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Abstract

A chemical complex can have multiple value chains, some of which may

span across geographical locations. Decisions regarding the distribution

of feedstock and intermediate feedstock to different production units can

occur at different time intervals. This is highlighted as two problems, a

feedstock distribution problem and an intermediate feedstock distribution

problem. Unexpected events can cause an imbalanced value chain which

requires timely decision-making to mitigate further adverse consequences.

Scheduling methods can provide decision support during such events. The

purpose of this research study is to develop an integrated decision support

system which handles the two problems as a single problem and maximises

profit in the value chain for hourly and daily decision-making. A high-level

DSS architecture is presented that incorporates metaheuristic algorithms

to generate production schedules for distribution of feedstock through the

value chain. The solution evaluation process contains a balancing period

to enable the application of metaheuristics to this type of problem and

a novel encoding scheme is proposed for the hourly interval problem. It

was found that metaheuristics algorithms can be used for this problem

and integrated into the proposed decision support system.
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Opsomming

’n Chemiese kompleks kan verskeie waardekettings hê, waarvan sommige

oor geografiese gebiede strek. Besluite rakende die verspreiding van grond-

stowwe en intermediêre grondstowwe na verskillende produksie-eenhede

kan op verskillende tydsintervalle plaasvind. Dit word uitgelig as twee

probleme: ’n probleem met die verspreiding van grondstowwe en ’n in-

termediêre grondstowwe verspreidingsprobleem. Onverwagte gebeure kan

’n ongebalanseerde waardeketting veroorsaak wat tydige besluitneming

benodig om verdere gevolge te versag. Beplanningsmetodes kan onder-

steuning bied tydens sulke geleenthede. Die doel van hierdie navorsing-

studie was om ’n gëıntegreerde stelsel vir besluitnemingsondersteuning

oor die twee probleme as een probleem te ontwikkel, wat wins in die

waardeketting vir uurlikse en daaglikse besluitneming maksimeer. ’n

Hoëvlak DSS-argitektuur word aangebied met metaheuristieke om pro-

duksieskedules vir verspreidingstowwe deur die waardeketting te genereer.

Die oplossingsevalueringsproses bevat ’n balanseerperiode om die meta-

heuristiek op hierdie tipe probleme toe te pas, en ’n nuwe koderingskema

word voorgestel vir die uurlikse intervalprobleem. Die gevolgtrekking

word gemaak dat metaheuristieke vir hierdie probleem gebruik kan word

en gëıntegreer kan word in die voorgestelde ondersteuningsstelsel vir besluit-

neming.
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Chapter 1

Introduction

This chapter serves as an introduction to the research presented. It includes some

background details about the organisation selected for the investigation, the problem

description, research statement, objectives and information concerning the scope of

the dissertation.

1.1 Background

Chemical manufacturers produce a range of products such as low-density polyethylene

(LDPE), linear low-density polyethylene (LLDPE), vinyl chloride monomer (VCM)

and polyvinyl chloride (PVC). The applications of these chemicals range from packag-

ing film, plastic containers and storage bins to PVC pipes and PVC sheets. Chemical

operations occur on a large scale in complex manufacturing plants or units, spread

over multiple geographical locations. A regional operations location consists of sev-

eral chemical plants connected by pipe networks with tanks acting as intermediate

storage or as buffers. These regional operations each require supporting infrastruc-

ture to provide utilities such as electricity, steam, fuel gas and utility water. Due to

the volumes involved, these utility providers will be located on site, increasing the

complexity of the production ecosystem.

In chemical operations, feedstock is an industry term for the supply of raw mate-

rial used at a chemical plant. Chemicals are produced from the hydrocarbons found

in feedstock such as crude oil, coal and natural gas. Figure 1.1 illustrates a simplified

C2 value chain. Natural gas can be separated into C2/C3 rich gas which in turn,

can be separated into resulting feedstocks such as ethane and propane. Cracking

of these feedstocks will yield a slate of chemical feedstocks called intermediate feed-

stocks. Ethylene and propylene, being intermediate feedstocks (olefins), can be used
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to produce a range of chemical products (polyolefins) which include polyethylene and

polypropylene (Kannegiesser and Günther, 2011).

Figure 1.1: Simplified C2 value chain

C2 or ethane (C2H6), refers to the number of single-bonded carbon atoms, while

the term value chain refers to a sequence of value-adding activities (production plants)

that advance a product to the final customer (United States Department of Energy,

2018). Another such example in Sasol is the coal value chain which includes coal

handling, processing and gasification (Conradie, 2007).

Customers buy ethylene, polymerised ethylene (LLDPE and LDPE or PVC) that

can be used for injection moulding, blow moulding, rotational moulding, film ex-

trusion, pipe extrusion and profile extrusion. Sasol produces 13 LLDPE grades, 14

LDPE grades and three main PVC products (Sasol, 2019).

1.1.1 Sasol Limited

As this study is carried out at Sasol, a brief background of the organisation will be

given here. Sasol is an international integrated chemical and energy company, with

over 30 000 employees in 32 countries that produce products in 17 chemical product

groups, eight fuel and oil product groups and three gas product groups (Sasol, 2019).

Sasol – in the manufacturing sector – contributed just under 5% to the GDP of

South Africa (Hurston, 2013), which was estimated at R4 trillion in 2015 (Statistics

South Africa, 2015).

Sasol’s Southern African operations current (2020) business model consist of four

regional operating hubs, namely:

1. Secunda Synfuels Operations (SSO);

2. Secunda Chemicals Operations (SCO);

3. Sasolburg Operations (SO);

4. Satellite Operations (SAT) (Sasol, 2014a).
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SCO and SO are the two chemical regional operating hubs which are located

in Secunda and Sasolburg respectively; meaning the C2 value chain is split between

these two geographical points. Figure 1.2 indicates the geographical distance between

these two regional operating hubs. SCO in Secunda is 136 km north-east of SO in

Sasolburg.

Figure 1.2: Distance between Sasolburg and Secunda (Google Maps, 2016)

Value chains can vary in complexity and larger value chains can consist of around

20 plants. A chemical complex can have multiple value chains, with some of them

spanning across different geographical locations. Each region requires a management

team and depending on the size and complexity of the region, multiple management

teams may exist. A region may have between three and 150 plants. Decision-making

in production and maintenance occurs at different time intervals. Decisions regarding

the distribution of feedstock can occur on an hourly or daily time interval. Production

and maintenance activities are executed according to set plans. The management

teams ensure that these plans are effectively synchronised and adhered to, while

communicating and aligning them with those of other regions.

1.1.2 C2 value chain

A high-level overview of the C2 value chain at Sasol is presented in Figure 1.3.

The cryogenic distillation process at the cold separation units separates hydrogen,

methane, C2 rich gas and C3 rich (i.e., propylene and propane) gas into different

streams. The C2 rich gas contains 60% ethylene (C2H4) and 40% ethane (C2H6).

The C2 rich gas enters the value chain from five cold separation units and is sent to
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the ethylene recovery units for further processing. The ethylene recovery units (𝑃 1,1

and 𝑃 1,2) recover the ethylene from the C2 rich gas and compress the ethylene into

the header of the ethylene pipeline. The ethane is sent to the ethane cracking units

(𝑃 2,1 and 𝑃 2,2) which has five furnaces at 𝑃 2,1 and three furnaces at 𝑃 2,2. The ethane

cracking units crack ethane into ethylene and compress the ethylene into the header

of the ethylene pipeline. To ensure continued operations, both ethane cracking units

have ethane storage tanks (𝑇 1,1 and 𝑇 1,2). The ethylene pipeline can be used as inter-

mediate storage due to its length between the two regions. Ethylene can be liquefied

into a storage tank (𝑇 2,2) to balance demand from ethylene consumers. The liquefied

ethylene can be vaporised slowly back into the pipeline when needed. The ethylene

consumers (𝑃 3,2, 𝑃 4,2, 𝑃 5,2, 𝑃 6,2 and 𝑃 3,1) are supplied from the pipeline and will be

discussed individually (Sasol, 2014b, 2015a,b; United States Department of Energy,

2018).

Figure 1.3: C2 value chain

The LLDPE unit (𝑃 3,2) manufactures linear low-density polyethylene using a

fluidised bed gas reactor. The unit continuously produces 13 different LLDPE grades

with sequence-dependent changeovers between grades. The product from the reactor

is in a powder form which is extruded into pellets. The pellets, stored in silos, are

bagged off and stored in warehouses (Sasol, 2014b, 2019).

The LDPE unit (𝑃 4,2) manufacture low-density polyethylene using a tubular re-

actor. The unit continuously produces 14 different LDPE grades with sequence-

dependent changeovers between grades. The product from the reactor is extruded
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into pellets. The pellets, stored in silos, are bagged off and stored in warehouses

(Sasol, 2014b, 2019).

The VCM unit (𝑃 5,2) uses two different reactions to continuously produce ethy-

lene dichloride (EDC or C2H4Cl2), the one being a direct chlorination process and

the other an oxyhydrochlorination process. The EDC is cracked into vinyl chloride

monomer (VCM or C2H3Cl) and sent to the polyvinyl chloride (PVC or (C2H3Cl)n)

unit. The PVC unit (𝑃 7,2) uses a suspension polymerisation batch process to manu-

facture three types of PVC products. Once the PVC is separated, it is dried, bagged

off and stored in warehouses. The PVC unit has VCM storage tanks (𝑇 3,1) that act

as intermediate storage between the VCM and the PVC units (Sasol, 2014b, 2019).

Safripol (𝑃 6,2), a customer of Sasol, purchases ethylene to manufacture high-

density polyethylene (HDPE) and polypropylene (PP). A fixed-ratio ethylene supply

contract between Sasol and Safripol is in place (Du Plessis, 2010).

PP units (𝑃 3,1), manufacture 12 grades of homopolymers and eight grades copoly-

mers and uses low volumes of ethylene from the pipeline (Sasol, 2015a, 2019).

The ethylene consumers’ capacity exceeds the ethylene production capacity and

requires critical decision-making to ensure customers’ contractual obligations are met

while converting ethylene into the maximum saleable product.

Management relies heavily on subject matter experts (SMEs) to improve the value

chains and regions on an operational, tactical and strategic level. SMEs use a range

of models to optimise certain sections of a value chain or region. These models are

mostly single-objective multi-period linear and non-linear models and include Mi-

crosoft Excel-based models, mathematical programming models, stochastic program-

ming models and simulations. Several software packages have been implemented

to assist with these time-sensitive production scheduling decisions and production

planning decision. These systems proved to be inflexible and inconsistent under cer-

tain operational circumstances with most SMEs reverting to the original Microsoft

Excel-based models.

1.2 Problem description

The feedstock distribution of the value chain or region is affected by the feedstock it

receives, feedstock in storage, the maintenance activities of individual plants and the

day-to-day operations of individual plants to maximise production, minimise losses

and balance the utilities’ demand.

The intermediate feedstock distribution to plants producing saleable products is

affected in the same way as the feedstock distribution. Although this is common in
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value chain configurations, the algorithms should be developed for each value chain

configuration.

The plants producing final products schedule the production to meet the demand

of the orders with the amount of feedstock allocated to them. The schedule can

be affected by maintenance activities, the day-to-day operations and the sequence

in which the products or grades need to be produced. These plants are sequence-

dependent multi-product batch plants or sequence-dependent multi-grade continuous

plants. Tanks, pipelines and silos or intermediate storage reduce distribution com-

plexity and increase flexibility.

Various scenarios question the operating philosophy of steady-state operation.

Examples of these could be:

1. What is the most profitable schedule for the next 90 days?

2. What is the most profitable schedule for the next 14 days?

3. How should the feedstock be distributed in the next 90 days when a unit has

unplanned downtime?

4. How should the feedstock be distributed in the next 14 days when a unit has

unplanned downtime?

5. What is the trade-off between the profitability of the schedule and energy con-

sumption?

Each activity in the value chain has a cost and energy consumption associated

with it, while the manufactured product contributes towards sales. The profit of

the value chain can be calculated by subtracting the cost of manufacturing from

sales. Two decisions can have different costs associated with them and the profit

indicates which decision will have a lesser impact on profitability. Subsequently, the

two decisions can have different energy requirements that could influence the final

decision. This will be discussed in detail in a future chapter.

The problem description can be separated into two problems and is illustrated in

Figure 1.4,

1. a feedstock distribution problem;

2. an intermediate feedstock distribution problem.
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Figure 1.4: Two problems in the problem description

The two problems are similar and these problems have been addressed individu-

ally within Sasol in various ways and with varying degrees of success, from manual

slot allocation by schedulers to SMEs that monitor, model and advise management.

They do not currently integrate with other models and are not easily scalable to

include other models. The time horizons play a significant role. An upset in the

value chain requires time-sensitive decision-making with hourly oversight on the pro-

duction schedule while the production plan is based on a daily production rate for

three months. Modelling the two horizons proves to be difficult as the complexity in-

creases linearly. Using the same method or model for both time horizons will increase

the alignment between the decision-making on an hourly or daily basis. Figure 1.5

illustrates the scale of the time horizon for the two problems.

Figure 1.5: Size of the time horizons

This raised the need for a decision support system (DSS) that integrates the dis-

tribution problems for the two time horizons. The research question is to determine

the required architecture and methods to realise such a DSS. The research task is

thus as follows:

Develop an integrated decision support system that maximises profit in the Sasol C2

value chain for hourly and daily decision-making.

It is important to define the term decision support system. The Oxford English

Dictionary (2011) defines a decision support system as: “A computer program or

other system used to aid in decision-making.”.

1.3 Objectives

To address the research task, the following objectives were set:

1. Acquire knowledge in the scientific literature related to the problem statement;
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2. Research various time representations that can address the two problems;

3. Acquire knowledge on single-objective and multi-objective optimisation by re-

viewing scientific literature;

4. Select single-objective algorithms and acquire specific knowledge on the selected

algorithms;

5. Select a bi-objective optimisation algorithm and acquire specific knowledge on

the selected algorithm;

6. Construct the selected single-objective algorithms to find near-optimal distri-

bution for the feedstock and intermediate feedstock distribution problems;

7. Construct the selected bi-objective algorithm to find Pareto optimal solutions

for the feedstock and intermediate feedstock distribution problems;

8. Construct a DSS for integrated near-optimisation by the algorithms;

9. Develop a web-based system to provide an interface to the algorithms;

10. Verify the code and evaluate the DSS;

11. Conduct experiments on different scenarios as previously stated:

What is the most profitable schedule for the next 90 days?

What is the most profitable schedule for the next 14 days?

How should the feedstock be distributed in the next 90 days when a unit

has unplanned downtime?

How should the feedstock be distributed in the next 14 days when a unit

has unplanned downtime?

What is the trade-off between the profitability of the schedule and energy

consumption?

12. Analyse and synthesise the results and provide recommendations for future

work.
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1.4 Scope

The scope of this dissertation is limited to the two problems indicated in Figure

1.4 in the problem description. Safripol’s inclusion will be limited to the ethylene

supply contract. The PP units form part of the C3 value chain and only ethylene

consumption will be considered in the dissertation.

No proprietary information or data will be disclosed and all process data collected

from historians will be normalised. Only information available in the public domain

will be included in the dissertation.

Margins are derived from public data listed in Appendix A and operating limits

estimated from production capacities available in the public domain (Sasol, 2015c).

The current-state data can be entered manually or collected automatically from

the historian. Manual data entry can be used to test specific scenarios. The collected

data will be stored in a separate database on the webserver. The algorithms will run

on the webserver and the output will be published on a website.

Since the study focuses on a complex, practical problem, it is anticipated that

the solutions by the DSS can only claim to be satisfactory or near-optimal at best.

Throughout the dissertation, the researcher will accept results as being near-optimal.

1.5 Research methodology

To fulfil the objectives of this dissertation, the proposed research methodology is

described here.

In fulfilment of Objectives 1 and 2, a detailed literature review will be conducted

to acquire knowledge on the parts of the two problems and the two time horizons.

Discussions with subject matter experts at Sasol will unify literature with expert

knowledge. This includes managers, engineers, accountants and other knowledgeable

employees related to the field of study.

A review of the scientific literature, focused on single-objective optimisation and

multi-objective optimisation in Objective 3, will provide the understanding to select

single-objective algorithms in Objective 4 and a bi-objective algorithm in Objec-

tive 5. To complete Objective 4 and Objective 5, a study will be done on existing

literature to acquire a comprehensive understanding of the selected algorithms.

Literature will be consulted to aid in selecting an encoding scheme, objective func-

tion and constraint strategies, in partial fulfilment of Objective 6 and Objective

7. The algorithms used in this dissertation will be constructed from pseudo code to

complete Objective 6 and Objective 7.
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The algorithms constructed in Objective 6 and Objective 7 will be combined

into an integrated decision support system to fulfil Objective 8.

A web-based system will be developed to fulfil Objective 9, allowing engineers

to find near-optimal solutions on the distribution of feedstock in the C2 value chain

using the algorithms constructed.

Tests will be done to verify the code used in this study and SMEs will evaluate

DSS to achieve Objective 10.

To fulfil Objective 11, the algorithms will be executed in different scenarios and

compared. The results will be analysed with subject matter experts at Sasol.

The results will be reflected on and future work recommendations will be made

to satisfy Objective 12.

1.6 Structure of the document

The document is structured as follows.

Chapter 1 – Introduction

This chapter introduces Sasol and the complexity around chemical operations. The

problem description is discussed. The research methodology is then addressed and

used as the basis of the document structure.

Chapter 2 – Scheduling literature review

This chapter begins with a short introduction to scheduling, followed by a discussion

of the scheduling literature on similar problems in the process industry. The chapter

will end with a discussion of literature on time representation.

Chapter 3 – Optimisation algorithms: selected literature review

The chapter begins with important aspects of single-objective optimisation and a

review of a number of algorithms, followed by a brief introduction to multi-objective

optimisation and a review of the selected algorithms. The chapter concludes with

a section on hybrid metaheuristics with specific focus on classification, grammar,

parallel metaheuristics and machine learning.

Chapter 4 – Construction and implementation of the algorithms

This chapter describes the construction and implementation of the algorithms, start-

ing with the variables used in the study and the encoding scheme implementation.

This is followed by a description on the evaluation process required for the problem

with constraint handling, balancing the variables and calculating the objective func-

tion highlighted. Finally, there is a discussion of the hybrid and parallel algorithms

implemented for this study.
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Chapter 5 – System design and implementation

The proposed DSS architecture is presented in this chapter with how a subject matter

expert will interface with the system.

Chapter 6 – Verification and evaluation

In this chapter, the verification and evaluation of the decision support system is

presented. The chapter starts by specifying the tests that are needed to verify the

code used in this study. The performance of the algorithms is then compared with

the others in relation to the questions listed earlier in Chapter 1. An analysis of the

parameters used with the best performing algorithms is then presented, followed by

the results from parameter tuning. Thereafter, an evaluation of the DSS by subject

matter experts and subsequently, an experiment based on a recommendation from

the SMEs concludes the chapter.

Chapter 7 – Conclusion and recommendations

The chapter discusses the conclusion arrived at from the study and suggests possibil-

ities for future work. A summary on the work covered in the study is presented and

how the work aligned with the scope and objective in Chapter 1.

1.7 Chapter summary

A background was given on chemical manufacturing with the focus on Sasol. The C2

value chain concept was introduced with the complexities of the production ecosys-

tem. The difficulties with decision-making on the value chain was described and

that introduced the research task. Objectives that were set to achieve the research

task were presented and a proposed research methodology to achieve the objectives

was introduced. The scope of the dissertation was presented and the structure of

the remainder of the document was set out. In the following two chapters, a review

of literature relevant to the study will be discussed, commencing with a review of

literature relevant to scheduling in the process industry in Chapter 2.
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Chapter 2

Scheduling literature review

Chapter 1 served as an introduction to the background and problem being addressed

in this dissertation. This chapter starts with a short introduction to scheduling by

highlighting the classification to identify different scheduling problems. To achieve

Objective 1, a review is carried out of literature in the process industry that is

relevant to the feedstock distribution problems in Figure 2.1. Castro et al. (2018)

identified major challenges with scheduling in the process industry and two of the

challenges that apply to this study are then discussed. Finally, decisions in different

time horizons are introduced into the problem description and literature on time

representation is reviewed to achieve Objective 2.

Figure 2.1: Two problems in the problem description

2.1 Classification of scheduling

Production scheduling has been researched extensively, with historical surveys and re-

views of papers spanning over decades. Graves (1981) proposed a broad classification

to production scheduling problems, namely:

1. Requirements generation;

2. Processing complexity;

3. Scheduling criteria.

The first classification is in terms of a closed shop or open shop. In a closed shop,

production is forecast to meet demand and orders are replenished from inventory. In
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an open shop, no inventory is kept and production batches are equal to the ordered

quantity. Most environments are combinations of open and closed shops and pure

open or pure closed environments are rare.

The second classification is in terms of production processing complexity or pro-

duction processing structure. The processing complexity plays a defining role in the

production scheduling problem and can be categorised as follows:

1. One-stage, one processor, illustrated in Figure 2.2a;

2. One-stage, parallel processor, illustrated in Figure 2.2b;

3. Multi-stage, flow shop, illustrated in Figure 2.2c;

4. Multi-stage, job shop, illustrated in Figure 2.2d.

(a) One-stage, one processor (b) One-stage, parallel processor

(c) Multi-stage, flow shop (d) Multi-stage, job shop

Figure 2.2: Processing structure

The final classification is in terms of schedule performance and schedule cost.

Schedule performance is primarily focused on the measures that can reduce time.

Common measures can include minimising the makespan of producing the product

slate or minimising the time between the completion date and the due date of the

order. Schedule cost is primarily focused on the economical measures of a schedule.

Common measures can include minimising the total operating cost of production or

minimising the cost of changeovers. It is not uncommon to use a combination of both

to evaluate the schedule (Graves, 1981).
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2.2 Scheduling in the process industry

The classification has since been expanded to describe the complex configurations

found in process scheduling, this includes but is not limited to multi-plant, multipur-

pose, multi-supplier, multilevel, multi-product, multigrade and sequence-dependent.

Some examples of work found in the literature are discussed next, in the context of

this study.

Maravelias (2012) proposed a classification for chemical production scheduling.

The term ‘production environment’ is proposed and can have three processing types

namely: sequential, network, and hybrid. With network processing, two popular

representations are state-task network (STN) and resources-task network (RTN).

The researcher could not find a comprehensive classification for scheduling in the

process industry in literature (Harjunkoski et al., 2014; Kallrath, 2002; Maravelias,

2012). Castro et al. (2018) highlight that scheduling in the process industry is rel-

ativity new, having started in 1978. A chronological review of literature relevant to

the feedstock distribution problems in Figure 2.1 will now follow.

Bell (1980) presents a two-stage ethylene production process model to address a

decoupling inventory problem with storage capacity constraints. Being an inventory

problem, the model will determine the optimum storage capacity and the value of pur-

chasing additional feedstock. This production process is similar to the intermediate

feedstock distribution problem in Figure 2.1. Further work on the problem introduced

a balance period at the end of each period (Bell, 1983). The balance period gave a

degree of flexibility in the short run by varying the pressures in the connecting pipes

before liquefying into storage or evaporating out of storage. Bell et al. (1990) labelled

the problem as “the international polymer problem”.

In 1988, a survey in a wide range of industries including the manufacturing of

polymers concluded that the requirements for production scheduling across all the

industries researched were similar in their process structures, product sequencing

constraints and scheduling objectives (Musier and Evans, 1989).

In 1997, Reisman et al. (1997) reviewed 184 flow shop scheduling papers and found

that less than 3% dealt with realistic production environments. This is consistent

with the gap identified by Maccarthy and Liu (1993) that scheduling models defined

in literature do not always apply in practice due to unique systemic complexities.

Kallrath (2002), gives an overview of the state-of-the-art planning and scheduling

problems in the process industry. The author highlights special features and concepts

relevant to the process industry and briefly discusses metaheuristics. The study

recommends using state-of-the-art technology based on mixed-integer optimisation
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for solving real-world planning problems and concedes that for scheduling, there is no

commonly accepted state-of-the-art approach and most are still based on heuristics.

Jackson et al. (2003) proposed multi-period non-linear programming formulation

for production planning of a multi-plant polymers site. The formulation includes

non-linear process models to either meet demand or maximise profit. Due to the size

of the model, decomposition methods must be used to expand the model further.

Wassick (2009), details a world-scale integrated chemical production complex and

discusses the challenges with planning and scheduling. He refers to the integrated site

as a localised multi-echelon supply chain and presents a solution using a discrete-time

RTN model for waste disposal scheduling.

Zyngier and Kelly (2012) proposed a paradigm “unit-operation-port-state super-

structure (UOPSS)” for modelling advanced planning and scheduling systems that

has a more natural and simpler ability to account for problems. The variables can

be categorised as quantity logic and quality (QLQ) in the model and can be applied

for both batch and continuous processes.

• Quantity – Rate, yield, flow, pressure, temperature, batch or lot-size.

• Logic – Startup, shutdown, setup or switchover.

• Quality – Density, ratio, components, properties, conditions.

From 2011 to 2016, Marchetti et al. (2013, 2016) studied the C3 feedstock distribu-

tion in a polypropylene production facility. A single and multi-product, multi-period

problem was presented with the objective to maximise the overall profit while sat-

isfying the constraints. Three non-linear models were formulated and for the multi-

product formulation, medium- and long-term test cases were presented. In the test

cases, it was found that reducing the production cost by means of lower production

rates was more profitable. The C3 feedstock distribution study focused on a similar

value chain to that in this study with the difference of it being a different config-

uration, on C3 and not C2, and it included the scheduling of production with the

constraint of a sequenced production wheel.

Harjunkoski et al. (2014) did an extensive review of the existing scheduling models

and methods developed for process industries. The authors highlighted six major

types of modelling; namely, scheduling algorithms (exact or heuristic), metaheuristics

such as evolutionary algorithms, timed automata, integrated modelling and solution

methods such as constraint programming, mathematical programming, and hybrid

methods. Metaheuristics provide good solutions in a reasonable amount of time

while satisfying the constraints. The difficulty is with representing the constraints
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and the use of constraint handling strategies. They stated that metaheuristics have

attractive features over exact and deterministic methods. These include features and

constraints that can be modelled more easily and using less variables than in exact

and deterministic methods. Some of the more difficult issues are the representation

of constraints. Constraint handling strategies can be used and should be carefully

structured so as not to inhibit the search for solutions.

Brunaud et al. (2020) compared four main modelling frameworks, STN, maxi-

mal state-task network (mSTN), RTN, and UOPSS with the focus on quality-based

changeovers. In general, the UOPSS outperformed the other frameworks and the

formulation was found to be easier to implement, extend, and scale.

Castro et al. (2018) reviewed generalised disjunctive programming (GDP) as the

current state of the art as a modelling approach to process scheduling. GDP can

combine both discrete and continuous logic using Boolean variables. The author also

showed two other approaches, STN and RTN that have matured in discrete-time and

continuous-time process scheduling. They lists four major challenges in the scheduling

area. Two of these, which are relevant to this dissertation, will be discussed.

The first challenge is coordination planning and scheduling models over differ-

ent periods; short term (minutes to days), medium term (months) and long term

(years) for sites that are spread over multiple geographical locations. This chal-

lenge could be extended further down to the control domain where the time frame is

even shorter, down to seconds and minutes. This challenge could also be extended

horizontally to include all upstream and downstream units. This research field has

been labelled as enterprise-wide optimisation (EWO) with the activities planning,

scheduling, real-time optimisation (RTO) and control included (Grossmann, 2012).

The full scope of the challenge is not currently possible with mixed-integer linear

programming (MILP) and mixed-integer non-linear programming (MINLP) models

with most research focused on a subset of the scope (Castro et al., 2018; Grossmann,

2005, 2012; Grossmann and Furman, 2009; Guillén-Gosálbez and Grossmann, 2008;

Marchetti et al., 2013, 2016; Wassick, 2009). The problem in this study is multi-

period and the decision-making is both in the short term, hours and days. The time

representation can increase the number of variables required and making decisions

with different time intervals requires a different approach. This will be discussed in

the next section.

The second challenge is linked to the first, to solve large-scale MILP and MINLP

models effectively with efficient algorithms with modern computer architectures.

Scheduling methods has evolved over the last 40 years and so have computers. Exact

methods have yet to address the first challenge with modern computer architec-

ture. Most production scheduling problems are stochastic and dynamic in nature
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while being NP -complete (Graves, 1981; Musier and Evans, 1989). This increases

the complexity of developing mathematical models while expecting optimal results.

Approximation methods can be used as an alternative to finding near-optimal results

in polynomial time for large industrial-sized problems. Depending on the accuracy

required, the solutions generated from metaheuristics are generally acceptable.

According to Baumann and Trautmann (2014), the performance of MILP with

large-scale problems is insufficient and the hybrid methods increase performance. The

next section will focus on scheduling literature in the process industry but not on the

feedstock distribution problems in Figure 2.1, to highlight algorithms used.

2.3 Optimisation methods used for scheduling in

the process industry

Since production scheduling problems are often stochastic and dynamic in nature

while being NP -complete, approximation methods can be used as an alternative to

finding near-optimal solutions. Optimisation methods used for scheduling in the

process industry, with relevance to the second challenge, will now be discussed.

Wang et al. (2000) compared a genetic algorithm (GA) to an MINLP algorithm

with different horizons in the polymer industry. The MINLP performs slightly better

up to a ten-day horizon, whereafter the GA performs better. The results of the GA

are comparable with the MINLP. The problem contained a batch reaction process

with the final processing being continuous. Mathematical modelling can lead to

non-convex, large MINLP. The study highlighted two points, firstly, it is possible to

combine batch and continuous processes and secondly, GAs can perform better with

larger problems and are easier to formulate.

Sadegheih (2006) used a GA and simulated annealing (SA) to optimise production

schedules for a flow shop scheduling problem. The SA needed longer computation

times to achieve the same results as the GA. The conclusion highlighted that scenario

particulars can be embedded in the objective function without impacting the optimi-

sation routine. The expertise of human schedulers can be accounted for as rules to

mimic reality.

In 2007, a review of literature on production scheduling with neural networks

found 18 multilayer perceptron (MLP) neural networks applied to problems such as

single-machine scheduling, job-shop scheduling, batch processes and flexible manufac-

turing. Akyol and Bayhan (2007) also listed Hopfield-type networks, competitive-type

networks and hybrid approaches. They recommended using evolutionary algorithms

with neural networks to improve flexibility and make them more effective.
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He and Hui (2007) applied a GA to a large-size multi-product scheduling problem

(MMSP). MILP solvers can find an optimal solution in a short period of time but

with large-size problems, heuristic techniques are used to reduce the size.

Ramteke and Srinivasan (2011) proposed a real-coded chromosome multi-objective

GA for short-term scheduling at polymer plants. The GA found near-optimal solu-

tions to three different scheduling problems with sequencing constraints. The author

states the disadvantages of using mathematical programming for both discrete-time

and continuous-time formulations of short-term scheduling and proposes evolutionary

algorithms, specifically GAs, to address the disadvantages.

Mart́ınez Jiménez (2012) addressed six scheduling problems with different com-

plexities and constraints with multi-agent reinforcement learning (MARL). The re-

sults achieved with the MARL did not outperform the GA on solution quality but

on larger problems it completed the execution in a much shorter time.

Liu et al. (2016) used a non-dominated sorting genetic algorithm II (NSGA-II)

to minimise two objectives, namely tardiness and total electricity consumption, on a

scheduling problem. They further extended the NSGA-II with two additional steps

to reduce the total non-processing electricity consumption more effectively.

Zhang et al. (2020) applied an NSGA-II to minimise three objectives, namely

makespan, total energy consumption, and peak input power. The authors proposed

a hierarchical multi-strategy genetic algorithm based on a non-dominated sorting

method that reduced the energy consumption by approximately 15%.

Hubbs et al. (2020) applied deep reinforcement learning (DRL) on a production

scheduling problem with a two-stage continuous chemical reactor and a packaging

line and found the results outperformed the human schedulers.

Deterministic approaches guarantee the global optimality while metaheuristics like

tabu search (TS) cannot. Lin and Miller (2004) applied TS to eight problems found

in literature that were solved using MILP and MINLP. The author performed 100

runs on each of the problems and located the global optimum for one of the problems.

For the other problems, the results came within 0,1% of the global optimum and the

rest within 1%. By adjusting the parameters, the author managed to decrease the

execution time and improve the quality of the solutions.

This section addressed literature related to feedstock distribution as shown in

Figure 2.1 and the use of metaheuristics or hybrid metaheuristics for scheduling in

the process industry. In the next section, the time representation from the first

challenge will be discussed.
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2.4 Time representation

There are generally two approaches with time-based scheduling; precedence-based

and time-grid-based. Precedence-based models are concerned with the sequencing of

certain tasks or batches. For time-grid-based models, Velez and Maravelias (2013)

proposed the following classification; continuous-time and discrete-time, single- (com-

mon) and multiple-grid models and lastly uniform and non-uniform.

2.4.1 Continuous-time and discrete-time

With the discrete-time approach, the time horizon is divided equally into the great-

est common factor (GCF) intervals. In real-world problems, the number of inter-

vals become a multiplier for the number of variables needed, which lead to large

combinatorial problems. With the continuous-time approach, the events take place

in the domain of time; this flexibility allows for varying events on different levels.

The continuous-time approach can lead to more complicated mathematical models

compared to similar discrete-time models. Sundaramoorthy and Maravelias (2011)

presented a critical review of discrete-time and continuous-time formulations and re-

futed beliefs held in the process systems engineering literature that computational

performance, solution robustness, solution quality and generality are superior with

continuous-time models. Chemical production scheduling problems cannot be solved

optimally and it is important to consider the solution quality and execution time.

Discrete-time formulations performed better with longer time horizons, had smaller

optimality gaps with industrial-scale problems, often produced better solutions in a

reasonable time and had practical advantages such as interoperability and modelling.

The interoperability refers to the ability to integrate scheduling models using small

GCF intervals rather than planning models using larger GCF intervals.

2.4.2 Single- (common) and multiple grids

Single-grid formulations have all steps, task or facilities on one time grid. This can

introduce complexities when a process occurs on different timescales. A process

with a fermentation step on a daily scale and a purification step on an hourly scale

will require the model to use an hourly scale when modelling the process (Velez

and Maravelias, 2013). This increases the model’s complexity proportionally to the

number of time points on the horizon. Multiple time grids can have steps, tasks, units

or facilities on different time grids to allow for different GCF intervals and reducing

the number of time points required in the model.
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2.4.3 Uniform and non-uniform grids

A uniform grid has all the time points spaced equally on the grid. Non-uniform grids

can have different GCF intervals on one grid. Velez and Maravelias (2013) suggest the

term non-uniform should only be used for discrete-time models as continuous-time

models always have unequal interval points.

2.4.4 Time representation selection

With multi-period formulations, it is important to include all the decision variables

for all the periods or intervals on the entire planning horizon. Solving each interval

individually will produce a solution but this might not be optimal over the whole

planning horizon (Talbi, 2009).

The two horizons required for the problems were listed in Chapter 1 as a 90-day

horizon with a daily interval and a 14-day horizon with an hourly interval. For this

study, a discrete-time model will be used with daily and hourly as the two GCF

intervals. Two discrete-time single uniform grids are illustrated in Figure 2.3.

Figure 2.3: Discrete-time single uniform grids

The size of the problem can make it difficult or even impossible to solve (Floudas

and Lin, 2004). Having 336 time points for the hourly representation, excluding the

decision variables, is a large problem but the size of the problem can be reduced.

Different time-based decomposition options will now be discussed.
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2.4.5 Time-based decomposition

To reduce the size of the problem, Lagrangean decomposition, Benders decomposi-

tion, bi-level decomposition or time-based decomposition can be used (Grossmann,

2012). Two time-based decompositions that are possible for this study include:

Rolling horizon – A strategy where the first interval is solved in detail and the

remaining intervals aggregated. After the first interval is solved, the problem is solved

again. In the next iteration, the first interval is fixed with the decision made in the

first interval, the second interval is focused on in detail with the remaining intervals

aggregated. The problem size is reduced with each iteration. This approach can

also be done in reverse and the number of detailed intervals in one iteration can be

extended (Grossmann, 2012; Stobbe et al., 2000).

Moving-window – Each interval is solved individually before moving to the next

interval. This approach originated from the model predictive control field and can

lead to sub-optimality (Harjunkoski et al., 2014).

A plant can only increase or decrease its production rate by a limited amount

within an hour. This is an important consideration for an hourly interval and less so

for the daily interval. It reduced the number of variables for the hourly interval but

constrained the options based on the previous interval. Using a rolling horizon will

require a discrete-time single non-uniform grid implementation that can move the

time scale at each iteration. This will be computationally expensive and complex to

implement. Alternatively, a moving-window approach will reduce the search space to

one or more intervals at a time and can provide better solutions in certain conditions.

The lack of forward-looking over all the intervals can cause infeasible or suboptimal

results.

Using a finer grid for the first three days and a coarser grid for the remaining 11

days can reduce the problem size. Optimising the finer grid first and relaying the

starting point to the coarser grid or optimising the two grids independently will both

lack a complete view over all the intervals. The proposed approach is to optimise

both together by using a discrete-time single non-uniform grid. Figure 2.4 illustrates

the 72-hour grid and the 11-day grid. The 83 time points are significantly less than

the original 336 time points barring the fact that the 11-day grid has a significantly

larger search space than the 72-hour grid.
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Figure 2.4: Proposed discrete-time single non-uniform grid

The formulation of the two uniform grids in Figure 2.3 and the proposed non-

uniform grid in Figure 2.4 will be discussed in a future chapter.

2.5 Synthesis of literature review on scheduling

This section presents a reflection on the scheduling literature reviewed for the process

industry. Feedstock optimisation is concerned with balancing the feedstock distribu-

tion between multiple units with multiple stages to maximise throughput with the

maximum profit.

Similar problems in the process industry with different configurations which have

been addressed using mathematical programming have met with varying success.

The successes are only for certain configurations, operational conditions and time

intervals. Large and complex problems require decomposition, relaxation or approxi-

mation techniques that make them less accurate. The literature pointed to the same

difficulties highlighted in the problem description of the dissertation.

The researcher has not found similar problems addressed with metaheuristics in

the literature and most researchers in this research field continue to favour math-

ematical programming (Velez and Maravelias, 2015) and continuous-time formula-

tions (Sundaramoorthy and Maravelias, 2011). Genetic algorithm (GA) is a popular

choice in this field of study and had comparable or better results in larger problems.

From the literature, it seems possible to formulate or model both problems in Figure

2.1 as one problem and use metaheuristics and hybrid metaheuristics to find near-

optimal results. The unit-operation-port-state superstructure (UOPSS) modelling

using quantity logic and quality (QLQ) can be adapted for metaheuristics in the

process industry.
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Lastly, a discrete-time representation can be used with a daily and hourly interval.

The discrete-time representation will increase the size of the problem, nevertheless it

has more practical advantages. To address the size of the problem with the hourly

representation, a non-uniform representation is proposed.

2.6 Chapter summary

This chapter started with a short introduction to scheduling by highlighting the clas-

sification to identify different scheduling problems. Thereafter, a review of literature

in the process industry that is relevant to the feedstock distribution problems in Fig-

ure 2.1 is carried out. Castro et al. (2018) identified major challenges with scheduling

in the process industry and two of the challenges that apply to this study were then

discussed. Finally, the literature on time representation was reviewed and consid-

erations identified. The succeeding chapter will review literature on single-objective

optimisation, multi-objective optimisation and hybrid metaheuristics with a specific

focus on classification, grammar, machine learning and, parallel metaheuristics.
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Chapter 3

Optimisation algorithms: selected

literature review

Chapter 2 provided a review of scheduling in the process industry and ended with

a review of time representations of scheduling models.

Many optimisation problems can be formulated into a single-objective problem

thus allowing for single-objective optimisation. This chapter gives an introduction

to important aspects of single-objective optimisation to achieve Objective 3, followed

by a review of a selection of algorithms that have been developed over the last few

decades to achieve Objective 4. Thereafter, a brief introduction to multi-objective

optimisation and a review of non-dominated sorting genetic algorithm II (NSGA-II)

to achieve Objective 5. Finally, a review of hybrid metaheuristics literature with a

specific focus on classification, grammar, parallel metaheuristics and machine learning

is presented.

3.1 A brief overview of single-objective optimisa-

tion

Single-objective optimisation is concerned with finding the best solution using a single

criterion. The best solution could be the minimum of the criterion or the maximum

of the criterion. The criterion is referred to as a fitness or objective function and

can be expressed in cost, profit, time or another performance or consumption value.

Multiple metrics can be defined as a single criterion such as cost or profit.

Formulation of optimisation problems can be broadly classified as exact and ap-

proximate: an exact problem formulation uses a mathematical model and can usually

be solved in finite time with a guaranteed optimum value for the objective. A linear

programming formulation is such an example:
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min 𝑐′𝑥

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

where 𝑥 is the variable to be determined, 𝑐 and 𝑏 are constant vectors with 𝑐′

indicating the coefficients for the purpose of forming a matrix product (Talbi, 2009).

Many problems can be formulated mathematically but they cannot be solved in

finite time because they are complex often having many constraints; in that case,

metaheuristics can be used to find good solutions in reasonable time.

Since the scheduling problem is complex, metaheuristics will be considered to

obtain near-optimal solutions. Some features of metaheuristics are subsequently dis-

cussed.

3.1.1 Metaheuristics genealogy

Metaheuristics represent a group of optimisation techniques developed over the last

few decades (Silver, 2004; Talbi, 2009). In practice, there is an emphasis on good

solutions within a reasonable time rather than delivering the best solution possible.

The term metaheuristic was first published in 1986 by Fred Glover and referred to

a master strategy that interacts with other heuristics. These high-level algorithms

delivered better results than typical heuristics (Glover and Laguna, 1997a). The

word “algorithm” (in Latin algorismus), is derived from the name of al-Khwarizmi,

a ninth-century Persian mathematician who wrote about algebraic methods (Weise,

2009).

Depending on the complexity of the problem, exact methods can obtain optimal

solutions. Exact methods will search the solution area and find the optimal solution

by subdividing the problem into smaller problems. These methods include dynamic

programming, branch and bound and constraint programming. Exact methods are

limited to less complex problems whilst for more complex problems, approximation

methods will deliver a high-quality solution in a reasonable time. Approximation

methods cannot guarantee finding a global optimal solution (Talbi, 2009).

Williamson and Shmoys (2012) refer to an old engineering saying, Fast, Cheap

or Reliable. Choose two. Similarly with optimisation; if exact methods do not exist,

algorithms cannot have, (1) optimal solutions, (2) in polynomial time, (3) for any

instance. Approximation methods allow for relaxation of these requirements. Ap-

proximation methods can be divided into two classes; namely, approximation and

heuristic algorithms. Approximation algorithms provide sub-optimal solutions in
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polynomial time. Due to the sub-optimality, approximation algorithms are not very

useful in real-life applications. Heuristics can usually find good solutions to large

and complex problems in a reasonable amount of time. Heuristics can be classified

into two groups, namely specific heuristics and metaheuristics. Specific heuristics re-

lax the third requirement (for any instance) and are developed for specific problems.

Metaheuristics can find good solutions and can be applied to a wide variety of prob-

lems in a reasonable amount of time. The aim is to find a general-purpose algorithm

that finds a close to optimal solution in a reasonable time. Metaheuristics can be

used as a starting point in finding underlying heuristics to solve specific problems.

3.1.2 Single-solution and population-based solutions

A local search (LS) algorithm starts with a feasible solution and searches the neigh-

bourhood for an improved solution. The improved solution is selected and the search

for an even better solution starts.

This process is reiterated until no improved solution can be found. This is con-

sidered a local optimum and a fundamental weakness in local search methods. The

first local search algorithm was developed in 1947 and subsequently, more than eight

improved algorithms exist that are based on local search which include simulated an-

nealing (SA) and tabu search (TS) (Talbi, 2009). This group of methods is referred

to as single-solution based methods.

Population-based methods started in the early 1960s and many are inspired by

natural processes. These include genetic algorithm (GA), particle swarm optimisa-

tion (PSO) and ant colony optimisation (ACO). Population-based algorithms gen-

erate a population of solutions and evolve improved solutions using different strate-

gies. Single-solution based metaheuristics intensify the search in an area whereas

population-based metaheuristics diversify the search in the whole area (Glover and

Laguna, 1997a; Talbi, 2009).

3.1.3 Metaheuristics decision variable representation

An important aspect of metaheuristics representation, is the representation of decision

variables as a vector with an associated objective function. This will define the search

space of the problem. Some of the classical encodings include binary values, discrete

values, real values and permutations (Talbi, 2009).

Binary encoding is when the decision variables can be expressed in a string con-

taining 0’s and 1’s. Some typical problems include the knapsack problem, satisfiability

problem and 0-1 integer programming problems. A binary vector can be presented
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as follows:

𝑥 ∈ [0, 1, 0, 1, 0, 0, 0, 1]

Discrete value encoding is where the decision variables can be expressed in discrete

values. Some typical problems include location problems and assignment problems.

A discrete value vector can be presented as follows:

𝑥 ∈ [6, 3, 6, 1, 2, 0, 9, 5]

Real value encoding is where the decision variables can be expressed in real values.

Some typical problems include continuous optimisation, parameter identification and

global optimisation. A real value vector can be presented as follows:

𝑥 ∈ [1.34, 2.34, 5.61, 2.16, 9.02, 2.53, 9.12, 6.25]

In permutation encoding, the decision variables can only appear once in the vector.

Some typical problems include sequencing problems, travelling salesman problems

and scheduling problems. A permutation value can be presented as follows:

𝑥 ∈ [6, 3, 4, 1, 2, 8, 7, 5]

The representation plays a fundamental role in the efficiency of any metaheuristic.

Real numbers can be encoded into binary vectors but may generate non-efficient

metaheuristics due to disparity (Talbi, 2009). It can also increase the length of

the chromosome leading to an increase in computation cost (Zacharia et al., 2013).

The additional encoding and decoding at each iteration will further increase the

computational cost (Rahman et al., 2015). Nguyen and Bagajewicz (2010) warn that

real number vectors have more difficulty converging with large genetic algorithms

than with binary representations. A real value representation that is limited to a 0,5

increment can provide sufficient accuracy for the problem and limits the complexity

introduced by real numbers.

3.1.4 Metaheuristics objective function

The objective function is used to determine the quality of the solution. It is impor-

tant to take care of defining the objective function properly to avoid unacceptable

solutions (Talbi, 2009). Objective functions in the process industry are frequently

profit-related, which maximises the flow of products or the return on investment

(Zyngier and Kelly, 2012).

The objective function implemented in this study will be discussed in detail in

the next chapter.

3.1.5 Metaheuristics constraint handling

A difficulty that is introduced with industry problems, is that most of them have

to deal with constraints (Hansen et al., 2010). Lin and Miller (2004), Talbi (2009)
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and Weise (2009) give a good overview of typical constraint-handling strategies which

include:

• Reject Strategies – Discarding infeasible solutions from the search space. This

is possible when the discarded search space is very small.

• Penalising Strategies – Infeasible solutions are penalised using a penalty func-

tion but are still considered during the search process.

• Repairing Strategies – Transforming infeasible solutions into feasible solutions.

• Decoding Strategies – Indirectly encoding the representation to feasible solu-

tions.

• Preserving Strategies – Ensuring values used in vectors and operators generate

feasible solutions by embedding problem-specific knowledge.

• Additional Objectives – Formulate constraints as additional objectives.

A combination of constraint-handling strategies is required in this study. Initial

solution variables can only be selected from feasible sets and will be discussed in the

next chapter. Supply and demand (consumption) constraints are used to ensure the

value chain is balanced. Bell (1983) proposed a balancing period; the intent is to

allow a temporary imbalanced network and use the connecting pipelines, tanks and

flaring to balance the network. The strategies for the supply and demand constraints

are applied in a sequence until the constraint is satisfied and if none of the methods

resolves the violation, the solution vector is rejected. Figure 3.1 illustrates the C2

value chain, 𝑃 1,1, 𝑃 2,1, 𝑃 1,2 and 𝑃 2,2 supply ethylene and 𝑃 3,2, 𝑃 4,2, 𝑃 5,2, 𝑃 6,2 and

𝑃 3,1 demand ethylene. To match the supply and demand precisely is not possible

without buffer storage and two typical scenarios will now be discussed.

When supply exceeds demand, the supply constraint violation is addressed by:

1. Increasing the rate of the consuming plants within the feasible region;

2. Storing the excess product in the pipeline;

3. Liquefying the feed to a liquid and storing it in a tank;

4. Flaring the excess supply.

When demand exceeds the supply, the demand constraint violation is addressed by:
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1. Reducing the rate of the consuming plants within the feasible region;

2. Using product in the pipeline;

3. Vaporising liquid to gaseous feed from tank inventory;

4. Shutting down a unit.

Liquefying feed, vaporising stored feed, flaring feed and shutting down a unit can be

used at a cost. This cost penalty is represented in the objective function.

Other constraints in this study are used with a rejection strategy:

1. Contractual feed obligation (Ratio) – The fixed supply ratio with 𝑃 6,2 must be

adhered to;

2. Pipeline pressures (Min/Max) – The pipelines connecting 𝑃 i,j and 𝑇 i,j have a

minimum and maximum that cannot be exceeded;

3. Tank levels (Min/Max) – 𝑇 1,1, 𝑇 1,2 and 𝑇 2,2 have a minimum and maximum

that cannot be exceeded.

Figure 3.1: The C2 value chain

The constraints that are embedded in the representation will be discussed in the next

chapter.
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3.1.6 Termination conditions

Global optimality is not guaranteed and the search process can continue until some

termination criteria are met. Maximum time and maximum iterations as termination

criteria are easy to implement and are widely used. The maximum iteration stopping

criterion is used in this study where applicable.

3.2 Single-objective optimisation algorithms

Brownlee (2011) lists over 40 algorithms that can be used in single-objective op-

timisation. The list is not complete but includes a comprehensive list of “Clever

Algorithms” that can be used. Fred Glover, the father of Tabu search, and other au-

thors recently stated that the development of some algorithms in the last five decades

is not important or has made only marginal additions to the field. They further state

that some metaphor-based algorithms are not science and are even harmful to the

field in general (Sörensen et al., 2018). As highlighted in Section 2.5, similar problems

addressed by metaheuristics has not been found and therefore only well-documented

metaheuristics that have been researched extensively were selected for the study.

The algorithms reviewed in this section have been researched extensively since first

publication and are widely acknowledged in the field (Kallrath, 2002).

3.2.1 Local search

One of the oldest algorithms in metaheuristics is local search and it is the basis of

many single-solution based algorithms (Talbi, 2009). It is one of the simplest algo-

rithms to implement and can return good solutions (Blum et al., 2008; Williamson

and Shmoys, 2012). It starts with an initial solution and searches the neighbouring

solutions for a better solution. When the search has completed the neighbourhood

search, the best neighbouring solution is accepted and used for the next search itera-

tion. The search ends when no neighbouring solution improves the current solution.

The interest in this study, should the LS algorithm start in a good neighbourhood, is

that it will improve the result in a reasonable time. A pseudo representation of the

LS algorithm can be seen in Algorithm 3.2.1.
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Algorithm 3.2.1: Local search pseudocode

Input:
Output: 𝑆𝑏𝑒𝑠𝑡

1 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← ConstructInitialSolution();
2 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
3 while ¬ StopCondition() do
4 CandidateList ← ∅;
5 CandidateList ← CreateNeighbouringSolutions(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
6 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← CandidateList(𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟);
7 if 𝑆𝑏𝑒𝑠𝑡 ≤ 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 then
8 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
9 else

10 StopCondition();
11 end

12 end
13 return 𝑆𝑏𝑒𝑠𝑡;

3.2.2 Tabu search

The tabu search algorithm was first coined in 1986 by Fred Glover (Glover and

Laguna, 1997a). In the same year, Pierre Hansen developed what is called the steepest

ascent / mildest descent algorithm (Hansen, 1986). The word “tabu” originated from

Polynesia which relates to this algorithm as, things that are tabu should not be visited

and should be left alone (Weise, 2009). TS belongs to the local search class and was

based on three approaches namely surrogate constraints and cutting plane approaches

with a strong influence from steepest ascent / mildest descent (Glover and Laguna,

1997b). Glover cites 72 example applications in scheduling, production, inventory,

investment, location, allocation supply and other (Glover and Laguna, 2013).

The TS algorithm searches the neighbourhood for solutions and escapes the local

optimum by allowing tabu moves. The memory ability with TS, allows the algorithm

to continue searching the space and not to become stuck in a region. Intensification

and diversification strategies are employed to ensure a promising region is searched

thoroughly while exploring the entire feasible region.

The TS algorithm generates a set of neighbour solutions. The best solution in the

set is used as the candidate solution and examined if the solution exists in the tabu

list. TS discards solutions that have been previously visited. TS manages a short-

term memory of recent solutions and is called a tabu list. The candidate solution is

compared to the best solution and if found to be a better solution, replaces the best

solution. The candidate solution is then added to the tabu list. The tabu list is kept

below the maximum tabu list size by removing the oldest entry. The candidate solu-

tion is set as the starting point for the next iteration even if the candidate solution
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was worse than the best solution (Lin and Miller, 2004; Talbi, 2009; Weise, 2009). A

pseudo representation of the TS algorithm can be seen in Algorithm 3.2.2.

Algorithm 3.2.2: Tabu search pseudocode

Input: 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠𝑖𝑧𝑒, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥

Output: 𝑆𝑏𝑒𝑠𝑡

1 𝑆𝑏𝑒𝑠𝑡 ← ConstructInitialSolution();
2 TabuList ← ∅;
3 while ¬ 𝑖 < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥 do
4 CandidateList ← ∅;
5 CandidateList ← CreateNeighbouringSolutions(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
6 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ← LocateBestCandidate(CandidateList);
7 if 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≤ 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 then
8 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;
9 if 𝑆𝑏𝑒𝑠𝑡 ≤ 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 then

10 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;
11 end

12 else if 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 /∈ TabuList then
13 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;
14 TabuList ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;

15 else
16 StopCondition();
17 end
18 if TabuList ≥ 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠𝑖𝑧𝑒 then
19 DeleteListItem(TabuList);
20 end

21 end
22 return 𝑆𝑏𝑒𝑠𝑡;

3.2.3 Simulated annealing

The simulated annealing algorithm was inspired by a physical process in metallurgy,

on how metal crystals reconfigure and reach equilibria after being cooled from a high

temperature (Glover and Laguna, 1997a; Weise, 2009). Kirkpatrick et al. (1983)

developed the SA algorithm in 1983 and applied it to a wide variety of combina-

torial optimisation problems. In mid-1980, Černý (1985) independently published

a thermodynamic approach to the travelling salesman problem. The SA algorithm

forms part of the LS family in single-solution based metaheuristics and can accept

movements to non-improvement neighbours (Talbi, 2009).

An initial solution is generated and the neighbourhood is searched for improved

neighbours. Improving neighbours are always accepted and non-improving neigh-

bours are accepted depending on the degradation of the objective function and

the current temperature. The probability that non-improving moves are accepted
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decreases as the algorithm progresses or until the equilibrium condition has been

reached. Δ𝐸 or 𝑓(𝑠′)−𝑓(𝑠) represent the difference between the current solution and

the neighbour solution respectively. The temperature (𝑇 ) defines the annealing sched-

ule which a fraction of the time or iterations expended so far. The Boltzmann distribu-

tion is used as a probability distribution and can be stated as 𝑃 (Δ𝐸, 𝑇 ) = 𝑒−
𝑓(𝑠′)−𝑓(𝑠)

𝑇 .

A pseudocode representation of the SA algorithm can be seen in Algorithm 3.2.3.

Algorithm 3.2.3: Simulated annealing pseudocode

Input: 𝑐𝑜𝑜𝑙𝑖𝑛𝑔, 𝑡𝑒𝑚𝑝𝑖𝑛𝑖𝑡
Output: 𝑆𝑏𝑒𝑠𝑡

1 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← CreateInitialSolution();
2 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
3 𝑡𝑒𝑚𝑝𝑐𝑢𝑟𝑟 ← 𝑡𝑒𝑚𝑝𝑖𝑛𝑖𝑡;
4 while ¬ 𝑡𝑒𝑚𝑝𝑐𝑢𝑟𝑟 > 𝑡𝑒𝑚𝑝0.01 do
5 CandidateList ← ∅;
6 CandidateList ← CreateNeighbouringSolutions(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
7 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ← LocateBestCandidate(CandidateList);
8 𝑡𝑒𝑚𝑝𝑐𝑢𝑟𝑟 ← CalculateTemperature(𝑐𝑜𝑜𝑙𝑖𝑛𝑔, 𝑡𝑒𝑚𝑝𝑐𝑢𝑟𝑟);
9 if 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≤ 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 then

10 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;
11 if 𝑆𝑏𝑒𝑠𝑡 ≤ 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 then
12 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;
13 end

14 else if Exp(
𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒−𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

𝑡𝑒𝑚𝑝𝑐𝑢𝑟𝑟
) > Rand() then

15 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑆𝑏𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟;
16 end

17 end
18 return 𝑆𝑏𝑒𝑠𝑡;

3.2.4 Genetic algorithm

The genetic algorithm imitates the biological selection of evolutionary reproduction

and belongs to the larger class of evolutionary algorithms (EAs) (Glover and Laguna,

1997a). John Holland was inspired by the mechanism of natural selection which led

to the development of the original GA in 1962 and the development was continued

during the 1960s and 1970s by Holland, his colleagues and students (Mitchell, 1995).

During the 1980s they applied GA to machine learning and optimisation (Talbi, 2009).

Holland describes in his framework the method for evolving from one population of

chromosomes to a new population by replacing the current population. Traditionally,

a chromosome represented the candidate solution for the problem in bits format but

nowadays other types of representation are used (Talbi, 2009).
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Kasat et al. (2003) presented a range of GA applications in the polymer science

and engineering domain. Relevant to this study is the scheduling of production

producing expandable polystyrene using a GA. Wang et al. (2000) found that the

computing times and quality of solutions obtained by the GA were comparable with

the mixed-integer non-linear programming (MINLP) models.

Population-based metaheuristics such as the GA start from an initial population

of solutions represented in chromosomes. Each chromosome consists of genes that

represent the decision variables in a solution. The fitness of each individual in the

population is calculated. Using a selection strategy, offspring are generated using

crossover, mutation and inversion. The offspring are introduced to the population

and the weakest solutions are removed from the population. A pseudo representation

of the GA algorithm can be seen in Algorithm 3.2.4.

Genetic algorithms are known to require parameter tuning and the use of GA

as a black box algorithm could result in sub-optimal results (Hansen et al., 2010;

Lobo and Goldberg, 2004). The following sections cover important aspects of genetic

algorithms that require careful consideration.

3.2.4.1 Chromosomes

A chromosome is a vector with the decision variables or genes represented as described

in subsection 3.1.3. This can be binary encoding, discrete value encoding, real value

encoding or permutation encoding. More complex chromosomes can be used by using

a combination of different encodings.

3.2.4.2 Population

The population, consisting of a list of chromosomes, is the core of the algorithm. It

determines the memory size, the convergence speed in sequential GAs and affects the

speed of search in parallel GAs (El-Milhoub et al., 2006). The size of the population

and how the initial population is generated play a big role. A big population may

have more space for the algorithm to explore but would impair the efficiency of the

algorithm. A smaller population would not have space to explore and would not

be effective at finding near-optimal solutions. The trade-off between big and small

population sizes has been studied from multiple points of view (Diaz-Gomez and

Hougen, 2007; El-Milhoub et al., 2006; Elmihoub et al., 2004; Gotshall and Rylander,

2000; Hansen et al., 2010; Maaranen et al., 2007).

One of the first researchers that studied the parameters for EAs devised test

functions and concluded that a population size of 50-100 would result in a good

performance. These parameter settings and other have since been used by many
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researchers (De Jong, 1975). Gotshall and Rylander (2000) proposed a method for

determining the optimal population size for GAs and conducted experiments on dis-

similar problems with positive results. Harik et al. (1999) and Elmihoub et al. (2004)

used the gambler ruin model to estimate the population size of GAs. Both reported

reaching a solution of a particular quality for small, medium and hybrid GAs.

De Jong (2007) since published a 30-year perspective on parameter settings and

stated that due to the no free lunch (NFL) theorem, there is no single algorithm that

will outperform all others. Unless adequate restrictions are placed on the problems,

that optimal parameter setting will not exist. Lobo and Goldberg (2004) presented

a parameterless method for crossover-based GAs. The method is slower than for a

GA with optimal parameter settings but it removes the effort of finding the optimal

parameters. De Jong (2007) states that parameterless methods or no externally

visible parameters are the ultimate goal.

Levine (1997) recommends using a steady-state GA. The selection of two par-

ents can generate one or two offspring, evaluate their fitness and reintroduce them

into the population while killing off random or weaker individuals in the population.

This provides elitism and uses less memory (Lones, 2011). This also addresses the

problem stated by De Jong (2007) who stated that the population size should be set

independently from the offspring population size.

3.2.4.3 Mutation

The mutation operator helps maintain diversity in the population by doing a random

bit-flip in the chromosome. Various methods can be used for other representations.

For floating-point representations, it is rare to use something other than Gaussian

mutation (Lones, 2011). Lones (2011) suggests integer randomisation mutation for

when the representation treats integers as members of a set and random walk mutation

when integers represent a metric space. Luke further cautions against the use of point

mutation as if this is not constructed properly, it could result in limiting rather than

diversifying the population. A common strategy to include elitists in GAs is by

excluding the best chromosome from mutation (Haupt and Haupt, 2003).

Research varies extensively; some point to fixed mutation rates while others ad-

vocate for adaptive mutation rates (Blum et al., 2005b; Carr, 2014; De Jong, 2007,

1975; Grobler et al., 2010; Hansen et al., 2010; Talbi, 2009). Until a high performing

adaptive method has been found and tested with various problems, it will be up to

the researcher to experiment with different methods and rates.

For this study, the researcher compared two mutation methods; namely, no mu-

tation and mutation using local search. The mutation using local search selects a
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Parents Offspring

1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟−−−−−−−−−−−−−−→
1 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

Figure 3.2: Uniform crossover with a binary representation

random variable, if the variable is smaller than the mutation variable, a local search

is applied on the selected chromosome. The mutation variable is set at 0,07 for this

study.

3.2.4.4 Crossover

Crossover or recombination enables two parent chromosomes to be recombined into

new chromosomes so that the new chromosome inherits characteristics of the parents.

Hansen et al. (2010) recommend not using one-point crossover due to positional bias.

Multiple crossovers would address the positional bias. To remove any bias, a uniform

crossover could be used by generating a Bernoulli distributed 0s and 1s vector and

crossing over on the 1s. Nguyen and Bagajewicz (2010) found better solutions using

uniform crossover with computation times that is relative to other methods and it

scales well with large problems. Due to the size of the problem in the study, a uniform

crossover was used.

Figure 3.2 illustrates a uniform crossover with a binary representation. A mask is

generated with 0 and 1 from crossover where 0 will remain and 1 will crossover into the

offspring (Hansen et al., 2010). The daily interval solution vector has a length of 1 980

and the hourly interval solution vector a length of 7 392. Using a crossover procedure

that scales with the problem is important or it will not be effective. Figure 3.3

illustrates a sample from the vector in the daily interval solution vector representation.

3.2.4.5 Selection

The selection mechanism provides for stronger individuals to become parents. This

allows for the improvement of the next generation. Weaker individuals also have a

chance to become a parent and are not necessarily discarded.

Roulette wheel selection is the most common selection strategy (Talbi, 2009).

Hansen et al. (2010) discourages the use of a simple roulette wheel selection and rec-

ommends tournament selection or stochastic universal sampling (SUS). SUS has zero
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Parents

17.5 25.5 11.5 4.5 4 4.5 17.5 16.5

15.5 28 9.5 2.5 3 5 19 11

Uniform crossover

1 0 1 1 0 0 1 0

Offspring

17.5 28 11.5 4.5 3 5 17.5 11

15.5 25.5 9.5 2.5 4 4.5 19 16.5

Figure 3.3: Uniform crossover with an example from study

bias but can only be used in sequential algorithms (Baker, 1987). Baker (1987) pro-

posed a different selection method namely remainder stochastic independent sampling

for parallel algorithms. Jinghui Zhong et al. (2005) has found that in an experiment

using a simple genetic algorithm (SGA), tournament selection outperformed the SGA

using roulette wheel selection. Lones (2011) recommends tournament selection as it

is a simple tunable technique that works well with parallel algorithms. Tournament

selection was used based on most research recommending the method.

Algorithm 3.2.4: Genetic algorithm pseudocode

Input: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

Output: 𝑆𝑏𝑒𝑠𝑡

1 Population ← InitialisePopulation(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒);
2 EvaluatePopulation(Population);
3 𝑆𝑏𝑒𝑠𝑡 ← GetBestSolution(Population);
4 for 𝑖 ≤ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 do
5 𝑃𝑎𝑟𝑒𝑛𝑡1 ← TournamentSelection(Population);
6 𝑃𝑎𝑟𝑒𝑛𝑡2 ← TournamentSelection(Population);
7 Children ← ∅;
8 𝐶ℎ𝑖𝑙𝑑1, 𝐶ℎ𝑖𝑙𝑑2 ← UniformCrossover(𝑃𝑎𝑟𝑒𝑛𝑡1, 𝑃𝑎𝑟𝑒𝑛𝑡2);
9 Children ← Mutate(𝐶ℎ𝑖𝑙𝑑1, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛);

10 Children ← Mutate(𝐶ℎ𝑖𝑙𝑑2, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛);
11 EvaluatePopulation(Children);
12 Population Replace(Population, Children);
13 𝑆𝑏𝑒𝑠𝑡 ← EvaluatePopulation(Population);

14 end
15 return 𝑆𝑏𝑒𝑠𝑡;

37

Stellenbosch University https://scholar.sun.ac.za



3.2.5 Greedy search

The greedy search (GS) algorithms are approximation algorithms that systematically

search the solution space in a best-first approach. Wilt et al. (2010) compared greedy

search families; namely, best-first, hill-climbing, and beam search and found that

massive search space requires beam search. Best-first often had comparable results

in a timed comparison. Pekny (2002) refers to the greedy algorithm as an algorithm

that can complete the search in a reasonable time but with very low-quality solutions.

The interest in the GS algorithm for this study is similar to the LS algorithm, in that

should the GS algorithm start in a good neighbourhood, it will improve the result in

a reasonable time.

The GS algorithm starts at a solution and evaluates the nearest-neighbour; if the

neighbour improves the current solution, the move is accepted. If the move is worse

than the current solution, the next neighbour is considered. This process continues

until a local optimum has been reached. A pseudo representation of the GS algorithm

can be seen in Algorithm 3.2.5.

Algorithm 3.2.5: Greedy search pseudocode

Input:
Output: 𝑆𝑏𝑒𝑠𝑡

1 𝑆𝑏𝑒𝑠𝑡 ← ConstructInitialSolution();
2 while ¬ StopCondition() do
3 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← CreateNeighbourSolution(𝑆𝑏𝑒𝑠𝑡);
4 if 𝑆𝑏𝑒𝑠𝑡 ≤ 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 then
5 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
6 else
7 StopCondition();
8 end

9 end
10 return 𝑆𝑏𝑒𝑠𝑡;

3.2.6 Summary of single-objective optimisation algorithms

The previous sections provided a review of a selection of single-objective optimisation

algorithms. The algorithms reviewed would end either by reaching a local optimum

or reaching the stopping criterion or criteria. This would be after exploring and

exploiting the search domain sufficiently. Exploiting the neighbourhood further could

be done by supplementing the algorithm with other algorithms. This is called hybrid

metaheuristics, which will be reviewed later in this chapter. The following section

provides a brief overview of multi-objective optimisation.
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3.3 A brief overview of multi-objective optimisa-

tion

The petrochemical and chemical sector accounts for 30% of the energy use in industry

worldwide (Saygin et al., 2011). The energy demand of a chemical processing plant

can be enormous, and operating a plant at a slightly lower rate that uses less energy

might not result in a proportional decrease in profit. With many practical industrial

problems, multiple criteria or objectives can be used to evaluate a solution. The

trade-off between maximising profit while minimising energy consumption provides

additional information when making decisions on the production plan.

Multi-objective optimisation (MOO) is concerned with finding the best set of so-

lutions which are defined as the Pareto optimal solutions and, consequently a Pareto

set. The Pareto optimal solutions represent a compromise between conflicting objec-

tives with no solution being possible to improve without deteriorating at least one

other objective (Talbi, 2009). When metaheuristics are applied on a multi-objective

optimisation problem (MOOP), the goal becomes to obtain an approximation Pareto

set. MOO is classified further into bi-objective optimisation and many-objective op-

timisation. Bi-objective optimisation refers to problems containing two objectives

and many-objective optimisation to those containing a large number of objectives,

typically more that three or four objectives (Copado-Méndez et al., 2012; Mane and

Narasinga Rao, 2017; Talbi, 2009). Since the problem in this study contains two

objectives, the term bi-objective optimisation is used when referring to the problem

in this study and MOO to describe the problem in general. An MOOP formulation

can be defined as

𝑀𝑂𝑂𝑃 =

{︃
min F(x) = (𝑓1(x), 𝑓2(x), . . . , 𝑓𝑛(x))

subject to x ∈ 𝑆

where the integer 𝑛 ≥ 2 is the number of objectives, x the feasible set of deci-

sion variables of the vector representation x = (𝑥1, . . . , 𝑥𝑘) and 𝐹 (x) the vector of

objectives to be optimised (Talbi, 2009).

Zitzler et al. (2000) compared six multi-objective evolutionary algorithms on test

problems with the strength Pareto evolutionary algorithm (SPEA) outperforming

the other algorithms such as the non-dominated sorting genetic algorithm (NSGA).

The comparison highlighted the importance of elitism in MOO. Deb et al. (2002)

introduced NSGA-II with several improvements to address the shortcomings such as

elitism. Zitzler et al. (2001) introduced the second version of SPEA; namely, strength
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Pareto evolutionary algorithm 2 (SPEA2), which included an improved fitness assign-

ment strategy with a new density-based selection and archived truncation techniques.

They compared SPEA2, the Pareto envelope-based selection algorithm (PESA) and

NSGA-II, with both the NSGA-II and SPEA2 having the best performance overall.

It was noted that they behave similarly on different problems, with NSGA-II in some

cases having a broader spread while SPEA2 has a better distribution of points. The

NSGA-II was selected for this study as it is an extension of the GA that was reviewed

earlier in this chapter.

3.3.1 Non-dominated sorting genetic algorithm II

The NSGA-II was proposed by Deb et al. (2002) as an improvement on the NSGA pro-

posed in Srinivas and Deb (1994) for multi-objective optimisation. The improvements

to the NSGA-II focused on the high computational complexity of the non-dominated

sorting, the lack of elitism, and the need for specifying the sharing parameter in the

NSGA. The non-dominated sorting genetic algorithm III (NSGA-III) was later in-

troduced which does not make use of any explicit selection operator and makes use

of reference directions to maintain diversity (Deb and Jain, 2014; Seada and Deb,

2015). For this study, the NSGA-II was chosen as the reference point approach in

the NSGA-III is not required for this problem. The NSGA-II procedure is illustrated

in Figure 3.4 and will now be described.

An initial population 𝑃𝑡 is generated and the children 𝑄𝑡 are created with a

crossover procedure as described in Section 3.2.4.4. To maintain diversity, mutation

is done on the children as described in Section 3.2.4.3. Each chromosome in the

population 𝑅𝑡 is then evaluated with each objective. The population is sorted and

the first non-dominating set 𝐹1 is calculated. Any chromosome that is dominated by

another is moved to the next set 𝐹2. This process continues until all the chromo-

somes in the population are assigned to a non-dominating set. Once completed, the

crowding distance is calculated for each chromosome with the following two equations:

𝑐𝑑1 = 0 +
𝑓𝑘
𝑛+1−𝑓𝑘

𝑛−1

𝑓𝑘
𝑚𝑎𝑥1

−𝑓𝑘
𝑚𝑖𝑛1

𝑐𝑑2 = 𝑐𝑑1 +
𝑓𝑘
𝑛+1−𝑓𝑘

𝑛−1

𝑓𝑘
𝑚𝑎𝑥2

−𝑓𝑘
𝑚𝑖𝑛2

.

Chromosomes of the best non-dominating set 𝐹1 are assigned to the new popula-

tion 𝑃𝑡+1. The succeeding sets are then added until 𝑃𝑡+1 is filled. If the complete set

cannot be accommodated in 𝑃𝑡+1, the chromosomes are selected based on the crowd-

ing distance to fill 𝑃𝑡+1. Finally, crossover and mutation are performed to generate
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the children and after evaluating the fitness of the children, the process repeats until

the stopping condition is met.

A pseudocode representation of the NSGA-II algorithm can be seen in Algorithm

3.3.1.

Figure 3.4: NSGA-II procedure (Deb et al., 2002)
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Algorithm 3.3.1: Non-dominated sorting genetic algorithm II pseudocode

Input: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒, 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

Output: Population
1 Population ← InitialisePopulation(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒);
2 Children ← UniformCrossoverAndMutation(Population, 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛);
3 Population ← Merge(Population, Children);
4 EvaluatePopulation(Population);
5 while ¬StopCondition() do
6 Fronts ← FrontAssignment(Population);
7 CrowdingDistanceAssignment(Population);
8 Parents ← SelectParentsByFront(Population);
9 if Size(Parents)<𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 then

10 𝐹𝑟𝑜𝑛𝑡𝐿 ← SortByRankAndDistance(𝐹𝑟𝑜𝑛𝑡𝐿);
11 for 𝑃1 to 𝑃𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒−Size(𝐹𝑟𝑜𝑛𝑡𝐿) do
12 Parents ← 𝑃𝑖;
13 end

14 end
15 Children ← UniformCrossoverAndMutation(Population, 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟,

𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛);
16 EvaluatePopulation(Children);
17 Population ← Merge(Population, Children);

18 end
19 return Population;

3.4 Hybrid metaheuristics

Hybrid metaheuristics are a combination of population-based metaheuristics, single-

based metaheuristics, mathematical programming, constraint programming and ma-

chine learning techniques (Talbi, 2009). When a simple genetic algorithm with tuning

does not perform as required, it has been proven beneficial to combine the algo-

rithm with others. Combining an evolutionary algorithm with an LS was coined as a

memetic algorithm (Moscato, 1989). Noman et al. (2011) list other known references

in literature for hybridisations as hybrid GAs, genetic local searches, Lamarckian

GAs and Baldwinian GAs. The GA algorithm lends itself to hybridisation in three

ways. First, to use a memetic algorithm as a high-level relay hybrid once a GA has

found the best feasible solution, to exploit the neighbourhood to ensure each variable

is at its best position by using LS, TS or GS. Secondly, it is applied as a low-level

teamwork hybrid, by using local search as a mutation operator. Lastly, as a high-

level relay hybrid where an approximation multilayer perceptron (MLP) model is

built from previously evaluated solutions. The following sections briefly discuss the

classification and taxonomy of hybrid metaheuristics.
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3.4.1 Classification of hybrid metaheuristics

Talbi (2002) proposed a taxonomy for hybrid metaheuristics consisting of a classifica-

tion and grammar. The classification consists of a hierarchical and flat classification

with the grammar based on the classification.

The hierarchical and flat classification of the taxonomy are shown in Figure 3.5,

followed by a brief discussion.

Figure 3.5: Taxonomy classification hybrid metaheuristics (Talbi, 2002)

The two categories in the hierarchical classification proposed by Talbi (2009) are

level and mode. Blum et al. (2008) classify the combinations differently as integrative

or collaborative.

The level or first classification is made between low-level and high-level hybrid

metaheuristics. With low-level hybridisation, a function of a metaheuristic is replaced

with another metaheuristic. With high-level hybridisation, the internal procedures

of a metaheuristic have no direct interaction or replacement of functionality. Raidl

and Puchinger (2008) describe integrative combinations as the combination of one

technique embedded as a component of another technique. The latter lacks the

differentiation of low or high integration.

The mode or second classification is made between relay and teamwork. With

relay hybridisation, the output of one metaheuristic is the input of the next meta-

heuristic. This type is often referred to as sequential execution (Raidl and Puchinger,

2008). With teamwork hybridisation, the metaheuristics work together to search for
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the optimum in parallel. This type is often referred to as parallel or intertwined

execution (Raidl and Puchinger, 2008). Collaborative combinations focus on the ex-

ecution, sequentially, intertwined, or in parallel. An illustration of the structural

classification by Raidl and Puchinger (2008) can be simplified and extended to in-

clude other integrative combinations. An adapted structural classification is shown

in Figure 3.6.

Raidl (2006) proposed a unified view of hybrid metaheuristics combining the work

of Talbi (2002) including the views of Cotta-Porras (1998) and Blum et al. (2005a).

The unified view excluded the grammar proposed by Talbi (2002). Hybrid meta-

heuristics literature uses either of the classifications or a combination of the two. The

grammar classification makes it easier to discover literature on specific algorithms.

This unified view, in reality, introduced another classification rather than unifying

the views. Talbi (2013) extended his previous taxonomy to include mathematical

programming, constraint programming and data mining techniques.

Figure 3.6: An extended hybrid metaheuristics structural classification (Raidl and

Puchinger, 2008)

The second part of the taxonomy shown in Figure 3.5, is the flat classification

that can be described as:

• Homogeneous or heterogeneous – With homogeneous hybrids, the island model

belongs to the homogeneous hybrid where all the combined algorithms use the
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same metaheuristic. In heterogeneous hybrids, the greedy randomised adaptive

search procedure (GRASP) method may be seen as a heterogeneous hybrid

where different metaheuristics are used;

• Partial or global – For partial hybrids, the problem is divided into smaller sub-

problems, each having its own search space to build a viable global solution.

For global hybrids the search space is shared and individual metaheuristics

broadcast the best solution;

• Specialist or general – Specialist hybrids optimise different problems with a

combination of metaheuristics. General hybrids solve the same optimisation

problem with the same or different metaheuristics.

3.4.2 Grammar

Talbi (2002) proposed a grammar to generalise the basic hybridisation schemes with

notation and classified more than 125 hybrid metaheuristics to show the usefulness

of the proposed taxonomy. This makes literature on specific algorithms easier to

find and summarises a paper in one notation. Researchers from different fields can

understand each others’ approach easier by having one taxonomy. Four classifications

can be derived from a hierarchical taxonomy with the flat taxonomy options listed

inline.

• Low-level relay hybrid – LRH (A1(A2)) (homogeneous, heterogeneous) (partial,

global) (specialist, general): The metaheuristic A2 is embedded into the single-

solution metaheuristic A1.

• High-level relay hybrid – HRH (A1+A2) (homogeneous, heterogeneous) (partial,

global) (specialist, general): The self-contained metaheuristics A1 and A2 are

executed in sequence.

• Low-level teamwork hybrid – LTH (A1(A2)) (homogeneous, heterogeneous)

(partial, global) (specialist, general): The metaheuristic A2 is embedded into

the population-based metaheuristic A1.

• High-level teamwork hybrid – HTH (A1, A2) (homogeneous, heterogeneous)

(partial, global) (specialist, general): The self-contained metaheuristics A1 and

A2 are executed in parallel and cooperate.

The three algorithms selected for hybridising the genetic algorithm are local

search, greedy search and tabu search. Their implementation will be discussed in

the next chapter.
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3.4.3 Hybrid metaheuristics with machine learning

Machine learning can be broadly defined as the development and use of algorithms

and statistical models to analyse and draw inferences from patterns in data. Machine

learning has been researched for decades and is regarded as a disruptive innovation

for businesses today in a range of industries from healthcare to manufacturing (Lee

and Shin, 2020). Traditionally, machine learning can be divided into three main

categories: unsupervised learning, supervised learning, and reinforcement learning

(Lee et al., 2018).

Unsupervised learning is when data that contains many features but is not la-

belled, is used to learn properties of the dataset. Unsupervised learning is useful in

many scenarios, like detecting subtle relationships that a machine would otherwise

miss or clustering data into similar groups (Goodfellow et al., 2016).

Supervised learning is when each example in the dataset is also associated with a

target or label. It is useful to identify patterns and relationships between the data

and the target. The disadvantage of supervised learning is that the machine learning

algorithm is usually trained on the labelled examples and only given more labelled

examples as it grows in its understanding (Goodfellow et al., 2016).

Reinforcement learning is when one creates an algorithm that tries to find the best

strategies to maximise its outcomes. Often it is hard to tell what a good strategy

is and a machine learning algorithm might end up making random choices. In some

cases, methods such as dynamic programming or Monte Carlo simulation can help a

machine discover near-optimal strategies (Sutton and Barto, 2017).

Artificial neural networks, a subset of machine learning, are inspired by biological

neural networks. In a biological neural network, input is a voltage in the membrane of

a neuron, the output is a signal, and it is the interaction between inputs and outputs

that allows for change. Analogous to a neural network, a biological neuron connects

to nearby neurons through synapses (connections) which are made by specialised

proteins that have spines. As represented graphically in Figure 3.7, the synapses in a

biological neural network are made in the dendrites which will connect with the axon

(fibre) which will then connect to a postsynaptic cell.
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Figure 3.7: Graphical representation of a biological neuron adapted from Looxix

(2003)

The first mathematical model of a neural network was proposed by McCulloch and

Pitts (1943). This model consisted of a neuron with weights that needed to be set by a

human operator. This was followed with the first model of a perceptron by Rosenblatt

(1958) that demonstrated the learning of a single neuron. Rumelhart et al. (1986)

introduced back-propagation, which continues to be a major concept of artificial

neural network literature. A neural network consists of an input layer, one or more

hidden layers and an output layer. Many concepts in machine learning evolve and

are applied with other concepts. One such example is deep neural networks or deep

learning that refers to the use of multiple layers between the input and output layers

in the artificial neural network, that has been applied with reinforcement learning

under the name deep reinforcement learning (Goodfellow et al., 2016; Sutton and

Barto, 2017). Over the last 10 years, machine learning has become very popular in

many fields, like natural language processing, computer vision, image recognition and

robotics. Some of the more interesting results from deep reinforcement learning has

been in-game AI (Dargan et al., 2020; Jaderberg et al., 2019; Mnih et al., 2013)

Shukla and Iriondo (2020) list 27 of the most used topologies in neural networks.

For simplicity, two topologies are listed with a brief description.

• Multilayer perceptron (MLP) – A class of feedforward (FF) neural networks

with at least three layers, one input layer, one or more hidden layers, and one

output layer. It is typically used on tabular datasets.
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• Long short-term memory (LSTM) – A class of recurrent neural network (RNN)

that has feedback connections and typically consists of a cell state, an input gate

layer, an output gate layer and a forget gate layer (Hochreiter and Schmidhuber,

1997). It is typically used on sequence datasets.

A typical MLP neural network is shown in Figure 3.8. During training, each input

is pushed through the network by taking the scalar product also known as a weighted

sum of the input and the weight between the input layer and hidden layer. The scalar

product is passed to the activation function that transforms the weighted sum into a

desired output. This forward pass is repeated until the output layer is reached with

an output. An error rate is calculated by comparing the output with the expected

output. The error rate is then used during backpropagation (propagating backwards

through the network) which updates the weights in the network one layer at a time,

according to the amount the weight contributed to the error rate. This process is

repeated with the goal of minimising the error rate. Once the training has completed,

the model weights and architecture can be saved for later use. Predictions are made

by providing input data to the network and performing a forward-pass in order for

the trained model to provide an output (Akyol and Bayhan, 2007).

Figure 3.8: A multilayer perceptron (MLP)

One of the advantages of MLP neural networks is that most of the time is spent

during data preparation and training so that the prediction can occur in a short period
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of time or even in real-time. One of the disadvantages of MLP neural networks is that

gradient-based training techniques and weight initialisation have the risk of getting

stuck in a local maximum (Akyol and Bayhan, 2007).

Akyol and Bayhan (2007) do not recommend using MLP neural networks for

combinatorial optimisation but rather hybridising the neural network with heuristics

or metaheuristics to overcome the shortcomings of the individual methods. This can

be done by generating training data or searching for the most appropriate design

and/or parameter selection using metaheuristics, with the former being the focus of

this study. Some hybridisations to generate training data for a neural network have

been done by using simulation and have yielded good results (Dunke and Nickel, 2020;

Mouelhi-Chibani and Pierreval, 2010; Sabuncuoglu and Touhami, 2002). Talbi (2009)

classified this type of hybridisation as a high-level relay hybrid where an approximate

model is built using an MLP or a radial-basis function of the objective function from

previously evaluated solutions. MLP neural networks have shown to be effective for

function approximation although this research area has not attracted much attention

(Jin, 2005; Jin et al., 2019).

3.4.4 Parallel metaheuristics

Hybrid metaheuristics are often applied to complex real-life problems. These types

of problems can require intensive resources such as computing power and memory.

The design of these methods was discussed in the previous section. A brief overview

of the implementation of the methods will follow.

Most hybrid metaheuristics run on a single-core processor unless it has been pro-

grammed to divide the processes on multiple cores or over a distributed architecture.

The high-level teamwork hybrid lends itself to such an implementation. Running

hybrid metaheuristics in parallel or distributed computing can speed up the search,

improve the quality of the solutions, improve robustness and/or solve large-scale prob-

lems (Talbi, 2009). They also suggest that clusters of workstations (COWs), networks

of workstations (NOWs) or high-performance computing (HPC) can provide substan-

tial benefits to parallel metaheuristics. Running multiple sequential and/or parallel

metaheuristics on distributed computers at the same time with allocated cores and

memory can shorten the time required to execute them.

Talbi (2009) named the three major parallel models as algorithmic, iteration and

solution level:

• Algorithmic-level – Executing metaheuristics independently or cooperating that

is problem-independent with the goal of being more effective.
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• Iteration-level – Executing each iteration of the metaheuristics in parallel with

the goal of being more efficient.

• Solution-level – Executing a resource-intensive operation in parallel with the

goal of being more efficient.

Iteration-level parallel models are relevant to this study. The most resource-

consuming part of metaheuristics is the generation of neighbour solutions, evaluating

the constraints and calculating the fitness. For the LS, TS, SA and the GA, these are

done synchronously. The model waits until all neighbours or chromosomes have been

generated, evaluated against the constraints and the fitness calculated. The GS does

this asynchronously by generating neighbours, evaluating against the constraints and

calculating the fitness until an improved solution has been found.

3.5 Synthesis of literature review on optimisation

algorithms

This section reflects on the literature discussed in this chapter. Metaheuristics can

be used for finding a near-optimal solution to solve non-tractable problems and pro-

vide the flexibility needed to formulate and solve complex real-world industrial-sized

problems.

The problem in the study is unique in the sense that metaheuristics do not have

a known track record for being applied to this problem in the process industry. The

algorithms must be implemented from pseudo-code with the problem-specific require-

ments. First, the original algorithms selected for the literature review were tabu

search (TS), simulated annealing (SA), genetic algorithm (GA), cross-entropy method

(CEM) and population-based incremental learning (PBIL). From the literature, the

sampling for the CEM and probability vector for the PBIL were compelling features

but these two algorithms were later removed as they converged to suboptimal results.

For the CEM, as the variance decreased, the sampling excluded valid selections from

the sample which resulted in early convergence. For the PBIL, moving the relevant

characteristics from the population to the probability vector reduced the exploration

to the point where the basic GA had produced significantly better results. To im-

prove the results of the remaining algorithms, additional literature was reviewed on

hybrid metaheuristics and local search (LS) was added. LS proved to be too slow to

generate and evaluate each neighbour. After reviewing additional literature, greedy

search (GS) was added for accepting an improvement move before evaluating all the

neighbours. Both LS and GS were included as standalone algorithms and also in
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the hybrid algorithms. After profiling the performance of the algorithms, additional

literature was again reviewed to improve the performance of the algorithms. The

algorithms were converted to iteration-level parallel models. Developing and testing

20 algorithms on one server and one notebook with multiple cores would be too time-

consuming and from the literature it was learned that it is possible to run them at

the same time or in parallel on a high-performance computing (HPC) cluster. The

algorithms were adapted and moved to a HPC cluster for further testing.

In order for the problem to reflect the energy demand, an additional objective was

added after reviewing additional literature. To further improve the execution speed,

additional literature was review on hybridising the algorithms with machine learning

methods.

It is not possible to understand certain aspects and complexities from a single

literature review, hence the iterative literature review process followed.

3.6 Chapter summary

This chapter started with an introduction to important aspects of single-objective

optimisation, followed by a review of a selection of optimisation algorithms that have

been developed over the last few decades. A brief overview of multi-objective optimi-

sation was presented, and finally, a review was carried out of hybrid metaheuristics

literature with a specific focus on classification, grammar, parallel metaheuristics and

machine learning. The succeeding chapter will describe and discuss the construction

and implementation of the algorithms on the problem.
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Chapter 4

Construction and implementation

of algorithms

This chapter discusses important aspects related to construction of the algorithms

using the knowledge gained from the literature in the previous chapters to achieve

Objective 6. The chapter presents the requirements for the construction and imple-

mentation of the algorithms. It starts with the list of selected algorithms, followed

by a detailed description of the three types of variables that are used in this study;

namely, decision variables, balanced variables and coupling variables. The two rep-

resentations for the daily interval and the hourly interval are presented with the

proposed encoding scheme. This is followed by the daily interval and hourly interval

evaluation process needed to evaluate a solution and a combined evaluation process is

presented for the proposed discrete-time single non-uniform grid. Finally, a detailed

description is given of the parallel model implementations followed by the hybrid

implementations used in this study.

4.1 Selected algorithms

Five algorithms, four hybrid algorithms and one multi-objective algorithm have been

selected using two different greatest common factor (GCF) intervals; namely, daily

intervals and hourly intervals. The algorithms have been selected on the basis that

they are well documented and have been researched extensively (Kallrath, 2002). The

two intervals require different formulations that will be discussed in the next section.

The complete list of algorithms for this study has been tabled in Table 4.1.
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Table 4.1: List of algorithms used in this study

Algorithm name Interval

1 Local search (LS) Daily

2 Tabu search (TS) Daily

3 Simulated annealing (SA) Daily

4 Genetic algorithm (GA) Daily

5 Greedy search (GS) Daily

6 Genetic algorithm (GA) with local search (LS) Daily

7 Genetic algorithm (GA) with tabu search (TS) Daily

8 Genetic algorithm (GA) with greedy search (GS) Daily

9 Genetic algorithm (GA) with multilayer perceptron (MLP) Daily

10 Non-dominated sorting genetic algorithm II (NSGA-II) Daily

11 Local search (LS) Hourly

12 Tabu search (TS) Hourly

13 Simulated annealing (SA) Hourly

14 Genetic algorithm (GA) Hourly

15 Greedy search (GS) Hourly

16 Genetic algorithm (GA) with local search (LS) Hourly

17 Genetic algorithm (GA) with tabu search (TS) Hourly

18 Genetic algorithm (GA) with greedy search (GS) Hourly

19 Genetic algorithm (GA) with multilayer perceptron (MLP) Hourly

20 Non-dominated sorting genetic algorithm II (NSGA-II) Hourly
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4.2 Algorithm variables

Different variable types that serve different purposes are used in the algorithms.

Three types of variables will be discussed in this section, namely decision variables,

coupling variables and balancing variables. The product margins that are used have

been derived from public data and are outlined in Appendix A.

4.2.1 Decision variables

Decision variables are manipulated during the search procedure to see if the change in

decision variables improved the fitness of the solution. Each plant or tank in Figure

4.1 will be represented by one or more decision variables, which are listed in Table

4.2. All the decision variables are represented in a vector and the vector for one

interval is expressed as,

[𝑃 3,2, 𝑃 4,2, ..., 𝑃 2,2𝐴,𝑃 2,2𝐵,𝑃 2,2𝐶, ..., 𝑇 2,2𝐼𝑛, 𝑇 2,2𝑂𝑢𝑡]. As discussed in Chapter 2, a

discrete-time model is selected for this study. For every interval in the time horizon,

the vector is extended by the same decision variables.

The decision variables in Table 4.2 have a minimum and a maximum value and

the operating range can either range between the minimum and maximum or have

fixed values which will be specified in the maximum column. This is a preserving

constraint handling strategy to only include the operating range, thus reducing the

number of constraint violations. As a range example, the operating range for plant

𝑃 4,2 starts at a minimum of 24 t/h to a maximum of 28 t/h with an increment

of 0,5 t/h and can be represented as 𝑃 4,2 ∈ {24; 24,5; 25; 25,5; 26; 26,5; 27; 27,5; 28}.
Using a 0,5 t/h increment provides adequate accuracy on the operating range. As

a fixed range example, the fixed operating range for 𝑇 2,2𝐼𝑛 can be represented as

𝑇 2,2𝐼𝑛 ∈ {0, 8, 15}. A complete set of decision variables is generated for each interval

to allow for manipulation of individual intervals. An example would be if planned

maintenance is required for plant 𝑃 4,2 in interval 10. The representation for plant

𝑃 4,2 would then change to 𝑃 4,2 ∈ {0} for interval 10.
As specified in Chapter 1, two time horizons are required for this study: for

the daily interval the time horizon is 90 days, while for the hourly interval it is 14

days. The daily time horizon decision variables will be discussed in the next section,

followed by the hourly time horizon decision variables.
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Figure 4.1: C2 value chain

Table 4.2: Excerpt of the decision and related variables based on Appendix A

Name Margin Start up cost Min Max Yield Type UOM

0 𝑃 3,2 R6956 R1 000 000 14 19,5 0,95 Range t/h

1 𝑃 4,2 R7337 R1 000 000 24 28 0,95 Range t/h

7 𝑃 2,2𝐴 R3049 R1 000 000 0 19 0,95 Range kNm3/h

8 𝑃 2,2𝐵 R3049 R1 000 000 0 19 0,95 Range kNm3/h

9 𝑃 2,2𝐶 R3049 R1 000 000 0 19 0,95 Range kNm3/h

20 𝑇 2,2𝐼𝑛 (-)R1 000 R0 0 [8,15] 1 Fixed t/h

21 𝑇 2,2𝑂𝑢𝑡 (-)R100 R0 0 50 1 Range t/h

4.2.1.1 Daily decision variables

The representation of a daily interval decision variable could be the total tons pro-

duced in a day or the average flow rate for the day. To represent the total tons pro-

duced for a day, the plant 𝑃 4,2 can produce at the minimum flow rate for one hour to

the maximum flow rate for 24 hours. The total tons for 𝑃 4,2 for a day can be repre-

sented as 𝑃 4,2 ∈ {24, ..., 672}. This is a large set and provides high accuracy at a com-

putational cost. To reduce the search space, the average flow rate for the day is used

and the values 𝑃 4,2 can be represented as 𝑃 4,2 ∈ {24; 24,5; 25; 25,5; 26; 26,5; 27; 27,5; 28}.
The researcher compared the different representations and found the accuracy of the

average flow rate sufficient for the daily interval.

Using a 90-day time horizon with 22 decision variables will result in a vector

that contains 1 980 decision variables. Selecting a value in the range of each decision
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variable for the 90 days will result in one candidate solution. Figure 4.2 illustrates a

complete first interval or portion of the completed vector with the selected candidate.

The decision variables are expanded vertically to illustrate the scope and selection.

Note that the unit of measurement (UOM) “kNm3” is read as “kilo-normal cube

metres”.

The two types of decision variables are defined as

𝑃 i,j = Plant 𝑖 at Location 𝑗

𝑇 i,j = Tank 𝑖 at Location 𝑗

A plant or tank can be represented by multiple decision variables, as follows:

𝑃 2,2 A = Plant 2 at Location 2 and Furnace 𝐴

𝑃 2,2 B = Plant 2 at Location 2 and Furnace 𝐵

Figure 4.2: Values for daily interval decision variables

4.2.1.2 Hourly decision variables

The plant 𝑃 4,2 example from the previous section has an operating range for an hour

starting at a minimum of 24 t/h to a maximum of 28 t/h with an increment of 0,5

t/h which can be represented as

𝑃 4,2 ∈ {24; 24,5; 25; 25,5; 26; 26,5; 27; 27,5; 28}. Using the flow rate representation for

the hourly interval is sufficient. One limitation exists with this representation in that

most plants cannot increase from the minimum rate to the maximum rate or decrease

from the maximum rate to the minimum rate in one hour. Increasing or decreasing
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the rate must happen gradually and the allowed rate increase is unique to each plant.

Table 4.3 indicates the delta minimum and delta maximum value for each decision

variable. Continuing with 𝑃 4,2 as an example, the maximum increase of the rate is

three. It implies that if the plant is currently operating at 26 t/h, the maximum

increase allowed is three positions higher. The plant can only increase from 26 t/h by

three levels higher to 27,5 t/h as illustrated in Figure 4.4. Should the next interval

decision variable recommend another three-step increase, the decoding process will

not be able to move outside the operating range of the plant 𝑃 4,2. It will move to the

maximum possible position available which in this case is one step as illustrated in

Figure 4.4. The proposed step candidate is then repaired with the feasible step. Us-

ing a decoding repair constraint handling strategy reduces the number of constraint

violations. The encoding scheme is done at a computational cost; however, the alter-

native required rebuilding the decision variables at each iteration and interval. Figure

4.3 illustrates a complete first interval or portion of the completed vector with the

selected encoded candidate. The decision variables are expanded vertically to illus-

trate the scope and selection. Note that the UOM “kNm3” is read as “kilo-normal

cube metres”.

Table 4.3: Excerpt of decision variables with hourly limits

Name Min Max Type Delta Min Delta Max UOM

0 𝑃 3,2 14 19.5 Range -1 3 t/h

1 𝑃 4,2 24 28 Range -1 3 t/h

7 𝑃 2,2𝐴 0 19 Range -1 4 kNm3/h

8 𝑃 2,2𝐵 0 19 Range -1 4 kNm3/h

9 𝑃 2,2𝐶 0 19 Range -2 5 kNm3/h

20 𝑇 2,2𝐼𝑛 0 [8,15] Fixed -1 1 t/h

21 𝑇 2,2𝑂𝑢𝑡 0 50 Range -2 6 t/h
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Figure 4.3: Step encoding decision variables

P4,2

dv1t=0 t+1 dv1t=1 ⟩ dv1t=1 t+2 dv1t=2

B +3

⟩ +2

28,0 28,0 28,0 B +1 28,0

27,5 B +3 27,5 ⟩ 27,5 +0 27,5

27,0 +2 27,0 27,0 -1 27,0

26,5 +1 26,5 ⟩ 26,5 26,5

26,0 +0 26,0 26,0 26,0

25,5 -1 25,5 ⟩ 25,5 25,5

25,0 25,0 25,0 25,0

24,5 24,5 ⟩ 24,5 24,5

24,0 24,0 24,0 24,0

0,0 0,0 ⟩ 0,0 0,0

Figure 4.4: Example of step encoding proposed
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4.2.2 Balancing variables

In Chapter 3, constraint-handling strategies were discussed and introduced the bal-

ancing period. All the decision variables are reconciled to the balancing variables.

Both negative and positive imbalances need to be actioned to resolve an imbalanced

network. The following steps show an example to resolve an imbalanced network:

1. Increasing the rate of the consuming plants within the feasible region;

2. Storing the excess product in the pipeline;

3. Liquefying the feed to a liquid and storing it in a tank;

4. Flaring the excess supply.

Step 1 and step 3 represent decisions that can be made and step 2 and step

4 represent the consequence of imbalance. The difference required to balance the

network is stored in balance variables. Flaring the product in step 4 is the most

costly option and is only done after all other steps have been considered.

The balancing variables used in this study are listed in Table 4.4.

Table 4.4: Balance variables with cost based on Appendix A

Name Cost UOM

0 Ethylene pipeline delta 0 kPa

1 Sasolburg ethylene flaring R3 049 t/h

2 Secunda ethylene flaring R3 049 t/h

3 C2 pipeline delta 0 kPa

4 Sasolburg ethane flaring R991 t/h

5 Secunda ethane flaring R991 t/h

6 Secunda C2 flaring R200 kNm3/h

4.2.3 Coupling variables

Coupling between time intervals can be done by using inventory variables (Jackson

et al., 2003). Coupling variables used in this study are listed in Table 4.5 and include

storage tanks levels and pipeline pressures. These variables are used to close each

interval and are used as the opening balance for the next interval. The balancing

variables use the inventory in the opening coupling variables to balance the network.

The remainder of the inventory in the coupling variables is carried over to the next

interval.
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Table 4.5: Coupling variables with limits

Name Min Max UOM

0 Sasolburg ethane tank 50 500 t

1 Secunda ethane tank 50 300 t

2 C2 pipeline pressure 100 4 000 kPa

3 Ethylene pipeline pressure 100 5 000 kPa

4 Sasolburg ethylene tank 50 6 000 t

4.3 Objective function

The objective function is used to determine the quality of the solution. It is important

to take care when defining the objective function properly to avoid unacceptable solu-

tions (Talbi, 2009). Objective functions in the process industry are frequently profit-

related which maximises the flow of products or the return on investment (Zyngier

and Kelly, 2012).

The objective function of the problem in this study can be stated as

max Profit = Product profit (4.1)

− Start-up cost (4.2)

− Cost of liquefaction (4.3)

− Cost of vaporisation (4.4)

− Cost of flaring (4.5)

The individual terms are calculated as follows:

Product profit (4.1) = Feed × yield or conversion ×
margin of the product

Start-up cost (4.2) = Cost for starting a plant ×
the number of times started

Cost of liquefaction (4.3) = Cost of liquefying gas ×
amount of product liquefied

Cost of vaporisation (4.4) = Cost of vaporising liquid ×
amount of product vaporised

Cost of flaring (4.5) = Margin of product ×
amount of product flared.
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The product profit (4.1) is calculated for each plant by taking the feed it receives

and multiplying it by the yield or conversion. This will give a production output for

the plant. The profit is calculated by multiplying the output by the margin for the

product produced.

Each time a plant is started, gas is vented or flared and steam and electricity

are used to heat the plant. Similar costs are associated when shutting a plant down.

This can be calculated per plant and combined into one start-up cost for the plant.

Kim and Edgar (2014) included different start-up types such as hot, warm and cold

that will have different costs with ramp up or ramp down rates and times. This will

provide additional accuracy and can be included in future work. This cost of starting

a plant (4.2) can be calculated by multiplying the cost for starting and shutting down

a plant by the number of times a plant was started.

A gas such as ethylene can be stored in high-pressure storage tanks. The gas is

liquefied into the storage tank and vaporised out of the tank. Both processes have

a cost associated, which are the cost of liquefaction multiplied by the amount of

product liquefied into tanks (4.3) and the cost of vaporising stored liquid multiplied

by the amount of product being vaporised (4.4).

To avoid shutting down a producing plant, excess feedstock gas can be burned

or flared. The cost of flaring (4.5) is calculated by the amount of product flared

multiplied by the margin of the product.

4.3.1 Second objective function

An additional objective function; namely, energy consumption, is used for the multi-

objective non-dominated sorting genetic algorithm II (NSGA-II). The energy con-

sumption for a plant consists of electricity, high-pressure steam, low-pressure steam

and fuel gas. The energy consumption deduced from the specific energy consumption

(SEC) value is different at a lower production rate than at a higher production rate

as illustrated in Figure 4.5. The chemical plants in the value chain have different SEC

values and when multiplied by the production rate expresses the energy consumed

for that production rate (Saygin et al., 2009). The total energy consumed can be

calculated by adding up the energy consumed for each individual plant as shown in

(4.6).

min 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 =
∑︁

𝑆𝐸𝐶𝑃
𝑃𝑖,𝑗
× 𝑃𝑖,𝑗 (4.6)
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Figure 4.5: Energy consumed vs production rate for 𝑃 4,2

4.4 Solution evaluation

Every solution that has been generated initially or as part of a search procedure

needs to be evaluated and this is done using an evaluation process. The daily interval

evaluation process is illustrated in Figure 4.6. The opening variables contain the

current state for both the decision variables and coupling variables. The opening

variables ensure that the proposed candidate is anchored to the current state. The

process starts with the complete candidate solution. The first interval from the

completed candidate solution is passed with the opening variables to be evaluated

against the constraints. Handling of a constraint violation was discussed in Section

3.1.5 and Section 4.2.2. Evaluating constraints and balancing the network has been

labelled as the balancing period. The imbalances during the balancing period are

stored in the balancing variables. The objective function discussed previously is used

to calculate the profit. The profit is calculated using both the first interval of the

candidate and the balancing variables containing the amount flared during the first

interval. The coupling variables that are needed for the evaluation of the next interval

are updated. This process is continued for each interval in the candidate solution. At

the end of the evaluation, the profit from each interval is added together and returned

as a total profit for the solution.

A variation of this process is needed for the hourly representation. The hourly

interval evaluation process is illustrated in Figure 4.7. The main difference is the

decoding that is needed before the process can start. Once a complete solution has

been generated, the completed solution is first decoded as illustrated in Figure 4.4.
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After decoding the completed solution, the solution follows the same process as the

daily representation.

Figure 2.4 illustrated a proposed discrete-time single non-uniform grid. This will

be evaluated by joining the hourly interval evaluation process with the daily interval

evaluation process. Figure 4.8 illustrates the combined process needed for the pro-

posed non-uniform grid. The first 72 hours is the critical time in the 14-day horizon.

The complete solution candidate is split between the first 72 hourly intervals and the

11 daily intervals. The hourly interval part of the solution candidate is decoded and

evaluated using the hourly interval evaluation process. Once completed, the decision

variables from the last interval in the hourly interval part of the solution candidate

are passed with the ending coupling variables from the hourly interval evaluation

process to the daily interval evaluation process as opening variables. The daily part

of the solution candidate is evaluated with the opening variables following the daily

interval evaluation process.

Figure 4.6: Evaluation process for the daily interval
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Figure 4.7: Evaluation process for the hourly interval
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4.5 Parallel execution

Parallel models allow for computationally expensive steps to be executed in parallel,

thus speeding up the optimisation process. Two iteration-level models are used in this

study, one that is synchronous and the other asynchronous. Both are used to generate

candidate solutions and evaluate the solutions. Figure 4.9 illustrates the synchronous

iteration-level process for tabu search (TS). The same synchronous process is used

for local search (LS), TS, simulated annealing (SA) and the genetic algorithm (GA)

and the implementation can be described together. A pool of items is created based

on the number of neighbouring solutions needed or the size of the population needed.

The number of cores used by the algorithm can be specified in the code, limited by

the host machine or allowed to use all available cores. Each core is considered to be a

worker and will fetch an item from the pool. The worker will generate the candidate

solution and follow an evaluation process to establish the profit. All the solutions are

returned once all the items in the pool have been completed. The rejected solutions

are ignored and the remaining solutions are sorted from most profitable to least

profitable. The algorithms then continue with execution and the succeeding steps are

then uniquely implemented to each algorithm.

The asynchronous iteration-level model is used for the greedy search (GS) al-

gorithm. The number of items is generated based on the number of neighbouring

solutions needed and placed in a process queue. The worker fetches an item from the

queue, generates a candidate solution and follows the evaluation process to establish

the profit. After completing the evaluation, the profit is returned and the next item

in the queue is selected. As the profit for each candidate solution is returned, the

profit is compared with the current solution profit. If the current solution profit is

greater than the candidate solution, then the candidate solution is ignored and the

algorithm waits for the next candidate solution profit to be returned. If the next

candidate solution profit is larger the current solution profit, the candidate solution

is accepted and the search process is abandoned.

The main difference between the two model implementations is waiting for all the

items to be completed versus waiting until an improved solution is found.
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Figure 4.9: Tabu search (TS) with iteration-level parallel execution
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4.6 Hybrid metaheuristic implementations

In the literature review in Section 3.4 it was mentioned that the combination of

different metaheuristics can improve the solution quality. The GA is used as the base

for the hybridisations and is implemented in three ways.

The first type of hybridisation is intended to improve the final solution of the GA.

The high-level relay hybrid implementation uses the final solution from the GA as

the starting point for the relay algorithms. The exploration of the GA can end in a

good neighbourhood but small exploitations of the neighbourhood might improve the

solution. The relay algorithms local search (LS), greedy search (GS) and tabu search

(TS) can complement the final GA in different ways. Being in a good neighbourhood,

the local search can evaluate all the neighbours and move to the one with the biggest

improvement and repeat the process if necessary. Due to the size of the candidate

solution, that can be too time-consuming and using a parallel model can improve

the speed. A greedy search could perform better by moving to an improved solution

without the evaluation of all the neighbouring solutions. Lastly, a TS algorithm

might find an improved solution in a nearby neighbourhood by escaping the current

neighbourhood.

The second type of hybridisation is by using an LS algorithm for a mutation

operator. The value of the mutation operator is fixed at 0,07 for this study. A

random value is generated and if it is smaller than the value of the mutation operator,

the selected chromosome is passed to the LS algorithm and set as the starting point

for the search. This will introduce an exploited chromosome that can contain elite

features, back into the population.

The grammar for the hybrid algorithms selected for this study is listed below.

• HRH(LTH(GA(LS)) + LS (hom,glo,gen)) (hom,glo,gen) – Genetic algorithm

3.2.4 using local search algorithm 3.2.1 for mutation with a relay to local search

algorithm 3.2.1.

• HRH(LTH(GA(LS)) + TS (hom,glo,gen)) (hom,glo,gen) – Genetic algorithm

3.2.4 using local search algorithm 3.2.1 for mutation with a relay to tabu search

algorithm 3.2.2.

• HRH(LTH(GA(LS)) + GS (hom,glo,gen)) (hom,glo,gen) – Genetic algorithm

3.2.4 using local search algorithm 3.2.1 for mutation with a relay to greedy

search algorithm 3.2.5.

The third type of hybridisation is using the GA to train a multilayer perceptron

(MLP) neural network for the hourly interval. The neural network (NN) then predicts
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values for the feedstock distribution problem and intermediate feedstock distribution

problem illustrated in Figure 1.4. The hybridisation is divided into two parts as

illustrated in Figure 4.10; namely, training and prediction.
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Figure 4.10: Genetic algorithm (GA) integrated with an multilayer perceptron (MLP)

neural network

The training dataset is generated using the final population from GA. Running the

GA once will only provide one population and to have a representative population,
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different scenarios are used in the GA. The changes that can be made to the scenario

include:

• Varying the feedstock rates;

• Varying the plant availability by setting the production rate variable to a value

of 0 for a specified time interval;

• Using different initial plant rates;

• Using different initial coupling variable values.

The parameters for the GA were set to 1000 for the population size and 500

generations. The top 20% from each final population with the coupling and balancing

variables are included in the training dataset.

The training dataset is then prepared for the two problems. First, the multi-

period data is flattened to input values and targets. This is done by taking two

consecutive periods in the data and converting the first period values as the input

values and the second period values as the target or predicted values. Thereafter,

features are selected from the dataset that are relevant to each problem. Custom

features are then constructed from existing data. The features include combinations

of values that are constrained, individual and combined profit contribution, and cost

incurred. Finally, the model is fitted on the training dataset and evaluated on the

test dataset.

The prediction part starts with the opening variables that contain the current

state for both the decision variables and coupling variables. This is passed to the

model for problem one in Figure 1.4; the model predicts values for the first period

and passes the values to be evaluated. The evaluation follows the same process as

described in Section 4.4 omitting the evaluation for problem two in Figure 1.4. After

the evaluation for the first problem, the values for the first model with the balancing

and coupling variables are passed to the second model for problem two. The second

model predicts values for the first period and passes the values for evaluation. The

evaluation is then performed in respect of problem two. Once completed, the process

is repeated for the remaining time periods to provide a completed chromosome.

The crucial component of this hybridisation is the neural network models. The two

models are both MLP neural networks which allow for various configurations. The

list of configurations consists of the number and shape of hidden layers, connectivity

between layers, the activation function, the initialiser, the optimiser and the loss

function. Different configurations were experimented within this study and the final

version is summarised next.
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The two models use five dense hidden layers with the last layer having 13 and

eight output nodes respectively. A mean squared error loss function is used together

with the Adam algorithm as the optimiser. A rectified linear unit (ReLU) activation

function is used, with layer weights being initialised uniformly. The MLP model used

for problem two in Figure 1.4 is illustrated in Figure 4.11.

Figure 4.11: The multilayer perceptron (MLP) model used for problem 2

This concludes the description of the hybrid implementations.

4.7 Chapter summary

The chapter started with detailed descriptions of the three types of variables, de-

cision variables, balanced variables and the coupling variables that are used in this

study. The two representations for daily and hourly intervals are presented with the

proposed encoding scheme, preceded by a discussion of the objective functions. This

was followed by the daily and hourly interval evaluation process needed to evaluate

72

Stellenbosch University https://scholar.sun.ac.za



the quality of a solution and a combined evaluation process was presented for the

proposed discrete-time single non-uniform grid. Finally, a detailed description was

given of the parallel model implementations followed by the hybrid metaheuristics

implementations used in this study. The algorithms form the building blocks of the

decision support system (DSS) and in the succeeding chapter, a discussion of the

design and implementation of the DSS.
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Chapter 5

System design and implementation

Chapter 4 presented the construction and implementation of the algorithms for this

study.

This chapter focuses on the design and implementation of the decision support

system (DSS). Nižetić et al. (2007) describe a DSS as an information system aimed

to support human decision-making. Relevant to this study, a model-driven DSS that

models the decision problem and uses optimisation or analytical tools to suggest

actions is developed. Four components are typically required for a model-driven DSS

namely, a user, a user interface, a model base and a database. In the next section, a

discussion is presented on the proposed model-driven DSS architecture, followed by

an analysis of these components.

5.1 System architecture

When using a DSS, the decision process should at least affect one of the PAIRS (pro-

ductivity, agility, innovation, reputation, satisfaction) in a positive manner (Burstein

and Holsapple, 2008). The PAIRS should be considered when deciding on an ar-

chitecture. An uncomplicated architecture should be easier to maintain, scalable

to accommodate other algorithms and permit segregated development by multiple

developers.

The four components needed for a model-driven DSS can be described as:

1. User – A user or subject matter expert (SME) who uses the system;

2. User interface -– The interaction and communication point of the system be-

tween the user and system;

3. Model base -– Optimisation or analytical tools suggesting decisions in the

decision-making process;
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4. Database – Database management system (DBMS) for data collection, storage

and presentation.

Figure 5.1: Proposed decision support system architecture

A proposed decision support system architecture is presented in Figure 5.1. The

architecture diagram is presented using the object-process methodology (OPM) mod-

elling paradigm. The modelling paradigm is described by the international organiza-

tion for standardization (ISO) in ISO/PAS 19450. This standard enables practition-

ers and vendors to utilise the concepts, semantics and syntax for automation systems

and integrations (ISO, 2015). Two modalities can be produced simultaneously, the

object-process diagram (OPD) in Figure 5.1 and the describing text generated us-

ing object-process language (OPL) from the OPD. The description of the system

architecture is as follows:

Website presenting requires Computer or Mobile device.
Website presenting yields Website.
Storage and retrieval process affects Algorithms repository, Website, and Database.
Changes adding consumes Git version repository.
Changes adding yields Website and Algorithms repository.

The different components in a model-driven DSS and the proposed DSS architec-

ture can be described in more detail. The user is an SME that will interact with a

computer or a mobile device via the user interface. The interactions that the user

can have are to change the variables, start the algorithms with specific values and
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read the suggestions provided by the DSS after completing the execution. The user

interactions will be done on a web-based user interface. The website will present

data from the database to allow for the interactions by the user. The database acts

as the intermediary between the model base and the user interface. The data in the

database can be grouped into two sections, namely the user interface data and the

model base data. The model base contains all the algorithms in the system. The

model base continuously checks the database to see if jobs or optimisation tasks have

been scheduled for execution. The model base communicates with the database us-

ing an application programming interface (API). The model base fetches the job data

needed for execution from the database, and on completing the job the model base

returns the results to the database. The code used for the user interface and the

model base is updated from a git repository. The git repository keeps track of all

the changes made and can be integrated to allow for automatic deployment. A git

repository has been included in the architecture to allow for scaling the system. The

git repository can be used by one developer and one production environment as has

been done in this study but in many scenarios, more than one developer can work

on the code and they can work over multiple environments. The environments can

include development, testing and production or live environment.

Separating the user interface and the model base provides additional options. For

smaller deployments or a less processing-intensive model base, the model base can

be deployed on the same server as the user interface. For a more computationally

expensive model base, the model base could be hosted on a different high-performance

server or deployed over a high-performance computing (HPC) cluster.

A second advantage of separating the user interface and the model base is to

allow for different types of developers. A common requirement in large organisations

is that a specific DBMS must be used and the user interface must be developed in a

certain language or included in a system currently in use. The user interface can be

developed by a developer without any background knowledge of the problems being

addressed while the model base can be developed by engineers, operations researchers

or statisticians. The model base developers can focus on the algorithms and deploy

them to the model base, leveraging the existing functionality in the user interface.

Using an API to communicate with the database enables the model base developers

to use any language or solver that is needed for the problem.

For this study, all the components were developed according to the proposed

architecture. The model base was deployed and used on the same server, a notebook

and an HPC cluster. In the following sections, the user interface, database and model

base will be discussed.
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5.2 System user interface

The user interface allows the SME to interact with the system. The interaction is

focused around the jobs or optimisation tasks that can be performed on the DSS.

The requirements for the user interface are:

• Web-based – Accessible with any modern internet browser.

• Responsive design – Adjust the content for a computer screen size or mobile

screen size.

• Database connectivity – Connect to the database on the same server or different

server.

• Graph visualisation capability – Render results data from the database in a

graph.

The architecture allows for any user interface that meets the previously stated

requirements. Table 5.1 lists the technology stack that was used in this study.

Table 5.1: Technology stack used for the user interface

Client-side framework Bootstrap – HTML, CSS and JavaScript

Client-side charting library Plotly – JavaScript

Server-side PHP

Webserver NGINX

Operating system Ubuntu 18.04 LTS

Figure 5.2 indicates the navigation options available to the SME. The main ac-

tivities the SME will perform on the system include maintaining variables, managing

jobs and reading the results for a job. The SME will update the variables to reflect

the current scenario, create a job for the model base and wait for the results. Once

the model base completes the job, the results will be available on the user interface

for the SME to read. Each of the activities will be discussed next.
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Figure 5.2: Decision support system navigation options

5.2.1 Maintaining variables

Three types of variables are used in the decision support system namely, decision

variables, coupling variables and balancing variables. Figure 5.3 illustrates an ex-

tracted view that an SME will see in the system for decision variables. For the study,

the names have been changed to match the variable names used in previous chapters

and values have been adjusted according to the method described in Chapter 4.

Decision variables can be changed to different values for different scenarios. The

downtime button allows downtime to be added to the decision variable. The downtime

system view is displayed in Figure 5.4 and both planned maintenance or unexpected

downtime for the decision variable are added on this display.

The coupling and balancing variables can be updated in the same way as illus-

trated in Figure 5.3 for decision variables.
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Figure 5.3: Decision variable extract from the DSS

Figure 5.4: Downtime view for one decision variable

5.2.2 Managing jobs

Creating a job for the model base is illustrated in Figure 5.5. The first option the

SME can select from is the problem. Currently, the only option is the Feedstock

distribution. The second option that the SME can select is the planning horizon.

Two horizons are available for the feedstock distribution problem, namely 14 days

with an hourly interval and 90 days with a daily interval. The third option shows

the algorithms available in the model base for the selected problem and the selected

horizon. The last two options are the starting date and the starting hour for the

model. It is possible to add a historical starting date. This is beneficial when trying

to find alternative operating philosophies for events that occurred in the past. The

start date and time are important for the downtime that has been added. Specific

dates are used for downtime and the model requires a relative starting point for the

downtime in the system. After submitting the job, it is added to the system.
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A list of jobs in the system can be seen in Figure 5.6. The list includes the 20

algorithms that have been developed for the study; 10 for the hourly interval and the

other 10 for the daily interval. The list has been edited to include the examples in

one view which will now be discussed. The SME can find more information on a job

by using the Detail button.

Job IDs 897, 898 and 899 have been added to the model base and are currently

in disabled status. These jobs can be queued for execution by pressing the Queue

button. The Edit button allows the starting variables to be changed to reflect the

current scenario. The starting variables include feedstock entering the C2 value chain,

the current values for each of the decision variables and the current coupling vari-

ables. Queuing a job without editing the starting variables will queue the job with

previously used starting variables. Once the queue button is pressed, the scenario

data is generated for the job.

Job 894, 895 and 896 have been queued for execution and will be executed at

the next available opportunity. Any job in the queue can be cancelled by pressing

the Cancel button. The job will then return to Disabled status and can be edited

and queued again. The configuration parameters for each algorithm are seen in the

comment column.

Job 892 and 893 are currently being executed and indicate the status as In

Progress. The comment field includes the percentage completed and the JOBID

on the HPC. The algorithms check in with the website after each iteration to update

the progress. The JOBID is useful for fault-finding when looking for the logs on the

HPC.

Job 884 has been found to be infeasible.

Job 885 to 891 have been completed. The Report button will take the SME to

the report for the job that will be discussed next.
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Figure 5.5: Add a job for the model base to execute

Figure 5.6: List of jobs in the system

5.2.3 Reading results

The SME can read the results from the model base on a report similar to that shown

Figure 5.7. For this study, two reports were developed to indicate how feedstock

should be distributed every hour for the next 14 days and every day for the next 90

days. The report includes a title, navigation buttons to previous reports in the same

category, and a job detail summary and graphs. A Show/Hide Details button on
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the report makes additional information available such as the variable configurations,

downtime and starting variables. The job detail summary shows the Algorithm name,

Profit achieved, Run time and Comment field.

Two important fields are the profit and run time. The profit is the fitness of the

solution that the algorithm achieved, while the run time indicates the execution time

of the job by the algorithm. These two values will be discussed further in the next

chapter.

The Graphs section includes multiple graphs to provide insight to the solution

generated by the algorithm. The graphs include consumer production rates, flaring

on the C2 value chain, pipeline pressures, Secunda ethane producers production rates

and Sasolburg ethane producers production rates. The consumer production rate

graph seen in Figure 5.7 will be discussed. The graph shows an hourly operating rate

for each consumer plant. The x-axis indicates the time horizon of 336 hours, and the

y-axis indicates the production rate of the consumer plants in t/h. On the graphs it

can be seen at hour 200, plant 𝑃 3,2 must produce at 17 t/h and 𝑃 5,2 at 13 t/h.

The architecture allows for different graphs to be developed depending on the

data available in the database. In the next section, the database will be discussed.

Figure 5.7: A job report in the system
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5.3 System database

The database stores the algorithm configurations, variables, scenarios, results and

data needed for the user interface. The database acts as a storage interface between

the model base and the user interface. The technology stack used for the database is

listed in Table 5.2. The database can be hosted on the same server as the website or

on a separate server. The architecture can accommodate the use of existing database

environments for a database. An extended entity-relationship diagram (EERD) il-

lustrates the database tables and relationships between the tables. The EERD for

the database is shown in Figure 5.8 and a description for each data table is listed in

Table 5.3.

Table 5.2: Technology stack used for the database

Database PostgreSQL

Operating system Ubuntu 18.04 LTS

Table 5.3: Descriptions for the tables in the EERD

system Status of the system and controllers registered on the system

scenario Starting variables generated for each job

balancing variables List of the balancing variables used in the system

coupling variables List of coupling variables used in the system

decision variables List of decision variables used in the system

downtime Downtime associated with each decision variable

jobs Jobs listed for the model base to execute

algorithms List of algorithms available in the system with filenames

results The results for each job
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Figure 5.8: Entity relationship diagram for the DSS

5.4 System model base

The model base includes all the algorithms available in the system. The technology

stack used for the model base is listed in Table 5.4. The model base is discussed by

referring to the following components: input data, models, output data and controller.

5.4.1 Model base input data

The models or algorithms require a set of input data to execute a job in the queue.

The following input data is used in the model base:

• Algorithm configuration – Each algorithm requires different parameters such as

population size, number of generations, tabu list size, etc;
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• Downtime – Downtime of decision variables such as a plant or tank will be from

the date selected for the length of the horizon;

• Scenario – Starting values for decision, coupling, balancing variables and the

feedstock that is available to distribute over the length of the horizon;

• Configuration files for variables – Files containing the minimum, maximum,

margin, cost and yield for the decision, coupling and balancing variables that

are used in the algorithms, the constraints and objective function.

5.4.2 Model base models

The model base for this study includes the 20 algorithms listed in Table 4.1. The

architecture allows the model base to include other algorithms, optimisers or solvers

that can fit into the method of execution. The algorithms with pseudocode were

discussed in Chapter 3 and the model construction with implementation in Chapter

4. The algorithms will start with the configuration received as input data from

the controller. The algorithms will read all the input data and converts it into the

datasets needed. The algorithms will execute, and on completion, pass the output

data to the controller.

5.4.3 Model base output data

The output data received from the algorithm is passed to the controller and contain

the following data:

• Job identifier – Unique job number in the system;

• Profit and energy consumption (when applicable) – Result from the objective

functions;

• Suggested solution – Solution for each interval in the horizon and the step

encoded solution for the hourly time interval;

– The solution length for the 90-day daily time interval is 1 980 variables

long;

– The solution length for the 14-day hourly time interval is 7 392 variables

long;

– The step-encoded solution length for the 14-day hourly time interval is

7 392 variables long;
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Table 5.4: Technology stack used for the model base

Machine learning library TensorFlow and Keras

Programming language Python 3

Operating system development environment MacOS

Operating system server Ubuntu 18.04 LTS

Operating system HPC Red Hat 4

• Testing identifier – Testing number assigned to job during specific tests execu-

tion for this study;

• Coupling variables – Coupling variables for each interval in the horizon;

• Balancing variables – Balancing variables for each interval in the horizon;

• System identifier – Server name or node name.

5.4.4 Model base controller

The controller continuously monitors the database for jobs in the queue using the API.

Once a job is added to the queue, the controller fetches the input data and stores it

in JavaScript Object Notation (JSON) format files. The model controller starts the

algorithm associated with the job. Once the algorithm has completed the execution,

the controller submits the output data from the algorithms to the database using

the API. Each model base deployment requires a controller. The controller can be

limited to a specific algorithm or problem. This allows for one controller or server to

be dedicated to an algorithm or problem that should always be ready for execution. A

controller that is open for all jobs will execute jobs in a sequential order as processing

capacity frees up.

5.5 Chapter summary

A decision support system architecture was presented in this chapter. The different

components were then discussed to provide additional detail on the design and im-

plementation. The presented architecture provides flexibility for selecting different

technologies for different requirements, scalability for different deployment sizes and

can accommodate additional algorithms, optimisers and solvers. In the next chapter,

the verification and evaluation of the decision support system will be discussed.
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Chapter 6

Verification and evaluation

Chapter 5 presented a decision support system (DSS) design and discussed the

implementation of the DSS. This chapter presents the verification and evaluation of

the DSS. The chapter starts by specifying the tests that are needed to verify the code

used in the model base. The performance of the algorithms is then compared with

each other, followed by an analysis of the parameters used with the best performing

algorithms. Finally, an evaluation of the DSS is presented leading up to an experiment

based on the recommendation of the subject matter experts.

6.1 Code verification

Testing code identifies failures and errors within it. This is done by doing unit and

integration testing. Unit testing checks that a specific response is received from a

piece of code to a set of inputs. Most modern programming languages have built-in

unit-testing or support a unit testing library.

Integration testing checks that different components work with each other and

can include integration with external systems.

For this study, unit testing was done on the functions and integration testing

on the application programming interface (API). Although all known errors have

been addressed, it is possible that latent errors may still exist. A test runner exe-

cutes a test group or test case and provides a unit test report. Test fixtures contain

test data that is needed in a test case. Figure 6.1 illustrates the unit test report

with the major functions that are used in the model base and Figure 6.2 shows the

project structure with test scripts for the model base. The report indicates that

all tests have passed. It is possible for a test to fail or to give an error. A fail-

ure indicates that the expected result was not received from the test and an error

indicates that an error in the code occurred before doing the test. The details of
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two test groups can be seen on the unit test report. The project structure is useful

to understand the naming convention used in the unit test report. The test group

project.tests.unit.test functions.generate random candidate is described in Table 6.1

and project.tests.integration.test api get.api get job in Table 6.2.

Table 6.1: Generate random candidate unit test

Test group project.tests.unit.test functions.generate random candidate

Inputs passed A multi-dimensional list containing all the options for each

decision variable for the complete horizon.

Function A random item is selected between the minimum and maxi-

mum for each interval in the multidimensional list and added

to a new list named candidate. The candidate is the output

of the function.

Test case 1 Is the candidate length equal to 1 980 for daily, the interval

7 392 for the hourly interval and 1 826 for the combined inter-

val?

Test case 2 Are all the items in the candidate found in the multidimen-

sional list for the correct interval?

Table 6.2: Fetch job integration test

Test group project.tests.integration.test api get.api get job

Inputs passed None.

Function Request a job from the API that has been queued in the

database.

Test case 1 Has a job identifier been returned? The expected response is

an integer for job identifier or 0 for no jobs.

Unit and integration testing checks for errors in code but does not report the

performance of the algorithms. In the next section, a discussion on testing the per-

formance of the algorithms is presented.
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Figure 6.2: Project file structure
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6.2 Algorithm testing

In Chapter 1, the following five questions were listed on the operating philosophy of

the C2 value chain:

1. What is the most profitable schedule for the next 90 days?

2. What is the most profitable schedule for the next 14 days?

3. How should the feedstock be distributed in the next 90 days when a unit has

unplanned downtime?

4. How should the feedstock be distributed in the next 14 days when a unit has

unplanned downtime?

5. What is the trade-off between the profitability of the schedule and energy con-

sumption?

To test the algorithms, they are executed to find answers to these questions. The

tests are grouped into the three categories; namely, the most profitable schedule, the

unplanned downtime schedule and the trade-off between profitability and energy con-

sumption. In the following two sections, these categories will be discussed, followed

by a conclusion on the testing of the algorithms.

6.2.1 Testing for the most profitable schedule

To test the algorithms in this category, two fixed scenarios were used that will allow

for the comparison of algorithms.

The differences between the two scenarios were the time interval, horizon length

and different starting values for the decision variables. The first scenario included a

90-day horizon with a daily interval and the second included a 14-day horizon with

an hourly interval. Both scenarios used the same starting date, the same feedstock

that is available for distribution over the length of the horizon, the same downtime

and the same starting values for the coupling and balancing variables.

Two dimensions can be used to compare the performance of the algorithms. The

first dimension is the algorithm that achieved the highest profit and the second is the

run time of the algorithm.
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6.2.1.1 90-day horizon with daily interval results

Table 6.3 lists the top 30 results for the 90-day horizon with daily intervals. The

table includes the results of algorithms that were executed with different parameters.

The performance using different parameters will be discussed later in the section.

For the first performance dimension on profit, the hybrid algorithms outperformed

the other algorithms consistently on profit but had the longest run times. The per-

formance of the genetic algorithm (GA) varied widely depending on the parameters

used. The remaining algorithms all performed fairly. Interestingly, the results num-

bered 19 and 20 from the greedy search (GS) and local search (LS) generated the

same solution. Further investigation into the execution path revealed that the first

improvement in the first neighbourhood was the better solution which directed the

search for both algorithms into the same neighbourhood.

For the second dimension on run time, the GA consistently completed the exe-

cution in the shortest time. Nevertheless, the run time is not critical for the 90-day

horizon with a daily interval.

92

Stellenbosch University https://scholar.sun.ac.za



Table 6.3: Top 30 daily interval solutions

Profit Run time Algorithm name

1 R1 415 541 940 12h, 51m, 11s Genetic Algorithm with Local Search

2 R1 410 779 580 4h, 45m, 31s Genetic Algorithm with Tabu

3 R1 394 279 960 10h, 23m, 33s Genetic Algorithm with Greedy Search

4 R1 389 168 880 15h, 34m, 8s Genetic Algorithm with Tabu

5 R1 384 988 520 4h, 14m, 20s Genetic Algorithm

6 R1 378 777 340 13h, 46m, 13s Genetic Algorithm with Local Search

7 R1 348 584 420 15h, 20m, 27s Genetic Algorithm

8 R1 335 219 340 0h, 36m, 54s Genetic Algorithm

9 R1 332 734 000 0h, 13m, 43s Genetic Algorithm

10 R1 329 543 823 0h, 10m, 26s Genetic Algorithm

11 R1 303 820 565 1h, 47m, 35s Genetic Algorithm

12 R1 298 072 880 1h, 57m, 13s Genetic Algorithm

13 R1 278 366 305 1h, 14m, 15s Genetic Algorithm

14 R1 232 988 050 0h, 25m, 20s Genetic Algorithm

15 R1 229 056 565 0h, 31m, 53s Genetic Algorithm

16 R1 224 520 853 0h, 47m, 57s Simulated Annealing

17 R1 213 248 360 3h, 31m, 20s Genetic Algorithm

18 R1 211 576 590 0h, 22m, 45s Simulated Annealing

19 R1 204 511 760 0h, 31m, 41s Greedy Search

20 R1 204 511 760 3h, 29m, 15s Local Search

21 R1 187 377 800 0h, 10m, 30s Genetic Algorithm

22 R1 160 720 853 0h, 22m, 1s Genetic Algorithm

23 R1 134 057 525 0h, 24m, 5s Genetic Algorithm

24 R1 118 841 707 0h, 8m, 50s Genetic Algorithm

25 R1 116 317 500 2h, 26m, 59s Tabu Search

26 R1 115 859 343 0h, 17m, 19s Genetic Algorithm

27 R1 084 935 935 0h, 14m, 56s Genetic Algorithm

28 R1 078 870 075 0h, 7m, 5s Genetic Algorithm

29 R1 034 769 583 0h, 16m, 40s Genetic Algorithm

30 R1 020 576 590 0h, 36m, 24s Genetic Algorithm

A selection of decision variable values for the most profitable schedule for the daily

interval scenario is illustrated by Figures 6.3, 6.4, 6.5 and 6.6. Figure 6.3 illustrates

the production rate for the consumer units, three of which are kept at a constant rate

for 90 days after adjusting from the starting variables on day zero. 𝑃 5,2 is running

on day zero and is shut down on day one. The unit is restarted on day 79 with a
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fluctuating production rate until day 87. The low ethylene pipeline pressure shown

in Figure 6.4 prevents additional units from starting during this interval and 𝑃 5,2 is

started for a short period of time when sufficient line pressure is available. Figures

6.5 and 6.6 show the ethylene recovery units’ (𝑃 1,1 and 𝑃 1,2) rates. The recovered

ethylene is passed to the ethylene pipeline and the ethane to the ethane cracking

units, each of which consists of a separation unit and furnaces.

Figure 6.3: Consumer units schedule for the most profitable daily interval scenario

Figure 6.4: Pipeline pressure for the most profitable daily interval scenario
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Figure 6.5: Secunda ethane units schedule for the most profitable daily interval sce-

nario

Figure 6.6: Sasolburg ethane units schedule for the most profitable daily interval

scenario

6.2.1.2 14-day horizon with hourly interval results

Table 6.4 lists the top 30 results for the 14-day horizon with hourly intervals. The

table includes the results of algorithms that were executed with different parameters.

The performance using different parameters will be discussed later in the section.

For the first performance dimension on profit, the highest profit was achieved by

the simulated annealing (SA) algorithm. The hybrid algorithms provided good results

with reasonable run times. As highlighted in the problem description, an upset in the

value chain requires time-sensitive decision-making and any decision support system
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should propose a solution within two hours and preferably in less than an hour. Table

6.5 lists the 19 results from the top 30 that were completed within two hours. The

hybrid algorithms and the GA managed to complete within the allocated time. Table

6.6 lists the algorithms that could not finish within two hours.

All the SA algorithm results exceeded the two hours allowed for execution. The

LS and GS algorithms exceeded the allocated two hours but ranked in the top results

when paired as a hybrid with the GA. The tabu search (TS) exceeded the two hours

but as a hybrid with the GA managed to complete some of the jobs with specific

parameters. One GA with a GS algorithm did not complete within two hours due to

the parameter values used with the GA.

The 14-day horizon with hourly intervals should provide decision support during

the time-sensitive decision interval.
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Table 6.4: Top 30 hourly interval solutions

Profit Run time Algorithm name

1 R179 620 070 75h, 35m, 51s Simulated Annealing

2 R177 274 788 53h, 46m, 28s Genetic Algorithm with Greedy Search

3 R176 842 443 1h, 21m, 59s Genetic Algorithm with Local Search

4 R176 600 338 2h, 17m, 21s Genetic Algorithm with Tabu

5 R176 492 128 2h, 13m, 52s Genetic Algorithm with Tabu

6 R175 542 540 2h, 16m, 2s Genetic Algorithm with Tabu

7 R173 436 175 0h, 49m, 25s Genetic Algorithm with Greedy Search

8 R172 622 533 0h, 36m, 44s Genetic Algorithm with Greedy Search

9 R168 391 905 2h, 15m, 47s Genetic Algorithm with Tabu

10 R167 192 623 0h, 5m, 29s Genetic Algorithm

11 R166 871 828 0h, 50m, 35s Genetic Algorithm with Greedy Search

12 R165 333 305 10h, 3m, 24s Tabu Search

13 R164 118 015 0h, 30m, 37s Genetic Algorithm with Tabu

14 R163 598 853 1h, 11m, 35s Genetic Algorithm

15 R162 879 413 0h, 31m, 56s Genetic Algorithm with Tabu

16 R162 076 055 0h, 2m, 11s Genetic Algorithm

17 R161 754 330 1h, 9m, 58s Genetic Algorithm

18 R161 496 950 1h, 16m, 50s Genetic Algorithm

19 R161 492 853 0h, 31m, 24s Genetic Algorithm with Tabu

20 R159 820 835 7h, 59m, 7s Simulated Annealing

21 R159 510 625 1h, 10m, 3s Genetic Algorithm

22 R159 429 568 1h, 12m, 26s Genetic Algorithm

23 R159 091 690 1h, 15m, 8s Genetic Algorithm

24 R158 356 993 1h, 14m, 42s Genetic Algorithm

25 R156 426 428 0h, 5m, 28s Genetic Algorithm

26 R151 928 318 1h, 14m, 54s Genetic Algorithm

27 R147 795 165 10h, 3m, 20s Local Search

28 R144 261 008 3h, 58m, 4s Greedy Search

29 R142 854 915 0h, 30m, 12s Genetic Algorithm with Tabu

30 R142 748 318 2h, 56m, 44s Simulated Annealing
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Table 6.5: The hourly interval solutions obtained within two hours of execution

Profit Run time Algorithm name

1 R176 842 443 1h, 21m, 59s Genetic Algorithm with Local Search

2 R173 436 175 0h, 49m, 25s Genetic Algorithm with Greedy Search

3 R172 622 533 0h, 36m, 44s Genetic Algorithm with Greedy Search

4 R167 192 623 0h, 5m, 29s Genetic Algorithm

5 R166 871 828 0h, 50m, 35s Genetic Algorithm with Greedy Search

6 R164 118 015 0h, 30m, 37s Genetic Algorithm with Tabu

7 R163 598 853 1h, 11m, 35s Genetic Algorithm

8 R162 879 413 0h, 31m, 56s Genetic Algorithm with Tabu

9 R162 076 055 0h, 2m, 11s Genetic Algorithm

10 R161 754 330 1h, 9m, 58s Genetic Algorithm

11 R161 496 950 1h, 16m, 50s Genetic Algorithm

12 R161 492 853 0h, 31m, 24s Genetic Algorithm with Tabu

13 R159 510 625 1h, 10m, 3s Genetic Algorithm

14 R159 429 568 1h, 12m, 26s Genetic Algorithm

15 R159 091 690 1h, 15m, 8s Genetic Algorithm

16 R158 356 993 1h, 14m, 42s Genetic Algorithm

17 R156 426 428 0h, 5m, 28s Genetic Algorithm

18 R151 928 318 1h, 14m, 54s Genetic Algorithm

19 R142 854 915 0h, 30m, 12s Genetic Algorithm with Tabu

Table 6.6: Hourly interval solutions exceeding two hours of execution

Profit Run time Algorithm name

1 R179 620 070 75h, 35m, 51s Simulated Annealing

2 R177 274 788 53h, 46m, 28s Genetic Algorithm with Greedy Search

3 R176 600 338 2h, 17m, 21s Genetic Algorithm with Tabu

4 R176 492 128 2h, 13m, 52s Genetic Algorithm with Tabu

5 R175 542 540 2h, 16m, 2s Genetic Algorithm with Tabu

6 R168 391 905 2h, 15m, 47s Genetic Algorithm with Tabu

7 R165 333 305 10h, 3m, 24s Tabu Search

8 R159 820 835 7h, 59m, 7s Simulated Annealing

9 R147 795 165 10h, 3m, 20s Local Search

10 R144 261 008 3h, 58m, 4s Greedy Search

11 R142 748 318 2h, 56m, 44s Simulated Annealing

A selection of decision variables for the most profitable schedule for the hourly
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interval scenario is illustrated by Figures 6.7, 6.8, 6.9 and 6.10. Figure 6.7 illustrates

the production rate for the consumer units. Three of the units are kept at a constant

rate most of the time for 14 days. It can be seen that on hour 34 𝑃 3,2 is increased

to the maximum operating rate. Figure 6.8 shows that with the current ethylene

consumers, the ethylene pipeline pressure continues to increase minimally. Figure 6.9

and 6.10 show the rates for the ethylene recovery units, ethane separation units and

furnaces.

Figure 6.7: Consumer units schedule for the most profitable hourly interval scenario

Figure 6.8: Pipeline pressure for the most profitable hourly interval scenario
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Figure 6.9: Secunda ethane units schedule for the most profitable hourly interval

scenario

Figure 6.10: Sasolburg ethane units schedule for the most profitable hourly interval

scenario

6.2.1.3 Hybrid GA with a multilayer perceptron (MLP) neural network

implementation for the 14-day horizon with hourly intervals

Due to the time-sensitive decision-making required for hourly interval, the literature

indicated that the neural network’s run time is relatively low as most of the time
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is spent during the training phase. Using a GA to train an MLP concurs with the

time-sensitive decision-making requirement.

The hybridisation was approached with different views and configurations. Using

one MLP neural network for all the decision variables for the complete time inter-

val did not predict feasible solutions. This could be due to the sequential nature

of the problem and a sliding window method could be applied to sequential super-

vised learning (Dietterich, 2002). This is similar to the moving-window time-based

decomposition that can cause infeasible or suboptimal results due to the lack of

forward-looking over all the intervals (Harjunkoski et al., 2014).

A few variations were tested using this method:

1. One MLP neural network per decision variable for each time interval;

2. One MLP neural network for all the decision variables per time interval;

3. One MLP neural network per problem for each time interval.

The last-mentioned variation was the only method that predicted solutions, pro-

viding impractical suboptimal results in an unconstrained scenario within a short run

time. Two problems remained with this method. First, the model does not consider

the historical states and would start or stop plants at every interval. This behaviour is

penalised during execution in the other algorithms in this study to prevent impractical

schedules. The second problem is that when the environment becomes constrained,

the model predicts infeasible solutions that violate constraints.

To possibly consider the historical states, lag features were introduced to include

an additional time interval. This did not resolve the problem and a custom loss

function was attempted to introduce a penalty similar to that in the other algorithms.

To address the second problem, downstream decision variables were included as

features when predicting the upstream variables and vice versa, to reduce the con-

straint violations when the environment is constrained. This proved to be inconclu-

sive.

The results are summarised in Table 6.7; albeit these are impractical and do not

match the results achieved by the other algorithms. The short run times highlight

the possible advantage of this type of hybridisation.

Despite the shortcoming of not producing adequate results, the use of MLP, as a

possible method, should not be ruled out in its entirety. The problem in this study is

specific and has not been addressed before. The immense field of machine learning is

still currently being actively researched and a different formulation or configuration

could resolve the problems faced in this study. Other classes of neural networks such
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as long short-term memory (LSTM), graph neural network (GNN) or a different field

of machine learning, reinforcement learning (RL) could also be explored.

Table 6.7: Hybrid GA with an MLP neural network results

Profit Run time

1 R11 552 380 27s

2 R7 013 945 27s

3 R2 062 925 27s

6.2.1.4 14-day horizon with combined interval results

Figure 2.4 illustrated the discrete-time single non-uniform grid proposed to reduce

the problem size by combining a 72-hour grid and an 11-day grid. The GA was

used and a combined solution evaluation illustrated in Figure 4.8 was used. 61 tests

were conducted using different parameters that mainly resulted in infeasible solutions.

Table 6.8 lists the scheduling jobs that were completed.

Figure 6.11 shows the consumer units combined time intervals schedule and when

comparing the combined interval results with the results from the 14-day horizon

with hourly intervals, it is clear that the results are inferior.

The researcher surmises that there is an incompatibility when combining the two

grids due to the first grid using this specific encoding scheme and the other grid

having no encoding scheme. The encoding scheme naturally repairs the violations

in the solution over time and continues to consider infeasible solutions during the

search process. Developing a similar encoding scheme for the daily interval could

address the problem. This would require redeveloping most of the functions used in

the 90-day horizon with a daily interval to work with the encoding scheme.

Table 6.8: Combined intervals results

Profit Run time Algorithm name

1 R84 613 535 0h, 8m, 14s Genetic Algorithm

2 R60 038 977 0h, 5m, 45s Genetic Algorithm

3 R80 697 861 0h, 5m, 28s Genetic Algorithm

4 R69 306 842 0h, 5m, 7s Genetic Algorithm

5 R84 837 160 0h, 10m, 18s Genetic Algorithm
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Figure 6.11: Consumer units schedule for the most profitable combined intervals

scenario

6.2.2 Testing for the unplanned downtime schedule

To test the algorithms in this category, a consumer unit downtime event was manually

added to the system and tested with the same scenario as in the first category to allow

the algorithm to recommend how feedstock should be distributed.

6.2.2.1 Distribution of feedstock with unplanned downtime on the daily

interval

In this scenario, 𝑃 4,2 had a downtime event for 16 days that prevented the unit from

starting. Figure 6.12 indicates the different rates of the consumer units and Figure

6.13 the flaring. The algorithm did not find a more profitable schedule that did not

require flaring. Ethane flaring is preferred over ethylene flaring due to the lower

cost of ethane. Once 𝑃 4,2 started, the remainder of the results settled into a stable

operating range.
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Figure 6.12: Feedstock distribution with consumer unit downtime event for the daily

interval

Figure 6.13: Flaring with consumer unit downtime event for the daily interval

6.2.2.2 Distribution of feedstock with unplanned downtime on the hourly

interval

In this scenario, 𝑃 3,2 had a downtime event for 85 hours manually added to the system

that prevented the plant from starting. Figure 6.14 indicates the different rates of the

consumer units and Figure 6.15 indicates the ethylene pipeline pressure over the 336

hours. The ethylene line pressure increases at a fast rate until 𝑃 3,2 starts and is then

stable until 𝑃 4,2 starts. This triggers a decrease in the ethylene pipeline until the end

of the interval. A subject matter expert (SME) noted that it is not uncommon for

models to end the horizon in an unsustainable way.
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Figure 6.14: Feedstock distribution with consumer unit downtime event for the hourly

interval

Figure 6.15: Ethylene pipeline pressure for the hourly interval downtime event

6.2.3 Testing the trade-off between profitability and energy

consumption

To test the non-dominated sorting genetic algorithm II (NSGA-II) in this category,

100 generations were used in both the daily and hourly interval. Figure 6.16 illustrates

the formulation of the Pareto set during the progress of the search for the daily interval

and Figure 6.17 for the hourly interval. It can be seen that both intervals converge

to form a Pareto set.
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Figure 6.16: Daily interval Pareto set achieved with different generations
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Figure 6.17: Hourly interval Pareto set achieved with different generations

Figure 6.18 and Figure 6.19 illustrate the final generation which contains both

the Pareto set and the dominated solutions on multiple frontiers. As an exploratory

comparison, the most profitable solution on the Pareto front achieved R1 342 541 860

for the daily interval and R172 431 806 for the hourly. These two solutions would rank

eight and ninth respectively on Table 6.3 and Table 6.4 listing the top 30 results.
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Figure 6.18: Daily interval final generation
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Figure 6.19: Hourly interval final generation
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Several performance indicators have been developed to assess the solution of a

multi-objective optimisation problem (MOOP). Okabe et al. (2003) did a critical

survey of performance indicators and from the empirical evaluations found no single

existing performance indicator that can describe all the aspects of the solution quality.

Talbi (2009) classifies the indicators as convergence-based indicators, diversity-based

indicators and hybrid indicators, while recommending that one indicator from each

class should be used to evaluate an MOOP.

A review of 57 performance indicators gave prominence to the hyper volume

(three objectives) and hyper area difference (two objectives) indicator for the good

mathematical properties in dominance and distribution (Audet et al., 2021). They

state that the hyper volume and hyper area can be considered the most relevant

performance indicator for an MOOP.

The binary counterpart of the hyper volume performance indicator, the hyper

area difference, was used to evaluate the performance of the solution. The hyper

area difference can be used when the theoretical Pareto set is not known and it is the

approximated size of the dominated area, circumventing the objective spaces between

two adjacent points and the reference point. The hyper area difference is illustrated

in green in Figure 6.20.

F (x)

F
(y
)

r

Figure 6.20: Example of the hyper area difference performance indicator

To examine the performance of the algorithm using the hyper area difference

performance indicator, 100 replications were performed for each time interval. The

mean (�̄�) and standard deviation (𝑆) for the samples can be calculated as follows:
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�̄� =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 =
𝑥1 + 𝑥2 + · · ·+ 𝑥𝑛

𝑛
(6.1)

𝑆 =

√︃∑︀𝑛
𝑖=1(𝑥𝑖 − �̄�)2

𝑛− 1
(6.2)

The margin of error or half-width at 95% confidence using the t-distribution with

𝑛− 1 degrees of freedom can be stated for both time intervals as:

ℎ = 𝑡𝑛−1;1−𝛼/2
𝑆√
𝑥

(6.3)

�̄�± 1, 9842𝑆�̄� (6.4)

The standard error for the sample mean can be expressed as:

𝑆�̄� =
𝑆√
𝑥

(6.5)

The confidence interval has been calculated and the results are listed in Table 6.9. For

the daily interval, the researcher is 95% confident that the hyper area will be between

4,620× 1016 and 4,891× 1016 and for the hourly interval, between 1,605× 1015 and

1,630× 1015.

Table 6.9: Confidence interval for the two time intervals

Daily interval Hourly interval

Sample size (𝑛) 100 100

Degrees of freedom (𝑑𝑓) 99 99

Confidence level 95% 95%

Mean (�̄�) 4,756× 1016 1,618× 1015

Standard deviation (𝑆) 6,817× 1015 6,445× 1013

Margin of error �̄�± 1, 9842𝑆�̄� �̄�± 1, 9842𝑆�̄�

Standard error (𝑆�̄�) 6,817× 1014 6,445× 1012

Lower CI 4,620× 1016 1,605× 1015

Upper CI 4,891× 1016 1,630× 1015
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6.2.4 Conclusion on algorithm testing

From the above tests, it is possible to find profitable schedules and the researcher ac-

cepts that the results are near-optimal. As seen in the unplanned downtime test cat-

egory, a change in unit availabilities can recommend entirely different schedules and

similarly with feedstock availabilities, pipeline pressures and tank levels. Continuous

testing with different scenarios will provide further confidence in the recommended

schedules and the fixed scenarios can be used as an internal benchmark for future

work on the algorithms or future work on the problems.

6.3 Parameter analysis

The algorithms have been developed to accept different input parameters. These

parameters have been discussed in different sections in Chapter 3 that range from

the population size for the GA to the stopping limit for TS. The following sections

list the parameters for the different algorithms and are limited to the top 30 results

listed in Table 6.3 and Table 6.4.

6.3.1 Tabu search (TS) parameters

Two parameters can be changed for the TS algorithm in this study; namely, tabu list

size and the maximum number of iterations. After preliminary testing, a tabu list

size of 100 solutions with 50 iterations was used. Different parameters were selected

with the hybrid algorithms and these will be discussed in a later section.

6.3.2 Simulated annealing (SA) parameters

Two parameters can be changed for the SA algorithm in this study; namely, initial

temperature and cooling rate. The stopping temperature was set at 0,01 for all jobs.

The researcher started with 100 as the initial temperature and fixed the cooling

rate at 0,95 and increased the temperate tenfold for the following job. The tempera-

ture of the top two results was then fixed and the cooling rate changed by increasing

or decreasing it. Table 6.10 lists the daily interval result parameters and Table 6.11

the hourly interval result parameters.

Table 6.10: Simulated annealing daily interval result parameters

Profit Run time Temperature Cooling

R1 224 520 853 0h, 21m, 57s 10 000 000 0,95

R1 211 576 590 0h, 22m, 45s 1 000 000 0,96
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Table 6.11: Simulated annealing hourly interval result parameters

Profit Run time Temperature Cooling

R179 620 070 75h, 35m, 51s 10 000 000 0,99

R159 820 835 7h, 59m, 7s 10 000 000 0,95

R142 748 318 3h, 56m, 44s 1 000 000 0,95

6.3.3 Genetic algorithm (GA) parameters

Three parameters can be changed for the GA in this study; namely, the number of

generations, population size and probability of mutation.

The two mutation probabilities used in the study are 0 and 0,7 with an LS mu-

tation on the selected chromosome. Due to the size of the problems, the mutation

method caused multiple LS mutations that prevented the job from completing within

24 hours. The remainder of the tests were done without mutation.

Table 6.12 ranks the daily interval GA results by profit and Table 6.13 ranks the

daily interval by run time for different combinations of the number of generations

and population sizes used. The results varied widely on both the profit achieved and

the run time. The parameters, a population size of 400 with 400 generations for the

top performing solution, were selected for further use in the hybrid algorithms.

Table 6.14 ranks the hourly interval GA results by profit and Table 6.15 ranks

the hourly interval by run time for the different parameter values. The larger com-

binations had consistently longer run times without higher profit. The parameters,

a population size of 120 with 250 generations for the top performing solution, were

selected for further use in the hybrid algorithms.
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Table 6.12: Genetic algorithm daily interval results for different parameter values,

sorted by profit

Profit Run time Generations Population

R1 384 988 520 4h, 14m, 20s 400 400

R1 348 584 420 15h, 20m, 27s 100 4 000

R1 335 219 340 0h, 36m, 54s 400 50

R1 332 734 000 0h, 13m, 43s 100 20

R1 329 543 823 0h, 10m, 26s 100 50

R1 303 820 565 1h, 47m, 35s 200 400

R1 298 072 880 1h, 57m, 13s 400 400

R1 278 366 305 1h, 14m, 15s 100 400

R1 232 988 050 0h, 25m, 20s 200 100

R1 229 056 565 0h, 31m, 53s 100 100

R1 115 859 343 0h, 17m, 19s 100 100

R1 084 935 935 0h, 14m, 56s 100 100

R1 078 870 075 0h, 7m, 5s 200 20

R1 034 769 583 0h, 16m, 40s 100 50

R1 020 576 590 0h, 36m, 24s 100 100

Table 6.13: Genetic algorithm daily interval results for different values of parameters,

sorted by runtime

Profit Run time Generations Population

R1 348 584 420 15h, 20m, 27s 100 4 000

R1 384 988 520 4h, 14m, 20s 400 400

R1 298 072 880 1h, 57m, 13s 400 400

R1 303 820 565 1h, 47m, 35s 200 400

R1 278 366 305 1h, 14m, 15s 100 400

R1 335 219 340 0h, 36m, 54s 400 50

R1 020 576 590 0h, 36m, 24s 100 100

R1 229 056 565 0h, 31m, 53s 100 100

R1 232 988 050 0h, 25m, 20s 200 100

R1 115 859 343 0h, 17m, 19s 100 100

R1 034 769 583 0h, 16m, 40s 100 50

R1 084 935 935 0h, 14m, 56s 100 100

R1 332 734 000 0h, 13m, 43s 100 20

R1 329 543 823 0h, 10m, 26s 100 50

R1 078 870 075 0h, 7m, 5s 200 20
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Table 6.14: Genetic algorithm hourly interval results for different values of parame-

ters, sorted by profit

Profit Run time Generations Population

R167 192 623 0h, 5m, 29s 250 120

R163 598 853 1h, 11m, 35s 250 4 000

R162 076 055 0h, 2m, 11s 60 120

R161 754 330 1h, 9m, 58s 250 400

R161 496 950 1h, 16m, 50s 500 4 000

R159 510 625 1h, 10m, 3s 250 4 000

R159 429 568 1h, 12m, 26s 250 4 000

R159 091 690 1h, 15m, 8s 500 4 000

R158 356 993 1h, 14m, 42s 500 400

R156 426 428 0h, 5m, 28s 500 120

R151 928 318 1h, 14m, 54s 500 4 000

Table 6.15: Genetic algorithm hourly interval results for different values for parame-

ters, sorted by runtime

Profit Run time Generations Population

R161 496 950 1h, 16m, 50s 500 4 000

R159 091 690 1h, 15m, 8s 500 4 000

R151 928 318 1h, 14m, 54s 500 4 000

R158 356 993 1h, 14m, 42s 500 400

R159 429 568 1h, 12m, 26s 250 4 000

R163 598 853 1h, 11m, 35s 250 4 000

R159 510 625 1h, 10m, 3s 250 4 000

R161 754 330 1h, 9m, 58s 250 400

R167 192 623 0h, 5m, 29s 250 120

R156 426 428 0h, 5m, 28s 500 120

R162 076 055 0h, 2m, 11s 60 120

6.3.4 Hybrid algorithm parameters

The three hybrid algorithms used in this study: namely, GA with LS, GA with GS

and GA with TS, can take different parameters. The LS and GS algorithms do not

have parameters to change but the GA they extend does. The parameter values from

the most profitable GA solution for the daily interval and hourly interval will be used

and are listed in Table 6.16.
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The parameter values for the GA with TS algorithm is listed for the daily interval

in Table 6.17 and for the hourly interval in Table 6.18. The tabu list size did not

make a big difference in profit but having a too small tabu list size resulted in a lower

profit. The higher number of iterations had an increased profit at the expense of

time.

Table 6.16: Genetic algorithm parameter values for the two intervals

Interval Generations Population

Daily 400 400

Hourly 250 120

Table 6.17: Hybrid genetic algorithm with tabu search daily interval results for dif-

ferent parameter values

Profit Run time Generations Population Tabu list Iterations

R1 410 779 580 4h, 45m, 31s 400 400 100 50

R1 389 168 880 15h, 34m, 8s 400 400 100 100

Table 6.18: Hybrid genetic algorithm with tabu search hourly interval results for

different parameter values

Profit Run time Generations Population Tabu list Iterations

R176 600 338 2h, 17m, 21s 250 120 50 10

R176 492 128 2h, 13m, 52s 250 120 100 10

R175 542 540 2h, 16m, 2s 250 120 200 10

R168 391 905 2h, 15m, 47s 250 120 20 10

R164 118 015 0h, 30m, 37s 250 120 100 2

R162 879 413 0h, 31m, 56s 250 120 50 2

R161 492 853 0h, 31m, 24s 250 120 200 2

R142 854 915 0h, 30m, 12s 250 120 10 2

6.3.5 Parameter analysis conclusion

The parameter setting was only changed in the two scenarios used in this study and

different scenarios can potentially give different results.

The algorithms were developed to make use of caching to increase the performance

of the repetitive functions. Caching stores the result of a frequent or computationally

expensive function with a specific input for future matching requests to read the stored
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results. The impact of caching should be considered when changing a parameter and

expecting a change in the results.

The researcher is aware that the results from the different parameter settings are

not conclusive but they indicate an opportunity that parameter tuning can provide

improved results. This will be investigated in the next section.

6.4 Parameter tuning

The parameter analysis indicated an opportunity to further improve the results by

tuning the parameters. The genetic algorithm was selected for both time intervals

to investigate the significance of different parameters. A non-parametric test, the

Friedman test, can be performed to test the difference between multiple parameter

groups and if a significant difference is present, a post hoc test, the Nemenyi test,

can determine the relative performance among the parameter groups (Derrac et al.,

2011).

Nel (2021) applied the Friedman test and Nemenyi test to three multi-objective

algorithms to perform parameter evaluations and relative performance comparisons.

Wang et al. (2021) compared 11 common nature-inspired optimisation algorithms

with each other using the Friedman test and the Nemenyi test. Similarly, the Fried-

man test and Nemenyi test combination is selected for this study with the difference

being on the parameters for the GA.

Therefore, the two hypotheses considered for this experiment are

𝐻0 : All parameter groups are the same,

𝐻𝑎 : At least one parameter group is different.

6.4.1 Parameter tuning experimental setup

The earlier parameter analysis provided a basis for selecting the parameters in the

experiment. For the number of generations, 100, 300, and 500 were selected and

for the population size, 100, 300, 500, 700, and 900 were selected. This results in 15

parameter groups as listed in Table 6.19 and they were tested for both intervals, daily

and hourly, with ten replications per parameter group. The level of significance used

in the experiment was set at 𝛼 = 0,05. The Friedman test statistic can be defined as

𝐹𝑇 =

(︃
12

𝑏(𝑘)(𝑘 + 1)

𝑘∑︁
𝑗=1

𝑇 2
𝑗

)︃
− 3𝑏(𝑘 + 1) (6.6)

where 𝑘 is the number of treatments, with 𝑏 the number of blocks and 𝑇 2
𝑗 the squared

sum of the ranks for the sample treatment 𝑗. Derrac et al. (2011) states the rule of
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thumb as 𝑏 > 10 and 𝑘 > 5. For this study, 𝑏 = 15 and 𝑘 = 10 where 𝑏 is the number

of groups and 𝑘 the number of the replications.

Table 6.19: List of parameter group combinations

# Number of generations Population size Group combination

1 100 100 G100:P100

2 300 100 G300:P100

3 500 100 G500:P100

4 100 300 G100:P300

5 300 300 G300:P300

6 500 300 G500:P300

7 100 500 G100:P500

8 300 500 G300:P500

9 500 500 G500:P500

10 100 700 G100:P700

11 300 700 G300:P700

12 500 700 G500:P700

13 100 900 G100:P900

14 300 900 G300:P900

15 500 900 G500:P900

6.4.2 Parameter tuning experiment results

The profit achieved for the daily and hourly parameter groups are graphically sum-

marised using box plot charts to show the distributional characteristics of a group.

Notably, with the daily interval results, on all the box plots in Figure 6.21, the 100

generations performs poorly while the larger number of generations with the larger

population size performs better. The hourly interval results in Figure 6.22 indicate

visually that a larger generation size with a larger population size achieves higher

profit with the exception of the population size of 100.
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Table 6.20: Nemenyi test 𝑃 -values for the daily interval

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 – 0,900 0,900 0,900 0,057 0,275 0,900 0,030 0,480 0,900 0,057 0,015 0,900 0,078 0,078

2 – 0,900 0,900 0,015 0,103 0,900 0,007 0,221 0,674 0,015 0,003 0,900 0,021 0,021

3 – 0,900 0,118 0,445 0,900 0,067 0,641 0,900 0,118 0,035 0,900 0,153 0,153

4 – 0,275 0,674 0,900 0,174 0,867 0,900 0,275 0,103 0,900 0,337 0,337

5 – 0,900 0,275 0,900 0,900 0,900 0,900 0,900 0,057 0,900 0,900

6 – 0,674 0,900 0,900 0,900 0,900 0,900 0,275 0,900 0,900

7 – 0,174 0,867 0,900 0,275 0,103 0,900 0,337 0,337

8 – 0,900 0,899 0,900 0,900 0,030 0,900 0,900

9 – 0,900 0,900 0,900 0,480 0,900 0,900

10 – 0,900 0,770 0,900 0,900 0,900

11 – 0,900 0,057 0,900 0,900

12 – 0,015 0,900 0,900

13 – 0,078 0,078

14 – 0,900

15 –

The Friedman test is used to assess whether there is a significant difference be-

tween the parameter groups. For the daily interval, the Friedman test (𝐹𝑇 ) statistic

is 67,31 with a 𝑃 -value of 5,9× 10−9. The �̃�2 critical value is therefore 23,68 and the

daily interval null hypothesis (𝐻0) is rejected in favour of the alternative hypothe-

sis. For the hourly interval, the Friedman test (𝐹𝑇 ) statistic is 69,26 with a 𝑃 -value

of 2,63× 10−9. The �̃�2 critical value is therefore 23,68 and the hourly interval null

hypothesis (𝐻0) is rejected in favour of the alternative hypothesis.

With both experiments being significantly different, the Nemenyi test is applied

to determine the relative performance among the parameter groups. Consider Table

6.20 for the daily interval and Table 6.21 for the hourly interval with a 𝑃 -values at a

5% level of significance indicated in red. As an alternative graphical representation,

the 𝑃 -values are represented in a heat map in Figure 6.23 and Figure 6.24.
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(b) Daily interval group 2

G100:P500 G300:P500 G500:P500

1.2

1.25

1.3

1.35

1.4

·109

P
ro

fi
t

(R
)

(c) Daily interval group 3

G100:P700 G300:P700 G500:P700

1.2

1.3

1.4

·109
P

ro
fi
t

(R
)

(d) Daily interval group 4
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(e) Daily interval group 5

Figure 6.21: Daily interval box plots of the profit achieved grouped by population

size
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(a) Hourly interval group 1
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(b) Hourly interval group 2
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(c) Hourly interval group 3
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(d) Hourly interval group 4

G100:P900 G300:P900 G500:P900

1.5

1.55

1.6

1.65

·108

P
ro

fi
t

(R
)

(e) Hourly interval group 5

Figure 6.22: Hourly interval box plots of the profit achieved grouped by population

size
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Table 6.21: Nemenyi test 𝑃 -values for the hourly interval

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 – ,900 ,900 ,900 ,900 ,513 ,609 ,900 ,900 ,174 ,900 ,706 ,835 ,900 ,900

2 – ,900 ,900 ,900 ,134 ,900 ,900 ,577 ,577 ,900 ,275 ,900 ,900 ,900

3 – ,900 ,900 ,103 ,900 ,900 ,513 ,641 ,900 ,221 ,900 ,900 ,900

4 – ,445 ,005 ,900 ,900 ,067 ,900 ,900 ,015 ,900 ,900 ,802

5 – ,900 ,118 ,900 ,900 ,012 ,900 ,900 ,275 ,900 ,900

6 – ,001 ,153 ,900 ,001 ,409 ,900 ,002 ,067 ,706

7 – ,900 ,008 ,900 ,706 ,001 ,900 ,900 ,409

8 – ,609 ,545 ,900 ,305 ,900 ,900 ,900

9 – ,001 ,899 ,900 ,030 ,409 ,900

10 – ,247 ,001 ,900 ,738 ,078

11 – ,609 ,900 ,900 ,900

12 – ,006 ,153 ,899

13 – ,900 ,641

14 – ,900

15 –

Figure 6.23: 𝑃 -values for the daily interval represented in a heat map
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Figure 6.24: 𝑃 -values for the hourly interval represented in a heat map

The final step to identify the best parameter group for the two intervals is to

determine the statistical significance between the differences in average rank by using

the critical distance (CD) (Nemenyi, 1963). The CD values are calculated using

𝐶𝐷 = 𝑞𝛼

√︃(︂
(𝑘)(𝑘 + 1)

6𝑁

)︂
(6.7)

where k is the number of blocks, N is the number of samples and 𝑞𝛼 the critical value.

The CD for both intervals are 1,751 and a succinct representation of the rank with

the CD is given on CD diagrams in Figure 6.25 and Figure 6.26. The bold horizontal

bars connect ranks that are statistically indistinguishable at 𝛼 = 0,05.
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Figure 6.25: CD diagram for daily interval

Figure 6.26: CD diagram for hourly interval

6.4.3 Parameter tuning conclusion

Based on the results, it can be concluded that groups 12, 8, 5, and 11 are the best

performing parameter combination groups for the daily interval and groups 6, 12,

and 9 are the best performing parameter combination groups for the hourly interval.

Table 6.22 lists the statistically indistinguishable best performing groups with the as-

sociated parameter combination. The researcher would recommend using parameter

combination group 12 (G500:P700) for the daily interval and parameter combination

group 6 (G500:P300) for the hourly interval albeit they are statistically indistinguish-

able.
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Table 6.22: Best performing parameter combination groups based on the Nemenyi

test

Daily interval Hourly interval

# Parameter combination # Parameter combination

12 G500:P700 6 G500:P300

8 G300:P500 12 G500:P700

5 G300:P300 9 G500:P500

11 G300:P700

6.5 Evaluation of the decision support system

This section describes the evaluation of the decision support system. By using results

validation it is possible to establish if the output data from the proposed system

closely resemble the expected output (Law, 2015). This could be carried out by

comparing the proposed system with an existing system, another model or expert

opinion. From the available options, the only possible comparison for this study is

by using expert opinion.

Result validation by expert opinion is also known as face validation. The process

involves knowledgeable people subjectively comparing the system’s behaviour and

models to determine whether the results are reasonable (Roungas et al., 2018).

Law (2015) highlight that should the expert opinion have the ability to validate

the output accurately, there would be no need for a model.

Two expert opinion roles within Sasol can determine if the system’s behaviour

and results are reasonable. Firstly, an operations subject matter expert that has

experience within the C2 value chain and secondly, an operations researcher that has

done optimisation work on the C2 value chain.

To evaluate the system, interviews were conducted with 11 subject matter experts

in operations and with operations researchers (Ethical clearance reference number:

ING-2020-17314). Overall, the system’s behaviour and results were positively re-

ceived. A few key points were highlighted during the interviews that will be discussed

next.

6.5.1 SME responses after evaluating the reports

The subject matter experts made the following observations during interviews after

evaluating the reports:
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• Start-up production should not be included in the profit function. The product

produced during start-up is not within the product specification.

• Consider switching from decimal to integers to reduce the problem size, it could

improve the results.

• Models can suggest unsustainable values nearing the end of the 14-day horizon.

• Some models in the company have taken over 10 years to reach their current

maturity. Continuous changes are requested and some can cause a total re-

design.

• Confidence in the system will increase over time as different scenarios are tested.

• Testing different shutdown and turnaround strategies on the system is possible.

• Near-optimal solutions in a reasonable amount of time are sufficient.

• Margin sensitivity should be tested on the system as product prices change

regularly in the market.

• This is not the final version of the system but a good starting point and it will

be more valuable to focus on the 14-day hourly interval.

6.5.2 SME responses after evaluating the overall system

The subject matter experts made the following observations during interviews on the

overall system:

• The web-based platform is preferred over an installed application;

• The DSS looks user-friendly;

• SMEs approved the ability that additional models could be added to the same

system and not have some models in different software;

• Documentation or a manual describing the system is needed.
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6.5.3 Opinions on modelling and the use of models

Modelling is highly dependent on a variety of people. There are people who use the

model, people that developed the model and the person or manager sponsoring the

model. A change in requirements by one of them can result in the abandoning of a

model. Restructuring in the company or rotating of people to different positions has

caused the neglect of many models. Models are usually strongly tied to a single engi-

neer, statistician or operations researcher. Handing over models to a different person

has often been unsuccessful. Commercial off-the-shelf software has been proposed in

the past to address some of these problems but this practice has left the company

with a list of expensive partially used software solutions that is difficult to remove.

This has many times resulted in people resorting to using spreadsheets in an attempt

to find answers to the problem.

To quote an analogy from the interview on why some working models are discon-

tinued over time, “Some models are like driving with a GPS for navigation. Once the

majority of routes have been learnt, a GPS is no longer needed by the driver”. It is,

however, important to embed and document the corporate memory so that it is not

lost or misunderstood over time.

6.5.4 Additional requirements

The SMEs recommended including additional details such as:

1. decoking of furnaces;

2. different modes of production;

3. transitions between grades;

4. warm and cold start-ups;

5. production schedules per product.

This concludes evaluation of the decision support system, which will be followed

by an improvement recommended by the SMEs.

6.6 Decision variable recommendation

Based on the recommendation of the subject matter experts, switching from using

decimals to integers in the decision variables could improve the results. The assump-

tion is that if the search space is reduced, the algorithms could have improved results
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by achieving a higher profit or shorter run times. A non-parametric test such as the

Mann-Whitney-Wilcoxon test is used for this comparison as it allows for pairwise

comparison of the median values of two distributions (Derrac et al., 2011). The two

hypotheses considered for this experiment are

𝐻0 : Switching from decimals to integers has no effect,

𝐻𝑎 : Switching from decimal to integers improved the performance.

6.6.1 Decision variable experimental setup

The highest performing parameters listed in Table 6.22 were used to compare the

daily and hourly interval over 40 replications. The level of significance used in the

experiment is set at 𝛼 = 0,05. The mean (𝜇𝑊 ) can be defined as:

𝜇𝑊 =
𝑛1(𝑛1 + 𝑛2 + 1)

2
(6.8)

where 𝑛1 is the count of the decimal sample and 𝑛2 is the count of the integer sample.

The standard deviation (𝜎𝑊 ) can be defined as

𝜎𝑊 =

√︂
𝑛1𝑛2(𝑛1 + 𝑛2 + 1)

12
. (6.9)

The Z-value test statistic can be defined as

𝑍 =
𝑊 − 𝜇𝑊

𝜎𝑊

(6.10)

where W is the rank sum for the decimal sample.

6.6.2 Decision variable experiment results

The results for the decimal and integer experiment can be graphically summarised in

box plots in Figure 6.27 and Figure 6.28. Note that when interpreting the box plots,

a higher profit or a lower run time is considered an improvement.
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Figure 6.27: Daily interval box plots of the profit achieved grouped by population

size
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(a) Hourly interval profit comparison
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Figure 6.28: Hourly interval box plots of the profit achieved grouped by population

size

The Mann-Whitney-Wilcoxon test is used for a pairwise comparison. The samples

are first stacked, then ranked within the stack and then the sum of the ranks of the

two samples is calculated. The sums of the ranks are listed in Table 6.23. Note that

when interpreting the sum of ranks table, a higher sum of ranks on both profit and

run time is considered to be superior.
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Table 6.23: Sum of ranks for the four experiments

Daily interval Hourly interval

Sample Profit Run time Profit Run time

Decimal 953 2 255 2009 1 651,5

Integer 2 287 985 1231 1 588,5

For the daily interval profit comparison, the 𝑍-value is -6,418 with a 𝑃 -value of

6,894× 10−11. The researcher rejects the null hypothesis (𝐻0) as the data indicates

an increase in profit when switching from decimals to integers. Considering the run

time comparison, the 𝑍-value is 6,11 with a 𝑃 -value of 1. The researcher fails to

reject the null hypothesis (𝐻0) as there is not a significant increase in run time.

For the hourly interval profit comparison, the 𝑍-value is 3,743 with a 𝑃 -value

of 1. The researcher fails to reject the null hypothesis (𝐻0) as the data does not

indicate an increase in profit when switching from decimals to integers. The sum

of ranks indicates the contrary; the profit has decreased. Considering the run time

comparison, the 𝑍-value is 0,303 with a 𝑃 -value of 0,619. The researcher fails to

reject the null hypothesis (𝐻0) as there is not a significant decrease in run time.

6.6.3 Decision variable experiment conclusion

The data supports the recommendation to switch from decimals to integers in order to

improve the results, although only for the daily interval and at a significant increase

in run time. It is a noteworthy outcome that a reduction in the search space can

increase the run time. It is not apparent what caused the run time to increase and

a detailed profiling of the algorithm could provide further insight. For the hourly

interval, the researcher deduced from the data that due to the proposed encoding

scheme, the search space had already been reduced indirectly. The data suggests

that the encoding scheme decoupled the interaction between the search space and

the algorithm.

6.7 Synthesis of results

From the two test scenarios, it is evident that the genetic algorithm (GA) paired with

a single-solution base consistently achieved higher profits than the other algorithms.

The size of the problem presented challenges throughout the study. First, the lo-

cal search (LS), tabu search (TS) and simulated annealing (SA) initially performed

poorly due to the size of the problem and the evaluation process. Evaluating all the
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neighbouring solutions is computationally expensive and time-intensive. The greedy

search (GS) was added to accept an improvement move before evaluating all the

neighbours. After profiling the performance of the algorithms, implementing caching

of the functions used in the algorithms and evaluating the neighbourhood over mul-

tiple processor cores, the performance increased greatly. Additional profiling of the

performance of the code could further improve any one of the algorithms.

Secondly, a change or error in the code could have a significant impact, from

requiring the implementation of the change on 20 algorithms to testing everything

thoroughly.

Thirdly, the algorithm parameters setting plays a critical role in the performance

and it is recommended that parameter tuning is done on the final developed and

optimised state of the algorithms. Changes in the code can influence the parameter

settings and in some cases reduce or increase their sensitivity.

The last challenge was on the required changes in the function to make use of

caching or parallel processing. For caching, this entailed splitting functions to sepa-

rate random, non-hashable data as functions with randomisation cannot be cached.

For parallel processing, careful design of the function is required to ensure that only

the data that is needed is passed to all the processors. For large optimisation prob-

lems, splitting the data preparation to only parallel process the tasks that are com-

putationally expensive, will reduce the overhead that can cause memory leaks.

Based on the results, the researcher can make the following conclusions:

• The top 10 results for the daily and hourly intervals are within 10% of each

other and any of the algorithms in the top 10 could be used. If only one

algorithm should be selected to be used for future work, the researcher would

select the GA with a GS for both hourly and daily intervals. The flexibility

and customisation that is possible with GAs allows for a wide range of changes

that can lead to further improvements. Furthermore, the exploitation of the

GS complements the GA well for this problem.

• The problem in this study can be adapted to include energy consumption as a

second criterion to provide additional information when making decisions.

• Even though the hybrid GA with a multilayer perceptron (MLP) neural net-

work did not obtain favourable results, the integration of combinatorial optimi-

sation and machine learning should be further explored. When combined, the

two research fields can benefit from the state-of-the-art algorithms, theoretical

guarantees and other performance incentives (Bengio et al., 2021).
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• Developing the algorithms to make use of caching or parallel processing de-

creases the run time significantly.

• The experiment on the decision variable recommendation provided two insights

when working with a large search space; a reduction of the search space can

yield higher profit and the proposed encoding scheme indirectly reduces the

search space.

6.8 Chapter summary

The chapter started by specifying the tests that are needed to verify the code used

in the study. The performance of each of the algorithms was then compared with

the others in relation to the questions listed in Chapter 1. Then, an analysis of the

parameters used with the best performing algorithms was carried out, followed by

the results from parameter tuning. Thereafter, an evaluation of the decision support

system (DSS) by subject matter experts and subsequently, an experiment based on

a recommendation from the subject matter experts to conclude the verification and

evaluation of the study. The study is concluded in the next chapter.

131

Stellenbosch University https://scholar.sun.ac.za



Chapter 7

Conclusion and recommendations

This chapter consists of three sections. First, a summary of the study is provided, then

contributions that emanated from this study are presented and lastly opportunities

for future work are discussed.

7.1 Summary of the study

Chapter 1 provided a background to the complexities of chemical manufacturing.

The term “value chain” was introduced and a simplified C2 value chain was presented.

The study was done at the Sasol organisation and a brief introduction was given

to the company. The focus of the study, the C2 value chain, was explained in the

context of Sasol. The explanation identified two problems in the C2 value chain and

mentioned that these had been addressed in Sasol with varying success. The decision-

making on these problems is needed with two time horizons, 14 days and 90 days.

The 14-day time horizon decision-making is time-sensitive, requiring hourly oversight.

This raised the need for a decision support system (DSS) that integrates the feedstock

distribution problem and the intermediate feedstock distribution problem for the two

time horizons using daily and hourly time intervals.

From the stated need, a research task was identified and objectives formulated to

achieve this task. The research task was formulated as follows:

Develop an integrated decision support system that maximises profit in the Sasol

C2 value chain for hourly and daily decision-making.

Chapter 2 introduced scheduling and presented a chronological review of schedul-

ing literature in the process industry that is relevant to the two problems. Two chal-

lenges arising from the literature were introduced and the succeeding literature posi-
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tioned single-objective optimisation, specifically metaheuristics, as a possible method

for addressing the large industrial-sized problems in the process industry. Literature

on the second challenge was focused on the time representation and a discrete-time

representation was selected for the study. A discrete-time single non-uniform grid

time representation was proposed as a time-based decomposition for the 14-day hourly

interval time horizon. The chapter addressed Objective 1 and 2.

Chapter 3 started with literature on single-objective optimisation to partially

fulfil Objective 3. To complete Objective 4, metaheuristic algorithms were selected

and a detailed review was presented on the selected algorithms. A brief introduction

to multi-objective optimisation followed to complete Objective 3 with a review of

the selected algorithm to achieve Objective 5. A review of hybrid metaheuristics

literature with a specific focus on classification, grammar, parallel metaheuristics

and machine learning concluded the chapter.

The knowledge gained from Chapter 2 and Chapter 3 enabled the model con-

struction and implementation of the algorithms. This was documented in Chapter

4 to achieve Objective 6 and 7. The chapter started with a list of the algorithms that

were developed for this study, followed by an explanation of the variables needed. A

novel encoding scheme was proposed for the hourly interval problem. The objective

functions were presented before describing the three solution evaluation processes;

namely, the daily interval evaluation process, the hourly interval evaluation process

and the combined evaluation process. The evaluation process contained a balancing

period that contributed uniquely to the successful implementation of the algorithms.

A detailed description was then given of the parallel model implementations and

hybrid metaheuristic implementations.

Chapter 5 satisfied Objective 8 and 9 by presenting a DSS design and imple-

mentation. First, the DSS architecture was presented and this was followed by a

discussion of the components and implementation of a model-driven DSS.

The verification and evaluation of the DSS were presented inChapter 6 to achieve

Objective 10. This entailed performing unit and integration testing on the code and

achieving face-validation by interviewing subject matter experts. An experiment was

conducted based on a recommendation from the subject matter experts (SMEs) and

the data supports the change from decimal to integers for the daily interval but not

for the hourly interval.

Experiments were conducted on two scenarios to fulfil Objective 11. The results

and an analysis of them were presented in Chapter 6 in partial fulfilment of Ob-

jective 12. The analysis and synthesis of the results included the performance of the

algorithms using profit and run time as performance measures. The results of the

non-dominated sorting genetic algorithm II (NSGA-II) were presented followed by an
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analysis of parameters used in the study. Finally, a discussion of parameter tuning to

identify the best performing parameter combinations followed. Future work on this

problem is presented in Section 7.3 in further fulfilment of Objective 12.

To conclude, the objectives that were formulated to achieve the research task were

fulfilled.

7.2 Contributions

The contributions that emanated from this study are, on a macro level, a novel

model-based decision support system (DSS) that was designed and documented using

a high-level architecture. The architecture provides the flexibility to include different

algorithms, optimisers and solvers. The architecture can be scaled to accommodate

large deployments. A demonstrator of the model was developed, implemented and

tested with subject matter experts.

A metaheuristics approach was proposed and implemented to schedule the feed-

stock distribution for a chemical value chain. This is, to the best of the researcher’s

knowledge, the first implementation of such an approach. Additionally, 16 single-

objective algorithms over two time intervals was compared on different scenarios.

On a micro level,

• the two problems representing two planning time horizons identified in the study

can be integrated and the constructed DSS provides near-optimal solutions,

• a novel step encoding (subsection 4.2.1.2) was proposed that enabled the algo-

rithms to be applied on an hourly interval problem,

• a balancing period was proposed as part of the solution evaluation process to

balance the network at each time interval, and

• parameter tuning identified the preferred parameter combinations for this prob-

lem.

The single-objective optimisation problem in this study was expanded to the

multi-objective optimisation (MOO) domain and formulated as a bi-objective op-

timisation problem. The NSGA-II delivered satisfactory results and an experiment

provided the confidence intervals for the hyper area performance difference indicator

for this problem.

The work in this study indicates that it is possible to use metaheuristics for this

class of problem as an alternative to the methods used currently in the industry. The
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study found the GA to be a good base algorithm. A hybrid GA can increase the

solution quality and parallel execution can shorten the execution time.

The summary of the study and conclusions have led to opportunities for future

work that will be discussed next.

7.3 Future work

The work done in the study provides several opportunities for future work.

The following suggestions to the single-objective algorithms can be considered:

• The hourly interval horizon can be extended from 14 days to 90 days. The

hourly solution can be aggregated to provide the solution for the daily interval.

• Implement other evolutionary algorithms (EAs) on the problem such as ant

colony optimisation (ACO) and particle swarm optimisation (PSO).

The following suggestions to the bi-objective algorithm can lead to performance im-

provements. The following can be considered:

• Investigation of parameter tuning of the NSGA-II will improve the performance.

• Implement strength Pareto evolutionary algorithm 2 (SPEA2) on the problem,

as noted by Zitzler et al. (2001), SPEA2 could have a better Pareto set solution

distribution compared with NSGA-II.

Additional aspects can be included to increase the detail of the decision-making:

• Warm start-up times are significantly shorter than cold start-up times. Keep-

ing a plant warm comes at an hourly cost. This trade-off increases decision

complexity.

• Products are produced at different efficiencies. Including the product being

produced can increase the accuracy of the expected output.

The following future work is suggested on a macro level:

• Daily production schedules for the final plants in the value chain are based on

the feedstock received to meet customers demand. The plants produce multiple

products/grades that have sequence-dependent changeovers between different

grades and changeovers produce products that do not meet the product specifi-

cation. This is a well-researched area that can be incorporated into the problem
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in this study as illustrated in Figure 7.1. Since this showed that it is possible to

integrate the first two problems, future work can investigate if all three problems

can be integrated.

• The short run time that is possible with neural networks remains an attractive

advantage. In supervised learning, the following can be considered:

– Use a metaheuristic to find the best design and configuration for the mul-

tilayer perceptron (MLP) neural network.

– Replace the MLP with a long short-term memory (LSTM) neural network

or graph neural network (GNN).

– Alternatively, in the reinforcement learning (RL) field, a multi-agent rein-

forcement learning (MARL) approach can be considered where each deci-

sion variable is represented by an agent.

Figure 7.1: Three problems proposed as future work

7.4 Chapter summary

This chapter concludes the research study in which it was shown that an integrated

decision support system can be used to provide decision support for hourly and daily

interval decision-making on the Sasol C2 value chain. The chapter provided a concise

summary of the research study with contributions that emanated from the study and

provided several opportunities for future work.
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Appendix

A Product margins

To protect the confidentiality of proprietary data, the product margins have been

obtained from public data. United States of America (USA) spot prices are used in

United States Dollar (USD) per pound and are converted to a gross margin in South

African Rand (ZAR) per metric ton. Table A.1 lists the margin values converted

from the USA spot prices.

Table A.1: Margins inferred from public data

$/lb [1] USD/ZAR [2] lb/kg R/t Margin [3]

LLDPE $0,55 R16,95 0,4536 R20 459 R6 956

LDPE $0,58 R16,95 0,4536 R21 580 R7 337

Ethylene $0,24 R16,95 0,4536 R8 968 R3 049

Ethane $0,08 R16,95 0,4536 R2 915 R991

Notes on the assumptions in Table A.1:

1. Linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE)

can be sold in film and injection mould grades which are sold for different prices.

The US spot market provides a low and high price. Using the average spot mar-

ket price and the average price between film and injection mould grades can

indicate the US market price. The plastic exchange provides spot prices in $/lb
for LLDPE, LDPE, Ethylene and Ethane (Greenberg, 2020).

2. The exchange rate for United States Dollar (USD) to South African Rands

(ZAR) (Bloomberg Finance L.P, 2020).

3. A gross margin of 34% is listed for the second quarter of 2020 in the chemicals,

plastic and rubber industry (CSIMarket, 2020).
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