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Abstract

Inverse models for ice-induced propeller moments on a
polar vessel
B. M. Nickerson

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.
Dissertation: PhD

March 2021

It is necessary to quantify the loads experienced by the propellers of ice-going vessels.
Knowledge of these loads will serve to improve propulsion design specifications and
maintenance strategies for polar class ships. Recent developments include the inverse
solutions of the external ice-induced propeller moments from indirect measurements
on the propulsion shaft. These inverse solutions are performed using models that
account for the dynamic influence of the shaft. Although torsional vibration calcu-
lations are required by design rules there is little information on the methodology to
calculate external propeller moments as their use, in this context, is still relatively
new. Full-scale propulsion shaft measurements were conducted on board the S.A.
Agulhas II, in which the torque and angular velocity were captured, to be trans-
formed into external propeller moments. Two inverse models of the propulsion shaft
were investigated. The first is an existing model which represents the shaft as a
combination of lumped masses. The inverse problem in this case is ill-posed and
requires regularization. It was found that the assumptions made in the derivation of
this model, that both the hydrodynamic and motor torques were constant, and its
computational expense made it ill-suited for use in the inverse estimation of propeller
moments. The second inverse model is newly developed and based on the superpo-
sition of the shaft modes, resulting in a well-posed problem. This model accounts
for the modal inertia in the flexible modes of the shaft, as full-scale data indicated
that this was important, and has increased accuracy and efficiency. To the author’s
knowledge, this is the first model that has been efficiently applied to determine the
inverse propeller moments from full-scale measurements for a complete voyage. The
derivation of the corresponding estimated propeller load profiles is presented. The
new model is suitable for the real-time monitoring of propeller loads, which can assist
in ship operation.
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Uittreksel

Inverse modelle vir ys-geïnduseerde propellermomente
op a poolskip

(“Inverse models for ice-induced propeller moments on a polar vessel”)

B. M. Nickerson
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD
Maart 2021

Dit is nodig om die laste te kwantifiseer waaraan die skroewe van skepe onderhewig is ty-
dens ysvaart. Kennis van hierdie laste dien om die spesifikasies en instandhoudingstrategieë
van aandrywingstelsels van ys-klas skepe toe te lig. Onlangse verwikkelinge sluit inverse
oplossings van die eksterne in ys-geënduseerde skroefmomente in deur gebruik te maak van
indirekte metings op die dryfas. Hierdie inverse oplossings word uitgevoer met behulp van
modelle wat die dinamiese invloed van die as in ag neem. Hoewel torsionele vibrasiebe-
rekening deur ontwerpsreëls vereis word, is daar min inligting oor metodologie om inverse
skroefmomente te bepaal, aangesien werk in die konteks nog relatief nuut is. Volskaalse
dryfasmetings van wringkrag en hoeksnelheid is op die S.A. Agulhas II uitgevoer met die
doel om skroefmomente van hier af te bereken. Twee inverse modelle van die SA Aghulhas
II dryfas is ondersoek. Die eerste model is ’n bestaande model, wat die skag voorstel as
’n kombinasie van gekonsentreerde massas. Die inverse probleem in hierdie geval is swak
gestel en vereis regularisering. Verder word daar aangeneem dat beide die hidrodinamiese-
en die motorwringkrag konstant is. Die berekeningsvereistes maak dit ongeskik vir gebruik
in die inverse beraming van skroefmomente. ’n Tweede inverse model is nuut ontwikkel en
gebaseer op die superposisie van die modusse van die dryfas. Dit is meer akkuraat en doel-
treffend en lei tot ’n volledig gestelde probleem. Dit sluit die modale traagheid van die as in,
aangesien volskaalse data aandui dat dit belangrik is. Volgens die outeur is hierdie die eerste
inverse model wat effektief aangewend is om invers-berekende skroefmomente vanaf volskaal
meetings te beraam vir ’n volledige vaart. Die afleiding van geskatte skroef lasprofiele word
aangebied. Die nuwe model is geskik vir intydse monitering van operasionele skroeflaste.
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Chapter 1

Introduction

There is an increasing need for safety and efficiency with regards to shipping
in Arctic regions. This is due to the fact that maritime transport in ice-
covered seas is expected to increase in future decades (Ikonen et al., 2014). The
propulsion systems of vessels passing through icy waters are exposed to ice-
related loading in addition to the hydrodynamic loading usually experienced.
According to Polić et al. (2014) this effects the safety and efficiency of vessel
operation.

Structural failure of the propeller blades or shaft-line could occur due to
either a loading condition that exceeds the ultimate strength of the component,
or a cyclic loading condition leading to fatigue failure. These loading conditions
are exacerbated during propeller-ice interaction (Huisman et al., 2014). This is
due to the fact that ice impacts increase the maximum loading on the propellers
as well as introduce transient torsional vibration into the propulsion system
(Batrak et al., 2014).

This research focuses on the propeller of the shaft-line systems of polar
vessels during operation. It follows on from research completed by De Waal
(2017) in which a method for external ice-induced moment estimation for the
propeller of the S.A. Agulhas II (SAA II) was investigated. This was done
due to the general difficulty in measuring the loading conditions directly at
the propeller as the sensors suffer in the harsh operating conditions.

Thus the loads are usually measured at some point on the shaft between
the propeller and the motor (Polić et al., 2014), and the loading condition
at the propeller must be determined from these measurements. This leads
to an inverse problem, where the outputs are known variables and the input
propeller moments become the unknown variables.

The research presented here expands upon previous research (De Waal,
2017), and produces a new method for the estimation of external propeller
moments. The new method, based on the modal superposition of a continuous
shaft model, is significantly more efficient and robust to measurement errors.

The propeller moment estimates provided by the model can then be used
to:

1
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CHAPTER 1. INTRODUCTION 2

• provide the crew with information, such as maximum loading conditions,
during the vessel’s operation. This information can be used to assess the
safe operation of the vessel.

• monitor the propeller loads over the course of multiple voyages. Along
with other models, this can be used to monitor the fatigue of the vessel’s
propulsion line.

• monitor the propeller loads during a voyage, to assist in the operation
of a vessel.

• predict expected load profiles from recorded voyages, which can be used
for comparisons to other vessels, or as an indication of what voyages a
particular vessel can safely undertake

• provide information in the design and testing of new vessels.

This project forms part of the ongoing research being conducted on the
SAA II by the Sound and Vibration Research Group (SVRG) at the Depart-
ment of Mechanical and Mechatronic Engineering of Stellenbosch University.

1.1 Objectives
The aim of this research was to investigate the estimation of propeller mo-
ments of ice going vessels. Furthermore, the research set out to add novel
contributions to the literature currently available. The objectives set forth to
achieve this were:

1. to conduct a review of the current literature available for the inverse
estimation of propeller moments.

2. to perform full-scale measurements on the SAA II, for use in estimating
propeller moments.

3. to investigate the model used by De Waal (2017); De Waal et al. (2018b).

a) Specifically, this model needed to be improved in terms of its regu-
larization parameter selection.

b) The accuracy of the model needed to be investigated to assess its
suitability for inverse propeller moment estimates.

4. to develop a new model for the inverse estimation of propeller moments.

a) This model needed to be more efficient than the regularization based
inverse methods. Ideally, it should be able to provide propeller
moment estimates in real-time, or sufficiently close to real-time, so
as to be useful in the monitoring of operational propeller loads.
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b) The accuracy of the model needed to be investigated to assess its
suitability for inverse propeller moment estimates.

5. to apply the models to measured data to verify its use during vessel
operation, or in the analysis of the voyages thereafter.

1.2 Original contributions
The main contributions from this research to the literature are:

1. Full-scale propulsion shaft measurements, including both shaft torque
and angular velocity, from the SAA II during voyages in the Southern
Ocean and Antarctica (Chapter 3 and Appendix C). The measurements
include navigation through open water and ice and add to the sparsely
available data of full-scale ice impacts.

2. Further development of the discrete lumped mass model of the propul-
sion shaft developed and used by Ikonen et al. (2014) and De Waal et al.
(2018b) was conducted. It was found that the optimised regularization
parameters employed by these authors were not generally optimal and
led to over- or under-regularization in other cases. Automated optimiza-
tion of the regularization parameter was developed and employed on a
case-by-case basis, and this was found to lead to well regularized results
(Chapter 4).

3. Despite the increase in the quality of regularized results, after evaluation
it was found that the discrete lumped mass model is ill-suited to the
inverse estimations of propeller moments (Chapter 4).

4. A new continuous propulsion shaft model based on modal superposition,
and using a better suited numerical time integration scheme, was de-
veloped and evaluated. It was found that the model was more accurate
and efficient than the discrete lumped mass model, and offers advantages
over the state of the art (Polić et al., 2019) in literature (Chapter 5).

5. The new continuous model was applied to the full dataset of a voyage of
the SAA II. It was found to efficiently perform the inverse solution for
this large set of data, and can be used to monitor the propeller loads in
close to real-time during a voyage (Chapters 5 and 6).

Figure 1.1 provides a breakdown of the presented research, and shows where
these contributions arise.
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Figure 1.1: Breakdown of the presented research and contributions
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Chapter 2

Literature review

This review includes the explanations for vessel propulsion systems, torsional
vibrations, operational loads and the conduction of full-scale measurements.
Furthermore there is a discussion of the current state of the art in models for
inverse propeller moment estimation.

2.1 Vessel propulsion systems
The propulsion system of a seafaring vessel enables its motion through water.
In the case of ice-faring vessels, the propulsion system needs to operate within
both open water and ice. The main components of such a system include a
diesel engine, electric motor or a combination of both, a transmission line, and
a propeller. The SAA II makes use of diesel engines powering electric motors,
which in turn drive the shaft-line and propeller. An example of a propulsion
system for an ice-faring vessel is depicted in Figure 2.1.

Figure 2.1: Ice-faring vessel propulsion system (Polić et al., 2014)

The propeller is the component that creates directional thrust from machine
power through rotation, inducing a pressure difference between its suction
and pressure surfaces (Polić et al., 2014). During vessel operation in ice the

5
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propeller will make contact with the ice and transfer loads through to the other
components of the propulsion system.

During the propeller design process, the impact strength of the blade edge
must be considered. This is due to the fact that blade contact with multi-
year hard blue ice could result in local pressures between 30 to 40 MPa (Det
Norske Veritas, 2011). Propeller blades must therefore be strengthened to pre-
vent localised indentations under these contact pressures (Det Norske Veritas,
2011).

Furthermore, the propeller blade is designed as the weakest point in the
shaft-line system. This is to ensure that the bending or failure of a propeller
blade should not cause further damage to any other propulsion system com-
ponents (Det Norske Veritas, 2011).

According to Araujo et al. (2013), there are two main types of propeller
designs. These are fixed pitch propellers (FPP) and variable- or controllable-
pitch propellers (CPP). The SAA II makes use of CPPs and this is therefore
discussed in further detail below.

As CPPs operate at a higher power to volume ratio, they need to be ac-
tuated via a hydraulic oil power system which typically consists of a piston
in a cylinder (Martelli et al., 2013). CPPs operate at constant shaft speed,
with varying thrust achieved by controlling the pitch of the propeller blades.
This has a number of benefits such as improved efficiency for diesel and gas
turbines, as well as reducing the weight required as reverse gears are no longer
necessary (Araujo et al., 2013). However, CPPs are more expensive then FPPs
due to the specialised parts (shafting, hydraulics, bridge controls, etc.) that
are required (Araujo et al., 2013). Figure 2.2 depicts the internal components
of a CPP.

Figure 2.2: Internal view of a CPP system (Valeri, 2015)
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According to Martelli et al. (2013), the main components of a CPP include
the tank, pumps, valves, filters, pipelines, oil distribution box, cooler, double-
effect cylinder and sensors. The process of altering the propeller blade pitch
is described by Martelli et al. (2013) as follows:

• Oil flows through a directional valve on the tank to the oil distribution
box.

• The oil flows through a twin pipe situated within the propulsion shaft
to a piston in the propeller hub.

• A double-effect hydraulic cylinder within the hub is actuated by the oil
pressure.

• The piston is connected to the blades through a pin which converts its
stroke to angular rotation of the blades.

• It is noted that two actuating cylinder chambers are necessary in order
to achieve rotation in both positive and negative directions.

2.2 Torsional vibration
Torsional vibration of a shaft can be defined as a vibration that occurs in the
angular direction around the centre axis of a shaft in a plane perpendicular
to the cross section of the shaft (Inman, 2014). This vibration may also be
superimposed upon the rotational motion of the shaft.

The measurement of torsional vibration in rotating machinery is important
to the assessment of possible damage or premature fatigue failure of machine
components (Kushwaha, 2012). Furthermore, Kushwaha (2012) states that
there is the possibility for a significant increase in vibration amplitudes if the
system operates at or near to its natural frequencies.

The natural frequency of a system is defined as the frequency at which
a system will oscillate when it is disturbed from rest and not subjected to
any external driving or damping forces. A system excited at this frequency
will experience constructive interference with regards to vibration and the
amplitude thus increases significantly. This is referred to as resonance (Inman,
2014). For an undamped system, the amplitude would increase indefinitely,
while a damped system with external loads will reach some maximum value.
This would result in higher stress levels and could lead to failure.

A system has as many natural frequencies as degrees of freedom. For exam-
ple an ideal spring-mass system, consisting of rigid masses or lumps connected
by springs, will have one natural frequency for each lump in the system. In the
case of a non-rigid or flexible body, where the mass and stiffness are distributed
throughout the body, there will be infinite number of natural frequencies (In-
man, 2014). Each of these natural frequencies has an associated mode shape,
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Figure 2.3: Torsional vibration of a shaft (Rao, 2007)

which describes the shape of a system’s vibration should it be excited at that
particular natural frequency (Inman, 2014). In general, the word mode is used
to refer to both a natural frequency and its associated mode shape (Inman,
2014).

According to Barro and Lee (2011), the main source of torsional vibration
excitation for polar class propulsion systems is the interaction between the
propeller and the ice. For the forced torsional vibration of propulsion lines,
the first torsional mode is dominant (Senjanović et al., 2019).

The characteristic equation for the torsional vibration of a shaft can be
obtained through the use of equilibrium (Rao, 2007). Considering a differential
element of a shaft, such as in Figure 2.3, in equilibrium results in Equation 2.1.(

Mt(x, t) +
∂Mt(x, t)

∂x
dx

)
−Mt(x, t) +mt(x, t)dx = J0

∂2θ(x, t)

∂t2
dx (2.1)

whereMt(x, t) is the internal torque, θ(x, t) the angular displacement, mt(x, t)
the applied loads, J(x) the shaft cross section polar moment of inertia, and J0
is the mass moment of inertia of the shaft per unit length (Rao, 2007).

From solid mechanics the relationship between the torque in the shaft at
x and the torsional deflection at x is (Shames and Pitarresi, 2000):

Mt(x, t) = GJ(x)
∂θ(x, t)

∂x
(2.2)

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 9

Substituting Equation 2.2 into Equation 2.1 gives the characteristic equa-
tion for the shaft (Rao, 2007):

∂

∂x

(
GJ(x)

∂θ(x, t)

∂x

)
+mt(x, t) = J0

∂2θ(x, t)

∂t2
(2.3)

Assuming a constant circular cross-sectional area, Equation 2.3 becomes:

GJ
∂2θ(x, t)

∂x2
+mt(x, t) = ρJ

∂2θ(x, t)

∂t2
(2.4)

where ρ is the density of the shaft.
Before solving a forced vibration problem, the free vibration case without

any applied loads is considered. For the free vibration case mt(x, t) = 0. This
reduces Equation 2.4 to:

c2
∂2θ(x, t)

∂x2
=
∂2θ(x, t)

∂t2
(2.5)

where

c =

√
G

ρ
(2.6)

The term c is the wave speed and has dimensions of linear velocity, units
of length per units of time (Rao, 2007).

The solution of Equation 2.5 can be obtained through separation of vari-
ables. This assumes the solution takes the form of the product of two separate
functions, one a function of only x and the other depending only on t (Inman,
2014):

θ(x, t) = X(x)T (t) (2.7)

Substitution into Equation 2.5 gives:

c2X ′′(x)T (t) = T̈ (t) (2.8)

where the primes on X ′′(x) denotes the second derivative with respect to x
and the overdots on T̈ (t) represents the second derivative with respect to t.
Rearranging Equation 2.8, and noting that each side of the equation must be
constant, gives:

X ′′(x)

X(x)
=

T̈ (t)

c2T (t)
= −σ2 (2.9)
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with σ some constant value.
This leads to two separate equations for x and t, Equations 2.10 and 2.11

respectively.

X ′′(x) + σ2X(x) = 0 (2.10)

T̈ (t) + c2σ2T (t) = 0 (2.11)

From Inman (2014) σ is shown to be equal to ω/c, where ω is the natural
frequency.

X ′′(x) +
(ω
c

)2
X(x) = 0 (2.12)

T̈ (t) + ω2T (t) = 0 (2.13)

Since there are infinite natural frequencies for a continuous system there
are also infinite solutions to Equations 2.12 and 2.13, one for each value of ω
(Rao, 2007):

Xn(x) = An cos
(ωnx

c

)
+Bn sin

(ωnx
c

)
(2.14)

Tn(t) = Cn cos(ωnt) +Dn sin(ωnt) (2.15)

where Equation 2.14 is the spatial solution representing the mode shape corre-
sponding to ωn, Equation 2.15 is the temporal solution, and An, Bn, Cn, and
Dn are constants. An and Bn are solved using the boundary conditions, while
Cn and Dn are solved using the initial conditions.

In the case of a ship propulsion shaft, the boundary conditions would be
free on either end to allow the shaft to rotate around its axis. Since the
internal torque Mt(x, t) at a free end is zero (Rao, 2007), from Equation 2.2
the boundary conditions are given by:

∂θ(0, t)

∂x
=
dX(0)

dx
= 0 (2.16)

∂θ(l, t)

∂x
=
dX(l)

dx
= 0 (2.17)

Substitution of Equation 2.16 into Equation 2.14 gives:
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dX(0)

dx
= −Anωn

c
sin
(ωnx

c

)
+
Bnωn
c

cos
(ωnx

c

)
= 0 (2.18)

Since sin(0) = 0 it follows that

Bn = 0 (2.19)

Meaning that the nth spatial solution, or mode shape, becomes

Xn(x) = An cos
(ωnx

c

)
(2.20)

Substitution of Equations 2.17 and 2.19 into Equation 2.14 gives:

dX(l)

dx
= −Aωn

c
sin

(
ωnl

c

)
= 0 (2.21)

Since sin(nπ) = 0 it follows that:

ωn =
nπc

l
(2.22)

Substituting Equation 2.22 into Equation 2.20 the nth spatial solution, or
mode shape, becomes:

Xn(x) = An cos
(nπx

l

)
(2.23)

The general solution of the free vibration case is the summation of the
products of the spatial and temporal solutions:

θ(x, t) =
∞∑
n=1

X(x)T (t) =
∞∑
n=1

cos
(nπx

l

)
(Cn cos(ωnt) +Dn sin(ωnt)) (2.24)

where the constants An have been absorbed into the constants Cn and Dn.
The solution can be estimated by using a finite number of mode shapes in

Equation 2.24. This is referred to as modal superposition (see Appendix A for
more information).
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2.3 Polar class vessel rules
There are a number of classification rules that have been developed for polar
class vessels intended for Arctic navigation. Rules have been set by various
organisations such as the International Association of Classification Societies
(IACS) (International Association of Classification Societies, 2016) and classi-
fication societies which include the Korean Register (Korean Register, 2015),
the American Bureau of Shipping (American Bureau of Shipping, 2006), Det
Norske Veritas (DNV) (Det Norske Veritas, 2016), Lloyd’s Register (German-
ishcer Lloyd, 2007) and Finnish-Swedish Ice Class Rules’ Guidelines (Finnish
Maritime Administration and Swedish Maritime Administration, 2006)..

The SAA II has been classified according to the DNV Ice Class Rules,
which define requirements for many types of vessels which are intended for
navigation in ice. Different ratings exist for differing levels of ice that the
vessel is expected to experience.

These classifications contain rules and methods for the design of polar class
vessels, including the design of their propulsion systems.

2.4 Operational loads for ice-faring propulsion
systems

During vessel operation in ice, the propeller is exposed to varying loads. These
loads can be classified as either non-contact or contact loads (Barro and Lee,
2011).

Non-contact loads refer to the hydrodynamic loading of the water on the
blade. This load is due to the water resistance and will result in a constant
torque. The load is dependent on the velocity (viscous damping due to inter-
action with water) and acceleration (added inertia from the mass of entrained
water) of the propeller. These influences are referred to as the hydrodynamic
damping and hydrodynamic mass respectively (Bertram, 2012).

Schwanecke (1963) developed an unsteady lifting-line method for deter-
mining the hydrodynamic damping and mass matrices for a propeller. The
method considers the propeller as a rigid body with six degrees of freedom,
three translational and three rotational, and the damping and mass are ap-
proximated as functions of the water and propeller properties. The method is
described in detail by Bertram (2012).

Contact loads refer to ice impacts and milling. Barro and Lee (2011) define
milling as a process in which ice becomes trapped between the hull and the
blade. Milling can also be used to refer to the interaction of the propeller blades
with generally large pieces of ice. The ice is crushed or milled by the propellers
and this generates high loads, with the ice causing successive impacts as the
multiple propeller blades make contact. The smaller pieces of ice result in ice
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impacts which are reported to cause more moderate loads (Barro and Lee,
2011).

Figure 2.4, adapted from Ikonen et al. (2014), depicts an example of a
torsional vibration measured on the shaft-line of a vessel during propeller-ice
interaction. The hydrodynamic loading can clearly be seen as the mean of the
vibration response, represented by the red dashed line. Numbers 1 and 2 on
the figure indicate ice impacts, as can be seen by the increase in torque on the
shaft. The area on the figure marked by number 3 shows an exponential decay
in the vibration due to the viscous damping supplied by the water.

Figure 2.4: Example of a shaft-line torsional vibration due to ice impacts. Adapted
from Ikonen et al. (2014)

Another form of loading that could be experienced by the propeller is at-
tributed to cavitation (Casciani-Wood, 2015). This happens when the flow
pattern of water over the blades degenerates, and causes vapour bubbles within
the flow. The degeneration of the flow pattern depends on a complex relation-
ship between the propeller type, the flow in which it works and its mean depth
relative to its diameter (Casciani-Wood, 2015). Once the flow breaks down it
leads to severe loss of thrust and possible damage to the propeller blades. Cav-
itation can be compared to boiling with the former taking place at constant
ambient temperature and the latter at constant ambient pressure (Casciani-
Wood, 2015). The collapsing of vapour bubbles not only has the potential
to cause damage to the propeller blades, but also to impart vibrations to the
shaft-line system.

Walker (1996) has shown that cavitation does not occur solely in open
water, but for vessel passage in ice as well. According to Walker (1996), stable
sheet and vortex cavitation occur when the propeller blade passes behind a
piece of ice, with cloud cavitation forming as the wake of the ice flow develops.
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2.5 Full-scale measurements
Ideally, the loads on the propeller blades could be determined through di-
rect measurements made on the blades (Ikonen et al., 2014). This has been
demonstrated in research conducted by Dashnaw and Reed (1971) and Brewer
(1972), where a full fixed pitch propeller assembly was removed, instrumented,
and reinstalled onto the SS Michigan. Strain gauges were fixed to one of the
blades and the wiring was carefully insulated and passed through a specially
machined hollow tail shaft through a waterproof bulkhead.

Full-scale direct measurements of ice-induced propeller loads have also suc-
cessfully been conducted, and documented in literature. Jussila and Koskinen
(1989a,b) measured normal and shear stresses on a single propeller blade of an
ice going ferry, such that bending moments and torque could be determined.
Williams and Spencer (1992) conducted full-scale direct measurements of pro-
peller loads and ice conditions for a Canadian R-class icebreaker.

However, under the harsh operating conditions experience in icy waters,
this is not always feasible as the sensors will likely be damaged (Al-Bedoor
et al., 2006). Studies such as those conducted by Kaufman and Kershisnik
(1984), Scalzo et al. (1986), Fan et al. (1994), and Srinivasan and Cuts (1995)
have demonstrated the practical limitations with regards to sensor survival
under such harsh operating conditions. Installation of such sensors can also
be difficult and expensive as this requires cables to be installed through the
shaft-line to the propeller blades (Ikonen et al., 2014).

Full-scale measurements can therefore be conducted through sensors ap-
plied to the shaft-line at points between the propeller and the engine. The
torque and thrust loads experienced by the shaft-line of the propulsion system
is then used to determine the propeller loading through an inverse problem.

Full-scale measurements have been conducted on board the SAA II (Bekker
et al., 2019), in which measurements of the propulsion shaft torque and thrust
were made. Case studies of the propulsion shaft torque and thrust loads for
use with inverse models are provided by De Waal et al. (2018a).

One of the major challenges of determining propeller ice-related loading
based on shaft measurements, is that these measurements also include the
dynamic response of the propulsion system components (Ikonen et al., 2014).
Thus the models and estimation methods, that are used to obtain the loading
conditions, need to be able to take the dynamic responses of the propulsion
system into account.

2.6 Propeller moment estimation with inverse
models

As mentioned in Section 2.5, it is challenging and expensive to directly mea-
sure loading on the propeller blades. The loading condition at the propeller
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therefore needs to be estimated from measurements made on the shaft-line.
This is referred to as the indirect force estimation approach (Jacquelin et al.,
2003). The models used to transform these shaft measurements to propeller
loads are referred to as inverse models.

Inverse models have been investigated in the literature from both a fre-
quency perspective, such as the study conducted by Doyle (1987), and a time
perspective as done by Ikonen et al. (2014). According to Batrak et al. (2014),
impact loading of the propulsion system with transient torsional vibrations,
such as those experienced during vessel operation in ice, require the time do-
main approach. The frequency domain approach is better suited for vessel
operation in open water.

The earliest inverse model that was found in literature was by Browne
et al. (1998). The model estimated the propeller loads by inverting the shaft
measurements using a deconvolution technique. Impulse response functions
were determined from shaft responses, with a knowledge of the propulsion
system masses, inertias, stiffnesses, and damping.

2.6.1 Discrete models

Discrete models of structures often make use of lumped masses or inertias,
connected with springs or dampers. Thus, various components of a system
are represented as lumped masses, when dealing with translational vibration,
or mass moments of inertia, when dealing with torsional vibration. In the
case of a vessel propulsion system, the various components are modelled as
mass moments of inertia while the connecting shafts are modelled as torsional
springs. These discrete models then result in a system of equations of motion
that can be solved to determine the dynamic response of the shaft-line:

Jθ̈(t) + Cθ̇(t) + Kθ(t) = Qice(t) (2.25)

These models can then be used to determine transfer functions between
the different components of a system. He and Du (2010), Tang and Brennan
(2013), Ikonen et al. (2014), Batrak et al. (2014), Persson (2015) and De Waal
et al. (2018b) have used lumped mass models to approximate the structural
transmissibility of the shaft-lines of vessels, with Ikonen et al. (2014), Batrak
et al. (2014), Persson (2015), and De Waal et al. (2018b) looking specifically
at ice faring propulsion systems. Of these, Ikonen et al. (2014) and De Waal
et al. (2018b) investigated the inverse determination of ice induced propeller
moments with a lumped mass model. The model used by Tang and Brennan
(2013) is shown in Figure 2.5, where it can be seen how the complicated shaft-
line arrangement can be represented by a simpler lumped model.

The lumped mass model by Rolls-Royce AB (2010a), and adapted and used
by Ikonen et al. (2014) and De Waal et al. (2018b), for the propulsion system
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Figure 2.5: Discrete lumped model for a shaft-line (adapted from Tang and Bren-
nan (2013))

of the SAA II is provided in Figure 2.6. The ice induced moment (Qice) can be
seen on the left followed by the propeller inertia (J1), the mid-propeller shaft
(J3), the sleeve coupling (J5), the flange at the oil distribution box (J7), the
thrust shaft collar (J9), the motor flange (J11), and the electric motor (J13).
The damping due to the water is denoted c1 while the remaining elements
represent the stiffness and damping of the shaft-line.

The inverse solution of these models relies on the discrete sampling of the
convolution integral (Equation 2.26) resulting in a system of linear equations
(Equation 2.27) (Jacquelin et al., 2003).

Qshaft(t) =

∫ t

0

H(t− τ)Qice(τ)dτ (2.26)

Qshaft(t) = H(t)Qice(t) (2.27)

where H is the impulse response function, Qshaft is the simulated or measured
shaft torque, and Qice the ice-induced propeller moment.
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Figure 2.6: Simplified lumped mass model for the SA Agulhas II propulsion system.
Adapted from De Waal (2017)

The inverse solution is then performed as:

Qice(t) = H−1(t)Qshaft(t) (2.28)

In both cases, Ikonen et al. (2014) and De Waal et al. (2018b) assumed
that motor torque and the hydrodynamic load on the propeller were constant
during an ice impact. As such, the impulse response function used in these
models only represents the transmissibility between the propeller moment and
the measured torque.

This assumption may not hold during ice-impacts, as the loading would
cause a reduction in the rotational speed of the shaft. When the speed drops
so will the hydrodynamic load as it depends partially on the angular velocity
of the propeller. In addition, the motor torque would increase in response to
the lost speed based on its control system.

The models made use of full-scale measured data from the shaft-line of the
SAA II polar supply and research vessel (PSRV). Only a single measurement
location was considered for the inverse estimations.

A common issue in the use of discrete models for indirect force estimation, is
that the problem becomes ill-conditioned or ill-posed (Golub et al., 1999). This
is due to the coefficient matrix in the problem having a number of singular
values that are small or close to zero, thus leading to an underdetermined
problem (Hansen, 2008).

For a linear system of equations:

Ax = b (2.29)

the problem can be said to be ill-posed if (Hansen, 2008):

• the singular values of A slowly decay to zero.
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• the condition number of A, that is the ratio between the largest and
smallest singular values, is large.

Inverse solutions of these ill-posed problems are usually unreliable. This is
due to the tendency for any errors, or noise, on b to be significantly amplified
on the solution for x (Jacquelin et al., 2003). As these discrete models are
used with a measured response b on the shaft-line, it can be expected that
there will be unknown measurement errors that will be amplified.

The ill-conditioning of these discrete problems mean that standard nu-
merical linear algebra cannot be used to compute a meaningful approximate
solution (Hansen, 2008). Instead, more complicated methods, referred to as
regularization methods, are necessary.

The purpose of regularization is to provide further information to the es-
sentially underdetermined problem, in order to make the problem stable and
provide a single solution. The most popular approach is to require that the
solution norm ‖x‖2 , or semi-norm ‖Lx‖2, be minimized (Hansen, 2008). The
regularization matrix L is usually the identity matrix or a p × n discrete ap-
proximation of the (n− p)th derivative operator (Hansen, 2008).

The original problem is then replaced with one where the solution is as
a result of the balance between the minimization of both the solution and
residual norms:

min ‖Lx‖2 subject to min ‖Ax− b‖2 (2.30)

The basis for this regularized solution is that, with small solution and
residual norms, it approximates the exact solution fairly well (Hansen, 2008).

As an example, a common regularization method is the Tikhonov method,
where the weighted sum of the residual and solution norms are minimized
(Hansen, 2008)

min
(
‖Ax− b‖22 + λ ‖Lx‖22

)
(2.31)

Here, λ is referred to as the regularisation parameter. It can be seen from
Equation 2.31 that large λ results in a small solution norm at the expense of
the residual norm, leading to over-regularization. Conversely, small λ results
in a small residual norm at the expense of the solution norm, leading to under-
regularization. For these methods it therefore becomes important to select the
regularization parameter in such a way as to balance the minimization of both
norms.

A number of methods for the selection of regularization parameters exist.
These include the discrepancy principle (Morozov, 1984), the quasi-optimality
criterion (Morozov, 1984), generalised cross validation (Wahba, 1990), and the
L-curve criterion (Hansen and O’Leary, 1993).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 19

Ikonen et al. (2014) made use of three regularization methods:

• truncated singular value decomposition,

• truncated generalized singular value decomposition,

• and Tikhonov regularization.

De Waal et al. (2018b) made use of the same methods, but made use of the
compact versions of the decompositions. In both cases, Ikonen et al. (2014)
and De Waal et al. (2018b) used an optimised regularization parameter for each
method. The parameter was optimised according to a known linear moment
impulse using the L-curve method.

A disadvantage of the inverse models discussed until now is that the ad-
ditional information required by these regularization methods is often derived
from arbitrarily assumed outputs (Polić et al., 2019).

Furthermore, these regularizations can be computationally expensive.

2.6.2 Bond graph models

An inverse model based on the bond graph method was developed by Polić
et al. (2014). The method graphically represents physical systems, showing
the flow of energy between their various elements (Paynter, 1998).

As an example of a bond graph system, consider the simple spring-mass-
damper system in Figure 2.7(a). The system can be represented using bond
graph elements, Figure 2.7(b), with the energy flow described by the half-arrow
bonds. The force acting on the system becomes a source of effort (Se), the
mass is an inertial element (I), the spring is a compliance element (C), and
the damping is a resistance element (R). The elements are joined at junctions
which can either be 0-junctions (net flow (f) is zero, effort (e) is constant)
or 1-junctions (net effort (e) is zero, flow (f) is constant). In the case of the
spring-mass-damper system, a 1-junction is used which results in the net force,
or effort, in the system being zero, thereby enforcing dynamic equilibrium.

Once the bond graph has been developed, a state space equation can be
derived of the form:

ẋ(t) = Ax(t) + Bu(t) (2.32)

Each source of effort will supply an input that is collected into the u(t)
vector, while the state vector will contain the generalized momentums (p) for
I elements and generalized displacements (q) for C elements. For the example
system in Figure 2.7, the state variables are p3 and q4, and the equations of
motion for the system are:

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 20

(a) System (b) Bond graph representation

Figure 2.7: Bond graph of a simple spring-mass-damper system

ṗ3 = e3 (2.33)

q̇4 = f4 (2.34)

Using equations for bond graph elements from Mashadi and Crolla (2012),
the equations for elements in this example are:

e1 = F (2.35)

e2 = cf2 (2.36)

e4 = kq4 (2.37)

f2 = f3 = f4 =
p3
m

(2.38)

e3 = e1 − e2 − e4 = F − cp3
m
− kq4 (2.39)

Which gives the final forms of the equations of motion:

ṗ3 = F − cp3
m
− kq4 (2.40)

q̇4 =
p3
m

(2.41)

And the state space equation:{
ṗ3
q̇4

}
=

[
− c
m
−k

− 1
m

0

]{
p3
q4

}
+

{
1
0

}
F (t) (2.42)
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Figure 2.8: Bond graph inverse model (Polić et al., 2014)

The inverse model by Polić et al. (2014) represents the propulsion shaft and
propeller using the bond graph method as shown in Figure 2.8. In this model,
the propeller parameters are connected to the 1-junction on the left and the
shaft parameters to the 0-junction on the right. The shaft was considered to be
either flexible or rigid. In the rigid case, the compliance element representing
the shaft stiffness was removed.

A simulated shaft line measurement signal was provided as input, and the
propeller load was determined based on the relationships between the bond
graph elements.

It was found that further research was necessary to determine the relation-
ship between the system properties (propeller loading, engine load, and shaft
parameters) and the sampling frequency used in the model.

Further research into the modelling of the propulsion shaft, using the bond
graph method, has been conducted by Polić et al. (2016). However, only
the forward problem was considered and the bond-graph inverse model has
not been developed further in the literature. It was recommended that a
correlation between the propeller load and the shaft torque be determined, as
a function of the propulsion system parameters. The correlation could then
be used to develop an inverse model.

Further research into this correlation was conducted by Polić et al. (2017),
in terms of the energy transfer in the propulsion shaft system. It was found
that the differences between internal shaft torque and propeller loads were de-
pendent on propeller kinetic energy (relating to the propeller inertia), followed
by the kinetic energy stored in the rigid mode (relating to the inertia of the
shaft), and the potential energy stored in the uneven flexible modes of the shaft
(relating to the stiffness of the shaft). The energy in the even flexible modes
were found to be negligible. This finding was dependent on the assumption of
small frequency ratios, discussed in Section 2.6.3. The findings of Polić et al.
(2017) lead to the development of the inverse model from Polić et al. (2019)
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in Section 2.6.3

2.6.3 Continuous models

A continuous model of a structure can be created from a differential devel-
opment of the equations of motion, as opposed to the discrete equations of
motion used in the lumped models.

Senjanović et al. (2019) explored using a combination of discrete and con-
tinuous models for the analysis of shaft-line torsional vibrations. These models
were only used for the solution of the forward problem, with known input pro-
peller moments, instead of indirectly determining the propeller moments.

The only inverse model based on this concept that was found in literature
has been developed by (Polić et al., 2019). It simplifies the equations of motion
into a solvable system of equations that do not require regularization. This is
done by representing the shaft as a combination, or superposition, of modes as
opposed to a combination of lumps or elements. Here, the equation of motion:

Jθ̈(x, t) + Cθ̇(x, t) + Kθ(x, t) = Qprop(t) + Qmotor(t) (2.43)

is developed into a system of differential equations (Equation 2.44) by using
modal superposition (Equation 2.45):

Jq̈(t) + Cq̈(t) + Kq(t) = Qprop(t) + Qmotor(t) (2.44)

θ(x, t) =
N∑
n=0

φn(x)qn(t) (2.45)

where φn(x) are the spatial mode shape functions and qn(t) the time based
modal coordinates. Modal superposition is elaborated on in Appendix A.

In order to simplify the equations of motion, the contribution of the in-
ertial terms (Jnq̈n) were assumed to be negligible for flexible modes (n > 0).
Since Jnq̈n ≈ 0 it follows that q̈n ≈ 0. This was based on the assumption
of small frequency ratios, meaning that the transmissibility of force (TRF) is
much smaller than the transmissibility of displacement (TRD) as shown in Fig-
ure 2.9. Here the frequencies of the external torque excitations (propeller and
motor torques) are considered to be less than 20 % of the natural frequency of
the shaft.

This simplification leads to two simultaneous equations, Equations 2.46 and
2.47, that can be solved to estimate the propeller moments. These equations
require two measured inputs, the angular deformation or strain and the angular
velocity.
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Figure 2.9: Comparison between TRF and TRD (Polić et al., 2019)

γs(xm, t) ≈ −Q(0, t)
Dshaft

2

N∑
n=1

φ′n(xm)φn(0)

GJ (nπ)2

2L

+Q(L, t)
Dshaft

2

N∑
n=1

φ′n(xm)φn(L)

GJ (nπ)2

2L

(2.46)

∂θ̇(xm, t)

∂t
≈ φ0(xm)

(
−Q(0, t)φ0(0) +Q(L, t)φ0(L)

ρJL

)
(2.47)

where Q(0, t) is the torque at x = 0 (the propeller end of the shaft), γs(xm, t)
is the measured shaft angular deformation at x = xm, and θ̇(xm, t) is the
measured shaft angular velocity at x = xm.

The torque at the propeller end of the shaft is then converted to the pro-
peller moment by accounting for the mass moment of inertia for the propeller
Jp:

Qprop(t) = Q(0, t)− Jp
∂θ̇(xm, t)

∂t
(2.48)

The model used simulated measured data, with additional noise, from mul-
tiple locations in the inverse estimations. This data was simulated using a
forward model based on the bond graph method (Polić et al., 2016). It was
found that the inverse model had limited success in the indirect calculation of
the propeller load, when noise is present (Polić et al., 2019). It was also found
that increased accuracy could be achieved if both the measured torque and
angular velocity were considered.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 24

The simplification of Jnq̈n ≈ 0 for n > 0 assumes that the structure is
excited far from resonance. In the case of an impulsive excitation, such as
an ice-induced impact, a broad range of frequencies is excited (Inman, 2014)
including any natural frequencies or resonances. At resonance, with the fre-
quency ratio equal to 1, both the TRF and TRD would be at a maximum.
Furthermore, if milling were to occur at a frequency close to a natural fre-
quency, this assumption would not hold.

It should also be noted that continuous models based on modal super-
position have been used in the numerical analysis of other structures. For
example, in the analysis of railway vehicle and perway interaction, the rail is
often modelled, using modal superposition, as a continuous beam while the
remaining components are modelled using lumped masses (Zhai et al., 2001;
Sun and Dhanasekar, 2002). Though these models are not used for indirect
force estimation, the techniques used to derive the continuous model are still
relevant.

2.6.4 Summary

Based on the review of models for inverse propeller moment estimation, the
following observations are made.

1. There is sparse literature available on inverse models for the estimation
of propeller moments from indirect propulsion shaft measurements. Only
four inverse models could be identified.

a) The first (Browne et al., 1998), made use of a deconvolution with the
impulse response functions to estimate propeller loads from mea-
sured shaft responses.

b) The discrete models from Ikonen et al. (2014) and De Waal (2017)
similarly made use of the impulse response function, and derived a
system of equations that can be solved with the help of regulariza-
tion. These models are essentially the same, with slight differences
in their inertial values and the implementation of the regularization.

c) The third model was based on the bond graph method, and at-
tempted to find the propeller loads by looking at the transfer of
energy through the propulsion system. Further research into the
inverse problem has been recommended.

d) Finally, is the continuous model presented by Polić et al. (2019).
This model used modal superposition to derive the equations of
motion, and developed simplified equations for the propeller mo-
ment which could be solved directly.
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2. The most recent contributions are the discrete model (De Waal et al.,
2018b) and the continuous model (Polić et al., 2019). These are selected
as the focus for further study.

3. For the discrete models presented by Ikonen et al. (2014) and De Waal
et al. (2018b):

a) only three regularization methods were considered. As the regu-
larization can be computationally expensive, it may be worthwhile
investigating and comparing additional regularization methods to
find one that is the most efficient for this application.

b) the methods were only tested against a small number of cases (three
for Ikonen et al. (2014) and five for De Waal et al. (2018b)) and
therefore does not provide much data for comparison.

c) it is possible that the optimal regularization parameters that were
determined may not be optimal for every case.

d) the motor torque and hydrodynamic loading were both assumed
to be constant. The influence of this assumption should be in-
vestigated, as these would likely not remain constant during ice-
propeller interaction.

e) the model only took measured input data from a single location.
Comparing the results from multiple input locations could help to
validate the model. This was also a recommendation from De Waal
(2017).

4. For the continuous model presented by Polić et al. (2019):

a) a key assumption of the model was that the modal inertias were
negligible for flexible modes. This assumption would not hold for
loading at a frequency close to resonance. A new model that ac-
counts for the modal inertias could be developed to evaluate this
assumption.

b) Another model that achieves similar results would help validate and
could be validated against Polić et al. (2019).

c) the model has not been used with full-scale measured data.

d) the model only considers the influence of the propeller inertia. This
could be expanded to include the inertia of other components.

e) it was shown that the inclusion of measured angular velocity as an
input to the inverse model helped improve its accuracy.

5. There are no direct comparisons between the different inverse models.
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Full-scale measurements

Full-scale measurements were conducted on the SAA II PSRV shaft-line on
multiple voyages. This was done in an effort to capture data to use for the
indirect estimation of propeller loads.

The full measurement system consists of strain gauge bridges, accelerom-
eters, and a tachometer installed on the port side shaft-line. Furthermore,
navigation and machine control data were recorded by the Central Measure-
ment Unit (CMU) installed aboard the ship. The measured parameters most
important to this study were the shaft-line torque and angular velocity.

Section 3.1 describes the SAA II on which the full-scale measurements were
conducted. Section 3.2 describes the voyages during which full-scale measure-
ments were conducted. Section 3.3 describes the full-scale measurements that
were conducted, with the propulsion shaft torque and angular velocity mea-
surements covered by Sections 3.3.1 and 3.3.2 respectively.

3.1 Vessel, the S.A. Agulhas II
The SAA II, shown in Figure 3.1, was built by STX Finland in Rauma ship-
yard in 2012 (Ikonen et al., 2014). Her hull was designed and strengthened
according to DNV ICE-10 requirements and she was classified as Polar Ice
Class PC-5 (Kujala et al., 2014). According to the International Association
of Classification Societies (2016), this rating allows the SAA II to conduct year-
round operations in medium first year ice that may contain old ice inclusions.
She is owned by the South African Department of Environment, Forestry, and
Fisheries.

The SAA II is powered by four six-cylinder diesel engines, each generating
3 MW. These provide power to the propulsion system, as well as to the rest
of the ship. The propulsion system consists of diesel-electric powertrains each
with a 4.5 MW electric motor driving four-bladed controllable pitch propeller
(CPP) (STX Finland Oy, 2012b). Table 3.1 provides specifications for the
SAA II.

26
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Figure 3.1: The S.A. Agulhas II

Table 3.1: Specifications for the S.A. Agulhas II (STX Finland Oy, 2012b; De Waal,
2017)

Gross tonnage 12 897 tons
Overall length 134.2 m
Length between perpendiculars 121.2 m
Breadth 22 m
Classification DNV
Class notation 1A1 PC-5 / ICE-10
Built by STX Finland
Location built Rauma, Finland
Year built 2012
Diesel engine type Wärtsilä 6L32
Electric motor type Converteam N3 HXC 1120 LL8
MCR speed 140 rpm
MCR power 4.5 MW
MCR torque 307 kNm
Propeller manufacturer Rolls-Royce
No. of propeller blades 4
Propeller diameter 4.3 m
Shaft characteristics Direct drive
No. of motors / propellers 2 / 2
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3.2 Voyages
The data used in this study come from two separate voyages:

• The 2018/19 Antarctic voyage, which took place from December 2018 to
March 2019. This voyage included logistics operations for the SANAE
IV Antarctic base as well as a research voyage into the Weddell Sea.
Measurements taken aboard this voyage include the shaft-line torque
at two separate locations, and recorded data from the CMU. Measure-
ments from this voyage are used to validate and expand upon the lumped
mass model used to estimate the propeller loading (Ikonen et al., 2014;
De Waal, 2017; De Waal et al., 2018b).

• The 2019 SCALE Spring Cruise, which took place during October and
November of 2019. This was a research voyage to the marginal ice zone.
Measurements taken aboard this voyage include the shaft-line torque,
shaft-line angular speed, and recorded data from the CMU. Measure-
ments from this voyage were used in the development of the new method
for estimating propeller loads, based on the use of a modal model. They
are also used to compare the lumped mass and modal models.

3.3 Instrumentation and measurements
The measurement system on the SAA II shaft-line includes strain gauge bridges
placed to record the thrust and torque, accelerometers placed at shaft-line
bearings, and a tachometer and zebra tape for the measurement of shaft-line
rotational speed. All measurements are conducted on the port side shaft-
line. Only the data from the torque strain gauge bridges, the tachometer, and
supporting data from the CMU are considered in this study. The measurement
data for the voyages considered were saved every 5 minutes continuously over
the course of the voyage.

For voyages prior to 2018, the torque on the shaft was measured at a
single location (Q1 in Figure 3.2). From the 2018-19 Annual Relief Voyage the
shaft-line was instrumented with a second torque measurement location (Q2

in Figure 3.2).
The tachometer was installed for the 2019 SCALE Spring Cruise and is

also located at the measurement location Q1.
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(a) Top down view of port side shaft-line on deck two (Adapted from STX Finland Oy (2012a))

(b) Detail view of shaft-line (Adapted from Rolls-Royce AB (2010c))

Figure 3.2: Propulsion shaft measurement locations
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Figure 3.3: Strain gauge Wheatstone bridge at second measurement location

3.3.1 Torque measurements

The inverse models discussed in Chapter 2 require known responses from the
vessel’s propulsion line. As such, the shear strain on the propulsion shaft was
measured and converted to an internal torque.

Strain gauges were installed on the port side shaft line to measure torque.
At each measurement location, two 45◦ half-bridge T-rosettes were connected
to form a full-bridge Wheatstone circuit. The strain gauges were arranged in
a full-bridge circuit to reject axial and bending strain, and to compensate for
strains caused by temperature variations. Figure 3.3 presents a photograph of
the Wheatstone bridge installation for the second torque measurement point.

The diagram for a Wheatstone bridge is presented in Figure 3.4. From
Hoffmann (2001), the equation describing a full-bridge Wheatstone circuit is

UA
UE

=
1

4

(
∆R1

R1

− ∆R2

R2

+
∆R3

R3

− ∆R4

R4

)
=
k

4
(ε1 − ε2 + ε3 − ε4) (3.1)

When a torque is applied to the shaft, strain gauges two and four will
measure strain equal in magnitude and opposite in direction to gauges one
and three (Hoffmann, 2001). Equation 3.1 therefore becomes:

UA
UE

= kε (3.2)

The shear strain is obtained through the measured strain and the following
equation (Hibbeler, 2011):

γs,max
2

=

√(
εx − εy

2

)2

+
(γxy

2

)2
(3.3)
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Figure 3.4: Wheatstone bridge circuit. Adapted from Figliola and Beasley (2011)

where εx and εy are the normal strains parallel and perpendicular to the shaft
axis respectively, and γxy is the relative shear strain. Aligning the strain gauges
at 45◦ to the shaft axis leads to a case of principal strain. This results in γxy
being equal to zero and the normal strains are equal in magnitude and opposite
direction. Thus, Equation 3.3 becomes:

γs,max
2

= ε (3.4)

The shear strain can be related to the internal torque in the shaft-line using
expressions provided by Hibbeler (2011).

τ = Gγs =
Qshaftdo

2Sp
(3.5)

G =
E

2 (1 + ν)
(3.6)

Sp =
π (d4o − d4i )

32
(3.7)

Combining Equations 3.2 and 3.4 to 3.7 leads to an expression that can
be used to relate the shaft-line torque directly to the measured strain. This
expression is provided in Equation 3.8. Since this internal torque is directly re-
lated to the measurements on the shaft, it is henceforth referred to as measured
torque.
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Qshaft = ε

(
πE (d4o − d4i )
16do (1 + ν)

)
(3.8)

The values for the parameters used in Equation 3.8 are provided in Ta-
ble 3.2.

Table 3.2: Parameters used in torque calculations (Rolls-Royce AB, 2010c; STX
Finland Oy, 2012b)

Parameter Symbol Value
Young’s Modulus E 210 GPa
Shear Modulus G 81 GPa
Poisson’s ratio ν 0.29
Inner shaft diameter di 0.175 m
Outer shaft diameter do 0.5 m

The measurement is conducted through wireless sensor nodes that transmit
the data to a nearby laptop for recording. The wireless system consists of V-
Links (LORD MicroStrain sensing systems, 2016), attached to the shaft, that
measure the voltage outputs from the strain gauge bridges. This measurement
is then passed through an analogue-to-digital converter and transmitted wire-
lessly to a WSDA-Base station through Wi-Fi. The base station is controlled
through the SensorConnect software, and sends data to an HBM QuantumX
data acquisition unit for recording. The digital signal is converted to strain us-
ing calibration constants determined during the calibration of the strain gauge
bridges through SensorConnect. The sample rate for the torque measurements
was 600 Hz.

Ice impacts were identified from the measured data for indirect propeller
moment estimations. An impact upon a structure results in a broadband fre-
quency excitation (Inman, 2014). Thus the spectra of the measured torque
were analysed to search for points in time where broadband frequency excita-
tions were present. The internal torque corresponding to this broadband exci-
tation could then be extracted for analysis. Figure 3.5(a) provides an example
of a spectrum determined for the 30 October 2019 for an hour long extract
of the measured torque at location Q1. A number of ice impacts are visible,
corresponding to the vertical lines on the spectrum representing broadband
frequency excitations. The internal torque due to an ice impact at 20:06:23 is
highlighted in Figure 3.5(a), and shown in Figure 3.5(b)

As is characteristic of measured signals, the torque measurements contained
noise. Since the frequencies of interest in the torque signals are low, a low-pass
filter could be applied to remove noise while keeping the signal intact.

However, there were instances of packet loss on the wireless measurements.
This was due to the V-Link wireless nodes momentarily losing connection with
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(a) Torque measurement and spectrum for 19:55:22 to 20:55:27 (UTC) on
30 October 2019

(b) Internal torque at 20:06:23 (UTC) on 30 October 2019 due to ice
impact

Figure 3.5: Identification of propeller ice impacts
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the WSDA-Base station. As a result, small discontinuities were introduced
into the measured signal. Low pass filtering was not able to fully remove these
errors.

Instead, a smoothing algorithm was employed to remove the noise and the
discontinuities. The smoothing algorithm developed by Garcia (2010, 2020)
was selected for its capability to efficiently and robustly smooth signals with
missing values.

3.3.2 Angular velocity measurements

The rotational speed of the motor and propulsion shaft are recorded by the
CMU on board the SAA II during voyages. However, these recordings are
sampled at a low frequency (1 to 2 Hz) and are therefore not useful for any
transient analysis of the shaft response.

Based on the recommendations of De Waal (2017) and the research by
Polić et al. (2019), the measurement system was upgraded to include a higher
frequency measurement of the rotational speed of the propulsion shaft. This
could then be used along with the measured torque in the assessment and
development of the inverse models.

Figure 3.6 shows the tachometer and zebra tape used to measure the ro-
tational speed of the shaft-line. The tachometer works by emitting a laser
that is reflected back by the reflective bars of the zebra tape. The tachometer
then senses each time the light is reflected and emits a pulse, measured as a
voltage signal that alternates between zero and five volts. The voltage pulses
are recorded and saved using the same HBM QuantumX data acquisition unit
that records the strain data. The pulses were sampled at 4800 Hz.

Each time a pulse is measured, a bar of the zebra tape has passed by the
sensor. By knowing the circumference of the shaft and how many bars long
the zebra tape is, the instantaneous angular speed (IAS) can be calculated as
(Diamond et al., 2016)

θ̇ =
dθ

dt
≈ ∆θ

∆t
(3.9)

where ∆θ is the angular displacement and ∆t is the time delay, both between
subsequent zebra tape bars or pulses. For this study, the IAS of the shaft is
calculated from the measured pulses using MATLAB’s tachorpm function.

It is also important to note that the joint where the zebra tape ends meet
causes errors on the calculated IAS. This is due to the joint not conforming in
bar thickness with the rest of the tape. The calculated IAS at this section thus
varies significantly, and can be seen as a large drop in the IAS. This can be seen
in Figure 3.7, showing an extract of the measured IAS corresponding to the
ice impact shown in Figure 3.5(b). This was corrected for by using the robust
version of the smoothing function developed by Garcia (2010, 2020), which
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Figure 3.6: Tachometer and zebra tape

removes these outliers. This corrected measurement is shown in Figure 3.7. In
addition, this smoothing was used to remove noise from the measured angular
velocity.

Figure 3.7: Extract of the shaft-line instantaneous angular speed for 30 October
2019 at 20:06:24 (UTC)
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3.3.3 Dry-dock measurements

The SAA II was in dry dock in March of 2017. This was a scheduled main-
tenance event to be undertaken during the fifth year of the ship’s operations.
This allowed for the replacement of components not easily maintained while the
ship was afloat, for example the anodes preventing the rusting of the hull. The
hull was also sandblasted and repainted, and the propeller blades inspected
and maintained.

During these operations, an effort was made to conduct vibration mea-
surements on the port side shaft-line in order to perform a modal analysis
of the system. The data acquisition software used was LMS Test.Lab from
Siemens (Siemens PLM Software, 2014), and the hardware consisted of two
LMS SCADAS Mobile data acquisition units connected in a master-slave con-
figuration, thirteen ICP accelerometers (PCB Piezotronics, 2009) and one
impedance sensor PCB Piezotronics (2017) from PCB Piezotronics, and a
modal hammer (PCB Piezotronics, 2015) and sledgehammer to provide exci-
tation to the system. A limitation of this test was that a modal sledgehammer
was not available.

The shaft-line was instrumented with ICP accelerometers at three loca-
tions, each measuring the axial, perpendicular, and rotational vibrations. The
first two measurement locations correspond with the strain gauge measurement
locations. The last location is toward the stern of ship as close as possible to
the point where the shaft line exits the stern. Figure 3.8 shows the instrumen-
tation setup at measurement location Q1, with similar setups used at Q2 and
the stern exit. A single propeller blade was also instrumented with four ICP
accelerometers; at the blade root, at the centre of the blade, and one each on
the leading and trailing edges respectively. An impedance sensor was installed
on the blade tip, in an attempt to measure the input force from the hammer
excitation in addition to acceleration. This installation is shown in Figure 3.9.

The tests were conducted by exciting the shaft-line system externally with
a sledgehammer at various locations, including the blade tip, trailing edge,
and propeller hub, in both axial and torsional directions to obtain vibration
data. The vibration data could then be used to extract the frequency response
of the shaft-line.

Due to the input excitation being too small to adequately excite the struc-
ture, it was not possible to perform modal analysis on the shaft line. It was,
however, possible to extract the first two natural frequencies of the shaft-line.
They are presented in Table 3.3 and compared to full-scale measurements con-
ducted by Peltokorpi et al. (2014). The difference between the measurements
is due to the different boundary conditions during dry-dock testing, when
compared to operational measurements. The dry-dock testing took place on
a stationary shaft, locked in place, with the propeller in air instead of water.
Despite the differences, the frequencies are still close.
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Figure 3.8: Accelerometers at first strain gauge location

Figure 3.9: Accelerometers on blade

Table 3.3: Comparison of natural frequencies determined by Peltokorpi et al. (2014)
and from dry-dock measurements

Peltokorpi
et al. (2014)

Dry-dock
Measure-
ments

f1 11.2 Hz 10.1 Hz
f2 46.3 Hz 49.6 Hz
∆f1 9.82 %
∆f2 7.13 %
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Chapter 4

Propeller moment estimation
using a discrete model of the
propulsion shaft

A discrete lumped mass model was first used by Ikonen et al. (2014), and then
by De Waal (2017); De Waal et al. (2018b) to estimate ice-induced propeller
moments for the SAA II.

The lumped mass model is a discrete representation of the propulsion shaft-
line. Thus the angular displacement, velocity, and acceleration can only be
computed for locations on the shaft that match the model discretization.

The propeller moment is estimated indirectly from the torque measure-
ments taken on the propulsion shaft. This estimation is obtained by first
subjecting the model to a forward problem to determine a transfer function
from the propeller load to the propulsion shaft torque at the measurement
point. This is then followed by an inverse problem using the propulsion shaft
measurements as input.

For brevity, this model is henceforth referred to as the discrete model.
Section 4.1 provides the description and mathematical derivation of the

discrete model.
The forward solution of the discrete model is covered in Section 4.2.
Section 4.3 describes the inverse solution of the discrete model, includ-

ing explanations of the various regularization methods and the selections of
regularization parameters.

Section 4.4 focuses on the evaluation of the discrete model. The different
regularization methods are evaluated in Section 4.4.1 in terms of their robust-
ness and efficiency. A comparison of the results between the inverse solutions
from the two measurement locations on the propulsion shaft is provided in Sec-
tion 4.4.2. Results from the inverse solution are compared to results provided
by Rolls-Royce AB (2010a) in Section 4.4.3.

Finally, the limitations of the discrete model and a discussion of the results
are provided in Sections 4.5 and 4.6 respectively.

38
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Figure 4.1 provides a breakdown of the research presented in this chapter,
and shows where the contributions to literature arise.

Figure 4.1: Breakdown for Chapter 4 research and contributions
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4.1 Description of the discrete model
The discrete model used to model the SAA II shaft-line is based on a model
by Rolls-Royce AB (2010a) for the forward solution of ice-impact simulations.
The model and its associated algorithms were developed by De Waal (2017),
based on the work done by Ikonen et al. (2014), and has been further developed
during this study. The model is shown in Figure 4.2.

Figure 4.2: Discrete lumped mass model of the SAA II shaft-line (Adapted from
De Waal (2017) and Rolls-Royce AB (2010c)). J1 is the controllable pitch propeller,
J3 is the mid-propeller shaft, J5 is the sleeve coupling, J7 is the oil distribution box
flange, J9 is the thrust shaft collar, J11 is the electric motor flange, and J13 is the
electric motor.

The model consists of thirteen elements, alternating between inertial and
damping/stiffness elements, representing the various elements of the shaft-line
assembly.

The damping c1 represents the hydrodynamic damping on the propeller.
The propeller inertia includes the hydrodynamic mass of the water it inter-
acts with, and both the hydrodynamic mass and hydrodynamic damping were
determined by Rolls-Royce AB (2010b) using the method developed by Schwa-
necke (1963). The values used for these parameters can be found in Table C.1
in Appendix C.

The model only considers rotational degrees of freedom about the shaft
axis (x-axis in Figure 4.2). Each element has a node on either side as shown
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in Figure 4.3. At each node, the internal torque and angular displacement are
considered.

Figure 4.3: Lumped mass model elements (De Waal, 2017)

For the inertial elements, the angular displacement is constant across nodes
(θi,1 = θi,2). For the damping/stiffness elements, the internal torque is constant
across nodes (Qi,1 = Qi,2)

The equations for the torsional vibration of inertial elements (odd values
of i) and damping/stiffness elements (even values of i) are provided in Equa-
tions 4.1 and 4.2 respectively (De Waal, 2017).

Jiθ̈i,1 + ciθ̇i,1 = −Qi,1 +Qi,2 +Qice (4.1)

ci

(
θ̇i,2 − θ̇i,1

)
+ ki (θi,2 − θi,1) = Qi,1 (4.2)

Note that the Qice term in Equation 4.1 only applies to the propeller ele-
ment, that is when i = 1. For all other inertial elements, Qice = 0.

The Newmark-β numerical time integration scheme (Appendix B.1) is em-
ployed to solve the dynamic system. This is done by combining incremental
forms of the Newmark-β equations for the angular velocity and acceleration
(Equations 4.3 and 4.4), with incremental forms of the equations for torsional
vibration (Ikonen et al., 2014). Here n is a counter representing the current
time step.

∆θ̇n = θ̇n+1 − θ̇n =
γ

β∆t
∆θn −

γ

β
θ̇n −

(
γ

2β
− 1

)
θ̈n∆t (4.3)

∆θ̈n = θ̈n+1 − θ̈n =
1

β∆t2
∆θn −

1

β∆t
θ̇n −

1

2β
θ̈n (4.4)

Rewriting the torsional vibration Equations 4.1 and 4.2 in incremental form
and substituting in Equations 4.3 and 4.4 gives the following equations (Ikonen
et al., 2014):
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∆Qi,1(t) + Ai∆θi,1(t)−∆Qi,2(t) = Bi (4.5)

∆Qi,1(t) + Ai∆θi,1(t)− Ai∆θi,2(t) = Bi (4.6)

where the variables Ai and Bi are described by Equations 4.7 and 4.8 for iner-
tial elements (odd values of i), and Equations 4.9 and 4.10 damping/stiffness
elements (even values of i).

Ai =
Ji

β∆t2
+

ciγ

β∆t
(4.7)

Bi = Ji

(
1

β∆t
θ̇i(t) +

1

2β
θ̈i(t)

)
+ ci

(
γ

β
θ̇i(t) +

(
γ

2β
− 1

)
θ̈i(t)∆t

)
+ ∆Qice(t) (4.8)

Ai = ki +
ciγ

β∆t
(4.9)

Bi = ci

(
γ

β

(
θ̇i(t−∆t)− θ̇i(t)

)
+

(
γ

2β
− 1

)
∆t
(
θ̈i(t−∆t)− θ̈i(t)

))
(4.10)

Equations 4.7 and 4.8 are written in matrix form to facilitate the solution
of multiple element systems. Equation 4.11 is the matrix equation for inertial
elements, while Equation 4.12 is the matrix equation for damping/stiffness
elements:

[
1 Ai −1 0
0 1 0 −1

]
∆Qi,1

∆θi,1
∆Qi,2

∆θi,2

 =

{
Bi

0

}
(4.11)

[
1 Ai 0 −Ai
1 0 −1 0

]
∆Qi,1

∆θi,1
∆Qi,2

∆θi,2

 =

{
Bi

0

}
(4.12)
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where the second row in Equations 4.11 and 4.12 satisfy the conditions θi,1 =
θi,2 for inertial elements and Qi,1 = Qi,2 for damping/stiffness elements respec-
tively.

Equations 4.11 and 4.12 are combined for each element in the discrete
model, to form a single equation for the system (De Waal, 2017):

W



∆Q1

∆θ1
∆Q2

∆θ2
...

∆Q13

∆θ13
∆Q14

∆θ14


=



0
B1

0
B2
...
0
B13

0
0


(4.13)

In Equation 4.13, ∆Q1 to ∆Q14 and ∆θ1 to ∆θ14 refer to the internal
torques and angular displacements at the element interfaces. The matrix W
is defined as:

W =



1 0 0 0 0 0 · · · 0 0 0 0 0 0

1 A1 −1 0 0 0 · · · 0 0 0 0 0 0
0 1 0 −1 0 0 · · · 0 0 0 0 0 0
0 0 1 A2 0 −A2 · · · 0 0 0 0 0 0
0 0 1 0 −1 0 · · · 0 0 0 0 0 0
...

...
...

. . . . . . . . . . . . . . . . . . . . .
...

...
...

0 0 0 0 0 0 · · · 1 A12 0 −A12 0 0
0 0 0 0 0 0 · · · 1 0 −1 0 0 0
0 0 0 0 0 0 · · · 0 0 1 A13 −1 0
0 0 0 0 0 0 · · · 0 0 0 1 0 −1
0 0 0 0 0 0 · · · 0 0 0 0 1 0



(4.14)

The first and last rows of matrix W enforce the boundary conditions of
zero internal torque at the end points, while allowing for free rotation around
the x-axis.

It should be noted that this derivation of the model only considers changes
in the external ice-induced propeller moment, and assumes that the motor
torque is constant.

4.2 Forward solution of the discrete model
During the forward solution of the model, the changes in internal torques
(∆Qi) and angular displacements (∆θi) for each time step are obtained by
solving Equation 4.15, from Equation 4.13.
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Figure 4.4: IACS case 1 ice impact simulation with 90° single blade impacts, as
used by Rolls-Royce AB (2010a)



∆Q1

∆θ1
∆Q2

∆θ2
...

∆Q13

∆θ13
∆Q14

∆θ14


= W−1



0
B1

0
B2
...
0
B13

0
0


(4.15)

The changes in angular velocity (∆θ̇i) and acceleration (∆θ̈i) are deter-
mined using Equations 4.3 and 4.4. From these changes, the values for the
next time step can be determined and used to update the variables Bi. This
procedure is continued until the desired time step.

The model is evaluated using the IACS case 1 for 4 bladed propellers during
90° single-blade impact sequence, as used by Rolls-Royce in their ice impact
simulation of the SAA II shaft line (Rolls-Royce AB, 2010a), as shown in
Figure 4.4. The reason for the use of this IACS case is so that the results
from the forward solution can be directly compared to the results from (Rolls-
Royce AB, 2010a). The results of the solution for the internal torque, from
this model and from Rolls-Royce AB (2010a), for the motor shaft in the model
(between J11 and J13 in Figure 4.2) are presented in Figure 4.5.
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(a) Motor shaft internal torque adapted from Rolls-Royce AB (2010a)

(b) Motor shaft internal torque from discrete model

Figure 4.5: Comparison of discrete model and Rolls-Royce AB (2010a) internal
torques in motor shaft for forward solution
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It can be seen that the two models produce different results, though they
follow a similar pattern.

The differences can largely be attributed to the derivation of the discrete
model which assumes a constant motor torque while the model used by Rolls-
Royce AB (2010a) allows for the motor torque to change over time. This results
in different angular velocities during the solutions of the models, and leads to
the different internal torques. Specifically, it can be seen in Figure 4.5(a)
that the torque calculated by Rolls-Royce AB (2010a) starts settling around a
higher value than its initial starting point, after the influence of the ice impacts.
This is due to an increase in motor torque and thus an increase in the angular
velocity. The constant motor torque assumed for the discrete model results in
the internal torque returning to its initial value, seen in Figure 4.5(b), at the
same initial angular velocity.

The assumption of constant motor torque is not entirely accurate, and
the actual motor torque would change when the shaft-line is subjected to
external ice impacts as the propulsion system attempts to compensate for the
unexpected loading.

4.3 Inverse solution of the discrete model
The inverse solution of the discrete model is performed using the impulse
response function (H) between the propeller and measurement location.

The principle of superposition can be applied to systems that respond lin-
early, or are assumed to respond linearly (Inman, 2014). This linearity allows
the use of the convolution integral to solve systems of linear equations. The
convolution integral for this model is provided in Equation 4.16 (Inman, 2014).

Qshaft(t) =

∫ t

0

H(t− τ)Qice(τ)dτ (4.16)

Equation 4.16 can be solved by sampling it at n discrete time intervals,
leading to a system of linear equations (Jacquelin et al., 2003):

Qshaft(t) = H(t)Qice(t) (4.17)

where the impulse response function in matrix form becomes:

H(t) =


h(∆t) 0 · · · 0
h(2∆t) h(∆t) · · · 0
h(3∆t) h(2∆t) · · · 0

...
... . . . ...

h(n∆t) h((n− 1)∆t) · · · h(∆t)

 (4.18)
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and the internal shaft-line torque (Qshaft) and external ice induced moment
(Qice) respectively are (De Waal, 2017):

Qshaft(t) =



qs(∆t)
qs(2∆t)
qs(3∆t)

...
qs(n∆t)


(4.19)

Qice(t) =



qp(∆t)− qp(0)
qp(2∆t)− qp(∆t)
qp(3∆t)− qp(2∆t)

...
qp(n∆t)− qp((n− 1)∆t)


(4.20)

The impulse response matrix, for a given measurement point on the model,
is obtained by subjecting the model to a unit step input at the propeller. That
is, the externally applied moment becomes:

Qice(t) =



qp(∆t)− qp(0)
qp(2∆t)− qp(∆t)
qp(3∆t)− qp(2∆t)

...
qp(n∆t)− qp((n− 1)∆t)


=



1
0
0
...
0


(4.21)

representing a unitary change in external moment at the first time step, and
the moment remaining constant for the following time steps.

Substitution of Equation 4.21 into Equation 4.17 allows for the solution of
the impulse response matrix for a unit step input:

H(t) =


qs(∆t) 0 · · · 0
qs(2∆t) qs(∆t) · · · 0
qs(3∆t) qs(2∆t) · · · 0

...
... . . . ...

qs(n∆t) qs((n− 1)∆t) · · · qs(∆t)

 (4.22)

Using this impulse response matrix it is now possible to perform the inverse
solution using Equation 4.23.

Qice(t) = H−1(t)Qshaft(t) (4.23)
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As commonly occurs in the discretization of inverse problems, the coef-
ficient matrix, in this case the impulse response matrix, becomes highly ill-
conditioned (Golub et al., 1999). This problem is ill-conditioned as the impulse
response matrix has a high condition number, of the order 1020. The condi-
tion number is the ratio between the largest and smallest singular values of the
system and represents the stability of the system (Ikonen et al., 2014), with
condition numbers higher than 1 indicating instability. This instability leads
to the amplification of any noise, or errors, in a measured signal (Jacquelin
et al., 2003).

Inverting the ill-conditioned matrix and multiplying with measured data
from the shaft-line will thus lead to large errors on the inversely estimated
propeller moment. It is therefore necessary to apply regularization to the
inverse solution.

4.3.1 Regularization methods

The main difficulty with discrete ill-conditioned problems is that they are
effectively underdetermined due to having a number of small singular values
in the coefficient matrix (Hansen, 2008). It is therefore necessary to provide
extra information about the desired solution to stabilise the problem and find
a single solution. This is what is known as regularization (Hansen, 2008).

A number of different regularization methods exist, and these can be either
direct or iterative methods. Only direct methods are considered for the solution
of this model in order to avoid the extra computations necessary in iterative
methods.

The direct regularization methods considered for the inverse solution of the
discrete model are:

• Truncated singular value decomposition (TSVD)

• Modified truncated singular value decomposition (MTSVD)

• Truncated generalised singular value decomposition (TGSVD)

• Damped singular value decomposition (DSVD)

• Damped generalised singular value decomposition (DGSVD)

• Tikhonov

• Least squares using either a quadratic constraint or the discrepancy prin-
ciple

These methods were chosen as their implementations were readily available
in literature (Hansen, 2008). This expands on the methods originally used by
Ikonen et al. (2014) and De Waal (2017), who considered the TSVD, TGSVD,
and Tikhonov methods.
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TSVD

The SVD of the impulse response matrix is (Hansen, 2008):

H =
n∑
i=1

uiσivTi (4.24)

with σi being the singular values ofH, and ui and vi the left and right singular
vectors of H respectively.

The TSVD method replaces H with a rank-deficient coefficient matrix Hk

by truncating the SVD expansion at k (Hansen, 2008)

Hk =
k∑
i=1

uiσivTi , k ≤ n (4.25)

The method then solves the problem:

min ‖Qice‖2 subject to min
∥∥HkQice −Qshaft

∥∥
2

(4.26)

which leads to the solution:

Qice =
k∑
i=1

uTi Qshaft

σi
vi (4.27)

MTSVD

The MTSVD method is similar to the TSVD, but has been modified to make
use of a regularization matrix L that contains assumed information about the
smoothness of the solution.

In this case, the problem solved is (Hansen, 2008)

min ‖LQice‖2 subject to min
∥∥HkQice −Qshaft

∥∥
2

(4.28)

which leads to the solution:

Qice =
k∑
i=1

uTi Qshaft

σi
vi −Vk(LVk)

†L
k∑
i=1

uTi Qshaft

σi
vi (4.29)

where † denotes the pseudoinverse and Vk = {vk+1 · · · vn}.
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TGSVD

For the GSVD the system is defined by the matrix pair H ∈ Rm×n and L ∈
Rp×n, with m ≥ n ≥ p. The GSVD is then a decomposition of H and L of the
form (Hansen, 2008):

H = U
[
Σ 0
0 In−p

]
X−1 (4.30)

L = V(M, 0)X−1 (4.31)

where the columns of U ∈ Rm×n and V ∈ Rp×p are orthonormal, X ∈ Rn×n is
nonsingular, Σ = diag(σ1, σ2, · · · , σp), and M = diag(µ1, µ2, · · · , µp)

The TGSVD solution for the problem:

min ‖LQice‖2 subject to min
∥∥HkQice −Qshaft

∥∥
2

(4.32)

is given by:

Qice =

p∑
i=p−k+1

uTi Qshaft

σi
xi +

n∑
i=p+1

(
uTi Qshaft

)
xi (4.33)

DSVD and DGSVD

The damped SVD and GSVD methods are based on the SVD and GSVD meth-
ods respectively (Hansen, 2008). The filter factors for the damped methods
differ, and are given by:

fi =
σi

σi + λ
(4.34)

fi =
σi

σi + λµi
(4.35)

for the DSVD and DGSVD respectively. The solutions for the DSVD and
DGSVD methods respectively are:

Qice =
n∑
i=1

fi
uTi Qshaft

σi
vi (4.36)

Qice =

p∑
i=1

fi
uTi Qshaft

σi
xi +

n∑
i=p+1

(
uTi Qshaft

)
xi (4.37)
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Tikhonov

One of the most common and well known methods is Tikhonov regularization
(Hansen, 2008). Here, the regularized solution is defined as the minimizer of
a weighted combination of the residual norm and solution seminorm:

Qice = min
(∥∥HQice −Qshaft

∥∥2
2

+ λ ‖LQice‖
2
2

)
(4.38)

where λ is the regularization parameter.

Least squares methods

The least squares methods work by minimizing either the residual norm or
solution seminorm subject to some constraint (Hansen, 2008), leading to two
similar methods.

The minimization of the residual norm is subject to a quadratic inequality
constraint on the solution seminorm. Hereafter, this method is referred to as
least squares with quadratic constraint:

min
∥∥HQice −Qshaft

∥∥
2

subject to ‖LQice‖2 ≤ λ1 (4.39)

The minimization of the solution seminorm is subject to a constraint on
the residual norm. This method is referred to as least squares with discrepancy
principle, based on the method for choosing a regularization parameter.

min ‖LQice‖2 subject to min
∥∥HQice −Qshaft

∥∥
2
≤ λ2 (4.40)

In these methods λ acts as the regularization parameter.

4.3.2 Regularization matrix

For a number of the regularization methods in Section 4.3.1, the regularization
matrix L is incorporated to provide information about the presumed smooth-
ness of the solution (Ikonen et al., 2014). The matrix L is usually the identity
matrix or a p × n discrete approximation of the (n − p)th derivative operator
(Hansen, 2008).

Due to the solution vector in this problem being defined as changes between
times steps, the mth order regularization matrix corresponds to the (m+ 1)th

derivative operator (Ikonen et al., 2014).
Ikonen et al. (2014) tested the 0th, 1st and 2nd order regularization matrices,

corresponding to the 1st, 2nd and 3rd derivative operators respectively. The 1st
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order regularization matrix was found to be the best for the discrete model
(Ikonen et al., 2014).

L =


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 −1 1 0
0 · · · 0 0 −1 1

 (4.41)

4.3.3 Regularization parameter

Each of the regularization methods in Section 4.3.1 requires the selection of
some regularization parameter.

For the SVD based methods the parameter is the number of singular values
to keep in the calculation, in other words where to truncate the expansion. For
the other methods, the parameter λ must be selected.

The L-curve method was chosen for the selection of the regularization pa-
rameters (Hansen and O’Leary, 1993). This method plots the solution semi-
norm against the residual norm, for all valid regularization parameters, forming
an L-shaped curve, as depicted in Figure 4.6. The L-curve provides a way to
visually determine where both the solution and residual norms are minimized
simultaneously. The error on the regularized solution consists of a perturba-
tion error, from the noise on the measured shaft torque, and a regularization
error. The regularization parameter corresponding to the corner of the L-curve
minimizes both these errors, and results in the optimal regularized solution.
The L-curve method has also been successfully applied in the regularization of
ill-posed problems in other fields (Lloyd et al., 1997; Xu et al., 2016).

The L-curve method was similarly employed by both Ikonen et al. (2014)
and De Waal (2017) to determine regularization parameters. However, in both
these studies, the parameters were optimised for a specific known moment
impulse. This parameter was subsequently used for all cases.

This can lead to errors in the regularization, causing cases to become under-
or over-regularized. As an example, Figure 4.7 provides the L-curve deter-
mined using the Tikhonov method for a 1.8 second recording made at 05:11:06
on the 17 December 2018. The corner of the L-curve is located where the
regularization parameter is 13.0348. The parameters determined by Ikonen
et al. (2014) and De Waal (2017) were 0.0512 and 0.2457 respectively. It can
be seen that both of these parameters are higher up on the L-curve than the
optimal parameter for this case. This leads to under-regularization when us-
ing the parameters from Ikonen et al. (2014) or De Waal (2017) for this case,
resulting in larger errors on the solution norm. The algorithm was therefore
expanded to automatically select a regularization parameter for each case it
was provided with.
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Figure 4.6: Example of an L-curve. Adapted from Hansen (2008)

Figure 4.7: Tikhonov L-curve for case at 05:11:06 on the 17 December 2018

For the TSVD, MTSVD, TGSVD, DSVD, DGSVD and Tikhonov methods
the regularization parameter was chosen as the corner of the L-curve giving a
good compromise between errors on the solution and errors on the residual.
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For the first least squares method the quadratic constraint λ1 is chosen as the
solution semi-norm corresponding to the corner of the L-curve. Similarly, for
the second least squares method the parameter λ2 was selected as the residual
norm corresponding to the corner of the L-curve. The algorithm automatically
finds the corner of the L-curve on a case by case basis during the indirect
propeller load estimation.

Where the regularization parameter is continuous, the L-curve is also con-
tinuous. In contrast, regularization methods with discrete parameters result
in discrete L-curves. The DSVD, DGSVD, Tikhonov and both least squares
methods all produce continuous L-curves, in which case the corner is located
by finding the point with maximum curvature through differention of the L-
curve. The TSVD, MTSVD, and TGSVD methods produce discrete L-curves.
In this case the corner is found using the adaptive pruning algorithm from
Hansen et al. (2007), which determines a list of candidate corners by pruning
points on the discrete L-curve and selecting a best corner from this pruned
list.

4.4 Evaluation of the discrete model
The inverse solution has been performed on selected ice-impact cases from the
full-scale measurements on the SAA II. Specifically, the various regularization
methods were evaluated in order to determine which is most suitable for the
current application. In addition, the results from the model when different
measurement locations were used as input were investigated.

The data used for the evaluation of the discrete model originates from the
2018/19 Antarctic Relief voyage. During this voyage, torque was measured at
two locations on the shaft-line, Q1 and Q2, as shown in Figures 3.2 and 4.2.
The data was recorded on the morning of 17 December 2018. At the time, the
ship was breaking through ice en route to the ice shelf at Penguin Bukta for
logistics operations. Fifty ice impact cases were extracted for analysis. The
operational parameters and sea ice conditions for each case are presented in
Table C.4 in Appendix C. These case studies varied in operational parameters
and duration for improved testing of the various regularization methods used
by the algorithm.

4.4.1 Evaluation of the regularization methods

The regularization of the inverse solution needed to be robust and efficient. As
the regularization parameter was automatically selected, this selection process
needed to be reliable. Furthermore, the regularization needed to be efficient
to allow the use of the algorithm in real-time analysis.

The internal torques Q1 and Q2 that were measured for each case were
used as inputs for the algorithm. The computer used to perform the analysis
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had an i7-4720HQ 2.6 GHz processor, 8 GB of RAM, and a 64-bit operating
system. The algorithm was solved using MATLAB.

Each of the torques were analysed using the various regularization meth-
ods. Failure of a regularization method was based on whether the solution was
under- or over-regularized, that is whether or not the algorithm could auto-
matically determine a suitable regularization parameter. The success of each
regularization method for the various case studies is provided in Table C.5 in
Appendix C.

It can be seen from Figure 4.8 that only two of the eight regularization
methods, DGSVD and Tikhnov, had a 100% success rate for the case studies
analysed. These methods are followed by the TGSVD and the least squares
methods with 85%, TSVD with 51%, MTSVD with 10%, and DSVD with
4%. The success rates reported here reflect the success of the algorithm in
automatically locating a suitable regularization parameter for the current ap-
plication, and thus not under- or over-regularizing the inverse solution. The
success rates are not a reflection of the validity of the regularization methods
themselves.

Figure 4.8: Success rates of the different regularization methods

The DGSVD, Tikhonov, and least squares methods achieved high success
rates due to the continuous nature of their L-curves. This continuity allowed
for easy differentiation of the L-curve during the parameter selection, and thus
easy identification of the L-curve corner. The TGSVD method also had a high
success rate, and was the only method with a discrete L-curve to achieve this.

The lower success rates of the TSVD and MTSVD methods were related to
the discrete nature of their L-curves. Since the L-curve was not continuous, the
algorithm could not simply differentiate the curve to determine its curvature,
and hence find the corner. This limitation resulted in the parameter selection
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algorithm being more susceptible to finding local or false corners, and returning
the incorrect regularization parameter.

The MTSVD in particular suffered from the selection of false corners on the
L-curve. Figure 4.9 provides the L-curve used by the algorithm for the internal
torque Q1 of Case 1. It can be seen that the algorithm has selected a false
corner (parameter was selected as 4), leading to the results in Figure 4.10(a).
These results show a large error when comparing the experimentally measured
internal torque to the internal torque obtained using the inversely determined
external ice-load, in Figure 4.10(b). By comparison, when a more correct cor-
ner was manually chosen (parameter selected as 50) the results were acceptable
and comparable to those obtained by the DGSVD and Tikhonov methods,
shown in Figure 4.11.

Figure 4.9: MTSVD L-curve for the inverse calculation using internal torque Q1

of Case 1

Of further note in Figure 4.11 is that the resulting estimation for the pro-
peller moment is similar for each successful regularization method, with the
possibility of small differences arising at the peak values. This finding agrees
with that observed by Ikonen et al. (2014).

The extremely low success rate of the DSVD method was related to the
smoothness of its L-curve. Though the curve was continuous and thus easily
differentiable, the corner was not clear which resulted in the failure of the
algorithm. The lack of distinct corner can be seen for Case 1 in Figure 4.12.
The algorithm consistently chose a parameter higher up on the L-curve than
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(a) Estimated ice induced propeller moment

(b) Internal torque Q1

Figure 4.10: Results using the MTSVD method with incorrect corner at 4 for
Case 1
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(a) Estimated ice induced propeller moment

(b) Internal torque Q1

Figure 4.11: Results using the MTSVD method with correct corner at 50 for Case 1

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. PROPELLER MOMENT ESTIMATION USING A DISCRETE
MODEL OF THE PROPULSION SHAFT 59

the optimum, resulting in insufficient filtering and thus noise on the estimated
propeller moment.

Figure 4.12: DSVD L-curve for the inverse calculation using internal torque Q1 of
Case 1

In addition to testing the robustness of the algorithm for the various regu-
larization methods, the solution times were also recorded to test the efficiency.
As only the DGSVD and Tikhonov methods achieved 100% success rates, only
these two methods are compared. The solution times for these methods are
presented in Table C.6. The presented solution times include the determi-
nation of an L-curve and regularization parameter, and the inverse solution
itself. The construction of the impulse response function is not included in the
presented solution times.

Firstly, it can be seen from the results in Table C.6 that the DGSVD and
Tikhonov methods have very similar solution times. One method does not
consistently outperform the other. On average, the Tikhonov method is faster
by 0.06 seconds. Though that difference is small, it is 6% of the total time of
the shortest case presented here and any savings in computational time can be
beneficial. However, based on the data presented here, one method does not
appear to be significantly more efficient than the other.

Second, both methods failed to solve in less time than the actual duration of
the case study. This makes implementing the methods in real-time impossible
as the solution will continually take longer than the measurements. However,
the slower solution times are a limitation of the hardware used to solve the
algorithm, and could be overcome by using a computer with access to more
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Figure 4.13: Comparison of Tikhonov and DGSVD L-curves for Q1 of Case 1

RAM and processing power. This means the computational expense of this
algorithm leads to more expensive hardware.

Third, there is a difference between the DGSVD and Tikhonov methods in
the peaks of the external ice-loading determined by the algorithm, which can
be seen in Figure 4.11(a). The Tikhonov method consistently predicts higher
peak values. The slightly lower peak values predicted by the DGSVD resulted
in a slightly larger error on the internal torque obtained using the inversely de-
termined external ice-load. This is due to the Tikhonov method being able to
better minimize the solution norm, leading to better peak estimates, and resid-
ual norm, leading to smaller errors on the internal torque. This is highlighted
by comparing the L-curves of the two methods, in Figure 4.13, where it can
be seen that the Tikhonov residuals are lower. De Waal (2017); De Waal et al.
(2018b) similarly found the Tikhonov method to provide the best estimation
of peak values.

The better peak estimates, and the slightly faster average solution time,
suggest that the Tikhonov method is the better method for the application of
this algorithm.

Finally, it can be seen from the results in Table C.6 that the solution
time increases significantly as case duration increases. The solution time is
roughly proportional to the square of the case duration. This is highlighted
in Figure 4.14. The reason for this increase in solution time is as a result
of the way the algorithm makes use of the impulse response function. The
impulse response function is calculated as an n × n square matrix, where n
is the number of data points in the given case study. Thus, longer duration
cases require larger impulse response functions to solve. Similarly, the p × n
regularization matrix L also increases in size as duration increases. Therefore
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Figure 4.14: Relationship between case study duration and solution time - discrete
model

the solution time increases in size roughly proportional to n2 as case duration
increases.

The large increase in solution time for an increase in the duration of the
case study has an impact on the use of the algorithm for real-time analysis.
It limits the duration of real-time data that can be analysed in a single run of
the algorithm. This means that the algorithm will either need to be adapted
to handle larger duration cases more efficiently or that real-time data should
be supplied to the algorithm in smaller segments.

A final note is that each case provided to the algorithm should always con-
tain the same number of data points. This would allow for a single calculation
of the impulse response function, as it only depends on the duration of the in-
put, instead of needing to calculate the function for each input. Only needing
to calculate the impulse response function once, instead of once per input, will
also have large time savings with regards to the solution of the algorithm.

4.4.2 Comparison between measurement locations for
the inverse solution

During the 2018/19 Antarctic voyage, the shaft-line torque was measured at
two separate locations, Q1 and Q2 in Figures 3.2 and 4.2. This was done in
order to investigate whether the inverse model provided similar results irre-
spective of measurement location.

The similarity of results between different measurement locations indicates
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whether the discrete lumped model is a sufficiently accurate representation of
the continuous shaft-line. Only the Tikhonov method was considered, as it
was found to be most suitable for the regularization of the inverse problem.

The relative errors and correlation coefficients were calculated for each case
using Equations 4.42 and 4.43 respectively (Xu et al., 2016):

error =
||Qice2 −Qice1||2
||Qice1||2

(4.42)

correlation =

n∑
i=1

(
Qice1,i −Qice1

) (
Qice2,i −Qice2

)
√

n∑
i=1

(
Qice1,i −Qice1

)2 n∑
i=1

(
Qice2,i −Qice2

)2 (4.43)

where Qice1 and Qice2 represent the estimated propeller moments from mea-
surements Q1 and Q2 respectively.

As the shaft-line is a continuous structure and the cross sectional area is
the same at both measurement locations, it is expected that the measured
internal torques should be similar. Differences may arise due to measurement
errors, sensor placement errors, or differences between the physical system and
what was assumed.

To put the errors for the propeller moment estimates in perspective, the
same calculations were performed for the measured data. This was done to
determine whether any errors in the propeller moment estimates were due to
errors in the measurement, or due to problems with the model.

The relative errors for the measured internal torque and estimated pro-
peller moments are presented in Figure 4.15. The correlation coefficients are
presented in Figure 4.16. These values were calculated with the hydrodynamic
torque removed from both the external propeller moment and the measured
internal torque.

It can be seen, from Figures 4.15 and 4.16, that as the errors between
the measurements increase, so do the errors between the estimations from
the different measurement locations. When the error between measurements
is small, and the correlation high, there is good agreement in the estimated
propeller moments determined by the model. However, the model amplifies
any errors on the measurement significantly. Small increases in measurement
error result in much larger errors between the propeller moment estimates.
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Figure 4.15: Relative errors for the measured internal torques and estimated pro-
peller moments

Figure 4.16: Correlation coefficients for the measured internal torques and esti-
mated propeller moments
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4.4.3 Comparison to literature

The discrete model was tested in the forward problem using the first IACS case
from Rolls-Royce AB (2010a). The results from the model differed to those
presented by Rolls-Royce AB (2010a). This was due to the discrete model
assuming a constant motor torque.

Rolls-Royce AB (2010a) made use of a model similar to the discrete model
to perform a forward solution of an ice-impact simulation for the SAA II. The
ice impact is given in Figure 4.17(a), and the motor-shaft torque and motor
speed from Rolls-Royce AB (2010a) in Figures 4.17(b) and 4.17(c) respectively.
This data was extracted using a plot digitizer (Rohatgi, 2020).

The discrete model was provided with the internal torque and velocity
results from Rolls-Royce AB (2010a) (Figures 4.17(b) and 4.17(c) respectively)
as input and the estimated propeller moment was determined. As the discrete
model and the model used by Rolls-Royce AB (2010a) represent the same
propulsion line, the discrete model’s parameters were left unchanged. The
results provided by Rolls-Royce AB (2010a) were for the motor shaft, as such

(a) Ice impact (b) Motor shaft internal torque

(c) Motor speed

Figure 4.17: Results from Rolls-Royce AB (2010a)
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Figure 4.18: Comparison between IACS Case 1 ice impact (Rolls-Royce AB, 2010a)
and discrete model

the location to the left of the motor inertia was selected for the input to
the discrete model. The comparison between the actual ice impact and that
determined by the discrete model is provided in Figure 4.18.

The results in Figure 4.18 illustrate a shortcoming in the discrete model,
due to the assumptions of constant motor torque and hydrodynamic load. The
results from Rolls-Royce AB (2010a) in Figure 4.17(c) clearly show an increase
in the motor speed from the original steady-state value. This is due to an
increase in motor torque. Consequently, the hydrodynamic load would also
increase and this is seen in Figure 4.17(b) with the internal torque converging
to a higher steady-state value.

As the discrete model cannot account for changes in the motor torque, the
increase in the internal torque is attributed solely to the ice induced loading.
This results in the offset of the ice impact values determined by the discrete
model in Figure 4.18.

Comparing the rotational speeds from Rolls-Royce AB (2010a) and the
discrete model, Figure 4.19, also shows that the rotational speed determined
by the discrete model is incorrect. The increased ice induced loading results in
the shaft velocity decreasing, with the shaft eventually spinning in the opposite
direction as there is no corresponding motor torque increase to result in the
correct shaft speed.
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Figure 4.19: Comparison between angular velocity from Rolls-Royce AB (2010a)
and discrete model

4.5 Limitations of the discrete model
The discrete lumped mass model of the shaft-line suffers from a number of
limitations.

The algorithm is computationally expensive. It was not possible to ob-
tain the inverse solution in less time than the actual case duration, with the
hardware that was used. This means more computing power is necessary to
solve the algorithm faster, leading to increased financial expenses. Using the
algorithm to examine longer cases also becomes prohibitively computationally
expensive, as the time taken to solve the inverse solution increases roughly
proportional to the square of the case duration.

As the shaft-line is a continuous system, it should be possible for the model
to make use of measurements conducted at any point along the length of the
shaft-line. However, as the model is a discrete representation of the continuous
system, errors can be introduced when selecting a measurement location. The
errors between propeller moment estimates from different measurement loca-
tions increase as the errors between measurement locations increase, as seen in
Figure 4.20. Since it is not possible to capture perfect measurements, it would
be preferable that the model be robust to the errors between measurement
locations. Instead, the model tends to amplify these errors.

The model assumes a constant hydrodynamic torque, which is subtracted
from the measured internal torque in order to determine the ice induced pro-
peller moment. The assumption of constant hydrodynamic torque does not
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(a) Relative error (b) Correlation coefficient

Figure 4.20: Relationship between increasing measurement error between locations,
and increasing error between propeller moment estimations

hold for all cases as the ship speed, motor power, propeller pitch, and to a
lesser extent the motor and shaft speed, are all varied during the navigation
of the ship. These changes cause the hydrodynamic torque to fluctuate over
time. In addition to this, the hydrodynamic load is not constant during a pro-
peller ice impact. An impact to the propeller results in a moment opposite to
the direction of rotation, causing the propeller’s rotation to slow. One of the
components of the hydrodynamic load is the moment due to water damping,
which is dependent on the rotational speed of the propeller. Therefore, as the
propeller speed changes during an impact, so does the hydrodynamic load.

The model also assumes the motor torque is constant. In actual operation
the motor would compensate for any losses in shaft-line rotational speed due to
external moments. In other words, if an ice impact occurred on the propeller,
slowing the shaft down, the motor would speed up to compensate. This model
of the shaft-line is not able to take this into account.

The errors introduced due to the assumption of constant hydrodynamic
loads and motor torques were clearly illustrated in Section 4.4.3.

The model has no ability to determine the actual rotational displacements,
velocities, or accelerations. This is due to the model only being defined to cal-
culate the changes in these values. The model thus requires initial conditions,
which must either be assumed or retrieved from another measurement.

Relating to the motor torque and shaft-line angular velocity, the model is
not able to take into account how the shaft-line speed changes during an ice
impact. The internal torque is only a function of the spatial derivative of the
angular displacement of the shaft, represented by Equation 4.44, and does not
contain information about the angular velocity. The same measured internal
torque could thus be obtained using different external moments at different
shaft-line angular velocities.
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Q(x, t) = GJ
∂θ(x, t)

∂x
(4.44)

Finally, the model assumes a constant propeller pitch for the calculation of
the hydrodynamic mass and hydrodynamic damping. However, the propeller
pitch varies during operation and navigation. As the ship uses a controllable
pitch propeller, the pitch is varied in order to control thrust and therefore
speed of the ship. This model does not take this variation of the propeller
pitch, and thus variation of the hydrodynamic properties, into account.

4.6 Discussion
Though the discrete model was not developed by this study it was further
analysed, in particular with regards the methods used for regularization.

In previously published results (Ikonen et al., 2014; De Waal et al., 2018b)
the parameters used for the various regularization methods were optimised
using a reference linear moment impulse. It was found that using this optimised
parameter can lead to errors (over- or under-regularization) in the solution.
This is due to the optimised parameter only being valid for the case it was
optimised for, and not being the most optimal parameter in general.

Instead, the algorithm was expanded to include automated regularization
parameter selection on a case by case basis. This was achieved through the
use of the L-curve method, and tested for eight regularization methods. It
was found that for the current application, the Tikhonov and DGSVD meth-
ods were the most reliable. However, the Tikhonov method achieved lower
residuals on the solution norm which lead to better peak estimates.

Despite these improvements, it was found to be limited in its current state.
Due to the assumption of a constant motor torque, it produced large errors on
the propulsion shaft angular velocity.

The discrete model would need alterations in order to be better able to
estimate propeller moments. An improvement could be to treat the model as
a multiple-input single-output (MISO) system, instead of a single-input single-
output (SISO), the single input being the load at the propeller. This would
entail determining the impulse response function of the system as a result of
inputs from both the propeller and motor loading. This would also require
knowledge of how much of the measured output should be attributed to each
input.

It was also found to be prohibitively computationally expensive for larger
datasets.
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Chapter 5

Propeller moment estimation
using a continuous model of the
propulsion shaft

A new model of the propulsion shaft has been developed, which represents the
shaft as a continuous system.

This model relies on the concept of modal superposition, which allows the
calculation of the angular displacement, velocity, and acceleration at infinite
degrees of freedom along the shaft by superimposing its mode shapes. The
model is a continuous representation of the propulsion shaft, which differs
from the discrete approaches by including the effects of distributed mass.

The propeller loading is estimated indirectly from the torque and angular
velocity measurements from the propulsion shaft. This is done by solving a
system of equations representing the modal coordinates as functions of time,
alongside equations representing the measured torque and velocity as functions
of these modal coordinates.

For brevity, this model is henceforth referred to as the continuous model.
Section 5.1 provides the description and mathematical derivation of the

continuous model.
The forward solution of the continuous model is described in Section 5.2.

The number of modes used in the forward solution is discussed, along with a
comparison to the discrete model’s forward solution.

Section 5.3 describes the inverse solution of the continuous model. Here,
the inverse solution is evaluated using inputs obtained from a forward solution
of the discrete model. The number of mode shapes for the inverse solution is
discussed.

Section 5.4 focuses on the evaluation of the continuous model. The con-
tinuous model is compared to the discrete model in Section 5.4.1, in terms
of results from the inverse solution and efficiency. A comparison of the re-
sults between the inverse solutions from the two measurement locations on the
propulsion shaft is provided in Section 5.4.2. Results from the inverse solution

69
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are compared to results provided by Rolls-Royce AB (2010a) and Polić et al.
(2019) in Section 5.4.3.

Finally, the limitations of the continuous model and a discussion of the
results are provided in Sections 5.5 and 5.6 respectively.

Figure 5.1 provides a breakdown of the research presented in this chapter,
and shows where the contributions to literature arise.

Figure 5.1: Breakdown for Chapter 5 research and contributions
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5.1 Description of the continuous model

Figure 5.2: Continuous shaft line model for propeller moment estimation

For this model, a single shaft is considered connecting the propeller and
motor. The values for the properties of the shaft, used in the model, are
provided in Table C.2 in Appendix C.2.

Figure 5.2 shows the model of the propulsion shaft, with a differential
element selected at a distance x along the shaft. The moments acting on
the differential element are also shown, with Q(x, t) representing the internal
propulsion shaft torque and M(x, t) the applied torsional moment. The pro-
peller is located at x = 0 while the propulsion motor is situated at x = L. The
model assumes a constant hollow circular cross section and consistent material
properties along the length of the shaft. For the derivation of the model, an
unknown distributed moment is initially assumed to act along the length of
the shaft. The shaft is considered as having free boundary conditions at either
end.

Euler’s second law states that the sum of the applied torques on a body is
equal to the rate of change of the angular momentum of that body (Inman,
2014). Equation 5.1 describes this dynamic equilibrium for the shaft.∑

i

Mi = Jθ̈ (5.1)

where Mi represents the applied torques, J is the mass moment of inertia, and
θ̈ is the second derivative of the angular displacement with respect to time, or
angular acceleration.
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Substituting the torques applied to the differential element in Figure 5.2
into Equation 5.1 gives Equation 5.2, describing the dynamic equilibrium of
the differential element.

−Q(x, t) +M(x, t)dx+

(
Q(x, t) +

∂Q(x, t)

∂x
dx

)
= J0

∂2θ(x, t)

∂t2
dx (5.2)

where J0 is the mass moment of inertia of the shaft per unit length, Q(x, t) the
internal torque at distance x, and M(x, t) the externally applied distributed
moment.

Rearranging Equation 5.2 and dividing all terms by dx gives Equation 5.3:

J0
∂2θ(x, t)

∂t2
− ∂Q(x, t)

∂x
= M(x, t) (5.3)

From solid mechanics the torque in the shaft at x is related to the torsional
deflection at x by (Shames and Pitarresi, 2000):

Q(x, t) = GJ
∂θ(x, t)

∂x
(5.4)

withG being the shear modulus and J representing the polar moment of inertia
of the cross section.

Substitution of Equation 5.4 into Equation 5.3 yields

J0
∂2θ(x, t)

∂t2
− ∂

∂x

(
GJ

∂θ(x, t)

∂x

)
= M(x, t) (5.5)

Assuming a uniform cross section of the shaft, the mass moment of inertia
per unit length, J0, becomes ρJ with ρ the density of the shaft. Furthermore, J
can be factored out of the partial derivative with regards to x and Equation 5.5
becomes

ρJ
∂2θ(x, t)

∂t2
−GJ ∂

2θ(x, t)

∂x2
= M(x, t) (5.6)

Modal superposition, see Appendix A, is applied in order to transform the
partial differential Equation 5.6 into a set of ordinary differential equations.
Separation of variables (Inman, 2014), as discuessed in Section 2.2, is used to
obtain a solution for the angular displacement in terms of spatial and temporal
solutions. The angular displacement θ(x, t) can be described as:

θ(x, t) =
N∑
n=0

φn(x)qn(t) (5.7)
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where N is the number of mode shapes used to describe the deflection of the
shaft. The spatial solutions φn(x) are the mode shape values at x, and the
temporal solutions qn(t) are the corresponding modal coordinates as functions
of time.

As the shaft has free torsional boundary conditions and is able to rotate
around its axis, the mode shapes are described by (Rao, 2007):

φn(x) = An cos
(nπx
L

)
, n = 0, 1, 2, ..., N (5.8)

where the An are constant values determined from boundary conditions.
Note that the mode shape for n = 0 is a rigid body mode describing the free

rotation, and is a constant. This can be seen in Equation 5.8 when substituting
n = 0, which results in φ0(x) = A0.

Substitution of Equation 5.7 into Equation 5.6 yields:

ρJ

N∑
n=0

φn(x)q̈n(t)−GJ
N∑
n=0

φ′′n(x)qn(t) = M(x, t) (5.9)

where the overdots on q̈n(t) and the primes on φ′′(x) represent the second
derivatives with respect to t and x respectively.

Differentiating the mode shape with respect to x twice leads to:

φ′n(x) =
d

dx
φn(x) = −An

(nπ
L

)
sin
(nπx
L

)
(5.10)

φ′′n(x) =
d

dx
φ′n(x) = −An

(nπ
L

)2
cos
(nπx
L

)
= −

(nπ
L

)2
φn(x) (5.11)

It should also be noted that the An values are assumed to be absorbed
into the qn(t) values during solution, and are henceforth assumed equal to one.
Substituting the second derivative of the mode shape into Equation 5.9 gives:

ρJ
N∑
n=0

φn(x)q̈n(t) +GJ
N∑
n=0

(nπ
L

)2
φn(x)qn(t) = M(x, t) (5.12)

The moment function M(x, t) applied to the shaft consists of a number of
loads applied to the ends of the shaft, as seen in Figure 5.3. The propeller,
along with the hydrodynamic mass, is modelled as an inertial load while the
hydrodynamic damping is modelled as a viscous damping force, both applied
to the end of the shaft at x = 0. The ice induced loading is applied at the
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Figure 5.3: Torsional loads applied to propulsion shaft continuous model

propeller at x = 0 and the load from the motor is applied at x = L. The motor
itself is also modelled as an inertial load.

The moment function becomes

M(x, t) = −
(
Qice(t)δ(x− 0) + Jp

∂2θ(0, t)

∂t2
δ(x− 0)

+Cp
∂θ(0, t)

∂t
δ(x− 0)

)
+Qmotor(t)δ(x− L)− Jmotor

∂2θ(L, t)

∂t2
δ(x− L) (5.13)

where δ is the Dirac-delta function which states for some constant value a:

δ(x− a) =

{
1 x = a
0 x 6= a

(5.14)

The summation terms in Equation 5.12 are simplified using the orthogo-
nality of the mode shapes (Inman, 2014):

∫ L

0

φm(x)φn(x)dx =


0 n 6= m
L
2

n = m 6= 0
L n = m = 0

(5.15)

Also note that ∫ L

0

φm(x)δ(x− a)dx = φm(a) ·H(L− a) (5.16)

where H is the Heaviside step function
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H(L− a) =

{
0 L < a
1 L ≥ a

(5.17)

Substituting Equation 5.13 into Equation 5.12, multiplying through by
φm(x) and integrating over the length of the shaft gives

ρJ

N∑
n=0

∫ L

0

φm(x)φn(x)dx · q̈n(t) +GJ
N∑
n=0

(nπ
L

)2 ∫ L

0

φm(x)φn(x)dx · qn(t) =

−Qice(t)

∫ L

0

φm(x)δ(x− 0)dx− Jp
∂2θ(0, t)

∂t2

∫ L

0

φm(x)δ(x− 0)dx

− Cp
∂θ(0, t)

∂t

∫ L

0

φm(x)δ(x− 0)dx+Qmotor(t)

∫ L

0

φm(x)δ(x− L)dx

− Jmotor
∂2θ(L, t)

∂t2

∫ L

0

φm(x)δ(x− L)dx (5.18)

Substituting the relationships given in Equations 5.15 and 5.16 into Equa-
tion 5.18 yields a separate equation for each mode shape n. Equation 5.19
applies to the rigid body mode n = 0, and Equation 5.20 applies to the flexi-
ble modes n = 1, 2, ..., N .

ρJLq̈0(t) = −Qice(t)φ0(0)− Jp
∂2θ(0, t)

∂t2
φ0(0)− Cp

∂θ(0, t)

∂t
φ0(0)

+Qmotor(t)φ0(L)− Jmotor
∂2θ(L, t)

∂t2
φ0(L) (5.19)

ρJ
L

2
q̈n(t) +GJ

(nπ)2

2L
qn(t) = −Qice(t)φn(0)− Jp

∂2θ(0, t)

∂t2
φn(0)

− Cp
∂θ(0, t)

∂t
φn(0) +Qmotor(t)φn(L)− Jmotor

∂2θ(L, t)

∂t2
φn(L) (5.20)

Using modal superposition, Equation 5.7, once again for the angular veloc-
ity and acceleration terms in Equations 5.19 and 5.20 and then collecting all
the qn terms on the left hand side yields the final equations for each mode shape
used in the model, Equation 5.21 for the rigid body mode and Equation 5.22
for the flexible modes.
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ρJLq̈0(t) + Jpφ0(0)
N∑
i=0

φi(0)q̈i(t) + Jmotorφ0(L)
N∑
i=0

φi(L)q̈i(t)

+ Cpφ0(0)
N∑
i=0

φi(0)q̇i(t) = −Qice(t)φ0(0) +Qmotor(t)φ0(L) (5.21)

ρJ
L

2
q̈n(t) + Jpφn(0)

N∑
i=0

φi(0)q̈i(t) + Jmotorφn(L)
N∑
i=0

φi(L)q̈i(t)

+ Cpφn(0)
N∑
i=0

φi(0)q̇i(t) +GJ
(nπ)2

2L
qn(t) =

−Qice(t)φn(0) +Qmotor(t)φn(L) (5.22)

In addition, due to mode shape symmetry (Figure 5.4), the value of qn(t) for
an even mode is negligible. This is due to the assumption that the torsionally
symmetric shaft has purely asymmetric loads, that is the propeller moment is
always opposite in direction to the motor torque. Thus, the contribution from
the even modes can be neglected in the calculation (COMSOL, 2018). This
assumption was also used in the model by Polić et al. (2016).

Figure 5.4: Propulsion shaft mode shapes
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In this case, the value for φn(0) = 1 and φn(L) = −1. Also since the rigid
mode is constant, φ0(0) = φ0(L) = 1. This simplifies Equations 5.21 and 5.22
to Equations 5.23 and 5.24 respectively, where the qn terms for n > 0 represent
only the uneven modes (n = 1, 3, 5, · · · , N − 1).

(ρJL+ Jp + Jmotor)q̈0(t) + (Jp − Jmotor)
N/2∑
i=1

q̈(2i−1)(t) + Cpq̇0(t)

+ Cp

N/2∑
i=1

q̇(2i−1)(t) = −Qice(t) +Qmotor(t) (5.23)

ρJ
L

2
q̈n(t) + (Jp − Jmotor)q̈0(t) + (Jp + Jmotor)

N/2∑
i=1

q̈(2i−1)(t) + Cpq̇0(t)

+ Cp

N/2∑
i=1

q̇(2i−1)(t) +GJ
(nπ)2

2L
qn(t) = −Qice(t)−Qmotor(t) (5.24)

Equations 5.23 and 5.24 can then be written in matrix form, which facili-
tates their solution using a time integration scheme (Appendix B).

Jq̈ + Cq̇ + Kq = Q (5.25)
where

q = {q0 q1 q3 q5 · · · qN−1}T

J =


ρJL+ Jp + Jmotor Jp − Jmotor · · · Jp − Jmotor

Jp − Jmotor ρJ L
2

+ Jp + Jmotor · · · Jp + Jmotor
...

... . . . ...
Jp − Jmotor Jp + Jmotor · · · ρJ L

2
+ Jp + Jmotor



C =


Cp Cp · · · Cp
Cp Cp · · · Cp
...

... . . . ...
Cp Cp · · · Cp



K =



0 0 0 0 · · · 0

0 GJ (π)2

2L
0 0 · · · 0

0 0 GJ (3π)2

2L
0 · · · 0

0 0 0 GJ (5π)2

2L
· · · 0

...
...

...
... . . . ...

0 0 0 0 · · · GJ ((N−1)π)2
2L
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Q =


−Qice(t) +Qmotor(t)
−Qice(t)−Qmotor(t)

...
−Qice(t)−Qmotor(t)


This derivation of the model includes only the influence of the propeller

and motor inertias. However, there are other inertias that could influence the
response of the propulsion shaft such as bearings, couplings, or flanges. These
can be taken into account in the same manner as the propeller and motor
inertias, by projecting them onto the modal coordinates, and included in the
equations of motion. For example, including a bearing with an inertia of Jb
situated at some point xb along the shaft would alter Equations 5.21 and 5.22
as follows:

ρJLq̈0(t) + Jpφ0(0)
N∑
i=0

φi(0)q̈i(t) + Jmotorφ0(L)
N∑
i=0

φi(L)q̈i(t)

+ Jbφ0(xb)
N∑
i=0

φi(xb)q̈i(t) + Cpφ0(0)
N∑
i=0

φi(0)q̇i(t) =

−Qice(t)φ0(0) +Qmotor(t)φ0(L) (5.26)

ρJ
L

2
q̈n(t) + Jpφn(0)

N∑
i=0

φi(0)q̈i(t) + Jmotorφn(L)
N∑
i=0

φi(L)q̈i(t)

+ Jbφn(xb)
N∑
i=0

φi(xb)q̈i(t) + Cpφn(0)
N∑
i=0

φi(0)q̇i(t)

+GJ
(nπ)2

2L
qn(t) = −Qice(t)φn(0) +Qmotor(t)φn(L) (5.27)

Again, considering mode shape symmetry and the constant rigid mode,
φ0(0) = φ0(L) = φ0(xb) = φn(0) = 1 and φn(L) = −1. Equations 5.26 and
5.27 can be simplified to:

(ρJL+Jp+Jmotor+Jb)q̈0(t)+(Jp−Jmotor)
N/2∑
i=1

q̈(2i−1)(t)+Jb

N/2∑
i=1

φ(2i−1)(xb)q̈i(t)

+ Cpq̇0(t) + Cp

N/2∑
i=1

q̇(2i−1)(t) = −Qice(t) +Qmotor(t) (5.28)
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ρJ
L

2
q̈n(t) + (Jp − Jmotor + Jbφn(xb))q̈0(t) + (Jp + Jmotor)

N/2∑
i=1

q̈(2i−1)(t)

+ Jbφn(xb)

N/2∑
i=1

φ(2i−1)(xb)q̈i(t) + Cpq̇0(t)

+ Cp

N/2∑
i=1

q̇(2i−1)(t) +GJ
(nπ)2

2L
qn(t) = −Qice(t)−Qmotor(t) (5.29)

The inclusion of these extra inertial terms can be repeated for as many
additional inertias as required.

Similarly, any extra damping components, such as that from bearings, could
be taken into account in this manner.

The model could also have been derived using the description in Figure 5.5
instead of that in Figure 5.2. In this case, the mode shapes are derived using
the propeller and motor inertias as boundary conditions, instead of using the
free-free boundary condition modes and projecting the inertias onto them.

Figure 5.5: Alternate continuous shaft line model for propeller moment estimation

The derivation of the model would have been the same, other than the
mode shapes which would be (Rao, 2007):

φ(x) = An

(
cos
(αnx
L

)
− αn
β1

sin
(αnx
L

))
(5.30)

where
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β1 =
ρJL

Jp
(5.31)

β2 =
ρJL

Jmotor
(5.32)

tanα =
α (β1 + β2)

α2 − β1β2
(5.33)

This would require that the α value be determined numerically for each
mode shape needed for the solution. The reasons for instead selecting the first
derivation were:

• it avoids the need for an extra numerical calculation for each mode shape.

• the free-free boundary condition mode shape (Equation 5.8) is easier to
integrate, differentiate, and make general computations with.

• the method of projecting inertias onto the modes allows for the easy
inclusion of inertias at any distance x along the beam, instead of just at
the ends.

5.2 Forward solution of the continuous model
The continuous model was compared to the discrete model to verify whether
they achieve similar results in solving a forward problem. For the forward
problem the input ice induced loading is known and the internal shaft torque is
unknown. The internal torque at a distance x along the shaft can be calculated
using

Q(x, t) = GJ
∂θ(x, t)

∂x
= GJ

N∑
n=0

φ′n(x)qn(t) (5.34)

while the displacement, velocity, and acceleration respectively can be deter-
mined using

θ(x, t) =
N∑
n=0

φn(x)qn(t) (5.35)

θ̇(x, t) =
N∑
n=0

φn(x)q̇n(t) (5.36)

θ̈(x, t) =
N∑
n=0

φn(x)q̈n(t) (5.37)
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Figure 5.6: Convergence of internal steady-state torque for increasing number of
mode shapes in forward problem

The model is evaluated using the IACS Case 1 for 4 bladed propellers
during 90° single-blade impact sequence, used by Rolls-Royce in their ice im-
pact simulation of the SAA II shaft line (Rolls-Royce AB, 2010a), as shown
in Figure 4.4. The case load is applied as the ice induced loading (Qice) in
the model. The motor load is modelled as having a constant value, so as to
compare the results with that of the discrete model. The solution is obtained
using the JWH-α numerical integration scheme (Appendix B.2). Reasons for
the selection of this scheme are expanded on in Section 5.3.

The number of mode shapes selected for the simulation was determined
by considering the steady-state response of the model. At steady state, the
internal torque of the propulsion shaft at a given location is constant. For
the forward solution with constant motor torque, the internal torque at steady
state at any location on the propulsion shaft should be equal to the motor
torque. Thus the correct value of the internal torque is known. The ratio
between the internal torque calculated during the forward solution and the
known internal torque was determined for increasing mode shapes, and pro-
vided in Figure 5.6. The results in Figure 5.6 were determined using both even
and uneven modes.

It can be seen from Figure 5.6 that as the number of modes in the forward
solution increases, the error decreases as expected. However it should be noted
that the error oscillates, with the oscillation also decreasing as more modes are
used. The smallest errors are achieved by selecting a number of modes at which
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the oscillation crosses, or is close to crossing, a value of one for the ratio.
Figure 5.6 also shows that the influence of the even modes is negligible, as

assumed in the derivation of the model. This is seen in the near zero change in
the ratio from an uneven mode to an even one, appearing as horizontal steps
in the figure.

It was decided to include 50 mode shapes in the solution, leading to an
error on the steady-state internal torque of 0.22 percent.

The results of the solution for the internal torque from both the continu-
ous and the discrete models are provided for comparison in Figure 5.7. The
location chosen for comparison was near to the propeller. This was due to the
internal torque in the discrete model varying after each lumped mass, while the
internal torque in the continuous model varies along the length of the shaft.
Choosing a location near to the propeller mitigates the variation as both the
discrete and continuous models have accounted for a similar inertia by this
point. The results for the discrete model are taken from the first shaft be-
tween J1 and J3 in Figure 4.2, while the results for the continuous model were
taken from a location 5 m along the shaft from the propeller.

It can be seen from Figure 5.7(a) that the two models achieve similar solu-
tions for the internal torque values. The differences in the torque values arise
mainly from the fact that the discrete model only calculates the response for
large sections of the shaft, while the continuous model calculates the response
at the exact location. It thus becomes difficult to directly compare the results.

Furthermore, from Figure 5.7(b), it can be seen that the models deliver
well matching responses from 0 Hz to 68 Hz. Following this, the differences in
the results are due to the differences in the natural frequencies of the two
models. The natural frequencies of the continuous model account for the
frequencies of the shaft, with the propeller and motor inertias added. The
discrete model accounts for the inertias of the various components attached
to the shaft such as bearings. The continuous model could be expanded to
include these attachments by modelling them as inertial loads, as discussed at
the end of Section 5.1, at the cost of increased model complexity.

As the first torsional mode is dominant in the forced torsional response
of the propulsion shaft (Senjanović et al., 2019), the agreement between the
low frequency response of the two models is significant. The continuous model
agrees well with the discrete model based on that originally used by Rolls-
Royce AB (2010a,b,c) in the design of the propulsion shaft, and since used in
its analysis (Ikonen et al., 2014; De Waal, 2017; De Waal et al., 2018b).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PROPELLER MOMENT ESTIMATION USING A
CONTINUOUS MODEL OF THE PROPULSION SHAFT 83

(a) Internal torque

(b) Power spectral density

Figure 5.7: Comparison of discrete and continuous models for forward problem
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5.3 Inverse solution of the continuous model
For the inverse problem the internal torque at a location is known, based on
measurements, and the ice induced loading is unknown. The motor torque is
treated as an unknown as well, instead of an inertial load. Though the motor
torque is known through the CMU, it is measured at a sample rate of 1 Hz
which is too low to be used in the calculation. It is therefore modelled as
unknown and can be compared with the measured motor torque as a check
that the model is solving correctly.

Therefore the inverse solution has N + 2 unknowns, namely q0 to qN−1,
Qice, and Qmotor. The model thus needs a further two equations in order to
solve for the unknowns directly at each time step. The equations chosen are
based on the available measurement data on the shaft line, the internal torque
and angular velocity measurements at some location xa. The equations for the
torque and velocity for the inverse model are those used for the forward model
(Equations 5.34 and 5.36), except that the values for the torque and velocity
are known before, or during, the simulation as opposed to them being solved
for after a simulation. The equations are also altered to only consider the rigid
and uneven modes in the inverse solution:

Q(xa, t) = GJ
∂θ(xa, t)

∂x
= GJ

N/2∑
n=1

φ′2n−1(xa)q2n−1(t) (5.38)

θ̇(xa, t) = φ0(xa)q0(t) +

N/2∑
n=1

φ2n−1(xa)q̇2n−1(t) (5.39)

Equations 5.38 and 5.39 are solved along with the equations for each mode
shape; Equation 5.40 for the rigid body mode and Equation 5.41 for the flexible
modes.

(ρJL+ Jp + Jmotor)q̈0(t) + (Jp − Jmotor)
N/2∑
j=1

q̈(2j−1)(t) + Cpq̇0(t)

+ Cp

N/2∑
i=1

q̇(2i−1)(t) = −Qice(t) +Qmotor(t) (5.40)

ρJ
L

2
q̈n(t) + (Jp − Jmotor)q̈0(t) + (Jp + Jmotor)

N/2∑
j=1

q̈(2j−1)(t) + Cpq̇0(t)

+ Cp

N/2∑
i=1

q̇(2i−1)(t) +GJ
(nπ)2

2L
qn(t) = −Qice(t)−Qmotor(t) (5.41)
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The matrix formulation follows below. The factors for the unknown loads,
Qice and Qmotor, have been collected into the stiffness matrix K for each modal
equation. The equation for the measured torque, Equation 5.38, is the second
last row of the stiffness matrix K. The equation for the measured angular
velocity, Equation 5.39, is the last row of the damping matrix C.

Jq̈ + Cq̇ + Kq = Q (5.42)

q = {q0 q1 q3 q5 · · · qN−1 Qice Qmotor}T

J =



ρJL+ Jp + Jmotor Jp − Jmotor · · · Jp − Jmotor 0 0
Jp − Jmotor ρJ L

2
+ Jp + Jmotor · · · Jp + Jmotor 0 0

...
... . . . ...

...
...

Jp − Jmotor Jp + Jmotor · · · ρJ L
2

+ Jp + Jmotor 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0



C =



Cp Cp Cp · · · Cp 0 0
Cp Cp Cp · · · Cp 0 0
...

...
... . . . ...

...
...

Cp Cp Cp · · · Cp 0 0
0 0 0 · · · 0 0 0

φ0(xa) φ1(xa) φ3(xa) · · · φN−1(xa) 0 0



K =



0 0 0 · · · 0 1 −1

0 GJ (π)2

2L
0 · · · 0 1 1

0 0 GJ (3π)2

2L
· · · 0 1 1

...
...

... . . . ...
...

...
0 0 0 · · · GJ ((N−1)π)2

2L
1 1

0 GJφ′1(xa) GJφ′3(xa) · · · GJφ′N−1(xa) 0 0
0 0 0 · · · 0 0 0



Q =



0
0
...
0

Q(x0, t)

θ̇(x0, t)
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This matrix formulation leads to a badly scaled effective stiffness matrix
in the implementation of the time integration scheme (Appendix B). This is
due to the terms containing Jp, Jmotor, Cp, and G being orders of magnitude
higher than the unitary terms in the stiffness matrix and the last row in the
damping matrix. The badly scaled matrix has a high condition number, which
could lead to the amplification of noise in the calculation.

As the high condition number is as a result of the bad scaling, the problem
is resolved by rescaling the smaller terms in the matrices above. The unitary
terms are simply raised to the same order of magnitude as the other terms
in the effective stiffness matrix. This then returns calculated values for Qice

and Qmotor that need to be scaled up by the same factor. The last rows in
the damping matrix and load vector Q, representing Equation 5.39, are also
multiplied by a constant value to raise them to the same order of magnitude
as the other terms in the effective stiffness matrix. This amounts to column
and row scaling as is often employed to increase the accuracy of solutions of
linear systems (Heath, 1997).

It should also be noted that any combination of two measured propulsion
shaft parameters could be used to provide the extra equations necessary for
the indirect propeller load estimation, provided the measured parameter can
be represented in terms of the modal coordinates qn. For example, two torque
measurements at different locations could have been used, instead of a torque
measurement and an angular velocity measurement.

The use of two different parameters (torque and angular velocity) makes
the model more robust. In order to solve the system of equations, two extra
equations were needed that were independent of one another to prevent an
underdetermined system. If the same type of measurement were used twice,
for example two torque measurements at different locations, there is a risk that
at some point in the solution’s time history these equations become sufficiently
equivalent so as to result in a numerically near singular matrix. This could
then lead to inaccurate results.

Furthermore, a limitation identified for the discrete model was the lack
of angular velocity information. As stated in Section 4.5, a specified internal
torque could occur at different propulsion shaft rotational speeds. This is
due to the torque measurements not containing information about the control
of the propulsion shaft. Thus, it was necessary to include a measurement
that provides information about the control such as rotational displacement,
velocity, or acceleration, of which the velocity is easily measurable. Adding
the angular velocity information therefore improves the accuracy of the model.

The inverse solution of the continuous model was evaluated using results
from the forward solution of the discrete model as input, using the IACS case
1 for 4 bladed propellers during 90° single-blade impact sequence as used by
Rolls-Royce in their ice impact simulation of the SAA II shaft line (Rolls-Royce
AB, 2010a).

The results from the forward solution of the discrete model were used as
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Figure 5.8: Comparison of estimated ice-induced propeller moment and IACS case,
using the Newmark-β time integration scheme

input to the inverse problem to avoid inverse crime. The IACS case was used
as input to the discrete model, and the internal torque and angular velocity
calculated at the first shaft. These results were subsequently used as inputs
for the continuous model inverse solution.

Initially, the inverse problem was solved using the Newmark-β time inte-
gration scheme as presented by Ikonen et al. (2014) and De Waal et al. (2018b).
The estimated propeller moment is presented in Figure 5.8. The estimate is
plotted with the input IACS case for comparison. It can be seen that, though
the calculated load does somewhat follow the correct trend, it is not a useful
estimate due to the high amplitude high frequency noise that is present.

Upon investigation, it was found that the high frequency noise was at-
tributed to the Newmark-β time integration scheme. With the Newmark-β
scheme, although second-order accuracy can be achieved, there is no high-
frequency numerical damping (Kadapa, 2017). According to Kadapa (2017),
a time integration scheme should be able to yield solutions free from non-
physical high-frequency oscillations and the Newmark-β is limited in that it
can not achieve this. It is also shown that errors can not be reduced simply
by reducing the time step.

Kadapa (2017) recommends the use of better methods that possess high-
frequency damping. The modified generalised-alpha method based on a first
order system, referred to as JWH-α and described in Appendix B.2, was sug-
gested (Kadapa, 2017; Kadapa et al., 2017). This time integration was imple-
mented and the results are presented in Figure 5.9.
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(a) Ice-induced propeller moment

(b) Power spectral density

Figure 5.9: Comparison of estimated ice-induced propeller moment and IACS case,
using the JWH-α time integration scheme
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It can be seen in Figure 5.9 that the JWH-α scheme gives significantly
better results, with the numerical high-frequency noise eliminated. Differences
between the estimated moment and the input case occur, especially at the
peaks and troughs. There is also a difference in the frequency content of the
two loads around 48 Hz. These differences are due to the differing frequency
content of the discrete model which was used to provide the input for the
continuous model. Specifically, the difference around 48 Hz comes from the
second natural frequency which is present in the forward results produced by
the discrete model. Since the continuous model does not use the even modes
in the solution, the contribution at this frequency is solved for as part of the
external load.

In addition, the differences arise due to the nature of the discrete model
used to generate the inputs. The discrete model produces constant torque
between inertial elements, while angular velocity varies between these elements.
This is contrary to the continuous model, where the torque and angular velocity
can vary along the entire length of the shaft. Thus, slightly different results
can arise depending on the location chosen along the shaft when performing
the inverse calculation. Despite the differences, the estimated ice-induced load
agrees well with the input IACS case.

The number of mode shapes selected for the simulation was determined
by looking at the steady-state response of the model. The ratio between the
internal torque calculated during the inverse solution and the input internal
torque for the two different measurement locations is provided in Figure 5.10.

Figure 5.10: Convergence of internal steady-state torque for increasing number of
mode shapes in inverse problem
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Figure 5.10 follows a similar pattern to Figure 5.6, with an oscillating error
that decreases as the number of modes increase. It is also shown that the
number of modes necessary for an accurate calculation is influenced by the
measurement location, as the different locations do not converge identically.
Finally, it can be seen that there is missing data when using a lower number
of modes for each measurement location. This is due to the algorithm failing
when too few modes are used for the inverse calculation.

The relative error between the input internal torque and the internal torque
calculated during the inverse solution was also determined, to ensure that the
error introduced through the filtering of the input data is not significant. The
relative error for the IACS case, as well as the first three cases from Table C.7,
are presented in Figures 5.11 and 5.12 for locations Q1 and Q2 respectively.

As expected, the relative error decreases as more modes are used in the
calculation. The relative error also approaches a minimum value, resulting in
diminishing returns on accuracy as more modes are used. The errors converge
to a value below 2 % for all cases, showing agreement between the input and
the results produced by the model.

Based on the data presented in Figures 5.10, 5.11 and 5.12 the number of
mode shapes selected for the inverse solution of the continuous model is 51.
This results in errors of 0.39 % and 0.43 % for the steady-state internal torque
at location Q1 and Q2 respectively, and a maximum relative error of 2.05 %.

Figure 5.11: Relative error between calculated and measured internal torques at
location Q1
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Figure 5.12: Relative error between calculated and measured internal torques at
location Q2

5.4 Evaluation of the continuous model
The continuous model has been evaluated and compared with the discrete
model. The differences between propeller moment estimates and the efficien-
cies of the models were investigated (Section 5.4.1). Furthermore, the differ-
ences between inverse results from the continuous model when using different
input locations were investigated, and compared to those from the discrete
model (Section 5.4.2).

The evaluation of the continuous model, and comparison between the con-
tinuous and discrete models, was conducted using ice impacts extracted from
the data recorded during the 2019 SCALE Spring Cruise of the SAA II. This
voyage took place during October and November of 2019. Ice impacts were
identified during ship operations within the marginal ice zone. During this
voyage, torque was measured at two locations on the propulsion shaft, Q1 and
Q2, as shown in Figure 3.2. The propulsion shaft angular velocity was recorded
at location Q1. The data was recorded during the evening of 30 October 2019.
Fifty ice impact cases were extracted for analysis. The operational parameters
and sea ice conditions for each case are presented in Table C.7 in Appendix C.

Finally, the model was compared to results from literature (Section 5.4.3).
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5.4.1 Comparison between discrete and continuous
models

One of the major differences between the two models is the capability of the
continuous model to take the angular velocity of the propulsion shaft into ac-
count. This allows the continuous model to overcome a number of the discrete
model’s limitations, such as:

• the assumption of constant motor torque,

• the assumption of constant hydrodynamic torque,

• the assumption of initial conditions,

• and the assumption of constant propeller pitch.

To illustrate the above points, Case 1 from Table C.7 is used. The measured
internal torque at location Q1 is presented in Figure 5.13 for this case. The
case consists of a single main ice impact on the propeller, followed by milling.

Figure 5.13: Internal propulsion shaft torque Q1 for Case 1

Firstly, the results from the continuous model, when assuming a constant
motor torque, are compared to the discrete model’s results. For this compar-
ison, the second extra equation describing the measured velocity is not used
for the inverse solution of the continuous model. Instead, an iterative optimi-
sation problem was solved. The difference between the known internal torque
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and the calculated internal torque for some input external load was minimised
(Equation 5.43).

minimize f(qn) = Q(x, t)−GJ
N∑
n=0

φ′n(x)qn(t) (5.43)

The external load that would cause the function f(qn) in Equation 5.43
to equal zero would lead to the optimal qn values. Along with the motor
torque, the hydrodynamic load was assumed constant which allows for direct
comparison between the results from the two different models. Figure 5.14
provides the comparison of the two models’ results, using Q1 as the input
measured torque.

It can be seen that there is good agreement between the estimated propeller
moments from the two different models, Figures 5.14(a) and 5.14(b). The con-
tinuous model appears to have a better peak estimation, and better ability to
capture the milling following the initial impact. Both models produce similar
propulsion shaft angular velocities, Figure 5.14(c). And when the estimated
moments are used to solve a forward problem, the results compare well to the
measured input, Figure 5.14(d).

However, the main issue with these results is highlighted when comparing
the calculated angular velocity to what was measured. Figure 5.15 provides
a comparison between the measured propulsion shaft angular velocity, and
that calculated by the models. The initial conditions assumed for the models’
results are the initial measured value.

The angular velocities determined by the models initially follow a similar
path to the measurement, and contain a similar ripple. After 0.4 seconds, it
can be seen that the measured and calculated velocities vary significantly. This
is due to the measurement capturing the controlled response of the motor, as
it attempts to keep the propulsion shaft spinning at the set rotational speed.
Due to this control, the motor torque increases to match the load that caused
the propulsion shaft velocity to decrease. This control does not allow the
rotational speed to vary as much as the models calculate.

Based on the comparison between the measured and calculated velocities
presented in Figure 5.15, the following observations can be made about pro-
peller moment and motor torque:

• The measured velocity drops sooner and to a lower value than the cal-
culated velocities. Thus, the propeller moment shown in Figure 5.14(a)
should have a larger initial peak that occurs sooner in time.

• The peaks that occur due to milling, those following the initial peak,
should also be larger as the propeller would have a higher velocity when
encountering that ice.
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(a) Estimated ice-induced propeller moment

(b) Propeller moment power spectral density

Figure 5.14: Comparison of discrete and continuous models, when not using mea-
sured angular velocity, for Case 1
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(c) Angular velocity

(d) Internal torque Q1

Figure 5.14: (Continued) Comparison of discrete and continuous models, when not
using measured angular velocity, for Case 1

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PROPELLER MOMENT ESTIMATION USING A
CONTINUOUS MODEL OF THE PROPULSION SHAFT 96

Figure 5.15: Propulsion shaft angular velocity at Q1 for Case 1

• The motor torque should exhibit an increase to make up for the lost
velocity due to the initial impact, and then return to its steady state
value. In addition to this trend, the motor torque should exhibit ripples
as the motor responds to the milling of the propeller.

Performing the inverse solution for Case 1 using the continuous model,
while taking the measured angular velocity into account as in Section 5.3,
gives the results in Figure 5.16.

The initial conditions for this solution are obtained by simulating the sys-
tem at the initial internal torque and angular velocity for 10 seconds and
allowing the system to reach equilibrium. The equilibrium values for the in-
ternal torque, and angular displacement, velocity, and acceleration are then
used as initial values in the inverse solution.

It can be seen that the estimated propeller moment in Figure 5.16(a) differs
from that in 5.14(a). The initial peak and milling are larger, as expected from
the velocity measurement. The initial peak occurs just before that estimated
by the discrete model. Furthermore, the motor torque shows an increase before
returning to its steady state value and the ripple in response to the milling is
also clearly visible in Figure 5.16(b). Applying these loads in a forward problem
gives results that compare well with the measured inputs, Figures 5.16(c) and
5.16(d). These results suggest the inclusion of angular velocity information is
crucial in order to get more accurate propeller moment estimates.

It should also be noted that the hydrodynamic load is not assumed constant
and is included in the inverse solution. Thus, the propeller moment presented
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(a) Estimated propeller moment

(b) Estimated motor torque

Figure 5.16: Results from continuous model for Case 1
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(c) Angular velocity

(d) Internal torque Q1

Figure 5.16: (Continued) Results from continuous model for Case 1
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in Figure 5.16(a) provides the total load acting on the propeller, including
both the ice-induced moment and the hydrodynamic load. Any changes in
the hydrodynamic load are directly taken into account during the solution by
the continuous model. The hydrodynamic load is related to the hydrodynamic
mass and damping, and calculated using the propeller pitch as described in
Appendix C. The continuous model, like the discrete model, assumes a con-
stant propeller pitch which in turn assumes a constant hydrodynamic mass
and damping. As the SAA II makes use of propellers with variable pitch, this
leads to an error in the offsets of the propeller ice and hydrodynamic moments
when the pitch is different to that assumed when calculating the hydrodynamic
mass and damping. However, as the actual hydrodynamic load is accounted
for by the measured propulsion shaft torque and angular velocity, the offsets
in the propeller ice and hydrodynamic moments cancel one another. The total
propeller load, as shown in Figure 5.16(a), thus does not contain this offset
error and it can be seen that the hydrodynamic load (215.9 kN in this case)
agrees in Figures 5.16(a), 5.16(b), and 5.16(d).

Finally, the continuous and discrete models were compared in terms of their
solution times. The cases in Table C.7 were analysed using both the discrete
and continuous models, in order to make a comparison. The same computer
used to evaluate the discrete model in Section 4.4.1 was used with MATLAB.
Only the Tikhonov regularization method was considered in the solution of the
discrete model. The solution times, from Table C.8, are presented graphically
in Figure 5.17. For the discrete model, the solution times only reflect the time
needed to perform the inverse solution. The time taken to set up the impulse
response function is not taken into account, as this only need be done once
for each measurement location. Similarly, for the continuous model the time
taken to set up the necessary matrix equations is not taken into account as
these can also be done once. The solution times presented for the continuous
model include both the determination of initial values and the inverse solution.

The trend from the discrete model is the same as shown in Figure 4.14 where
the solution time is roughly proportional to the square of the case duration.
Also of note is that Case 46, with a duration of 18 seconds, was not solved by
the discrete model due to insufficient memory.

The continuous model shows a significant improvement in solution time,
increasing linearly with an increase in case duration. Furthermore, once the
case duration reaches 2 seconds or longer the solution time becomes less than
the case duration.
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(a) Discrete model

(b) Continuous model

Figure 5.17: Relationship between case study duration and solution time - com-
parison between discrete and continuous models
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(a) Estimated propeller moment (b) Estimated motor torque

(c) Angular velocity (d) Internal torque Q1

Figure 5.18: Results from continuous model for 5 minute recording on 30 October
2019 at 20:10:26

Since the measurement system on board the SAA II has been designed to
save data every 5 minutes, a 5 minute file recorded at 20:10:26 on 30 October
2019 was supplied as input to the continuous model to determine its solution
time. The solution time for the 5 minute file was 30.6 seconds, and the results
are given in Figure 5.18.

Adding this point to Figure 5.17(b) gives the relationship shown in Fig-
ure 5.19. These solution times allow the continuous model to operate in close
to real-time which is another improvement over the discrete model.
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Figure 5.19: Relationship between case study duration and solution time - contin-
uous model

5.4.2 Comparison between measurement locations for
the inverse solution

As in the 2018/19 Antarctic voyage, during the 2019 SCALE Spring Cruise the
propulsion shaft torque was measured at two separate locations to investigate
whether the inverse model provided similar results irrespective of measurement
location. These measurement locations were Q1 and Q2 in Figures 3.2 and 4.2.

The cases in Table C.7 were analysed using both the discrete and contin-
uous models, in order to make a comparison. It should be noted that only
the differences between the two measurement locations’ internal torques were
taken into account. This is due to the fact that the angular velocity was only
measured at a single location.

For each case, the estimated external propeller moment was calculated from
each measurement location. The relative errors and correlation coefficients be-
tween the external moments were calculated for each case using Equations 4.42
and 4.43. The relative errors and correlation coefficients between the measured
torques for each case was also calculated. These are presented in Figures 5.20
and 5.21 respectively.

The first thing to note from Figures 5.20 and 5.21 is that the errors be-
tween the measured torques are lower than in Figures 4.15 and 4.16. They are
however still amplified by the discrete model in its inverse solution, leading
to larger errors between the estimated external moments. By comparison, the
errors between the estimated external moments determined by the continuous
model are much smaller and close to the errors between the measurements.
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Figure 5.20: Relative errors for the measured internal torques and estimated pro-
peller moments

Figure 5.21: Correlation coefficients for the measured internal torques and esti-
mated propeller moments
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This means there is very little amplification of the errors when using the con-
tinuous model. As an example, the propeller moments determined for Case 1
from Table C.7 using the continuous model are shown in Figure 5.22 along
with the measured internal torques.

(a) Estimated propeller moment (b) Measured internal torque

Figure 5.22: Comparison between measurement locations for continuous model

The reduction in error suggests that the continuous model is a more accu-
rate representation of the propulsion shaft than the discrete model.

5.4.3 Comparison to literature

The continuous model was evaluated using published data, the first data com-
ing from Rolls-Royce AB (2010a) and the second from Polić et al. (2016, 2019).

5.4.3.1 Data from ice impact simulation by Rolls-Royce AB
(2010a)

Both the discrete and continuous models were evaluated in the forward problem
using the first IACS case from Rolls-Royce AB (2010a). The two models
achieved similar results, but their results were different to those presented
by Rolls-Royce AB (2010a). This was due to the discrete model assuming a
constant motor torque, which was also assumed for the forward problem of the
continuous model in order to make a comparison.

Rolls-Royce AB (2010a) made use of a model similar to the discrete model
to perform a forward solution of an ice-impact simulation for the SAA II. The
ice impact is given in Figure 5.23(a), and the motor-shaft torque and motor
speed from Rolls-Royce AB (2010a) in Figures 5.23(b) and 5.23(c) respectively.

The external propeller moment that causes the results in Figures 5.23(b)
and 5.23(c) was not provided by Rolls-Royce AB (2010a). The external mo-
ment was therefore reconstructed using the ice loading from Figure 5.23(a)
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(a) Ice impact (b) Motor shaft internal torque

(c) Motor speed

Figure 5.23: Results from Rolls-Royce AB (2010a)

and the hydrodynamic torque. As there was no information about the change
in the angular velocity of the propeller over time, the hydrodynamic torque
had to be reconstructed using the motor speed provided by Rolls-Royce AB
(2010a).

The continuous model was provided with the internal torque and velocity
results from Rolls-Royce AB (2010a) (Figures 5.23(b) and 5.23(c) respectively)
as input and the estimated propeller moment was determined. As the continu-
ous model and the model used by Rolls-Royce AB (2010a) represent the same
propulsion line, the continuous model’s parameters were left unchanged. The
results provided by Rolls-Royce AB (2010a) were for the motor shaft, which
the continuous model does not consider. As such, the inputs were applied
close to the motor inertia, at x = 29.4 m. The comparison between the actual
propeller moment and that determined by the continuous model is provided
in Figure 5.24.

The propeller moment estimated by the continuous model is similar to
the actual propeller moment, with a relative error of 8.02% and a correlation
of 98.36%. The errors between the first peak values could be due to the
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Figure 5.24: Comparison between propeller moments for ice impact simulation
(Rolls-Royce AB, 2010a) and continuous model

continuous model not accounting for all the inertial components that Rolls-
Royce AB (2010a) does. Furthermore, errors will arise as the results provided
by Rolls-Royce AB (2010a) were for the motor shaft, which is not considered
by the continuous model, and as such the location for the inputs was on the
propulsion shaft close to the motor inertia.

5.4.3.2 Data from Polić et al. (2016, 2019)

A model of a shaft line was also developed by Polić et al. (2019) to perform
inverse propeller moment estimations. The model similarly makes use of modal
superposition to develop the equations of motion for each mode shape n:

Jnq̈n(t) + Cnq̇n(t) +Knqn(t) = −Qprop(t)φn(0) +Qmotor(t)φn(L) (5.44)

However, Polić et al. (2019) assume that the contribution of the inertial
terms (Jnq̈n) in the equation of motion for flexible modes (n > 0) is negligible
by assuming that the ratio between the frequency of the external moment and
the natural frequencies of the shaft are small. Thus, this simplification relies
on assuming that the frequency of the external propeller moment is far from
resonance.

In contrast to the model developed by Polić et al. (2019), the continuous
model developed here does not make these assumptions, and instead includes
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Figure 5.25: Design ice load for propulsion line case 1, adapted from Det Norske
Veritas (2016)

the contribution from all modal inertial terms. The propeller damping is also
projected onto the modal coordinates and considered by the model.

Polić et al. (2016) provide a propulsion system model developed using the
bond graph method. This model is independent from the inverse model by
Polić et al. (2019), and from the continuous model developed here. Data is
provided for a propulsion shaft subjected to the ice impact described by the
case 1 design ice load for propulsion line torque in Det Norske Veritas (2016),
shown in Figure 5.25.

The full propeller moment, including the hydrodynamic load, and the re-
sulting internal torque and propulsion shaft speed from Polić et al. (2016, 2019)
is presented in Figure 5.26.

In order to test the continuous model against these results, it was necessary
to alter the model parameters. Specifically, the propulsion shaft geometry and
material properties, and the propeller and motor inertias were changed. The
values of these parameters are given in Table C.3 in Appendix C.2. The
measurement location was selcted as 11 m from the propeller. Note that the
propeller damping was not taken into account during the inverse solution by
Polić et al. (2019) and is thus considered to be zero for the continuous model.
Also the time step of the continuous model was decreased to match the 1 kHz
sample rate used by Polić et al. (2019).

The propulsion shaft torque and velocity, from Figures 5.26(b) and 5.26(c)
respectively, were then used as the input to the continuous model. The inverse
solution was performed and the results are compared to the actual propeller
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(a) External propeller moment, adapted
from Polić et al. (2019)

(b) Internal torque, adapted from Polić et al.
(2016)

(c) Angular velocity, adapted from Polić
et al. (2016)

Figure 5.26: Propeller moment and propulsion shaft response from Polić et al.
(2016, 2019)

moment from Figure 5.26(a) in Figure 5.27(a).
Figure 5.27(a) shows that the continuous model delivers a well matched

propeller moment estimate compared to the actual propeller moment. This
result further validates the continuous model, as it is able to reproduce an
estimated propeller moment from data produced by an independent model.
In addition, it shows that the continuous model can be easily adapted to suit
another propulsion shaft by altering the material and geometric properties.

In addition to testing the inputs directly, Polić et al. (2019) colour the
inverse model inputs with noise according to Equation 5.45:

ŷ(t) = y(t) + u(t)eȳ (5.45)

with y(t) the original signal as a function of time, u(t) a signal describing the
noise, and e set as a percentage of the mean of the signal ȳ.
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The noise u(t) was generated from uniformly distributed random numbers
with a mean value of zero and a standard deviation of

√
1/3. The noise was

then transformed into white (1/f 0), pink (1/f), and red (1/f 2) power spectral
densities. White noise has the same power across the frequency range, while
pink and red noise have more power in the lower frequency range. The noise
signals were set as 1% (e = 0.01) of the mean signal values at steady state,
as done by Polić et al. (2019), with the mean internal torque value equal to
770 kNm and the mean velocity value equal to 9.34 rad/s.

After the noise is added to the inputs, they are filtered using locally waited
regression. This is done in the same manner as Polić et al. (2019), using the
MATLAB smooth function with the loess setting which makes use of weighted
linear least squares and a second degree polynomial for interpolation. The
span for the smoothing function was the same as that used by Polić et al.
(2019) for a signal sampled at 1 kHz, in this case 84.

The estimated propeller moments determined by the continuous model
under these conditions are given in Figure 5.27. Contamination with pink
noise results in the worst propeller moment estimate, with significant noise in
the signal and errors on the peaks. Both white and red noise contamination
result in a lower noise level on the estimated propeller moment, with lower
peak errors.

The effect of noise on the different input signals, torque and velocity, was
also investigated. This was achieved by adding noise to either the input torque
or the input velocity. The resultant propeller moment estimates are given in
Figure 5.28. The results shows that, for the level of 1% of the mean value,
noise on the input velocity results in larger errors than noise on the input
torque.
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(a) No noise (Relative error - 2.15%, Correlation - 99.58%)

(b) White noise (Relative error - 4.64%, Correlation - 97.95%)

Figure 5.27: Estimated propeller moments from inputs coloured with noise
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(c) Pink noise (Relative error - 8.96%, Correlation - 92.88%)

(d) Red noise (Relative error - 5.13%, Correlation - 97.51%)

Figure 5.27: (Continued) Estimated propeller moments from inputs coloured with
noise
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(a) White noise on torque (Relative error - 2.41%, Correlation - 99.45%)

(b) White noise on velocity (Relative error - 4.61%, Correlation - 97.98%)

Figure 5.28: Estimated propeller moments from inputs coloured separately with
noise
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(c) Pink noise on torque (Relative error - 2.39%, Correlation - 99.46%)

(d) Pink noise on velocity (Relative error - 8.95%, Correlation - 92.93%)

Figure 5.28: (Continued) Estimated propeller moments from inputs coloured sep-
arately with noise
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(e) Red noise on torque (Relative error - 2.41%, Correlation - 99.44%)

(f) Red noise on velocity (Relative error - 5.09%, Correlation - 97.54%)

Figure 5.28: (Continued) Estimated propeller moments from inputs coloured sep-
arately with noise
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5.5 Limitations of the continuous model
The continuous model of the propulsion shaft is able to overcome the limita-
tions of the discrete model. However, it does also suffer from its own limita-
tions.

The model requires two separate inputs in order to perform an inverse cal-
culation. The inputs used for the development of the model were the measured
internal torque and the angular velocity, at some point along the shaft. This
means that the measurement equipment and installation on board a vessel
becomes more costly, as two sensors are required instead of one. Furthermore,
a measurement that provides information about the speed control of the shaft
is specifically needed.

The model only considers the uneven modes in the inverse solution. With
reference to Figure 5.29, it was shown that including the even modes in the
forward solution does not give any extra information. This is due to the
propeller moment and motor torques being opposite in direction, resulting in
the excitation of the even modes being negligible. It was found that due to
this interaction, the inclusion of even modes in the inverse solution resulted in
instability. If an even mode is excited, then the contribution from that mode
will be solved as part of the external propeller moment or motor torque.

Since only the uneven modes are considered, care needs to be taken when
selecting measurement locations. This is due to the equations for the measured
torque and angular velocity that are added to the matrices for the inverse

Figure 5.29: Convergence of internal steady-state torque in forward problem -
comparison between even and uneven modes
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(a) Mode shapes (b) First derivatives

Figure 5.30: Propulsion shaft uneven mode shapes and first derivatives

solution:

Q(x1, t) = GJ
∂θ(x1, t)

∂x
= GJ

N∑
n=0

φ′n(x1)qn(t) (5.46)

θ̇(x2, t) =
N∑
n=0

φn(x2)q̇n(t) (5.47)

With reference to Figure 5.30, it is possible to choose measurement loca-
tions x1 and x2 such that the terms φ′n(x1) and/or φn(x2) for some modes n are
equal to zero. This means that those modes do not contribute to the inverse
solution. In particular, if x2 is chosen such that x2/L = 1/2 then all φn(x2)
will be equal to zero, resulting in the inverse problem being underdetermined.

The model assumes that the propulsion line consists of a single shaft be-
tween the motor and propeller. This assumption may not be valid in all cases.
Specifically in the case of the SAA II, there are two shafts between the motor
and propeller. As they are all rigidly coupled, the assumption of a single shaft
led to a simpler model.

The model is also sensitive to noise at frequencies near the first torsional
natural frequency of the propulsion shaft. This stems from the fact that for
the torsional vibration of ship propulsion lines, the first torsional mode is
dominant (Senjanović et al., 2019). Introducing low frequency noise has the
effect of altering the power of the frequency content of the measured signal at
these low frequencies. This causes errors in the model when the frequencies
near the first torsional mode are affected. In the case of the SAA II propulsion
shaft the first torsional mode is located at roughly 11 Hz and in the altered
continuous model used for the comparison of results from Polić et al. (2019)
the first torsional mode is at roughly 20 Hz. Figure 5.31 highlights where these
frequencies are located and how white, pink, and red noise relate to them. It
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Figure 5.31: Power spectral densities for white, pink, and red noise

can be seen that pink noise, which caused the largest errors in the propeller
moment estimates, adds more noise to the signal at the same frequency as the
first torsional mode.

Finally, the model is more sensitive to errors on the measured velocity than
on the measured torque. This could have been due to the row scaling employed
in the inverse solution, discussed in Section 5.3. As the row containing the
equation for the measured velocity was scaled up, so was any noise on the
measurement. As both the equation and the measured noise were scaled up
by the same factor, it was assumed that this would not introduce errors.

Even so, a different scaling was investigated to see if this was leading to
the sensitivity to noise on the velocity measurements. The original scaling
consisted of column scaling on the last two columns and row scaling on the last
row of the J, C, K, and Q terms of the matrix formulation in Equation 5.42.
These columns and rows were multiplied with constant factors to raise them
to equivalent magnitudes as the other terms in the combined effective stiffness
matrix (see Appendix B).

The alternate scaling consisted of scaling down all columns but the last
two, and then rescaling up the last two rows representing the equations for the
measured values such that the net scaling applied to these rows was a factor of
one. This led to a higher condition number (by a factor of 109), but resulted
in the measurements being unscaled. Thus, any noise on the measurements
were not scaled either.

The newly scaled inverse problem was then provided the noise coloured
input data that gave the results in Figures 5.27 and 5.28. Despite the changes,
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and with the higher condition number, the exact same results were achieved.
This suggests that the continuous model’s sensitivity to noise on the velocity
measurement is not as a result of the scaling.

It follows that the inversely estimated propeller moments are more sensitive
to the velocity measurements than the torque measurements, and therefore
more sensitive to any errors on the velocity measurements.

5.6 Discussion
The continuous model overcomes much of the limitations of the discrete model.
The motor torque and hydrodynamic loads are no longer assumed constant and
are factored into the inverse solution, while angular velocity measurements are
incorporated to provide extra information. This leads to more accurate results.

The model is also efficient. Specifically it can solve longer datasets in less
time than it takes to record them, meaning it has the capability for close to
real-time analysis.

As the model is derived from the same principle as another model in lit-
erature (Polić et al., 2019), it is necessary to discuss the differences between
them. Both models make use of modal superposition to transform the par-
tial differential equation that governs the torsional vibration of the propulsion
shaft into a set of N ordinary differential equations, with N the number of
mode shapes used in the modal superposition.

Polić et al. (2019) then assume that for the flexible modes, the inertial
terms Jnq̈n and damping terms Cnq̇n are negligible. The assumption that
Jnq̈n ≈ 0 follows from the assumption of small frequency ratios, or that the
frequencies of the propeller moment and motor torques are less than 20 %
of the natural frequency of the shaft. This allows for the set of N ordinary
differential equations to be reduced to two equations representing the torques
acting at the ends of the shaft (propeller and motor torques) as the only two
unknowns.

These two equations rely on two measured parameters, the angular defor-
mation (measured strain) and the derivative of the measured angular velocity.

Once the torque acting at the propeller end of the shaft is obtained, the pro-
peller inertia is considered and the propeller loading determined using another
sub-model.

In contrast, the presently introduced continuous model does not assume the
inertial terms to be zero. The modal damping terms are assumed to be zero,
although the influence of water damping on the propeller is still considered.
The influence of the assumption that the modal damping terms are zero should
be investigated further.

The model calculates the projection of the propulsion shaft inertia onto
the modal coordinates qn for both the rigid and flexible modes. Similarly,
the projection of the propeller and motor inertias and propeller damping onto
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the modal coordinates are included. This means the model is fully defined,
without sub-models, and includes the terms for all modal coordinates.

The continuous model likewise makes use of two measured parameters, the
angular deformation (measured strain) which is converted to an internal torque
and the angular velocity. However, the angular velocity can be included di-
rectly into the inverse solution without needing to use its derivative, as the q̇n
terms are available in the model. In comparison to Polić et al. (2019), differ-
entiation of the measured angular velocity is not necessary meaning numerical
differentiation can be avoided.

The resultant system of equations for the continuous model contains N + 2
unknowns (N modal coordinates qn, and the propeller and motor torques)
instead of the two unknowns in the Polić et al. (2019) model. A generalised-α
numerical time integration scheme is employed to solve the system of equations
at each time step.

While Polić et al. (2019) only include the influence of the propeller inertia, it
is possible to include the influence of other inertias with the continuous model.
This is in addition to the propeller and motor inertias already considered by
the model. This is due to how the inertial components are projected onto
the modal coordinates, and is discussed at the end of Section 5.1. Similarly,
additional damping effects can be included.

As an example, the estimated propeller moment for the first case from Ta-
ble C.7 was calculated while including a fictitious bearing located 5 m from the
propeller, with an inertia of 300 kg ·m2. The results are shown in Figure 5.32,
with higher peaks on the ice impact due to the extra inertia.

A key assumption in the model by Polić et al. (2019) was that the inertial
terms Jnq̈n(t) were negligible for flexible modes, n > 0. This assumption
followed from the fact that the transmissibility of force was much smaller than
the transmissibility of displacement, for small frequency ratios. Since Jn >> 0
it follows that q̈n(t) ≈ 0 for n > 0. However, at or near resonance this
assumption is no longer valid. As the ice-induced impacts would result in a
broadband frequency excitation, they would excite resonances and violate this
assumption. Furthermore, ice-induced loading such as milling at frequencies
near to a resonant frequency would violate this assumption.

To evaluate this assumption, the q̈n(t) values for the results obtained using
the data presented in Figure 5.26 from Polić et al. (2016, 2019) were investi-
gated. Figure 5.33 provides the first five q̈n(t) values. The results show that
the rigid mode q̈0(t) values are larger than the flexible mode q̈n(t) values, as
assumed by Polić et al. (2019). The flexible mode q̈n(t) values reduce closer to
zero as n increases. However, the flexible mode q̈n(t) are shown to have non-
zero values, especially for q̈1(t). Since the torsional vibration is dominated by
the first torsional mode, it follows that q̈n(t) for this mode would have higher
values.

In the case of the SAA II, the first torsional natural frequency of the shaft
is close to 11 Hz. The MCR rotational speed of the shaft is 140 rpm, which
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Figure 5.32: Influence of fictitious added inertia on the continuous model

Figure 5.33: Second time derivatives of modal coordinates (q̈n(t)) from inverse
solution, using data from Polić et al. (2016, 2019)
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Figure 5.34: Second time derivatives of modal coordinates (q̈n(t)) from inverse
solution, using ice impact Case 1 from Table C.7

is 2.33 Hz. As the propeller has four blades, the blade pass frequency is four
times the rotational speed at 9.33 Hz. As such, during milling at MCR speed
it could be expected that impacts occur at a rate of 9.33 Hz which is close to a
resonant frequency for the shaft. The frequency ratio between this milling and
the first torsional natural frequency for the SAA II is 85 % which is significantly
larger than the small frequency ratios (< 20 %) assumed by Polić et al. (2019).

Case 1 from Table C.7 is used to illustrate this. The average rotational
speed for the ice impact in Case 1 is close to the MCR speed at 138.8 rpm
and contains milling. The first five q̈n(t) values for the solution of Case 1 are
presented in Figure 5.34.

The results in Figure 5.34 show that the flexible mode q̈n(t) have non-zero
values, again especially for q̈1(t). In this case the first flexible mode q̈1(t) values
are significantly larger and comparable to the rigid mode q̈0(t) values. This is
due to both the dominance of the first torsional mode in the vibration response
and the fact that the ice-induced loading from milling occurs at a frequency
close to this first torsional mode. Clearly, the assumption that q̈n(t) ≈ 0 for
n > 0 does not hold for this case. Furthermore, the assumption does not
hold in general for the data recorded on the SAA II propulsion shaft as the
frequency of the excitations are regularly higher than 20 % of the first torsional
natural frequency.

To demonstrate the influence of assuming q̈n(t) ≈ 0 for n > 0, the contin-

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. PROPELLER MOMENT ESTIMATION USING A
CONTINUOUS MODEL OF THE PROPULSION SHAFT 122

Figure 5.35: Comparison of inverse propeller moments using the continuous model,
assuming q̈n(t) = 0 for n > 0

uous model was altered to assume that q̈n(t) = 0 for n > 0, and the inverse
solution for Case 1 was performed. The results are compared to the previous
inverse solution for Case 1 with q̈n(t) 6= 0 for n > 0. The results show that
larger amplitudes are estimated under the assumption. If the previous esti-
mation, produced with q̈n(t) 6= 0 for n > 0, were to be considered accurate
then the assumption that q̈n(t) ≈ 0 for n > 0 leads to an overestimation in
the inverse propeller moment. Again, it is clear that the assumption does not
lead to the same results and thus does not hold.

The continuous model thus offers an advantage over the model by Polić
et al. (2019), due to taking all the q̈n(t) into account during the inverse solu-
tion. Being able to do so becomes important in the case that the ice-induced
propeller moment contains frequencies near to the first natural frequency of
the propulsion shaft.
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Voyage data analysis

Full-scale measured propulsion shaft data from the SAA II was used to il-
lustrate the practical value of the new continuous model. In addition to the
analysis of single ice impacts and milling cases the continuous model was ap-
plied to efficiently estimate the propeller moments for a full voyage.

Figure 6.1 provides a breakdown of the research presented in this chapter,
and shows where the contributions to literature arise.

Figure 6.1: Breakdown for Chapter 6 research and contributions
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Data from the 2019 SCALE Spring Cruise was analysed using the new con-
tinuous model. This voyage took place from 11 October to 20 November 2019,
with the propulsion shaft measurements sampled continuously throughout the
voyage. The voyage included operation in both open water and ice. In total,
38 days of measurements were made, with roughly 10 of those spent in ice.
Figure 6.2 provides a graphical breakdown of the percentage of measurements
in open water and ice.

Figure 6.2: Amount of time spent in open water and ice for the 2019 SCALE Spring
Cruise

In addition to the results from the analysed cases in Table C.7 (C), dis-
cussed in Section 6.1, an analysis of the propeller moment estimates for the
entire voyage was conducted, Sections 6.2 and 6.3.

Analysing the propeller moments for a full voyage was not previously
practical with the discrete model, due to its prohibitive computational cost.
Thus, analyses like this were limited to the measured propulsion shaft torque
(De Waal, 2017).

A total of 921 hours of data, at a sample rate of 600 Hz, were analysed for
the 2019 SCALE Spring Cruise. The computer used to analyse the full dataset
had an i7-8700 4.6 GHz processor, 16 GB of RAM, and a 64-bit operating
system. In comparison to the computer used to solve the propeller moment
estimates for the ice impacts, which took roughly 30 seconds to solve a 5 minute
input file, this computer took roughly 16 seconds to solve the same input file.
It took 3 to 4 days to analyse the dataset using the continuous model and
estimate the propeller moments for the full voyage.
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6.1 Ice impacts
An overview of the ice impacts from Table C.7, used in the evaluation of the
continuous model, is provided Figure 6.3. Only the results for measurement
location Q1 are presented here, as the results from location Q2 appear similar.
The scaling on the y-axes was selected such that all impacts were easily visible.

When comparing internal torque to the ice-induced propeller moments, it
was found that the ice impact peaks are consistently larger than the internal
torque peaks. Before accepting this as a general statement, further investiga-
tion is required as this contrasts with the findings by De Waal (2017). That
study found that, in some cases, the internal torque was higher than the ex-
ternal ice loads. The higher internal torques were either attributed to the
dynamic response of the shaft amplifying the internal torque, or to possible
shortcomings of the model. A possible reason, considering the dynamics, is
the reflection of the torsional stress waves which may cause constructive inter-
ference.

It is possible that the propeller loads would be higher due to them needing
to overcome both the material’s resistance to deformation and the inertia of
the rotating components. By comparison, in the static case only the material’s
stiffness or rigidity will be taken into account, meaning the internal torque and
propeller moment would be equal.

For the ice impact cases that were analysed, it was rare that the ice-induced
propeller moment consisted of a single impact such as for Case 29. More often
milling was involved, even when the ice-induced load was dominated by a single
impact such as in Cases 1 or 5. Following an ice impact or milling event is a
ripple on the propeller moment which is attributed to vibrations imparted by
the impacts, the first torsional mode being the dominant response at roughly
11.1 Hz.

The ice impact peaks were found to consistently occur before the internal
torque peaks. Again, this was expected as it would take time for the torsional
wave generated by the ice impacts to reach the measurement location on the
shaft 25 m away.

The speed of the torsional wave can be found through the one-dimensional
wave equation (Rao, 2007):

c2
∂2u(x, t)

∂x2
=
∂2u(x, t)

∂t2
(6.1)

where c is the wave speed. Rewriting Equation 5.6, by removing the exter-
nally applied moment, gives the one-dimensional wave equation for torsional
vibrations of a shaft:

G

ρ

∂2θ(x, t)

∂x2
=
∂2θ(x, t)

∂t2
(6.2)
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Figure 6.3: Overview of internal torques and corresponding propeller moment es-
timates. Internal torques are the solid black lines, while the propeller moments are
the dashed blue lines
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Figure 6.4: Time between ice impact and internal torque peaks for Case 1

where the wave speed is related to the shear modulus and density of the shaft:

c =

√
G

ρ
(6.3)

From Equation 6.3, the torsional wave speed for the SAA II propulsion shaft
was calculated as 3212.2 m/s. As the measurement location is 25 m away from
the propeller, it follows that it would take the wave 7.8 milliseconds to travel
there.

It was found that this is true for the model in the static case. However,
from the impacts estimated in Figure 6.3, the internal torque peaks occurred
more than 7.8 milliseconds after the ice impact peaks. This is highlighted in
Figure 6.4, showing the internal response 40 milliseconds after the main ice
impact peak for the first case.

The same phenomenon was observed with the simulated data from Polić
et al. (2016). In this case, the wave speed for the shaft was 3131.9 m/s, which
leads to a travel time of 3.5 milliseconds to the measurement location, but
again the internal torque peaks appeared later. These results suggest that
the shaft dynamics or the motor control play a role in the propagation of the
torsional waves.

Comparisons were made between the measured internal torque and shaft
angular velocity during the impacts. The first case is used as an example for
the discussion, but all the cases showed similar results.
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Figure 6.5: Comparison between internal torque and shaft angular velocity

At the onset of ice-propeller interaction,it can be seen that the velocity
starts to decrease at 108.4 milliseconds, (Point 1 on Figure 6.5) before the
torque in the shaft increases at 131.8 milliseconds (Point 2 on Figure 6.5).

Furthermore, Figure 6.5 shows that the torque peaks do not line up with
the drops in velocity, with the change in torque appearing to lead the change
in velocity. The torque peak at Point 3 occurs at 256.9 milliseconds while
the velocity trough at Point 4 occurs at 275.2 milliseconds (18.3 milliseconds
later).

From this data, the response of the shaft to an ice impact can be sum-
marised as follows:

1. When an ice impact occurs, the angular velocity of the shaft begins
decreasing, before any stresses or torques are induced on the shaft (Point
1 on Figure 6.5).

2. The torque on the shaft begins increasing after the velocity has decreased
(Point 2 on Figure 6.5), and increases up to a maximum point.

3. The shaft velocity continues to decrease for a short time after the maxi-
mum torque is reached, resulting in a delay between the maximum torque
and minimum velocity (Points 3 and 4 on Figure 6.5).

4. During milling after the initial impact, the torque peaks continue to lead
the velocity troughs.

5. This same process occurs for any subsequent impacts.
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The fact that the angular velocity slows before the internal torque suggests
that part of the ice induced propeller moment is absorbed by components other
than the propulsion shaft, with the load transferring to the shaft later. For
example, the propeller blades themselves could bend in response to a load.
This load on the propeller blade would still result in a reduction of angular
velocity, but not in twisting of the propulsion shaft. This is another example
of why the measurement of the shaft angular speed is important for the inverse
model as it helps to capture load effects that may not be present in the shear
deformation of the shaft.

The possibility that the load is partially absorbed by components before
being transferred to the propulsion shaft provides another reason for the dif-
ference in wave speeds, as discussed with regards to Figure 6.4. Since the load
is transferred to the shaft some time after the impact occurs, this time would
be added to the time taken for the wave to travel from the propeller to the
measurement location.

In addition to this response, the control response can be seen to command
an increase in velocity to compensate for the losses caused by the impact.
This leads to an overshoot as the milling reduces, with the velocity eventually
settling at its pre-impact value. This increase in velocity leads to higher milling
loads on the propeller, as the blades make contact with the ice while they are
accelerating. The faster the control system responds to the loss in speed,
the higher the induced milling loads could be. Understanding how the motor
control leads to increased milling loads can help in the design of the control,
and can be used to reduce the magnitude of milling loads.

6.2 Rainflow cycle counting of estimated
propeller moment

Rainflow cycle counting was performed on the estimated propeller moments for
the voyage. This was done to provide an overview of the loads experienced by
the propeller over the course of the voyage. The cycle counting was performed
using an algorithm written by Nieslony (2020), which was developed according
to the ASTM E1049-85 (2017) standard.

An example of the cycle counting for a portion of the external propeller
moment for Case 1 from Table C.7 is presented in Figure 6.6. Figure 6.6(a)
identifies the maxima and minima in the signal, and Figure 6.6(b) shows the
cycles extracted from the signal

Cycle counting was performed separately for open water navigation and ice
navigation. A histogram presenting the extracted peak values from the cycle
counting results for the open water and ice navigation is given in Figure 6.7.
The bin size for the histogram is 1 kNm.

From Figure 6.7, it can be seen that significantly more cycles were experi-
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(a) External propeller moment extrema (b) Extracted cycles

Figure 6.6: Rainflow cycle counting example

enced during open water navigation, since more time is spent in open water.
As such, the scaling on the y-axes of Figures 6.7(a) and 6.7(b) are not matched,
so that it is easier to see and compare the data presented in Figure 6.7(b).

The majority of peaks during open water navigation occur around 200 kNm.
This corresponds to the relatively constant torque used during open water
navigation. The increase in peaks below 100 kNm is attributed to when the
ship is stationary, as found by De Waal (2017).

During ice navigation the spread of the propeller peaks increases signif-
icantly. More peaks occur above 200 kNm, due to the ice impacts on the
propeller causing higher peak values. The number of peaks around 200 kNm
is reduced, with more peaks between 70 to 200 kNm. This is due to changes in
the propeller pitch and reductions in propulsion shaft rotational speed during
ice navigation. This results in more varied torque on the propulsion line, as
opposed to the relatively constant torque during open water navigation.

The full overview of the cycle counting for the voyage is presented in Fig-
ure 6.8. This provides a useful tool for investigating the propeller loads ex-
perienced during a voyage. The mean operating conditions for the propeller
are clearly visible, with the higher amplitudes occurring during propeller-ice
interaction.

These loads can be used in conjunction with a high fidelity propulsion line
model, such as a finite element model, to perform stress and fatigue analysis.
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(a) Open water

(b) Ice

Figure 6.7: Comparison of propeller moment peaks from rainflow cycle counting
for open water and ice navigation
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Figure 6.8: Cycle counting for 2019 SCALE Spring Cruise propeller moments

6.3 Voyage load profiles
The cycle counts of the estimated propeller loads were used to construct load
profiles for the voyage, presented in Figure 6.9. The load response factor
Ka was determined by dividing the peak values by the rated torque QMCR.
This is usually used for vessels exposed to varying loads to determine safe
loading for propulsion line components, such as the propeller (De Waal, 2017).
The amplitudes are divided by the maximum amplitude, and presented as a
percentage.

As found by Myklebost and Dahler (2003) and De Waal (2017), the data in
Figures 6.9(a) and 6.9(b) exhibit a change of slope. This is attributed to the
distribution above the slope change resulting from ice impacts on the propeller,
and the distribution below the slope change resulting from motor excitations.
Thus, to focus on the results from ice related loads, only the distribution above
the change in slope should be considered. These are presented in Figures 6.9(c)
and 6.9(d)

Load profiles such as these can be used for the design or analysis of propul-
sion systems, to ensure they are capable of withstanding the expected loads
for a given voyage. They can also be used to monitor the propulsion line com-
ponents, by cumulatively tracking load profiles experienced over the system’s
life cycle.

These load profiles are also useful in the comparison of different voyages or
vessels’ loading conditions. De Waal (2017) attempted to make comparisons
between the loads experienced by the SAA II and the Polarstern propulsion
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(a) Peak

(b) Amplitude

Figure 6.9: Load profiles for 2019 SCALE Spring Cruise estimated propeller mo-
ment
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(c) Peak - ice related

(d) Amplitude - ice related

Figure 6.9: (Continued) Load profiles for for 2019 SCALE Spring Cruise estimated
propeller moment
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lines through torque measurements conducted on their propulsion shafts. This
was done to compare the typical loads a vessel might experience in the Antarc-
tic to those experienced in the Arctic. However, it was difficult to make a fair
comparison as:

• the vessels’ propulsion lines have different shaft geometries, meaning that
for the same external propeller moment they would each experience a
different torque in the propulsion shaft,

• and torque fluctuates along the length of the propulsion shaft, so selection
of measurement locations can result in differences.

De Waal (2017) suggested that the propulsion shaft loads should be con-
verted to propeller loads for a fair comparison to be made between the ice
induced propeller moments. This is now readily achievable with the continu-
ous model. Load profiles can be built for a variety of ships under a variety of
operational conditions. These profiles can be used:

• to compare the propeller loading experienced by different vessels,

• to predict the loading a particular vessels propulsion line may experience
under certain conditions, using estimated propeller moments,

• in the design of vessels propulsion lines,

• and in the design of standards for use in the design of vessels.

The propeller loading can also be monitored in close to real time throughout
a voyage. This is due to the algorithm being able to analyse large sections of
data efficiently. Cycle counting, loading profiles, and maximum conditions
could all be monitored.
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Conclusions and recommendations

The aim of this research was to investigate the estimation of propeller mo-
ments of ice going vessels. Furthermore, the research set out to add novel
contributions to the literature currently available.

A literature review analysing the state of the art inverse propeller moment
estimation techniques was conducted. Areas where the literature on inverse
models for propeller moment estimation could be contributed to were noted.
These included:

• the assessment of the discrete model by Ikonen et al. (2014) and De Waal
et al. (2018b), in which the following areas were noted:

– the selection of a particular regularization method,

– the selection of regularization parameter,

– the difference between input locations,

– and the assessment of assumptions made for these models.

• the development of new inverse models based on modal superposition
that do not require regularization, in which the following areas were
noted:

– there was opportunity to develop a model that could account for
modal inertia and the inertias of propulsion shaft components other
than the propeller,

– since only one of these models were available in literature, another
model could assist in validation,

– and the use of full-scale measured data in the evaluation of the
model.

• the comparison of these new continuous inverse models to the previous
discrete inverse models
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7.1 Conclusions
Full scale measurements were performed on the SAA II to provide the neces-
sary propulsion shaft torque data for the development and assessment of the
inverse models. Based on the recommendations of De Waal (2017), the work
done by Polić et al. (2019), and the development of the continuous model, the
measurement system was upgraded to include a higher frequency measurement
of the rotational speed of the propulsion shaft.

The full-scale measurements were used in the evaluation of the inverse
models. Furthermore, they provide additional data to the literature that can
be used in the future development of inverse models or in the design process
of ice-going vessels.

The discrete lumped mass model used by De Waal et al. (2018b) was inves-
tigated. Automated selection of the regularization parameters was developed
and implemented on a case by case basis. A number of regularization methods
were evaluated and the Tikhonov method selected as the preferred one due to
it being the most robust and efficient. The model was evaluated using data
from literature as well as full scale measurements. It was found to introduce
errors on the propeller moment estimates due to assumptions made in the
derivation of the model. It was also found to be prohibitively computation-
ally expensive for large datasets. Based on the evaluation of the model and
its assumptions, it is suggested that it is unsuitable for inverse estimations of
propeller moments.

A new inverse model for propeller moment estimates was developed. This
model is based on the modal superposition of a continuous shaft, and does not
require regularization to perform the inverse solution. The continuous model
was evaluated through comparisons to the previous discrete model using the
full-scale measurements conducted on board the SAA II, and was found to be
a significant improvement over the discrete model. Specifically, it was more
accurate and significantly more efficient.

The continuous model was compared to the state of the art in literature
(Polić et al., 2019), and the differences discussed. It was found that the con-
tinuous model is advantageous, as it accounts for the modal inertia terms in
the solution. This allows its use when the frequencies of the propeller mo-
ments are close to the natural frequencies of the shaft. The model by (Polić
et al., 2019) assumed this was not the case, but it was shown through full-scale
measurements that this can and does occur in practice.

The continuous model now provides an efficient method for analysing longer
sections of data, and can be employed to relatively quickly analyse the external
propeller moments for a full voyage. There is also potential for close to real-
time analysis of measurements. This can be used in the operational monitoring
of shaft-line systems or in the development of digital services such as propulsion
shaft digital twins.
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7.2 Recommendations
Based on the research presented, the following recommendations are made:

1. The discrete model, in its current state, is not recommended for use in
the inverse estimation of propeller moments. It needs to be altered in
order to take the shaft angular velocity and a varying motor torque into
account. A possible line of enquiry is to determine the impulse response
function while treating the system as MISO, with both the ice-induced
loading and the motor torque inputs contributing to the output internal
shaft torque.

2. The continuous model should be expanded to consider more than a sin-
gle shaft between the motor and propeller, to make it more universally
applicable.

3. For the inverse models, some information about the control response to
external ice loads is necessary. This can come from measurements of the
propulsion shaft rotational speed.

4. Scale model testing should be performed, in which both the propeller
moment and shaft torque and velocity are measured. This can be used
as another form of validation for the continuous model.

5. The axial propeller loads could be estimated using a similar approach
to the propeller moment estimation. This would entail the development
and evaluation of a continuous model of the propulsion shaft using axial
modes instead of torsional ones (see Appendix D).

6. A high fidelity numerical model, such as an FE Model, of the propulsion
line system should be built. This model could be used to investigate
whether the estimated propeller moments indeed cause the results mea-
sured on the shaft during operation. It can also be used to investigate
the critical locations on the shaft and the wave propagation through the
shaft.

7. If possible, simultaneous measurements of the propeller load through
measurements on the blade could be used as a validation tool for the
continuous model. Since simultaneous measurement of propeller loads
may be difficult, higher sample rate measurements of the motor torque
can be used as a validation tool by comparing these measurements to the
motor torque estimated by the continuous model in the inverse solution.
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Appendix A

Modal superposition

Modal superposition is a technique that can be used in the analysis of linear
structures. With this technique, the dynamic response of a structure can be
approximated by a superposition of a number of its mode shapes (eigenmodes).

Assuming the standard form for the equations of motion for a structure

Mü + Cu̇ + Ku = f(t) (A.1)

where M is the mass matrix, C the damping matrix, and K the stiffness
matrix. The vector u represents the degrees of freedom of the system. The
vector f represents the loads applied to the system, as a function of time. In
the case of N degrees of freedom, the M, C, and K matrices will all be of size
N ×N .

It is generally assumed that the matrices are real and symmetric and that
K is positive definite. However, it is possible to perform modal superposition
in the case of unsymmetric matrices (COMSOL, 2018). The principles that
apply to the symmetric case also apply to the unsymmetric case, although the
theory becomes more complicated (COMSOL, 2018).

In order to perform modal superposition, one first needs to compute the
natural frequencies (eigenfrequencies) and corresponding mode shapes (eigen-
modes). This is done by solving the eigenvalue problem(

−ω2M + K
)
u = 0, {x} 6= 0 (A.2)

A number n of the natural frequencies ωi and corresponding mode shapes
ui are calculated, with i = 1, 2, ..., n. The number of mode shapes is chosen
such that n < N .

The computed mode shapes are orthogonal with respect to the M, and K
matrices (Rao, 2007). This means that

ui
TMuj = 0, i 6= j (A.3)

ui
TKuj = 0, i 6= j (A.4)
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The mode shapes can be placed into a N × n matrix U, with each column
containing a mode shape. The orthogonality relationships above can then be
written as

UTMU =


m1 0 0 · · · 0
0 m2 0 · · · 0
0 0 m3 · · · 0
...

...
... . . . ...

0 0 0 · · · mn

 = µ (A.5)

UTKU =


m1ω

2
1 0 0 · · · 0

0 m2ω
2
2 0 · · · 0

0 0 m3ω
2
3 · · · 0

...
...

... . . . ...
0 0 0 · · · mnω

2
n

 = Ω (A.6)

where the mi are referred to as the modal masses, whose values depend on the
normalization of the mode shapes (Rao, 2007).

The response of the system is then calculated as a linear summation of the
mode shapes

u(t) ≈
n∑
i=1

uiqi(t) (A.7)

where qi represents the modal amplitudes. If all mode shapes were to be used
in the calculation, the result would be exact. When fewer modes are selected,
the modal superposition can be seen as a projection of the displacements onto
the subspace spanned by the chosen mode shapes (COMSOL, 2018).

The modal superposition expression in matrix form is

u = Uq (A.8)

with q a column vector containing the modal amplitudes. Substituting Equa-
tion A.8 into Equation A.1 and left multiplying by UT gives

UTMUq̈ + UTCUq̇ + UTKUq = UT f(t) (A.9)

Using the orthogonality relationships, Equation A.9 becomes

µq̈ + UTCUq̇ + Ωq = r(t) (A.10)

If one then assumes the modal damping matrix as diagonal (e.g. using
Modal damping, Rayleigh Damping or Caughey damping) the system of equa-
tions becomes uncoupled, with a separate equation to solve for each modal
amplitude
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q̈i(t) + 2ζiωiq̇i(t) + ω2
i qi(t) =

ri(t)

mi

, i = 1, 2, · · · , n (A.11)

The modal load r(t) is a projection of the external loads onto the selected
mode shapes (COMSOL, 2018). If the projection of the load onto a certain
mode is negligible, then that mode can be ignored in the modal superposition.
For example, this happens when a symmetric structure is loaded symmetrically
which allows the exclusion of the asymmetric mode shapes (COMSOL, 2018).
Also of note is that since only a subset of the total mode shapes of the structure
is used in the analysis, a portion of the original load is lost during projection
to modal coordinates.

It is also necessary, in order to obtain satisfactory stress results, to use
more mode shapes than what is necessary to obtain good displacement results
(COMSOL, 2018).

Limitations are also outlined by Besselink et al. (2013) as:

• The selected mode shapes do not span the complete space

• mode shape computation for large systems can be expensive and time
consuming

• the number of mode shapes necessary for computation is not easily known

• the selected mode shapes may be orthogonal to the loading and will
therefore have negligible contribution to the solution

However, methods do exist to allow for the consideration of the truncated
portion of the applied loading such as static correction, modal acceleration
and modal truncation augmentation (Dickens et al., 1997), (Besselink et al.,
2013), (COMSOL, 2018).
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Numerical time integration
schemes

Numerical time integration of dynamic equations is one of the most common
approaches to the solution of structural dynamic responses (Wilson, 2002).
There are several time integration schemes for the solution of structural dy-
namic problems. These methods may be either explicit or implicit. Explicit
schemes express responses in terms of previously determined displacement, ve-
locity, and acceleration values (Dukkipati, 2010). Implicit schemes combine
difference equations with equations of motion and calculate displacements di-
rectly by solving these equations (Dukkipati, 2010).

Generally, implicit schemes have better stability than explicit ones (Kadapa
et al., 2017). Implicit schemes also allow for large time steps, requiring shorter
solution times and less computational effort. However large time steps may
lead to unwanted numerical dissipation in the low frequency range (Kadapa
et al., 2017). A competitive integration scheme for structural dynamic prob-
lems should possess the following properties (Kadapa et al., 2017):

1. Unconditional stability when used in the solution of linear problems.

2. Only one set of implicit equations should be solved at each time step.

3. Must be second-order accurate.

4. Must have controllable algorithmic dissipation in the higher modes or
frequency range.

5. Must be self-starting.

6. The scheme should not suffer from overshoot behaviour.

There has been significant research conducted in the development of im-
plicit schemes that satisfy some or all of the properties listed above. These
include the following methods (Kadapa et al., 2017):
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• Newmark-β (Newmark, 1959)

• Wilson-θ (Wilson et al., 1973)

• HHT-α (Hilbur et al., 1977)

• Collocation scheme (Hilbur and Hughes, 1978)

• WBZ-α (Wood et al., 1981)

• HP-θ (Hoff and Pahl, 1988)

• CH-α (Chung and Hulbert, 1993)

• G-α (KaiPing, 2008)

The Newmark-β method is elaborated on in Section B.1, as this is the
method used to solve the lumped mass models developed by Ikonen et al.
(2014) and De Waal (2017). Section B.2 elaborates on a first-order generalised-
α scheme, first proposed by Jansen et al. (1999) for the solution of the Navier-
Stokes equations, and suggested for use in structural dynamic problems by
Kadapa et al. (2017). Kadapa et al. (2017) refer to this scheme as JWH-α.
Lavrenčič and Brank (2020) compare various generalised-α schemes and show
that the JWH-α method has the best dissipative properties. This JWH-α
scheme is used in the solution of the modal model.

B.1 Newmark-β method
This numerical integration scheme was first presented by Newmark (1959).
It has since been a popular solution method for structural dynamics and has
been improved and modified by a number of researchers (Wilson, 2002). This
method can be used to solve dynamic equations of the form

Mü + Cu̇ + Ku = f (B.1)

Through direct Taylor series expansion, the following two equations can be
derived

un+1 = un + ∆tu̇n +
∆t2

2
ün +

∆t3

6

...un + ... (B.2)

u̇n+1 = u̇n + ∆tün +
∆t2

2

...un + ... (B.3)

Newmark (1959) provides truncated versions of Equations B.2 and B.3 of
the following form
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un+1 = un + ∆tu̇n +
∆t2

2
ün + β

...un (B.4)

u̇n+1 = u̇n + ∆tün + γ
...un (B.5)

where γ and β are truncation constants he introduced.
Furthermore, if the acceleration is assumed as linear across the time step

then

...un+1 =
ün+1 − ün

∆t
(B.6)

Substituting Equation B.6 into Equations B.4 and B.5 results in Newmark’s
equations in their standard form

un+1 = un +

(
1

2
− β

)
∆t2ün + β∆t2ün+1 (B.7)

u̇n+1 = u̇n + (1− γ) ∆tün + γ∆tün+1 (B.8)

Equations B.7 and B.8 are then solved by performing an iteration at each
time step.

Wilson (1962) reformulated Equations B.7 and B.8 to remove the need for
iteration. He proposed rewriting the equations as

ün+1 = b1 (un+1 − un) + b2u̇n + b3ün (B.9)

u̇n+1 = b4 (un+1 − un) + b5u̇n + b6ün (B.10)

where

b1 =
1

β∆t2

b2 =
1

β∆t

b3 = β − 1

2

b4 = γ∆tb1

b5 = 1 + γ∆tb2

b6 = ∆t (1 + γb3 − γ)
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Equation B.1 can be rewritten, through substitution of Equations B.9
and B.10, in terms of the unknown solution vector for the current time step,
Equation B.11. This equation can then be solved directly at each time step.

K̄un+1 = f̄ (B.11)

where the effective stiffness matrix (K̄) and effective force vector (̄f) are given
by

K̄ = K + b1M + b4C (B.12)

f̄ = fn+1 + M · (b1un − b2u̇n − b3ün) + C · (b4un − b5u̇n − b6ün) (B.13)

Once un+1 is solved for then ün+1 and u̇n+1 can be solved using Equa-
tions B.9 and B.10 respectively.

Wilson (2002) shows that this method is unconditionally stable if

1

2
≤ γ ≤ 2β

however errors occur if γ is larger than 1
2
.

This leads to a few variations in the method, depending on the selection of
parameters. The most commonly used methods are summarised in Table B.1
below (Wilson, 2002).

Table B.1: Summary of Newmark-β methods (adapted from Wilson (2002))

Method γ β Accuracy

Central difference 1
2

0 Excellent for small time steps,
Unstable for large time steps

Linear acceleration 1
2

1
6

Very good for small time steps,
Unstable for large time steps

Average acceleration 1
2

1
4

Good for small time steps,
Unconditionally stable,
No energy dissipation

B.2 JWH-α method
This numerical integration scheme was first presented by Jansen et al. (1999)
for the solution of filtered Navier-Stokes equations within the context of a
stabilised finite element method. It has since been applied in the analysis of
incompressible nonlinear elastodynamics (Rossi et al., 2016) and incompress-
ible solid dynamics of viscoelastic materials (Zeng et al., 2017).
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The method was recommended for use in structural dynamics problems
by Kadapa et al. (2017), where it was tested against other time integration
methods. It was shown that this method has improved numerical dissipation
and dispersion properties when compared to other methods, and that it does
not suffer from overshoot. Kadapa et al. (2017) refer to this method as JWH-
α, named for the original authors Jansen, K., Whiting, C., and Hulbert, G.
(Jansen et al., 1999).

The JWH-α method can be used to solve dynamic equations of the form

Mü + Cu̇ + Ku = f (B.14)

by converting the second-order differential equation into a set of first-order
equations. This is done by introducing an auxiliary variable v = u̇. The
first-order system equivalent to Equation B.14 in matrix form is[

M 0
0 M

]{
u̇
v̇

}
+

[
0 −M
K C

]{
u
v

}
=

{
0
f

}
(B.15)

Applying the JWH-α scheme to Equation B.15 results in the following
system [

M 0
0 M

]{
u̇n+αm

v̇n+αm

}
+

[
0 −M
K C

]{
un+αf

vn+αf

}
=

{
0

fn+αf

}
(B.16)

u̇n+αm = αmu̇n+1 + (1− αm)u̇n (B.17)

v̇n+αm = αmv̇n+1 + (1− αm)v̇n (B.18)

un+αf
= αfun+1 + (1− αf )un (B.19)

vn+αf
= αfvn+1 + (1− αf )vn (B.20)

fn+αf
= αf fn+1 + (1− αf )fn (B.21)

u̇n+1 =
1

γ∆t
(un+1 − un) +

γ − 1

γ
u̇n (B.22)

v̇n+1 =
1

γ∆t
(vn+1 − vn) +

γ − 1

γ
v̇n (B.23)

where γ, αm, and αf are the constants of the integration scheme.
Using Equations B.17-B.23, the system in Equation B.16 could then be

solved for {un+1 vn+1}T . However this requires solving a matrix system twice
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as large as the original. Kadapa et al. (2017) show that the system in Equa-
tion B.16 can be rewritten so that the system to be solved is the same size as
the original. This is done by noting that the first equation in the system can
be simplified to

u̇n+αm = vn+αf
(B.24)

which, using Equations B.17 and B.20, can be rewritten as

vn+1 =
αm
αf

u̇n+1 +
1− αm
αf

u̇n +
αf − 1

αf
vn (B.25)

Then, using Equations B.22, B.23, and B.25, vn+1 and v̇n+1 can be written
as

vn+1 =
αm

αfγ∆t
(un+1 + un)

γ − αm
γαf

u̇n +
αf − 1

αf
vn (B.26)

v̇n+1 =
αm

αfγ2∆t2
(un+1 + un) +

γ − αm
αfγ2∆t

u̇n −
1

αfγ∆t
vn +

γ − 1

γ
v̇n (B.27)

And finally, using Equations B.18-B.20,B.26, and B.27, the second equation
of the system in Equation B.16

Mv̇n+αm + Cvn+αf
+ Kun+αf

= fn+αf
(B.28)

can be solved for un+1 from

K̄un+1 = f̄ (B.29)

where the effective stiffness matrix (K̄) and effective force vector (̄f) are given
by

K̄ =
α2
m

αfγ2∆t2
M +

αm
γ∆t

C + αfK (B.30)

f̄ = fn+αf
− (1− αm)Mv̇n − (1− αf )Cvn − (1− αf )Kun

+ αfC
(

αm
αfγ∆t

un −
γ − αm
γαf

u̇n −
αf − 1

αf
vn

)
+ αmM

(
αm

αfγ2∆t2
un −

γ − αm
αfγ2∆t

u̇n +
1

αfγ∆t
vn −

γ − 1

γ
v̇n

)
(B.31)

Once un+1 is solved for then u̇n+1, vn+1, and v̇n+1 are solved using Equa-
tions B.22, B.26, and B.27 respectively.
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The only additional cost in solving the second-order differential equa-
tion (Equation B.14) as a system of first-order differential equations (Equa-
tion B.15) is the memory required to store the additional variable vn, and the
scalar-vector calculations to determine vn+1 (Kadapa et al., 2017).

In order for the method to be second order accurate, Jansen et al. (1999)
find that

γ =
1

2
+ αm − αf (B.32)

Therefore the method relies only on the selection of αm and αf . Jansen et al.
(1999) also show that the stability of the method requires

1

2
≤ αf ≤ αm (B.33)

Jansen et al. (1999) then express αm and αf in terms of a single constant,
the spectral radius for an infinite time step (0 ≤ ρ∞ ≤ 1)

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
(B.34)

αf =
1

1 + ρ∞
(B.35)

This allows for the method to rely on a single tunable parameter, giving
strict control over high frequency damping. If ρ∞ is chosen as zero, the method
will eliminate the highest frequency in one step. If ρ∞ is chosen as one, the
highest frequency in the solution is preserved.
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Appendix C

Specifications and data for the
shaft-line models

C.1 Discrete lumped mass model parameters
The parameters for the discrete lumped mass model are presented in Table C.1.
The inertia value for the propeller includes both the propeller inertia and the
inertia of entrained water, or hydrodynamic mass. Both the hydrodynamic
mass and the hydrodynamic damping values were determined by Rolls-Royce
AB (2010b) using the method developed by Schwanecke (1963). This method
is also described in detail by Bertram (2012). It uses an unsteady lifting
line method to compute the hydrodynamic mass and damping matrices for
propellers vibrating as rigid bodies with six degrees of freedom. The hydrody-
namic mass and damping values are approximated as functions of the water
density, the expanded area ratio (EAR), the propeller pitch (P ), the number
of propeller blades (Z), the propeller blade diamter (D), and the propeller
angular frequency (ω).

The propeller in this model only considers the rotational degree of freedom
about the x-axis, or along the length of the shaft. The corresponding moment
of inertia for the hydrodynamic mass is calculated using Equation C.1. The
hydrodynamic damping is determined using Equation C.2.

J = 0.052ρD5

(
P

D

)2
EAR2

πZ
(C.1)

C = 0.017ρωD5

(
P

D

)2
EAR

π
(C.2)
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Table C.1: Properties of the lumped mass model (Rolls-Royce AB, 2010a,b)

Component Symbol Value
Propeller J1 1.347× 104 kg ·m2

Mid propeller shaft J3 5.590× 102 kg ·m2

Sleeve coupling J5 5.120× 102 kg ·m2

Oil distribution box flange J7 4.870× 102 kg ·m2

Thrust shaft collar J9 1.410× 102 kg ·m2

Motor flange J11 1.740× 102 kg ·m2

Propulsion motor J13 4.415× 103 kg ·m2

Hydrodynamic damping c1 1.136× 105 Nm · s/rad
Steel shaft c2−12 0
Steel shaft k2 5.880× 107 Nm/rad
Steel shaft k4 5.950× 107 Nm/rad
Steel shaft k6 1.120× 108 Nm/rad
Steel shaft k8 6.930× 108 Nm/rad
Steel shaft k10 5.090× 108 Nm/rad
Steel shaft k12 1.430× 108 Nm/rad

C.2 Continuous modal superposition model
parameters

The parameters for the continuous modal superposition model are presented
in Table C.2.

The inertia value for the propeller includes both the propeller inertia and
the inertia of entrained water, or hydrodynamic mass. Both the hydrodynamic
mass and the hydrodynamic damping values were determined by Rolls-Royce
AB (2010b) using the method developed by Schwanecke (1963), as described
in Section C.1.

Table C.2: Properties of the modal superposition model

Parameter Symbol Value
Propeller inertia Jp 1.347× 104 kg ·m2

Motor inertia Jmotor 4.415× 103 kg ·m2

Hydrodynamic damping Cp 1.136× 105 Nm · s/rad
Shear modulus G 81 GPa

Density ρ 7850 kg/m3

Shaft-line length L 29.5 m
Inner shaft diameter di 0.175 m
Outer shaft diameter do 0.5 m

The parameters for the continuous modal superposition model when used
with the data published by Polić et al. (2016, 2019) are presented in Table C.3.
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Table C.3: Parameters for the model used by Polić et al. (2016, 2019)

Parameter Symbol Value
Propeller inerita Jp 4.60× 104 kg ·m2

Motor inertia Jmotor 5.25× 103 kg ·m2

Hydrodynamic damping Cp 0 Nm · s/rad
Shear modulus G 77 GPa

Density ρ 7850 kg/m3

propulsion shaft length L 12 m
Inner shaft diameter di 0.2 m
Outer shaft diameter do 0.6 m

C.3 Data for the evaluation of the discrete
lumped mass model

The following tables provide data that was used in the evaluation of the discrete
lumped mass model of the S.A. Agulhas II shaft-line. Fifty cases of ice impacts
were extracted from data recorded on the morning of 17 December 2018. At
this time, the ship was breaking through ice en route to the ice shelf at Penguin
Bukta for logistics operations.

The operational parameters of the S.A. Agulhas II for the cases used to
evaluate the discrete model are presented in Table C.4.

The successes of the different regularization methods are presented in Ta-
ble C.5. A method was said to be successful if the regularization parameter
could be successfully automatically determined by the algorithm, and the op-
timal inverse solution thus obtained.

Table C.6 provides a comparison of the solution times for the two methods
that achieved 100% success rates, the DGSVD and Tikhonov methods.
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Table C.4: Ship operational parameters for cases used in
the evaluation of the discrete model, from the 17 December
2018

Case Time
Case

duration
[sec]

Ship
speed
[knots]

Hydrodynamic
torque [kNm]

Motor
speed
[rpm]

Motor
power
[kW]

Propeller
pitch
[%]

Average
ice

concentration
[%]

Average
ice

thickness
[cm]

Average
floe
size
[m]

1 05:11:06 1.8 2.4 263.07 139 3180 71 81 36 255
2 06:54:43 2.0 2.4 323.95 136 4725 81 59 48 478
3 07:18:12 1.0 2.7 219.14 140 3610 72 38 70 48
4 07:19:27 4.9 2.1 321.13 139 4320 78 38 70 48
5 07:19:33 1.0 2.0 321.89 138 4100 80 38 70 48
6 07:20:02 1.3 1.9 315.26 138 4320 81 95 66 323
7 07:22:18 1.1 2.1 294.17 139 3920 74 95 66 323
8 07:23:09 1.6 1.9 323.58 139 2970 68 95 66 323
9 07:23:12 2.0 1.9 306.69 136 3600 78 95 66 323
10 07:24:36 1.7 1.7 316.70 139 4165 81 95 66 323
11 07:24:40 2.2 1.9 317.26 139 4450 81 95 66 323
12 07:25:31 5.0 2.0 274.29 140 3800 74 95 66 323
13 07:25:36 8.0 2.0 295.52 140 3750 74 95 66 323
14 07:25:44 6.0 1.9 143.02 139 3775 74 95 66 323
15 07:28:45 5.8 1.7 179.60 139 2150 59 95 66 323
16 07:28:51 10.6 1.8 173.61 139 2500 61 95 66 323
17 07:54:25 2.0 1.6 318.05 136 4600 81 95 60 998
18 07:55:27 4.2 1.2 262.15 139 3620 70 95 60 998
19 07:58:17 1.7 1.3 316.79 135 4520 81 95 60 998
20 07:58:20 3.7 1.4 305.69 136 4450 81 95 60 998
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Table C.4 continued from previous page

Case Time
Case

duration
[sec]

Ship
speed
[knots]

Hydrodynamic
torque [kNm]

Motor
speed
[rpm]

Motor
power
[kW]

Propeller
pitch
[%]

Average
ice

concentration
[%]

Average
ice

thickness
[cm]

Average
floe
size
[m]

21 07:58:27 6.0 1.6 315.83 138 4400 81 95 60 998
22 07:59:24 1.2 2.6 309.30 139 4275 81 95 60 998
23 08:00:43 6.0 1.6 316.16 114 2750 81 95 48 276
24 08:12:04 1.5 2.1 308.48 139 4775 81 95 48 132
25 08:12:30 1.3 2.5 303.49 139 4225 81 95 48 132
26 08:13:00 2.9 2.5 322.23 139 4175 81 95 48 132
27 08:13:16 5.5 2.1 326.06 139 4575 81 95 48 132
28 08:14:42 1.9 1.6 327.09 138 4580 81 95 48 132
29 08:16:37 3.1 0.6 218.80 139 1600 -40 95 48 132
30 08:18:53 3.7 0.2 60.41 139 1460 -41 95 48 132
31 08:29:19 2.0 0.8 243.04 139 1060 -31 95 50 1250
32 08:29:44 2.4 0.4 92.83 139 3525 -75 95 50 1250
33 08:37:56 2.0 2.9 152.37 140 3850 81 95 72 204
34 08:38:47 6.2 3.4 264.77 137 2900 72 95 72 204
35 08:39:10 9.0 2.9 326.11 138 3500 75 95 72 204
36 08:42:17 3.0 0.3 189.89 140 2300 -52 95 76 3500
37 08:42:42 1.4 0.5 193.78 139 2580 -68 95 76 3500
38 08:42:46 4.0 0.5 193.70 139 3100 -69 95 76 3500
39 08:42:55 4.3 0.6 110.26 139 2900 -68 95 76 3500
40 08:43:28 2.6 0.5 242.20 136 1600 -50 95 76 3500
41 08:47:01 3.2 0.1 303.32 129 1400 -50 95 76 3500
42 08:47:30 2.4 0.4 304.92 136 4450 -89 95 76 3500
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Table C.4 continued from previous page

Case Time
Case

duration
[sec]

Ship
speed
[knots]

Hydrodynamic
torque [kNm]

Motor
speed
[rpm]

Motor
power
[kW]

Propeller
pitch
[%]

Average
ice

concentration
[%]

Average
ice

thickness
[cm]

Average
floe
size
[m]

43 08:48:25 5.6 0.6 194.49 139 4250 -82 95 76 3500
44 08:48:38 2.0 0.7 240.16 140 1000 -25 95 76 3500
45 08:48:56 3.5 0.4 289.63 138 3250 -67 95 76 3500
46 08:54:56 1.7 0.6 258.55 137 3025 -78 95 72 3500
47 08:59:37 7.0 1.1 49.92 139 1000 -25 95 72 3500
48 08:59:46 2.0 1.1 55.00 139 700 0 95 72 3500
49 09:00:22 5.3 0.4 321.02 139 940 -2 95 70 3500
50 09:12:28 2.1 0.6 62.74 138 2235 -64 95 70 3500
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Table C.5: Success of the various regularization methods

Regularisation method

TSVD MTSVD TGSVD DSVD DGSVD Tikhonov
Least squares
(quadratic
constraint)

Least squares
(discrepancy
principle)

Case Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
1 X X X X X X X X X X X X X
2 X X X X X X X X X X X X
3 X X X X X X X X X X X X
4 X X X X X X X X X X X
5 X X X X X X X X X X X X
6 X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X
8 X X X X X X X X X X X
9 X X X X X X X X X X
10 X X X X X X X X X X X X
11 X X X X X X X X X X X X X
12 X X X X X X X X
13 X X X X
14 X X X X X X X X
15 X X X X X X X X X X X X X
16 X X X X X X X
17 X X X X X X X X X X X X X X
18 X X X X X X X X
19 X X X X X X X X X X X
20 X X X X X X X X X
21 X X X X X X X X
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Table C.5 continued from previous page
Regularisation method

TSVD MTSVD TGSVD DSVD DGSVD Tikhonov
Least squares
(quadratic
constraint)

Least squares
(discrepancy
principle)

Case Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
22 X X X X X X X X X X X X
23 X X X X X X X X X X
24 X X X X X X X X X X X X X
25 X X X X X X X X X X
26 X X X X X X X X X
27 X X X X X X X X X X
28 X X X X X X X X X X X X
29 X X X X X X X X X X X
30 X X X X X X X X
31 X X X X X X X X X X X X
32 X X X X X X X X X X
33 X X X X X X X X X X X X X
34 X X X X X X X X X X
35 X X X X X X X X
36 X X X X X X X X X X X X
37 X X X X X X X X X X X
38 X X X X X X
39 X X X X X X X X X X X
40 X X X X X X X X X
41 X X X X X X X X X X
42 X X X X X X X X X X
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Table C.5 continued from previous page
Regularisation method

TSVD MTSVD TGSVD DSVD DGSVD Tikhonov
Least squares
(quadratic
constraint)

Least squares
(discrepancy
principle)

Case Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
43 X X X X X X X X X X
44 X X X X X X X X X X X
45 X X X X X X X X X X X
46 X X X X X X X X X X X
47 X X X X X X
48 X X X X X X X X X X
49 X X X X X X X X X X
50 X X X X X X X X X X
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Table C.6: Solution times for the DGSVD and Tikhonov
regularization methods

Case
Case

duration
[sec]

Solution time [sec]
DGSVD Tikhonov

Q1 Q2 Q1 Q2

1 1.8 2.07 2.17 2.00 2.21
2 2.0 2.62 2.84 2.89 2.86
3 1.0 1.08 1.45 1.13 1.31
4 4.9 25.19 25.75 24.67 24.76
5 1.0 1.09 1.30 1.09 1.30
6 1.3 1.50 1.52 1.55 1.62
7 1.1 1.11 1.34 1.08 1.38
8 1.6 1.86 1.87 1.85 1.85
9 2.0 2.83 2.83 2.94 2.80
10 1.7 2.00 2.00 2.16 2.08
11 2.2 3.37 3.37 3.36 3.45
12 5.0 26.70 26.43 26.38 26.04
13 8.0 77.05 77.36 77.04 76.50
14 6.0 44.51 45.14 44.99 44.87
15 5.8 41.06 40.97 40.79 41.10
16 10.6 164.85 166.35 162.60 163.58
17 2.0 2.68 2.57 2.86 2.96
18 4.2 16.82 16.68 16.68 17.44
19 1.7 1.70 1.76 1.77 1.90
20 3.7 11.77 11.80 11.75 11.80
21 6.0 44.70 44.89 44.97 44.87
22 1.2 1.26 1.44 1.29 1.52
23 6.0 44.50 44.87 44.63 45.02
24 1.5 1.55 1.72 1.49 1.84
25 1.3 1.93 1.99 1.25 1.69
26 2.9 6.13 6.16 6.17 6.48
27 5.5 35.25 35.17 35.12 34.92
28 1.9 2.87 2.86 2.82 2.83
29 3.1 7.32 7.44 7.43 7.34
30 3.7 11.72 11.74 11.71 11.77
31 2.0 3.03 3.01 2.99 3.06
32 2.4 4.49 4.24 4.23 4.22
33 2.0 3.02 3.02 3.01 3.09
34 6.2 49.88 49.42 49.81 49.81
35 9.0 91.53 89.42 89.99 89.55
36 3.0 6.89 6.78 6.89 6.65
37 1.4 2.00 1.85 2.17 1.83
38 4.0 14.26 14.71 14.26 14.34
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Table C.6 continued from previous page

Case
Case

duration
[sec]

Solution time [sec]
DGSVD Tikhonov

Q1 Q2 Q1 Q2

39 4.3 17.26 17.14 17.58 17.51
40 2.6 4.97 4.91 4.95 4.98
41 3.2 8.10 7.87 7.95 8.02
42 2.4 4.30 4.08 4.33 4.38
43 5.6 36.18 36.26 36.25 36.12
44 2.0 2.96 3.03 3.16 2.96
45 3.5 9.89 9.98 9.84 9.96
46 1.7 2.62 2.45 2.52 2.49
47 7.0 49.58 49.02 48.09 48.85
48 2.0 3.43 3.01 3.09 3.23
49 5.3 31.37 31.49 31.76 30.92
50 2.1 3.39 3.44 3.39 3.41

C.4 Data for the comparison of the discrete
and continuous models

The following tables provide data that was used in the evaluation of the discrete
and continuous models of the S.A. Agulhas II shaft-line. Fifty cases of ice
impacts were extracted from data recorded during the 2019 SCALE Spring
Cruise on the evening of 30 October 2019. Ice impacts were identified during
operations within the marginal ice zone.

The operational parameters of the S.A. Agulhas II for the cases used to
compare the models are presented in Table C.7.

Table C.8 provides a comparison of the solution times for the two models.
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Table C.7: Ship operational parameters for cases used in
the comparison of the discrete and continuous models

Case Time
Case

duration
[sec]

Ship
speed
[knots]

Hydrodynamic
torque [kNm]

Motor
speed
[rpm]

Motor
power
[kW]

Propeller
pitch
[%]

Average
ice

concentration
[%]

Average
ice

thickness
[cm]

Average
floe
size
[m]

1 20:06:20 2.0 5.1 215.95 140 3096 76 84 30 17
2 20:07:43 2.4 4.7 211.69 139 1978 60 84 30 17
3 20:07:53 1.8 4.8 213.66 139 2313 62 84 30 17
4 20:08:25 1.9 4.6 229.36 140 2273 62 84 30 17
5 20:08:40 3.3 4.3 218.88 137 3054 68 84 30 17
6 20:08:56 3.9 4.1 238.78 140 3015 69 84 30 17
7 20:09:33 1.8 4.7 226.56 140 2745 67 84 30 17
8 20:09:36 2.5 4.7 226.32 140 2625 68 84 30 17
9 20:09:39 5.0 4.8 221.05 140 2564 68 84 30 17
10 20:10:24 3.0 4.7 227.54 139 3341 74 95 25 43
11 20:10:33 5.2 4.8 111.64 140 3280 74 95 25 43
12 20:12:01 1.9 6.6 155.10 140 1736 62 95 25 43
13 20:12:15 3.5 6.6 193.76 140 805 49 95 25 43
14 20:12:26 2.7 6.4 208.47 140 864 49 95 25 43
15 20:25:45 1.6 6.8 204.56 140 3201 82 63 30 60
16 20:28:56 2.9 4.5 240.91 140 794 0 63 30 60
17 20:35:58 8.2 5.5 321.17 140 4065 83 89 40 20
18 20:37:22 1.8 4.3 271.24 139 4542 83 89 40 20
19 20:38:54 2.6 4.7 283.35 140 4086 83 89 40 20
20 20:40:18 11.6 5.5 311.70 140 3952 83 95 42 25
21 20:42:52 6.0 5.7 308.20 140 3901 82 95 42 25
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Table C.7 continued from previous page

Case Time
Case

duration
[sec]

Ship
speed
[knots]

Hydrodynamic
torque [kNm]

Motor
speed
[rpm]

Motor
power
[kW]

Propeller
pitch
[%]

Average
ice

concentration
[%]

Average
ice

thickness
[cm]

Average
floe
size
[m]

22 20:48:50 7.0 4.8 313.61 140 3972 82 95 42 25
23 20:49:02 4.8 5.0 308.94 140 3755 82 95 42 25
24 20:51:41 5.2 5.9 291.40 140 3632 83 83 32 25
25 20:53:42 4.7 5.9 257.80 139 3687 83 83 32 25
26 20:54:17 6.1 6.1 259.90 140 3497 83 83 32 25
27 20:54:48 3.1 5.9 263.29 139 4052 83 83 32 25
28 21:01:12 4.2 6.7 244.35 140 2632 73 95 16 10
29 21:04:49 1.1 5.7 176.93 140 3068 74 95 16 10
30 21:05:36 1.9 5.6 188.22 140 2918 73 95 16 10
31 21:08:14 1.7 6.0 201.38 140 2679 73 95 16 10
32 21:09:41 3.8 6.1 209.00 140 2692 73 95 16 10
33 21:10:14 2.3 6.0 200.07 140 2710 73 95 16 10
34 21:10:54 2.1 5.8 198.27 139 2903 73 95 16 10
35 21:11:02 4.1 5.8 202.72 140 2787 73 95 16 10
36 21:16:55 2.2 6.0 189.79 140 2478 73 95 16 10
37 21:20:45 2.1 5.7 193.89 139 2905 74 67 14 21
38 21:22:16 2.5 5.6 209.25 140 2793 73 67 14 21
39 21:25:47 1.8 5.5 212.83 140 3486 77 67 14 21
40 21:28:48 3.4 6.0 214.47 139 2956 76 67 14 21
41 21:31:00 3.4 6.4 250.82 139 2957 76 89 40 20
42 21:34:41 6.2 4.0 202.82 138 4404 84 89 40 20
43 21:35:57 4.8 4.8 278.51 140 4262 84 89 40 20
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Table C.7 continued from previous page

Case Time
Case

duration
[sec]

Ship
speed
[knots]

Hydrodynamic
torque [kNm]

Motor
speed
[rpm]

Motor
power
[kW]

Propeller
pitch
[%]

Average
ice

concentration
[%]

Average
ice

thickness
[cm]

Average
floe
size
[m]

44 21:36:29 6.2 5.3 302.08 140 4287 83 89 40 20
45 21:37:21 4.3 5.5 264.69 139 4295 84 89 40 20
46 21:41:55 18.0 0.5 322.23 140 2469 50 95 42 25
47 21:42:21 2.7 0.5 298.71 140 2479 50 95 42 25
48 21:42:33 6.5 0.6 302.62 140 2374 50 95 42 25
49 21:42:55 2.3 0.7 321.28 140 2460 50 95 42 25
50 21:49:30 2.3 1.6 272.39 140 3662 65 95 42 25
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Table C.8: Solution times for the discrete and continuous
models

Case
Case

duration
[sec]

Solution time [sec]
Discrete Continuous

Q1 Q2 Q1 Q2

1 2.0 4.37 3.35 1.75 1.98
2 2.4 5.79 5.22 1.64 2.07
3 1.8 2.61 2.81 2.12 2.07
4 1.9 2.61 2.72 1.96 2.02
5 3.3 8.94 8.70 2.28 2.18
6 3.9 14.50 14.49 2.39 2.29
7 1.8 2.72 2.60 1.99 2.03
8 2.5 4.77 4.89 2.20 2.21
9 5.0 27.46 26.77 2.49 2.56
10 3.0 7.16 7.08 2.15 2.21
11 5.2 30.48 30.36 2.50 2.56
12 1.9 2.52 2.83 2.00 2.07
13 3.5 10.22 10.20 2.33 2.29
14 2.7 5.64 5.58 2.12 2.17
15 1.6 2.81 2.28 1.99 2.00
16 2.9 6.42 6.49 2.18 2.06
17 8.2 79.93 79.96 2.93 2.82
18 1.8 2.51 2.75 1.92 1.99
19 2.6 5.28 5.20 2.05 2.14
20 11.6 199.32 198.14 3.29 3.36
21 6.0 46.87 45.47 2.66 2.60
22 7.0 51.68 53.86 2.68 2.65
23 4.8 24.72 24.31 2.40 2.41
24 5.2 31.25 31.02 2.52 2.62
25 4.7 22.96 25.31 2.46 2.38
26 6.1 47.62 47.85 2.57 2.54
27 3.1 9.49 7.85 2.13 2.18
28 4.2 17.83 17.75 2.36 2.56
29 1.1 2.02 2.01 1.88 1.90
30 1.9 3.48 3.35 1.95 2.01
31 1.7 2.44 2.44 1.99 2.11
32 3.8 13.31 12.88 2.34 2.31
33 2.3 4.24 4.47 2.08 2.21
34 2.1 3.95 4.02 2.09 2.07
35 4.1 15.72 15.57 2.34 2.35
36 2.2 4.13 4.18 2.04 2.09
37 2.1 3.72 3.81 2.05 2.09
38 2.5 5.26 5.06 2.10 2.12
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Table C.8 continued from previous page

Case
Case

duration
[sec]

Solution time [sec]
Discrete Continuous

Q1 Q2 Q1 Q2

39 1.8 2.90 2.98 2.06 2.01
40 3.4 10.18 9.92 2.39 2.27
41 3.4 9.71 10.11 2.22 2.22
42 6.2 49.60 50.31 2.56 2.55
43 4.8 23.96 24.36 2.37 2.40
44 6.2 49.84 50.04 2.72 2.58
45 4.3 19.27 17.90 2.34 2.40
46 18.0 4.06 4.07
47 2.7 6.86 6.01 2.12 2.10
48 6.5 56.21 56.42 2.65 2.66
49 2.3 4.41 4.34 2.04 2.10
50 2.3 4.31 4.31 2.05 2.06
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Appendix D

Propeller axial load estimation
using a continuous model of the
propulsion shaft

Though the axial propeller loads are not part of the scope of this study, it is
worth showing how the continuous modal superposition model can be used in
their estimation for future research opportunities.

For the model, a single shaft is considered between the propeller and thrust
bearing. Since the thrust bearing is meant to absorb axial loads, this end is
assumed to be a fixed support. Figure D.1 shows the model of the propulsion
shaft with a differential element selected at a distance x along the shaft. The
forces acting on the differential element are also shown, with F (x, t) repre-
senting the internal propulsion shaft axial load and Fd(x, t) the applied axial
load. The propeller is located at x = 0 while the thrust bearing is situated
at x = L. The model assumes a constant hollow circular cross section and
consistent material properties along the length of the shaft. For the derivation
of the model, an unknown distributed axial load is initially assumed to be
applied along the length of the shaft.

Newton’s second law states that the sum of the applied forces on a body
is equal to the rate of change of the momentum of that body (Inman, 2014).
Equation D.1 describes this dynamic equilibrium for the shaft.∑

i

Fi = Mü (D.1)

where Fi represents the applied forces, M is the mass, and ü is the second
derivative of the displacement in the x direction with respect to time.

Substituting the forces applied to the differential element in Figure D.1
into Equation D.1 gives Equation D.2, describing the dynamic equilibrium of
the differential element.

166
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Figure D.1: Continuous shaft line model for propeller axial load estimation

− F (x, t) + Fd(x, t)dx+

(
F (x, t) +

∂F (x, t)

∂x
dx

)
= ρA(x)

∂2u(x, t)

∂t2
dx (D.2)

where A(x) is the cross sectional area of the shaft, ρ is the density, F (x, t) the
internal axial load at distance x, and Fd(x, t) the externally applied distributed
axial load.

Rearranging Equation D.2 and dividing all terms by dx gives Equation D.3:

ρA(x)
∂2u(x, t)

∂t2
− ∂

∂x
(F (x, t)) = Fd(x, t) (D.3)

The axial load in the shaft at x is related to the axial deflection at x by:

F (x, t) = EA(x)
∂u(x, t)

∂x
(D.4)

with E the elastic modulus.
Substitution of Equation D.4 into Equation D.3 yields:

ρA(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
EA(x)

∂u(x, t)

∂x

)
= Fd(x, t) (D.5)

Assuming a uniform cross section of the shaft, the area becomes constant
and can factored out of the partial derivative with regards to x and Equa-
tion D.5 becomes:
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ρA
∂2u(x, t)

∂t2
− EA∂

2u(x, t)

∂x2
= Fd(x, t) (D.6)

Modal superposition is applied in order to transform the partial differential
Equation D.6 into a set of ordinary differential equations. The axial deflection
u(x, t) can be described as:

u(x, t) =
N∑
n=1

φn(x)qn(t) (D.7)

where N is the number of mode shapes used to describe the deflection of the
shaft, φn(x) are the mode shape values at x, and qn(t) are the corresponding
modal coordinates as functions of time. The mode shapes are described by
(Inman, 2014):

φn(x) = Bn sin

(
(2n− 1)π(L− x)

2L

)
, n = 1, 2, ..., N (D.8)

where the Bn are constant values determined from initial conditions.
Substitution of Equation D.7 into Equation D.6 yields:

ρA
N∑
n=0

φn(x)q̈n(t)− EA
N∑
n=0

φ′′n(x)qn(t) = Fd(x, t) (D.9)

where the overdots on q̈n(t) and the primes on φ′′(x) represent the second
derivatives with respect to t and x respectively.

Differentiating the mode shape with respect to x twice leads to:

φ′n(x) = −Bn

(
(2n− 1)π

2L

)
cos

(
(2n− 1)π(L− x)

2L

)
(D.10)

φ′′n(x) = −Bn

(
(2n− 1)π

2L

)2

sin

(
(2n− 1)π(L− x)

2L

)
= −

(
(2n− 1)π

2L

)2

φn(x) (D.11)

Substituting the second derivative of the mode shape into Equation D.9
gives:

ρA

N∑
n=0

φn(x)q̈n(t) + EA
N∑
n=0

(
(2n− 1)π

2L

)2

φn(x)qn(t) = Fd(x, t) (D.12)
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Figure D.2: Axial loads applied to propulsion shaft continuous model

The distributed axial load Fd(x, t) applied to the shaft consists of a number
of loads applied to the ends of the shaft, as seen in Figure D.2. The propeller
is modelled as an inertial load and the axial loading is applied at the propeller
at x = 0.

The axial load Fd(x, t) becomes:

Fd(x, t) = T (t)δ(x− 0)−Mp
∂2u(0, t)

∂t2
δ(x− 0) (D.13)

where δ is the Dirac-delta function which states for some constant value a:

δ(x− a) =

{
1 x = a
0 x 6= a

(D.14)

In order to remove the summations from Equation D.12, the orthogonality
of the mode shapes is used (Inman, 2014). This means that

∫ L

0

φm(x)φn(x)dx =

{
0 n 6= m
L
2

n = m
(D.15)

Also note that ∫ L

0

φm(x)δ(x− a)dx = φm(a) ·H(L− a) (D.16)

where H is the Heaviside step function
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H(L− a) =

{
0 L < a
1 L ≥ a

(D.17)

Substituting Equation D.13 into Equation D.12, multiplying through by
φm(x) and integrating over the length of the shaft gives

ρA

N∑
n=0

∫ L

0

φm(x)φn(x)dx · q̈n(t)

+ EA
N∑
n=0

(
(2n− 1)π

2L

)2 ∫ L

0

φm(x)φn(x)dx · qn(t) =

T (t)

∫ L

0

φm(x)δ(x− 0)dx−Mp
∂2u(0, t)

∂t2

∫ L

0

φm(x)δ(x− 0)dx (D.18)

Substituting the relationships given in Equations D.15 and D.16 into Equa-
tion D.18 yields a separate equation for each mode shape n.

ρA
L

2
q̈n(t) + EA

π2(2n− 1)2

8L
qn(t) = T (t)φn(0) − Mp

∂2u(0, t)

∂t2
φn(0) (D.19)

Using modal superposition, Equation D.7, once again for the deflection
term in Equation D.19 yields the final equations for each mode shape used in
the model:

ρA
L

2
q̈n(t) +Mpφn(0)

N∑
i=1

φi(x)q̈i(t)

+ EA
π2(2n− 1)2

8L
qn(t)− T (t)φn(0) = 0 (D.20)

For the inverse problem there are N equations, one for each mode shape,
and N + 1 unknowns, the qn terms and the propeller thrust load T (t). There-
fore, one extra equation is necessary and this comes from a thrust measurement
taken on the shaft at x = xa:

F (xa, t) = EA
∂u(xa, t)

∂x
= EA

N∑
n=1

φ′n(xa)qn(t) (D.21)
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Equations D.20 and D.21 can then be written in matrix form, which facil-
itates their solution using a time integration scheme.

Mq̈ + Cq̇ + Kq = F (D.22)

where

q = {q1 q2 q3 · · · qN T}T

J =


ρAL

2 +Mpφ1(0)φ1(0) Mpφ1(0)φ2(0) · · · Mpφ1(0)φN (0) 0
Mpφ2(0)φ1(0) ρAL

2 +Mpφ2(0)φ2(0) · · · Mpφ2(0)φN (0) 0
...

...
. . .

...
...

MpφN (0)φ1(0) MpφN (0)φ2(0) · · · ρAL
2 +MpφN (0)φN (0) 0

0 0 · · · 0 0



C =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



K =


GJ (π)2

8L 0 · · · 0 −φ1(0)
0 GJ (3π)2

8L · · · 0 −φ2(0)
...

...
. . .

...
...

0 0 · · · GJ ((2N−1)π)2
8L −φN (0)

EAφ′1(xa) EAφ′2(xa) · · · EAφ′N (xa) 0



F =



0
0
...
0

F (xa, t)


This model has been used along with measured data. Figure D.3 shows

results for an ice impact measured on the 30 October 2019 at 20:06:20. These
results show that the model is capable of estimating propeller axial loads from
propulsion shaft measurements. However, further evaluation of the model is
necessary.
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(a) Estimated propeller axial load

(b) Measured shaft axial load

Figure D.3: Results from continuous model for inverse estimation of axial propeller
loads
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