
Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Constrained Particle Swarm Optimization Using a Bi-Objective
Formulation

G. Venter · R.T. Haftka

Received: date / Accepted: date

Abstract This paper introduces an approach for dealing with

constraints when using particle swarm optimization. The con-

strained, single objective optimization problem is converted

into an unconstrained, bi-objective optimization problem that

is solved using a multi-objective implementation of the par-

ticle swarm optimization algorithm. A specialized bi-objective

particle swarm optimization algorithm is presented and an

engineering example problem is used to illustrate the per-

formance of the algorithm. An additional set of 13 test prob-

lems from the literature is used to further validate the per-

formance of the newly proposed algorithm. For the example

problems considered here, the proposed algorithm produced

promising results, indicating that it is an approach that de-

serves further consideration. The newly proposed algorithm

provides performance similar to that of a tuned penalty func-

tion approach, without having to tune any penalty parame-

ters.

Keywords Constrained particle swarm optimization ·

Multi-objective optimization · Composite design problem

G. Venter

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

South Africa

E-mail: gventer@sun.ac.za

R.T. Haftka

Department of Mechanical and Aerospace Engineering

University of Florida

USA

E-mail: haftka@ufl.edu

This paper is based on work first presented at the Sixth Interna-

tional Conference on Engineering Computational Technology, Athens,

Greece, 2-5 September 2008.

1 Introduction

This work introduces a specialized multi-objective particle

swarm optimization (MOPSO) algorithm that is used to solve

constrained, single objective optimization problems. Parti-

cle swarm optimization has received much attention in the

last few years as a fairly new addition to the growing family

of non-gradient global optimization algorithms. These algo-

rithms can deal with discontinuities in the design space (e.g.

numerical noise) and are easy to implement. However, these

algorithms typically require many function evaluations, re-

quire parameter tuning for the specific problem at hand, and

have difficulty dealing with constrained optimization prob-

lems.

The particle swarm optimization algorithm is inherently

an unconstrained algorithm. To account for constraints, de-

signers have developed many different strategies. For evo-

lutionary algorithms a review of these strategies is provided

by Coello Coello[4]. Koziel and Michalewicz[10] classifies

constraint handling techniques for evolutionary algorithms

as: (1) techniques that preserve feasibility, (2) techniques

based on penalty functions, (3) techniques making a clear

distinction between feasible and infeasible solutions and (4)

other hybrid techniques. More recently Sienz and Innocente[16]

classifies constraint handling strategies for particle swarm

optimization as: (1) strategies that reject infeasible solutions

(also known as a death penalty approach), (2) strategies that

penalize infeasible solutions (also known as a penalty func-

tion approach), (3) strategies that preserve feasibility, (4)

strategies that cut-off at the boundary, (5) strategies based

on a bi-section approach and (6) strategies that repair infea-

sible solutions. Of these approaches, one of the most popu-

lar is to make use of a penalty function approach, where the

objective function is penalized for any constraint violation.

Penalty functions are popular because they have tradition-

2

ally been used with gradient-based optimization algorithms,

are general in nature and are easy to implement.

There are many different types of penalty functions avail-

able. One of the simplest and most widely used is an exterior

quadratic penalty function (e.g. Vanderplaats [18]) as shown

in Eq. 1

f (xxx) = f (xxx)+ rp

m

∑
i=1

max(0,g j(xxx)) (1)

where xxx is the vector of design variables, f (xxx) is the original

objective function, f (xxx) is the penalized objective function,

rp is the penalty parameter and g j(xxx) are the inequality con-

straints defined as g j(xxx)≤ 0. The penalty function presented

in Eq. 1 has a single penalty parameter rp that is either held

constant (a static approach) or changed during the optimiza-

tion (a dynamic approach). In either case the approach is

problematic, since the penalty parameter has a significant

impact on the performance of the algorithm, but the best

choice is problem specific and can only be determined by

trial and error. In addition, the approach can easily result in

the algorithm converging on a local optimum design because

the penalty function prevents the algorithm from traversing

the infeasible design space from one feasible design to an-

other. An example is when the constraints divide the design

space into multiple island feasible regions.

More recently, adaptive penalty schemes have been in-

troduced with the goal of eliminating any user defined, and

typically problem dependent, penalty parameters. For exam-

ple, Poon and Martins[13] introduced an adaptive scheme

for gradient-based optimization based on the Kreisselmeier-

Steinhauser function, but also taking into account the con-

straint sensitivities. Hamida and Schoenauer[9] introduced

an adaptive scheme for evolutionary algorithms based on

a population based adaptive penalty and specialized selec-

tion schemes, while Barbosa and Lemonge[2] introduced an

adaptive penalty function for particle swarm optimization

that automatically defines and updates different penalty pa-

rameters for each violated constraint.

A relatively new approach to constraint handling is re-

flected in work done by Fletcher and Leyffer[7], in which a

constrained optimization problem can be considered as a bi-

objective optimization problem. In this bi-objective formu-

lation, one objective is the objective function of the original

optimization problem, while the second objective is a mea-

sure of the constraint violation. Other researchers have con-

sidered the use of a multi-objective approach for handling

constraints in evolutionary algorithms, but the approach is

relatively new for particle swarm optimization. For exam-

ple, Surry and Radcliffe[17] implemented a bi-objective ge-

netic algorithm where a portion of the parents are selected

based on the original objective function, while the remain-

der are selected based on a measure of the constraint viola-

tion. Although the approach still requires the user to define

problem specific parameters, Surry and Radcliffe[17] men-

tion that their method maintains the universal applicability

of a penalty function, while having fewer problem depen-

dent parameters. Zhou et al.[23] considered a bi-objective

approach, using the original objective function and a mea-

sure of the constraint violation. Their approach is applied

to a genetic algorithm where the Pareto strength and a min-

imal generation gap measure is used for selection. Venka-

traman and Yen[19] introduced a two phase genetic algo-

rithm. The first phase finds a feasible solution, by only con-

sidering the measure of constraint violation as an objec-

tive function. Once a feasible solution has been found, a

bi-objective problem is defined where the original objective

function and the measure of constraint violation are consid-

ered. Liu[12] considered a bi-objective approach for particle

swarm optimization, but does not make use of a Pareto based

multi-objective particle swarm approach to solve the result-

ing multi-objective optimization problem. Instead a new fit-

ness function is defined that takes both the original objective

function and a normalized measure of the constraint viola-

tion into account.

The present work presents an approach that does not

have any problem dependent parameters, that is as general as

a penalty function approach and that makes use of a Pareto

based multi-objective particle swarm approach to solve the

resulting bi-objective optimization problem. The new algo-

rithm presented here works particularly well for optimiza-

tion problems with inequality constraints. Future work will

concentrate on extending the method to include efficient han-

dling of equality constraints as well. The constrained opti-

mization problem is first converted to a bi-objective prob-

lem, based on the work of Fletcher and Leyffer[7]. A multi-

objective particle swarm optimization algorithm is then used

to solve the resulting multi-objective optimization problem.

Multi-objective particle swarm optimization is a fairly

new but active research field, with Reyes-Sierra and Coello

Coello[15] presenting a good overview of the current state of

the art within this research area. The present work starts with

an existing multi-objective particle swarm optimization al-

gorithm by Reyes-Sierra and Coello Coello[14] that appears

to show good potential for solving general multi-objective

problems. This algorithm is then specialized to solve con-

strained, single objective optimization problems using a bi-

objective formulation. An engineering example is used to

compare the effectiveness of both the original and the mod-

ified multi-objective algorithms with that of a penalty func-

tion based particle swarm optimization algorithm. Both an

exterior quadratic penalty function, as shown in Eq. 1, as

well as the adaptive penalty function introduced by Barbosa

and Lemonge[2] are considered. The algorithm performance

is further validated using a set of 13 test problems from the

literature.

3

The rest of this write-up provides a quick overview of

Fletcher and Leyffer’s original idea, followed by a discus-

sion on multi-objective particle swarm optimization, which

also introduces the original algorithm used here. Modifica-

tions to the original algorithm are presented, followed by the

example problem and the set of test problems. Finally, some

concluding remarks are provided.

2 Constrained Optimization in Bi-objective Form

Fletcher and Leyffer’s[7] work concentrated on sequential

quadratic programming, specifically the elimination of the

penalty function typically used during the one-dimensional

search. They considered general, non-linear, constrained op-

timization problems which can be stated as

Minimize: f (xxx)

Such That: ggg(xxx)≤ 0

xxxl ≤ xxx ≤ xxxu

(2)

where f is the objective function, xxx is the vector of design

variables, ggg is the vector of inequality constraint functions

and xxxl and xxxu are the lower and upper bounds (or side con-

straints) for the design variables.

In the present work the same idea introduced by Fletcher

and Leyffer[7] for sequential quadratic programming, will

be used to deal with constrained optimization problems within

a particle swarm optimization environment. Similar to parti-

cle swarm optimization, the use of a penalty function in se-

quential quadratic programming is problematic. It is difficult

to provide a general implementation that works for a wide

range of problems, since the penalty parameters are prob-

lem dependent. Fletcher and Leyffer[7] proposed the use of

a bi-objective formulation to eliminate the need of a penalty

function. Their approach is based on the observation that

there are two competing aims in non-linear programming.

The first is to minimize the objective function f and the sec-

ond is to minimize the constraint violation. These two con-

ditions can be written as:

Minimize: f (xxx)

Minimize: h(ggg(xxx))
(3)

where h(ggg(xxx)) provides a measure of the constraint violation

and is expressed as follows:

h(ggg(xxx)) =
m

∑
j=1

max(0,g j(xxx)) (4)

A penalty function would combine the two conditions of

Eq. 3 into a single objective, unconstrained optimization prob-

lem. The bi-objective approach instead directly solves the

problem as a multi-objective optimization problem. The present

work will build on the idea of converting a constrained, sin-

gle objective optimization problem into an unconstrained,

bi-objective optimization problem within the context of par-

ticle swarm optimization. Note, however, that while a gen-

eral multi-objective optimization will produce a Pareto front

as the final product, for the application presented here the

Pareto front is used as an intermediary, and the final result

will use the point on the front with the best true objective

and zero constraint violation.

3 Multi-objective Particle Swarm Optimization

Several modifications to the particle swarm optimization al-

gorithm are needed to solve multi-objective problems. The

single objective algorithm updates the position xxx of a particle

i from the kth iteration to the (k+ 1)th iteration, as follows:

xxxi
k+1 = xxxi

k + vvvi
k+1∆ t (5)

The velocity vector vvv is updated using

vvvi
k+1 = wvvvi

k + c1r1

(

pppi − xxxi
k

)

∆ t
+ c2r2

(

pppg − xxxi
k

)

∆ t
(6)

where ∆ t is typically taken as unity, w is known as the iner-

tia parameter, r1 and r2 are random numbers between 0 and

1 and c1 and c2 are known as trust parameters. When solv-

ing a constrained optimization problem, a penalty function

is typically used to identify the best point pppi obtained so far

for each particle, as well as the best point pppg obtained so far

for the swarm as a whole.

Note that the choice of pppg is referred to as a global topol-

ogy, where each particle obtain information from all other

particles in the group. An alternative is a local topology (e.g.

Bratton and Kennedy[3]), where each particle obtains infor-

mation from only a small number of other particles. For ex-

ample, the Standard PSO 2007[1] algorithm randomly se-

lects a small number of “informants” for each particle from

which the best point is obtained. The best point is identi-

fied as the best point obtained so far by any of the “infor-

mants”. In the present work, both the global topology out-

lined in Eq. 6, as well as the local topology of the Standard

PSO 2007[1] algorithm were implemented. For the engi-

neering problem, the global topology outperformed the local

topology and only results for the global topology are thus

presented (for comparison purposes, results from the local

topology are presented in the Appendix). For the set of test

problems, the best performing topology was problem depen-

dent, and results for both topologies are presented.

4

The single objective algorithm uses a single best point

pppg for the swarm. For multi-objective optimization, no sin-

gle best point exists. Instead a number of equally good non-

dominated solutions is available. (Within our bi-objective

context, design point k with f1 and f2 is dominated by de-

sign point j if both f
j

1 ≤ f k
1 and f

j
2 ≤ f k

2 , but not if both

f
j

1 = f k
1 and f

j
2 = f k

2). Most of the multi-objective parti-

cle swarm optimization algorithms currently in circulation

are Pareto-based[14], where a “best point” is identified from

the available non-dominated solutions. This “best point” is

referred to as a leader and each particle identifies its own

leader, denoted by pppgi. The single objective algorithm thus

makes use of a single leader, while a multi-objective parti-

cle swarm algorithm (1) must identify and maintain a list of

possible leaders; and (2) requires logic for selecting a leader

for each particle when updating the velocity vector. Also,

the logic for maintaining the best point pppi found so far by

each particle must be modified. Finally, an external archive

of solutions is often maintained and used to present the final

result, which is a Pareto front of non-dominated solutions.

The algorithm presented here is based on the algorithm

by Reyes-Sierra and Coello Coello[14]. This algorithm makes

use of the crowding distance to maintain a list of leaders

from which pppgi is selected. The crowding distance concept

was introduced by Deb et al.[5] as part of the NSGA-II

multi-objective genetic algorithm, which was also published

as Deb et al.[6]. The crowding distance provides a density

measure of non-dominated solutions surrounding a particu-

lar solution of interest. The crowding distance is obtained

by first sorting the leaders according to each of the objective

function values. The boundary solutions (solutions with the

smallest and largest function values) are assigned crowding-

distance values of infinity. All other leaders are assigned a

crowding-distance value equal to the absolute normalized

difference in the function values of the two nearest solutions.

The process is shown graphically in Fig. 1 and outlined in

Algorithm 1.

Fig. 1 Crowding distance

Algorithm 1 Crowding distance

1: l is the number of leaders

2: m is the number of objective functions

3: ξ is the set of leaders in matrix form

4: ξ is the sorted set of leaders in matrix form

5: ξ distance is the crowding distance values in vector form

6: f min
j is the minimum function value for the jth objective function

7: f max
j is the maximum function value for the jth objective function

8:

9: Start with the l by m matrix of leaders, ξ

10: Set all entries in ξ distance to 0

11:

12: for i = 1 to m do

13: Sort ξ according to column i to obtain ξ

14: Set crowding distance ξ [1]distance = ξ [l]distance = ∞
15: for j = 2 to (l −1) do

16: ξ [j]distance = ξ [j]distance+
ξ [j+1][i]−ξ[j−1][i]

f max
j − f min

j

17: end for

18: end for

The key features of the multi-objective particle swarm

algorithm presented by Reyes-Sierra and Coello Coello[14]

are summarized in Algorithm 2. The algorithm maintains

a list of leaders that consists of a subset of non-dominated

designs found so far. The number of leaders can quickly

grow very large and as a result most multi-objective particle

swarm optimization algorithms limit the number of leaders

that is stored. Reyes-Sierra and Coello Coello[14] limits the

number of leaders to be no more than the swarm size, by sav-

ing only the non-dominated solutions with the best (largest)

crowding distance values. For each particle, a leader is se-

lected to act as pppgi based on a binary tournament. The tour-

nament selects two random leaders from the list of available

leaders. The leader with the best (largest) crowding distance

is the winner of the tournament and is selected as pppgi. In

addition, the best point pppi found so far for each particle is

updated only if a new point dominates the current best point

for that particle, or if both points are non-dominated with

respect to each other.

Reyes-Sierra and Coello Coello[14] implements muta-

tion by dividing the swarm into three equal parts, with a dif-

ferent mutation operator applied to each part. In the present

work, a single mutation operator is applied to the whole

swarm. For each particle in each iteration, the mutation op-

erator has a 10% probability of changing the position of the

particle to a random position in the design space. After the

optimization is completed, a filter is applied to the external

archive to extract the Pareto front. However, as discussed in

the next section, the Pareto front is not required for solving

single objective constrained optimization problems.

The original algorithm outlined in Algorithm 2 was im-

plemented and tested on an unconstrained, bi-objective test

case from Deb et al.[6]. The test case can be summarized as:

5

Algorithm 2 Multi-objective particle swarm optimization

algorithm

1: Initialize swarm

2: Identify leaders (non-dominated solutions)

3: Save leaders to external archive

4: Calculate crowding distance for all leaders

5: while Iter less than MaxIter do

6: for Each Particle do

7: Select leader (binary tournament)

8: Update position and velocity

9: Apply mutation

10: Perform function evaluation

11: Update best point pppi

12: end for

13: Update leaders

14: Save leaders to external archive

15: Calculate crowding distance for all leaders

16: end while

17: Post-process external archive

f1(x) = x2

f2(x) = (x− 2)2

x ∈ [−100,100]

(7)

The Pareto front for this problem is well known. It is a con-

vex curve with x ∈ [0,2]. The results found from the algo-

rithm implemented in the present work are shown in Fig. 2

and corresponds well to the results presented in Deb et al.[6].

The results presented in Fig. 2 where obtained with a swarm

size of 20 particles and 40 iterations.

Fig. 2 Bi-objective example problem

4 Specialization of the Basic Algorithm

The algorithm outlined in Section 3 can be used as is to

solve single objective constrained optimization problem us-

ing Fletcher and Leyffer’s approach as summarized in Eq. 3.

However, the algorithm can be improved by specializing it

to the problem at hand. First, the formulation will always

result in a bi-objective problem, regardless of the number of

constraints. Second, the full Pareto front is not of interest.

The only region of interest is the area where the constraint

violation h(ggg(xxx)) is small. The optimum solution will be

the non-dominated solution with the smallest h(ggg(xxx)) value.

This will either be the most feasible point, if no feasible so-

lution is found, or the feasible solution with the smallest ob-

jective function value. If the original objective function is

shown on the abscissa and the h(ggg(xxx)) value on the ordinate

of Fig 2, the solution to the original optimization problem

will be the rightmost point, where h(ggg(xxx)) is a minimum.

Note that the Pareto front, especially in the region where

h(ggg(xxx)) is small, could be of significant interest to the de-

signer for performing trade-off studies to immediately judge

the impact of constraint violations on the objective function

value.

4.1 Leaders based on constraint violation

Many multi-objective optimization algorithms have the goal

of providing an answer that fully covers the Pareto front. The

algorithm outlined in Section 3 makes use of the crowding

distance to achieve this goal. First the crowding distance is

used to maintain the list of leaders, and secondly it is used to

select a leader for each particle when calculating the velocity

vector. In the present work, the Pareto front is still important,

but instead of covering the full Pareto front equally well, the

goal is to concentrate on the area where h(ggg(xxx)) is small.

The original algorithm can easily be modified to achieve

this new goal by using the h(ggg(xxx)) value instead of the crowd-

ing distance to both maintain the list of leaders and to select

a leader for each particle when calculating the velocity vec-

tor. The modifications can be summarized as follows:

1. The number of leaders are still limited to the swarm size

with the number of leaders constrained based on their

h(ggg(xxx)) values. Smaller h(ggg(xxx)) values are preferred.

2. The leader for each particle is selected from a binary

tournament based on the h(ggg(xxx)) values. The leader with

the smallest h(ggg(xxx)) value wins the tournament and is

selected as the leader for the particle.

To illustrate the difference between the two algorithms,

the example problem of Eq. 7 was solved with the modified

algorithm as outlined in this section. The example problem

can be considered as a bi-objective representation of a sin-

gle objective constrained optimization problem. In this case,

f1(x) represents the original objective function and f2(x)

the measure of constraint violation h(ggg(xxx)). When using the

modified algorithm where the crowding distance is replaced

with the constraint violation, a higher density of points is

expected in the area where f2(x) is small. The results are

6

presented in Fig. 3 and clearly illustrates a higher density of

points in the area where f2(x) is small. The results presented

in Fig. 3 where obtained with a swarm size of 20 particles

and 40 iterations.

Fig. 3 Bi-objective example problem with constraint violation used to

choose leaders

4.2 Two criteria for selecting leaders

The specialized algorithm outlined here was tested on sev-

eral test problems with good results. In all test cases con-

sidered, the specialized algorithm clearly outperformed the

original multi-objective particle swarm optimization algo-

rithm outlined in Section 3. However, it was noticed that if

only the constraint violation is used to maintain the list of

leaders, that the algorithm can quickly deteriorate to having

all the leaders be extremely close to the most feasible point.

The result is that the algorithm quickly converges to a small

number of leaders, and many times to a single leader. This

loss of diversity among the leaders helps the algorithm to

quickly converge to the feasible space, but has the drawback

that the algorithm easily gets trapped in a local minimum

in cases where the feasible region is non-convex or divided

into multiple regions.

To overcome this limitation, the specialized algorithm

was slightly modified to help promote diversity in the list

of leaders. At the end of each design iteration the list of

non-dominated solutions is considered and the best subset

is stored as the list of available leaders. In the original al-

gorithm the best subset is identified based on the crowding

distance, in the specialized algorithm the selection is done

based on the constraint violation.

Three variations of the specialized algorithm were con-

sidered that identify the subset of non-dominated solutions

based on two selection criteria instead of just one. The goal

is to identify both leaders that have a small constraint vio-

lation, and leaders that may have other attractive features,

for example a large crowding distance. In all cases, the first

selection criterion is the constraint violation as before. The

three variations thus only differ in the second criterion, with

the following criteria considered:

1. The objective function value

2. The crowding distance value (larger is better)

3. A randomly selected non-dominated design

The list of leaders is compiled from the available non-dominated

solutions found in the current iteration as well as those pre-

viously included in the list of leaders. When using two selec-

tion criteria for updating the list of leaders, a random num-

ber generator is used to select which of the two criteria will

be used to identify the next leader. The current implementa-

tion makes use of a 75% probability of selecting the next

leader using the smallest constraint violation value and a

25% probability of selecting the next leader using one of the

alternative criteria as outlined above. The net effect of all

three variations is to promote diversity in the list of leaders.

5 Engineering Example

An engineering example problem is presented to illustrate

the performance of the newly presented algorithms. Both

the original and specialized versions of the multi-objective

particle swarm optimization algorithm were tested to evalu-

ate the effectiveness of each. The two multi-objective parti-

cle swarm optimization algorithms were also compared to a

single objective particle swarm optimization algorithm that

makes use of a penalty function approach.

The example problem presented, is a variation of a com-

posite laminate design problem presented in Grosset et al.[8].

The problem is formulated in terms of the laminate param-

eters and the optimization problem is defined as finding n

continuous ply angle and corresponding ply thickness val-

ues that will maximize the transverse in-plane stiffness co-

efficient A22 for a symmetric and balanced composite lay

up of total thickness h. The design is subjected to a con-

straint on the effective Poisson’s ratio νe f f and constraints

that limit the ply angles to fall within one of three ranges.

The problem can be summarized as

Maximize : A22 = h(U1 −U2V ∗
1 +U3V ∗

3)

SuchThat : 0.48 ≤ νe f f ≤ 0.52

− 5◦ ≤ θk ≤ 5◦ or

40◦ ≤ θk ≤ 50◦ or

85◦ ≤ θk ≤ 95◦

0.001 ≤ tk ≤ 0.05

(8)

7

where

V ∗
{1,3} =

2

h

∫ h
2

0
{cos2θ , cos4θ}dz

=
2

h

n

∑
k=1

tk{cos2θk, cos4θk}

(9)

νe f f =
A11

A22

=
U4 −U3V ∗

3

U1 −U2V ∗
1 +U3V ∗

3

(10)

and θk represent the ply angles, tk the ply thicknesses (in

inches) and the Ui values are material invariants as summa-

rized in Table 1. For the example problem considered here,

n = 3 was used, resulting in 3 ply orientation θk and 3 ply

thickness tk design variables (a total of 6 design variables).

Table 1 Material properties for graphite epoxy

Parameter Value

U1 0.8897×107 psi

U2 1.0254×107 psi

U3 0.2742×107 psi

U4 0.3103×107 psi

The problem was solved using a single objective particle

swarm optimization algorithm, the multi-objective particle

swarm optimization algorithm of Reyes-Sierra and Coello

Coello[14] and the specialized bi-objective particle swarm

optimization algorithm presented here. The single objective

particle swarm optimization algorithm made use of an ex-

terior quadratic penalty function as shown in Eq 1 and the

adaptive penalty method of Barbosa and Lemonge[2]. The

adaptive penalty method of Barbosa and Lemonge provides

a penalized objective function as follows

F(xxx) =

{

f (xxx) if xxx is feasible

f (xxx)+∑m
j=1 k j v j(xxx) otherwise

(11)

where f (xxx) is the original objective function,

f (xxx) =

{

f (xxx) if f (xxx)> 〈 f (xxx)〉

〈 f (xxx)〉 otherwise
, (12)

k j = |〈 f (xxx)〉|

〈

v j(xxx)
〉

∑m
i=1 [〈vi(xxx)〉]

2
(13)

the 〈 〉 operator indicates the mean for the population and

v j(xxx) = max(0, g(xxx)).

In all cases, 100 optimization runs were performed us-

ing swarms with 30 particles applied over 100 iterations.

The probability of applying mutation was 10% and w=0.5,

c1=1.75 and c2=2.25 values were used. These parameters

were not tuned for the specific problem considered here. In-

stead, values were selected based on previous experience

[20] [21] [22] with the single objective particle swarm al-

gorithm implemented here (which was also the basis for the

two multi-objective particle swarm algorithms). The same

parameters and number of function evaluations were used

for all algorithms, and their variations, in the following com-

parison study.

The influence of the penalty parameter on the perfor-

mance of the single objective particle swarm optimization

algorithm is illustrated in Fig. 4, where the optimization was

repeated for penalty parameter values of 1E4, 1E6, 1E8 and

1E10 respectively. Figure 4 summarizes the results of all 100

independent optimization runs that were performed. The fig-

ure contains only results for the cases where feasible solu-

tions were found, sorted in descending order. For example,

for the 1E4 case, 39 of the 100 optimization runs were able

to find a feasible solution, with roughly 12 runs finding val-

ues close the global optimum of A22 = 1.25 × 106. Figure 4

shows that, as expected, the value of the penalty parameter

has a significant influence on the performance of the algo-

rithm, with the best performing value equal to 1E8.

Fig. 4 Influence of the penalty parameter on the single objective parti-

cle swarm optimization algorithm as tested on the engineering example

problem

Figure 5 illustrates the effect of promoting diversity in

the list of leaders. Using the objective function value as a

second selection criterion decreased the effectiveness of the

algorithm. However, using either the crowding distance or

a random non-dominated design significantly increased the

effectiveness of the algorithm. The poor performance of us-

ing the objective function value as a second selection crite-

rion is to be expected. Using the constraint violation and the

objective function values as selection criteria will only se-

lect leaders from one of the two extreme points of the Pareto

front. However, using the constraint violation and either the

crowding distance or random non-dominated design, will in-

clude leaders distributed along the Pareto front.

Figure 6 provides a comparison of the best variants of

each algorithm. Figure 6 shows the results obtained from

8

Fig. 5 Modified multi-objective particle swarm optimization algorithm

variants as tested on the engineering example problem

the original multi-objective algorithm, the specialized bi-

objective algorithm using the crowding distance as a second

selection criterion and the single objective particle swarm

optimization algorithm using both a quadratic exterior penalty

function (with rp = 1E8) as well as the adaptive penalty

function of Barbosa and Lemonge[2]. From Fig. 6 it is clear

that the newly proposed bi-objective algorithm provides the

best performance for the problem considered. This algorithm

had a 100% success rate of finding feasible designs and more

than an 80% success rate of finding designs close the global

optimum. Of the remaining algorithms, the exterior quadratic

penalty function provided the best performance after the penalty

parameter was tuned. The exterior quadratic penalty func-

tion had a 97% success rate of finding feasible designs, but

less than a 45% success rate of finding designs close to the

global optimum. The adaptive penalty function of Barbosa

and Lemonge[2] was very successful at finding the global

optimum and did not get caught in the local minimum at all.

However, the algorithm only found a feasible solution in 37

of the 100 optimization runs. The original multi-objective

algorithm of Reyes-Sierra and Coello Coello[14] performed

the worst. The best results obtained from each of the four

algorithms are summarized in Table 2.

6 Performance Validation

The performance results obtained for the engineering exam-

ple problem were further validated using a standard set of

test problems from the literature. The test problems selected

were obtained from Liang et al.[11]. The complete set con-

sists of 24 problems, from which all single objective prob-

lems with only inequality constraints were selected. This

process resulted in a test set consisting of 13 problems. Fu-

ture work will concentrate on expanding the algorithm pre-

sented here to efficiently deal with equality constraints as

well.

Fig. 6 Comparison of best variation of each algorithm as tested on the

engineering example problem

As for the engineering example problem, the solution of

each problem was repeated 100 times. Based on the results

obtained for the engineering example problem, the follow-

ing six algorithms were considered:

1. The modified multi-objective particle swarm optimiza-

tion algorithm, using the crowding distance as the sec-

ond selection criterion.

2. The original multi-objective particle swarm optimiza-

tion algorithm of Reyes-Sierra and Coello Coello[14].

3. The single objective particle swarm optimization algo-

rithm using a local topology and a fixed penalty param-

eter.

4. The single objective particle swarm optimization algo-

rithm using a global topology and a fixed penalty pa-

rameter.

5. The single objective particle swarm optimization algo-

rithm using a local toplogy and the adaptive penalty scheme

of Barbosa and Lemonge[2].

6. The single objective particle swarm optimization algo-

rithm using global toplogy and the adaptive penalty scheme

of Barbosa and Lemonge[2].

For the single objective particle swarm optimization al-

gorithms, only the results for the best penalty parameters are

shown. For each problem, the best penalty parameter was

selected from 1E4, 1E6, 1E8, 1E10 and 1E12. In all cases,

the same algorithm parameters were used as outlined for the

engineering example problem, except for the number of par-

ticles and the number of design iterations. To account for the

increased number of design variables, the number of parti-

cles was increased from 30 to 50 and the number of design

iterations from 200 to 500.

The modified multi-objective particle swarm optimiza-

tion algorithm and the two single objective particle swarm

optimization algorithms using either a local or a global topol-

ogy with a fixed (but tuned) penalty parameter clearly out

performed the other algorithms for the 13 test problems con-

sidered. As a result, only the results obtained from these

9

Table 2 Optimization results for the engineering example problem

Parameter PSO MOPSO Modified MOPSO

1E8 Adaptive Crowding

Laminate [±95,±44.3,±44.5]s [±95,±44.3,±44.5]s [±95,±43.7,±42.3]s [±95,±44.8,±44.4]s
(Degrees)

Thickness [0.0304,0.05,0.05]s [0.0304,0.05,0.05]s [0.0323,0.05,0.05]s [0.030,0.05,0.05]s
(in)

ve f f 0.4800 0.4800 0.4800 0.4800

Feasible 97/100 37/100 29/100 100/100

Best 1.2505×106 1.2506×106 1.2434×106 1.2503×106

Worst 0.1226×106 0.9287×106 0.5005×106 0.2395×106

Mean 0.8504×106 1.2373×106 1.0585×106 1.1551×106

StdDev 0.4010×106 0.0519×106 0.2104×106 0.2231×106

Table 3 Results for the test problems from obtained from Liang et al.[11]

Problem Results

Best Penalty Success Best Worst Mean Std Dev

ID NDVAR NCONSTR Known Algorithm Parameter Rate (%) Obj Obj Obj Obj

g01 13 9 -15.00 PSO (lbest) 1.E12 100 -14.95 -5.00 -9.76 2.81

PSO (gbest) 1.E12 100 -14.81 -3.00 -7.48 2.26

MOPSO (mod) - 100 -14.98 -6.00 -10.38 2.54

g02 20 2 -0.804 PSO (lbest) 1.E4 100 -0.473 -0.224 -0.330 0.041

PSO (gbest) 1.E12 94 -0.637 -0.314 -0.475 0.078

MOPSO (mod) - 100 -0.700 -0.373 -0.539 0.065

g04 5 6 -30666 PSO (lbest) 1.E12 100 -30665 -30663 -30665 0.568

PSO (gbest) 1.E12 93 -30666 -30184 -30639 108.2

MOPSO (mod) - 100 -30666 -30656 -30664 1.892

g06 2 2 -6962 PSO (lbest) 1.E12 100 -6960 -6784 -6942 25.30

PSO (gbest) 1.E12 96 -6962 -6745 -6956 27.61

MOPSO (mod) - 100 -6959 -6910 -6939 12.68

g07 10 8 24.31 PSO (lbest) 1.E12 100 30.64 62.31 40.03 5.437

PSO (gbest) 1.E10 100 25.72 124.8 32.52 10.98

MOPSO (mod) - 100 26.97 72.54 36.96 8.934

g08 2 2 -0.096 PSO (lbest) 1.E4 100 -0.096 -0.096 -0.096 0.000

PSO (gbest) 1.E4 100 -0.096 -0.096 -0.096 0.000

MOPSO (mod) - 100 -0.096 -0.095 -0.096 0.000

g09 7 4 680.6 PSO (lbest) 1.E12 100 682.0 690.4 684.9 1.502

PSO (gbest) 1.E8 100 680.8 685.8 681.9 0.920

MOPSO (mod) - 100 681.8 693.5 685.4 2.282

g10 8 6 7049 PSO (lbest) 1.E10 100 7645 10250 8929 471.0

PSO (gbest) 1.E12 95 7211 18706 9751 2546

MOPSO (mod) - 91 7611 15553 8992 1225

g12 3 1 -1.000 PSO (lbest) 1.E4 100 -1.000 -1.000 -1.000 0.000

PSO (gbest) 1.E4 100 -1.000 -1.000 -1.000 0.000

MOPSO (mod) - 100 -1.000 -1.000 -1.000 0.000

g16 5 38 -1.905 PSO (lbest) 1.E12 100 -1.899 -1.880 -1.890 0.004

PSO (gbest) 1.E10 98 -1.905 -1.415 -1.859 0.128

MOPSO (mod) - 98 -1.896 -1.815 -1.872 0.012

g18 9 13 -0.866 PSO (lbest) 1.E8 100 -0.758 -0.350 -0.556 0.080

PSO (gbest) 1.E10 99 -0.859 -0.448 -0.655 0.130

MOPSO (mod) - 99 -0.756 -0.057 -0.552 0.110

g19 15 5 32.66 PSO (lbest) 1.E10 100 35.82 102.1 56.77 15.59

PSO (gbest) 1.E12 100 36.14 547.9 99.64 89.76

MOPSO (mod) - 100 34.35 192.3 63.30 25.17

g24 2 2 -5.508 PSO (lbest) 1.E8 100 -5.508 -5.506 -5.507 0.000

PSO (gbest) 1.E10 100 -5.508 -5.508 -5.508 0.000

MOPSO (mod) - 100 -5.508 -5.503 -5.506 0.001

ID is the problem designation from Liang et al.[11], NDVAR is the number of design variables, NCONSTR is the number of inequality

constraints, Best Known is the best known solution as reported by Liang et al.[11]

10

three algorithms are presented. The results are presented

in Table 3, which provides the problem designation from

Liang et al.[11], the number of design variables and inequal-

ity constraints, the best known solution from Liang et al.[11]

and the results obtained here. For the algorithms considered

here, the best penalty parameter, the success rate of finding

feasible solutions (out of 100 optimizations) and the best,

worst, mean and standard deviation of the objective func-

tion values (for the feasible solutions found) are provided.

Table 3 clearly illustrates that all three algorithms are

very successfull at finding feasible solutions, with the suc-

cess rate never dipping below 90%. Also, all three algo-

rithms are competitive in terms of the mean objective func-

tion value of the feasible solutions found. Clearly the newly

proposed algorithm performs well when compared to the

fixed penalty parameter algorithms, but without the need of

tuning the problem specific penalty parameter.

7 Conclusion

This paper presents a bi-objective formulation for solving

single objective, constrained optimization problems using a

specialized multi-objective particle swarm optimization al-

gorithm. This approach is presented as an alternative for us-

ing a penalty function approach when solving constrained

optimization problems by particle swarm optimization. A

multi-objective particle swarm optimization algorithm from

the literature is implemented and modified to specifically

solve the bi-objective problem of interest. A composite lam-

inate design problem is solved to demonstrate the effective-

ness of the approach and to compare the original and modi-

fied multi-objective particle swarm optimization algorithms.

Results from a single objective particle swarm optimization

algorithm implementing both a quadratic exterior penalty

function and an adaptive penalty function are also presented

for comparison. The example illustrates that the proposed

algorithm provides performance that is similar to that of a

tuned penalty function approach, within the need for tuning

the penalty parameter.

Variations that improve the diversity in the list of lead-

ers of the specialized bi-objective particle swarm optimizer

were also investigated. Using both the constraint violation

and the crowding distance as selection criteria resulted in

the best performing algorithm.

The results observed from the engineering example prob-

lem were further validated with a set of 13 test problems

selected from the literature. Based on the results obtained

from the example problems considered here, the proposed

algorithm does seem promising enough to validate further

consideration as an alternative approach for inequality con-

straint handling within a particle swarm environment. The

results presented indicate that the modified multi-objective

particle swarm optimization algorithm provide performance

that is competitive to that obtained from a penalty func-

tion implementation, with the benefit that no tuning of the

constraint handling logic is required. Future work will ex-

pand the proposed method to include the efficient handling

of equality constraints as well.

Acknowledgements This work has been supported in part by the NASA

Constellation University Institute Program (CUIP) and by the National

Research Foundation (NRF) of South Africa. Any opinion, findings

and conclusions or recommendations expressed in this material are

those of the author(s) and therefore the NRF does not accept any li-

ability in regard thereto.

References

1. URL http://www.particleswarm.info

2. Barbosa, H., Lemonge, A.: A New Adaptive Penalty Scheme for

Genetic Algorithms. Information Sciences 156(3–4), 215–251

(2003)

3. Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm

Optimization. In: Proceedings of the 2007 IEEE Swarm Intelli-

gence Symposium, pp. 120–127 (2007)

4. Coello Coello, C.: Theoretical and Numerical Constraint-

Handling Techniques Used with Evolutionary Algorithms: A Sur-

vey of the State of the Art. Computer Methods in Applied Me-

chanics and Engineering 191(11–12), 1245–1287 (2002)

5. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A Fast Elitist

Non-Dominated Sorting Genetic Algorithm for Multi-Objective

Optimization: NSGA-II. In: Proceedings of the Parallel Problem

Solving from Nature VI Conference, pp. 849–858 (2000)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions

on Evolutionary Computation 6(2), 182–197 (2002)

7. Fletcher, R., Leyffer, S.: Nonlinear Programming without a

Penalty Function. Mathematical Programming 91(2), 239–269

(2002)

8. Grosset, L., LeRiche, R., Haftka, R.T.: A Double-Distributed Sta-

tistical Algorithm for Composite Laminate Optimization. Struc-

tural and Multidisciplinary Optimization 31(1), 49–59 (2005)

9. Hamida, B., Schoenauer, M.: An Adaptive Algorithm for Con-

strained Optimization Problems. In: Proceedings of the 6th Con-

ference on Parallel Problems Solving from Nature, pp. 529–539

(2000)

10. Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomor-

phous Mappings, and Constrained Parameter Optimization. Evo-

lutionary Computation 7(1), 19–44 (1999)

11. Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Sugan-

than, P., Coello Coello, C., Deb, K.: Problem Definitions and Eval-

uation Criteria for the CEC 2006 Special Session on Constrained

Real-Parameter Optimization. Technical report, Nanyang Techno-

logical University, Singapore (2006)

12. Liu, C.A.: New multiobjective pso algorithm for nonlinear con-

strained programming problems. In: Advances in Cognitive Neu-

rodynamics ICCN 2007, pp. 955–962 (2007)

13. Poon, N., R.R.A.M., J.: An Adaptive Approach to Constraint Ag-

gregation Using Adjoint Sensitivity Analysis. Structural and Mul-

tidisciplinary Optimization 34(1), 61–73 (2007)

14. Reyes-Sierra, M., Coello Coello, C.: Improving PSO-based

Multi-Objective Optimization Using Crowding, Mutation and ε-

dominance. In: Third International Conference on Evolutionary

Multi-Criterion Optimization, Guanajuato, Mexico, pp. 505–519

(2005)

11

15. Reyes-Sierra, M., Coello Coello, C.: Multi-Objective Particle

Swarm Optimizers: A Survey of the State-of-the-Art. Interna-

tional Journal of Computational Intelligence Research 2(3), 287–

308 (2006)

16. Sienz, J., Innocente, M.: Trends in Engineering Computational

Technology, chap. Particle Swarm Optimization: Fundamental

Study and its Application to Optimization and to Jetty Schedul-

ing Problems, pp. 103–126. Saxe-Coburg Publications (2008)

17. Surry, P., Radcliffe, N.: The COMOGA Method: Constrained Op-

timisation by Multi-Objective Genetic Algorithms. Control and

Cybernetics 26(3) (1997)

18. Vanderplaats, G.N.: Numerical Optimization Techniques for En-

gineering Design, 4rd edn. Vanderplaats Research and Devel-

opment, Inc., 1767 S. 8th St., Suite 100, Colorado Springs, CO

(2005)

19. Venkatraman, S., Yen, G.: A Generic Framework for Constrained

Optimization Using Genetic Algorithms. IEEE Transactions on

Evolutionary Computation 9, 424–435 (2005)

20. Venter, G., Sobieszczanski-Sobieski, J.: Particle Swarm Optimiza-

tion. AIAA Journal 41(8), 1583–1589 (2003)

21. Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary Opti-

mization of a Transport Aircraft Wing using Particle Swarm Op-

timization. Structural and Multidisciplinary Optimization 26(1),

121–131 (2004)

22. Venter, G., Sobieszczanski-Sobieski, J.: A Parallel Particle Swarm

Optimization Algorithm Accelerated by Asynchronous Evalua-

tions. Journal of Aerospace Computing, Information, and Com-

munication 3(3), 123–137 (2006)

23. Zhou, Y., Li, Y., He, J., Kang, L.: Multi-Objective and MGG Evo-

lutionary Algorithm for Constrained Optimization. In: The 2003

Congress on Evolutionary Computation, pp. 1–5 (2003)

Appendix

Local versus Global Topology Study

When implementing the black single objective particle swarm

optimization algorithm, either a local or a global topology

can be selected for updating the velocity vector. Accord-

ing to Bratton and Kennedy[3], the local topology is gen-

erally preferred since it helps to avoid local minima. How-

ever, Bratton and Kennedy[3] also states that despite the ad-

vantages of a local topology, it is important to note that it

should not always be considered as the optimal choice for

all problems. In the present work, both the ability of finding

feasible designs as well as the ability of finding the global

optimum are compared. As a result, the local topology was

tested against the global topology to ensure that the best se-

lection is made for the example problem at hand.

The local topology implemented was obtained from the

Standard PSO 2007[1] algorithm. This local topology ran-

domly selects a small number of “informants” for each par-

ticle from which the best point is obtained. The best point is

identified as the best point obtained so far by any of the “in-

formants”. Figure 4 provides the results obtained from the

global topology outlined in Eq. 6 (results for the adaptive

penalty scheme are provided in Fig. 6). Figure 7 below pro-

Fig. 7 Penalty function results with local topology as tested on the

engineering example problem

vides comparative results obtained from the local topology

implementation.

When comparing Figs. 4, 6 and 7, it is clear that the

global topology consistently outperforms the local topology

for the engineering example problem considered here.

