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Abstract

This thesis considers the problem of stabilised control for a multirotor with an unknown
suspended payload. The swinging payload negatively affects the multirotor flight dynamics
by inducing oscillations in the system. An adaptive control architecture is proposed to
damp these oscillations and produce stable flight with different unknown payloads. The
architecture includes a data-driven system identification method that assumes no prior
knowledge of the payload dynamics. This method is demonstrated in simulation and
with practical flight data. Model Predictive Control (MPC) is applied for swing damping
control and is verified with Hardware-in-the-Loop (HITL) simulations.

A parameter estimator and Linear Quadratic Regulator (LQR) is used as a baseline control
architecture. The LQR uses a predetermined model of the system, which is completed with
estimates of the payload mass and cable length. The newly proposed architecture uses
Dynamic Mode Decomposition with Control (DMDc) to estimate a linear state-space model
and approximate the dynamics without using a predetermined model. The architecture
was also tested with a Hankel Alternative View Of Koopman (HAVOK) algorithm which
was extended in this work to account for control. An MPC uses the data-driven model to
control the multirotor and damp the payload oscillations.

A Simulink™ simulator was designed and verified with practical data. Within simulations
both the baseline and proposed architectures produced near swing-free control with
different payload masses and cable lengths. Even with a dynamic payload producing
irregular oscillations, both methods achieved stabilised control. Both architectures also
showed effective disturbance rejection. Despite the baseline method using an accurate
predetermined model, the proposed method produced equal performances without prior
knowledge of the dynamics. The baseline performance degraded significantly with a
changed multirotor mass because this parameter was not considered as an unknown. In
contrast, the proposed method consistently produced good performances.

The accuracy of the DMDc models was verified with practical flight data. The proposed
control architecture was also demonstrated in HITL simulations. The hardware executed
the MPC at the desired frequency, producing near swing-free control within a Gazebo
simulator. Overall, it was shown that the proposed control architecture is practically
feasible. Without knowledge of the payload dynamics, a data-driven model can be used
with MPC for effective swing damping control with a multirotor.
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Uittreksel

Hierdie tesis hanteer die probleem van gestabiliseerde beheer vir ’n multirotor hommeltuig
met ’n onbekende hangende loonvrag. Die swaaiende loonvrag bëınvloed die vlugdin-
amika deur ossillasies in die stelsel te veroorsaak. ’n Aanpasbare beheerargitektuur word
voorgestel om hierdie ossillasies te demp vir stabiele vlugte met verskillende onbekende
loonvragte. Die argitektuur maak gebruik van ’n datagedrewe stelsel-identifikasiemetode
wat geen voorafkennis van die loonvragdinamika gebruik nie. Hierdie metode word in
simulasies en met praktiese vlugdata gedemonstreer. Model Voorspellende Beheer (MVB)
word toegepas vir swaaidempingsbeheer en word geverifieer met Hardeware-in-die-Lus
(HIDL) simulasies.

’n Parameter-afskatter en Lineêre Kwadratiese Gaussiese (LKG) word in die basislyn
beheerargitektuur gebruik. Die LKG gebruik ’n voorafbepaalde model van die sisteem wat
voltooi word met afskattings van die loonvragmassa en kabellengte. Die nuwe voorgestelde
argitektuur gebruik Dinamiese Modus Ontbinding met beheer (DMOb) om ’n lineêre
toestand-ruimte model te bereken en die dinamika af te skat sonder ’n voorafbepaalde
model. Die argitektuur is ook getoets met ’n Hankel Alternatiewe Siening van Koopman
(HASK)-algoritme wat in hierdie werk uitgebrei is om beheer in te sluit. ’n MVB gebruik
die data-gedrewe model om die multirotor te beheer en die loonvrag se ossillasies te demp.

’n Simulink™-simululeerder is ontwerp en geverifieer met praktiese data. In simulasies het
beide die basislyn en voorgestelde argitekture byna-swaaivrye beheer met verskillende loon-
vragmassas en kabellengtes geproduseer. Selfs met ’n dinamiese loonvrag wat onreëlmatige
ossillasies voortbring, het beide metodes gestabiliseerde beheer tot gevolg gehad. Beide ar-
gitekture het ook effektiewe versteuringsverwerping getoon. Al gebruik die basislynmetode
’n akkurate voorafbepaalde model, het die voorgestelde metode gelyke prestasies gelewer
sonder voorafkennis van die dinamika. Die basislyn prestasie het aansienlik afgeneem vir
’n aangepaste multirotormassa omdat hierdie parameter nie as ’n onbekende beskou is nie.
Daarteenoor het die voorgestelde metode deurgaans goeie prestasies gelewer.

Die akkuraatheid van die DMOb modelle is geverifieer met praktiese vlugdata. Die
voorgestelde beheerargitektuur is ook in HIDL-simulasies gedemonstreer. MVB is teen die
verlangde frekwensie uitgevoer en het byna-swaaivrye beheer in ’n Gazebo-simululeerder
gelewer. In die geheel is dit gewys dat die voorgestelde beheerargitektuur prakties
uitvoerbaar is. Sonder kennis van die loonvragdinamika kan ’n data-gedrewe model met
MVB gebruik word vir effektiewe swaaidempingsbeheer met ’n multirotor.
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• My family, Arno, Anré, Estè and Retief Louw, for their steadfast love.

• Chelaine Maree, for her unwavering support and joyful companionship in a challenging
year.

• My colleagues in the ESL, for helping hands and great times of fun.

v

Stellenbosch University https://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Publication iv

List of figures x

List of tables xiv

Abbreviations xv

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Project definition and objectives . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Literature study 4
2.1. Payload transportation with multirotors . . . . . . . . . . . . . . . . . . . 4

2.1.1. Rigid connection payloads . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Suspended payloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Control of multirotors with suspended payloads . . . . . . . . . . . . . . . 6
2.2.1. Trajectory generation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2. Swing damping controllers . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Review of swing damping control studies . . . . . . . . . . . . . . . . . . . 11
2.4. Multirotor and suspended payload systems with unknown dynamics . . . . 14
2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Modelling 17
3.1. Coordinate frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1. Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2. Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Multirotor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4. Forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5. Suspended payload model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi

Stellenbosch University https://scholar.sun.ac.za



Contents vii

3.5.1. Payload assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2. Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.3. Non-conservative forces . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.4. Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.5. Payload forces acting on the multirotor . . . . . . . . . . . . . . . . 27

3.6. Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. System identification 30
4.1. White-box and black-box techniques . . . . . . . . . . . . . . . . . . . . . 30

4.1.1. White-box techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2. Black-box techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Plant considered for system identification . . . . . . . . . . . . . . . . . . . 32
4.3. Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1. White-box model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2. Payload mass estimation . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3. Cable length estimation . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4. Dynamic mode decomposition with control . . . . . . . . . . . . . . . . . . 36
4.5. Hankel alternative view of Koopman with control . . . . . . . . . . . . . . 38
4.6. Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.2. Error metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.3. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.4. Sample time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.5. Choice of payload variable in the state vector . . . . . . . . . . . . 48
4.6.6. Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.7. System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.8. Length of training data . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.9. Dynamic payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5. Control systems 60
5.1. Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2. Cascaded PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1. Angular rate controller . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2. Angle controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.3. Translational controller . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3. Linear Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4. Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1. Receding horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Stellenbosch University https://scholar.sun.ac.za



Contents viii

5.4.2. Plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3. Algorithm implementation . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.4. Integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.5. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5. Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.1. Simple suspended payload . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.2. Different payload parameters . . . . . . . . . . . . . . . . . . . . . 81
5.5.3. External disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.4. Dynamic payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.5. Change in unconsidered system parameters . . . . . . . . . . . . . . 87

5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6. Experimental design 90
6.1. Hardware components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.1. Multirotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.2. Payload angle sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.3. On-Board Computer . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2. Software Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.1. PX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2. QGroundControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3. Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.4. Robot Operating System . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3. Hardware-in-the-Loop simulations . . . . . . . . . . . . . . . . . . . . . . . 95
6.4. Practical flights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7. Practical implementation and results 98
7.1. Parameter estimation with practical data . . . . . . . . . . . . . . . . . . . 98

7.1.1. Simple payload cable length estimation . . . . . . . . . . . . . . . . 98
7.1.2. Dynamic payload cable length estimation . . . . . . . . . . . . . . . 101

7.2. Data-driven system identification with practical data . . . . . . . . . . . . 104
7.2.1. Wind disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.2. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.3. System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.4. State predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.5. Extended dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.6. Dynamic payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3. Hardware-in-the-Loop simulations . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.1. Effect of hyperparameters on computational requirements . . . . . . 114
7.3.2. Effect of sample time on computational requirements . . . . . . . . 115

Stellenbosch University https://scholar.sun.ac.za



Contents ix

7.3.3. Velocity step response . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8. Conclusion 120
8.1. Literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2. System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3. Swing damping controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.4. Practical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5. Recommended future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 125

A. PID controller gains 136

Stellenbosch University https://scholar.sun.ac.za



List of figures

2.1. Different multirotor-payload configurations. . . . . . . . . . . . . . . . . . 4
2.2. A practical suspended payload used for search and rescue missions [1]. . . . 6
2.3. Notch filter and LQR control architecture [2]. . . . . . . . . . . . . . . . . 8
2.4. Optitrack motion capture system for multirotor experiments [3]. . . . . . . 12
2.5. Multirotor and suspended payload for outdoor experiments [4]. . . . . . . . 13
2.6. Controller structure proposed by Muthusamy et al. [5]. . . . . . . . . . . . 14

3.1. Inertial and body coordinate frames of a quadrotor [6]. . . . . . . . . . . . 17
3.2. Illustration of Euler angles [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Schematic of a multirotor with suspended payload [2]. . . . . . . . . . . . . 24
3.4. Comparison of simulated and practical data from Honeybee. . . . . . . . . 28
3.5. Velocity step comparison of simulated and practical data for Honeybee with

a suspended payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6. Payload angle comparison of simulated and practical data for Honeybee

with a suspended payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. Schematic of a floating pendulum model considered for a North velocity
controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2. Data from a velocity step response used for cable length estimation (l = 1 m,
mp = 0.3 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3. Illustration of the extraction of AH and BH from Equation 4.23. . . . . . . 40
4.4. Illustration of forcing the known values in Hankel Alternative View Of

Koopman with Control (HAVOKc) matrices. . . . . . . . . . . . . . . . . . 41
4.5. Example of training data with random velocity step inputs (mp = 0.2 kg,

l = 1 m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6. Dynamic Mode Decomposition with Control (DMDc) and HAVOKc pre-

dictions error for different lengths of noisy training data (mp = 0.2 kg,
l = 0.5 m, Ts = 0.03 s, Ttrain = 60 s.). . . . . . . . . . . . . . . . . . . . . . 46

4.7. Significant and truncated singular values of a HAVOKc model produced
from noisy data (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s, Ttrain = 60 s.). . . . . 47

4.8. DMDc prediction error using different cable lengths with a range of different
sample times of noisy training data (mp = 0.2 kg). . . . . . . . . . . . . . . 48

4.9. Prediction NMAE for HAVOKc models using either angle or angular rate
measurements (mp = 0.2 kg, l = 1 m, Ts = 0.03 s). . . . . . . . . . . . . . . 49

x

Stellenbosch University https://scholar.sun.ac.za



List of figures xi

4.10. Accelleration setpoint training data from random velocity step inputs
(mp = 0.2 kg, l = 1 m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11. HAVOKc prediction errors for different lengths of training data with and
without noise (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s). . . . . . . . . . . . . . 51

4.12. DMDc and HAVOKc prediction errors for different lengths of noisy training
data (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s). . . . . . . . . . . . . . . . . . . 52

4.13. HAVOKc prediction errors for different system parameters. . . . . . . . . . 52
4.14. Double pendulum model representing an elongated suspended payload. . . 54
4.15. White-box model predictions of a single pendulum for a North velocity step

input (l = 1 m, mp = 0.3 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.16. White-box model predictions of a double pendulum for a North velocity

step input (m1 = 0.2 kg, l1 = 1 m, m2 = 0.1 kg, l2 = 0.3 m). . . . . . . . . . 55
4.17. The single-sided amplitude spectrum of the swing angle FFT. . . . . . . . 56
4.18. Data-driven model predictions of a single pendulum for a North velocity

step input (mp = 0.3 kg, l = 1 m). . . . . . . . . . . . . . . . . . . . . . . . 57
4.19. Data-driven model predictions of a double pendulum for a North velocity

step input (m1 = 0.2 kg, l1 = 1 m, m2 = 0.1 kg, l2 = 0.3 m). . . . . . . . . . 57
4.20. DMDc and HAVOKc predictions error of double pendulum for different

numbers of delay-coordinates (m1 = 0.2 kg, l1 = 1 m, m2 = 0.1 kg, l2 = 0.3 m
Ttrain = 70 s.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1. Cascaded Proportional Integral Derivative (PID) control architecture of
PX4 [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2. Angular rate controller diagram [7]. . . . . . . . . . . . . . . . . . . . . . . 62
5.3. Quaternion based angle controller diagram [7]. . . . . . . . . . . . . . . . . 64
5.4. Velocity controller diagram [7]. . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5. Root locus plot of the North velocity dynamics including PID controller. . 66
5.6. PID velocity step response (l = 1 m, mp = 0.2 kg). . . . . . . . . . . . . . . 67
5.7. Linear Quadratic Regulator (LQR) velocity step responses with different

payloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.8. Diagram of the structure of a typical MPC. . . . . . . . . . . . . . . . . . 70
5.9. Illustration of the receding horizon of an Model Predictive Control (MPC) [8]. 71
5.10. MPC velocity step responses with different payloads. . . . . . . . . . . . . 78
5.11. Velocity step response comparison of different controllers (l = 2 m,

mp = 0.3 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.12. Payload angle comparison of different controllers (l = 2 m, mp = 0.3 kg). . 80
5.13. Acceleration setpoint commanded by different controllers for a velocity step

input (l = 2 m, mp = 0.3 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Stellenbosch University https://scholar.sun.ac.za



List of figures xii

5.14. Velocity step response comparison of different controllers (l = 1 m,
mp = 0.2 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.15. Velocity step response comparison of different controllers (l = 0.5 m,
mp = 0.1 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.16. Effect of an unmeasured step input disturbance. (l = 2 m, mp = 0.3 kg). . . 82
5.17. Different LQR responses for different integrator gains (l = 2 m, mp = 0.3 kg). 83
5.18. Velocity step response comparison of different controllers (l = 2 m,

mp = 0.3 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.19. Payload angle comparison of different controllers (l = 2 m, mp = 0.3 kg). . 85
5.20. Optimised prediction and actual velocity response of the MCP with a

dynamic payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.21. Optimised prediction and actual payload angle response of the MPC with a

dynamic payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.22. Velocity step responses with the multirotor mass decreased by 0.25 kg

(l = 0.5 m, mp = 0.3 kg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1. Honeybee multirotor equipped with a On-Board Computer (OBC) and
payload angle sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2. Photo of a Pixhawk 4 mini Flight Controller (FC) [7]. . . . . . . . . . . . . 91
6.3. Payload angle sensor with linear potentiometers. . . . . . . . . . . . . . . . 92
6.4. NVIDIA® Jetson Nano™ [9] used as a OBC. . . . . . . . . . . . . . . . . . 92
6.5. Model of Honeybee in the Gazebo simulator. . . . . . . . . . . . . . . . . . 94
6.6. Communication between Robot Operating System (ROS), flight-stack, sim-

ulator, and ground station [10]. . . . . . . . . . . . . . . . . . . . . . . . . 94
6.7. Different software and hardware components of a Hardware-in-the-Loop

(HITL) simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.8. Practical flight with Honeybee and a suspended payload. . . . . . . . . . . 96

7.1. Plot of the error in cable length estimation as a function of length of training
data (wind speed ≈ 0.5 m/s). . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2. White-box model prediction for a North velocity step input (l = 2 m,
mp = 0.3 kg.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3. Cable length estimation error as a function of length of training data with
wind disturbances (mp = 0.2 kg, l = 1 m). . . . . . . . . . . . . . . . . . . . 100

7.4. Practical flight with a suspended elongated payload attached to Honeybee. 101
7.5. White-box model prediction for a North velocity step input for a dynamic

payload (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m). . . . . . . . . . 102
7.6. Estimated cable length as a function of length of training data for a dynamic

payload (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m). . . . . . . . . . 102

Stellenbosch University https://scholar.sun.ac.za



List of figures xiii

7.7. Data predictions using slightly different initial conditions for a velocity step
response with a dynamic payload (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg,
l2 = 0.6 m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.8. White-box predictions from different initial conditions for a dynamic payload
(m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m). . . . . . . . . . . . . . . 104

7.9. DMDc prediction errors as a function of length of training data for practical
data with different wind conditions (mp = 0.2 kg, l = 1 m, Ts = 0.03 s). . . 105

7.10. DMDc and HAVOKc prediction errors for different lengths of practical
training data (mp = 0.2 kg, l = 1 m, Ts = 0.03 s). . . . . . . . . . . . . . . . 106

7.11. DMDc and HAVOKc prediction errors for different number of delays included
in the model (mp = 0.2 kg, l = 1 m, Ts = 0.03 s, wind speed ≈ 2 m/s). . . . 107

7.12. DMDc prediction error as a function of training data length for different
payload parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.13. Model predictions of practical flight data with a suspended payload for a
North velocity step input (l = 2 m, mp = 0.3 kg). . . . . . . . . . . . . . . 108

7.14. Model predictions of practical flight data with a suspended payload for a
North velocity step input (l = 2 m, mp = 0.3 kg, wind speed ≈ 0.5 m/s). . . 109

7.15. Snapshot of training data with random velocity step inputs for the North
and East axes (mp = 0.2 kg, l = 0.5 m). . . . . . . . . . . . . . . . . . . . . 110

7.16. Data-driven predictions of practical data for a model with both North and
East axis dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.17. Practical flight data and model predictions with an elongated payload for a
North velocity step input (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).112

7.18. Practical flight data and model predictions with an elongated payload for a
North velocity step input (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).113

7.19. Maximum %CPU used by the MPC node for different values of q (Ts = 0.03 s).114
7.20. Maximum % RAM used by the MPC node for different values of q. . . . . 115
7.21. Maximum % CPU used by the MPC node for different sample times (q = 50).116
7.22. Velocity step responses of MPC and PID controllers for HITL simulations

(q = 50, Ts = 0.03 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.23. Payload angle responses of MPC and PID controllers for HITL simulations

(q = 50, Ts = 0.03 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Stellenbosch University https://scholar.sun.ac.za



List of tables

2.1. Summary of literature considered regarding the swing damping control of
multirotors with suspended payloads. . . . . . . . . . . . . . . . . . . . . . 10

3.1. System parameters of the multirotor model. . . . . . . . . . . . . . . . . . 20

4.1. Input data ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1. System identification techniques paired with the corresponding controllers. 60
5.2. MPC configuration parameters. . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1. Physical parameters of Honeybee. . . . . . . . . . . . . . . . . . . . . . . . 91

A.1. The angular rate controller gains. . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. The angle controller gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3. The velocity controller gains. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.4. The position controller gains. . . . . . . . . . . . . . . . . . . . . . . . . . 136

xiv

Stellenbosch University https://scholar.sun.ac.za



Abbreviations

H∞ H-Infinity
2D Two-Dimensional
3D Three-Dimensional
6DOF Six-Degrees-of-Freedom
ADC Analog to Digital Converter
ADRC Active Disturbance Rejection Control
AIC Akaike’s Information Criteria
ARC Adaptive Robust Control
BBEL Bidirectional Brain Emotional Learning
BFBEL Bidirectional Fuzzy Brain Emotional Learning
BIC Bayesian Information Criteria
BISMC Back-Stepping Integral Sliding Mode Control
BS Back-stepping
CAFVI Continuous Action Fitted Value Iteration
CoM Centre-of-Mass
CPU Central Processing Unit
DCM Direct Cosine Matrix
DMD Dynamic Mode Decomposition
DMDc Dynamic Mode Decomposition with Control
EB Energy-Based
EI Extra Insensitive
EKF Extended Kalman Filter
ESL Electronic System Laboratory
ESO Extended State Observer
FC Flight Controller
FFA Federal Aviation Administration
FFT Fast Fourier Transform
GPS Global Positioning System
HAVOK Hankel Alternative View Of Koopman
HAVOKc Hankel Alternative View Of Koopman with

Control

xv

Stellenbosch University https://scholar.sun.ac.za



Abbreviations xvi

HITL Hardware-in-the-Loop
ILC Iterative Learning Control
iLQR iterative Linear Quadratic Regulator
IMU Inertial Measurement Unit
LPF Low Pass Filter
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MPC Model Predictive Control
MRAC Model Reference Adaptive Control
MRAE Mean Relative Absolute Error
MSE Mean Squared Error
NED North-East-Down
NF Notch Filter
NMAE Normalised Mean Absolute Error
NZV Negative Zero Vibration
OBC On-Board Computer
ODE Ordinary Differential Equation
PD Proportional Derivative
PE Percentage Error
PID Proportional Integral Derivative
POD Proper Orthogonal Decomposition
PWM Pulse Width Modulation
QGC QGroundControl
QP Quadratic Program
RAM Random Access Memory
RC Radio Control
RCAC Retrospective Cost Adaptive Control
RISE Robust Integral of the Sign of the Error
RL Reinforcement Learning
RLS Recursive Least Squares
ROS Robot Operating System
SINDy Sparse Identification of Non-linear Dynamics
SISO Single Input Single Output
SITL Software-in-the-Loop

Stellenbosch University https://scholar.sun.ac.za



Abbreviations xvii

SMC Sliding Mode Control
SVD Singular Value Decomposition
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
USB Universal Serial Bus
VTOL Vertical Takeoff and Landing
ZV Zero Vibration

Stellenbosch University https://scholar.sun.ac.za



Chapter 1

Introduction

1.1. Background
Recent years have seen a rise in the popularity of payload transportation with Unmanned
Aerial Vehicles (UAVs) [11]. These payloads are usually categorised as either a sensor or
freight [12]. Sensors like cameras or meteorological instruments can be carried by UAVs
for aerial photography or surveying. Payloads carried as freight include pesticides sprayed
over agricultural land, medical parcels carried to remote areas or consumer deliveries.

Commercial package deliveries with UAVs have become especially popular. In 2015, the
first Federal Aviation Administration (FFA) approved drone delivery was successfully
completed by Flirtey in the United States [13]. Domino’s pizza has also been delivered by
Flirtey multirotors in New Zealand [14]. Another commercial example includes Wing food
deliveries with multirotors in Australia [15].

Multirotor UAVs are commonly used for payload transportation tasks due to their hover
and Vertical Takeoff and Landing (VTOL) abilities. In some applications, a payload is
rigidly attached to the UAV. The flying characteristics of multirotors also allow them
to transport suspended payloads, which is useful for arbitrarily shaped payloads or for
delivering payloads without landing. In this configuration, the payload is suspended
below the vehicle with a cable and the payload is free to swing during flight. This
oscillatory motion affects the flight dynamics of the multirotor and makes stabilised control
a challenging task.

Control becomes even more difficult with increased uncertainty of the payload dynamics.
In some applications the payload dynamics are well known and constant, hence a controller
can be designed based on an accurate predetermined model of the dynamics. However,
package delivery applications often involve uncertainty of the payload parameters. Specific
payloads such as elongated payloads or fluid containers add even more uncertainty to the
system by inducing interesting dynamics which are also unknown before a flight. This
significantly affects the flight dynamics of a multirotor and the controller may need to
account for this uncertainty for effective control.

1
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In summary, multirotor payload transportation is becoming increasingly popular. The
suspended payload configuration offers strategic benefits but increases the difficulty of the
control task. Furthermore, the uncertainty in payload dynamics makes the control task
more challenging. In this study, a control architecture will be designed to address this
problem.

1.2. Project definition and objectives
This project aims to design and implement a control architecture for stabilised control of a
multirotor with an unknown suspended payload. The payload uncertainty should include
parameter uncertainty and model uncertainty. Furthermore, the oscillatory motion of the
payload significantly affects the multirotor dynamics. The proposed controller should be
compared to previous work involving a swing damping controller for a suspended payload
with an unknown mass and cable length.

In contrast to the architecture based on a predetermined model with only two unknown
parameters, the proposed architecture should assume no prior knowledge of the suspended
payload dynamics. A data-driven approach should be applied to estimate a dynamical
model of the unknown dynamics. Based on the estimated model, a controller should
stabilise the multirotor by actively damping the payload swing angles.

Therefore, the research objectives are stated as:

1. Investigate the literature regarding multirotor-payload controllers and specifically
consider solutions for unknown suspended payload dynamics.

2. Derive a dynamical model to describe a multirotor with a suspended payload.

3. Identify and implement a baseline architecture with a system identification and
control method for this system in simulation.

4. Design a data-driven system identification method for this system and implement it
in simulation.

5. Design a controller based on the proposed system identification model and implement
it in simulation.

6. Identify a hardware platform and software toolchain to implement the proposed
control architecture.

7. Implement and verify the data-driven system identification method with experimental
data from practical flights.
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8. Implement, simulate and verify the controller algorithms on the practical hardware
for effective swing damping control of the unknown suspended payload system.

1.3. Thesis outline
Chapter 1 provides the background of this research, the project definition and objectives,
and the thesis outline.

Chapter 2 presents a study of the literature regarding multirotor payload transportation,
with a focus on suspended payloads and uncertain payload dynamics.

Chapter 3 contains a derivation of a mathematical model for the multirotor and suspended
payload dynamics, which is used for simulations and controller design.

Chapter 4 describes the baseline and the proposed system identification methods considered
in this thesis. Furthermore, the performances of these methods are evaluated based on
tests with simulation data.

Chapter 5 describes the different controllers and the corresponding controller design
processes used in this project. Using the system identification models from the previous
chapter, the controllers are also applied to the multirotor-payload system in simulation
and the results are compared.

Chapter 6 provides an overview of the practical multirotor setup used for experimental
work with the proposed algorithms. Thereby, the hardware components, software toolchain,
and HITL simulations are discussed.

Chapter 7 presents and discusses the experimental results from implementing the system
identification methods with practical flight data. HITL results are also presented to test
the controller algorithms with the practical hardware and software systems.

Chapter 8 provides a summary of the work in this thesis. The major conclusions of this
work are also presented and future recommendations are discussed.
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Chapter 2

Literature study

This chapter will present a study of the literature regarding payload transportation with
multirotors. Firstly, an overview of different payload configurations and control techniques
for payload transportation will be discussed. Thereafter, the study will focus on control
techniques that consider suspended payloads. A summary will be provided of different
swing damping controllers proposed for the multirotor-payload system and a few literature
trends will be highlighted. The chapter will conclude with a summary of the literature
study and focus areas of this thesis.

2.1. Payload transportation with multirotors
The usage of Unmanned Aerial Vehicles (UAVs) for payload transportation has significantly
grown in popularity over recent years [11]. Multirotor UAVs are specifically useful for many
transportation applications due to their agility and Vertical Takeoff and Landing (VTOL)
capability. The types of payloads attached to multirotors can usually be categorised as
either a sensor (e.g. cameras and meteorological sensors), or freight (e.g. mail parcels or fire
extinguishing material) [12]. Furthermore, the payload attachment is mainly categorised as
either a rigid connection or a suspended connection [12]. In rare cases, a robotic actuator
is attached to the multirotor to manipulate a payload [16, 17]. Figure 2.1 shows practical
implementations of these three payload configurations.

(a) Rigid connection [18]. (b) Suspended cable [19]. (c) Robotic actuator [20].

Figure 2.1: Different multirotor-payload configurations.

4
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2.1.1. Rigid connection payloads

Payloads are often rigidly attached to a multirotor for transportation. This configuration
is especially popular for commercial package deliveries [21]. In this use case, the mass and
size of the payload are often unknown before a flight. There is minimal relative movement
between the multirotor and the rigidly connected payload. Therefore, the payload only
affects the Centre-of-Mass (CoM), the moment of inertia, and the aerodynamics of the
vehicle.

Different control approaches have been proposed to deal with the altered flight dynamics
in this applications, including Adaptive Robust Control (ARC) [22] and Model Reference
Adaptive Control (MRAC) [23]. These control architectures mostly involve a parameter
estimation algorithm to estimate the inertial parameters, and an adaptive control law
based on the estimated parameters and the predetermined dynamical model of the system.

An advantage of rigidly connected payloads is that the flight dynamics is not altered
significantly. The payload does not add a degree of freedom to the system and only the
inertial parameters need to be accounted for. However, this configuration limits the shape
and size of a potential payload, because the payload needs to be compatible with the
vehicle gripper. The multirotor also needs to land or approach the payload closely to
attach to the payload, which may be impractical in many applications.

2.1.2. Suspended payloads

Figure 2.2 shows an example of a practical application of a suspended payload used during
search and rescue missions. The shape and mass of the payload affect the flight dynamics,
but the payload parameters are often unknown before a flight. The control system should
be able to account for these uncertainties and fly well despite the altered flight dynamics.

Various suspended payload configurations have been considered in literature. The classical
suspended payload application involves a small payload suspended below the vehicle with
a rigid link [2, 6, 24, 25, 26, 27]. Kotaru et al. [28] considered a suspended payload system
with an elastic cable modelled as a spring-damper system. Tang and Kumar [29] modelled
the multirotor-payload system with a hybrid dynamical model to consider aggressive
manoeuvres where the cable transitions from taut to slack. The transportation of payloads
with flexible cables have also been studied, where the cable is modelled as a set of serially
connected rigid links [30, 31, 32]. Furthermore, the control of a group of multirotors
cooperatively transporting a suspended payload was also considered in various studies
[30, 33, 34, 35].
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Figure 2.2: A practical suspended payload used for search and rescue missions [1].

From numerous examples in literature, it is clear that the control of multirotors with
suspended payloads is a popular research topic. The suspended payload configuration is
useful in situations where a multirotor cannot land since the payload can be attached
during hover. This configuration also has the advantage that a payload can have an
arbitrary shape or size as long as it has an attachment point for a cable. However, the
suspended payload increases the degrees of under-actuation of the system, which makes
the control problem challenging [32].

2.2. Control of multirotors with suspended payloads
A major drawback of transporting a suspended payload is that the payload is free to swing
during flight, which affects the dynamics of the multirotor. Two main control strategies
are applied in the literature to stabilise a multirotor with a suspended payload, namely,
trajectory generation and swing damping control. Some methods combine the two methods
into a single control architecture. Trajectory generation methods involve determining
multirotor trajectories that result in minimal oscillations or specific payload trajectories.
Swing damping control involves feedback controllers that apply a control law to actively
counteract the swing of a payload.

2.2.1. Trajectory generation

Trajectory generation methods for suspended payload systems are based on open-loop
control techniques. The objective of these techniques is to determine a trajectory in which
the multirotor motion would induce a specific payload trajectory to reduce oscillations
or avoid obstacles. Numerous trajectory generation methods have been explored in the
literature for suspended payload transportation.
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Zeng et al. [36] and Tang and Kumar [29] applied differential flatness based trajectory plan-
ning methods for multirotors in obstacle-filled environments. Instead of only considering
swing reduction of the suspended payloads, these studies consider specific payload traject-
ories to avoid obstacles during aggressive motion. Xian et al. [37] proposed an efficient
online trajectory planning method without iterative optimizations. The swing-reduction
performance of this method was verified with experimental results.

Dynamic programming methods have also been implemented to generate swing-free tra-
jectories with suspended payloads [38, 39, 40]. These methods require accurate models
of the plant dynamics and are sensitive to the accuracy of these models. Reinforcement
Learning (RL) methods do not require prior models of the dynamics and have also been
applied for swing-free trajectory generation [41, 42]. Faust et al. [42] implemented a RL
method for minimal swing trajectories which provides sufficient criteria to allow the learned
policy to be transferred to a variety of different models, starting positions, and trajectories.
Furthermore, this RL trajectory generation method was verified with experimental results.

Input shaping is another open-loop control method applied for minimal swing control that
is related to trajectory planning. This technique involves modifying a reference signal,
usually with a set of timed impulses, to cancel the oscillatory modes of a system [43]. These
techniques were originally designed for transporting suspended payloads using gantry
systems [44, 45]. Later, these input shaping techniques were also applied for reduced swing
control of helicopters [46, 47] and multirotors [48, 49, 50] that carry suspended payloads.

Ichikawa et al. [26] compared different input shaping techniques for velocity control of a
multirotor with a suspended payload in simulations. The specific input shaping techniques
considered were: Zero Vibration (ZV), Negative Zero Vibration (NZV), Extra Insensitive
(EI), and 2-hump EI. These methods convolve a baseline input command with precisely
timed impulses based on the length of the suspended cable. Simulation results showed
that the input shapers significantly decreased the residual payload oscillations compared
to a baseline velocity controller. The study highlighted that EI and 2-hump EI were more
robust to cable length uncertainty than ZV and NZV.

Slabber and Jordaan [2] considered a system with unknown payload parameters and
applied a notch filter to reduce payload oscillations for velocity control of a multirotor in
simulation. The unknown payload mass and cable length were estimated with Recursive
Least Squares (RLS) and Fast Fourier Transform (FFT) parameter estimators respectively
and the natural frequency was calculated based on these estimates. The notch filter could
then be designed to suppress the frequency band containing this natural frequency and
was applied to the velocity setpoint signal. It was shown in simulation that the notch filter
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attenuated the payload oscillations to a near swing-free motion despite large parameter
estimation errors [2].

2.2.2. Swing damping controllers

Swing damping control is a closed-loop method where a feedback controller is applied to
reduce the payload swing angles during a flight. This control method is also referred to as
active vibration damping. Instead of finding a trajectory that reduces oscillations, these
controllers follow a given trajectory as close as possible while trying to reduce the payload
oscillations.

Linear Quadratic Regulator (LQR) is a popular optimal control technique and has often
been used as a baseline controller to evaluate the performance of other swing damping
controllers [2, 51, 52, 53, 54, 55]. Erasmus and Jordaan [56] proposed a Linear Quadratic
Gaussian (LQG) controller for swing damping control of a multirotor with suspended
cable. The payload state remained unmeasured and a Extended Kalman Filter (EKF)
was implemented for full-state estimation of the multirotor-payload system. The EKF
was combined with an LQR full-state feedback controller to produce LQG control. Simu-
lation results showed good swing damping control with position step inputs despite the
unmeasured payload state, external disturbances, sensor noise, and parameter uncertainty.

Figure 2.3: Notch filter and LQR control architecture [2].

Slabber and Jordaan [2] implemented a LQR controller augmented with a notch filter
input shaper for improved swing damping performance. This control architecture is shown
in Figure 2.3. The notch filter was applied to the velocity step reference and the LQR was
then applied with the filtered reference signal for swing-damping control. The LQR was
designed with integral action added to the velocity state to ensure zero steady-state velocity
tracking. Furthermore, this work involved estimating the unknown payload state with
a vision-based estimator for use in the full-state feedback controller. Simulation results
showed that this controller provided good swing damping performance in the presence of
external disturbances, sensor noise, and parameter uncertainty.
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Model Predictive Control (MPC) is an optimal control technique related to LQR and can
also be applied to suspended payload systems. Notter et al. [55] implemented an MPC
for active swing damping control of a multirotor with a suspended payload. A non-linear
model of the multirotor-payload system was linearised and discretised to apply a discrete,
linear MPC formulation. The physical parameters of the multirotor, cable, and payload
were assumed to be exactly known and the controller was tested with only one payload.
The controller received a position trajectory reference and determined force setpoints to
control the vehicle. Furthermore, constraints were applied to the height, attitude, and
control inputs to ensure safe flight manoeuvres. Simulation results showed a superior
trajectory tracking performance with the MPC compared to a baseline LQR controller.
The MPC simulation results were also verified with experimental results in an indoor
environment.

Santos et al. [57] implemented a robust tube-based MPC for trajectory tracking and
payload stabilisation of a tilt-rotor UAV and suspended payload. This approach consists
of a pre-stabilising control policy for the nominal system and an additive control policy
for the mismatch error. The MPC was applied as an outer-loop position controller and a
mixed H2/H∞ controller was applied for inner-loop attitude control. Integral action is
applied in the MPC to the position states to ensure zero steady-state error despite external
disturbances and modelling errors.

The tube-based MPC was designed to be robust against the additive uncertainties from
the decoupling, linearization and discretisation modelling errors. However, the physical
parameters of the model were assumed to be exactly known and non-additive parameter
uncertainty was not considered. Simulation results showed successful stabilised control of
the system along a square-like trajectory with sharp corners.

In other studies, more types of controllers were applied for active swing damping and these
studies will be discussed in Section 2.3. Swing damping controllers generally perform better
than open-loop, trajectory generation methods for systems with model uncertainties and
external disturbances [58]. This is expected since trajectory generation requires accurate
plant models and small modelling uncertainties can significantly alter a trajectory. The
remainder of this study will focus on swing damping controllers.
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Table 2.1: Summary of literature considered regarding the swing damping control of multirotors with suspended payloads.

Author Year
Proposed
controller

Baseline
controller

Plant
model

Parameter
uncertainty

Unknown
dynamics

Different
payloads

Practical
data

Outdoor
experiments

Muthusamy et al. [5] 2021 BFBEL PID - ✓ ✓ ✓

Allahverdy et al. [59] 2021 BISMC with ILC - non-linear ✓ ✓

Faust et al. [60] 2014 RL (CAFVI) - - ✓ ✓ ✓

Wang et al. [4] 2020 ADRC PID linear ✓ ✓ ✓ ✓

Hua et al. [61] 2021 RL (non-linear) BS, EB non-linear ✓ ✓

Taylor et al. [62] 2020 H∞ loop-shaping LQR linear ✓ ✓

Erasmus and Jordaan [6] 2020 MRAC LQR linear ✓ ✓ ✓ ✓

Slabber and Jordaan [2] 2020 NF with LQR PID linear ✓ ✓

Dai et al. [63] 2014 RCAC - non-linear ✓

Santos and Raffo [64] 2016 MPC - linear ✓

Andrade et al. [65] 2016 MPC LQR linear ✓

Zurn et al. [66] 2016 MPC - linear ✓

Son et al. [67] 2019 MPC - linear ✓

Son et al. [68] 2018 MPC - linear ✓

Son et al. [69] 2017 MPC - linear
Trachte et al. [51] 2014 MPC LQR non-linear
Trachte et al. [70] 2015 MPC LQR non-linear
Liang et al. [58] 2021 Non-linear LQR, PD non-linear ✓ ✓

Zeng and Sreenath [71] 2019 Geometric - non-linear
Yang and Xian [72] 2018 RISE - non-linear
Martinez-Vasquez et al. [73] 2020 SMC - linear
Mosco-Luciano et al. [74] 2020 BS - linear ✓

Rigatos et al. [75] 2018 H∞ - linear
Alothman et al. [76] 2015 LQR PD linear
Alothman and Gu [54] 2016 iLQR LQR linear

Refer to page (xvii) for the abbreviations used in this table.
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2.3. Review of swing damping control studies
This section will discuss trends in the literature regarding the swing damping control of
multirotors with suspended payloads. Table 2.1 lists other studies in the literature that
consider this topic. The entries of this table are ordered to keep similar studies together,
with a priority on unknown dynamics, parameter uncertainty, and proposed controllers.
Studies that exclusively consider trajectory generation or cooperative transportation of a
payload with multiple multirotors are excluded from this table. From Table 2.1, it is clear
that suspended payload transportation with multirotors is a popular and current research
topic.

For each study in Table 2.1, the type of proposed controller is listed along with a baseline
controller if applicable. Baseline controllers are techniques considered to be well-known
that are applied to a task for a reference performance used to evaluate a proposed technique.
Other studies compare variations of the proposed controller to each other to highlight the
effect of design decisions, but these comparisons are not considered as baseline comparisons.

Many studies in Table 2.1 do not consider a baseline controller, which makes it difficult
to evaluate the performance of the proposed technique objectively. These studies can
conclude that the proposed technique solves the considered problem, but can not determine
whether the technique improves on the performance of known controllers. However, from
Table 2.1 it is clear that LQR is a popular baseline controller for swing damping techniques
and especially for optimal control techniques.

From the studies considered in Table 2.1, it also appears that MPC is a popular technique for
the considered control problem. Historically, MPC was designed for slow-moving processes
in the chemical industry because the computational intensity of this method limited the
controller frequency on the available hardware [77]. However, due to improvements in the
speed of computational hardware, MPC has become a viable controller for faster systems.
Various MPC implementations were successfully applied in experimental flight tests which
shows that MPC is suitable for practical multirotor implementations [66, 67, 68].

It is also noted that most proposed controllers, including MPC implementations, are based
on a linearised plant model of the non-linear multirotor-payload dynamics. This shows
that a linearised plant model can provide a sufficient representation of the suspended
payload dynamics for effective swing damping control. Non-linear MPC implementations
that depend on a non-linear plant model have also been studied for multirotors with
suspended payloads [51, 70]. However, the non-linear MPC results were not compared
to linear MPC results, therefore the studies do not conclusively justify the need for a
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non-linear plant model. Non-linear MPC is more computationally intensive than linear
MPC, which makes it more challenging to implement in practical flights. None of the
studies considered in Table 2.1 that were implemented on practical systems used non-linear
plant models. However, some practical implementations apply controllers which do not
depend on a plant model [5, 60, 61].

Note from Table 2.1, that many studies only consider the proposed controllers in simulations
and do not include practical data. Practical data may include sensor noise, modelling
uncertainties, external disturbances, and other computational hardware effects such as
latency that are often not considered in simulations. Unlike simulation results, experimental
results clearly show that a proposed method is suitable for real-life applications. It also
shows that the proposed algorithms can run in real-time on the available hardware, which
is a challenge for complex techniques.

Figure 2.4: Optitrack motion capture system for multirotor experiments [3].

It is also noted that few studies in the literature consider outdoor flights. Most studies only
consider practical flights performed in controlled indoor environments. Figure 2.4 shows
an indoor motion capture setup used for multirotor experiments. In these experiments,
motion capture systems like Vicon [5, 60, 61, 66, 67, 68], Qualisys [58] or Optitrack [74]
provide high accuracy state feedback data. However, this setup is often impractical for
real-life multirotor applications.

Outdoor payload transportation depends on inaccurate sensors like Global Positioning
System (GPS) and potentiometers, which greatly increase the difficulty of the control
problem. The multirotor-payload system may also be exposed to uncontrolled wind
disturbances which further complicates the control problem. Figure 2.5 shows a multirotor
in an outdoor practical experiment with a suspended payload [4].
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Figure 2.5: Multirotor and suspended payload for outdoor experiments [4].

As observed by Hua et al. [61], most reported controllers in the literature are designed
based on accurate plant models without considering dynamical uncertainties in the studies.
This is also evident from the literature listed in Table 2.1. The Parameter uncertainty
column identifies studies that account for parameter uncertainty in the considered plant
model. These controllers either apply robust techniques [62] to ensure stability despite
the parameter uncertainty, or adaptive techniques [63] to change the control law to result
in improved control with the resultant dynamics. Other controllers combine robust and
adaptive techniques into a single control architecture [2, 6].

The Different payloads column identifies studies that consider more than one payload.
It is interesting to note that few studies test the proposed controllers on more than one
payload. Some studies proposed controllers to account for parameter uncertainty, but only
tested the controller on a single payload case. This does not conclusively demonstrate the
adaptability or robustness of a controller, because the payload could be cherry-picked or
the controller could be specifically tuned for that payload only. Therefore, it is noted that
it is valuable to demonstrate a controller on multiple payload cases.

In Table 2.1, the Unknown dynamics column identifies studies that account for unknown
dynamics of a multirotor with a suspended payload. This does not include the uncertainty
due to modelling errors as a result of linearisation and discretisation methods. Studies
identified by this column propose stabilising controllers that are not design without a priori
knowledge of the payload dynamics. This approach is considered useful for complicated
working conditions and model uncertainties [61]. This appears to be a promising research
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area that has been considered in only a few different studies. It is also interesting to note
that these studies are quite recently published.

2.4. Multirotor and suspended payload systems with
unknown dynamics

Only a few studies have been identified that consider the stabilised control of a multirotor
and suspended payload without prior knowledge of the payload dynamics [4, 5, 59, 60].
Some methods are not based on a plant model and learn a stabilising control law without
prior knowledge of the dynamics [5, 60]. Other strategies control the multirotor with
a model-based method and consider the effect of the suspended payload as an external
disturbance [4, 59]

Figure 2.6: Controller structure proposed by Muthusamy et al. [5].

Muthusamy et al. [5] proposed a Bidirectional Fuzzy Brain Emotional Learning (BFBEL)
controller which incorporated fuzzy inference, neural networks and the Bidirectional Brain
Emotional Learning (BBEL) algorithm. A separate BFBEL feedback controller was applied
to each degree of freedom of the Six-Degrees-of-Freedom (6DOF) multirotor system, as
shown in Figure 2.6. The payload state remained unmeasured and the objective of the
controller was to stabilise the multirotor system and provide accurate position tracking
without knowledge of the multirotor-payload dynamics. Experimental results demonstrated
the rapid adaptation capability and the trajectory tracking performance of the proposed
BFBEL controller. Without prior knowledge of the system, the controller weights were
autonomously tuned within 30 s of flight time to provide stable trajectory tracking with the
multirotor. However, the payload state was not explicitly measured or damped, causing
residual oscillations in the position data of the multirotor.

An Active Disturbance Rejection Control (ADRC) was proposed by Wang et al. [4] for
the control of a multirotor with an unknown suspended payload. A transfer function
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model of a practical multirotor without a payload was determined with a frequency sweep
excitation method of each control channel. The effect of the suspended payload was
considered as an external disturbance and Extended State Observers (ESOs) were applied
to estimate the disturbance. An ADRC could then actively reject the disturbance caused
by the payload and stabilise the system without prior knowledge of the payload dynamics.
Experimental results showed that trajectory tracking was significantly improved compared
to a standard Proportional Integral Derivative (PID) controller. Note that this technique
did not show significant swing damping performance but rather showed robustness against
the disturbance effect of the swinging payload.

These methods provide stabilised control of the multirotor, but do not provide optimised
control of the entire multirotor-payload system. These controllers focus on counteracting
the current swinging payload disturbance but does not learn how to directly control the
unknown payload.

System identification methods can determine a model of the unknown dynamics and a
controller could be designed based on the identified plant model. This could provide
improved control of the entire dynamical system. Control architectures involving data-
driven model identification and resultant model-based controllers have been proposed for
multirotors [4, 78]. However, we were not able to find similar studies in the literature that
involves an unknown suspended payload.

2.5. Summary
This chapter reviewed a range of different control solutions for multirotors with suspended
payloads. A few observations were made regarding the literature on this subject. The
main observations are:

1. Most of the studied controllers are based on accurate models of the system dynamics.

2. Swing damping methods perform better than trajectory generation methods when
considering model uncertainty.

3. Many studies consider some parameter uncertainty, but only a few studies consider
unknown system dynamics.

4. Only a few studies that account for parameter uncertainty are also demonstrated
with different payload parameters.

5. Methods that consider unknown system dynamics usually consider the suspended
payload as an unknown disturbance and do not attempt to actively control the
payload.
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6. No studies were found in the literature that consider data-driven system identification
and control of multirotors with suspended payloads.

The focus of this thesis will involve the stabilised control of a multirotor with an unknown
suspended payload. The dynamics of the suspended payload system will be considered
unknown before a flight. Furthermore, the proposed controller will be based on an
estimated model of the multirotor-payload dynamics and it will be tested on different
payloads.
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Chapter 3

Modelling

In this chapter, a non-linear mathematical model of a multirotor with a suspended payload
will be derived. The model will be based on the multirotor named Honeybee, which was
built by Grobler and Jordaan [10].

The chapter starts by defining the coordinate frames and types of rotations used in this
work. After a discussion of the different forces and moments acting on this vehicle, a
6DOF model of the multirotor vehicle will be derived. The derivation of the suspended
payload model will also be shown. Finally, practical flight data will be used to verify the
simulated mathematical model.

3.1. Coordinate frames
Honeybee is a quadrotor vehicle, which is a type of multirotor with four propellers. The
quadrotor X-configuration is considered in this work. Figure 3.1 shows the quadrotor
schematic and the two coordinate frames used to describe this system.

Figure 3.1: Inertial and body coordinate frames of a quadrotor [6].

17
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The inertial frame is denoted by I = {x̄I , ȳI , z̄I} and describes a North-East-Down (NED)
axis system. The x, y, and z axis, align with the North, East, and Down inertial directions
respectively. The inertial frame assumes a flat, non-rotating earth since the multirotor
travels small distances in comparison to the curvature of the earth. The origin of this
frame is fixed at the takeoff location of the multirotor.

The body frame is denote by B = {x̄B, ȳB, z̄B} and is fixed to the multirotor body. The
origin of this frame is at the CoM of the vehicle and the x, y, and z axes, align with the
forwards, rightwards, and downwards directions of the multirotor body respectively. The
body frame is defined by a translation and rotation relative to the inertial frame. The
mathematical representation of rotations is be discussed in the section below.

3.2. Rotations
The rotation of the body frame relative to the inertial frame is referred to as the attitude of
the multirotor. In this work, the attitude is defined in terms of Euler angles or quaternions.

3.2.1. Euler angles

Euler angles describe a Three-Dimensional (3D) rotation as a sequence of three consecutive
elementary rotations [79]. The ZYX-sequence is commonly used for aircraft applications
[79] and is also used in this work. The order of rotations are:

1. Rotate the body frame about the z-axis by the yaw angle, Ψ.

2. Rotate the resulting frame about the new y-axis by the pitch angle, Θ.

3. Rotate the resulting frame about the new x-axis by the roll angle, Φ.

Figure 3.2: Illustration of Euler angles [2].
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Figure 3.2 gives a simple illustration of the Euler-ZYX angles. For simplicity in the
illustration, Θ and Φ are each shown as a pure pitch and roll angle, without a prior Euler
rotation.

3.2.2. Quaternions

Quaternions provide a way of representing a rotation with four parameters. An advantage
of quaternions is that it does not have mathematical singularities as Euler angles do
[79]. A quaternion defines a 3D rotation as a single rotation about a fixed axis. This is
parametrized by a rotation angle, α, and a unit vector, r.

A unit quaternion is defined as,

q = [q0 q1 q2 q3]T =

q0

qv


 =


 cos(α

2 )
r sin(α

2 )


 , (3.1)

where q0 is the magnitude component and qv is the vector component of the quaternion.

A Euler-ZYX angle representation, [Θ Φ Ψ], can be converted to a quaternion using [79],

q(Θ, Φ, Ψ) =




cos Φ
2 cos Θ

2 cos Ψ
2 + sin Φ

2 sin Θ
2 sin Ψ

2

− cos Φ
2 sin Θ

2 sin Ψ
2 + cos Θ

2 cos Ψ
2 sin Φ

2

cos Φ
2 cos Ψ

2 sin Θ
2 + sin Φ

2 cos Ψ
2 sin Ψ

2

cos Φ
2 cos Θ

2 sin Ψ
2 − sin Φ

2 cos Ψ
2 sin Θ

2




. (3.2)

The inverse of a quaternion is defined as,

q−1 =


 q0

−qv




√
q02 + q12 + q22 + q32 . (3.3)

Furthermore, the multiplication of two quaternions, q and q′, is given by [79]:

q · q′ = Q(q)q′, (3.4)

where

Q(q) =




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




. (3.5)
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Successive rotations can therefore be represented mathematically by quaternion multiplic-
ation. These equations will be referred to and used in subsequent chapters.

3.3. Multirotor model
The multirotor is modelled as a 6DOF rigid body. This includes three translational and
three rotational degrees of freedom. This modelling process is well described by [2] and
[6], and the same general procedure is used here.

The system parameters describing the physical properties of the multirotor are listed in
Table 3.1.

Table 3.1: System parameters of the multirotor model.

Symbol Description

mQ Mass of multirotor
d Distance from CoM to each motor
RN Virtual yaw moment arm
τ Motor-propeller pair time constant
Ixx Mass moment of inertia about x̄B
Iyy Mass moment of inertia about ȳB
Izz Mass moment of inertia about z̄B
CQX

Aerodynamic drag coefficient in x̄B direction
CQY

Aerodynamic drag coefficient in x̄B direction
CQZ

Aerodynamic drag coefficient in x̄B direction

The inertia tensor of the multirotor is defined as,

IQ =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 ≈




Ixx 0 0
0 Iyy 0
0 0 Izz


 . (3.6)

The multirotor is assumed to be symmetrical about the XZ- and Y Z-plane, therefore the
inertia tensor can be approximated as a diagonal matrix as shown in Equation 3.6.

The linear velocity and angular velocity of the multirotor within the body frame is denoted
by,

VB =
[
VBX

VBY
VBZ

]T
, and (3.7)

ΩB =
[
ΩBX

ΩBY
ΩBZ

]T
. (3.8)
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Furthermore, the sum of forces and sum of moments acting on the multirotor in the body
frame are denotes by,

FB =
[
FBX

FBY
FBZ

]T
, and (3.9)

MB =
[
MBX

MBY
MBZ

]T
. (3.10)

As described by [6], these equations can be used with Newton’s second law to derive the
rigid body equations of motion as,

FB = mQV̇B + ΩB × mQVB, (3.11)
MB = IQΩ̇B + ΩB × IQVB, (3.12)

This provides a set of Ordinary Differential Equations (ODEs) which fully describe the
multirotor motion in 6DOF, given the forces and moments acting on the vehicle. With the
equation derived in [80], the attitude of the multirotor can be obtained as a quaternion
from the body angular rates using,




q̇0

q̇1

q̇2

q̇3




= 1
2




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0







0
ΩBX

ΩBY

ΩBZ




. (3.13)

The Direct Cosine Matrix (DCM) is also derived in [80] and can be calculated from the
attitude quaternion as,

RV =




q2
0 + q2

1 + q2
2 + q2

3 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)
2 (q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3


 . (3.14)

RV is the transformation matrix that describes the rotation from the body frame to the
inertial frame such that,

VI = R−1
V VB (3.15)
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3.4. Forces and moments
Different phenomena apply forces and moments to the multirotor during flight. The total
force and moment acting on the multirotor in the body frame are given by,

FB = F T
B + F A

B + F G
B + F P

B and (3.16)
MB = MT

B + MA
B + MG

B + MP
B . (3.17)

The phenomena that cause the different forces and moments are denoted by the superscripts,
T, A, G, and P, which refer to actuator thrust, aerodynamic drag, gravity, and the payload
respectively. These phenomena are also considered and modelled by [2] and [6].

Actuator thrust
A multirotor has four rotors which each produce a thrust as shown in Figure 3.1. However,
the actuators collectively apply a force, F T

B , and moment, MT
B , to the vehicle. This force

and moment can be represented in terms of virtual actuator thrusts as,

F T
B =




0
0
δT


 and MT

B =




d · δA

d · δE

RN · δR


 , (3.18)

where d is the distance from each motor to the multirotor CoM and RN is the virtual yaw
moment arm which is a property of the motor-propeller configuration. The virtual aileron,
elevator, and rudder actuator thrusts are denoted by dδT , dδA, dδE, and dδR, respectively.
These values are calculated with a mixing matrix, such that,




δT

δA

δE

δR




=




1 1 1 1
− 1√

2
1√
2

1√
2 − 1√

2
1√
2 − 1√

2
1√
2 − 1√

2
1 1 −1 −1







T1

T2

T3

T4




, (3.19)

where T = [T1 T2 T3 T4]T is a vector of actual thrust forces produced by the four
individual rotors. Each motor-propeller pair receives a thrust setpoint and produces a
corresponding thrust. This is modelled with a first order differential equation given by,

Ṫ = Tsp − T

τ
, (3.20)

where Tsp is a vector of thrust setpoints corresponding to T , and τ is the time constant of
the motor-propeller configuration.
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Aerodynamics
Multirotors experience aerodynamic forces due to the relative velocity of air over the
vehicle. The aerodynamic model is based on work done by [81] and was also applied
successfully by [2] and [6]. The model describes the aerodynamic forces as,

F A
B = 1

2ρVBw |VBw |CQ (3.21)

where ρ is the air density, VBw is the relative velocity of air over the multirotor in the body
frame, and CQ = [CQX

CQY
CQZ

]T is the drag coefficients and reference areas lumped
into a single damping coefficient per axis. The relative velocity, VBw , is calculated as

VBw = −VB + RV Vw, (3.22)

where Vw is the wind velocity in the inertial frame. It is assumed that no moments are
caused by aerodynamics, such that,

MA
B =




0
0
0


 . (3.23)

Gravity
Gravity applies a vertical force to the multirotor in the inertial Down axis. The inertial
force is transformed into the body frame with the DCM. No moments are applied to the
multirotor due to gravity. Therefore, the total force and moment acting on the multirotor
due to gravity is,

F G
B = RV




0
0

mQg


 and MG

B =




0
0
0


 . (3.24)

Suspended payload
The suspended payload applies a reaction force, F P

B , and moment, MP
B , to the multirotor

which depends on the dynamics of the suspended payload. The payload and cable also
experience gravity and aerodynamic forces which influence its motion. These forces and
moments are considered in greater detail in the next section.

3.5. Suspended payload model
The dynamical model of the multirotor is now fully defined, except for the force and
moment applied to the vehicle by the payload. The suspended payload can be modelled
as a rigid body attached to the multirotor by a rigid link. Due to the acceleration of the
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payload, the payload applies a force to the multirotor through the link. The suspended
payload equations of motion are derived to define these forces and complete the dynamical
model of the multirotor-payload system.

Figure 3.3 illustrates a multirotor with a suspended payload, where mp is the mass of the
payload, and l is the length of the suspended cable. The x-axis and y-axis Euler-ZYX angles
in the inertial frame are denoted by θ and ϕ respectively. Furthermore, rQ = [xQ yQ zQ]T

defines the position of the multirotor CoM in the inertial frame. Likewise, rp = [xp yp zp]T

defines the position of the payload in the inertial frame.

Figure 3.3: Schematic of a multirotor with suspended payload [2].

3.5.1. Payload assumptions

The following major assumptions are made regarding the payload model:

• The payload is a point-mass.

• The link is massless.

• The link is rigid.

• The link is attached to the CoM of the multirotor.

The payloads used in the practical setup (described in Chapter 6) are small relative to
the multirotor and the attachment point is close to the payload CoM. The payloads are
attached with a low-friction joint to the suspended cable and the rotation of the payload
around the cable axis has a negligible effect on the multirotor. Therefore, modelling the
payload as a point-mass appears to be a reasonable approximation.
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The cable has a low mass in comparison to the payloads used and has a negligible amount
of stretch. The cable remains straight and rigid during flight due to the tension applied by
the payload. Aggressive manoeuvres could cause periods of zero cable tension where the
load is in free-fall and the cable is slack [29]. However, such aggressive manoeuvres are not
considered in this work and the assumption of a rigid, massless cable appears reasonable.

In the practical setup shown in Chapter 6, the cable attachment appears to be near to the
CoM of the multirotor. It is assumed that even if the attachment point is slightly below
the actual CoM, this has a negligible effect on the dynamics and can still be approximated
by a CoM attachment. Due to this assumption, the payload cannot apply a moment to
the multirotor, hence the multirotor attitude dynamics is decoupled from the payload
dynamics. Therefore, the multirotor can be modelled as a point-mass when considering
the payload equations of motion.

3.5.2. Lagrangian

Lagrangian mechanics is an energy-based modelling approach that can be used to derive
differential equations to describe a system [6]. The dynamical equations of the suspended
payload system were derived by [2] and the derivation in this work follows a similar
approach. It is important to note that the derivation in this section considers the payload
dynamics as a function of the motion of the multirotor CoM.

The payload position is defined as a function of the multirotor position in the inertial
frame by the equation,

rp =




xp

yp

zp


 =




xQ + l cos ϕ sin θ

yQ + sin ϕ

zQ + l cos ϕ cos θ


 . (3.25)

The vector of generalised coordinates, p, of the system can now be defined as,

p =




xp

yp

zp

ϕ

θ




. (3.26)

The kinetic energy, Tp, and potential energy, Vp, of the payload can be determined as,

Tp = 1
2mp|ṙp|2, and (3.27)

Vp = −mpgzp, (3.28)
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where g is the acceleration due to gravity. Note that these energy equations describe the
system modelled as two point-mass bodies and do not consider the attitude dynamics of
the multirotor. The Lagrangian can now be determined as,

L = Tp − Vp. (3.29)

3.5.3. Non-conservative forces

Non-conservative forces and moments refer to effects that add or remove energy from
the system. The non-conservative forces and moments acting on the payload include the
aerodynamic drag force acting on the payload and the moment caused by the friction
of the cable attachment. It is assumed that the cable is thin and short enough that the
aerodynamic drag of the cable is negligible.

According to the aerodynamic model presented in Equation 3.21, the aerodynamic drag
forces acting on the payload in the inertial frame are defined as,

F A
p =




F A
px

F A
py

F A
pz


 =




1
2 ρ Cp ẋp

2

1
2 ρ Cp ẏp

2

1
2 ρ Cp żp

2


 , (3.30)

where Cp is the lumped aerodynamic drag coefficient and reference area of the payload. It
is assumed that the lumped payload drag coefficients are equal in all three axes, hence it
is described by a single coefficient.

Friction at the cable attachment is modelled as linear damping. It is assumed that the
coefficient of friction is equal in each axis of rotation. Therefore, the friction moments
opposing the θ and ϕ rotations are given by,

MF
θ = −cθ̇, and (3.31)

MF
ϕ = −cϕ̇, (3.32)

respectively, where c is the rotational friction coefficient for θ and ϕ rotations. A vector,
Q, of non-conservative forces and moments corresponding to the system coordinates in p

can now be defined as,

Q =




−F A
px

−F A
py

−F A
pz

MF
θ − F A

py
cos ϕ

MF
ϕ − F A

px
cos θ




. (3.33)
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3.5.4. Equations of motion

The set of Euler-Lagrange equations for this system are described by,

d

dt

(
∂L
∂ṗj

)
− ∂L

∂pj

= Qj, (3.34)

where pj is an element in p, Qj is the corresponding element in Q, and j = {1, 2, 3, 4, 5}.
This set of coupled equations was solved with the Symbolic Maths Toolbox™ [82] in
MATLAB® to determine the payload equations of motion. This yields a set of ODEs in
the form,

p̈ = f(ṗ, p, r̈Q, ṙQ), (3.35)

which describes the motion of the payload as a function of the motion of the multirotor
CoM in the inertial frame.

3.5.5. Payload forces acting on the multirotor

The reaction force applied to the multirotor due to the payload can now be determined in
the inertial frame as,

F P
I = mQr̈P

Q, (3.36)

from Newton’s second law, where r̈P
Q represents the component of the multirotor accelera-

tion caused by the suspended payload. This force can be represented in the body frame
as,

F P
B = RV F P

I . (3.37)

The set of ODEs represented by Equation 3.35 provides a coupling between the multirotor
and payload dynamics. The multirotor-payload system can now be simulated from a given
initial condition with an ODE solver in Simulink™.

3.6. Model verification
To verify whether the non-linear simulation model derived in this chapter is an accurate
representation of the real-world dynamics, the simulation data is verified against practical
data. A North velocity step response was performed in a practical flight with a multirotor
to verify the multirotor model without a payload. This multirotor will be described in
Chapter 6.

This flight was performed on a day with almost no wind to minimise the effect of wind
disturbances in the comparison. Starting from the same initial condition, a velocity step
setpoint was commanded in a simulation and the resulting simulation data was compared
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to the practical flight data. The results compare the combined multirotor and controller
simulation model to the practical flight data. The Simulink™ simulation environment
used here includes the dynamics of the default multirotor controllers and will be further
discussed in Chapter 5.
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Figure 3.4: Comparison of simulated and practical data from Honeybee.

Figure 3.4 shows the velocity step responses of a practical and a simulated flight. From
a visual inspection of the plots, it is clear that the velocity responses match well. Note
that the practical velocity curve is slightly more irregular and not as smooth as the
simulated curve. This may be due to slight wind disturbances or sensor noise, which are
not considered in the simulation.
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Figure 3.5: Velocity step comparison of simulated and practical data for Honeybee with
a suspended payload.
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The same procedure was followed to verify the multirotor with a suspended payload model.
Figure 3.5 compares the practical and simulated velocity step responses with a suspended
payload attached to the vehicle. The velocity curve shapes matches well in this comparison.
This seems to be an impressive result for a complex system with many interlinking elements.
Both systems provide an overshoot of a similar value. The amplitude and frequency of the
velocity oscillations also appear to be very similar.

The slight difference between the curves is attributed to the high complexity of the
multirotor-payload model. The suspended payload model adds modelling assumptions to
the system which decreases the accuracy of the model. The system considers many state
variables that each need to be assigned an accurate initial condition. Furthermore, the
effect of wind disturbances is expected to be greater for the multirotor-payload system
than for the multirotor without a load.
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Figure 3.6: Payload angle comparison of simulated and practical data for Honeybee with
a suspended payload.

Figure 3.6 shows the payload angle for the same flight as Figure 3.5. It is clear that the
payload angle response of the simulated system matches the practical data well.

3.7. Summary
This chapter showed the derivation of a mathematical model representing the Honeybee
multirotor with a suspended payload. A comparison of the simulation model and practical
data showed that the model provides a good representation of the actual multirotor-payload
system. This mathematical model will therefore be used for simulations in subsequent
chapters.
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Chapter 4

System identification

System identification is the process of creating a mathematical model of a dynamic system
by using input and output measurements of that system. In this work, a mathematical
model of the multirotor and suspended payload system is required for use in a swing
damping controller. The two major approaches to system identification are:

1. Parameter estimation with a priori modelling

2. Data-driven system identification

This chapter will discuss these approaches and describe the differences between them. For
each approach, specific estimation techniques will be applied to simulation data of the
multirotor-payload system. The results of these techniques will then be discussed.

4.1. White-box and black-box techniques
Models determined from data-driven system identification methods are generally called
black-box models. The user is only concerned with the inputs and output of the model and
does not need to derive mathematical equations from theoretical deductions. In contrast,
white-box models are determined from a priori modelling.

4.1.1. White-box techniques

The underlying physics of a white-box model is usually derived from first principles. This
is done by modelling physical processes with techniques such as Lagrangian or Newton
mechanics. Hence, the mathematical relations between system parameters are predefined
in the modelling phase. The system identification process is therefore reduced to parameter
estimation to determine values for the system parameters.

This approach is used by [2] and [6] for system identification in a swing damping control
architecture for a multirotor with an unknown suspended payload. The same system
definition and modelling process are used in this thesis. Recall from Chapter 3 that the
multirotor-payload system is modelled with the following assumptions:

30
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• The payload is a point-mass.

• The link is massless.

• The link is rigid.

• The link is attached to the CoM of the multirotor.

The only unknown parameters in the multirotor-payload model are the payload mass
and the link length. These parameters are estimated and inserted into the predefined,
linearised model. This model is used by a LQR controller to damp swing angles while
controlling the vehicle.

The main advantage of this approach is its simplicity. In the case considered by [2] and
[6], only two parameters are estimated. In contrast, numerous values need to be estimated
to reproduce the system dynamics with a black-box model. Therefore, white-box system
identification methods are often less computationally complex and are easily implemented
on low-cost hardware. Due to the lower complexity, parameter estimation algorithms often
require shorter lengths of training data than data-driven methods to produce accurate
models.

Therefore the white-box approach works well for systems with predictable dynamics.
However, is not very adaptable to systems that deviate from the predefined dynamics. The
payload considered by [2] and [6] is limited to specific modelling assumptions. However, if
a payload or cable is used that violates one of the assumptions, the predefined model will
no longer represent the system accurately. Many payloads considered for practical drone
deliveries do not conform to these assumptions.

Furthermore, the payload uncertainty is limited to selected parameters. A change in a
parameter value that is not considered by the parameter estimator may result in large
modelling errors. Since the controller is dependent on this model, this may result in
undesirable controller behaviour. Therefore a new model and parameter estimation
technique will need to be derived for every use case that deviates significantly from the
a priori model.

4.1.2. Black-box techniques

Data-driven system identification methods produce black-box models. These models do not
require predefined mathematical relations between system parameters. No prior knowledge
of the physics of the system are considered and no modelling assumptions are made.
Black-box techniques determine the mathematical relationship between the inputs and
outputs of a system using information from measurement data only.
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A disadvantage of the data-driven system identification approach is its computational
complexity. Data-driven algorithms generally have a much higher computational complexity
than parameter estimation techniques. This is expected since a lot more values are
generated to populate a black-box model than a predefined white-box model. In the
multirotor use case, more expensive computational hardware is required to implement a
data-driven method compared to parameter estimation methods. Furthermore, data-driven
methods generally require more training data than parameter estimation methods. This
means that more flight time is wasted on system identification before an updated controller
can be activated.

However, black-box techniques are very adaptable and provide a general system iden-
tification solution for a broad range of different dynamics. This is a major advantage
over white-box techniques, which need to be manually redesigned for different use cases.
Furthermore, some payload cases are difficult to model from first principles, like fluids in
a container. In these cases, black-box modelling provides an method of representing the
plant without deriving a model from first principles.

Black-box models can be categorised as non-linear or linear models. The dynamics of a
multirotor and suspended payload are non-linear and are better represented by non-linear
models. However, non-linear models are more complex than linear models. Non-linear
models may require control implementations that are too computationally intensive to
be implemented with the hardware available on multirotors. Controllers based on low-
complexity, linear models are attractive because these may be simple enough to execute
on low-cost hardware.

Dynamic Mode Decomposition with Control (DMDc) and Hankel Alternative View Of
Koopman with Control (HAVOKc) are the data-driven system identification methods
investigated in this work. These are linear regression techniques that produce linear
models to approximate non-linear dynamics. Non-linear data-driven techniques like Neural
Networks and Sparse Identification of Non-linear Dynamics (SINDy) [83] may produce
models with higher accuracy at the cost of greater computational complexity. DMDc and
HAVOKc are preferred due to their lower complexity which may improve their practical
feasibility for multirotor systems.

4.2. Plant considered for system identification
A specific subsystem of the multirotor-payload system will be considered for system
identification. The proposed controllers in Chapter 5 will be applied for North velocity
control, therefore the longitudinal dynamics will be considered in this section. The input
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vector of the plant model is given by,

u =
[
ANsp

]
, (4.1)

where ANsp is the North acceleration setpoint in the inertial frame. ANsp is used by
the attitude controllers which will be explained in Section 5.2. The state vector of the
considered plant is,

x =
[
VN θ θ̇

]T
, (4.2)

where θ and θ̇ are the payload angle and angular rate about the inertial East axis, and
VN is the North velocity of the multirotor in the inertial frame. A schematic of this
Two-Dimensional (2D) plant is shown in Figure 4.1, where mQ is the multirotor mass, mp

is the payload mass, and l is the cable length.

Figure 4.1: Schematic of a floating pendulum model considered for a North velocity
controller.

In subsequent sections, simulations of the full, non-linear multirotor-payload system will
be performed and different methods will be applied to determine system identification
models of this plant.

4.3. Parameter estimation
Parameter estimation algorithms determine the unknown values required by the predeter-
mined, white-box model. This model is used to design a LQR controller and therefore needs
to be a linear, continuous-time, state-space model. The white-box model was derived by [2]
and will be presented in the section below. The unknown parameters in the model include
the payload mass, mp and the cable length, l. Two separate methods are used to estimate
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each parameter. This approach was successfully used by [2] and [6] to implement a LQR
swing damping controller for a multirotor with unknown suspended payload parameters.

4.3.1. White-box model

A white-box model was derived a priori by [2] to represent the dynamics of the multirotor-
payload system. The non-linear dynamical equations derived in Chapter 3 were linearised
to produce a linear state-space model. The equations were linearised around hover by
applying small angle approximations. As discussed in Section 3.5.1, the payload is attached
to the CoM of the multirotor. Therefore the vehicle attitude dynamics are decoupled from
the payload dynamics and are not considered in this model. Aerodynamic drag forces
are assumed to be negligible and are ignored in this model. It is also assumed that the
attitude controllers have a large enough time-scale separation from the velocity controllers,
such that ANsp ≈ AN .

The resultant linear state-space model of the longitudinal dynamics is given by,

ẋlong = Alongxlong + Blongulong, (4.3)

where

xlong =
[
VN θ θ̇

]T
, (4.4)

ulong =
[
ANsp

]
, (4.5)

Along =




0 mp·g
mQ

c
(l·mQ)

0 0 1
0 (mp+mQ)·g

(mQ·l)
−c·(mp+mQ)
(l2·mQ·mp)


 , and (4.6)

Blong =




1
0

−1
l


 . (4.7)

It is assumed that the coefficient of friction, c, does not change for different payloads,
therefore this parameter can be determined experimentally and is known before a flight.
Furthermore, it is assumed that mQ is known. The payload parameters, mp and l, are
unknown before a flight. These parameters will be estimated in the sections below.

4.3.2. Payload mass estimation

RLS is used by [2] and [6] to estimate the payload mass. It is assumed that the multirotor
mass is known before a flight, therefore the payload mass can be estimated from the
additional trust required during hover. In both [2] and [6] it is demonstrated that RLS
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is very accurate for the system considered in this work. To compare other aspects of
the white-box and black-box techniques with more clarity, it will be assumed that the
RLS method estimates mp with perfect accuracy. This isolates any inaccuracies in the
white-box model to a priori modelling errors or cable length estimation errors.

Note that this method depends on the assumption that the vehicle mass is known and
remains unchanged. The method will be inaccurate if an unknown mass is added to the
multirotor. Common examples include adding a camera to the vehicle or using a different
battery. In these cases, the mass estimation method will have to be redesigned. This is
an inherent problem of the white-box technique. The technique is designed for specific
modelling assumptions and is not adaptable to different types of payload loadings. In
contrast, data-driven techniques are adaptable to different payload loadings because it
does not depend on a priori modelling.

4.3.3. Cable length estimation

The cable length is estimated from the measurement of the natural frequency of the
swinging payload. As described by [46], the natural frequency is given by:

ωn =
√

g

l
· mQ + mp

mQ

. (4.8)

The cable length can be calculated from Equation 4.8 if the other parameters are known.
The natural frequency is measured by performing a FFT on the payload swing angle
response after a velocity step by the multirotor. The dominant frequency identified by the
FFT during free swing is an approximate measurement of the natural frequency of the
payload.

Note that the measured frequency actually represents the damped natural frequency.
Damping is caused by the velocity controller, friction at the cable attachment, and
aerodynamic drag. However, it is assumed that the damping coefficient is small enough for
the damped natural frequency to closely approximate the theoretical natural frequency.

Figure 4.2a shows the payload swing angle response to a position step setpoint. The first
few seconds of the step response are excluded from the FFT to minimise the effects of
the transient response and multirotor controllers on the natural frequency measurement.
Figure 4.2b shows the resulting single-sided amplitude spectrum of the FFT of this data.

The dominant frequency is clearly identified by the peak at 0.520 rad/s. Since ωn, mQ,
mp and g are known, l can be determined from Equation 4.8. The estimated length for
this simulation is 0.953 m. The actual cable length is 1 m, therefore this estimation error
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Figure 4.2: Data from a velocity step response used for cable length estimation (l = 1 m,
mp = 0.3 kg).

is 4.7%. As documented by [2] and [6], an error of this magnitude is acceptably small
and still results in effective control with a LQR. It was also shown by [2] and [6] that this
estimation method is effective for a range of different payloads in simulation.

4.4. Dynamic mode decomposition with control
Dynamic Mode Decomposition (DMD) is a regression technique that can be used to
approximate a non-linear dynamical system with a linear model [84]. It uses temporal
measurements of system outputs to reconstruct system dynamics without prior modelling
assumptions. DMDc is an adaptation of DMD that also accounts for control inputs [85].
This section provides an overview of the specific implementation of DMDc used in this
work. Note that this implementation is an adaptation of DMDc, and includes time-delay-
embedding of multiple variables. Enriching a DMD model with time-delay-embedding is a
known technique and is also seen in other DMD adaptations [86, 87].

DMD produces a linear, discrete state-space model of system dynamics. Discrete measure-
ments, xk, of the continuous time variable, x(t), are used, where xk = x(kTs), and Ts is
the sampling time of the model. Delay-coordinates (i.e. xk−1, xk−2, etc.) are also included
in the state-space model to account for input delay and state delay in the system. Input
delay refers to the time delay involved with transporting a control signal to a system,
whereas state delay refers to time-separated interactions between system variables [88].
Hence, we define a state delay vector as:

dk =
[
xk−1 xk−2 · · · xk−q+1

]T
, (4.9)
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where q is the number of delay-coordinates (including the current time-step) used in the
model, and dk ∈ R(nx)(q−1).

The discrete state-space model is therefore defined as:

xk+1 = Admdxk + Addk + Bduk, (4.10)

where Admd ∈ Rnx×nx is the system matrix, Ad ∈ R(q−1)·nx × (q−1)·nx is the state delay
system matrix and Bd ∈ Rnx×nu is the input matrix.

The training data consists of full-state measurements, xk, and corresponding inputs, uk,
taken at regular intervals of ∆t = Ts, during a simulated flight with Cascaded PID control.
In a practical flight, these time-series measurements need to be saved in memory because
it is processed as a single batch by DMD. Note that DMD can be applied in a recursive
manner as described in [89]. However, this implementation is not considered because an
On-Board Computer (OBC) with significant memory size can be used.

The training data is collected into the following matrices:

X ′ =
[

xq+1 xq+2 xq+3 · · · xw+q

]
,

X =
[

xq xq+1 xq+2 · · · xw+q−1
]

,

Xd =




xq−1 xq+0 xq+1 · · · xw+q−2
... ... ... . . . ...

x2 x3 x4 · · · xw+1

x1 x2 x3 · · · xw




,

Υ =
[

uq uq+1 uq+2 · · · uw+q−1
]

, (4.11)

where w is the number of columns in the matrices, X ′ is the matrix X shifted forward
by one time-step, Xd is the matrix with delay states, and Υ is the matrix of inputs.
Equation 4.10 can be combined with the matrices in Equation 4.11 to produce:

X ′ = AdmdX + AdXd + BdΥ. (4.12)

Note that the primary objective of DMDc is to determine the best fit model matrices,
Admd, Ad and Bd, given the data in X ′, X, Xd, and Υ [85]. To group the unknowns into
a single matrix, Equation 4.10 is manipulated into the form,

X ′ =
[
Admd Ad Bd

]



X

Xd

Υ


 = GΩ, (4.13)
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where Ω contains the state and control data, and G represents the system and input
matrices.

A Singular Value Decomposition (SVD) is performed on Ω resulting in: Ω = UΣV T .
Often, only the first p columns of U and V are required for a good approximation of the
dynamics [90]. In many cases, the truncated form results in better models than the exact
form when noisy measurements are used. This is because the effect of measurement noise
is mostly captured by the truncated columns of U and V . By truncating these columns,
the influence of noise in the regression problem is reduced. This will be further explored
in Section 4.6.3.

The SVD is used in the truncated form:

Ω ≈ ŨΣ̃Ṽ T , (4.14)

where ˜ represents rank-p truncation. For the U and V matrices, rank-p truncation refers
to keeping only the first p number of columns and truncating the rest. Rank-p truncation
of the S matrix refers to keeping the first p number of columns and rows and truncating
the rest.

By combining Equation 4.14 with the over-constrained equality in Equation 4.13, the
least-squared solution, G, can be found with:

G ≈ X ′Ṽ Σ̃−1Ũ . (4.15)

By reversing Equation 4.13, G can now be decomposed into: G =
[
Admd Ad Bd

]

according to the required dimensions of each matrix. Thereby, the state-space model
approximated by DMDc is complete.

4.5. Hankel alternative view of Koopman with control
Hankel Alternative View Of Koopman (HAVOK) is a data-driven, regression technique
that provides a different approximation of the Koopman operator than DMD [90, 91]. The
Koopman operator is a method of representing finite-dimensional non-linear dynamics
in terms of an infinite-dimensional linear operator [90]. However, an infinite-dimensional
linear operator is not very useful for practical implementation. DMD provides a limited
approximation of the Koopman operator, because it is based on linear measurements only.
HAVOK was developed to improve the Koopman approximation of DMD by using intrinsic
measurement coordinates based on the time-history of the system [90].

Stellenbosch University https://scholar.sun.ac.za



4.5. Hankel alternative view of Koopman with control 39

The original formulation of HAVOK is only defined for uncontrolled dynamical systems [90].
In this work, we have adapted the standard HAVOK algorithm to account for the effect of
control. This implementation will be referred to as HAVOKc. This algorithm results in a
discrete, linear model that approximates the behaviour of a controlled dynamical system.
In this section, a brief overview is provided of this implementation of HAVOKc.

A defining characteristic of HAVOK is that it uses multiple delay-coordinates (i.e.
xk−1, xk−2, etc.) in the system identification process. To fit this into the standard
state-space format, an extended state vector is defined as:

ak =
[
xk−(q−1) · · · xk−1 xk

]T
, (4.16)

where ak ∈ R(ny)(q), and the subscript of a denotes the highest subscript of x in the vector.

The resulting discrete state-space model is therefore in the form,

ak+1 = AHak + BHuk, (4.17)

where AH ∈ R(q·nx)×(q·nx) is the system matrix, and BH ∈ R(q·nx)×nu is the input matrix.

The original HAVOK algorithm, developed by [90], constructs a Hankel matrix from
output variables only. In this work, the standard HAVOK algorithm has been adapted to
incorporate the effect of control. An extended Hankel matrix, Π, is created by appending
a matrix of inputs to a Hankel matrix of measurements:

Π =

 aq aq+1 aq+2 · · · aw+q−1

uq uq+1 uq+2 · · · uw+q−1


 , (4.18)

where w is the number of columns in Π. A truncated SVD of this Hankel matrix results
in following approximation:

Π ≈ ŨΣ̃Ṽ T , (4.19)

where ˜ represents rank-p truncation. It is important to note that the model extracted by
HAVOKc depends on the choice of hyperparameters (p and q), and the number of training
samples (Ntrain = w + q − 1).

The columns of Ṽ are the most significant principal components of the system dynamics
[92]. This matrix, Ṽ , can be considered to contain a time-series of the pseudo-state, v,
such that Ṽ T =

[
vq vq+1 · · · vw

]
, characterises the evolution of the actual dynamics

in an eigen-time-delay coordinate system [90]. Consider the following discrete, state-space
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formulation:
vk+1 = Λvk. (4.20)

HAVOKc determines the best fit linear operator Λ that maps the pseudo-state vk to vk+1.
To setup an over-determined equality for Equation 4.20, Ṽ T is divided into two matrices:

V1 =
[

vq vq+1 ... vw−1
]

,

V2 =
[

vq+1 vq+2 ... vw

]
, (4.21)

where V2 is V1 advanced a single step forward in time. The matrices from Equation 4.21 are
now combined with Equation 4.20 and the best fit Λ is determined with the Moore-Penrose
pseudoinverse:

V2 = ΛV1 ⇒ Λ ≈ V1V
†

1 (4.22)

It can be shown from Equation 4.19 that Equation 4.20 is transformed from the eigen-
time-delay coordinate system to the original coordinate system as the following:


ak+1

uk+1


 = (ŨΣ̃)Λ(ŨΣ̃)†


ak

uk


 . (4.23)

AH and BH can now be extracted from the matrix, (ŨΣ̃)Λ(ŨΣ̃)†. This extraction is
illustrated in Figure 4.3, where different blocks represent different groups of matrix entries.

Figure 4.3: Illustration of the extraction of AH and BH from Equation 4.23.

Note that the matrix entries in Figure 4.3 that map uk to uk+1 are meaningless for
state predictions and are discarded. Also note that the state vector, ak, includes delay-
coordinates, therefore some matrix entries are independent of the dynamics. This is
illustrated in Figure 4.4 for an example model with q = 4. For example, the mapping
of xk in the state vector to xk in the predicted state vector corresponds to an entry of
1 in the AH matrix. This is fixed by the model format and is not a function of the
system dynamics. Due to the least-squares fitting and the coordinate transformation of
the algorithm, HAVOKc does not produce these exact values in AH and BH . By forcing
each of these matrix entries to 1 or 0, the state-prediction performance of the model is

Stellenbosch University https://scholar.sun.ac.za



4.6. Implementation and results 41

improved. Finally, the improved AH and BH are inserted into Equation 4.17 to render
the HAVOKc model.

Figure 4.4: Illustration of forcing the known values in HAVOKc matrices.

For a high-level comparison of the data-driven methods, recall that DMDc applies least-
squares regression directly to the collected state and input data matrices from Section 4.4.
HAVOKc first applies an SVD to the state and input data, and truncates the insignificant
modes. Least-squares regression is then applied to the pseudo-state data from the truncated
SVD to determine a state-space model. This model is then transformed back into the
original coordinate frame.

4.6. Implementation and results
In this section, the techniques introduced in Section 4.3, 4.4, and 4.5 will be applied to
simulation data. Firstly, the influence of design parameters on the algorithm performance
will be discussed. These parameters include hyperparameters, length of training data and
sample time. The effect of measurement noise and the physical properties of the payload
will also be explored. Finally, the white-box and black-box techniques will be tested on a
dynamic payload which does not satisfy the modelling assumptions of a single pendulum.

4.6.1. Methodology

A Software-in-the-Loop (SITL) implementation of the PX4 flight-stack [93] with the
Gazebo simulator [94] is used to generate data for system identification. Testing these
techniques within simulations allows us to investigate a much larger range of system
configurations than possible with practical flights. The simulation model was verified
in Chapter 3. Using SITL ensures that the simulated controller dynamics is as close as
possible to practical flights. Gazebo applies realistic levels of sensor noise and PX4 applies
an EKF for state estimation. This simulation environment will be further discussed in
Chapter 6.

The procedure used to evaluate the black-box techniques is as follows:
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1. Takeoff and hover.

2. Start logging input and output data.

3. Command a series of velocity step setpoints with random step sizes and time intervals.

4. Stop logging data.

5. Split data into separate training and testing periods.

6. Build a model from the training data.

7. Calculate an error metric for the model from the testing data.

The default PID controllers from PX4 are used within simulations. The implemented
controller gains are documented in Appendix A. A Robot Operating System (ROS) node
is used to read and log the payload angle measurement from Gazebo and a different ROS
node is used to send velocity setpoints to PX4 with the MAVLink protocol through the
ROS package called MAVROS.

An algorithm schedules the series of velocity step commands by assigning random step
values and time intervals within a specified range. These values are selected from a
uniform distribution within the ranges specified in Table 4.1. The maximum velocity
step is determined in simulation by iteratively increasing the maximum velocity step to
a safe value where the multirotor remains in stable flight. The time interval range is set
iteratively to ensure that the generated data includes both transient and steady-state
dynamics.

Table 4.1: Input data ranges.

Velocity step
[m/s]

Step time interval
[s]

Minimum 0 10
Maximum 3 25

Figure 4.5 shows an example of velocity step responses used as training data. Using
random velocity steps and time intervals prevents the system identification methods from
overfitting to a specific set of control conditions. The method should produce a generalised
model that works for a range of different control conditions.
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Figure 4.5: Example of training data with random velocity step inputs (mp = 0.2 kg,
l = 1 m).

The simulation data is divided into testing and training data. The training data is used to
generate a model and this model is used to calculate a prediction error over the unseen
testing data. This ensures that good prediction scores do not result from models that
overfit the training data.

The testing data spans a fixed length of time and is taken from the start of each simulation
period. The training data is then extracted from the remainder of the data. The same
setpoint schedules are used to generate this data for different simulations to ensure that the
error metrics determined from different simulations are comparable. These error metrics
are used to evaluate and rank the performances of each model.

4.6.2. Error metric

It is common practice is to select a model for an MPC based on k-step-ahead prediction
errors because the model is used to make k-step-ahead predictions during control optim-
isation [95]. When model error is dominated by variance error caused by disturbances, it
may be better to use one-step-prediction error [95]. However, for the case of a multirotor
with a payload, it is assumed that variance error caused by under-modelling dominates
the model error.

Different metrics are used in literature to quantify prediction accuracy for different ap-
plications. Common, scale-dependant error metrics include Mean Squared Error (MSE)
and Mean Absolute Error (MAE). These metrics are dependant on the unit and scale of a
variable, hence they cannot be used to compare predictions of different variables. MSE
(l2 norm of error values) penalises larger errors more than smaller errors, whereas MAE
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(l1 norm) penalises errors equally. For our use case, the l1 norm provides a more intuitive
metric than the l2 norm because it has the same unit as the prediction variable. There is
no motivation for penalising larger errors more than smaller errors.

MAE is calculated as:
MAE = mean ( |x̂k − xk| ) , (4.24)

where MAE is a vector with the MAE of each state, xk is the actual state vector at
time-step k, x̂k is the state prediction, and x̂k is the state prediction. The MAE can be
interpreted as the mean error of the predicted value for a state variable over the prediction
horizon.

Popular, scale-free error metrics, like Mean Absolute Percentage Error (MAPE), Mean
Relative Absolute Error (MRAE) and Mean Absolute Scaled Error (MASE), are also
based on the l1 norm, but are independent of the scale and units of a variable [96]. These
metrics could therefore be used to compare predictions of different variables. However,
these metrics provide misleading comparisons for our use case. MAPE expresses accuracy
as the absolute ratio between the error and actual value at each time-step. This results in
undefined or extremely large values for the payload angle predictions because the state
has a zero mean. The velocity state variable has a non-zero mean, therefore the scale of
the MAPE of velocity will be significantly different from the MAPE of the payload angle.

MRAE is also popular metric for comparing predictions models used with an MPC [97].
However, it also results in undefined values for the payload swing angle similarly to MAPE.
MASE does not have this problem because it expresses accuracy as the ratio between the
MAE of the model prediction and the MAE of an in-sample naive forecast [96]. However,
an in-sample forecast is a naive prediction for a one-step-ahead prediction, but not for a
k-step-ahead prediction. Therefore MASE is not a helpful ratio in our use case.

Normalised Mean Absolute Error (NMAE) is a scale-free error metric that provides a fair
comparison of different variables in our use case. In this work, the MAE of a variable is
normalised by the range of that variable. This value is calculated as:

NMAE = MAE

xmax − xmin

, (4.25)

where xi,max and xi,min are the maximum and minimum values of the considered variable
in the testing data. The NMAE therefore represents the prediction error as a fraction of
the range of a variable.
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This produces an error metric for each predicted variable. However, a single value is
required per model to rank the overall accuracy of different models. Therefore the average
of the NMAE of all state variables is used to quantify model accuracy and is denoted as
NMAE.

Other criteria which are more statistically rigorous in model selection than error metrics
are Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC) scores.
They provide a quantitative way of performing a Pareto analysis, which balances model
complexity with model accuracy [98]. It is generally more advantageous to use a parsimo-
nious model (which has a low prediction error but is not overly complex) than a complex
model with a slightly lower prediction error. This reduces overfitting and ensures that
the MPC optimisation problem is not unnecessarily computationally intensive. However,
these scores require the computation of the maximum log-likelihood of each model over
numerous simulations. This is computationally intractable and unpractical for our use case
because of the large number of hyperparameter combinations to compare, as explained in
Section 4.6.3. Therefore an error metric will rather be used to evaluate model accuracy.

The error metric of one model may vary significantly for different starting conditions or
prediction horizons. The prediction horizon used for model analysis is selected as 20 s
which is at least twice as long as the desired MPC prediction horizon. Some models have
accurate transient predictions but are unstable over longer time horizons. If the prediction
horizon is too short, these models may score unreasonably well. Selecting such a model
could result in unstable control at certain control conditions. Therefore a long prediction
horizon is used for testing so that marginally unstable models are penalised heavily in
model selection.

Different starting conditions also have a large influence on calculated error metrics. There-
fore the error metric needs to include predictions from multiple starting conditions in
the testing data. The testing procedure specifies different starting conditions within the
testing data. The model is then run multiple times with a fixed prediction horizon, but
starting at different initial conditions. The NMAE is determined for each run and the
average of these scores gives the final NMAE of the model. To balance the variety of
testing conditions with the computational time per error metric calculation, 10 prediction
runs with different initial conditions used in the final NMAE score.

4.6.3. Hyperparameters

As discussed in Section 4.4 and 4.5, DMDc and HAVOKc models are dependent on two
hyperparameters: the number of delay-coordinates, q, and the SVD truncation rank,
p. For each system identification run with different system parameters or a different
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length of training data, a hyperparameter search is performed to find the combination of
hyperparameters that produces the lowest prediction error. Firstly, a coarsely spaced grid
search is performed with large intervals between tested hyperparameter values. The range
of tested hyperparameters is then reduced and a finer hyperparameter search is performed.
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Figure 4.6: DMDc and HAVOKc predictions error for different lengths of noisy training
data (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s, Ttrain = 60 s.).

Figure 4.6 shows the prediction error of DMDc and HAVOKc models for different values of
q. For each value of q, a new model is generated with every p in the considered range and
the lowest prediction error is plotted. There is only a slight difference between the results
of DMDc and HAVOKc. As expected, the models with the least number of terms have the
highest prediction errors. As the number of terms available to the model increases, the
error decreases. It is clear that there is a sharp decrease in prediction error for 2 < q < 6,
however there is no longer a significant decrease in error as model complexity increases
past q > 12.

This ‘elbow’ in the plot is the Pareto front, where there is a balance between model
complexity and accuracy [98]. It is desirable to select a parsimonious model on this front
that has enough free parameters for good accuracy, without being overly complex [99].
These models are also less prone to overfitting.

Figure 4.7 plots the singular values of the SVD from a HAVOKc model on a log scale.
The singular values of the SVD are loosely interpreted as a measure of the significance of
each Proper Orthogonal Decomposition (POD) mode in the plant dynamics [100]. That
is, modes with higher singular values contain more relevant information about the plant
dynamics than modes with lower singular values. The p number of singular values used to
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Figure 4.7: Significant and truncated singular values of a HAVOKc model produced from
noisy data (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s, Ttrain = 60 s.).

reconstruct the dynamics are shown in the plot. The truncated singular values are also
shown, which correspond to the discarded modes.

The Pareto ‘elbow’ is also visible in this plot where there is a noticeable change in gradient
roughly at the split between significant and truncated values. This change in gradient shows
that after p modes, there is a significant drop in information contributed per remaining
mode. Note that the number p was selected from a hyperparameter search using an error
metric that does not consider the singular values. This appears to confirm the notion
that the Pareto optimal solution is often the most accurate representation of the actual
dynamics [100].

4.6.4. Sample time

The sample time, Ts, used for system identification determines the sample time of the
discrete model, which determines the sample time of the MPC. Resampling strategies
can enable the MPC to run at a different frequency to the discrete model but this adds
unnecessary complexity to the control architecture.

The MPC acts in the velocity loop and commands an acceleration setpoint. The default
PID velocity controller runs at 50 Hz which corresponds to Ts = 0.02 s. Due to the
computational complexity of an MPC, the optimiser will struggle to run at 50 Hz on an
OBC on a multirotor. However, the controller needs to run as fast as possible to have
significant time-scale separation from the multirotor dynamics. If the controller runs too
slowly, it may result in poor flight performance or unstable control.

Stellenbosch University https://scholar.sun.ac.za



4.6. Implementation and results 48

10 20 30 40 50
3

3.5

4

4.5

5

5.5

Ts [ms]

N
M

A
E

[%
]

l = 0.5 m
l = 1 m
l = 2 m

Figure 4.8: DMDc prediction error using different cable lengths with a range of different
sample times of noisy training data (mp = 0.2 kg).

Figure 4.8 shows the prediction error of different DMDc models generated with a range of
different sample times. The natural frequency of the payload pendulum depends on the
cable length and influences the frequency response of the plant. Therefore Figure 4.8 plots
the experiment result for different cable lengths to see if it has an effect on the prediction
error of the models.

Note that for all considered cable lengths, the prediction error has a sharp decrease for
Ts > 0.045 s. This may be because the model does not try to capture the small, high-
frequency oscillations in the dynamics at such slow sample times. Hence the long term
prediction of the models fits the general shape of the dynamics well and results in low
errors. However, this sample time is too slow for controlling the practical multirotor.

A sample time of Ts = 0.03 s is selected for system identification because it appears
provides a good balance between being fast enough for control and slow enough for
practical implementation on the available hardware. This selection was made after an
iterative simulation process with the MPC controller discussed in Chapter 5.

4.6.5. Choice of payload variable in the state vector

As discussed in Section 4.2, the continuous-time equations of motion of a floating pendulum
are dependent on θ̇ and VN , but are not dependent on θ. Therefore it is expected that
x =

[
VN θ̇

]T
will be used as the state vector for system identification. However, θ̇ can be

represented with numerical differentiation of θ. An example of this is the backward Euler
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form,
θ̇k = ( 1

Ts

) · θk − ( 1
Ts

) · θk−1. (4.26)

Therefore the original state vector can also be replaced by, x =
[
VN θ

]T
, for system

identification.

Based on the floating pendulum equations, it is expected that a model derived from θ̇

data will better approximate the actual dynamics than one using θ. This is because θ̇ is
directly related to the dynamics, compared to θ which needs to be related to θ̇ before it is
relevant. However, an experiment to compare the performances of these models shows
that this has a negligible effect.
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Figure 4.9: Prediction NMAE for HAVOKc models using either angle or angular rate
measurements (mp = 0.2 kg, l = 1 m, Ts = 0.03 s).

Figure 4.9 shows the prediction error of HAVOKc models using θ̇ or θ for a range training
data lengths. Only for very short lengths of training data, do models using θ̇ outperform
those using θ. For longer lengths of training data, there is a negligible difference in
prediction error between the methods. Therefore θ will be used for system identification to
avoid unnecessary complexity because there is no direct measurement of θ̇ on the practical
multirotor.

4.6.6. Noise

Measurement noise is bad for system identification because it adds high-frequency inform-
ation to the output signals which are not part of the actual dynamics. On the practical
multirotor the barometer, magnetometer, Inertial Measurement Unit (IMU), and GPS
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sensors experience measurement noise. The EKF performs sensor fusion and smooths out
most of the measurement noise to provide a state estimate that is less noisy than raw
sensor values. Therefore the output from the EKF is used for system identification.

The potentiometer and Analog to Digital Converter (ADC) (discussed in Chapter 6) which
measure the payload angle also produce measurement noise. The angle signal is not
smoothed by an onboard EKF. Within simulations, noise is applied to the payload angle as
band-limited white-noise. The applied noise power was iteratively adjusted to match that
of the practical payload measurements. The noisy signals from the multirotor EKF and
payload swing angle are smoothed with a quadratic regression smoother from MATLAB®.
This uses a fixed window length of 20 samples which was selected iteratively to remove
high-frequency variation without losing the general shape of the data.
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Figure 4.10: Accelleration setpoint training data from random velocity step inputs
(mp = 0.2 kg, l = 1 m).

The input signal needs to be smoothed to remove high-frequency noise. The quadratic
regression smoother does not fit the shape of the input data well because of the sharp,
non-differentiable edges in the acceleration setpoint signal. Therefore a Gaussian-weighted
moving average smoother from MATLAB® is used for the input signal.

Figure 4.10 shows the North acceleration setpoint for a sample of training data. Without
noise, the acceleration setpoint should have a zero mean, however the signal mean shows a
constant offset. The is due to a measurement offset in the IMU which causes an offset
in the orientation vector and therefore affects the control signals. The setpoint mean is
calculated from the training data and subtracted from the signal to correct for the offset.
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This results in an input signal with a zero mean. The calculated mean is reapplied to the
MPC control signal during implementation to readjust for the required offset.
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Figure 4.11: HAVOKc prediction errors for different lengths of training data with and
without noise (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s).

Figure 4.11 compares the prediction errors of HAVOKc models generated from data with
or without noise. The plot shows that when using short lengths of training data, the
prediction errors are smaller for models generated with noiseless signals. However, it
appears that the prediction errors are almost equal with longer lengths of training data.
This is because with a short length of data, the signal variation or energy contributed
by the noise is a significant part of the data. However, with longer lengths of data, the
variation caused by the actual plant dynamics dominates the low energy contribution of
the measurement noise. Hence, the noise has a smaller influence on the model. It also
appears that at long lengths of training data, noise has a negligible effect on prediction
error.

Figure 4.12 compares the performance of HAVOKc and DMDc model when using noisy
data. The prediction error curves of the two methods are very similar, with HAVOKc
producing slightly lower prediction errors than DMDc. However, this difference in error
may be so small that it has a negligible effect on control.
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Figure 4.12: DMDc and HAVOKc prediction errors for different lengths of noisy training
data (mp = 0.2 kg, l = 0.5 m, Ts = 0.03 s).

4.6.7. System parameters

The suspended payload has two system parameters, mp and l , as described in Section 4.2.
For the practical multirotor, the payload mass is limited to, 0.1 ≤ mp ≤ 0.3 kg, and
the cable length is limited to: 0.5 ≤ l ≤ 2 m. Figure 4.13 shows the prediction error of
HAVOKc models build from simulations with various values of mp and l. The plots are
not shown for DMDc models because they are so similar to the HAVOKc results.

From Figure 4.13a it seems that there is not a great difference in prediction error for
different cable length setups. From Figure 4.13b it appears that mp has a greater effect
on prediction error, since there is a bigger difference in prediction error between plots of
different mp values. However, it is clear that the system identification method works for a
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(a) mp = 0.2 kg, with varying l.
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Figure 4.13: HAVOKc prediction errors for different system parameters.
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range of different payload parameters.

4.6.8. Length of training data

From the results shown in previous sections, it is clear that the accuracy of a model
depends on the length of training data exposed to the system identification algorithm. The
general relationship between the length of training data and prediction error is illustrated
in Figure 4.13. For short lengths of training data, the prediction error is large, but as the
training length increases, the prediction error improves up to a point. After this point,
the prediction error slowly degrades with increasing lengths of training data.

This trend may be counter-intuitive because it is generally expected that more training
data leads to better models. The logic follows that more training data leads to less
overfitting which leads to better test data predictions. However, a phenomenon named
‘double-descent’ occurs when the dimension of a regression model, D, is near the number
of training samples, Ntrain [101]. In this critical region at the transition between over-
parameterized and under-parameterized models, the prediction error initially decreases,
then increases to a peak whereafter it decreases again [101].

A rough calculation confirms that the critical region of ‘double-descent’ is applicable to
our use case. The highest q in the considered range is 30, which corresponds to a model
dimension of

D = (q · nx)2 + (q · nx)(nu) = 3660. (4.27)

The length of training data corresponding to D = Ntrain · nx at the transition between
over- and under-parameterization is therefore:

Ttrain = Ntrain · Ts = 54.9 s. (4.28)

This value is indeed within the range of considered training data lengths, which explains
why our training experiments experience this phenomenon.

In practical implementations, training data is costly. Less training data means less flight
time will be wasted on training a model before the multirotor can fly with an updated
controller. Less training data also corresponds to lower memory usage on the multirotor
hardware and lower time-complexity for the algorithm. Therefore it is not practical to
increase the amount of training data to the under-parameterized region. Hence, the critical
region of training data lengths will be used and the data length corresponding to the
lowest prediction error per simulation will be selected.
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4.6.9. Dynamic payload

In Section 4.3 it was shown that the white-box system identification method performs well
for the suspended payload use case. It was also shown in [2] and [6] that this method can
be used in conjunction with an LQR controller to minimize the swing angles of an unknown
payload. However, many payloads do not satisfy the considered modelling assumptions,
which is detrimental to the performance of white-box method. For example, an elongated
payload attached to the cable does not satisfy the point-mass assumption. The CoM of the
payload is well below the attachment point of the cable, which creates a double pendulum
model that differs significantly from a single pendulum. This payload is better represented
by the double pendulum modelled in Figure 4.14, than the model defined in Figure 4.1.

Figure 4.14: Double pendulum model representing an elongated suspended payload.

Figure 4.15 shows the k-step-ahead prediction of a white-box models for a single pendulum
simulation. The exact mp is used for the model, but the cable length is estimated from a
FFT of the payload swing angle as described in Section 4.3.3. It is clear that the prediction
is accurate for the first few oscillations, but the slight difference in frequency causes an
increasingly large oscillations-peak offset as time progresses. Furthermore, the prediction
oscillations are damped linearly but the actual oscillations experience non-linear damping.
This difference is an approximation error because the non-linear plant is modelled with a
linear model. However, the general shape of the dynamics is represented well.

Figure 4.16 also shows the k-step-ahead prediction of the white-box model for a double
pendulum simulation. The cable length was also estimated by identifying the dominant
frequency from the FFT. Note how the prediction of the first oscillation is quite accurate
and is similar to the initial swing of the single pendulum. However, by the second swing,
the double pendulum dynamics differ significantly from the model prediction.
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Figure 4.15: White-box model predictions of a single pendulum for a North velocity step
input (l = 1 m, mp = 0.3 kg).

The single pendulum oscillations seen in Figure 4.15 are regular compared to the double
pendulum oscillations in Figure 4.16 which are noticeably irregular. The a priori model
expects regular, single-frequency oscillations. This can be seen in Figure 4.16, since the
predicted peaks are equidistant. However, the actual dynamics have a superposition of
two frequencies due to the double pendulum payload.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−10

−5

0

5

Time [s]

Pa
yl

oa
d

an
gl

e
[°]

Actual
White-box

Figure 4.16: White-box model predictions of a double pendulum for a North velocity
step input (m1 = 0.2 kg, l1 = 1 m, m2 = 0.1 kg, l2 = 0.3 m).

The FFT amplitude spectrum of the single pendulum is shown in Figure 4.17a. This plot
shows a single peak that corresponds to the natural frequency of the suspended payload.
Figure 4.17b shows the FFT amplitude spectrum of the double pendulum. Two peaks are
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(b) Double pendulum.

Figure 4.17: The single-sided amplitude spectrum of the swing angle FFT.

revealed in this plot which corresponds to the two superimposed frequencies caused by the
double pendulum. The frequency content of the two plants is clearly different. Therefore
the white-box model and parameter estimation algorithms would need to be redesigned
for these payloads specifically. This is the great disadvantage of the white-box system
identification technique. For every model with different dynamics, a new technique needs
to be designed and used. In contrast, the proposed data-driven method provides a general
solution for a large range of different payloads and dynamics.

Figure 4.18 shows the prediction of the two data-driven methods for a single pendulum
simulation. Note that there is less of a frequency difference in this prediction than the
white-box prediction in Figure 4.15. The predicted damping also represents the actual
damping better than the white-box prediction. The data-driven methods effectively fit a
high-order damping model to the dynamics, in contrast to the simplistic damping model
applied in the white-box model.

The damping seen in these plots depends on the payload connection, the aerodynamic drag,
and the controller gains. An advantage of data-driven system identification techniques is
that the effect of damping is inherently included in the estimated model without specifically
estimating a damping coefficient. In contrast, the white-box estimation technique requires
the damping effect to be modelled accurately.

Figure 4.19 shows the predictions the data-driven methods for a double pendulum simula-
tion. Notice how accurate the prediction is for the first 20 s of the plot. In contrast to the
white-box model, the black-box model oscillations follow the irregular, multi-frequency re-
sponse of the actual dynamics. The state-space model can approximate the multi-frequency
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Figure 4.18: Data-driven model predictions of a single pendulum for a North velocity
step input (mp = 0.3 kg, l = 1 m).

dynamics of the plant because of the delay-coordinates in the model. As expected, the
prediction accuracy is better than the white-box models for the single and double pendulum
simulations.
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Figure 4.19: Data-driven model predictions of a double pendulum for a North velocity
step input (m1 = 0.2 kg, l1 = 1 m, m2 = 0.1 kg, l2 = 0.3 m).

The double pendulum plant involves a hidden state variable, because the unmeasured angle
of the second pendulum is required to fully describe the state of the system. However, the
DMDc and HAVOKc models are still able to approximate the dynamics quite accurately
without measuring this state variable. This is due to the delay embedding of the models
[92].
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Figure 4.20 shows the prediction error as a function of the number of delays in the model
for a double pendulum. Note how many more delays are required for the prediction error to
reach steady-state, compared to the single pendulum in Figure 4.6. The double pendulum
dynamics are more complex and the model needs more parameters to account for the
hidden state variable.
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Figure 4.20: DMDc and HAVOKc predictions error of double pendulum for different num-
bers of delay-coordinates (m1 = 0.2 kg, l1 = 1 m, m2 = 0.1 kg, l2 = 0.3 m Ttrain = 70 s.).

Overall, the data-driven system identification methods were shown to work well for both
the single and double pendulum payloads. In contrast, the white-box method described
the general shape of the single pendulum dynamics well but did not perform well for a
double pendulum simulation. This is because it was specifically designed for the single
pendulum payload. The data-driven approach provides an accurate system identification
method for a much larger range of payloads without being redesigned for specific payload
dynamics.

4.7. Summary
DMDc and HAVOKc produce very similar prediction errors for a range of different
simulation conditions. HAVOKc generally has slightly lower errors, but this may have a
negligible effect on a controller which is based on such a model. DMDc is selected as the
preferred method because it has a lower computationally complexity.

The data-driven methods were shown to produce accurate prediction models of the
multirotor-payload dynamics with sample times and lengths of training data that appear
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to be practically feasible for a control architecture. The methods also produced accurate
models despite a realistic level of sensor noise.

Furthermore, the data-driven methods were tested with a range of different payload
parameters and with an elongated dynamic payload acting as a double pendulum. The
methods produced consistently accurate models with these different payloads. The white-
box system identification technique produced accurate models with different payload
parameters but failed to represent the motion of the dynamic payload. Therefore, the
data-driven approach provides a better general system identification method that can be
used for a range of different payloads without being redesigned for specific dynamics.
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Chapter 5

Control systems

Three different types of controllers are considered in this work, namely PID, LQR, and
MPC. PID control does not provide active swing-damping control of the payload, but it
will be used in the training data stage discussed in Chapter 4.

LQR is a well-known optimal control technique. In previous work by [2] and [6], an LQR
implementation with a parameter estimator was designed for active swing-damping control
of a multirotor with an unknown suspended payload. This LQR architecture was shown to
be an effective swing-damping controller and will be applied in this work as the baseline
controller.

MPC is also a well-known optimal control technique. A data-driven system identification
method was introduced in Chapter 4 to estimate a linear model of unknown dynamics. The
models generated by this method will be used in an MPC for active swing-damping control
of the multirotor-payload system. The proposed MPC architecture will be compared to the
baseline LQR architecture. These swing-damping control architectures are summarised in
Table 5.1, where each controller is paired with the relevant system identification method.

Table 5.1: System identification techniques paired with the corresponding controllers.

System identification Controller
White-box model RLS mass estimator and LQR

FFT cable length estimator
Black-box model DMDc MPC

In this chapter, a Simulink™ simulation environment will be introduced to test the
proposed control architectures. An overview of the different controllers will be given and
the design process of each controller will be explained. The controllers will then be tested
in simulations with different system parameters and disturbances. Finally, the simulation
results will be shown and discussed.

60
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5.1. Simulation environment
The controllers in this chapter are tested within a Simulink™ simulation environment.
This is used rather than the SITL/Gazebo simulation environment because it allows one
to iterate designs faster. Simulink™ provides a graphical interface for control system
design which is helpful for rapid development. In contrast, the SITL/Gazebo simulation
environment requires text-based control laws in C++ and requires ROS nodes as an interface
an between the MPC and PX4. This requires a lot more development time for control
system design than the graphical tools in Simulink™. The SITL/Gazebo simulation also
has a longer runtime per simulation, which further adds to the development time of the
iterative design process.

The multirotor and suspended payload system is modelled in Simulink™ with the dif-
ferential equations derived in Chapter 3. The resulting controllers are also implemented
in Simulink™. Using the cascaded PID control architecture (discussed in the sections
below), this simulation environment was verified against practical data with and without
a payload. The plots in Figure 3.4, 3.5, and 3.6 from Chapter 3 show how well the
simulations match the actual system dynamics. The controllers will therefore be designed,
tested and compared using this simulation environment.

5.2. Cascaded PID control
PID control is a popular linear control technique that applies a control signal proportional
to the error signal, the integral of the error signal, and the derivative of the error signal.
This is the default control architecture used in the PX4 flight-stack [93]. PX4 was chosen
as the multirotor flight-stack because it is open-source and widely used in industry and
research. The PID implementation of PX4 does not provide active swing-damping of the
payload, however, it is used in the system identification flight stage discussed in Chapter 4.

The default PX4 control architecture consists of multiple cascaded PID controller loops.
This is divided into two main sections, the inner-loop attitude controllers and the outer-
loop translational controllers. Figure 5.1 shows a high-level overview of the PX4 control
architecture without showing state feedback.

The setpoint vectors in Figure 5.1 are denoted by Xsp for position, Vsp for velocity, Asp

for acceleration, qsp for the attitude quaternion, Ωsp for angular rate, and Tsp for motor
thrust. The virtual actuator commands are denoted by δAsp , δEsp , δRsp , and δTsp , for the
virtual aileron, elevator, rudder, and thrust commands respectively.
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Figure 5.1: Cascaded PID control architecture of PX4 [7].

The inner-most control element is the mixer, which converts virtual actuator commands
to actuator thrust commands. The attitude controller includes the angle and angular rate
controllers, which send commands to the mixer. The translational controller consists of
the position and velocity controllers, which send commands to the attitude controller. The
rate of each controller is also shown in Figure 5.1. Note that the outer-loop controllers
deal with slow dynamics and therefore run at slower rates than the inner-loop controllers.

5.2.1. Angular rate controller

Three separate linear PID controllers are used to control angular rates in the pitch, roll,
and yaw axes of the multirotor body frame. The angular rate controller receives angular
rate estimates from the PX4 state estimator and outputs virtual actuator commands to
the mixer. Figure 5.2 shows a diagram of the pitch angular rate controller. The yaw and
roll controllers are not shown here, but they replicate the same structure.

+
−

∫
IΩX

LPF d
dt

DΩX

PΩX

+
+

−

ΩBX,sp

ΩBX

δEsp

Figure 5.2: Angular rate controller diagram [7].

In Figure 5.2, PΩX
, IΩX

, and DΩX
are the PID gains for the pitch angular rate controller.

As defined in Chapter 3, ΩBX
is the pitch angular rate in the body axis, ΩBX,sp

is the pitch
angular rate setpoint, and δEsp is the virtual elevator setpoint.

Some elements improve the practical implementation of the controller, but have a negligible
effect on the design of the gains, namely:
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• A Low Pass Filter (LPF) is added in the derivative path to reduce the effect of
sensor noise.

• The derivative path is implemented on the plant output signal, instead of the error
signal to eliminate derivative kick.

• Saturation is applied to the integral path to eliminate integral wind-up.

• The control signal is saturated to avoid dangerously large setpoint commands.

These effects are also described in detail by [6].

Classical control theory was used by [10] to design the controller gains of the practical
multirotor, Honeybee. This same process is also explained in detail by [6]. The controller
gains were designed for a transient response that is as fast as possible while retaining fast
disturbance rejection, and minimal overshoot. It was determined by [10] that the default
PX4 angular rate controller gains of the ZMR250 airframe provide excellent control for
Honeybee and satisfy these design requirements. ZMR250 refers to a popular racing drone
design. The practical system will be discussed in Chapter 6.

For a 1 rad/s step response, the pitch rate controllers result in a 3.6 % overshoot, 0.024 s
rise time, 0.8 s 2 % settling time, and 138 rad/s bandwidth [10]. These gains are well
suited for Honeybee and will also be implemented in this work. The default roll-rate
and yaw-rate controller gains are also implemented for the same reason. These gains are
documented in Appendix A.

5.2.2. Angle controller

The pitch, roll, and yaw angles are controlled by the angle controller in the body frame. A
quaternion based controller is implemented by PX4 for angle control based on work by
[79]. The structure and design of this controller is well explained by [2], [6] and [10] but is
only briefly discussed here.

For the control law proposed by [79], the error quaternion is calculated as:

qe = q−1 · qsp, (5.1)

where qe is the quaternion error, q is the current attitude quaternion of the multirotor,
and qsp is the attitude quaternion setpoint. The resulting control law is given as:

Ωsp = 2Pq sgn(q0e)qve , sgn(q0e) =





1, q0e ≥ 0

−1, q0e < 0
, (5.2)
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where Ωsp is a vector of the roll, pitch, and yaw angular rate setpoints, Pq is a vector of the
corresponding proportional gains, q0e is the error of the quaternion magnitude component,
and qve is the error of the vector component of the quaternion. The implementation of
this control law is illustrated in Figure 5.3 for a single element of Ωsp.

Error
quaternion

Extract
component

Extract
magnitude

sgn

× 2PΩj

qsp

q

qe

q0e

qje

Ωjsp

Figure 5.3: Quaternion based angle controller diagram [7].

In Figure 5.3, the j subscript denotes a specific element in the vectors qe, Pq, and Ωsp,
where j = {1, 2, 3}. The attitude quaternion setpoint is taken as input, the current attitude
is received from the PX4 estimator, and the resulting angular rate setpoint is produced as
the control signal.

Only a proportional term is applied in this control law. The proportional gains were
designed for Honeybee by [10] for a transient response that is faster than the default
ZMR250 response. These gains are documented in Appendix A. This results in a 1 rad
step response with little to no overshoot, 0.3 s rise time, 0.47 s for a 2 % settling time,
and 11 rad/s bandwidth [10]. This has a large time-scale separation from the angular rate
controller, which has a bandwidth of 138 rad/s. A fast angle response is desired in this
work, hence the same gains designed by [10] will be used.

5.2.3. Translational controller

The translational controller consists of the position and velocity controllers. Position
control is not considered in this work, therefore it will not be discussed in this section.
A diagram of the North velocity controller is shown in Figure 5.4. The West and Down
velocity controllers duplicate the same configuration.

+
−

∫
IVN

LPF d
dt

DVN

PVN

+
+

−

VNsp

VN

ANsp

Figure 5.4: Velocity controller diagram [7].
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To drive the multirotor to a given velocity setpoint, the velocity controller commands an
acceleration setpoint in the inertial frame. This acceleration setpoint is transformed to an
attitude setpoint which is used by the angle controller. This transformation is based on
work done by [102].

Recall from Chapter 4, that the cascaded PID controller is used for velocity step inputs in
the training data flight stage for system identification. The system identification methods
produce linear models, which are used in swing damping controllers to minimise the
payload angles during flight. The velocity controller gains used for Honeybee by [10] result
in aggressive velocity responses, which produce large payload swing angles. Such large
payload angles are undesirable in safe flights. Therefore the velocity controller gains are
redesigned for a slower transient response and smaller payload swing angles.

The derivation of the transfer function, GVN
(s), of the North velocity dynamics of a

multirotor with a suspended payload was derived by [2] and is described here briefly.
Firstly, the non-linear dynamics were derived with Lagrangian mechanics as described
in Chapter 4. The equations were then linearised around hover with the small-angle
approximation. The linearised equations for the longitudinal or North velocity dynamics
can be presented in the state-space form as,

Ẋlong = AlongXlong + BlongUlong and (5.3)
Ylong = ClongXlong, (5.4)

where

Xlong =
[
VN θ̇ θ

]T
, (5.5)

Ulong = AN , (5.6)

Along =




0 c
lmQ

gmp

mQ

0 − c(mQ+mp)
l2mQmp

−g(mQ+mp)
lmQ

0 1 0




T

, (5.7)

Blong =
[
1 −1

l

]T
, (5.8)

Clong =
[
1 0 0

]
. (5.9)

For the definition of these symbols, refer to Chapter 4. The input and output of the plant
are Ulong = AN and Ylong = VN , respectively. Note that the actual input of the plant
is ANsp , however, it is assumed that ANsp ≈ AN due to the large time-scale separation
between the velocity controller and attitude controller. The transfer function can therefore
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be calculated as,

GVN
(s) = VN(s)

AN(s) = Clong (sI − Along)−1 Blong , (5.10)

GVN
(s) =

s2 + c
mpl2 s + g

l

s

[
s2 + c(mQ + mp)

mQmpl2 s + g(mQ + mp)
mQl

] . (5.11)

A payload with mp = 0.2 kg and l = 1 m is considered for the controller design. Figure 5.5
shows a root locus plot of the closed loop system which includes the PID controller. The
gains were tuned in an iterative process to produce a slow step response that stimulates the
payload dynamics enough for system identification. These gains were also tested iteratively
with different payload parameters in the ranges, 0.1 ≤ mp ≤ 0.3 kg and 0.5 ≤ l ≤ 2 m, to
establish safe flights with different payloads.

Figure 5.6 shows a velocity step response for the resulting cascaded PID controller with
a specific payload. The gains are documented in Appendix A. Note that the response
results in a large overshoot, however, this aids in keeping the payload angles low. The
velocity oscillations are clearly visible in Figure 5.6a. The current PID controller does not
provide an adequate way of actively damping the payload oscillations, hence an active
swing damping controller is required.
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Figure 5.5: Root locus plot of the North velocity dynamics including PID controller.
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Figure 5.6: PID velocity step response (l = 1 m, mp = 0.2 kg).

5.3. Linear Quadratic Regulator
LQR is a popular optimal control technique and is an effective swing-damping controller
for a multirotor with a suspended payload [2, 6, 103]. The LQG technique combines
LQR with a full-state estimator to control systems where some state variables cannot
be measured [104]. An LQG was effectively used by [2] for swing-damping control of a
multirotor and suspended payload system.

However, to focus on the controller performance without considering the effect of state
estimation, it is assumed that full-state feedback is available in this work. Therefore, an
LQR for North velocity control with full-state feedback is presented in this section. This
controller structure can be duplicated for East velocity control due to the symmetry of a
multirotor.

An LQR does not inherently apply integral action and does not achieve zero steady-state
tracking error in the presence of disturbances. Therefore the state vector is augmented
with an integral state, VN , of the velocity error such that:

V̇N = VNsp − VN (5.12)

The North velocity dynamics were derived and linearised in Chapter 3 to produce a
state-space model which will be used to design the LQR. It is assumed that all model
parameters are known before a flight, except for the payload parameters, l and mp, which
are estimated in the system identification phase. The augmented state space model which
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includes the integral state is given by:

ẋA = AAxA + BAuA, (5.13)

where

xA =
[
VN VN θ θ̇

]T
, (5.14)

uA =
[
ANsp

]
, (5.15)

AA =




0 −1 0 0
0 0 mp·g

mQ

c
(l·mQ)

0 0 0 1
0 0 (mp+mQ)·g

(mQ·l)
−c·(mp+mQ)
(l2·mQ·mp)




, and (5.16)

BA =




0
1
0

−1
l




. (5.17)

The LQR control law is defined as:

uA = Klqr(xAsp − xA), (5.18)

where Klqr is the LQR gain, and xAsp is the augmented state vector setpoint. Only VNsp

has a non-zero value, hence xAsp =
[
0 VNsp 0 0

]T
.

Furthermore, the LQR considers the cost function:

J(uA) =
∫ ∞

0

(
XT

AQXA + uT
ARuA

)
dt, (5.19)

where Q is the state weighting matrix, and R is the input weighting matrix. The LQR
gain, Klqr, is therefore determined by substituting Equation 5.18 into Equation 5.19 and
minimising the cost function.

The LQR control performance can be manually tuned by changing the state and input
weights in Q and R respectively. The weighting of each state variable can be determined
according to tracking importance. For example, if the weighting of VN is small in comparison
to the weighting of θ, the controller will produce a slow velocity response with small payload
swing angles. For the values in R, if the weighting of an input variable is large, the controller
will output lower control values for that variable.
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The general design requirements of the LQR are to produce a fast velocity response with
zero steady-state error while damping the payload oscillations quickly. The priority is to
produce a smooth trajectory with minimal oscillation, however, a reasonably fast response
time is still required. An iterative tuning approach was used to determine the Q and R

matrix entries that produce a good performance. The final LQR weightings were selected
as:

Q = diag([0.1 10 0 100]), R = 13. (5.20)

The term diag() refers to a diagonal matrix with the given vector as the principal diagonal.
Note that the weight of the payload angle variable is 0. This is because the payload angle
will have a non-zero steady-state value at a constant velocity, VN , due to aerodynamic drag.
The payload angle is therefore damped by placing a heavy weighting on the derivative of
the payload angle instead.
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Figure 5.7: LQR velocity step responses with different payloads.

Figure 5.7 shows a plot of the simulated LQR velocity response with different payload
parameters. It is clear that the controller damps the payload angles well and produces
a smooth trajectory with different payloads. For each different payload, the payload
parameters are estimated, the state-space model is populated, and the LQR gain is
calculated using the same weighting matrix values. The controller performance, including
disturbance rejection, will be further discussed in Section 5.5.

5.4. Model Predictive Control
Model Predictive Control (MPC) refers to a control system approach that determines the
control action at each time-step by solving an open-loop optimal control problem over a
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finite prediction horizon [105]. MPC does not refer to a specific algorithm implementation,
but rather to the general control system approach.

Figure 5.8: Diagram of the structure of a typical MPC.

Figure 5.8 shows the structure of a typical MPC implementation. As a high-level overview,
the MPC receives the measured output vector, y, and the output setpoint ysp, and
determines the control action, u, to drive the values in y to the values ysp. An optimiser
uses an internal plant model to determine an optimal control sequence over a prediction
horizon [105]. Therefore ysp may be replaced by a target trajectory for each output over
the prediction horizon. In many implementations, only the first control action of the
optimal sequence is executed and the optimisation is re-calculated at every time-step.

Each MPC implementation depends on the plant model representation used [106]. In
this section, an overview will be given of the specific MPC implementation used in this
work. The MPC objective function will be explained and the design process to tune the
controller will be discussed. It will also be discussed how integral action is achieved with
the MPC. Finally, the control response of the tuned MPC will be shown and discussed for
the simulated system.

5.4.1. Receding horizon

As stated before, an MPC considers an open-loop optimal control problem over a finite
prediction horizon [105]. Using a plant model for predictions, an optimiser determines
the optimal control sequence that will minimise an objective function over the prediction
horizon. MPC is also referred to as receding horizon control because the control sequence
is determined for the next prediction horizon period at every time-step.

Figure 5.9 illustrates the receding horizon concept for a Single Input Single Output (SISO)
system. One of the main objectives of the optimiser is to minimise the error between
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Figure 5.9: Illustration of the receding horizon of an MPC [8].

the predicted trajectory and the target trajectory. Starting at time-step k, a prediction
horizon of Np time-steps is considered, and the optimiser suggests a controller decision
with Nc unique control values. Nc is referred to as the control horizon and is subject to
the condition, Nc ≤ Np. The control sequence, or controller decision, at time-step k is
denoted by,

zk
T = [u(k|k)T u(k + 1|k)T ... u(k + p − 1|k)T ], (5.21)

which minimizes a specific objective function over the prediction horizon. As an example,
u(k + 1|k) represents the optimised input vector calculated at time-step k, which will be
executed at time-step k + 1. The controller decision produces the predicted trajectory
when applied to the plant model. Note that if Nc < Np, the remaining control actions are
set to:

u(i|k) = u(Nc|k), i > Nc . (5.22)

5.4.2. Plant model

An important characteristic of MPC is that it uses a separately identifiable plant model in
the control optimisation process [106]. An estimated model from the data-driven techniques
discussed in Chapter 4 will be used as the plant model for the proposed MPC architecture.
DMDc produces a discrete, linear state-space model of the system dynamics. Hence, an
MPC implementation that corresponds to such a model will be applied. The following
state-space model representation will be used,

xmpc(k + 1) = Ampcxmpc(k) + Bmpcumpc(k), (5.23)

where Ampc is the system matrix and Bmpc is the input matrix. xmpc(k) is the state vector
and umpc(k) is the input vector at time-step k for this state space model. It is assumed
that full-state feedback is available, therefore ympc = xmpc.
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DMDc applies multiple delay-coordinates to account for input delay and state delay in the
system. In Section 4.4, it was shown that the adapted DMDc algorithm produces three
matrices, Admd, Ad, and Bdmd. However, the MPC requires a single system matrix, Ampc.
Therefore the DMDc system is converted into:


xdmd(k + 1)

d(k + 1)


 =


Admd 0

Id 0




xdmd(k)

d(k)


+


Bdmd

0


udmd(k), (5.24)

xmpc(k + 1) = Ampc · xmpc(k) + Bmpc · umpc(k), (5.25)

where Id is the identity matrix that links the corresponding entries in [xdmd(k) d(k)]T to
d(k+1). This produces large state-space matrices with many output variables (represented
in d(k + 1)) that are necessary for state predictions but do not require setpoint tracking.
The state delay vector, defined in Section 4.4, is symbolised by d. To ignore these variables
in the control optimisation problem, they are assigned a zero weighting in the MPC
objective function.

Recall from Section 4.6.5 that θ̇ was not used in the estimated model. However, as discussed
in Section 5.3, it is better for a controller to minimise θ̇, rather than θ. This is because θ

has a non-zero steady-state value during a velocity step response caused by aerodynamic
drag. The state vector is therefore augmented with the θ̇ variable, such that,

xmpc
T =

[
VN θ θ̇ d

]
. (5.26)

The Ampc matrix is also augmented with a Backwards Euler numerical differentiation
equation, such that,

θ̇(k) = 1
Ts

θ(k) − 1
Ts

θ(k − 1). (5.27)

In this way, a weight can be applied to the θ̇ variable in the MPC objective function
to control this variable. Bmpc is augmented with zeros so that the state space matrix
dimensions agree and so that umpc(k) does not directly influence θ̇(k).

5.4.3. Algorithm implementation

A algorithm needs to be selected or designed to implement MPC. There are numerous
open-source methods available for this purpose. An extensive list of options is provided
in the survey by [107] and the most promising ones are summarised here. A custom
MPC implementation can be developed in MATLAB® or C++ with the aid of software
packages like CVXGEN [108], ACADO [109], YALMIP [110], Multi-Parametric Toolbox
[111], and do-mpc [112]. Other open-source MPC implementations are also available as
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ROS packages from work done by [113] or [114].

The Simulink™ implementation of an MPC from the Model Predictive Control Tool-
box™ [115] was selected for this work. It was selected because it integrates well with our
simulation environment in Simulink™ and it specifically uses a discrete state-space plant
model. The Model Predictive Control Toolbox™ also supports C++ code generation for
stand-alone ROS nodes. Therefore, it can integrate with the SITL implementation of PX4
and it can run on an OBC for practical implementations.

The Model Predictive Control Toolbox™ solves the control optimisation problem as a
Quadratic Program (QP) at each time interval [115]. To do this, it applies an active-set QP
solver using the KWIK algorithm from [116]. This QP usually consists of three features,
namely,

• the objective function,

• the constraints, and

• the controller decision

The objective function provides a scalar value that quantifies the controller performance.
The controller decision is the set of umpc values determined by the QP solver that minimises
the objective function. The constraints are conditions that the controller decision should
satisfy, such as bounds on xmpc, umpc, and ∆umpc values.

A powerful advantage of MPC is that constraints are easily included in the optimal control
implementation. However, constraints are not necessary for this work and will not be
applied. This is advantageous for practical implementations because unconstrained MPC
is less computationally complex than constrained MPC.

The objective function used by the Model Predictive Control Toolbox™ is documented
well by the corresponding user manual [115], and a brief overview of this implementation
will be presented here. The objective function consists of the sum of three terms that each
quantify a specific aspect of the control performance, and is calculated as,

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk), (5.28)

where zk is the controller decision at time-step k. The three scalar performance measures
are denoted as Jy(zk) for output setpoint tracking, Ju(zk) for control action tracking, and
Jδu(zk) for control action move suppression. Each performance measure includes weights
that balance the competing objectives of the different terms. These weights need to be
manually tuned for a desired controller performance.
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Output setpoint tracking
The performance measure of the output setpoint tracking is calculated as,

Jy(zk) =
ny∑

j=1

Np∑

i=1
{wy

j [rj(k + i|k) − yj(k + i|k)]}2 , (5.29)

where the symbols are denoted as,
k Current control interval time-step.
ny Number of output variables.
Np Prediction horizon.
yj(k + i|k) Predicted value of jth output variable at ith time-step from k.
rj(k + i|k) Reference value of jth output variable at ith time-step from k.
wy

j Tuning weight for jth output variable.

The controller receives the reference values, rj(k + i|k), for the prediction horizon starting
at time-step k. Using the internal plant model, the predicted output values, yj(k + i|k),
is determined based on the controller decision, zk. The values of Np and wy

j are design
choices that are constant controller specifications. The value of ny are also constant and
are determined from the plant model.

Manipulated variable tracking
In some control applications, it is desirable to keep specific control action variables close to
a target value. In the multirotor use case, lower control action values are preferred because
this corresponds to lower energy use. The control action target values are therefore set.
The performance measure of manipulated variable tracking is calculated as,

Ju(zk) =
nu∑

j=1

Np−1∑

i=0
{wu

j [uj(k + i|k) − uj,sp(k + i|k)]}2 , (5.30)

where the symbols are denoted as,
nu Number of manipulated variables.
uj(k + i|k) Control decision of jth control action at ith time-step from k.
uj,target(k + i|k) Target value of jth control action at ith time-step from k.
wu

j Tuning weight for jth control action.

The desired uj,target(k + i|k) values can be received for the prediction horizon starting at
time-step k. However, for our use case, all uj,target(k + i|k) values are constant and zero.
The value of nu is fixed by the plant model. The wu

j values are also constant and are
determined as a design decision.
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Manipulated variable increment suppression
Large increments or moves in the control action values are often undesirable for good
control performance. In the multirotor use case, large increments of the acceleration control
actions result in aggressive jerks which may cause the system to go beyond the accurate
domain of the linear approximation model. High frequency moves in the acceleration
control actions may also cause jittery flight dynamics because acceleration setpoint changes
correspond to attitude changes. The performance measure of control action tracking is
used to penalise increments in the control actions. This is calculated as,

J∆u(zk) =
nu∑

j=1

Np−1∑

i=0

{
w∆u

j [uj(k + i|k) − uj(k + i − 1|k)]
}2

, (5.31)

where the symbols are denoted as,
wδu

j Tuning weight for movement in the jth control action.

The values of w∆u
j are constant and are determined as a design choice.

It is important to note the similarities and differences between the LQR and MPC objective
functions. The LQR implementation described in Section 5.3, did not included penalisation
for control action increments. However, if J∆u(zk) is removed from Equation 5.28, the
MPC and LQR optimiser consider the same variables.

The LQR optimisation corresponds to solving the unconstrained MPC optimisation problem
for Np = ∞. However, the LQR optimisation is run only once to determine the LQR gain,
whereas the MPC optimisation is re-run at every time-step. Also note that the LQR uses
a continuous-time model, but the MPC considered in this work uses a discrete-time model.

5.4.4. Integral action

A simple implementation of predictive control with multiple output variables does not
inherently apply integral action or disturbance rejection. For the multirotor and suspended
payload use case, MPC control without integral action results in a non-zero steady-state
error of the multirotor velocity, due to wind disturbance and inaccuracies in modelling the
drag.

Different methods have been proposed to apply integral action with an MPC. A common
method involves applying an integrator to the control action determined by the MPC
[117]. In this implementation, the MPC determines the optimal control action increment,
∆uk

∗, and calculates the control action, uk = uk−1 + ∆uk
∗ which is then applied. Hence,

integral action is applied to the plant input. This method is also described by [105].
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Another common strategy involves estimating an input disturbance that influences an
output variable in the plant model [117]. In this way, integral action is applied to the plant
output. This integral action strategy will be applied in this work. Since integral action is
required for VN in the North velocity controller, a disturbance model that influences VN is
augmented to the input matrix.

The resulting state-space matrix is,

xmpc(k + 1) = Ampcxmpc(k) +
[
Bmpc Bud

]

umpc(k)

ûud(k)


 , (5.32)

where Bud is the input disturbance model and ûud is the estimated input disturbance
value. The input disturbance model is designed as,

Bud =
[
bud 0 0 0

]T
, (5.33)

such that an input disturbance only influences VN in the state vector,

xmpc
T =

[
VN θ θ̇ d

]
. (5.34)

The variable bud is a tunable value that quantifies the effect of the input disturbance on
VN . This variable will be tuned in Section 5.4.5

The specific value of the non-zero matrix entry in Bud has only a slight effect on the control
performance, hence the iterative tuning process for this value was simple. The value of
ûud(k) is estimated by the default Kalman filter estimator from the Model Predictive
Control Toolbox™. This filter is based on the state-space model from Equation 5.32. The
value of ûud(k) is then used in the QP solver to determine the optimal control action of
the MPC.

It was determined from simulations with different payload parameters and disturbances
that the MPC with the default input disturbance estimator provides acceptable controller
performance. Hence, the default Kalman filter is used in the final control implementation.
Zero steady-state error for velocity tracking was achieved for different payloads and
different input disturbances, showing that integral action is achieved. The simulation
results showing the MPC integral action will be shown and discussed in Section 5.5.

5.4.5. Tuning

An MPC can easily be tuned for a range of different design requirements. The same general
design requirements will be applied to the MPC as to the LQR in Section 5.3, namely, to
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produce a fast velocity response with zero steady-state error while damping the payload
oscillations quickly. The MPC is tuned to have a similar response time to the LQR so
that the controller performances can be compared. Thereafter, it is tuned to produce a
trajectory that is as smooth as possible.

The MPC parameters that are determined in the controller design are, Np, Nc, wy, wu,
w∆u, and bud. The Ts value is fixed by the system identification phase, since the sample
time of the discrete model and the controller should match.

In the controller tuning process, a large value of wy
j corresponds to aggressive control of

the jth output variable, because the tracking error of that variable will be heavily penalised.
In contrast, small values of wu

j or w∆u
j, correspond to aggressive manoeuvres, because

the control values are not heavily penalised in the objective function.

The computational complexity of the QP problem increases significantly with larger
values of Np [118]. The computational complexity also increases with larger values of
Nc. Therefore the smallest values of Np and Nc that still provide acceptable controller
performance will be used. In the tuning process, the initial values were set to Tp = Tc =
2 × tp where Tp = Np × Ts, Tc = Nc × Ts, and tp is the peak-time of the velocity step
response with a PID controller. The objective function weights were then tuned for a
desired controller performance.

The objective function weights were iteratively tuned for the desired control performance in
a similar way to the LQR. Due to the non-zero steady-state value of θ, the corresponding
weight is set to zero. All the weights corresponding to the delay-coordinates are also set to
zero. Hereafter, the value of Tp = Tc is incrementally decreased until there is a noticeable
change in the controller performance. Tp is fixed at the smallest value before this change
occurs. Tc is then further decreased until a noticeable change in performance.

The last variable to be tuned is bud, which influences the disturbance rejection performance
of the controller. A large value of bud results in a fast disturbance rejection performance,
however, it also produces a large overshoot. Starting at an initial guess of bud = 1, the
value is iteratively tuned for a consistent performance with a range of different payloads
and wind disturbances.

The final controller parameters are shown in Table 5.2. Note that the weights in wy

correspond to the variables in, [VN θ θ̇], the weight in wu corresponds to the variable ANsp ,
and the weight in w∆u corresponds to the variable ∆ANsp(k) = ANsp(k) − ANsp(k − 1).

Stellenbosch University https://scholar.sun.ac.za



5.5. Implementation and results 78

Table 5.2: MPC configuration parameters.

Parameter Value

Np 166
Nc 116
Ts 0.03 s
wy [2 0 10]
wu [0.1]

w∆u [10]
bud 0.1
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Figure 5.10: MPC velocity step responses with different payloads.

Figure 5.10 shows a plot of the simulated MPC velocity response with different payload
parameters. It is clear that the controller damps the payload angles well and produces a
smooth trajectory with different payloads. For each different payload, a DMDc model is
first estimated. Thereafter the MPC is simulated with the same controller configuration
defined in Table 5.2.

5.5. Implementation and results
In this section, the control architectures will be tested within simulations with different
payload configurations. In this work, the control architecture refers to the entire con-
trol implementation, which includes the system identification method and the controller.
Therefore the control performance is also dependant on the system identification tech-
nique. The MPC performance is dependant on the accuracy of the data-driven DMDc
model and LQR performance is dependant on the accuracy of the white-box model and
parameter estimation algorithms. For each simulation, the system identification method
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first determines a model of the considered dynamics, whereafter the controller is applied
based on that model.

5.5.1. Simple suspended payload

The modelling assumptions of the white-box model discussed in Chapter 3 defines a point-
mass suspended with a rigid cable which is attached to the CoM of the multirotor. This
is a simplistic suspended payload model but represents the dynamics of many practical
payloads well. In this section, the simulated payload model satisfies these assumptions.
This payload model was also used for simulations with an LQR controller in other studies
[2, 6]. The simulation model used in this section was verified with practical data in
Section 3.6.
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Figure 5.11: Velocity step response comparison of different controllers (l = 2 m,
mp = 0.3 kg).

From simulation results, it appears that both the MPC and LQR effectively damp the
payload oscillations while controlling the velocity of the multirotor. Figure 5.11 shows
the velocity step responses of the MPC, LQR and PID controllers for a multirotor with a
suspended payload. From Figure 5.11 it is clear that both the LQR and MPC controllers
actively damp the velocity oscillations caused by the swinging payload. The PID controller
does not consider the payload angle, hence the oscillations are not damped well.

Figure 5.12 shows the payload angle data of the velocity step response. Both the MPC
and LQR damp the payload angle well and the oscillations cease after only two or three
cycles. In this case, the MPC response results in a slightly smaller initial swing angle,
however, this depends on the specific tuning of each controller.
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Figure 5.12: Payload angle comparison of different controllers (l = 2 m, mp = 0.3 kg).

Figure 5.13 shows the acceleration setpoint commanded by the two controllers for this step
response. The similarity of the acceleration setpoint data shows that the energy expended
in a velocity step is roughly equal for these controllers. This is highly dependant on the
weightings used in the optimisation problem of both controllers. Both controllers also
produce a non-zero steady-state setpoint as expected, which is required to counteract
aerodynamic drag.
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Figure 5.13: Acceleration setpoint commanded by different controllers for a velocity step
input (l = 2 m, mp = 0.3 kg).
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5.5.2. Different payload parameters

The system identification and control implementations are required to perform well with
different unknown payload parameters. As noted in Chapter 2, controllers which are
designed to account for payload uncertainty are seldomly demonstrated with different
payloads in literature. In this work, numerous flights with a range of different payloads
were simulated. For each simulation, plant models were estimated and the controllers were
implemented based on those models.

Figure 5.14 and 5.15 show the velocity step responses with with two different payloads.
Both architectures handle flights with different cable lengths and payload masses well. In
each flight, the LQR and MPC damp the payload oscillations and control the multirotor
velocity well.

The controllers were not specifically tuned for each simulation. Instead, the same controller
parameters were consistently used for each simulation. This demonstrates that each control
architecture is adaptable to different payload parameters without manual intervention.
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Figure 5.14: Velocity step response comparison of different controllers (l = 1 m,
mp = 0.2 kg).
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Figure 5.15: Velocity step response comparison of different controllers (l = 0.5 m,
mp = 0.1 kg).

5.5.3. External disturbance

For zero steady-state error in a practical system, a controller needs to apply some form of
disturbance rejection. Practical systems experience unmeasured disturbances and other
deviations which are not accounted for by the plant model. For example, a mean force
applied by wind could prevent zero steady-state tracking error of the multirotor velocity
without disturbance rejection. As discussed in Section 5.3, an integral state variable was
added to the LQR plant model for integral action. An unmeasured input was added to
the MPC plant model with a disturbance estimator to apply integral action.
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Figure 5.16: Effect of an unmeasured step input disturbance. (l = 2 m, mp = 0.3 kg).

Stellenbosch University https://scholar.sun.ac.za



5.5. Implementation and results 83

Figure 5.16 shows the responses of the controllers from Section 5.5.1 with a constant wind
disturbance starting at 8 s. At Time = 8 s, a wind speed of 2 m/s is applied to the simulation
model as an unmeasured step input. This mostly affects the multirotor velocity because
the wind causes a greater drag force on the multirotor, hence a larger acceleration setpoint
is required to maintain a constant velocity. For both system identification approaches, the
models were trained without wind.

It appears that the MPC shows better disturbance rejection than the LQR when using
the controller parameters which were tuned for good performance in Section 5.5.1. This
is primarily because the weighting of the integral variable in the LQR optimisation was
minimised to reduce overshoot. The integral weighting can be increased to improve integral
action at the expense of increasing overshoot in the velocity response.
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Figure 5.17: Different LQR responses for different integrator gains (l = 2 m, mp = 0.3 kg).

Figure 5.17 shows the LQR responses with different integral state weightings. The other
state variable weights are kept constant for each response. It is clear that the settling
time and disturbance rejection of the LQR improves for larger integral state weightings.
However, the overshoot increases significantly because of integrator build-up.

In contrast to the LQR, the MPC shows good disturbance rejection while maintaining a
low overshoot. This is because the disturbance estimator applies integral action which
depends on the deviation of the actual dynamics from the plant model, whereas the LQR
applies integral action proportional to the integral of the tracking error. Therefore the
MPC implementation produces less integrator build up which results in a lower overshoot.
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5.5.4. Dynamic payload

As discussed in Section 4.6.9, some payloads have dynamics that differ significantly from a
suspended rigid mass. In this work, these payloads are referred to as dynamic payloads.
An elongated payload is an example of such a payload and can be represented by a double
pendulum model.

In Section 4.6.9, the proposed system identification techniques were tested on simulated
flight data with such a payload. For the white-box system identification approach, it was
shown that the white-box model captures the dynamics of the dominant frequency of the
oscillating payload but ignores the higher frequency dynamics. For the black-box approach
the model accurately predicted the multirotor-payload dynamics, including the low and
high-frequency oscillations.
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Figure 5.18: Velocity step response comparison of different controllers (l = 2 m,
mp = 0.3 kg).

For the simulations in this section, accurate system identification models were generated
as described in Section 4.6.9 and used in the MPC and LQR controllers. Figure 5.18 shows
the resulting controller responses with a dynamic payload. It appears that the velocity
responses of both the LQR and the MPC are less smooth than previously shown with a
simple suspended payload. Both control responses show small residual velocity oscillations.

Figure 5.19 shows the cable angle data for this velocity step response. It appears that the
LQR and MPC damp the payload oscillations with a similar response time. However, the
superimposed, high-frequency oscillations are smaller in the LQR response than in the
MPC response. The LQR naively damps the payload oscillations because its controller
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Figure 5.19: Payload angle comparison of different controllers (l = 2 m, mp = 0.3 kg).

gain is determined from the same dynamical model as for a simple suspended payload.
Because the angle of the payload relative to the cable is not measured or considered in the
LQR plant model, it does not directly damp these high-frequency oscillations. The MPC
should account for the superimposed frequency and provide a smoother response than the
LQR since the black-box model includes the double pendulum dynamics in its prediction
model. Therefore it is expected that the MPC optimiser determines a smooth trajectory
that damps both the low and high-frequency oscillations.
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Figure 5.20: Optimised prediction and actual velocity response of the MCP with a
dynamic payload.

However, the MPC does not provide a smooth velocity or payload angle response. Even
though the MPC generates a smooth optimised trajectory with the plant model, the
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actual response of the simulated system differs from this prediction. Figure 5.20 shows the
predicted velocity of the MPC optimiser, given the velocity setpoint and initial condition at
Time = 1.1 s. The actual simulated response, resulting from replanning at every time-step
is also shown in Figure 5.20. For the first part of the velocity response, the actual response
matches the optimised trajectory well. However, after Time = 3.2 s, the prediction is
noticeably different from the actual response of the plant.
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Figure 5.21: Optimised prediction and actual payload angle response of the MPC with a
dynamic payload.

Figure 5.21 shows the predicted and actual payload angle response for this simulation,
starting at the same time-step. The MPC optimiser also determined a smooth trajectory
for the payload angle, but the actual response differs significantly from this trajectory. Even
though the black-box model predictions accurately matched the testing data, Figure 5.20
and Figure 5.21 show that the model is not an accurate approximation of the simulated
system for the optimised values of the state and input vectors.

The estimated model provided accurate predictions in the domain of state and input
vectors represented in the training data. However, the MPC generates trajectories that
are beyond this domain. The multirotor with a simple suspended payload represents a
mildly non-linear system, hence the linear approximation was effective for control with
an MPC. However, a double pendulum system reveals highly non-linear dynamics with
multiple fixed points. This system also includes an unmeasured state variable which adds
complexity to dynamics.

From the results in Figure 5.20 and Figure 5.21 it appears the actual dynamics do not
follow the optimised trajectory of the MPC exactly. However, both architectures still
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produce acceptable swing-damping control of the system.

5.5.5. Change in unconsidered system parameters

The control architectures were shown to be adaptable to variations in the payload mass
and cable length. However, changing other system parameters may affect the performance
of the controllers. As mentioned in Chapter 4, a disadvantage of the white-box system
identification approach used by the LQR, is that parameter estimation techniques need
to be manually designed for each unknown parameter. In the baseline architecture, the
LQR model assumes that the multirotor mass is known. Hence, changing the mass of
the multirotor is detrimental to the accuracy of the plant model and affects the control
performance. In contrast, the data-driven system identification method for the MPC plant
model does not rely on these modelling assumptions.

Simulations were performed with an altered multirotor mass to demonstrate how the
control architectures handle changes in other system parameters. Figure 5.22 shows the
velocity step responses of the PID, MPC and LQR implementations with an altered
multirotor mass. For these simulations, the original multirotor mass, mQ = 0.796 kg, was
decreased by 0.250 kg, resulting in a new multirotor mass of, mQ = 0.546 kg. The same
system identification processes were naively followed as in the previous sections, without
prior knowledge of the change in mQ. The same tuned controller parameters were also
used.

In Figure 5.22 it appears that the LQR results in lower payload oscillations than the PID
controller but induces high frequency oscillations. This results in jitter in the velocity
response with the LQR. The LQR control performance has degraded because the dynamics
of the LQR plant model differs significantly from the actual dynamics. In contrast, the
MPC still results in a smooth velocity profile and damps the payload oscillations effectively,
as in previous simulations. This is expected since the system identification model used by
the MPC includes the effect of the changed mass by estimating the entire model without
considering individual parameters.

Note that another mass estimator can be implemented to estimate mQ in a flight stage
before the payload is added. However, this involves manually redesigning the system
identification procedure for each new unknown system parameter such as mQ. In these
simulations, it was shown that changing non-estimated system parameters in the white-box
approach can be detrimental to the control performance. Unlike the white-box approach,
the black-box approach handles changes in different system parameters without prior
knowledge of these parameters. In this case, the MPC architecture clearly outperforms
the LQR architecture.
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Figure 5.22: Velocity step responses with the multirotor mass decreased by 0.25 kg
(l = 0.5 m, mp = 0.3 kg).
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5.6. Summary
From simulations without disturbances, the MPC and LQR architectures were shown to
deliver similar control performances with a range of different payload parameters. Both
controllers showed a similar response time and velocity overshoot. The payload angle was
damped well by both controllers. Therefore, in the absence of disturbances, the control
performance does not conclusively differentiate between the LQR and MPC architectures
for a simple suspended payload.

Both the LQR and the MPC effectively rejected the unmeasured input disturbance caused
by wind, resulting in zero steady-state tracking error for the multirotor velocity. However,
the LQR implementations which were tuned for effective disturbance rejection resulted
in large velocity overshoots due to the integrator build-up. The MPC implementation
applied integral action with a disturbance estimator and achieved zero steady-state error
without increasing the velocity overshoot.

For simulations with a dynamic payload, both the LQR and MPC effectively applied
swing damping control. However, the trajectories were not as smooth as with the simple
suspended payload. Even though the simulated dynamics differed significantly from the
payload model used by the LQR, the LQR still managed to damp the payload oscillations
effectively. The MPC also managed to damp the payload oscillations well.

Even though the estimated model used by the MPC showed good prediction accuracy
with the given testing data set, the actual system response did not follow the predicted
trajectory of the MPC accurately. It appears that the optimised trajectory of the MPC is
beyond the domain where the linear model is an accurate approximation.

Both the LQR and the MPC architectures handle different payload parameters well. How-
ever, it was shown that the LQR architecture produces an undesirable control performance
for large changes in mQ, which is not considered in the relevant system identification
technique. Therefore, the parameter estimation procedure would need to be redesigned to
account for changes in other system parameters. However, the data-driven approach with
the MPC still provides good control performance for different values of mQ.

Overall, the advantage of the LQR architecture is that it is computationally simple in
comparison to an MPC. However, the LQR architecture is designed for a specific system
configuration and only accounts for changes in specific system parameters. In contrast, the
MPC architecture provides a general solution for different system configurations without
considering individual parameters and without a priori modelling.
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Chapter 6

Experimental design

As discussed in the literature study in Chapter 2, experimental data is a valuable part
of any work involving multirotor control. This chapter will provide an overview of the
hardware, software, Hardware-in-the-Loop (HITL) simulations, and practical methodology
used in this work.

6.1. Hardware components
The main hardware components in this work include a multirotor vehicle, a payload angle
sensor, and an OBC. These components are coupled together into the final multirotor
system which will be used for practical flights.

6.1.1. Multirotor

Figure 6.1: Honeybee multirotor equipped with a OBC and payload angle sensor.

The multirotor used in this work is a custom-built, lightweight multirotor named Honeybee.
This vehicle was developed in the Electronic System Laboratory (ESL) at Stellenbosch
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University [10]. Figure 6.1 shows a photo of Honeybee equipped with an OBC and payload
angle sensor.

The physical parameters of this multirotor are summarised in Table 6.1. Note that the
mass and inertial parameters include the OBC and payload angle sensor. The thrust
profile of each motor is given by the third-order polynomial mapping the input Pulse
Width Modulation (PWM) signal, x, to the thrust output, Tm [10]:

Tm(x) = −3.508 · 10−9x3 + 1.627 · 10−5x2 − 0.0172x + 4.528 (6.1)

Table 6.1: Physical parameters of Honeybee.

Description Parameter Value

Mass mQ 0.952 kg
Motor distance d 0.11 m
Virtual yaw moment arm RN 7.997 · 10−3 m
Motor time constant τ 15 ms
Mass moment of inertia about x̄B Ixx 2.00 · 10−3 kg·m2

Mass moment of inertia about ȳB Iyy 1.32 · 10−3 kg·m2

Mass moment of inertia about z̄B Izz 3.35 · 10−3 kg·m2

Aerodynamic drag coefficient in x̄B CQX
0.096 m2

Aerodynamic drag coefficient in ȳB CQY
0.096 m2

Aerodynamic drag coefficient in z̄B CQZ
0.256 m2

The Flight Controller (FC) implemented on Honeybee is a Pixhawk 4 mini shown in
Figure 6.2. This board includes internal IMU, magnetometer, and barometer sensors and
is connected to an external GPS sensor and an additional magnetometer. Furthermore, an
Radio Control (RC) receiver is used to communicate with a radio transmitter for manual
pilot control. A telemetry radio module is used for communication with a ground control
station. The OBC and external payload angle sensors are also connected to the FC.

Figure 6.2: Photo of a Pixhawk 4 mini FC [7].
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6.1.2. Payload angle sensor

A sensor is required to measure the payload state as Euler angles about the x̄B and ȳB

axes. Figure 6.3 shows a customised sensor attached to the Honeybee airframe for this
purpose.

Figure 6.3: Payload angle sensor with linear potentiometers.

This sensor was constructed from a two-axis joy-stick and two linear potentiometers. Each
potentiometer is implemented as a voltage divider and attached to an ADC channel on
the FC. Experimental data was used to map the ADC reading to an angle measurement
with a best-fit straight line function. A cable can therefore be attached to this device to
transport a suspended payload and measure the payload swing angles during flight.

6.1.3. On-Board Computer

An OBC, also called a companion computer, is used to run intensive computational
processes that cannot be handled by the FC. A NVIDIA® Jetson Nano™is used as the
OBC for Honeybee and is shown in Figure 6.4. This has 4GB memory and a quad-core
processor which runs at 1.43 GHz. The OBC is connected to a serial port on the FC for
communication.

Figure 6.4: NVIDIA® Jetson Nano™ [9] used as a OBC.
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6.2. Software Toolchain
The software toolchain used with Honeybee includes PX4, QGroundControl, ROS, and
Gazebo. This toolchain and was also implemented and described by [2], [6], and [10]. A
brief overview of the software toolchain is provided here.

6.2.1. PX4

PX4 is an open-source flight-stack that focuses on autonomous UAVs [93] and is often
used in research and industrial applications. SITL and HITL simulations are supported
by PX4, which is helpful for research and development.

6.2.2. QGroundControl

QGroundControl (QGC) is the recommended ground station software for PX4 systems [7].
A ground station computer running QGC can be used to monitor and control a PX4 vehicle.
QGC communicates with PX4 via the MAVLink protocol over a telemetry connection
during practical flights. During SITL simulations, QGC connects to PX4 over a local User
Datagram Protocol (UDP) connection. QGC is also an open-source product.

6.2.3. Gazebo

Gazebo is an open-source graphical-based physics simulator used for robotics. This is the
recommended simulator in the PX4 development toolchain and is capable of both SITL
and HITL simulations [7]. The PX4 flight-stack includes multirotor models developed for
Gazebo which include realistic sensor plugins. These plugins apply sensor noise, drift and
bias which replicates the actual sensors used on Pixhawk boards. The parameters defining
these models were changed to match Honeybee and a suspended payload was added to
the model as shown in Figure 6.5.

6.2.4. Robot Operating System

ROS is a communication framework with a set of tools used for robotics and control
applications [119]. ROS is also open-source and is supported by PX4. In this framework,
executables are called ROS nodes and these nodes interact with each in a publish-subscribe
architecture. A ROS node can publish messages to a topic, and a different node can
subscribe to that topic to read those messages.

MAVROS is an open-source ROS package that provides a bridge between ROS and PX4
through the MAVLink protocol. A MAVROS node receives MAVLink messages from PX4
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Figure 6.5: Model of Honeybee in the Gazebo simulator.

and converts this to published ROS topics for other ROS nodes to access. The MAVROS
node also subscribes to other topics to receive ROS messages and send this data to PX4.

Simulink™ was used to convert the MPC controller developed in Section 5.4 to C++ code
and generate a standalone ROS node. Figure 6.6 illustrates how the MPC node is used
as an offboard controller with PX4 and MAVROS. A MAVROS Master node receives
data, including state estimates, from PX4 through MAVLink communication. This data is
published by MAVROS to various ROS topics. State estimate data is received by the MPC
node by subscribing to the appropriate MAVROS topic. After the MPC node calculates
the next controller decision, it publishes the controller setpoint data to a MAVROS topic.
The MAVROS node then sends it to PX4 via MAVLink.

Figure 6.6: Communication between ROS, flight-stack, simulator, and ground station [10].
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6.3. Hardware-in-the-Loop simulations
In HITL simulations, the simulator mimics the sensor outputs, but the PX4 firmware and
the accompanying software runs on the designated hardware. Figure 6.7 illustrates how
the different software and hardware components interlink for HITL simulations.

QGC runs on the desktop computer and communicates with the Gazebo simulator with
MAVlink messages over a local UDP connection. The Gazebo simulator also runs on the
desktop computer and simulates the Honeybee multirotor. The simulator mimics the
multirotor sensor values and sends them to PX4 with MAVlink messages over a Universal
Serial Bus (USB) connection.

The PX4 firmware runs on the FC board. Based on the received sensors values, the PX4
controllers determine PWM actuator commands which are communicated back to Gazebo.
The OBC runs the MPC and MAVROS nodes which send and receive MAVLink messages
over a serial port connection to the FC.

Figure 6.7: Different software and hardware components of a HITL simulation.
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6.4. Practical flights
The major differences between simulated and practical flights involve wind disturbances
and the attachment of the payload. In simulations, the payload cable is attached to the
exact CoM of the multirotor. However, for practical flights the cable is attached slightly
below the CoM of Honeybee due to mechanical constraints. Practical flights are also
influenced by wind gusts which are difficult to model accurately in simulations. The
measurement noise experienced by a practical multirotor may also differ from the noise
models used in simulations.

Figure 6.8: Practical flight with Honeybee and a suspended payload.

Figure 6.8 shows Honeybee with a suspended payload during a practical flight. Numerous
flights were performed with different payload masses, cable lengths and wind conditions.
Different flights were also performed with a dynamic payload. The system identification
methods were then applied to the flight data logged by PX4. The results of these flight
experiments will be discussed in Chapter 7.

The same general methodology used for simulations will be used for practical flights:

1. Arm the multirotor for data logging to start.

2. Takeoff and hover with the multirotor.

3. Command velocity step setpoints.
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4. Land the multirotor.

5. Disarm the multirotor for data logging to stop.

6. Download the data log from the multirotor.

7. Split the data into separate training and testing periods.

8. Build a model from the training data.

9. Evaluate model predictions with the testing data.

6.5. Summary
This chapter provided an overview of the hardware and software used in this work. The
HITL simulation and practical flight setups were also discussed. This provides a background
for the experimental tests, results, and discussion in the next chapter.
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Chapter 7

Practical implementation and results

In Chapter 4, it was shown within simulations that both the white-box and black-box
system identification models can accurately represent the dynamics of a multirotor with
a suspended payload. In Chapter 5, it was also shown within simulations that the
proposed controllers effectively achieve swing-damping control. However, practical flights
may differ significantly from simulations, which would affect the performance of these
implementations. Wind is a common unmeasured disturbance that influences the flight
dynamics of a multirotor, but this disturbance was not considered in simulations. The
practical dynamics and sensor noise may also differ from the simulation model, which
further motivates the need for practical data.

In this chapter, the system identification techniques will be applied to practical flight
data using the same methodology described in Chapter 4. The effect of different wind
conditions and payloads on the performance of these techniques will be investigated. The
performance of these techniques on a practical dynamic payload system will also be shown.
Finally, HITL simulations will be performed to determine whether the available hardware
can handle the computational complexity of the MPC implementation.

7.1. Parameter estimation with practical data
In Section 4.3, a cable length parameter estimation technique was performed with simulation
data and the resulting white-box models produced reasonably accurate representations of
the simulated multirotor-payload dynamics. In this section, the cable length estimation
technique will be applied to practical flight data with different payload masses and cable
lengths. The effect of wind on the parameter estimation technique will also be investigated.
Finally, the cable length estimator will be applied to data from a dynamic payload.

7.1.1. Simple payload cable length estimation

As discussed in Section 4.3.3, an FFT of the payload angle data is used to estimate the
natural frequency of the suspended payload, which is used to estimate the cable length.
Percentage Error (PE) is used as the error metric to quantify the estimation accuracy.

98
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The PE of the cable length estimation is calculated as,

PE = lestimated − lactual

lactual

× 100%, (7.1)

where lactual is the actual cable length and lestimated is the estimated cable length. The PE
can be interpreted as the percentage of the actual length by which the estimated length
differs from the actual length.
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Figure 7.1: Plot of the error in cable length estimation as a function of length of training
data (wind speed ≈ 0.5 m/s).

Figure 7.1 shows the PE of cable length estimation for practical flight data with different
payload masses and cable lengths using practical fligth data. Note that for each payload
configuration, the estimation converges to a constant error after a sufficient length of
training data. For these payload configurations, the converged PE ranges from 18.9 % to
32.4 %. These errors may be due to the large difference between the theoretical and the
damped natural frequency. It appears that the PID controllers damp the payload swing
angles, which affects the oscillation frequency of the payload. Hence, an inaccurate length
is estimated from the frequency peak identified in the FFT. Unlike in the simulations, the
actual cable attachment may be below the CoM of the vehicle. This increases the effective
suspended length and may also contribute to the error in parameters estimation.

Figure 7.2 compares the actual payload angle to the predicted angle of the white-box
model for a velocity step in a practical flight. The cable length estimated from this flight
is 2.64 m resulting in a PE of 32.0 %. The prediction matches the general shape of the
practical data well. However, the transient response of the practical data, which can be
seen in the first two oscillation peaks, is noticeably different from the model prediction.
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Figure 7.2: White-box model prediction for a North velocity step input (l = 2 m,
mp = 0.3 kg.).

This is probably due to the inner loop controllers dynamics which affects the transient
response of the practical data but are not accounted for in the white-box.

Furthermore, the practical swing angle peaks are attenuated by non-linear damping, which
differs from the linear damping of the white-box model. This is a minor modelling error
expected from a linearised model.
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Figure 7.3: Cable length estimation error as a function of length of training data with
wind disturbances (mp = 0.2 kg, l = 1 m).

Figure 7.3 shows the PE of cable length estimation for flights with different wind conditions.
These flights were all performed with the same payload. Wind conditions are referenced
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here by the wind speed recorded by the website, www.yr.no, for the hour of the day of the
flight. It appears that the wind speed affects the parameter estimation result since the
estimation error differs significantly for different wind speeds. This is probably due to the
variable damping effect of the controllers at different wind speeds. From the considered
flights, the largest PE occurs at the highest wind speed, and the lowest PE at the lowest
wind speed. However, only a few different wind speeds were tested and a trend cannot be
identified conclusively from this small sample.

Note in Figure 7.3 that the estimation PE converges for each considered flight, even with
wind speeds up to 6 m/s. Therefore a dominant oscillation frequency emerges from each
flight, even when the multirotor is heavily affected by wind.

7.1.2. Dynamic payload cable length estimation

As discussed in Chapter 4, the dynamical equations of the white-box model are fixed in
the a priori modelling phase. The model is then populated with values from parameter
estimation techniques. However, when the dynamics of the observed system differ signific-
antly from the pre-determined model, the parameter estimation algorithms still determine
naive, best-fit values for the pre-determined model.

Figure 7.4: Practical flight with a suspended elongated payload attached to Honeybee.

One of the a priori modelling assumptions mentioned in Section 4.3, is that the suspended
payload is a point-mass. This reduced the considered suspended payload system to a single
pendulum in the white-box model. Figure 7.4 shows a photo of an elongated payload
suspended from Honeybee during a practical flight This is a practical example of a dynamic
payload that deviates significantly from the point-mass assumption. The mass distribution
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(a) Measured payload angle data.
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Figure 7.5: White-box model prediction for a North velocity step input for a dynamic
payload (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).

causes a rotation of the payload relative to the suspended cable, which significantly affects
the flight dynamics.

Figure 7.5a shows a snapshot of the payload angle data from a practical flight with a
dynamic payload. Two superimposed frequencies are visible in the payload oscillations due
to the double pendulum action of the elongated pendulum. The two peaks corresponding
to these two frequencies can easily be identified from the FFT amplitude spectrum in
Figure 7.5b. The cable length estimation method uses the frequency of the dominant peak
and calculates the effective length corresponding to that frequency. This results in a single
pendulum model that best matches the dynamic payload oscillations.
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Figure 7.6: Estimated cable length as a function of length of training data for a dynamic
payload (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).
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Figure 7.7: Data predictions using slightly different initial conditions for a velocity step
response with a dynamic payload (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).

Figure 7.6 shows the estimated cable length as a function of the length of training data for
a practical dynamic payload. Note that the estimated length converges after a sufficient
length of training data, showing that a dominant oscillation frequency can be identified.
For this flight, the estimated cable length is 1.03 m.

Figure 7.7 shows two model predictions resulting from slightly different starting points
in flight data. The two prediction runs in Figure 7.7 differ significantly from each other
even though the starting points of the predictions are offset by only 0.06 s. Since the
oscillations of the dynamic payload are irregular compared to the sinusoidal dynamics of
the white-box model, the prediction accuracy is very sensitive to the initial condition.
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Figure 7.8: White-box predictions from different initial conditions for a dynamic payload
(m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).

Figure 7.8 shows the white-box model predictions for the dynamic payload data with
slightly different starting positions in the data. Note how much the predictions differ even
though the starting points are so close together. This shows how sensitive the white-box
model is to the initial condition of the prediction. This is because the white-box model
consists of ordinary differential equations which depend on the initial angular rate of
the payload. Even though the oscillations of the dynamic payload have an approximate
sinusoidal shape, the time derivative of the data differs significantly from the sinusoidal
white-box dynamics. This is clear from numerous infliction points in the payload angle
data shown in Figure 7.7.

However, as the size of the swing angles attenuates the relative oscillation of the elongated
payload also decreases. Therefore the effect of the superimposed higher frequency oscilla-
tions become less prominent and the system dynamics approximates a single pendulum
more closely. For example, in Figure 7.7 it can be seen that the oscillations after 12 s are
much less irregular than before. Therefore the single pendulum model provides a decent
representation of a practical dynamic payload for small swing angles.

Overall, the white-box model represents the general shape of the practical data, but does
not capture the transient response of the system and is very sensitive to initial conditions.

7.2. Data-driven system identification with practical data
In Chapter 4 it was shown that the considered data-driven methods build accurate models
of the system dynamics from simulation data. It was also shown in Chapter 3 that the
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simulation environment is a realistic representation of the practical system. However, there
are still differences between simulations and practical flights. Therefore the data-driven
algorithms will be tested with real flight data to evaluate their suitability for practical
implementations.

7.2.1. Wind disturbance

The wind conditions during practical flights have a large influence on the quality of the
flight data gathered. Wind adds an unmeasured disturbance to the considered system
which is detrimental to system identification. This disturbance consists of a randomly
fluctuating force applied to the vehicle, cable and payload. It is very difficult to model
these forces accurately and to determine accurate drag coefficients of the practical system
for realistic simulations.

The mean force applied to the multirotor by the wind affects the mean offset in acceleration
setpoint data because the velocity controller integrators compensate for the disturbance.
The mean offset is subtracted from the acceleration setpoint data, which results in a signal
with a zero mean which is used for system identification. This accounts for the mean force
applied by the wind. However, the wind speed also fluctuates from the mean randomly.
This results in random process noise in the plant which cannot easily be removed from the
measured data.
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Figure 7.9: DMDc prediction errors as a function of length of training data for practical
data with different wind conditions (mp = 0.2 kg, l = 1 m, Ts = 0.03 s).

Figure 7.9 shows prediction error as a function of training data length for different wind
conditions. This plot shows that the minimum prediction error decreases with decreasing
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wind speeds. This is expected since lower wind speeds correspond to less process noise
which is beneficial for system identification. Note that the prediction error corresponding
to 6 m/s winds does not vary much with the length of training data. The prediction error
at this wind speed is quite large and a model generated from such data will probably not
be useful for control.
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Figure 7.10: DMDc and HAVOKc prediction errors for different lengths of practical
training data (mp = 0.2 kg, l = 1 m, Ts = 0.03 s).

Figure 7.10 compares the prediction errors of DMDc and HAVOKc models. This shows
that the two techniques produce similar prediction errors for different wind conditions.
The difference in prediction error is small and will probably not affect the performance
of the controllers using these models. This affirms the observation in Chapter 4 that the
minor difference in the algorithm implementations has a negligible effect on prediction
accuracy. Even for practical data, the DMDc implementation is preferred over HAVOKc
for practical data due to lower computational complexity.

7.2.2. Hyperparameters

As discussed in Section 4.6.3, the prediction error generally improves for a higher number
of delay-coordinates because the number of parameters in the model increases. However,
the prediction error reaches a Pareto optimum, after which the error does not significantly
decrease with an increasing number of terms. Figure 7.11 shows the prediction error as
a function of the number of delay-coordinates for practical flight data. Even though the
Pareto elbow is not as smooth and clear as shown in Chapter 4, the elbow can still be
identified.
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Figure 7.11: DMDc and HAVOKc prediction errors for different number of delays included
in the model (mp = 0.2 kg, l = 1 m, Ts = 0.03 s, wind speed ≈ 2 m/s).

7.2.3. System parameters

It was shown with multiple simulations in Section 4.6.7 that the system identification
methods work for a range of different payload parameters. Figure 7.12 shows the prediction
error for different payloads with practical data. This shows that the proposed methods
also work in practice with different payload configurations. The ‘double-descent’ trend
(discussed in Section 4.6.8) is also seen in the practical data results where the prediction
error increases slightly after a specific length of training data.
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Figure 7.12: DMDc prediction error as a function of training data length for different
payload parameters.
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Recall that the models producing these predictions do not use a priori information about
the plant. Only input and output measurements are used in the model generation. In
contrast to the white-box technique, the effect of system parameters such as multirotor
mass, payload mass, cable length, and damping coefficients are inherently included in the
estimated model. Therefore these parameters can all be varied and the system identification
algorithm should still be able to determine a prediction model of the system.

7.2.4. State predictions

Figure 7.13 shows the measured and predicted payload angle data of a suspended payload
for a velocity step in a practical flight. Note that the model is generated from training
data and is tested with a separate set of previously unseen, testing data. Figure 7.13 plots
the state prediction against testing data and it is clear that the prediction data fits the
measured data very well.

Recall from Section 4.4 that DMDc produces a discrete, state-space model in the form:

xk+1 = Admdxk + Addk + Bdmduk. (7.2)

The state prediction starts at the initial condition, x0 and d0, and predicts the state
vector for each successive time-step, xk+1, from the state vector, xk, delay vector, dk and
input vector, uk at the previous time-step. Each of these time-step predictions results in
a small error that accumulates with each successive time-step. Therefore the prediction
error increases as the prediction horizon increases, as shown in Figure 7.13.

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

Time [s]

Pa
yl

oa
d

an
gl

e
[°]

Measured
DMDc prediction

Figure 7.13: Model predictions of practical flight data with a suspended payload for a
North velocity step input (l = 2 m, mp = 0.3 kg).
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Figure 7.14 shows the measured and predicted North velocity of the same flight. The
oscillations in the velocity response due to the swinging payload are visible in this plot.
The model predicts the frequency and size of these oscillations reasonably well. Note that
predicting the payload angle is significantly easier than predicting the velocity response.
The payload angle prediction inherently oscillates around a zero mean. However, the
velocity response has a non-zero mean and depends on numerical integration of the
acceleration setpoint data. A slight error in the correction of the setpoint offset (discussed
in Section 4.6.6 and Section 7.2.1) may result in a large error in the velocity prediction due
to a build-up of integration error. However, despite this challenge, the model accurately
predicts the velocity step size of the practical data.
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Figure 7.14: Model predictions of practical flight data with a suspended payload for a
North velocity step input (l = 2 m, mp = 0.3 kg, wind speed ≈ 0.5 m/s).

7.2.5. Extended dimensions

Because the data-driven methods are only dependant on input and output data, the
prediction model can easily be extended to include more dimensions by adding more state
measurement variables. In this section, a prediction model is generated and discussed which
includes both the North and East axes dynamics. Such a model could be used in a single
MPC velocity controller to damp the payload oscillations in both axes simultaneously.

For this model, the state vector is,

x =
[
VN VE θN θE

]T
, (7.3)
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Figure 7.15: Snapshot of training data with random velocity step inputs for the North
and East axes (mp = 0.2 kg, l = 0.5 m).

and the corresponding input vector is,

u =
[
ANsp AEsp

]
. (7.4)

To generate training data, random steps are commanded in the North and East axes
simultaneously to excite the dynamics in both axes. Figure 7.15 shows an example of the
practical training data used for this extended dimension model. Clear oscillations in the
payload angle and velocity response of both axes are visible.

Figure 7.16 shows the state variable predictions of a DMDc model built from the data
in Figure 7.15. It is clear that this model provides an accurate prediction of each state
variable considered. This shows that the data-driven methods can be effectively extended
to include both the North and East axes dynamics. This is a great advantage of the
proposed data-driven approach. The model is easily adapted for different use cases without
redesigning estimation techniques or remodelling the plant manually.
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Figure 7.16: Data-driven predictions of practical data for a model with both North and
East axis dynamics.
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7.2.6. Dynamic payload

As mentioned in Section 7.1.2, one of the disadvantages of the white-box system identifica-
tion approach is that it relies heavily on a priori modelling assumptions. When a payload
is attached to the multirotor that deviates from the white-box modelling assumptions,
the performance of the system identification method decreases. However, the data-driven
methods can handle this deviation because it does not rely on these assumptions.
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Figure 7.17: Practical flight data and model predictions with an elongated payload for a
North velocity step input (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).

Figure 7.17 shows the measured and predicted payload angle of the practical dynamic
payload. The irregular oscillations due to the double pendulum action of an elongated
payload are visible in the angle data. It is clear that the data-driven model represents the
actual payload dynamics for unseen testing data well. It appears that the prediction differs
slightly from the measurement data at the peaks, however, this does not appear to be a
significant error. Overall, it is clear that the DMDc model captures the multi-frequency
oscillations of the dynamic payload well.

Figure 7.18 shows the measured and predicted velocity of the same flight. The superimposed
frequencies are not as visible in the velocity oscillations as they were in the payload angle
data. However, the oscillations in the velocity response still appear irregular compared
to the simple payload data shown in Figure 7.14. In Figure 7.18, the size of the velocity
prediction deviates from the measurement data at the velocity overshoot. However, this
error does not appear significant enough to affect the corresponding MPC controller. The
shape of the velocity oscillations also appears to be captured well in the prediction.
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Figure 7.18: Practical flight data and model predictions with an elongated payload for a
North velocity step input (m1 = 0.2 kg, l1 = 0.5 m, m2 = 0.1 kg, l2 = 0.6 m).

Recall that the prediction is propagated from an initial condition using the given input data
only. The model does not use state measurements to readjust after the initial condition is
taken. Therefore an accumulation in prediction error is expected as the prediction horizon
increases. Because the model prediction matches the shape of the practical testing data so
closely, it is expected that this model can be used for a practical MPC implementation on
practical data.

7.3. Hardware-in-the-Loop simulations
In Section 7.2 it was shown that DMDc can generate accurate state prediction models
from practical flight data. It was also shown in Section 5.4 that the DMDc models can be
used in an MPC for effective swing-damping control. A HITL simulation can now be used
to test the complete control architecture with the final software running on the actual
hardware.

As described in Section 6.3, an OBC runs a ROS node which implements the MPC
algorithm. The MPC is based on a DMDc plant model generated from training data from
a HITL simulation. The OBC receives state feedback and sends control signals to the
FC. The FC runs the actual PX4 flight-stack firmware and executes the control signals
received from the MPC node. Sensor values are generated and sent to PX4 by the Gazebo
simulator, which runs on a desktop computer connected to the FC via USB. In this way,
we can safely determine whether the practical hardware is suitable for the computational
complexity of the control algorithms.
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In this section, the results of different HITL simulations will be shown and discussed. The
effect of the MPC sample time on the Central Processing Unit (CPU) consumption will
also be investigated. Finally, it will be shown that an MPC node, which is based on a
data-driven system identification model, effectively implements swing-damping control in
a HITL simulation.

7.3.1. Effect of hyperparameters on computational requirements
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Figure 7.19: Maximum %CPU used by the MPC node for different values of q
(Ts = 0.03 s).

As discussed in Section 5.4, the computational complexity of the MPC optimisation
problem increases for larger state-space matrices, and the hyperparameter, q, determines
the size of these matrices. Figure 7.19 shows the %CPU consumption of MPC nodes based
on models with different q values. The %CPU value represents the average percentage of
CPU time used by the MPC node running on the OBC. From Figure 7.19 it is clear that
%CPU increases with increasing values of q. This shows that the computational complexity
increases for larger values of q.

In Section 4.6.3, it was shown that q = 50 is near the Pareto optimum for the practical
data and the prediction accuracy does not increase significantly for q > 50. As shown in
Figure 7.19, an MPC node with q = 50 and Ts = 0.03 s run at %CPU = 82.8% on the
OBC. The status of the QP solver was also monitored, which showed that the optimisation
problem was consistently solved within the given optimisation time for q = 50. The
MPC node achieves stable, swing-damping control with this model. However, for q = 70
the MPC node uses %CPU = 98.7% and the optimisation problem can not be solved
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fast enough for stable multirotor control. This results in an unstable controller and the
multirotor-payload system crashes consistently with this MPC node.
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Figure 7.20: Maximum % RAM used by the MPC node for different values of q.

Figure 7.20 shows that the %RAM also increases for larger values of q. The %RAM value
represents the maximum percentage of Random Access Memory (RAM) space used by the
MPC node while running on the OBC. It is clear that the OBC has sufficient memory to
handle the MPC, since the MPC node uses less than 1% RAM, even for large models with
q = 70.

7.3.2. Effect of sample time on computational requirements

The sample time of the controller also affects the %CPU consumption of the MPC node.
Figure 7.21 shows the measured %CPU of MPC nodes with different sample times using a
plant model with q = 50. It is clear that %CPU decreases as Ts increases. The default
velocity controller in PX4 runs at 50 Hz, which corresponds to Ts = 20 ms. However, an
MPC node with Ts = 20 ms struggles to run fast enough on the given OBC. This is clear
from the high %CPU consumption (98.6%) of the MPC node running at Ts = 20 ms. This
node results in unstable control because the QP problem cannot be solved within the
given optimisation time.

An MPC node with Ts = 40 ms runs with a low %CPU, however it also results in unstable
control. This is because the controller frequency is too low to provide adequate velocity
control of the multirotor-payload dynamics. An MPC node with Ts = 30 ms provides
stable control of the multirotor-payload system. The QP problem is solved within the given
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Figure 7.21: Maximum % CPU used by the MPC node for different sample times
(q = 50).

optimisation time and, as shown in the section below, the resulting controller frequency of
33.33 Hz appears to be fast enough to control the multirotor-payload dynamics.

Note that the practical controller implementation experiences latency in various parts of
the system. The latency can be attributed to various hardware communication channels
and software execution times. HITL simulations also determine whether the controller
works despite the inherent latency of the system.

7.3.3. Velocity step response

Figure 7.22 plots the velocity responses of the PID and MPC controllers in HITL simulations
of the multirotor-payload system. The MPC controller is based on a system identification
model with q = 50 and a sample time of Ts = 30 ms. It is clear from this plot that the
MPC node running on the OBC provides stable control of the multirotor payload system
and damps the velocity oscillations well.

Figure 7.23 shows the payload angle data of the PID and MPC controllers during the
velocity step response. From this plot, it can be seen that the MPC controller damps the
payload angle well. Overall, these plots show that the swing-damping control demonstrated
in Chapter 5, is also achievable with the final controller software running on the actual
hardware. This shows that the practical hardware is suitable for the computational
complexity of the control algorithms and the controller architecture is practically feasible.
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Figure 7.22: Velocity step responses of MPC and PID controllers for HITL simulations
(q = 50, Ts = 0.03 s).
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Figure 7.23: Payload angle responses of MPC and PID controllers for HITL simulations
(q = 50, Ts = 0.03 s).
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7.4. Summary
In this chapter, the system identification techniques were applied to practical flight data.
The cable length estimation technique described in Chapter 4 was applied to data from
flights with different payload masses and cable lengths. The results showed that the
estimated length converged quickly for each payload configuration and that the estimation
error was consistently quite large. The large error was attributed to the cable attachment
being below the vehicle CoM, and the damping effect of the controller, which were not
considered in the parameter estimation algorithm.

It was also shown that the estimated length converged for flight data with different wind
conditions and that the estimation error was the largest for the data with the most wind.
Furthermore, the cable length estimator was applied to flight data with a double pendulum
payload. The estimated value converged to a length corresponding to the dominant
frequency in the data, and the resulting white-box model prediction only represented the
general shape of the data. The white-box model prediction was also shown to be very
sensitive to initial conditions.

The data-driven system identification techniques were also successfully applied to practical
flight data. As expected, the prediction error of the techniques decreased for flights with
lower wind speeds. With a reasonable amount of wind, the techniques were able to generate
accurate prediction models. However, at very high wind speeds, the resultant models were
not usable.

The DMDc and HAVOKc state predictions performed equally well on data from various
flights. DMDc was chosen as the preferred method due to its lower complexity. It was shown
that DMDc could be applied to data from a wide range of different payload parameters and
that it consistently generated accurate prediction models without prior knowledge of the
payload dynamics. The Pareto front and ‘double-descent’ trends discussed in Chapter 4
were also identified in these results.

DMDc was extended to capture the North and East velocity dynamics simultaneously, and
the resulting prediction model accurately reconstructed the system dynamics for test data.
Furthermore, DMDc was applied to flight data with a dynamic payload representing a
double pendulum system. DMDc accurately reconstructed the dynamics of this system
for unseen test data. Unlike the white-box model which only represented the dominant
oscillation frequency, the DMDc model also predicted the irregular oscillations well.
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Finally, the full data-driven system identification with MPC control architecture was
tested in HITL simulations. It was shown that the hardware successfully executes the
MPC algorithm at the desired frequency for the selected hyperparameters and sample
time. The successful velocity step response proved that the various software systems work
together seamlessly. It also showed that the control architecture can be implemented on
the hardware of an actual multirotor for effective swing-damping control of the multirotor-
payload system.

Stellenbosch University https://scholar.sun.ac.za



Chapter 8

Conclusion

This thesis considered the design and practical implementation of a stabilising control
architecture for a multirotor with an unknown suspended payload. A broad scope was
considered which includes two different areas of research, namely,

• Data-driven system identification of the unknown payload dynamics

• Optimal swing damping control of the multirotor-payload system

The content and outcome of this work will be discussed in this chapter.

8.1. Literature study
Existing solutions for stabilised multirotor control with a suspended payload were identified
in the literature. The literature study showed that research seldomly includes experimental
results or algorithm tests with practical hardware, even though this would provide valuable
insights. It also shown that most studies do not account for uncertainty in the controlled
system. A thorough study of the literature showed that some solutions account for
parameter uncertainty, but very few assume no prior knowledge of the payload dynamics.

Furthermore, the few studies that achieved stabilised control despite unknown dynamics,
counteracted the influence of the payload as an unknown disturbance instead of actively
controlling the payload state. This places the focus on robustness rather than smooth
control of the complete multirotor-payload system.

An LQR controller was identified as a popular baseline controller in the literature and
was selected as the baseline swing damping controller for this work. The specific LQR
implementation considered in this work is based on a previous study that only considers
parameter uncertainty. This LQR controller is based on a linearised, predetermined model
of the multirotor-payload system. The payload mass and cable length are unknown prior
to a flight and are estimated with RLS and FFT estimators respectively.

120
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8.2. System identification
The baseline parameter estimation technique was described and applied to data from
SITL simulations with Gazebo. It was shown that the white-box model which uses the
estimated parameters captures the general shape of the system state predictions well.
The white-box model with parameter estimation technique was also applied to a dynamic
payload simulation. An elongated payload was suspended from the multirotor and acted
as a double pendulum, inducing irregular oscillations in the system. For this use case, the
resultant white-box model predictions did not represent the general shape of the payload
dynamics.

DMDc and HAVOKc were introduced as the data-driven system identification techniques
proposed in this work. These linear regression techniques each produce a discrete, linear
state-space model of the considered dynamics based on input and output data only. The
conventional HAVOK algorithm was not designed to be applied to controlled systems.
However, this algorithm was extended in this work to account for control inputs in
a dynamical system. The extended algorithm can be referred to as HAVOKc. The
conventional DMDc algorithm was altered in this work to include delay-coordinates in a
similar way to HAVOK. Furthermore, the mathematical complexity of these techniques
was described in detail.

These algorithms were applied to multiple SITL simulations for testing. Data was generated
with a sequence of random velocity step inputs and the standard PID controllers from
PX4. This data was split into training and testing data sets. The algorithms could then
be trained on the set of training data and could be validated on the unseen testing set.
The prediction accuracy of each model produced by these techniques was quantified with
an NMAE error metric.

A hyperparameter search showed a Pareto elbow as a function of the number of delay-
coordinates, q, such that increasing q passed this elbow increases complexity without
significantly increasing accuracy. Furthermore, the ‘double-descent’ phenomenon was
identified when testing with various lengths of training data. It was consistently observed
in different experiments that increasing the length of training data past a specific point
decreases the prediction accuracy.

Both techniques were shown to be robust to measurement noise. It was also shown that
the techniques consistently produced accurate models with a range of different system
parameters. The techniques were tested with the dynamic pendulum and the prediction
models accurately captured the irregular oscillations, despite having no prior knowledge of
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the payload. This showed a major improvement compared to the white-box model. For
the range of different tests the prediction accuracies of DMDc and HAVOKc models were
similar, hence DMDc is preferred due to lower computational complexity.

8.3. Swing damping controllers
Different multirotor controllers were discussed and tested, including PID, LQR, and MPC.
The cascaded PID controller was described and the gains of each control loop were tuned
in simulation. The simulation environment was verified with practical data from the
Honeybee multirotor and was shown to be an accurate representation of the actual system.

The baseline LQR controller was also described and the weights were tuned for the
simulated multirotor-payload system. The LQR was designed based on the white-box
model which uses estimated parameters for each different payload.

The control architecture proposed in this work includes an MPC controller which uses a
data-driven system identification model for predictive control. The MPC implementation
from the Model Predictive Control Toolbox™ in Simulink™ was used and the algorithm
was described in detail. This controller, using data-driven system identification models,
was also successfully applied for swing damping control in simulation.

Numerous tests were performed to evaluate the combined system identification with
control architectures. For each test, the system identification produced an estimated
model. Thereafter, the LQR and MPC controllers were applied based on those models.
For a payload with a single pendulum model, the LQR and MPC both achieved stabilised
control resulting in near swing-free motion. The control architectures consistently achieved
swing damping control with different payload masses and cable lengths. Both controllers
also showed acceptable disturbance rejection during a constant unknown step input force
to the multirotor.

The controllers were also tested for the dynamic payload case. Despite the data-driven
model showing a much better prediction accuracy than the white-box model, the LQR
and MPC approached produced similar swing damping performances. It was shown that
even though the data-driven model is accurate in the domain of the state and input
vectors considered in training, the optimised trajectory of the MPC goes beyond that
domain. Hence, the model approximation is inaccurate and the resulting MPC control
is suboptimal. Both controller responses were not as smooth as for the single pendulum
model. However, both controllers showed stabilised swing damping control of the system
and reduced system oscillations quickly.
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The controller architectures were also applied to a simulation where a different multirotor
mass was used. The LQR controller induced undesirable, high-frequency oscillations in
the system response due to the model inaccuracy. However, the MPC approach produced
the same swing-free motion shown in previous simulations and clearly outperformed the
LQR approach. The proposed control architecture does not rely on prior knowledge of the
system dynamics, therefore the architecture can adapt to unconsidered system changes
without redesigning the implementation.

8.4. Practical implementation
The hardware and software toolchains used for experimental work were described. Numer-
ous practical flights were performed with different payload masses, cable lengths, and with
a dynamics payload. The conclusions made with simulation data regarding the system
identification methods were verified with practical flight data. It was also shown that
DMDc produces accurate prediction models with practical levels of wind disturbances and
measurement noise.

Finally, HITL simulations were performed to demonstrate how the computationally intens-
ive controller runs on the designated hardware. This also involved a complex system of
interconnected software tools. The MPC algorithm was generated from Simulink™ code
as a standalone ROS node and ran on the OBC. Tests showed that the OBC was sufficient
for the processing requirements of the MPC and the algorithm ran at the desired frequency.
It was also shown that the final system produces smooth, swing damping control of the
multirotor-payload system as seen in previous simulations.

Overall, it was shown that the full data-driven system identification with MPC control
architecture produces swing damping control of the multirotor-payload system despite
having no prior knowledge of the payload dynamics. It was demonstrated that this control
architecture works for various configurations with different system parameters and even
with a dynamic payload. Furthermore, it was demonstrated that an accurate data-driven
prediction model could be determined from practical flight data with wind disturbances
and measurement noise. It was also demonstrated that the available hardware fulfils the
computational requirements of the proposed algorithms. Finally, it is concluded that the
proposed control architecture is practically feasible for stabilised control of a multirotor
and suspended payload with unknown dynamics.
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8.5. Recommended future work
The current work can be continued to further demonstrate the practical feasibility of this
approach. It can also be extended to improve the control performance or solve different
control problems with the same approach. Recommendations for future work include:

• Perform practical flights with the MPC to demonstrate the practical performance of
the controller.

• Perform practical flights with a rigidly attached container with sloshing fluid to
demonstrate the adaptability of this approach to other unknown dynamical systems.

• Test the current solution using obstacle avoidance trajectories and manoeuvres that
require the payload to follow a specific trajectory instead of a non-swing reference.

• Add a continuous excitation functionality to continue training the system identifica-
tion model during flight and adapt to time-variant uncertainty.

• Quantify the domain represented by the state and input vectors considered in the
training data. This could be used to adjust the input signal to cover a larger
domain during training and ultimately train a model that better represents the
system dynamics. This would hopefully improve the controller performance with the
dynamic payload.

• Compare the proposed control architecture to a non-linear MPC using a non-linear
data-driven model like SINDy.
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Appendix A

PID controller gains

This appendix documents the PID gains used for Honeybee.
The angular rate controller gains are given in Table A.1.

Controller P gain I gain D gain
Roll rate 0.150 0.200 0.003
Pitch rate 0.150 0.200 0.003
Yaw rate 0.200 0.100 0.000

Table A.1: The angular rate controller gains.

The angle controller gains are given in Table A.2.

Controller P gain
Roll angle 6.5
Pitch angle 6.5
Yaw angle 2.8

Table A.2: The angle controller gains.

The velocity controller gains are given in Table A.3.

Controller P gain I gain D gain
North velocity 1.8 0.4 0.2
East velocity 1.8 0.4 0.2
Down velocity 4.0 2.0 0.0

Table A.3: The velocity controller gains.

The position controller gains are given in Table A.4.

Controller P gain
North position 0.95
East position 0.95
Down position 1.0

Table A.4: The position controller gains.
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