy might load only one impostor model at any given

time into main memory. This model will be evaluated for all of the test feature

vectors in a test utterance and the results stored in main memory. This will

then be performed for each impostor model. The final normalisation procedure

can then simply recall the results that were stored in memory. This method

will only be successful if the amount of memory required to store such a result

matrix is small enough.

This method requires that all the impostor models must be loaded from disk

for each trial. This will, of course, cause the speed to drop. Depending on the

size of this result matrix, it might even be possible to evaluate a single model

for more than one test utterance while that model is kept in memory. This will

increase the speed of execution slightly, because less disk reads are required.
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Conclusions and

Recommendations

8.1 Tree-based Adaptive Gaussian Mixture Model

This thesis presented the development of a new, time-efficient version of the

Gaussian mixture model (GMM), called the tree-based adaptive Gaussian mix-

ture model (T-BAGMM). Although other approaches exist for improving the

execution speed of GMM evaluation, this new model has a few unique charac-

teristics and possible advantages.

Popular approaches try to minimise the number of mixture components

that need to be evaluated. They do this by finding those components that

contribute the most to the model likelihood in an efficient manner. Some of

these methods use tree-structures to perform the search. The T-BAGMM goes

one step further by including components with lower contribution when they

are evaluated as part of the search. This does not reduce execution speed

significantly, and provides a smoother approximation to the regular GMM. The

T-BAGMM effectively provides a multi-resolution GMM that models different

regions in feature space with different degrees of detail, depending on where a

particular test feature vector is located. The implementation of the T-BAGMM

in this thesis also includes a parameter, called the node score beam width,

that can be used to adjust the speed-accuracy trade-off. Detailed discussions

about the T-BAGMM structure, related algorithms and implementation were

provided.

The T-BAGMM was successfully implemented and tested under difficult

conditions, and it proved to have been worth the effort. High speed gains for

both training and evaluation were indeed obtained, although the loss due to

overhead is more pronounced for lower mixture component counts. A thorough
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investigation was performed to obtain speed improvement characteristics for the

T-BAGMM. Improvement curves were obtained for both training and testing,

with regard to the number of mixture components and the value of the node

score beam width. These curves can be used to determine whether and how

much of a speed improvement will be seen for any given application.

Verification accuracy is very similar to that of the regular GMM. This new

model also provided a few positive surprises. Firstly, it seems as though bet-

ter accuracies are produced at the low false alarm operating regions. This is

especially interesting, because many practical systems in applications such as

access control operate in those regions. Some speculation about the cause was

given. However, during the course of performing the research for this thesis,

no proper explanation could be found for this effect. It may be worthwhile to

investigate this phenomenon further.

Secondly, it was observed that the speed improvement is better than the

rough theoretical prediction when models have 2048 mixture components. A

possible explanation was given, but it is uncertain whether it is accurate. The

time measurements were also not especially accurate and may have contributed

further to this effect, but it is doubtful that it could have been the only factor.

If this matter must be investigated further, it should be done with different

data sets and more accurate predictions and time measurements.

A curious effect with regard to speed was observed when training speaker

models with MAP adaptation. It seems as though the execution speed increased

for subsequent EM iterations. This was not yet verified for all cases. It may

not necessarily lead to some important discovery, but it is probably a still good

idea to investigate this matter further.

Apart from the benefits that were shown in this thesis, the T-BAGMM

also allows the use of other techniques such as structural maximum a-posteriori

(SMAP) adaptation [8]. This technique has already shown positive performance

improvements for other tree-based GMMs in speaker verification [9]. An initial

investigation into SMAP for the T-BAGMM has been performed during this

research. There were differences between the MAP and SMAP formulas for

covariance matrices in the particular literature. It was unknown whether it

would be possible to re-use implementations of the MAP formulas for SMAP,

but it was suspected to be so. A derivation was made to consolidate the MAP

and SMAP formulas and it was found that they are identical, except for their

context. Unfortunately, this derivation could not be reproduced here.
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8.2 The Acoustic Speaker Verification System

In conjunction with the introduction of the new T-BAGMM, this thesis also

fully described the construction of a complete acoustic text-independent speaker

verification system. The best performance obtained by this research is still far

away from that of a typical, modern high-performance system. However, this

research aimed to increase the execution speed by means of the T-BAGMM,

rather than focus on factors that provide better performance. The results testify

that this has been done successfully.

It was shown how the likelihood ratio is used to make verification decisions.

The likelihood ratio uses likelihoods that must be calculated for the target

speaker and alternative (impostor) speakers. Theoretical models can be used

to approximate these likelihoods, and descriptions of one such model, the GMM,

as well as a faster version, the T-BAGMM, were provided. The GMM is suited

well for acoustic speaker recognition. Some detail was given with regard to

front-end processing for extracting useful information from speech signals.

Even though other performance factors received little attention, some valu-

able experiments were performed. Basic investigations were made for each of

the main components in the verification system. The influence of cepstral mean

subtraction (CMS), dynamic features and cepstral feature selection were shown

for the front-end processing part. The influence of the mixture component

count, maximum a-posteriori (MAP) adaptation for different parameters, and

data set size for the universal background mode (UBM) were shown for the

speaker modelling part. The influence of the number of impostor speakers used

by test normalisation (T-Norm) was shown for the evaluation part.

Although these experiments were merely less thorough repetitions of inves-

tigations that were previously made by other researchers, they provide a unique

perspective. All of the experiments that were presented in this thesis were per-

formed on newly released data that were used for the 2004 National Institute

of Standard and Technology (NIST) speaker recognition evaluation (SRE). Not

only did the NIST SRE present challenging conditions, but it is now possible

to observe how these different techniques influence performance relative to each

other. It is especially clear that a large improvement is provided by a channel

compensation technique such as CMS. It is therefore obvious that the results

can be used to make informed decisions about the construction of an acoustic

speaker verification system.

It was mentioned that there is still much improvement to be made in order

to achieve performance results that are comparable to current high-performance

systems. For further investigations, front-end processing would require the most
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attention, because it seems to have the greatest potential for providing a big

improvement. Special consideration should be given to apply short-time Gaus-

sianisation as an alternative to CMS. It would also be a good idea to give more

attention to noise contamination.

Memory requirements became an important concern when the number of

T-Norm impostors were increased. For a proper investigation, or if 2048-

component models are required, a better memory management strategy must

be implemented. It would also help to reduce the memory overhead of models

as much as possible.
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Appendix A

Derivations and Justifications

A.1 The Likelihood Ratio and Test Normalisation

This section shows that it is equivalent to use log-likelihoods instead of log-

likelihood ratios for normalisation by T-Norm. Start with the log-likelihood

ratio (the score)

s0 = ln p (X|H0) − ln p (X|H1) . (A.1)

H0 is the hypothesis that the utterance X was created by the target speaker S0

and H1 is the hypothesis that X was created by an impostor. For T-Norm, N

additional hypotheses Hn state that X was created by some non-target speaker

Sn. This results in the non-target scores

sn = ln p (X|Hn) − ln p (X|H1) ,

where n = 2, ...,N + 1. Using maximum-likelihood estimation, the mean µI of

the non-target scores can be estimated by

µI =
1

N

N
∑

n=1

sn

=
1

N

N
∑

n=1

(ln p (X|Hn) − ln p (X|H1))

=
1

N

(

N
∑

n=1

ln p (X|Hn) −N ln p (X|H1)

)

=
1

N

N
∑

n=1

ln p (X|Hn) − ln p (X|H1) . (A.2)

A–1
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The variance σ2
I of the non-target scores can in the same way be estimated by

σ2
I =

1

N

N
∑

n=1

(sn − µI)
2

=
1

N

N
∑

n=1

(

ln p (X|Hn) − ln p (X|H1) −
1

N

N
∑

n=1

ln p (X|Hn) + ln p (X|H1)

)2

=
1

N

N
∑

n=1

(

ln p (X|Hn) −
1

N

N
∑

n=1

ln p (X|Hn)

)2

. (A.3)

Let

µIL =
1

N

N
∑

n=1

ln p (X|Hn)

be the mean estimate of the non-target log-likelihoods so that

µI = µIL − ln p (X|H1) .

Then, eq. (A.3) becomes

σ2
I =

1

N

N
∑

n=1

(ln p (X|Hn) − µIL)2 = σ2
IL, (A.4)

which is simply the variance estimate of the non-target log-likelihoods.

Substitution of eq. (A.1), eq. (A.2) and the square root of eq. (A.4) into

eq. (5.7) results in the normalised score

s′ =
s0 − µI

σI

=
ln p (X|H0) − ln p (X|H1) −

1
N

∑N
n=1 ln p (X|Hn) + ln p (X|H1)

σI

=
ln p (X|H0) −

1
N

∑N
n=1 ln p (X|Hn)

σI

=
ln p (X|H0) − µIL

σIL
.

This shows that by using only the log-likelihoods instead of the log-likelihood

ratios, the exact same resulting score is obtained.
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A.2 Intuitive Derivation of MAP Formulas

The formal derivation of the MAP re-estimation formulas is quite involved. But,

during this research, a much more compact, intuitive derivation was produced

based on how MAP adaptation behaves. The derivation makes use of the on-line

re-estimation formulas, the derivation of which is shown in Section A.3.

Look at all the parts of the ML re-estimation formulas. There is a sequence

of N observed training feature vectors xn. To calculate the ML mean estimate

µ̃k of mixture component k, this sequence is passed to the formula:

µ̃k =

∑N
n=1 cknxn

ck
,

where ckn is the responsibility of mixture component k for vector xt, or

ckn = p
(

k|xn, λ
[i]
)

=
w

[i]
k p
(

xn|λ
[i]
k

)

∑K
j=1w

[i]
j p
(

xn|λ
[i]
j

)

and

ck =
N
∑

n=1

ckn

can be called the probability count for the N training feature vectors. The

summation of the training vectors can be represented by the symbol S, so that

S =

N
∑

n=1

cknxn

and hence µ̃k = S/ck. To calculate the corresponding ML estimate for the

covariance matrix Σ̃k, the following on-line estimation formula can be used

Σ̃k =

∑N
n=1 cknxnx

T
n

ck
− µ̃kµ̃

T
k .

Here, the symbol R can be defined, so that

R =

N
∑

n=1

cknxnx
T
n

and hence Σ̃k = R/ck − µ̃kµ̃
T
k .
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The derivation presented here is based on these points:

� MAP uses prior PDF parameters from which new parameters are adapted,

� the prior parameters are multiplied by a relevance factor to determine the

magnitude of its influence, and

� the MAP re-estimation look very similar to the ML re-estimation formu-

las.

This derivation supposes that the relevance factor acts like a phantom observa-

tion probability count. This represents any number of phantom (or imaginary)

training feature vectors. The idea is that these phantom vectors can be placed

in a sequence followed by the actual adaptation (training) vectors and passed

to the on-line ML estimation formulas to produce the final model parameters.

The phantom vectors will be passed to the on-line estimation formulas to

produce an intermediate set of parameters, which is defined to be the prior

PDF parameters. The actual adaptation vectors are then passed to the on-line

estimation formulas to complete the calculation of the final model parameters.

Define τk to be the phantom observation probability count of mixture com-

ponent k for some number of Nph phantom vectors xn,ph. Let Sph be

Sph =

Nph
∑

n=1

cknxn,ph

so that the prior mean is calculated as µkp = Sph/τk. Note that µkp and τk

are known or chosen values and Sph is unknown. For the covariance matrix, let

Rph be

Rph =

N
∑

n=1

cknxn,phx
T
n,ph

so that the prior covariance matrix is calculated as Σkp = Rph/τk − µkpµ
T
kp.

Here also Rph is the only unknown.

Now, the MAP estimate is simply the combination of the ML estimate that

produced the prior parameters and the ML estimate of the adaptation data. In

other words, the MAP adapted mean is

µ̂k =
Sph + S

τk + ck
=
τkµkp +

∑N
n=1 cknxn

τk + ck
.

This is exactly the same formula that is obtained by the formal derivation. The

summation of the probability counts τk and ck is simply the probability count of
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the combined sequence of phantom and actual vectors. Sph is written in terms

of the known (or chosen) variables. Note here that the combination of Sph and

S can now be written as

Sph + S = (τk + ck) µ̂k

τkµkp + ckµ̃k = (τk + ck) µ̂k.

This form will be used for deriving the MAP estimation formula for covariance

matrices.

The MAP adapted covariance matrix is

Σ̂k =
Rph +R

τk + ck
− µ̂kµ̂

T
k

=
Rph +R− (τk + ck) µ̂kµ̂

T
k

τk + ck

=
Rph +R− (τk + ck) µ̂kµ̂

T
k + − (τk + ck) µ̂kµ̂

T
k + (τk + ck) µ̂kµ̂

T
k

τk + ck

=
Rph +R− (τkµkp + ckµ̃k) µ̂

T
k − µ̂k (τkµkp + ckµ̃k)

T + (τk + ck) µ̂kµ̂
T
k

τk + ck

=
(

Rph +R− τkµkpµ̂
T
k − ckµ̃kµ̂

T
k − τkµ̂kµ

T
kp − ckµ̂kµ̃

T
k + τkµ̂kµ̂

T
k +

+ ckµ̂kµ̂
T
k

)

(τk + ck)
−1

=

(

Rph +
N
∑

n=1

cknxnx
T
n − τkµkpµ̂

T
k −

N
∑

n=1

cknxnµ̂
T
k − τkµ̂kµ

T
kp −

−
N
∑

n=1

cknµ̂kx
T
n + τkµ̂kµ̂

T
k +

N
∑

n=1

cknµ̂kµ̂
T
k

)

(τk + ck)
−1

=

(

Rph − τkµkpµ
T
kp +

N
∑

n=1

ckn

(

xnx
T
n − xnµ̂

T
k − µ̂kx

T
n + µ̂kµ̂

T
k

)

+

+ τkµkpµ
T
kp − τkµkpµ̂

T
k − τkµ̂kµ

T
kp + τkµ̂kµ̂

T
k

)

(τk + ck)
−1

=

(

(

Rph − τkµkpµ
T
kp

)

+

N
∑

n=1

ckn (xn − µ̂k) (xn − µ̂k)
T +

+ τk
(

µkpµ
T
kp − µkpµ̂

T
k − µ̂kµ

T
kp + µ̂kµ̂

T
k

))

(τk + ck)
−1

=
τkΣkp +

∑N
n=1 ckn (xn − µ̂k) (xn − µ̂k)

T + τk (µkp − µ̂k) (µkp − µ̂k)
T

τk + ck

This is the same formula that is obtained by formal derivation.
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A.3 On-line Re-estimation Formulas

In some cases it is desirable to obtain new estimates for model parameters as

soon as any given training feature vector is available. This is called on-line

training. For off-line training, all training vectors must be available at the same

time. The off-line re-estimation formulas given in Section 3.5.2 can be converted

to be suitable for on-line training. First, look at the component responsibilities:

p
(

k|xn, λ
[i]
)

=
w

[i]
k p
(

xn|λ
[i]
k

)

∑K
m=1 w

[i]
mp
(

xn|λ
[i]
m

) . (A.5)

This formula does not depend on more than one feature vector and does not

need to be converted. Secondly, consider the weights:

w
[i+1]
k =

1

N

N
∑

n=1

ckn. (A.6)

This formula is only dependant on the number of observed feature vectors.

The summation can be incremented with each new training vector. Again, no

conversion is needed here. The same applies to the formula for updating the

means:

µ
[i+1]
k =

∑N
n=1 cknxn
∑N

n=1 ckn

. (A.7)

When looking at the covariance matrices:

Σ
[i+1]
k =

∑N
n=1 ckn

(

xn − µ
[i+1]
k

)(

xn − µ
[i+1]
k

)T

∑N
n=1 ckn

(A.8)

it can be observed that the fully updated mean estimate is required to complete

this calculation. However, the updated mean requires that all training vectors

must have been observed already. This formula needs to be converted so that

it is only dependant on training vectors that are available. When multiplying
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the factors in the numerator, the following derivation can be made:

Σ
[i+1]
k =

1
∑N

n=1 ckn

(

N
∑

n=1

ckn

(

xnx
T
n − xnµ

T [i+1]
k − µ

[i+1]
k xT

n + µ
[i+1]
k µ

T [i+1]
k

)

)

=
1

∑N
n=1 ckn

(

N
∑

n=1

cknxnx
T
n −

N
∑

n=1

cknxnµ
T [i+1]
k −

−
N
∑

n=1

cknµ
[i+1]
k xT

n +

N
∑

n=1

cknµ
[i+1]
k µ

T [i+1]
k

)

=
1

∑N
n=1 ckn

(

N
∑

n=1

cknxnx
T
n −

(

N
∑

n=1

cknxn

)

µ
T [i+1]
k −

−µ
[i+1]
k

(

N
∑

n=1

cknx
T
n

)

+

(

N
∑

n=1

ckn

)

µ
[i+1]
k µ

T [i+1]
k

)

=

∑N
n=1 cknxnx

T
n

∑N
n=1 ckn

−

(

∑N
n=1 cknxn
∑N

n=1 ckn

)

µ
T [i+1]
k −

− µ
[i+1]
k

(

∑N
n=1 cknx

T
n

∑N
n=1 ckn

)

+

∑N
n=1 ckn

∑N
n=1 ckn

µ
[i+1]
k µ

T [i+1]
k

=

∑N
n=1 cknxnx

T
n

∑N
n=1 ckn

− µ
[i+1]
k µ

T [i+1]
k − µ

[i+1]
k µ

T [i+1]
k + µ

[i+1]
k µ

T [i+1]
k

=

∑N
n=1 cknxnx

T
n

∑N
n=1 ckn

− µ
[i+1]
k µ

T [i+1]
k .

This form of the equation is only dependant on the available training vectors. As

each new training vector is added, a new mean estimate can be made to complete

this calculation. Once all the training vectors are included, the estimates are

exactly the same as those obtained with off-line estimation. In effect, only the

statistics
∑N

n=1 ckn,
∑N

n=1 cknxn and
∑N

n=1 cknxnx
T
n need to be accumulated

as training vectors are added. The final parameter estimates then needs to be

calculated only when all the training vectors have been processed. Intermediate

estimates can be calculated at any time, though.
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