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Abstract ii 

Abstract 

South Africa’s bridge design code, called Technical Methods for Highways 7 (TMH-7), was 

last revised in 1988 and is partially based on an outdated code. Since then, the road freight 

industry has expanded significantly, further encouraged by changes to the traffic regulations. 

The expected reliability performance of TMH-7 in catering for the increased traffic demand is 

not clear. 

The purpose of this study is to investigate the structural performance of a new highway bridge 

designed according to TMH-7 and loaded with actual traffic loads. The study focus on the 

performance of TMH-7 for normal traffic conditions i.e. NA loading. A reliability analysis can 

provide a reliability index that measures the safety level of the structure.  

For the investigation, reliability analyses were performed for two case studies, based on actual 

traffic load effects derived from site-specific Weigh-in-Motion (WIM) data. The load effect is 

represented by the bending moment at midspan of a simply supported bridge. For both case 

studies the extreme traffic load effects were extracted and described in a probabilistic manner. 

By means of statistical projection the maximum load effect distribution for a 50-year reference 

period was obtained. The limit state function was then formulated to define the failure mode at 

the ultimate limit state (ULS). The First Order Reliability Method (FORM) was used to obtain 

an overall reliability index and the results were interpreted by comparing the reliability index 

to target values from existing standards. 

For the reliability analysis in the first case study, failure occurs when the actual traffic load 

effects exceed the design load effect for NA loading. Spans ranging from 5 to 50 metres were 

investigated. It was found that NA loading generally performs well for a typical highway 

bridge, especially for longer spans ranging from 30 to 50 metres. However, a poor reliability 

performance is seen for short narrow span bridges (especially for 5 m and 10 m spans), which 

agrees with previous studies. 

In the second case study, a critical element reliability analysis was conducted on a spine beam 

of a 20 m reinforced concrete twin spine deck. Failure occurs when the load effects exceed the 

resistance of the critical spine beam. High reliability indices were obtained, which indicate that 

NA loading is performing well for the bending moment capacity of a 20 m span bridge. 

Furthermore, a sensitivity analysis revealed that the traffic load and model uncertainty for 

resistance, have the most significant effect on the obtained reliability indices. 
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Abstract iii 

With regard to bending moments at midspan, deficiencies in the traffic load model for NA 

loading were identified. Spans were also identified where design could be optimised to be more 

cost-effective. The study contributes to an improved understanding of the performance of 

TMH-7 for normal traffic conditions and can help direct future revisions of the traffic load 

model. It is recommended to extend the study to include other load effect types and to provide 

separate probabilistic descriptions for different loading event types.  
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Opsomming  iv 

Opsomming 

Suid-Afrika se brugontwerpkode, Tegniese Metodes vir Snelweë 7 (TMH-7), was laas 

opgedateer in 1988 en is gedeeltelik gebaseer op ‘n uitgedateerde kode. Sedertdien het die 

padvrag-industrie aansienklik uitgebrei, aangemoedig deur veranderinge in die 

verkeersregulasies. Dit is onduidelik watter betroubaarheidsprestasie van TMH-7 verwag kan 

word, gegewe die toenemende verkeersbehoefte. 

Die doel van die studie is om die strukturele werkverrigting van ‘n nuwe brug op ‘n snelweg, 

wat ontwerp is volgens TMH-7, met werklike verkeersbelasting te ondersoek. Die studie fokus 

op die doeltreffendheid van TMH-7 vir normale verkeerstoestande, m.a.w. NA-belasting. ‘n 

Betroubaarheidsanalise kan gebruik word om ‘n betroubaarheidsindeks te verkry wat die 

struktuur se veiligheidsvlak meet. 

Die ondersoek behels die uitvoering van ‘n betroubaarheidsanalise vir twee gevallestudies wat 

gebaseer is op die las-effek van werklike verkeersbelasting, wat afgelei is van terrein-spesifieke 

Weeg-in-Beweging data. Die buigmoment by midspan van ‘n enkel-span brug verteenwoordig 

die las-effek. Die maksimum las-effekte van die verkeersbelasting was bepaal en beskryf op ‘n 

waarksynlikheidswyse. Statistiese projeksie was gebruik om die maksimum las-effekte vir ‘n 

50-jaar verwysingsperiode te bepaal. Daarna was die grenstoestand van swigting geformuleer 

by faling. Die Eerste Orde Betroubaarheidsmetode was gebruik om ‘n algehele 

betroubaarheidsindeks te vind, en die resultate was geïnterpreteer deur die 

betroubaarheidsindeks te vergelyk met teikenwaardes van bestaande standaarde. 

Faling in die eerste gevallestudie vind plaas wanneer die werklike las-effekte van die verkeer 

die ontwerp las-effek van NA-belasting oorskrei. Spanlengtes van 5 tot 50 meter was 

ondersoek. Daar is bevind dat NA-belasting goed presteer vir ‘n tipiese snelwegbrug, veral vir 

langer spanne tussen 30 en 50 meter. ‘n Swak betroubaarheidsvlak word egter gesien vir kort 

en smal spanlengtes (veral tussen 5 en 10 meter), wat ooreenstem met vorige studies. 

‘n Kritiese-element betroubaarheidsanalise was uitgevoer op ‘n flensbalk van ‘n 20 m 

gewapende beton brugdek met twee geflensde balke. Faling vind plaas wanneer die las-effekte 

die weerstand van die balk oorskry. Hoë betroubaarheidsindekse was verkry, wat aandui dat 

NA-belasting goed presteer vir die buigmomentkapasitiet van ‘n 20 m span brug. Verder het 

‘n sensitiwiteitsanalise die verkeersbelasting en model-onsekerheid vir weerstand 

geïdentifiseer as die veranderlikes wat die grootste invloed het op die betroubaarheidsindekse. 
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Opsomming  v 

Sover dit buigmomente by midspan betref, was tekortkominge in die verkeersbelastingsmodel 

vir NA-belasting geïdentifiseer, sowel as spanlengtes waar ontwerp geoptimiseer kan word om 

meer koste-effektief te wees. Die studie dra by tot 'n beter begrip van die doeltreffendheid van 

TMH-7 vir normale verkeerstoestande en kan dien as riglyn vir toekomstige hersienings van 

die verkeersbelastingsmodel. Dit word aanbeveel om die studie uit te brei om ook ander las-

effek tipes in te sluit en om aparte waarskynlikheidsbeskrywings te gee vir verskillende tipes 

las-gebeurtenisse. 
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1 Introduction 

1.1  Background 

Bridges form part of the road transport network of a country. In South Africa, transport is 

identified as one of the most important national assets as it plays a key role in socio-economic 

development (Maina and De Beer, 2008). It is thus important to ensure that the design, 

construction and maintenance of this network are looked after and able to cater for the traffic 

demand. Traffic loading is the most significant variable action considered in road and bridge 

design and thus requires careful attention to ensure a sound road network. 

The current code of practice for the design of highway bridges in South Africa is called 

Technical Methods for Highways 7 (TMH-7). It consists of three parts, whereas the traffic load 

models are formulated in Part 2. The code was first published in 1981 and is largely based on 

the CEB FIP Model Code for Concrete Structures of 1978, the British Code BS5400 and the 

National Building Code of Canada (CSRA, 1981). It is important to understand the context in 

which South Africa’s bridge design code was written, relative to the development of the road 

freight industry in South Africa. The context subsequently explained, surfaces the reasons why 

this research study is important. 

For most of the 20th century, the development of road freight transport in South Africa was 

restricted by regulations in order to protect the railway industry. In 1977 the gradual 

deregulation of road transportation commenced in order to allow for freer competition between 

the road and railway industry (Janse van Rensburg, 1996). By 1988 the complete economic 

deregulation of road transportation was implemented (Stander and Pienaar, 2005), with the 

prerequisite that the Road Transport Quality System be adhered to, as presented in Act 93 of 

the National Road Traffic Act of 1996 (DOT, 2013). To date this system has not been 

implemented and evidently poor control and management of road transport operations were 

seen after the deregulation in 1988 (Havenga, Simpson and De Bod, 2014).  

In light of the above, TMH-7 was published before the deregulation of road transport in 1988. 

The traffic load model was derived based on research done by Dr A.C. Liebenberg prior to 

March 1974, formulated according to South Africa’s road traffic regulations of 1974 

(Oosthuizen et al., 1991). In light of knowledge at the time, provisions were made to the load 

model to account for possible future developments and overloading of heavy vehicles. In 1988, 

the Committee of State Road Authorities (CSRA) found shortcomings in the traffic load model 
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for normal traffic conditions, called NA loading (Oosthuizen et al., 1991). Subsequently, 

revisions were made to the NA loading in 1988, in which 6 kN/m was added to the distributed 

load and the axle load was increased by 20 %. Notwithstanding the revisions made to TMH-7, 

Oosthuizen et.al. (1991) found that NA loading was still inadequate in providing for short and 

narrow span bridges up to 10 m in length. It was proposed to amend the axle load with a 25 % 

increase and to conduct a general revision of TMH-7 (Oosthuizen et al., 1991), however, these 

proposals were not put into effect. Concern is further raised by the fact that TMH-7 is largely 

based on the loading provisions of the British Code BS5400, which has since been updated and 

superseded by the Eurocodes. Anderson (2006) conveys the importance of also designing for 

NB loading, representing abnormal loading, in order to cover the shortcomings seen for short 

span bridges. 

Since the last revision of TMH-7 in 1988, an exponential growth in heavy freight vehicles have 

been seen over the past few decades, which led to road freight becoming the dominant mode 

of freight transport in South Africa. In 2004 it was estimated that approximately 70 % of all 

freight in South Africa was carried by heavy vehicles and by 2013 it increased to 76 % 

(Bosman, 2004; DOT, 2013). Furthermore, amendments to the traffic regulations have 

exacerbated the situation and have led to changes in the traffic characteristics and the volume 

of heavy vehicles on the road. Significant changes include an increase in the permissible 

vehicle mass from to 56 t in 1989 (Parliamentary Monitoring Group, 2000), an increase in legal 

axle mass from 8200 kg to 9000 kg in 1993 (DOT, 2013), and also the increase in allowable 

heavy vehicle dimensions. The influence of these changes on the performance of the code is 

still undetermined. According to the Department of Transport (2013), a growing concern has 

been raised regarding the levels of overloading recorded in South Africa. The National 

Transport Masterplan 2050 (2013) sheds light on the ineffectiveness of overloading control 

systems in many areas of the national route system. 

 

1.2 Problem Statement 

The background of TMH-7 and heavy traffic characteristics in South Africa raise concerns 

regarding the present performance of TMH-7 in catering for the increased traffic demand. 

TMH-7 is partially based on an outdated code and was written in a time prior to exponential 

growth in the road freight industry, accompanied by significant changes to the traffic 

regulations in the country. Deficiencies in the traffic load model for normal traffic conditions 
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have been identified and the matter of revising the code has been recommended by previous 

studies.  

A globally acceptable approach in verifying the performance of a design code is to measure 

the safety level or reliability index it achieves. Other design codes have used the probabilistic 

analysis of traffic data to derive rational traffic load models. The model is then calibrated based 

on a target reliability index in order to limit the probability of failure related to a certain 

reference period. Presently, such a measure is not available for TMH-7, as the traffic load 

model was not calibrated based on a target reliability index. Due to a lack of statistical data on 

traffic at the time, the load model was derived based on a credibility approach (CSRA, 1981). 

The approach made use of engineering judgement and experience in conjunction with 

deterministic methods to model idealised vehicle combinations to represent the traffic loading 

(Anderson, 2006).  

Recent advances in the development and quality of Weigh-in-Motion (WIM) technology have 

allowed for better characterisation of the current traffic loading on bridges in South Africa. The 

purpose of this study is to perform a reliability analysis on a bridge designed according to 

TMH-7 for normal traffic conditions, and loaded with actual traffic loading derived from WIM 

data. From this a reliability index can be obtained, related to a certain reference period, that 

measures the safety level of the bridge. By comparing the obtained reliability index to existing 

target reliability indices, the results can provide valuable insights into the reliability 

performance of TMH-7 in catering for the current traffic demand. 

 

1.3  Objectives 

The primary objective of this study is to investigate the reliability performance of TMH-7, and 

more specifically the traffic load model for normal traffic conditions, i.e. NA loading. This is 

achieved by conducting reliability analyses for two case studies based on actual traffic load 

effects derived from site-specific WIM data.  

The following sub-objectives are relevant to both case studies: 

• Decide on a statistical approach to assess the extreme traffic load effects. 

• Determine the statistical characteristics describing the extreme traffic load effects. 

• Select applicable probabilistic models to represent the extreme traffic load effects. 

• Assess the selected probabilistic models by means of goodness-of-fit tests. 
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• Find the maximum load effect distribution for a certain reference period. 

• Formulate the relevant limit state function describing the failure mode. 

• Conduct a reliability analysis according to the limit state function, in order to obtain the 

reliability index. 

• Compare the obtained reliability indices to target reliability indices used in national and 

international standards. 

 

1.4  Motivation 

Concerns have been raised that the traffic load model in TMH-7 for normal traffic conditions 

shows deficiencies, and that the model should be revised based on a probabilistic analysis of 

actual traffic data in South Africa (Oosthuizen et al., 1991; Anderson, 2006). Moreover, it is 

unclear what reliability performance can be expected from TMH-7 in catering for the current 

traffic demand. The reliability index obtained from a reliability analysis provides a way of 

quantifying the safety level provided by the code. As such, it can be determined whether TMH-

7 is performing adequately to design a bridge for normal traffic conditions.  

The reliability analysis provides for the identification of shortcomings and deficiencies in the 

code for different span lengths, which can then be used to rectify them. If the code is 

underperforming at the ultimate limit state (ULS), the structure is viewed unsafe and structural 

failure may occur. However, when the code is performing too conservatively, it may lead to 

overdesign which neglects the cost optimisation principles. Thus, the study is valuable as it 

estimates the reliability level of TMH-7 for normal traffic conditions, and it identifies 

deficiencies in the load model. In addition to this, the results provide a measure of assurance 

of the validity of TMH-7 as the code of practice. 

 

1.5  Scope and Limitations 

The study is limited to the investigation of two case studies, where a reliability analysis is 

performed on a bridge designed according to TMH-7 and loaded with the actual traffic loading 

derived from WIM data. Only the traffic load model for normal traffic conditions, i.e. NA 

loading, is considered, and the investigation is based on the design of a new highway bridge. 

The traffic load effect considered, is the bending moment at midspan of a simply supported 

bridge, i.e. sagging moments. Subsequently, the focus is on the performance of a bridge at 
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ULS. Furthermore, the study investigates free flow traffic, which is assumed to govern extreme 

traffic load effects for short to medium span bridges ranging from 5 to 50 metres (Bruls et al., 

1996; Caprani and O’Brien, 2009). These span lengths also represent the majority of highway 

bridges in South Africa (Van der Spuy and Lenner, 2019). As WIM data only provides static 

loading, the dynamic load effects of moving traffic on a bridge are excluded from the study. 

Consequently, only static load effects are considered.  

The two case studies are based on WIM data from two different national routes. The first case 

study is based on WIM data from Roosboom station on the National Route 3 (N3) between 

Durban and Johannesburg. The second case study is based on WIM data from the National 

Route 1 (N1) near Kilner Park, north of Pretoria. The two WIM sites were chosen firstly 

because they are located on major freight corridors in South Africa (DOT, 2013). Secondly, 

because Roosboom station has been investigated in a number of previous studies (Lenner, De 

Wet and Viljoen, 2017; Van der Spuy and Lenner, 2018; Sifre and Lenner, 2019) and may 

serve as reference station. Kilner Park on the other hand is the only station measuring four 

traffic lanes, which makes it suitable to investigate a multiple lane bridge. Both WIM sites have 

three or more years of recorded measurements, and the data is deemed to be of good quality 

(De Wet, 2010a).  

The scope of each case study is dictated by the number of traffic lanes measured at the WIM 

site. In the first case study, only the slow (outer) lane data is available. A one-lane bridge 

carrying slow lane traffic is not representative of a typical highway bridge. Therefore, the 

decision has been made to only consider the traffic loading part in the reliability analysis. That 

is, the traffic load effects on the bridge are included, but the bridge resistance and dead loads 

are ignored. The investigation considers span lengths of 5 to 50 metres, in increments of 5 

metres.  

In the second case study, data for a slow and fast lane in both directions are available. As more 

than one lane of data is available, it can be used to design a bridge which is more representative 

of a typical highway bridge. The case study utilises a two-lane, single span bridge for the 

analysis. A critical element reliability analysis is performed, where the resistance, dead load 

and traffic load effects of the critical member are included. This is followed by a sensitivity 

analysis to determine the relative significance of the resistance, dead loads and traffic load 

effects on the obtained reliability results. 
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The WIM data for both case studies were processed in a previous study done by Van der Spuy 

and Lenner (2019), who used a moving load analysis to derive the traffic load effects from the 

complete set of cleaned and calibrated WIM data. As access is limited to the unprocessed WIM 

data, it is difficult to look at subsets of the data and to identify specific loading events. For 

instance, whether the critical loading event is produced by a single heavy truck or side-by-side 

trucks. Furthermore, it is difficult to make a distinction between illegally overloaded standard 

trucks and permit trucks. Overloading is a growing concern in South Africa (DOT, 2013; 

Lenner, De Wet and Viljoen, 2017), and as NA loading in TMH-7 makes provision for 

overloading of legal vehicles (Anderson, 2006), it is deemed acceptable to consider the whole 

data set of traffic load effects in this study. 

It is difficult to predict future trends in traffic, as the variation of traffic volumes and 

configurations are highly dependent on the economy, new regulations and technological 

developments (Caprani and O’Brien, 2009). Traffic growth is thus considered outside the scope 

of this study. If there is concern about the actual change in traffic conditions over time, the 

reliability performance of a bridge will need to be reassessed on a periodic basis.  

 

1.6  Thesis Outline 

Chapter 1: Introduction 

The first chapter provides background on the traffic load model in TMH-7 and the development 

of the road freight industry in South Africa. Thereafter, the problem statement, motivation and 

objectives are stated, followed by the scope and limitations of the study. 

Chapter 2: Literature Review 

Background is provided on TMH-7’s load model for normal traffic conditions. It also includes 

background on different approaches to assess extreme traffic load effects. The concepts of 

probabilistic modelling and reliability theory are discussed, followed by a summary of the First 

Order Reliability Method (FORM). 

Chapter 3: Roosboom Case Study 

This chapter presents the case study on WIM data from Roosboom station on the N3. The 

methodology for the case study is thoroughly explained, which include the procedure on how 

the reliability analysis was performed. Thereafter, the results and conclusions of the findings 

are discussed. 
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Chapter 4: Kilner Park Case Study 

This chapter presents the case study on WIM data from a site near Kilner Park on the N1. The 

methodology for the case study is detailed, which includes the execution of the critical element 

reliability analysis and sensitivity analysis. This is followed by results and concluding remarks. 

Chapter 5: Conclusion and Recommendations 

A summary of the findings for both case studies are given, and recommendations are made for 

future research in this field of study. 
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2 Literature Review 

2.1  Introduction 

The chapter provides relevant information and explanations of important concepts to better 

understand the remaining chapters. The key discussion points include a brief summary of 

TMH-7’s traffic load model for normal traffic conditions and a description of Weigh-in-Motion 

(WIM) data and statistical methods for investigating traffic load effects. Concepts of 

probability theory and structural reliability are also discussed, which include a description of 

the relevant probabilistic models and an outline of the First Order Reliability Method (FORM). 

 

2.2  Overview of NA Loading in TMH-7 

2.2.1 Background to Limit State Design in Context of TMH-7 

TMH-7 is based on the concept of Limit State Design as defined by the International Standards 

Organisation in ISO 2394 (2015). It allows for a semi-probabilistic design, where the limit state 

defines a distinct condition that needs to be met in order for the structure to perform satisfactory 

(Holický, 2009). For the ultimate limit state (ULS), this is typically defined by the condition 

that the load effects should not exceed the resistance of the structure for the duration of its 

specified design life.  

Design standards generally specify characteristic values for the load effects and resistance of 

the structure based on a prescribed probability of exceedance corresponding to a specific 

reference period (Holický et al., 2015). The characteristic value describing the basic variable 

is a function of its distribution type and variability, but independent of a reliability level or 

specified design life (Holický et al., 2015). The characteristic values for the load effects and 

resistance are then multiplied or divided by applicable partial factors to obtain the design values 

for the basic variables. The design value for the load effects is more than its characteristic 

value, whereas the design value for the resistance is less than its characteristic value. The partial 

factors are derived from statistical information on the basic variable and a target reliability 

index (Holický et al., 2015). A reliability index is a measure of the safety level of the structure 

(Holický, 2009).  

Although TMH-7 defines characteristic values and partial factors to obtain design values for 

the traffic load effects, the values were not derived based on probability theory. The 

characteristic load effects are represented by nominal traffic load effects that were obtained 
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deterministically by the credibility approach. This approach used engineering judgement and 

past experience to select idealised heavy vehicle combinations to provide the worst loading 

events (CSRA, 1981; Anderson, 2006). The characteristic values, represented by the nominal 

traffic load effects, were thus not based on the statistical interpretation of actual traffic data. 

According to CSRA (1981), the partial factors also do not consider probabilistic concepts and 

were conservatively derived based on engineering judgement.  

 

2.2.2 TMH-7 Traffic Load Model 

Traffic load effects can be measured in terms of bending moments and shear forces induced in 

the bridge due to vehicles moving over the bridge. The traffic load model is found in Part 2 of 

TMH-7 and it is used to model the traffic loading on different span lengths. The model was 

developed to account for all combinations of traffic load conditions and are used to obtain 

design values that produce the most unfavourable traffic load effects. The design traffic load 

and dead load are then used to find the required resistance of the bridge.  

The traffic load model considers three types of live loading: normal loading (NA), abnormal 

loading (NB) and super loading (NC). Each type is applied separately to the bridge, and NA 

and at least 24 units of NB loading need to be considered for all highway bridges. According 

to TMH-7 (CSRA, 1981), NA loading represents normal traffic conditions on a highway, 

consisting of the most severe arrangements of legal vehicles. NB loading describes an 

abnormally heavy vehicle, whereas NC loading represents multi-wheeled trailer combinations 

with controlled hydraulic suspension and steering (CSRA, 1981). The scope of this study 

entails the investigation of NA loading. 

 

2.2.3 NA Loading 

The load model for NA loading makes use of a floating lane notional lane width, where the 

notional lanes do not represent the actual traffic lanes, but are used for the purpose of applying 

the loading. The notional lanes are equal in width, but the width varies depending on the 

number of notional lanes required for the specific carriageway width. The carriageway width 

is defined as the width of the bridge deck between kerbs, which include the shoulders and 

traffic lanes. The required number of notional lanes are outlined in TMH-7 Section 2.6.2. 

(CSRA, 1981) and summarised in Table 2.1 for transparency. 
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Table 2.1: Number of notional lanes required for a specific carriageway width (CSRA, 1981). 

Carriageway width (m) Number of notional lanes 

4.8 up to and including 7.4 2 

Above 7.4 up to and including 11.1 3 

Above 11.1 up to and including 14.8 4 

Above 14.8 up to and including 18.5 5 

Above 18.5 up to and including 22.2 6 

 

The load model for NA loading is characterised by a nominal uniformly distributed line load 

(UDL) that is applied in the longitudinal direction of any continuous part of a notional lane. 

Simultaneously, a single nominal axle load (or knife edge load) is applied to each notional lane.  

The UDL is depended on the effective loaded length (L) that TMH-7 (CSRA, 1981) defines as 

the ‘aggregate length of the separate parts loaded in any single notional lane or combination of 

notional lanes in one or more carriageways’. Here parts refer to sections of the notional lanes 

that are loaded to obtain the most adverse load effects at a specific location on the bridge. The 

loading curve describing the application of the UDL is illustrated in Figure 2.1, where the UDL 

is denoted by Qa and measured in kN/m. For a continuous loaded length of up to 36 m, a UDL 

of 36 kN/m is applied in the longitudinal direction. For loaded lengths exceeding 36 m, the 

UDL value is obtained from Equation 2.1. 

 𝑄𝑎 =
180

√𝐿
+ 6  (2.1) 

The axle load applied per notional lane, can be calculated from Equation 2.2 and is measured 

in kN. The symbol n refers to the loading sequence number corresponding to the relevant 

notional lane (CSRA, 1981).  

 𝐴𝑥𝑙𝑒 𝑙𝑜𝑎𝑑 =  
144

√𝑛
 (2.2) 
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Figure 2.1: Loading curve for type NA loading (CSRA, 1981) 

 

NA loading considers the dynamic effects of moving traffic on the bridge with the Swiss impact 

factor, denoted by φ2. The factor is expressed in Equation 2.3, where Ls represents the 

equivalent (or effective) span length in metres. For a simply supported bridge, Ls is generally 

the distance between the centres of support. The Swiss impact factor is already accounted for 

in the NA loading. For this study the WIM data are producing static load effects and thus the 

impact factor needs to be removed from NA loading to make it static. 

 𝜑2  =  0.05 (
100 +  𝐿𝑠

10 +  𝐿𝑠
) (2.3) 

 

2.2.4 NA Loading Application 

Depending on the purpose of the investigation, the UDL for NA loading can be determined by 

means of a global analysis or by parts. When the traffic load effects are determined by a global 

analysis, an average UDL is obtained for the aggregate loaded length and applied to the loaded 

parts of each notional lane. To illustrate, consider a 20 m single span bridge with thee notional 

lanes, where the maximum bending moment at midspan is of interest. The average UDL 

applied to each notional lane can be calculated with Equation 2.1, where Qa denotes the average 

UDL and L is the aggregate loaded length, i.e. 60 m. The global bending moment at midspan 
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due to the UDL can be calculated with wL2/8, where w is equal to three times Qa and L denotes 

an effective span length of 20 m. Figure 2.2 illustrates the application of an average UDL, 

denoted by Qa, over three notional lanes. 

 

Figure 2.2: Cross-section (left) and longitudinal section (right) of average UDL (Qa) applied to three notional 

lanes. 

 

When a critical element is of interest, parts of the notional lanes should be loaded in a sequence 

that produces the maximum load effects for the critical element. In this case, the analysis makes 

use of Equation 2.4, which determines the UDL (in kN/m) that should be applied to the p-th 

loaded part, denoted by Qap. TMH-7 (CSRA, 1981) provides the following definitions for the 

notations in Equation 2.4. ∑ 𝐿𝑖̇
𝑝
𝑖=1  is the sum of all loaded lengths (in metres) up to and 

including the p-th part. The loaded length of the p-th part is denoted by Lp. Qa is the intensity 

of loading (in kN/m) obtained from the loading curve in Figure 2.1 for ∑ 𝐿𝑖̇
𝑝
𝑖=1 . Li is the length 

(in metres) of any previously calculated base length portion i. Qi is the intensity of loading (in 

kN/m) applied to any previously calculated base length portion i.  

To illustrate, again consider a 20 m single span bridge, where the maximum bending moment 

at midspan is of interest. Three notional lanes with three loaded parts are considered, i.e. i = 

1,2,3. The three loaded parts are loaded with Qa1, Qa2 and Qa3, as obtained from Equation 2.4. 

The global bending moment at midspan due to the UDL’s can again be obtained with wL2/8, 

but here w represents the sum of the UDL’s (Qa1 + Qa2 + Qa3). Figure 2.3 illustrates the 

application of NA loading by parts, where Qa1, Qa2 and Qa3 represent the UDL applied to each 

loaded part over the three notional lanes. 

 𝑄𝑎𝑝 = (𝑄𝑎 ∑ 𝐿𝑖̇

𝑝

𝑖=1

− ∑ 𝑄𝑖𝐿𝑖

𝑝−1

𝑖=1

) ∕ 𝐿𝑝 (2.4) 

   

Lane 1 Lane 2 Lane 3 

Carriageway width 

Qa Qa Qa w = Qa +Qa + Qa 

Span length 
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Figure 2.3: Cross-section (left) and longitudinal section (right) of UDL (Qap) applied by parts over three notional 

lanes. 

 

Both methods mentioned above obtain the same global load effects. A requirement applicable 

to both methods is that the UDL for any loaded part should not exceed 36 kN/m. Furthermore, 

the UDL should be adjusted with a correction factor, i.e. a k-factor. The k-factor is chosen based 

on the shape of the influence line describing the longitudinal distribution of the load effect 

under consideration. It is a measure to account for the possibility that partial loading of an 

influence line may result in a larger load effect, than using a uniformly distributed load with 

lower intensity over the relevant base portion of the influence line (CSRA, 1981). A k-factor 

of 1.1 is applicable for the bending moment at midspan of a simply supported bridge. 

In addition to the UDL calculated by either of the above methods, the axle load per notional 

lane is calculated from Equation 2.2 and positioned in each notional lane to produce the most 

adverse effects on the section of interest. The maximum characteristic load effect is then 

calculated when the UDL and axle loads are applied simultaneously over the notional lanes. A 

detailed explanation of the longitudinal and transverse distribution of the UDL and axle loads 

can be found in Section 2.6.3.2. of TMH-7 (CSRA, 1981). 

 

2.2.5 Design Load Effects 

For ULS, the obtained characteristic traffic load effects obtained from NA loading are 

multiplied by partial factors to obtain the design load effects. TMH-7 Part 1 (1981) provides a 

description of the partial load factors. Equation 2.5 can be used to calculate the design load 

effects. Fk denotes the characteristic load, whereas S* denotes the design load effect. The partial 

load factor and partial effect factor are denoted by γfL and γf3, respectively. 

 𝑆∗ =  𝛾𝑓3
(effects of 𝛾𝑓𝐿𝐹𝑘) (2.5) 

Lane 1 
Lane 2 

Lane 3 

Carriageway width 

Qa1 
Qa2 

Qa3 

w = Qa1 +Qa2 + Qa3 

Span length 
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The factor γfL is a function of γf1 and γf2, and depends on the combination of loads as outlined 

in TMH-7, Section 5 of Part 2 (1981). γf1 accounts for unfavourable deviations from the 

nominal load. γf2 is a combination factor introducing the reduced probability that the nominal 

values will be reached simultaneously for all load types present. γf3 account for uncertainties in 

modelling the load effects, unforeseen conditions, the random nature of variables and the 

importance of the limit state under consideration (CSRA, 1981). 

For NA loading at ULS, the design traffic load effects are typically obtained with γfL equal to 

1.5 and γf3 equal to 1.1, which results in an overall partial factor of 1.65. For dead load, γfL is 

equal to 1.2 and γf3 is also equal to 1.1, which results in an overall partial factor of 1.32. 

 

2.3 Probabilistic Modelling 

This section provides an overview of basic concepts in probability theory as well as a 

description of probabilistic models relevant to the study.  

 

2.3.1 Concepts of Probability Theory 

Probabilistic modelling can be used as a statistical tool to characterise a phenomenon or event 

based on historical data. It accounts for the randomness or unpredictable behaviour of an event, 

which prevent the exact prediction of a future outcome of the event (Mitrani and Mitrani, 1998). 

A quantity whose outcome is uncertain is called a random variable, denoted by X (Coles, 2001). 

A random variable can take on any value in a set of possible outcomes, called the sample space, 

consisting of real numbers (Coles, 2001). A realisation or outcome of the random variable X is 

called an event, denoted by x, and it describes a subset of the sample space (Chang, 2013).  

A random variable can either be discrete or continuous. A discrete random variable’s sample 

space is countable with distinct values, while a continuous random variable’s sample space is 

uncountable and usually based on measurements (Montgomery and Runger, 2014). For most 

applications in engineering, including traffic load effect measurements, the random variable is 

continuous (Chang, 2013). Therefore, the focus of this section is on the probabilistic modelling 

of continuous random variables. 

A random variable can be described by a probability distribution function and a corresponding 

probability density function. The probability distribution function (also called cumulative 

distribution function) is denoted by F(x), where x can take on any value in the sample space. 
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F(x) assigns probabilities to the various values in the sample space, and the function output 

ranges between 0 and 1. Some values may have larger probabilities of occurring than other 

values. The function is presented in Equation 2.6, where P denotes the probability of not 

exceeding any real value x (Coles, 2001).  

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) (2.6) 

The probability of X assuming a value within the interval [x1 ; x2] is shown in Equation 2.7 

(Holický, 2013). 

 𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2)  =  𝐹(𝑥2) − 𝐹(𝑥1) (2.7) 

If the probability distribution function is differentiable, it can be used to find the probability 

density function, denoted by f(x). The probability density function is equal to the first derivative 

of the probability distribution function, as expressed in Equation 2.8 (Coles, 2001). The 

function is always positive and the integral of f(x) for -∞ < x < ∞ is equal to 1 (Montgomery 

and Runger, 2014). The probability distribution function can be written as an integral of the 

probability density function, as shown in Equation 2.9. The area under the probability density 

function equals the probability that a realisation x of the random variable X will fall in the 

considered interval. A histogram describing the relative frequency of intervals in the sample 

space, can be used to approximate the probability density function if needed (Montgomery and 

Runger, 2014). 

 𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
 (2.8) 

 𝐹(𝑥) = ∫ 𝑓(𝑥) 𝑑𝑥

𝑥

−∞

 (2.9) 

The concepts of a population and sample are important to understand. The population is defined 

as the complete set of possible realisations x of the random variable X, which can be finite or 

infinite (Holický, 2009). The population is then described by the probability distribution 

function and probability density function. Population parameters, also called model 

parameters, are incorporated in the functions and describe the selected probabilistic model.  
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More frequently the probabilistic model is described by moment parameters, which include the 

population mean, variance and skewness. The moment parameters are dependent on the 

selected probabilistic model and its model parameters. The population mean describes the 

average measurement and it indicates the location of the centre of the probability density 

function. The population variance indicates the relative dispersion of the population about the 

mean. The relative dispersion is often represented by the standard deviation, which equals the 

square root of the variance. Lastly, the population skewness describes the shape of the density 

distribution function and subsequently the degree of asymmetry of the population (Holický, 

2009). 

The population mean (μ) is calculated from the first moment about the origin as shown in 

Equation 2.10. The formulation of the standard deviation (σ) is based on the second central 

moment, as shown in Equation 2.11. Whereas the population skewness (α) is based on the third 

central moment and determined with Equation 2.12. The notation in the equations are adopted 

from the Reliability analysis for structural design (Holický, 2009). Another parameter that 

describes the dispersion of the population about the mean is called the coefficient of variation 

(COV). It is the ratio of the standard deviation to the mean, expressed as σ /μ. 

 

𝜇 = ∫ 𝑥 𝑓(𝑥) 𝑑𝑥 

 

(2.10) 

 

 

𝜎 =  √∫(𝑥 −  𝜇)2 𝑓(𝑥) 𝑑𝑥 

 

(2.11) 

 

 

∝ =  
1

𝜎3
∫(𝑥 −  𝜇)3 𝑓(𝑥) 𝑑𝑥 

 

(2.12) 

 

In most cases, only a number of measurements are available to describe the random variable 

X. The measured data contain a subset of realisations xi from the population and the subset is 

called a sample (Holický, 2009). For xi, i = 1, 2, 3,..., n and n is equal to the sample size. Holický 

(2009) defines a very small sample as n ≤ 10 and a large sample as n ≥ 30. The sample becomes 

more representative of the population as the sample size increases, enabling the use of the 

sample to draw inferences regarding the population.  
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The properties of the sample can be described by sample characteristics, also called moment 

characteristics. These properties are unbiased point estimates of the moment parameters 

describing the population. The moment characteristics primarily include the sample mean, 

variance and skewness. The sample mean (m) is calculated from the first moment about the 

origin as seen in Equation 2.13. The sample standard deviation (s) and skewness (w) are 

calculated from Equation 2.14 and 2.15, respectively, which are based on the second and third 

central moments (Holický, 2009). Additionally, the sample coefficient of variation (COV) is 

described by the ratio s/m.  

 

𝑚 =
1

𝑛
∑ 𝑥𝑖

𝑖

 (2.13) 

 

𝑠 = √
∑ (𝑥𝑖 − 𝑚)2

𝑖

𝑛 − 1
 (2.14) 

 

𝑤 =
𝑛

(𝑛 − 1)(𝑛 − 2)𝑠3
∑(𝑥𝑖 − 𝑚)3

𝑖

 

 

(2.15) 

 

This section conveys the concept of probabilistic modelling, which entails describing a random 

variable with a probabilistic model. There are numerous probabilistic models (or distribution 

types) available, and the applicable model is dependent on the properties of the random 

variable. The relevant probabilistic models for the study are discussed in the following sections.  

 

2.3.2 Description of Probabilistic Models 

2.3.2.1 Normal Distribution 

This section makes reference to Montgomery and Runger’s book on Applied Statistics and 

Probability for Engineers (2014), which provides a comprehensive understanding of the 

normal (N) distribution. The normal distribution, also called Gaussian distribution, is the most 

widely used continuous distribution. It plays an important role in the central limit theorem, 

where the averages from the repetitions of a random experiment represent a random variable, 

which tends to a normal distribution as the repetitions increase.  

The sample space of a normal random variable X has an infinite range -∞ < x < ∞. The model 

parameters include the mean (μ) and standard deviation (σ), where -∞ < μ < ∞ and σ > 0.  
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The probability density function can be described by a symmetric bell-shaped curve. As no 

asymmetry is present for the normal distribution, the skewness is zero and the probability that 

a measurement is located more than 3σ away from the mean is very small. The probability of 

an interval tends asymptotically to zero the further away the interval is from the mean. Owing 

to symmetry, the probability of X being less than or equal to the mean is 0.5 (or 50 %). The 

probability density function is expressed in Equation 2.16, followed by the probability 

distribution function in Equation 2.17.  

 𝑓(𝑥) =
1

√2𝜋𝜎
𝑒

−
1

2𝜎2(𝑥−𝜇)2

 (2.16) 

 𝐹(𝑥) =
1

√2𝜋𝜎
∫ 𝑒

−
1

2𝜎2(𝑥−𝜇)2

𝑑𝑥
𝑥

−∞

 (2.17) 

The normal random variable X with μ and σ, can be transformed with Equation 2.18 to the 

standardised random variable U. The standardised variable U has a mean of 0 and a standard 

deviation of 1. When X represents a normal variable, U is also normally distributed. The 

probability distribution function of the standardised variable U is given in Equation 2.19, and 

the solutions are available in standard statistical tables. The tables are useful in finding 

solutions for the probability distribution function and density function of the normal 

distribution. Moreover, both Equation 2.18 and 2.19 are applicable for any distribution. Here, 

the distance between x and μ is equal to uσ. 

 𝑈 =
𝑋 − 𝜇

𝜎
 (2.18) 

 𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) (2.19) 

Figure 2.4 illustrates the probability density function and probability distribution function for 

a normal distribution, where the model parameters vary. Different mean and standard 

deviations are considered in order to show the influence of the model parameters on the 

functions. The notation N(μ,σ) is used to describe the normal distribution. The probability 

density distribution for N(10,1) in Figure 2.4 is used to convey the definition of the mean (μ) 

and standard deviation (σ). When the standard deviation decreases, the probability density 

distribution becomes narrower and the slope of the probability distribution function becomes 
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steeper, as less variation is seen in the distribution. When the mean increases the functions shift 

to the right. 

 

Figure 2.4: Probability density function (left) and probability distribution function (right) for normal 

distribution, denoted by N(μ,σ). 

 

2.3.2.2 Lognormal Distribution 

The content of this section is based on Holický (2013), unless stated otherwise. The lognormal 

distribution is described by the general three-parameter lognormal (LN3) distribution. It is an 

asymmetric distribution with a lower or upper bound, denoted by x0. The sample space is 

limited to the interval x0 < x < ∞, when it has a lower bound and ∞ < x < x0, when it has an 

upper bound. The model parameters for the distribution consist of the mean (μ), standard 

deviation (σ) and skewness (α). The bound (x0) can also be used instead of the skewness.  

The skewness is a measure of asymmetry, and therefore also describes the tail behaviour of the 

probabilistic distribution. That is, it provides information on the distribution of the sample data 

to the left or right of the mean. If the skewness is positive (right skewness), it means that more 

of the sample data is located on the right side of the mean, also referred to as the right tail. If 

the skewness is negative (left skewness), it means that more of the sample data is located on 

the left side of the mean, named the left tail. The larger the skewness, the more sample data is 

located on the one side. The LN3 distribution can have a left or right tail, where the tail decays 

faster than a power-type tail, meaning that it asymptotically tends faster to zero (Papalexiou 

and Koutsoyiannis, 2013). 
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The lognormal distribution relates to the normal distribution in the following way: If the 

random variable X is lognormally distributed, the transformed variable Y (see Equation 2.20) 

is normally distributed. In Equation 2.20, ln is the natural logarithm. 

 𝑌 = 𝑙𝑛|𝑋 − 𝑥0| (2.20) 

The bound x0 can be calculated with Equation 2.21, where c is a coefficient relating the bound 

to the skewness. If the skewness is positive, the distribution has a lower bound and if the 

skewness is negative, the distribution has an upper bound. When the skewness is equal to zero, 

the lognormal distribution represents a normal distribution. 

 𝑥0 = 𝜇 −
𝜎

𝑐
 (2.21) 

The expression for c is provided in Equation 2.22 and the expression for the skewness is 

provided in Equation 2.23. 

 𝑐 = [(√𝛼2 + 4 + 𝛼)

1
3

− (√𝛼2 + 4 − 𝛼)

1
3

] 2−
1
3  (2.22) 

 𝛼 = 𝑐3 + 3𝑐 (2.23) 

The LN3 distribution can be derived from the normal distribution by modifying the 

standardised random variable u = (x – μ)/σ. Where x is a data point of the sample, and μ and σ 

are the mean and standard deviation of the LN3 distribution. The modified standardised 

variable is denoted by u’ and formulated in Equation 2.24. The sign(α) is equal to +1 when the 

skewness of the LN3 distribution is positive. When the skewness is negative, the sign(α) is 

equal to -1. 

 𝑢′ =
𝑙𝑛 (|𝑢 +

1
𝑐|) + 𝑙𝑛(|𝑐|√1 + 𝑐2)

√𝑙𝑛(1 + 𝑐2)
𝑠ⅈ𝑔𝑛(𝛼) (2.24) 

Equation 2.24 can be used to obtain the probability density function fLN,U(u) and probability 

distribution function FLN,U(u) = FLN,X(x) of the LN3 distribution. The two distributions are 

shown in Equation 2.25 and 2.26, respectively, where fU(u’) and FU(u’) represent the 
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probability density function and probability distribution function of the standardised normal 

variable. 

 𝑓𝐿𝑁,𝑈(𝑢) =
𝑓𝑈(𝑢′)

(|𝑢 +
1
𝑐|) √𝑙𝑛(1 + 𝑐2)

 (2.25) 

 𝐹𝐿𝑁,𝑋(𝑥) = 𝐹𝐿𝑁,𝑈(𝑢) = 𝐹𝑈(𝑢′) (2.26) 

The LN3 distribution can be reduced to a two-parameter distribution, commonly known as the 

lognormal (LN) distribution. The model parameters only consist of the mean (μ) and standard 

deviation (σ). Here the bound (x0) is equal to zero and it always represents a lower bound. 

Therefore, the LN distribution always has a positive skewness. The coefficient c is equal to the 

COV, described by the ratio σ/μ. Equation 2.23 can be re-written to express the skewness (α) 

of the LN distribution in terms of the COV (see Equation 2.27). 

Figure 2.5 illustrates how a change in skewness affects the probability density function of a 

lognormal distribution. In the figure a two-parameter lognormal distribution is used, described 

by LN(μ,σ). The lower bound (x0) is equal to zero and the skewness (α) is positive. When the 

skewness increases, the area under the probability density function at the right tail becomes 

larger. That is because a larger portion of the sample data is now situated on the right side of 

the mean. As the COV increases, the relative dispersion of the sample data about the mean also 

increases and the curve widens. This leads to the observation that the peak of the probability 

density function lowers. 

 

 

 

 

 𝛼 = (
𝜎

𝜇
)

3

+ 3 (
𝜎

𝜇
) (2.27) 
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Figure 2.5: Probability density function of lognormal distribution, denoted by LN(μ,σ). 

 

2.3.2.3 Generalised Extreme Value Distribution 

This section refers to Coles’ (2001) description of the generalised extreme value (GEV) 

distribution, unless stated otherwise. The GEV distribution is an asymmetric distribution 

representing extreme data. The minimum values or maximum values can be extracted from a 

sample to form a new data set. The focus of this section is on the GEV distribution for 

maximum values, as it is applicable to the study. The model parameters include the location 

(λ), scale (δ) and shape (κ) parameters (Castillo et al., 2005). The location parameter is a 

measure of the centre values of the sample data, while the scale parameter is a measure of the 

dispersion of the sample data. The shape parameter is important as it describes the tail 

behaviour of the distribution, which determines the interval of the sample space. The 

probability distribution function of the GEV distribution is shown in Equation 2.28.  

 
𝐹(𝑥) = 𝑒

−[1+𝜅(
𝑥−𝜆

𝛿
)]

−
1
𝜅

 
(2.28) 

The random variable X can take on any value x, as long as the condition in Equation 2.29 is 

satisfied. The following are true for the parameters: -∞ < λ < ∞, δ > 0 and -∞ < κ < ∞. 

 1 + 𝜅
(𝑥 − 𝜆)

𝛿
> 0 (2.29) 
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The GEV distribution combines the extreme limit distributions Gumbel, Fréchet and Weibull 

into a single distribution. When the shape parameter tends to zero (κ → 0), the GEV distribution 

represents the Gumbel distribution, also called the extreme Type I distribution. The distribution 

is defined on an infinite interval -∞ < x < ∞, where the right tail decays exponentially. That is, 

the tail tends faster to zero than a power-type tail. Another attribute of the Gumbel distribution 

is that it has a fixed skewness (α) of 1.14 (Holický, 2009). 

When the shape parameter exceeds zero (κ > 0), the GEV distribution represents the Fréchet 

distribution, also called the extreme Type II distribution. The Fréchet distribution has a lower 

bound and is defined on the interval λ – δ/κ ≤ x < ∞. The right tail decays in a polynomial 

manner, i.e. at a slower rate than the tail of the Gumbel distribution. Furthermore, the skewness 

(α) is larger than 1.14 (Holický, 2009). 

Lastly, when the shape parameter is less than zero (κ < 0), the GEV distribution represents the 

Weibull distribution for maxima, also called an extreme Type III distribution. The distribution 

has a finite upper bound, thus x falls within the interval -∞ < x ≤ λ – δ/κ. The skewness (α) is 

less than 1.14 (Holický, 2009).  

Figure 2.6 illustrates the probability density function for the GEV distribution when κ < 0, κ = 

0 and κ > 0. The GEV distribution is denoted by GEV(λ, δ, κ). 

 

Figure 2.6: Probability density function for the generalised extreme value distribution, denoted by GEV(λ, δ, κ). 
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The extreme value theorem is similar to the central limit theorem, except extreme data is 

considered and the extreme limit distributions (Gumbel, Fréchet and Weibull) are of 

importance. For the theorem to be valid, the extreme data needs to be independent and 

identically distributed (iid). Variables are considered independent when the one variable do not 

affect the other variables. The variables are identically distributed when all the variables have 

the same probability distribution function. Extreme values representing maximum values can 

be extracted from a random experiment. The data set of extreme values increases as the number 

of repetitions of the random experiment increases. As the sample size of extreme values tends 

to infinity, the distribution will tend to one of the extreme limit distributions, which represents 

the distribution’s maximum domain of attraction. For instance, the normal and lognormal 

distributions tend to a Gumbel distribution (Castillo et al., 2005). Another characteristic of the 

GEV distribution is that it is max-stable, which means that a GEV distribution will remain a 

GEV distribution as the sample size tends to infinity. 

 

2.4  Assessment of Extreme Traffic Load Effects 

2.4.1 Weigh-In-Motion Data and Traffic Load Effects 

Extreme traffic load effects are obtained from critical loading events on the bridge. It is 

important to adequately characterise extreme traffic load effects as they are used in evaluating 

the reliability performance of a bridge design code and also in deriving new traffic load models.  

Free flowing traffic governs the critical loading events for short to medium span bridges, i.e. 

spans less than or equal to 50 metres (Bruls et al., 1996; Caprani and O’Brien, 2009). Generally, 

critical loading events for short to medium span bridges can be caused by a single heavy truck 

or by the simultaneous occurrence of two or three trucks (Enright and O’Brien, 2013). These 

events can include trucks following each other, side-by-side or staggered in two traffic lanes 

(Ghosn, Sivakumar and Moses, 2011). For shorter spans, e.g. 5 to 10 metres, the critical loading 

event can be governed by a single axle or a group of axles (Anderson, 2006; Žnidarič et al., 

2015). 

The advancement of WIM technologies has allowed for the extensive collection of good quality 

traffic data. There are various applications of WIM data, which include pavement management 

and planning, monitoring and prosecution of overloading, developing new bridge load models, 

site-specific bridge assessment and evaluating existing load models (Enright, Caprani and 

O’Brien, 2011; Lenner, De Wet and Viljoen, 2017). The focus of this study is on the latter, 
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where the reliability performance of TMH-7 for normal traffic conditions is considered. Thus, 

the focus of the literature review is on the derivation of traffic load effects from the WIM data 

to characterise the heavy traffic characteristics on a bridge. 

WIM systems are widely used in South Africa with the primary focus of measuring static axle 

loads of moving vehicles. The WIM data goes through a review process where the data is 

scrubbed of measurements not satisfying the quality control checks and WIM errors are filtered 

out (Ghosn, Sivakumar and Moses, 2011). A locally developed post-calibration method called 

the Truck Tractor (TT) method provides a series of data quality checks applied to the data after 

it has been collected (De Wet, 2010b, 2010a). The method has been approved by the South 

African National Road Authority (SANRAL) and is incorporated in the new Technical 

Methods for Highways 8 (TMH-8), a document on traffic and axle load monitoring 

methodologies and procedures (COTO, 2014). Furthermore, specifications for the provision of 

traffic and WIM monitoring services are provided in TMH-3 (COTO, 2013).  

Literature confirms that the quality of WIM data in South Africa is of an internationally 

acceptable standard after it is cleaned and calibrated (De Wet, 2010a; Lenner, De Wet and 

Viljoen, 2017). The majority of WIM sensors in the country consist of a bending plate 

embedded in the road surface, often only in the left wheel path of the traffic lane (De Wet, 

2010a; Lenner, De Wet and Viljoen, 2017). The WIM measurements typically include the date, 

time of arrival, number of axles, axle weights and axle spacings.  

In the past, traffic load effects were often derived from simplified methods based on single 

vehicle events (Nowak, 1994; Nowak and Rakoczy, 2013). However, literature shows that 

maximum load effects can be governed by multiple truck events and thus a moving load 

analysis that accounts for such events is deemed more appropriate (Žnidarič et al., 2015). The 

analysis entails arranging the measured vehicles in each traffic lane into a convoy with 

appropriate gaps, and moving the convoy over the bridge (Žnidarič et al., 2015). As the convoy 

moves over the bridge it runs through the applicable influence line. The traffic load effect is 

then obtained by the superposition of the response of each vehicle in the convoy. As a result, 

traffic load effects are obtained that account for both single and multiple truck events. 

 

2.4.2 Statistical Approaches in Assessing Extreme Traffic Load Effects 

From literature it is evident that the main purpose for determining the traffic load effects, is 

one of two options. It is either to find the characteristic load effect corresponding to a certain 
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probability of exceedance and reference period, or to obtain the maximum load effect 

distribution for a certain reference period and determine the corresponding fractile for the 

characteristic load effect. Two methods are alternately used in literature to estimate maximum 

load effects for a specified reference period, i.e. either statistical extrapolation or a Monte Carlo 

simulation. 

 

2.4.2.1 Statistical Extrapolation Approach 

For the statistical extrapolation approach, a probabilistic distribution is fitted either to the whole 

set of measured traffic load effects, or only to the upper part or a set of periodic maxima. This 

mostly comprises using a probability plot where a distribution is fitted to the data and 

extrapolated graphically to obtain the characteristic load effect corresponding to a certain 

reference period. Or, a distribution is fitted to the load effects and raised to an appropriate 

power to obtain the maximum load effect distribution for the reference period of interest. A 

great variety of methods have been used in literature to conduct a statistical extrapolation. 

Literature reveals that the method applied varies according to the location of the WIM station, 

the number of heavy vehicles recorded in the data set and the method of traffic data collection 

(Doan, Sparling and Feldman, 2016).  

 

Right Tail Fitting 

Right tail fitting entails the fitting of a distribution to the upper part of the measured traffic load 

effects. This approach eliminates less critical load effects and reduces the number of different 

types of loading events considered (O’Brien et al., 2015). In this way, an improved 

representation of the extreme load effects is provided. Furthermore, it is said that the tail region 

of the traffic load effects can be well-represented by a single distribution, which may not 

necessarily be true for the whole data set (O’Brien et al., 2015).  

Different assumptions have been made in defining the right tail of the traffic load effects, and 

it is greatly dependent on engineering judgement. Castillo (1988) recommends using the upper 

2√n of the traffic load effects, where n is the number of load effects in the whole data set. 

Enright (2010) specifies the right tail region as the upper 30 % of the data set, while Sivakumar 

et al. (2011) fit a normal distribution to the upper 5 % of the traffic load effects. The right tail 

region can also be chosen visually at the point where there is a change in slope on the 
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probability plot paper (Nowak and Rakoczy, 2013; Žnidarič et al., 2015). A few prominent 

right tail fitting techniques are listed below. 

 

a) Normal Probability Plot 

A popular approach in literature has been to plot the traffic load effects on a normal probability 

plot that is based on an inverse cumulative distribution function of a standard normal variable 

(Doan, Sparling and Feldman, 2016). A normal distribution is then fitted to the whole plot 

(Nowak, 1999) or only to the right tail (or upper part) of the plot, which is then statistically 

extrapolated. Some authors have fitted a straight line (Nowak, 1989; Nowak and Hong, 1991) 

or a curved line (Nowak, 1993, 1994) to the right tail of the plot.  

Doan et al. (2016) conducted a study to test the method of fitting a distribution to the right tail 

of the traffic load effects plotted on a normal probability plot. The study found that the 

distribution best describing the right tail varied from site to site which prevented the selection 

of a single distribution that best fits the critical load effects for all WIM sites. For example, the 

study found that the lognormal distribution best described the critical load effects at one site, 

while the normal distribution best described the critical load effects at another site (Doan, 

Sparling and Feldman, 2016). 

 

b) Block Maxima Approach 

The block maxima method is a well-known right tail fitting technique, where the maximum 

load effects are extracted from equal-size, non-overlapping time periods called block periods. 

For instance, the daily maximum load effects can be obtained by extracting the maximum load 

effect per day. Here the block period would then be represented by a day. A distribution is then 

fitted to the block maximum load effects and extrapolated to obtain maximum load effects for 

another reference period. Žnidarič et al. (2015) explains the use of probability plot paper for 

the visual interpretation of the block maxima. A distribution can then be fitted to the whole 

data set of block maxima or only to the right tail of the block maxima on the probability plot. 

The decision is based on whether the block size is able to adequately represent the extreme 

load effects or not. 

The block maxima method allows for time-referencing the load effects and provides a more 

representative data set of the critical load effects, i.e. extreme load effects (O’Brien et al., 
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2015). The selection of the block period is usually restricted by the duration of the recorded 

period (Žnidarič et al., 2015). Furthermore, if the block period is chosen too small, the data set 

will include less critical load effects that can influence the extrapolated results (Hajializadeh et 

al., 2012). If the block period is too large, the data set may be too small, and it may neglect 

valuable data points also describing the critical load effects (O’Brien et al., 2015). 

Previous studies have considered a variety of applications for the block maxima method. Ghosn 

and Moses (1985) fit a normal distribution to the maximum load effects for a block period of 

2.4 hours, which is then raised to an appropriate power to obtain the maximum load effect 

distribution for a 50-year reference period. Cooper (1995, 1997) raises the distribution of the 

measured load effects to an appropriate power to obtain the 4.5-day block maxima. Hwang et 

al. (2014) fit a lognormal distribution to the maximum load effects. The GEV distribution is 

more common at present, as it is theoretically more appropriate in describing extreme load 

effects (Žnidarič et al., 2015).  

The GEV family of distributions consist of the Gumbel (type I), Fréchet (type II) and Weibull 

(type III) distribution, depending on the right tail behaviour (Coles, 2001). In using the GEV 

distribution, the choice between the three limit distributions are avoided. Getachew and 

O’Brien (2007) fit a GEV distribution to the daily maxima, similarly Hajializadeh et al. (2012) 

fit the GEV distribution to the daily and annual maxima, and compare it to other distributions 

such as the lognormal, log-gamma and log-logistic distribution. 

The GEV distribution is usually constrained to the Weibull and Gumbel distributions (O’Brien, 

Connor and Arrigan, 2012) in representing maximum traffic load effects. The Fréchet 

distribution has a very long, power-type right tail (Papalexiou and Koutsoyiannis, 2013), which 

does not agree with the physical bounds of traffic loading (O’Brien et al., 2015). In addition, it 

leads to unrealistically large extrapolated values. Sivakumar et al. (2011) fit a Gumbel 

distribution to the right tail of weekly maxima, and raises the distribution with a power to obtain 

the maximum load effect distribution. Buckland et al. (1980) fit a Gumbel distribution to a 

block period of three months. The Weibull distribution has also been used in numerous studies 

(Enright, 2010; O’Brien, Connor and Arrigan, 2012). It has an upper bound which limits the 

extrapolated maximum load effects obtainable. 
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c) Peak Over Threshold Approach 

The Peak over Threshold (POT) approach can be used as an alternative to the block maxima 

approach. This method considers the load effects above a certain threshold value and fits a 

Generalised Pareto distribution to the data set. One disadvantage to the method, is that the 

threshold value is selected based on engineering judgement and could lead to a 

misrepresentation of the right tail (O’Brien et al., 2015). 

 

d) Rice Formula 

Another approach favoured in some studies, is the Rice formula. The Rice formula is applied 

to the upper part or right tail of an outcrossing rate histogram (Cremona, 2001). Therefore, a 

proper threshold value should be chosen to define the right tail region. Furthermore, a normally 

distributed process is used to describe the time variations of traffic load effects on bridges 

(Cremona, 2001). The Rice formula has for instance been used in the background studies of 

the Eurocodes. 

 

Concluding Remarks on Statistical Extrapolation 

O’Brien et al. (2015) conducted a study to investigate the accuracy of seven statistical inference 

methods used in literature for the extrapolation of traffic load effects. The extrapolated 

maximum load effects for each method were compared to long-run simulations to assess the 

accuracy of the method. It was found that the GEV and POT approaches generally obtained 

accurate extrapolated maximum load effects. Even though the normal distribution and Rice 

formula lack statistical foundation for dealing with extreme data, it was found that they also 

performed well. The study concludes that the extrapolated results are more sensitive to the 

sample size and assumptions regarding the right tail, than to the statistical inference method 

chosen (O’Brien et al., 2015). 

From literature it is evident that the extrapolation process can involve considerable uncertainty, 

as it is influenced by the distribution type, the sample size available and the power with which 

the distribution is raised (Hajializadeh et al., 2012; Doan, Sparling and Feldman, 2016). It is 

thus important to choose the distribution type that best fits the site-specific data, and that the 

measuring period is large enough to provide a reliable characterisation of the right tail of the 

traffic load effects.  
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If the measuring period is too small, it may exclude critical loading events caused by extremely 

heavy vehicle combinations. This is a concern for many countries, where the measuring periods 

are quite short and only stretch over a few months and maximum a year (Doan, Sparling and 

Feldman, 2016). In some countries, the recorded data is even limited to a few days or weeks 

due to the cost of data collection (Hajializadeh et al., 2012). Sivakumar et al. (2011) suggest 

that a period of a year is sufficient to develop a traffic load model. 

 

2.4.2.2 Monte Carlo Simulation 

Monte Carlo simulation uses random sampling from a set of measured data to generate a large 

number of random values, consistent with the main trend in the measured data (Ghosn, 

Sivakumar and Moses, 2011). The parameters describing the traffic are fitted with statistical 

distributions in order to simulate new traffic data. These parameters are obtained from the WIM 

data and include characteristics such as the gross-vehicle weight (GVW), axle load and spacing, 

truck speed and daily truck volumes for each lane (Hajializadeh et al., 2012).  

Literature varies in the application of the Monte Carlo simulation. Traffic load effects can be 

simulated for a short period of time (typically a few years) and then fitted with a distribution 

to extrapolate and obtain maximum load effects for a certain reference period. For instance, 

Caprani et al. (2008) provide up to 5 years of traffic load effects and extrapolate with a fitted 

GEV distribution. Zhou et al. (2013) provide 2000 days of simulated traffic load effects, which 

are then fitted with a GEV distribution and extrapolated to obtain the maximum load effect 

distribution. Caprani and O’Brien (2009) simulate a set of a 1000 daily maxima.  

A more recent application of the Monte Carlo simulation approach is to conduct a long-run 

simulation. For a long-run simulation, traffic is generated for thousands of years, which allows 

for the direct determinisation of the maximum load effects for the lifetime or other reference 

period (Enright, Caprani and O’Brien, 2011; Enright and O’Brien, 2013). For instance, 

Hajializadeh et al. (2012) make use of a simulation period of 5000 years. 

The main advantage to the Monte Carlo approach, is that the simulation can address axial 

configurations and multiple truck events that were not necessarily present in the measuring 

period (Žnidarič et al., 2015). In addition to this, the simulation approach improves the 

representation of the extreme load effects, especially when the data set is very small. However, 

there are some concerns that need to be acknowledged. If the measuring period is too small to 

adequately represent the traffic load effects, it will influence the quality of the simulated traffic. 
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As the simulation is based on the collected data, the simulated traffic load effects for larger 

periods may become unreliable (Ghosn, Sivakumar and Moses, 2011). If the generation period 

is large, the simulation may become too computationally intensive, and a simpler approach 

may be more favourable to use. In such a case, a short simulation period followed by statistical 

extrapolation may be more viable. 

 

2.5 Structural Reliability 

This section describes basic concepts of structural reliability theory, which include the 

definition of reliability and different safety measures. Thereafter, the fundamental and general 

reliability problems are discussed, which include the formulation of the limit state function and 

the determination of the reliability index and probability of failure. The First Order Reliability 

Method (FORM) is outlined, followed by a brief description of the semi-probabilistic design 

method. Lastly, different target reliability indices from existing design codes are summarised. 

 

2.5.1 Reliability Concepts 

The response of a structure is dependent on its resistance and the magnitude of the applied load. 

The structural response is then considered adequate if the performance requirements (or 

reliability conditions) for the structure are met. ISO 2394 (2015) provides a formal definition 

of reliability: it is the ability of a structure to satisfy given requirements under specified 

conditions during its intended design life. These requirements are called limit states. For 

instance, the requirements can be associated with the structural safety, where collapse or a form 

of structural failure is prevented. This is called the ultimate limit state (ULS). It can also refer 

to conditions of normal use, such as limiting deflections and cracks. This is called the 

serviceability limit state (SLS).  

Structural reliability or safety is concerned with the violation of the performance requirements. 

If the considered limit state is violated, the structure is in an undesirable state (Holický, 2009). 

A safe or desirable state is assumed when the limit state is satisfied. There are different 

measures of structural reliability. According to the Joint Committee on Structural Safety 

(JCSS), these measures can be described by safety levels according to whether the method is 

deterministic, semi-probabilistic or probabilistic.  

 

Stellenbosch University https://scholar.sun.ac.za



Literature Review  32 

The safety levels are described as follows: 

• Level 0 is a deterministic method, where a global safety factor (γ) is specified in the 

code. For the structure to be deemed safe, the ratio between the resistance (R) and load 

(E) should be equal to or more than the prescribed safety factor. The shortcoming of 

this method is that it does not properly account for uncertainties related to the resistance 

and load of the structure (Skrzypczak, Słowik and Buda-Ożóg, 2017). 

• Level 1 is a semi-probabilistic method based on the limit state principle. Predefined 

characteristic values are used to describe the resistance (R) and load effect (E). Thus, 

no distribution functions are used. A partial safety factor is then assigned to each 

parameter, denoted by γR and γE, which typically exceeds a value of 1. The structure is 

deemed safe when the inequality, R/γR ≥ γEE, is satisfied. Although this is still a 

simplified method, it is an improvement to Level 0 in accounting for uncertainties. 

• Level 2 makes use of probabilistic approximation methods, e.g. FORM or Second Order 

Reliability method (SORM). Probability distributions are assigned to the resistance (R) 

and load (E) parameters, where the parameters are described in terms of their mean and 

standard deviation. E and R are now referred to as basic variables. Generally, the 

variables are correlated and non-normal, which are then transformed by the method into 

uncorrelated and standardised normal variables. The transformed variables are used to 

determine a reliability index (β) which serves as measure of the reliability or safety 

level of the structure. The structure is deemed safe when the obtained reliability index 

is equal to or more than the required target reliability index (βt). In practice, design 

codes commonly apply Level 1, where the partial factors have been calibrated with 

Level 2 methods to satisfy a target reliability index. 

• Level 3 employs the full probabilistic method and calculates the probability of failure 

(pf), i.e. the probability of not satisfying the limit state. Typical methods include 

numerical integration and Monte Carlo simulation. The calculated probability of failure 

should be less than or equal to the permissible probability of failure. Level 2 and Level 

3 explicitly make provision for the uncertainties of the relevant parameters. 

• Level 4 uses the total expected cost of the structure to formulate an optimisation 

criterion (Van Gelder, Proske and Vrijling, 2009). It considers the benefits and costs 

related to construction, maintenance and repairs, consequences of failure and interests 

of capital (Madsen, Krenk and Lind, 2006). The design is acceptable when it maximises 

the difference between the benefits and costs linked to the structure. 
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2.5.2 The Fundamental Reliability Problem 

In its simplest form, the reliability of a structure can be defined by the inequality R > E, where 

R is the resistance and E is the load effect (Thoft-Christensen and Nowak, 1997). The inequality 

can be re-written as R ≤ E to define the failure mode. The limit state function, also called the 

reliability margin, is denoted by Z and formulated in Equation 2.30.  

 𝑍 = 𝑅 − 𝐸 (2.30) 

The limit state Z = 0 represents the boundary between the safe and unsafe domain. The 

probability of failure (pf) can be expressed as the probability that R is exceeded by E. Thus, 

when Z > 0 the structure is safe and when Z ≤ 0, structural failure occurs (Holický, 2009). 

Equation 2.31 provides an expression for pf.  

 𝑝𝑓 = 𝑃(𝑅 − 𝐸 ≤ 0) (2.31) 

When R and E are random variables, they can be described by probability distributions, where 

FR(x) and FE(x) denote the probability distribution functions and fR(x) and fE(x) denote the 

probability density functions. The variable X, with realisations x, is used to express both R and 

E. 

Structural reliability can be explained by the special case where the two random variables, R 

and E, are assumed to be normally distributed. The variable Z will then also have a normal 

distribution with a mean (μZ) and standard deviation (σZ) described by Equation 2.32 and 2.33 

(Holický, 2009). Here ρRE denotes the correlation coefficient between R and E, which is equal 

to zero if R and E are mutually independent variables (Holický, 2009). 

 

 

 

𝜇𝑍 = 𝜇𝑅 − 𝜇𝐸  (2.32) 

 𝜎𝑧 = √𝜎𝑅
2 + 𝜎𝐸

2 + 2𝜌𝑅𝐸𝜎𝑅
2𝜎𝐸

2 (2.33) 

According to Equation 2.31, pf is defined as P(Z ≤ 0). The expression can now be re-written in 

terms of the probability distribution function of Z, denoted by FZ(z) (see Equation 2.34).  
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 𝑝𝑓 = 𝑃(𝑍 ≤ 0) = 𝐹𝑍(0) (2.34) 

Usually FZ(z) can be obtained by transforming the random variable Z into the standardised 

random variable U (see Section 2.3.2.1). Equation 2.35 calculates the standardised value u0, 

which corresponds to z = 0.  

 𝑢0 =
(0 − 𝜇𝑍)

𝜎𝑍
= −

𝜇𝑍

𝜎𝑍
 (2.35) 

In Equation 2.36 the probability of failure pf is now expressed in terms of the standardised 

random variable U. 

 𝑝𝑓 = 𝑃(𝑍 ≤ 0) = 𝐹𝑍(0) = 𝐹𝑈(𝑢0) (2.36) 

Figure 2.7 illustrates the probability density function of the reliability margin Z, denoted by 

fZ(z) (Holický, 2009). The shaded area under the curve is equivalent to the probability of failure 

pf. Equation 2.35 can be re-written as μZ = -u0 σZ.  

With Z being normally distributed, the reliability index, denoted by β, is equal to -u0 and can 

be expressed by the relationship in Equation 2.37, derived from Equation 2.32, 2.33 and 2.35 

(Holický, 2009). The variables R and E are typically assumed independent with ρRE = 0. Thus, 

β is the distance between μZ and the origin (z = 0), measured in units of σZ. This means that the 

value of the reliability index indicates the number of standard deviations needed to reach the 

mean from the origin. The higher the β-value, the higher the reliability level for the given limit 

state function. 

 𝛽 =
𝜇𝑍

𝜎𝑍
=

𝜇𝑅 − 𝜇𝐸

√𝜎𝑅
2 + 𝜎𝐸

2 + 2𝜌𝑅𝐸𝜎𝑅
2𝜎𝐸

2
 (2.37) 
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Figure 2.7: Probability density function of reliability margin Z (Holický, 2009). 

 

The reliability index β relates to the probability of failure pf of the structure. When pf decreases, 

β increases. The relation is shown in Equation 2.38, where FU denotes the probability 

distribution function of a standardised normal distribution. The relation is valid for all 

distribution types, and thus not only for the normal distribution. 

As the numerical value of β is more comprehensive, it is often used instead of pf to measure 

the reliability level of the structure (Holický, 2009). It is important to know that the parameters 

β and pf are notional values used primarily in the development of consistent design rules. These 

parameters are not necessarily representative of the actual failure rate of the structure, which is 

highly dependent on human error (Holický, 2009). 

When considering a more general case where the two variables R and E are not normally 

distributed, the reliability margin Z is also non-normal. The probability of failure is then 

expressed as the simultaneous occurrence of event A and event B. Where event A is equal to 

P(x < E < x + dx) and event B is equal to P(R < x). Figure 2.8 illustrates the probability density 

functions for R and E and defines the terms x and dx.  

 𝑝𝑓 = 𝐹𝑈(−𝛽) (2.38) 
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Figure 2.8: Probability distribution functions for load effect E and resistance R (Holický, 2009). 

 

The variables R and E are assumed mutually independent, which produce the expression in 

Equation 2.39 for pf (Thoft-Christensen and Nowak, 1997). An important remark is that the 

results are greatly influenced by the chosen distribution types for R and E. 

 

2.5.3 The General Reliability Problem 

Often the limit state function Z is non-linear and consists of more than two random variables. 

This means that the resistance R and load effect E are functions of random variables. The 

resistance can include random variables describing material and geometric properties, whereas 

the load effect can include applied loads and in some cases also material and geometric 

properties (Lee, 2011). The limit state function Z is then a function of the vector of random 

variables X = {X1, X2,…, Xn}, where n is the number of random variables. Their realisations 

are given by the vector x = {x1, x2,…, xn}. Equation 2.40 formulates the limit state function Z 

for the multivariate case.  

 𝑝𝑓 = ∫ 𝐹𝑅(𝑥)𝑓𝐸(𝑥) 𝑑𝑥

∞

−∞

 (2.39) 
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The limit state Z(X) = 0 represents the boundary between the safe and unsafe domain. The 

probability of failure pf is then given by Equation 2.41, where f(X) is the joint probability 

density function of all the random variables considered in the vector X (Holický, 2009). In 

addition, the reliability index β can also be found using Equation 2.38. 

Reliability is the probability that the random variables X are in the safe region, defined by Z(X) 

> 0. Equation 2.41 can be used to describe the reliability in terms of pf. Subsequently, the 

reliability is expressed in Equation 2.42 as (1 - pf). 

The integral in Equation 2.41 may be difficult to solve and usually requires numerical 

simulation methods, e.g. Monte Carlo simulation. A major disadvantage of this method is the 

high computational cost (Manoj, 2016). As a result, approximation methods such as FORM are 

the most popular procedures to compute the probability of failure. In comparison to simulation 

methods, FORM is computationally more efficient as it only needs a small number of iterations 

for convergence (Manoj, 2016). This is especially the case for low probabilities of failure. The 

following section outlines the FORM-analysis. 

 

2.5.4 First Order Reliability Method 

FORM is a simple and efficient approximation method to perform a reliability analysis and to 

obtain a reliability index for the structure. Most of the commercially available software 

products include the FORM-analysis, and thus it can easily be implemented. FORM is able to 

consider non-linear limit state functions with correlated non-normal variables, and reduce it to 

a simple normally distributed variable problem (Du, 2005).  

Consider the multivariate case where the random variables are represented by the vector X = 

{X1, X2,…, Xn}, and the limit state function is expressed as Z(X). As a first step, FORM 

 𝑍(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑍(𝑿) (2.40) 

 𝑝𝑓 = 𝑃(𝑍(𝑿) ≤ 0) = ∫ 𝑓(𝑿) 𝑑𝑿

𝑍(𝑿)≤0

 (2.41) 

 1 − 𝑝𝑓 = 𝑃(𝑍(𝑿) > 0) = ∫ 𝑓(𝑿) 𝑑𝑿

𝑍(𝑿)>0

 (2.42) 
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transforms the basic variables into mutually independent, standardised normal variables that 

are represented by the vector U (Du, 2005).  

Figure 2.9 provides a two-dimensional graph of the joint probability density function for the 

resistance variable (R) and load effect variable (E). The density contours correspond to 

different levels of the probability density. The transformation of the original variables (R and 

E) from the X-space to the U-space, i.e. the standardised space, is shown in Figure 2.9. The 

transformed variables are denoted by UR and UE, respectively.  

Two conditions needs to be satisfied to transform the original basic variables into their 

equivalent normal variables at a given point x* (Holický, 2009). The first condition states that 

the probability distribution functions for the basic variables should stay the same before and 

after the transformation. This is called the Rosenblatt transformation and it is shown in 

Equation 2.43. The variables 𝜇𝑋
𝑒  and 𝜎𝑋

𝑒  denote the mean and standard deviation of the 

transformed normal variables. 

The second condition requires that the probability density functions of the original basic 

variables must be equivalent to the transformed normal variables’ probability density functions 

(see Equation 2.44) (Holický, 2009). 

The mean and standard deviation of the equivalent normal distribution can be calculated with 

Equation 2.45 and 2.46, in accordance with the two conditions. 

According to Holický (2009), the main steps of the FORM-analysis can be summarised as 

follows. The basic variables are transformed into standardised normal variables. Subsequently, 

also the limit state function Z(X) = 0 is transformed into Z’(U) = 0 in the U-space. The limit 

 𝐹𝑋(𝑥∗) = 𝐹𝑈 (
𝑥∗ − 𝜇𝑋

𝑒

𝜎𝑋
𝑒 ) (2.43) 

 𝑓𝑋(𝑥∗) =
1

𝜎𝑋
𝑒 𝑓𝑈 (

𝑥∗ − 𝜇𝑋
𝑒

𝜎𝑋
𝑒 ) (2.44) 

 

𝜇𝑋
𝑒 = 𝑥∗ − 𝜎𝑋

𝑒[𝐹𝑈
−1(𝐹𝑋(𝑥∗))] (2.45) 

 𝜎𝑋
𝑒 =

1

𝑓𝑋(𝑥∗)
𝑓𝑈 [

𝑥∗ − 𝜇𝑋
𝑒

𝜎𝑋
𝑒 ] =

1

𝑓𝑋(𝑥∗)
𝑓𝑈[𝐹𝑈

−1(𝐹𝑋(𝑥∗))] (2.46) 
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state function is generally non-linear, and FORM approximates the limit state function using 

the first order Taylor expansion. This means that a tangent is fitted to the limit state function at 

the design point. The design point is the point on the limit state function Z’(U) = 0 closest to 

the origin, and it is found by an iteration process. The reliability index β is then determined as 

the shortest distance from the design point to the origin in the U-space. Finally, the probability 

of failure is obtained from pf = FU(-β), where FU denotes the probability distribution function 

of a standardised normal distribution. Figure 2.9 includes the non-linear limit state function, 

the tangent at the design point, and the reliability index in the U-space (Holický, 2009). 

 

Figure 2.9: First Order Reliability Method. a) Original basic variables R and E. b) Transformed variables UR and 

UE (Holický, 2009). 

 

The FORM-analysis uses an iteration process to find the design point and to solve the reliability 

problem. According to Holický (2009), the iteration process can be summarised by the 

following ten steps: 

1. The performance requirement is specified and the corresponding limit state function 

Z(X) = 0 is formulated. Probabilistic models are selected to describe the relevant basic 

variable in the vector X = {X1, X2,…, Xn}. 

2. Initial values are assumed for the design point x* = {x1*, x2*,…, xn*}. For example, the 

mean can be used for the basic variables (n-1) and the last basic variable can be 

determined from the limit state function Z(x*) = 0. 

3. The equivalent normal distributions of the original basic variables can be obtained at 

the point x* = {x1*, x2*,…, xn*}, using Equation 2.45 and 2.46. 
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4. The original design point x* = {x1*, x2*,…, xn*} is transformed with Equation 2.47, to 

find the standardised design point u* = {u1*, u2*,…, un*} for the standardised random 

variables U = {U1, U2,…, Un}. Here i = 1, 2,..., n, where n is the number of basic 

variables. 

5. Partial derivatives of the limit state function with respect to the standardised random 

variables U = {U1, U2,…, Un} are assessed at the design point. The partial derivatives 

can be represented by the vector D = {D1, D2,..., Dn}, where Di is expressed in Equation 

2.48. 

6. The vector D = {D1, D2,..., Dn} together with the standardised design point u* = {u1*, 

u2*,…, un*}, are used to estimate the reliability index β (see Equation 2.49). The 

reliability index can be compared to a target reliability index, to measure the 

performance of the structure. 

7. The directional vector α = {α1, α2,..., αn} from the origin to the design point, is 

formulated in Equation 2.50. The vector consists of sensitivity factors that describe the 

influence of each basic variable on the reliability index. The sensitivity factor is denoted 

by α to be consistent with literature. However, the same notation is used for the 

skewness of a probability distribution. One should not confuse the two terms with each 

other, as they do not have the same meaning. 

8. A new design point is calculated with Equation 2.51 and 2.52 for n-1 standardised and 

original basic variables. 

 𝑢𝑖
∗ =

𝑥𝑖
∗ − 𝜇𝑋𝑖

𝑒

𝜎𝑋𝑖

𝑒  (2.47) 

 𝐷𝑖 =
𝜕𝑍

𝜕𝑈𝑖
=

𝜕𝑍

𝜕𝑋𝑖

𝜕𝑋𝑖

𝑈𝑖
=

𝜕𝑍

𝜕𝑋𝑖
𝜎𝑋𝑖

𝑒  (2.48) 

 𝛽 = −
{𝐷}𝑇{𝑢∗}

√{𝐷}𝑇{𝐷}
 (2.49) 

 {𝑎} =
{𝐷}

√{𝐷}𝑇{𝐷}
 (2.50) 
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9. The design point of the n-th basic variable is determined from the limit state function 

Z(x*) = 0. 

10. For the iteration process, steps 3 to 9 are repeated until the reliability index β and the 

design point x* reach the desired degree of accuracy. 

 

2.5.5 Semi-Probabilistic Design Concept 

Various simplifications are made in order to practically apply reliability concepts in operational 

design codes. The semi-probabilistic method, also called the design value method, serves as an 

important step between probabilistic design methods and the partial factor method (Holický et 

al., 2015).  

The design value method is based on the fundamental principle that the codified design load 

effect (ed) should not exceed the codified design resistance (rd). The design values are 

deterministic, and the structure is deemed reliable when the condition in Equation 2.53 is 

satisfied. Generally, the design load effect should account for the design values of loads, 

geometric properties and model uncertainties. The design resistance should consider the design 

values of material properties, geometric properties and model uncertainties. Model uncertainty 

is a significant variable, as it accounts for the uncertainty associated with idealising or 

approximating the physical behaviour of a structure with a mathematical model (Faber, 2009).  

In design, the overall reliability level, described by the reliability index β, can be split into the 

resistance part and load effect part (CEN, 2002). The resistance part is described by the 

resistance index βR = αRβ, where αR is the sensitivity factor from FORM. Similarly, the load 

effect index is given as βE = αEβ, where αE is the FORM sensitivity factor for the load effect 

variable. The expressions for βR and βE are derived from Equation 2.51 in the FORM-analysis. 

 𝑢𝑖
∗ = 𝛼𝑖𝛽 (2.51) 

 𝑥𝑖
∗ = 𝜇𝑋𝑖

𝑒 − 𝑢𝑖
∗𝜎𝑋𝑖

𝑒  (2.52) 

 𝑒𝑑 < 𝑟𝑑 (2.53) 
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The design values, rd and ed, can be obtained from Equation 2.54 and 2.55, where FU(u) denotes 

the probability distribution function of a standardised normal distribution. Here, β describes a 

target reliability index, specified by the design code, for which the structure is deemed reliable. 

The sensitivity factors, αR and αE, should satisfy the condition |α| ≤ 1. Moreover, αR is always 

positive, while αE is negative for unfavourable load effects. The Eurocode, EN 1990, 

recommends αR = 0.8 and αE = -0.7 for dominant variables, i.e. variables that are considered 

the most significant for the structure. 

Depending on the probabilistic models describing R and E, Equation 2.56 and 2.57 can be used 

to calculate the design values rd and ed. Here, the design values are fractiles corresponding to 

the probabilities obtained in Equation 2.54 and 2.55. FR(x) and FE(x) denote the probabilistic 

distribution functions for R and E. 

According to the partial factor method, the design values for the basic variables (xd) are 

described in terms of a characteristic value (xk) and a partial factor (γ). The characteristic value 

is specified based on a prescribed probability of exceedance corresponding to a specific 

reference period. The characteristic value is then multiplied or divided by a partial factor to 

obtain the design value needed to secure the desired reliability level for the structure. A partial 

factor accounts for model uncertainty and variability of the basic variable. Equation 2.58 and 

2.59 show the resistance (γR) and load effect (γE) partial factors.  

 𝑃(𝑅 ≤ 𝑟𝑑) = 𝐹𝑈(−𝛼𝑅𝛽) = 𝐹𝑈(𝛽𝑅) (2.54) 

 𝑃(𝐸 > 𝑒𝑑) = 𝐹𝑈(+𝛼𝐸𝛽) = 𝐹𝑈(𝛽𝐸) (2.55) 

 𝑃(𝑅 ≤ 𝑟𝑑) = 𝐹𝑅(𝑟𝑑) (2.56) 

 𝑃(𝐸 > 𝑒𝑑) = 1 −  𝑃(𝐸 ≤ 𝑒𝑑) = 1 − 𝐹𝐸(𝑒𝑑) (2.57) 
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Equation 2.54 to 2.57 show how the codified design values for the resistance and load effect 

can be found when a target reliability index is specified. These equations can also be used to 

verify the reliability performance provided by the design code. Probabilistic descriptions, FR(x) 

and FE(x), for the variables R and E can be derived from actual data. With the codified design 

values (rd and ed) known, the probability expressions P(R ≤ rd) and P(E > ed) can be found. 

Assuming αR = 0.8 and αE = -0.7, the actual reliability index β can be estimated with Equation 

2.54 or 2.55. As a result, the actual reliability index can then be compared to the target 

reliability index to measure the reliability performance of the structure. 

 

2.5.6 Target Reliability Levels 

According to ISO 2394 (2015), the target reliability index is primarily concerned with the 

consequences of failure and the relative cost of safety measures. The properties of the basic 

variables are related to a reference period, and so the reliability index also corresponds to a 

reference period. Holický (2009) states that the reference period may or may not coincide with 

the design working life, and defines the design working life as follows: The design working 

life is the assumed period for which the structure needs to fulfil its purpose, allowing scheduled 

maintenance without substantial repairs. For example, the reliability of a structure with an 

intended design working life of a 100 years may be verified with data related to a 50-year 

reference period. 

The reliability performance of a structure is usually assessed by comparing the determined 

reliability index (β) with the target reliability index (βt). For optimum design, it is required that 

the structure is designed in such a way that the determined reliability index approximates the 

target reliability index.  

EN 1990 (CEN, 2002) specify three reliability classes to categorise the target reliability indices 

for the different limit states. The reliability classes include RC3, RC2 and RC1. From RC3 to 

RC1, the consequences for loss of human life or economic, social or environmental 

 𝛾𝑅 =
𝑟𝑘

𝑟𝑑
 (2.58) 

 𝛾𝐸 =
𝑒𝑘

𝑒𝑑
 (2.59) 
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consequences range from high to low. The target reliability indices (βt) for ULS are summarised 

in Table 2.2. EN 1990 is based on a default target reliability index of 3.8 for a 50-year reference 

period (CEN, 2002). This target value corresponds to the reliability class RC2 with medium 

consequences of failure. For EN 1990, the target reliability index can be interpreted as the 

reliability level to be reached on average. 

 

Table 2.2: Reliability classes and recommended target reliability indices (βt) for ULS (CEN, 2002). 

Reliability class 
Target reliability index (βt) 

1-year reference period 50-year reference period 

RC3 5.2 4.3 

RC2 4.7 3.8 

RC1 4.2 3.3 

 

ISO 2394 (2015) provides target reliability indices based on the relative cost of safety measures 

and consequences of failure. Table 2.3 summarises the target reliability indices valid for the 

ultimate, fatigue and serviceability limit states. Similar to Table 2.2, target reliability indices βt 

= 3.1, βt = 3.8 or βt = 4.3 may be considered for ULS. 

 

Table 2.3: Target reliability indices (βt) for life time (ISO 2394, 2015). 

Relative cost of safety measures 
Consequences of failure 

Small Some Moderate Great 

High 0 1.5 2.3 3.1 

Moderate 1.3 2.3 3.1 3.8 

Low 2.3 3.1 3.8 4.3 

 

SANS 10160 (2019) is the South African National Standard for buildings and industrial 

structures. It specifies βt = 3.0 for a 50-year reference period. This target value corresponds to 

the same class of structures considered in EN 1990 and ISO 2394 when βt = 3.8. Here, the 

target value of 3.0 is interpreted as a constraint, which represents the minimum β that may be 

obtained (Retief, Dunaiski and eds., 2009). 
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3 Roosboom Case Study 

3.1  Introduction 

This chapter investigates the traffic loading on the National Route 3 (N3) Toll Road between 

Durban and Johannesburg. It entails a reliability analysis based on the observed traffic load 

effects on the N3 and the design traffic load model provided in Technical Methods for 

Highways 7 (TMH-7) (CSRA, 1981). The investigation aims to determine the reliability 

performance of a bridge designed according to TMH-7 and loaded with actual traffic loads. 

More specifically, the focus is on the performance of TMH-7’s traffic load model for normal 

traffic conditions, i.e. NA loading. 

The case study makes use of traffic load effects derived from Weigh-in-Motion (WIM) data 

collected at Roosboom station situated on the N3. The road is made up of four traffic lanes, 

from which WIM data is measured for the slow lane (outer traffic lane) in both directions. The 

N3 is known to be a heavy freight route connecting Durban’s port to Gauteng, which makes it 

appropriate for this study. Another favourable consideration of Roosboom station, is that it has 

been operational since November 2000 and delivers good quality WIM measurements for the 

slow lanes (De Wet, 2010a). Thus, an extensive database is available for providing a good 

representation of the traffic conditions on the N3. 

Seven consecutive years of WIM data from 2010 to 2016 were used in this case study to 

represent the slow lane traffic in the northbound direction. The traffic load effects were 

obtained from a previous study (Van der Spuy and Lenner, 2018). Furthermore, the reliability 

analysis was based only on the traffic load effects on the bridge and thus ignored the bridge 

resistance and dead loads. The investigation considered span lengths ranging from 5 to 50 

metres to find preliminary results for the reliability performance of NA loading in TMH-7.  

The phase of the research reported in this chapter was presented at the 7th International 

Conference on Structural Engineering, Mechanics and Computation (SEMC) and published in 

its proceedings (Basson and Lenner, 2019). 

 

3.2  Methodology 

The main objective of this case study was to carry out a reliability analysis based only on the 

traffic load effects. The case study commenced by selecting a statistical approach to assess the 
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extreme traffic load effects. Statistical characteristics were then obtained to describe the 

extreme load effects and to identify applicable models to represent the data set. The maximum 

likelihood estimation (MLE) method enabled the estimation of the model parameters for the 

selected models, while goodness-of-fit tests verified the credibility of the selection. These tests 

entailed diagnostic plots and hypothesis testing. Furthermore, the representative extreme load 

effect distribution was statistically projected to obtain the maximum load effect distribution 

related to a 50-year reference period. This was done in order to compare the results from the 

reliability analysis to target reliability indices that correspond to a 50-year period. Based on the 

statistical projection, a single model was chosen from the applicable models to represent the 

extreme load effects for the reliability analysis. 

The limit state function was formulated to describe the failure mode, i.e. when the extreme 

traffic load effects exceed the design load effect. Different design scenarios were defined and 

the First Order Reliability Method (FORM) was used to conduct the reliability analysis. The 

results provided reliability indices that correspond to a 50-year reference period and measured 

the reliability level for each span length. A comparison between the obtained reliability indices 

and target values from existing standards, allows for an interpretation of the reliability 

performance of NA loading in TMH-7.  

 

3.3  Calculation and Assessment of Traffic Load Effects 

3.3.1  Overview of Traffic Load Effect Calculation 

In the derivation of the traffic load effects, Van der Spuy and Lenner (2018) first cleaned the 

WIM data using Golem. Golem is a technique developed by a South African transportation 

engineer, M. Slavik, to address errors in WIM data. The data was then post-calibrated using 

the Truck Tractor method (De Wet, 2010a, 2010b). Both methods are locally developed and 

applicable to South African WIM data. 

With the help of WIM data characteristics such as vehicle and axle weight, axle spacing, speed, 

date and timestamp, the traffic load effects on a bridge can be derived. The use of influence 

lines together with the moving load analysis is the most applicable approach in finding the 

traffic load effects on variable span lengths (Van der Spuy and Lenner, 2019). The approach 

allows for maximum traffic load effects to be produced by a single heavy vehicle or multiple 

heavy vehicles travelling close to each other in the same lane. In this way, a better 
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representation of the extreme load effects on the bridge are provided, especially for longer span 

lengths.  

In the derivation of the traffic load effects, it was difficult to make a distinction between 

standard trucks, illegally overloaded trucks and permit trucks. Therefore, the data set of traffic 

load effects account for a mixture of loading events, which means that not all the load effects 

are identically distributed. This is recognised in Section 1.5 as a limitation for the study.  

The procedure for the moving load analysis is explained as follows. The speed and timestamp 

are used to find the distance between vehicles crossing the bridge. The vehicles, presented as 

axle weights and axle spacings, are then positioned in a long convoy in the appropriate order. 

Throughout the analysis, the speed of the vehicles is assumed to remain constant. The convoy 

is then moved over a bridge and the resultant load effects are measured. Van der Spuy and 

Lenner (2018) moved the convoy over a range of span lengths in increments of 0.444 m, which 

corresponds to 0.02 s at a speed of 80 km/h. At each time step, the bending moment at midspan 

was measured and the maximum load effect per day was recorded. 

 

3.3.2  Statistical Approach in Assessing Extreme Traffic Load Effects 

The literature review in Section 2.4.2 reveals that the statistical approaches in assessing 

extreme traffic load effects are quite diverse, and that the approach may be chosen subjectively 

according to the author’s discretion. For this case study the block maxima method was chosen, 

as it is a well-established method for assessing traffic load effects (refer to Section 2.4.2). By 

taking a large enough block period, dependencies between loading events are deemed to 

disappear. After assessing the traffic load effects for a block size of a day, a week and a month, 

it was decided to consider the maximum traffic load effect per month, i.e. monthly maxima. 

The observation period of seven years was long enough to extract a large enough sample of 

monthly maxima from the measured traffic load effects. By choosing monthly maxima, the 

decision to choose what percentage of the traffic load effects are applicable to the right tail, is 

avoided.  

The monthly maxima approach is similar to fitting a distribution to the right tail of daily 

maxima, as it limits the data set to critical extreme load effects. By choosing monthly maxima, 

instead of daily and weekly maxima, temporal variations in load effects (e.g. caused by 

weekends and holidays) are deemed to disappear. Thus, the less critical loading events are 

ignored, and the range of loading event types considered, are reduced. A single distribution is 
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deemed adequate to represent the extreme traffic load effects (O’Brien et al., 2015). Thus, for 

this study a single distribution was fitted to the monthly maxima in representing the extreme 

load effects. The monthly maxima were assumed independent and identically distributed (iid), 

which is typically found to be an underlying assumption in literature (O’Brien et al., 2015). 

The assumption of iid is often made with the purpose of simplifying arguments used in 

statistical inference. The assumption also serves as a prerequisite for important theorems, such 

as the Central Limit Theorem and the Extreme Value Theorem (Coles, 2001).  

The traffic load effect distribution can be raised to an appropriate power to obtain the maximum 

load effect distribution for a specific reference period (refer to Section 3.4.5). The power is 

equal to the number of block periods that occur in the reference period. As the block period of 

a month is larger than a block period of a day or week, the monthly maxima distribution will 

be raised to a smaller power than when daily or weekly maxima were to be used. A smaller 

power is desirable, as even small discrepancies in the data will lead to large discrepancies when 

raised to a high power. Thus, the simplifying assumption of iid has less of an effect on the 

estimated maximum load effect distribution when monthly maxima are used.  

 

3.4  Probabilistic Modelling of Traffic Load Effects 

3.4.1 Statistical Characteristics of Monthly Maxima 

The statistical characteristics of the monthly maxima were found in order to determine 

applicable probabilistic models to represent the data. The sample characteristics of the monthly 

maxima data set can be described by the moment characteristics, which are unbiased point 

estimates of the population parameters (Holický, 2009). The moment characteristics primarily 

include the sample mean, variance and skewness, where the square root of the variance 

provides the standard deviation. Equation 2.13, 2.14 and 2.15 in Section 2.3.1 were used to 

determine the moment characteristics. In addition, the coefficient of variation (COV), 

describing the ratio between the standard deviation and mean, was also determined. 

The change in sample characteristics from daily maxima and weekly maxima to monthly 

maxima was assessed. The change in sample mean, COV and skewness are illustrated in Figure 

3.1. The graphs show that as the block period increases, the mean value increases, while the 

COV and skewness decrease. The mean value increases as the data set is limited to critical 

extreme load effects. Furthermore, the COV and skewness decrease as the range of loading 

event types are reduced. 
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Figure 3.1: Sample mean (top), sample COV (middle) and sample skewness (bottom) for daily, weekly and 

monthly maxima. 
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The sample characteristics of the monthly maxima of each span length are summarised in Table 

3.1. A maximum value of 0.101 is obtained for the COV. The COV is an indication that the 

monthly maxima have a narrow distribution shape and that most of the values are located close 

to the mean. The skewness for all span lengths are less than 1, with a maximum value of 0.8. 

The skewness is positive for all span lengths except for a 15 m span. A positive value indicates 

a right skewness (i.e. a right tail), where a number of larger load effects occur further away 

from the central part of the distribution. The opposite is true for a negative skewness, where 

the left tail of the distribution is longer, meaning that a number of smaller load effects occur 

further away from the central part of the distribution. The skewness for the 10 m and 15 m 

spans is close to zero, which indicates a distribution that approaches a normal distribution. 

 

Table 3.1: Sample characteristics of monthly maxima. 

Span length (m) Mean (kNm) Standard deviation (kNm) COV Skewness 

5 302.0 23.0 0.076 0.476 

10 884.8 89.0 0.101 0.103 

15 1504.8 151.4 0.101 -0.099 

20 2186.0 215.5 0.099 0.351 

25 2968.0 281.1 0.095 0.800 

30 3914.4 352.0 0.090 0.762 

35 4969.6 427.0 0.086 0.653 

40 6069.9 515.7 0.085 0.555 

45 7182.6 617.0 0.086 0.496 

50 8310.9 716.2 0.086 0.481 

 

3.4.2 Selection of Applicable Models 

There are discrepancies as to which distribution type should be used to represent the extreme 

traffic load effects. The different approaches vary from fitting a normal or lognormal 

distribution to fitting extreme value distributions, such as the generalised extreme value (GEV) 

family (refer to Section 2.4.2). The extreme value distributions can be statistically justified for 

dealing with extreme data (Coles, 2001). Nevertheless, it is recommended to explore a wider 

range of distributions when considering actual data, as other distributions may be more suitable 

in representing the site-specific data. With this in mind, the following procedure was used to 

select applicable models for the monthly maxima. 
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An approach developed by Holický (2013) together with the sample characteristics of the 

monthly maxima, were considered in finding applicable models to represent the monthly 

maxima. It utilises the COV and skewness of a sample to find an appropriate model to represent 

the data (Holický, 2013). The originally considered distributions include the normal, two-

parameter lognormal, three-parameter lognormal, beta, gamma and Gumbel distribution. The 

approach was amended to also include the GEV family of distributions for maxima, namely 

the Gumbel, Fréchet and Weibull distribution.  

The modified approach adopted from Holický (2013) is illustrated in Figure 3.2, where the 

COV is denoted by V. For each span length, the skewness and COV from the sample 

characteristics were used to plot points on the diagram in Figure 3.2. Most of the points are 

located above the two-parameter lognormal line, which suggests that the three-parameter 

lognormal (LN3) distribution or Weibull distribution (for maxima) is appropriate to model the 

monthly maxima. The generalised extreme value (GEV) distribution can be used to represent 

the Weibull distribution, as it corresponds to the Weibull distribution when the skewness is less 

than 1.14. Also, that is when the shape parameter of the GEV distribution is less than zero. See 

Chapter 2 Section 2.3.2 for a detailed discussion of the LN3 distribution and GEV distribution.  

 

Figure 3.2: A diagram where the relation between skewness and coefficient of variation is used to find 

applicable models to represent the monthly maxima for each span length (Holický, 2013). 
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Both the LN3 distribution and GEV distribution are asymmetrical and have three model 

parameters. Both models are flexible in allowing for positive or negative skewness’s and can 

thus cater for different sample characteristics obtained from the different span lengths. As a 

result, the LN3 distribution and GEV distribution were further investigated to decide on an 

appropriate model.  

 

3.4.3 Estimation of Model Parameters 

When working with block maxima, it is widely accepted and deemed reliable to use MLE in 

estimating unknown model parameters for a distribution fitted to the data set (Ferreira and De 

Haan, 2013). Thus, MLE was used in this study to estimate the values of the model parameters 

that best describe the monthly maxima. It does so by maximising the likelihood function, or 

the equivalent log-likelihood function with respect to the model parameters (Castillo et al., 

2005). Consequently, the likelihood function obtains parameter estimates which maximise the 

probability of obtaining the observed maxima (Coles, 2001). In doing so, the agreement 

between the chosen model and the observed monthly maxima is optimised. Estimates of the 

model parameters are called maximum likelihood estimators (Coles, 2001).  

In Equation 3.1 and 3.2, L(θ) denotes the likelihood function, whereas l(θ) denotes the log-

likelihood function. f(xi; θ) represents the probability density function of the selected model, θ 

denotes the model parameter, n is the number of observations in the sample, and xi denotes 

independent realisations of the random variable X, where i ranges from 1 to n. 

 

𝐿(𝜃) = ∏ 𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 (3.1) 

 

𝑙(𝜃) =  𝑙𝑜𝑔 𝐿(𝜃) = ∑ 𝑙𝑜𝑔 𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 (3.2) 

The GEV distribution has three model parameters, namely, the location, scale and shape 

parameters. The LN3 distribution has a different set of model parameters, namely, the mean, 

standard deviation and skewness. The maximum likelihood estimators for the GEV distribution 

were obtained in R, a statistical software. For the LN3 distribution, a mathematical software 

called Mathcad (PTC, 2006) was used to numerically obtain the estimators (refer to Appendix 
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A for the Mathcad sheet). The maximum likelihood estimators for both distribution types are 

summarised in Table 3.2.  

 

Table 3.2: Maximum likelihood estimates of the model parameters. 

Span length 

(m) 

GEV distribution LN3 distribution 

Location 

(kNm) 
Scale (kNm) Shape Mean (kNm) 

Standard 

deviation 

(kNm) 

Skewness 

5 292.5 20.4 -0.128 302.0 23.0 0.622 

10 852.9 86.3 -0.268 884.8 88.6 0.221 

15 1458.1 154.9 -0.372 1504.8 150.8 -0.224 

20 2097.6 194.5 -0.149 2186.2 217.7 0.645 

25 2845.3 235.1 -0.066 2968.0 279.1 0.792 

30 3762.9 296.9 -0.075 3914.4 349.6 0.771 

35 4784.3 360.1 -0.073 4969.9 429.8 0.860 

40 5838.5 437.7 -0.077 6070.7 525.8 0.921 

45 6917.8 531.4 -0.096 7183.7 631.3 0.910 

50 8006.3 621.7 -0.106 8311.8 728.4 0.838 

 

To compare the moment parameters of the two distribution types, the mean, standard deviation 

and skewness for the GEV distribution were derived from the location, scale and shape 

parameters. Similar to using the moment characteristics to obtain the sample properties, the 

moment parameters were determined to describe the population properties of the GEV 

distribution. The difference is that the sample properties are obtained directly from the sample 

values, while the moment parameters are obtained from the probability distribution and its 

model parameters.  

The moment parameters include the population mean, variance and skewness, where the 

standard deviation is equal to the square root of the variance. Equation 2.10, 2.11 and 2.12 in 

Section 2.3.1 were used to determine these parameters for the GEV distribution. The monthly 

maxima represent the random variable X, while the probability density function is denoted by 

f(x). 

A summary of the statistical parameters describing the GEV and LN3 distributions is given in 

Table 3.3. It includes the mean, standard deviation, COV and skewness of the monthly maxima 
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described by each distribution. The comparison of the distributions reveals that relatively 

similar values are obtained for the statistical parameters. 

 

Table 3.3: Comparison of statistical parameters for monthly maxima. 

Span 

length 

(m) 

GEV distribution LN3 distribution 

Mean 

(kNm) 

Standard 

deviation 

(kNm) 

COV Skewness 
Mean 

(kNm) 

Standard 

deviation 

(kNm) 

COV Skewness 

5 301.9 22.7 0.075 0.522 302.0 23.0 0.076 0.622 

10 884.2 86.8 0.098 0.029 884.8 88.6 0.100 0.221 

15 1504.2 148.4 0.099 -0.281 1504.8 150.8 0.100 -0.224 

20 2184.6 212.9 0.097 0.440 2186.2 217.7 0.100 0.645 

25 2966.5 278.7 0.094 0.790 2968.0 279.1 0.094 0.792 

30 3913.7 348.7 0.089 0.750 3914.4 349.6 0.089 0.771 

35 4967.7 423.6 0.085 0.758 4969.9 429.8 0.086 0.860 

40 6060.1 512.9 0.085 0.741 6070.7 525.8 0.087 0.921 

45 7178.2 610.7 0.085 0.655 7183.7 631.3 0.088 0.910 

50 8305.6 707.3 0.085 0.612 8311.8 728.4 0.088 0.838 

 

3.4.4 Assessment of Selected Models 

Goodness-of-fit tests were used to assess the quality of both the LN3 and GEV distribution in 

representing the monthly maxima. The tests consist of diagnostic plots and hypothesis testing, 

whereas the former is the primary focus. R software (R Core Team, 2018) was used to perform 

the goodness-of-fit tests for both distribution types and the R code is provided in Appendix B. 

The assessment of the diagnostic plots also allows for the investigation of different block 

periods to describe the extreme load effects. Thus, diagnostic plots for daily, weekly and 

monthly maxima are presented in Section 3.4.4.3, to verify the use of monthly maxima in 

representing the extreme traffic load effects.  

 

3.4.4.1 Diagnostic Plots 

Diagnostic plots are used to assess the goodness-of-fit of models graphically. The most 

significant are the Q-Q plot (Quantile plot) and P-P plot (Probability plot), called probability 

plots. The Q-Q plot compares the empirical quantiles from the data set to the corresponding 
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theoretical quantiles obtained from the selected distribution (Coles, 2001; Castillo et al., 2005). 

It is also more sensitive to deviations in the tails, which is of importance in this study (Fisher, 

1983). The P-P plot compares the cumulative probabilities of the empirical and theoretical 

quantiles and are more sensitive to the centre values (Fisher, 1983).  

The LN3 distribution is analogous to the two-parameter lognormal (LN) distribution. Both have 

the same skewness and standard deviation, but different mean values (Sangal and Biswas, 

1970). This is because the LN distribution has a lower bound at zero, while the LN3 distribution 

can have a lower or upper bound of any value. Hence, the LN3 distribution can easily be 

assessed by subtracting the bound value from each data point and by fitting a LN distribution 

to the shifted data (NIST/SEMATECH e-Handbook of Statistical Methods). This simplified 

assessment approach was followed and the diagnostic plots were obtained using the fitdistrplus 

package (Delignette-Muller and Dutang, 2015) in R. It includes the probability plots, a density 

plot and cumulative distribution function (CDF) plot. The density plot is a plot where the 

density distribution function is fitted to the frequency histogram of the monthly maxima. The 

CDF plot compares the theoretical and empirical cumulative distribution functions. Moreover, 

it obtains the probability of non-exceedance ranging from 0 to 1. 

The GEV distribution diagnostic plots were obtained using the ismev package in R (Heffernan 

and Stephenson, 2018). It includes the probability plots, density plot and the return level plot. 

The return level plot indicates which distribution type is represented by the GEV distribution. 

When the plot is concave, the right tail has no finite bound and the shape parameter exceeds 

zero (Coles, 2001). This is when the GEV distribution represents a Fréchet distribution. When 

the plot is a straight line, the shape parameter is zero and the Gumbel distribution is represented. 

Lastly, when the plot is convex, the distribution has an upper bound and represents a Weibull 

distribution for maxima (Coles, 2001).  

For illustrative purposes, the four diagnostic plots for the LN3 and GEV distribution are shown 

in Figure 3.3 and Figure 3.4 for a 5 m span. The data is measured in kNm. The diagnostic plots 

for all span lengths can be found in Appendix C for the LN3 and GEV distribution. 
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Figure 3.3: Diagnostic plots for the monthly maxima of a 5 m span represented by the LN3 distribution. 

 

Visual inspection of the diagnostic plots indicates that both distributions fit the data well. For 

the probability plots, the data forms an approximate linear pattern for all span lengths. The 

validity of the fitted models are further supported by the corresponding probability density 

functions that fit the histograms of the data quite well. The CDF plots for the LN3 distribution 

give similar results to the density plots. The return level plots for the GEV distribution show 

that the shape parameter is negative but varies in value. 

 

 

Stellenbosch University https://scholar.sun.ac.za



Roosboom Case Study  57 

Figure 3.4: Diagnostic plots for the monthly maxima of a 5 m span represented by the GEV distribution. 

 

The normal distribution can also be used to confirm that the monthly maxima can be 

lognormally distributed. It is well known that a random variable X has a lognormal distribution 

if the transformed variable Y, as seen in Equation 3.3, is normally distributed (Holický, 2013). 

The LN3 distribution bound is denoted by x0. Equation 3.3 was used to transform the monthly 

maxima and to fit a normal distribution to the transformed data using the fitdistrplus package 

in R (Delignette-Muller and Dutang, 2015).  

 

𝑌 =  𝑙𝑛(𝑋 −  𝑥𝑜) 

 

(3.3) 
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The diagnostic plots for the normal distribution based on the transformed data, are provided in 

Appendix C. For illustrative purposes, the diagnostic plots for a 5 m span are shown in Figure 

3.5.  

 

Figure 3.5: Diagnostic plots of the normal distribution fitted to the monthly maxima transformed in accordance 

with Equation 3.3. 

 

The probability plots in Figure 3.5 show that the transformed monthly maxima form a linear 

pattern. The density plot and CDF plot also show that the normal distribution is a good fit. This 

confirms that the monthly maxima are lognormally distributed and can be well-represented by 

the LN3 distribution. 
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3.4.4.2 Goodness-of-fit Statistics 

Goodness-of-fit statistics were used as a numerical measure to substantiate the results obtained 

from the graphical methods. It was decided to use the modified Anderson-Darling test. The 

advantage of this test is that it gives more weight to the tails of the distribution, in comparison 

to other EDF (empirical distribution function) tests (Stephens, 1979).  

The modified Anderson-Darling test produces two results, namely the A-statistic and p-value. 

The p-value determines whether the data follows the selected distribution or not. It is compared 

to a chosen significance level. When the p-value exceeds the significance level, the null 

hypothesis is accepted, and it is concluded that the data can come from the fitted distribution 

(Stephens, 1979). The opposite is true for a p-value less than or equal to the significance level. 

A value of 0.05 is commonly accepted for the significance level (Fisher, 2006), which simply 

means that there is a 5% risk that the null hypothesis is rejected, while it should be accepted 

(Minitab ExpressTM Support, 2019). 

The modified Anderson-Darling test for the transformed data fitted with a normal distribution, 

was performed in R using the fitdistrplus package (Delignette-Muller and Dutang, 2015). The 

resultant p-values are summarised in Table 3.4. The results show that the p-value for each span 

length exceeds the significance level of 0.05. The smallest p-value of 0.063 is seen for a 20 m 

span, while a maximum value of 0.951 is seen for a 30 m span. The results confirm that the 

transformed data can be represented by a normal distribution and that the monthly maxima can 

be lognormally distributed.  

The modified Anderson-Darling test for the GEV distribution was performed using the gnFit 

package in R (Saeb, 2018). The p-values for the GEV distribution are provided in Table 3.5. 

The resultant p-values are relatively similar to those in Table 3.4. The p-values for all span 

lengths exceed the value of 0.05. This concludes that the monthly maxima data can also be 

well-represented by the GEV distribution. 

 

Table 3.4: Anderson-Darling p-values for the normal distribution fitted to the monthly maxima transformed in 

accordance with Equation 3.3.  

 

Span length (m) 5 10 15 20 25 30 35 40 45 50 

p-value 0.724 0.273 0.150 0.063 0.581 0.951 0.929 0.421 0.349 0.585 
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Table 3.5: Anderson-Darling p-values for the GEV distribution fitted to the monthly maxima. 

 

3.4.4.3 Comparison of Block Periods 

A Q-Q plot is a valuable tool in assessing the goodness-of-fit of a distribution to the lower and 

upper tails of the data set. In this study it was used to show that by fitting a distribution to a 

smaller block period, such as a day or a week, less critical load effects will draw attention away 

from the right tail.  

The procedure used to obtain the Q-Q plots for the daily and weekly maxima agrees with what 

was done for the monthly maxima. The procedure entails estimating the model parameters for 

the LN3 and GEV distributions using MLE. For the LN3 distribution the data is transformed, 

and a LN distribution is fitted to the shifted data in R. Concurrently, the data is also fitted with 

a GEV distribution in R. The Q-Q plots for both distributions revealed that the quality of the 

fit to the right tail improved as the block period became larger. For illustrative purposes, the 

Q-Q plots for a 10 m span fitted with a LN3 distribution are shown in Figure 3.6.  

Figure 3.6: Q-Q plots for a 10 m span fitted with a LN3 distribution. Daily maxima (top left), weekly maxima 

(top right) and monthly maxima (bottom). 

Span length (m) 5 10 15 20 25 30 35 40 45 50 

p-value 0.751 0.450 0.331 0.091 0.583 0.956 0.916 0.418 0.385 0.603 
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From Figure 3.6 it is evident that a poor distribution fit is seen for daily maxima and a more 

accurate fit is seen for monthly maxima. The results verify that a block period of a month is 

more appropriate to use in representing extreme load effects. 

 

3.4.5 50-year Maximum Load Effect Distribution 

The maximum load effect distribution can be found for a 50 year reference period by 

statistically projecting the monthly maxima distribution using the theorem adopted from 

(Coles, 2001). A 50-year reference period was selected, in order to compare the obtained 

reliability indices to target reliability indices from existing standards, which typically 

correspond to a 50-year period.  

The theorem is formulated in Equation 3.4 and 3.5. It assumes that the random variables X1 to 

Xn are iid, where n is the number of random variables in the observation period (Coles, 2001). 

F(x) is the probability distribution function describing X, where x is any realisation of X. The 

random variable Y represents the maximum value of X per observation period. For this case 

study, n is the number of monthly maxima obtained in a 50-year period and Y represents the 

maximum load effects for a block period of 50 years, i.e. the 50-year maxima. The distribution 

function Fn(x) of the random variable Y can be obtained by raising the original distribution 

function F(x) to the n-th power. Thus, for this case study n equals 600 (12 times 50). 

 

𝑌 =  𝑚𝑎𝑥{𝑋1, 𝑋2, . . . , 𝑋𝑛} 

 

(3.4)  

 

 𝐹𝑛(𝑥) =  𝑃(𝑌 ≤  𝑥)  =  𝑃(𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥, . . . , 𝑋𝑛 ≤ 𝑥) 

= 𝑃(𝑋1 ≤ 𝑥) × 𝑃(𝑋2 ≤ 𝑥) × … × 𝑃(𝑋𝑛 ≤ 𝑥) 

= [𝐹(𝑥)]𝑛 

 

 

(3.5)  

 

Equation 3.5 was used in Mathcad to obtain the 50-year maximum load effect distribution 

(F600(x)) for both the LN3 distribution and the GEV distribution. Hereafter, the 50-year 

maximum load effect distribution is denoted by F50 years(x). The probability density function for 

the 50-year maximum load effects, denoted by f50 years(x), was obtained from the first derivative 

of F50 years(x). The derivation is formulated in Equation 3.6, as described in (Castillo et al., 

2005). 
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𝑓𝑛(𝑥)  =  
𝑑

𝑑𝑥
 𝐹𝑛(𝑥) = 𝑛 𝑓(𝑥) [𝐹(𝑥)]𝑛−1 

 

(3.6)  

 

The mean, standard deviation, COV and skewness for the 50-year maximum load effect 

distribution were obtained from the moment parameters described in Equation 2.10, 2.11 and 

2.12 in Section 2.3.1. When the monthly maxima are represented by the GEV distribution, the 

obtained 50-year maximum load effect distribution is also a GEV distribution. This is in 

accordance with Theorem 3.2 in An Introduction to Statistical Modelling of Extreme Values 

(Coles, 2001), as the GEV distribution is max-stable. The moment parameters and COV for 

the 50-year maximum load effect distribution are summarised in Table 3.6. A comparison 

between the monthly maxima distribution and the 50-year maximum load effect distribution, 

shows that the skewness stays the same, while the mean increases and the standard deviation 

and COV decreases.  

On the contrary, when the monthly maxima are represented by a LN3 distribution, the obtained 

50-year maximum load effect distribution may not necessarily also resemble a LN3 

distribution. This is because the LN3 distribution is not max-stable. According to Castillo et 

al. (2005), a lognormal distribution fitted to maximum values converges to a Gumbel 

distribution as the power n, with which it is raised, tends to infinity. By comparing the obtained 

50-year maximum load effect distribution to a LN3 distribution with the same moment 

parameters, it was concluded that the 50-year maximum load effect distribution can still be 

approximated by a LN3 distribution. In other words, the obtained functions, F50 years(x) and f50 

years(x), can be approximated by the cumulative distribution function, FLN3(x), and probability 

density function, fLN3(x), of the LN3 distribution when it has the same moment parameters as 

the 50-year maximum load effect distribution. For illustrative purposes, the comparison of the 

cumulative distribution functions and probability density functions for a 5 m span are shown 

in Figure 3.7 and Figure 3.8, respectively. 

The moment parameters for the 50-year maximum load effect distribution, obtained from the 

LN3 distribution, are summarised in Table 3.6. A comparison of the monthly maxima 

distribution and the 50-year maximum load effect distribution reveals that the mean and right 

skewness increases, while the standard deviation and COV decreases.  
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Table 3.6: Statistical parameters of the 50-year maximum load effect distribution for the GEV distribution and 

LN3 distribution. 

Span 

length 

(m) 

GEV distribution LN3 distribution 

Mean 

(kNm) 

Standard 

deviation 

(kNm) 

COV Skewness 
Mean 

(kNm) 

Standard 

deviation 

(kNm) 

COV Skewness 

5 385.7 10.0 0.026 0.522 396.2 15.7 0.040 1.056 

10 1122.2 15.6 0.014 0.029 1188.5 40.9 0.034 0.865 

15 1839.8 13.7 0.007 -0.281 1924.6 43.1 0.022 0.667 

20 2933.7 82.2 0.028 0.440 3085.8 152.2 0.049 1.067 

25 4151.1 182.6 0.044 0.790 4192.9 222.4 0.053 1.139 

30 5366.0 216.2 0.040 0.750 5435.8 273.5 0.050 1.128 

35 6739.4 265.5 0.039 0.758 6907.5 363.0 0.053 1.172 

40 8187.0 314.1 0.038 0.741 8497.9 467.4 0.055 1.205 

45 9599.8 330.7 0.034 0.655 10085.6 556.1 0.055 1.196 

50 11045.0 358.7 0.032 0.612 11567.6 604.0 0.052 1.161 

 

Figure 3.7: Comparison of 50-year maximum load effect distribution with a LN3 distribution with the same 

moment parameters: cumulative distribution plot for a 5 m span. 
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Figure 3.8: Comparison of 50-year maximum load effect distribution with a LN3 distribution with the same 

moment parameters: probability density plot for a 5 m span. 

 

3.4.6 Concepts on the Reliability Analysis of Traffic Load Effects 

The overall reliability level, described by the reliability index β, can be split into the resistance 

(R) part and load effect (E) part (CEN, 2002). For this case study, the load effect part is of 

interest, where the reliability level is expressed with the load effect index (βE) equal to αEβ. 

The variable αE is a sensitivity factor obtained from FORM, which describes the relative 

importance of the load effects in obtaining β (CEN, 2002).  

For the case study, αE denotes the sensitivity factor for the traffic load effects. It is dependent 

on many factors, such as the load ratio between the traffic load and dead load and the 

probabilistic description of the resistance variables of the bridge, which was not included in 

this case study. Therefore as a simplification, it was decided to use a value of -0.7 

recommended by the Eurocode, EN 1990, to represent αE (CEN, 2002). This value is prescribed 

when traffic load is the leading action. In general, traffic load dominates for short to medium 

span bridges, but as the span length increases the dead load increases in significance. Therefore, 

this value is appropriate for short spans, while it is more conservative for longer spans. 

When only traffic load effects are considered, the reliability analysis of one random variable 

can be considered. The failure mode is then defined as the instance the actual traffic load effects 

exceed the design load effect. The actual traffic load effects are seen as a random variable, 

described by the 50-year maximum load effect distribution. Whereas the design load effect is 
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described by a deterministic value determined from the traffic load model in TMH-7 for NA 

loading.  

According to the design value method, the design load effect can be described as a fractile 

value of the 50-year maximum load effect distribution (F50 years(x)). The probability of failure 

(pf) is then represented by the probability that the design load effect (ed) is exceeded by the 

traffic load effects (E). The pf can be calculated with Equation 3.7. The probability distribution 

function of a standardised normal distribution (FU(x)) relates βE to pf, as seen in Equation 3.8. 

 

𝑝𝑓 = 𝑃(𝐸 > 𝑒𝑑) = 1 − 𝐹50 𝑦𝑒𝑎𝑟𝑠(𝑒𝑑) 

 

(3.7)  

 

 

𝑝𝑓 = 𝐹𝑈(+𝛼𝐸𝛽) = 𝐹𝑈(−0.7𝛽) 

 

(3.8) 

 

3.4.7 Decision on Representative Model for Reliability Analysis 

Concerns were raised regarding the application of the GEV distribution in the reliability 

analysis, which led to the decision to use the LN3 distribution. In the case of the GEV 

distribution, the negative shape parameters imply that the Weibull distribution is fitted to the 

monthly maxima. The Weibull distribution for maxima has an upper bound, i.e. a finite end-

point in the right tail, and its maximum domain of attraction remains a Weibull distribution 

(Castillo et al., 2005). This means that the 50-year maximum load effect distribution obtained 

by the GEV distribution is also described by the Weibull distribution. 

The concern with using the Weibull distribution is that the upper bound remains unchanged 

irrespective of the reference period projected to (Basson and Lenner, 2019). This means that 

the 50-year maximum load effect distribution has the same upper bound as the monthly maxima 

distribution. For illustrative purposes, Figure 3.9 shows how the probability density functions 

for a 15 m and 20 m span are pressed up and shifted towards the vertical upper bound, as it is 

projected to a 50-year reference period.  

When considering the GEV distribution, it was determined that for span lengths of 15, 20 and 

35 to 50 metres, the design load effect exceeds the upper bound and cannot be used as a fractile 

of the distribution function to obtain the probability of failure (see Equation 3.7). Therefore, 

for these span lengths the probability of failure is zero. Moreover, the probability of failure 
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remains zero even if the design value is very close to the upper bound. This is substantiated by 

the condition in Equation 3.9 (Coles, 2001), which is not satisfied by the 50-year maximum 

load effect distribution for the mentioned span lengths, when x is equal to the design load effect. 

In Equation 3.9, x denotes the traffic load effects and λ, δ and κ represent the location, scale 

and shape parameters of the GEV distribution. See Table 3.8 in Section 3.5.2 for a summary 

of the calculated design load effects obtained from TMH-7. 

 

Figure 3.9: Monthly maxima distribution and 50-year maximum load effect distribution for a 15 m span (left) 

and 20 m span (right) fitted with a GEV distribution.  

 

{𝑥 ∶ 1 +  𝜅
(𝑥 − 𝜆)

𝛿
 > 0} 

 

(3.9) 

 

When considering the design load effects from TMH-7 based on one notional lane (see Table 

3.8 in Section 3.5.2), the probability of failure is significantly large for 5 m and 10 m spans, 

whereas it is equal to zero for 15 m and 20 m spans due to the upper bound being less than the 

design values. The large difference in results for the short spans seems unrealistic, and thus 

reinforces the question whether the fixed upper bound is reasonable. 

As a result, it was decided to use the LN3 distribution for the reliability analysis instead of the 

GEV distribution. Mainly because it is questioned whether the monthly maxima upper bound 

for the GEV distribution is still valid for the 50-year reference period. In addition, the LN3 

distribution shows a similar fit to the monthly maxima as the GEV distribution, and the 

unbounded right tail allows for the investigation of the design load effects (Basson and Lenner, 

2019).  
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3.5 Reliability Analysis for Traffic Load Effects 

3.5.1 Formulation of Limit State Function 

For the reliability analysis, only the traffic load effects were considered. As discussed in 

Section 3.4.6, failure is then defined as the instance the traffic load effects (E) exceed the design 

load effect (ed). 

For the final reliability analysis, model uncertainty (θE) related to the traffic load effects must 

be included. It takes account of the uncertainties associated with the selected theoretical model, 

owing to the simplification of actual conditions (Holický, 2009). Emodel represents the traffic 

load effects before θE is included. A multiplicative relationship between θE and Emodel can be 

used to find the traffic load effects (E) after θE is included. This relationship is shown in 

Equation 3.10, followed by the resultant limit state function (Z) in Equation 3.11. Failure occurs 

when Z is negative. 

 

𝐸 =  𝜃𝐸  𝐸𝑚𝑜𝑑𝑒𝑙 

 

(3.10) 

 

 

𝑍 = 𝑒𝑑 − 𝜃𝐸  𝐸𝑚𝑜𝑑𝑒𝑙 

 

(3.11) 

 

The reliability index in this investigation was obtained by means of FORM, implemented in 

the Comrel software package (RCP, 2007). The FORM-analysis utilised the limit state function 

in Equation 3.11 to find the probability of failure (pf) and load effect index (βE) associated with 

the traffic load effects on each span length. The design load effect (ed) is a deterministic value 

provided by TMH-7 for NA loading, while θE and Emodel are random variables. In agreement 

with literature (JCSS, 2001; fib COM3 TG3.1, 2016), θE is represented by a LN distribution 

with a mean of 1.0 and a COV of 0.1. For this case study, Emodel is described by a LN3 

distribution with moment parameters as provided in Table 3.6. Finally, the overall reliability 

index β was obtained for each span length by dividing βE with the sensitivity factor αE equal to 

0.7 (refer to Section 3.4.6). 

 

Stellenbosch University https://scholar.sun.ac.za



Roosboom Case Study  68 

3.5.2 Reliability Results and Discussion for Different Design Scenarios 

Different design scenarios were considered to gain the most insight into the reliability 

performance of TMH-7 for normal traffic conditions, when only the slow lane WIM data is 

available. The four different design scenarios allow for a thorough exploration of the slow lane 

data and extends the investigation to consider narrow span bridges and more typical highway 

bridges. Furthermore, it considers the influence of the number of notional lanes on the design 

and performance of the bridge. Table 3.7 provides an overview of the four design scenarios, 

which include the number of actual traffic lanes on the bridge and the number of notional lanes 

used to design the bridge. 

 

Table 3.7: Overview of design scenarios. 

Design scenario Description 

1 1 traffic lane; 1 notional lane 

2 1 traffic lane; 3 notional lanes 

3 2 traffic lanes; 3 notional lanes 

4 2 traffic lanes; 2 notional lanes 

 

For each design scenario, the design load effects were obtained from the traffic load model in 

TMH-7 Part 2 for NA loading (CSRA, 1981). The traffic load model makes use of a floating 

lane notional lane width, where the number of notional lanes is governed by the carriageway 

width (CSRA, 1981). The design load effects were calculated using the global analysis, as 

described in Chapter 2 Section 2.2.4, thus it describes the total load effects on the bridge. The 

design values account for partial load factors, γfL = 1.5 and γf3 = 1.1, as defined in Section 2.2.5 

of Chapter 2. Furthermore, the dynamic impact factor obtained by the Swiss formula in 

Equation 2.3 of Chapter 2, was removed from the NA loading to obtain the static design load 

effects. The resultant design traffic load effects for the ultimate limit state (ULS) are 

summarised in Table 3.8 for each span length. The design values represent the maximum 

obtained bending moments at midspan when designing for one, two and three notional lanes. 
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Table 3.8: Design traffic load effects (in kNm) for ULS determined from NA loading in TMH-7. 

Span length (m) One notional lane Two notional lanes Three notional lanes 

5 357.5 650.6 915.1 

10 1048.2 1960.0 2811.3 

15 2082.6 3953.1 5742.7 

20 3465.0 6902.2 8895.0 

25 5197.5 9720.0 12546.0 

30 7281.3 12887.8 16661.4 

35 9717.1 16384.9 21215.7 

40 13057.2 20195.2 26189.4 

45 15689.0 24306.0 31566.9 

50 18499.0 28706.8 37335.1 

 

For each span length, the overall reliability index (β) was determined, corresponding to a 50-

year reference period. The results were then compared to target reliability indices (βt) from 

existing standards that correspond to this period. EN 1990 (2002) recommends a βt of 3.8 for 

ULS, while the South African National Standard, SANS 10160 (2019), use a βt of 3.0. The 

following sections describe each design scenario and discuss the corresponding results. 

 

3.5.2.1 Design Scenario 1 

The first design scenario considered the extreme case of using one notional lane to design and 

cater for the traffic load effects of one traffic lane. This case does not typically present itself 

for highway bridges, as most highway bridges consist of two or more traffic lanes. Even when 

only one traffic lane is present on the bridge, the shoulder widths contribute to carriageway 

widths exceeding 4.8 metres, which requires two or more notional lanes for design (CSRA, 

1981; Burrell, Mitchell and Wolhuter, 2002). Nevertheless, theoretically a narrow bridge 

requiring only one notional lane for design can exist and thus requires investigation (CSRA, 

1981). Moreover, this case provides insightful findings on the performance of TMH-7, and 

more specifically the traffic load model for different span lengths. Table 3.8 provides the design 

load effects for one notional lane and Table 3.9 provides the obtained reliability indices (β) for 

each span length.  

The results presented in Table 3.9 show that for short spans ranging from 5 to 25 metres, the 

overall β is less than 3.8, with a probability of failure approaching a hundred percent for 5 m 
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and 10 m spans. This design scenario reveals that a poor reliability performance is seen for 

short, narrow span bridges. It agrees with literature findings that NA loading shows deficiencies 

for short narrow span bridges ranging from 5 to 10 metres (Oosthuizen et al., 1991; Anderson, 

2006).  

Table 3.9 shows that for spans 30 to 50 metres, β is equal to or more than 3.8. Thus, TMH-7 

maintains an adequate reliability level for these span lengths when only traffic load effects are 

considered. The extreme case of using one notional lane also reveals the inherent conservatism 

of NA loading for longer spans, evidently seen in the relatively high β values for 30 to 50 m 

spans. Anderson (2006) found similar results and explains that it is owing to the way NA 

loading was derived for longer spans. The following factors may play a role: the combination 

of idealised vehicles applied to the span and assumptions made regarding overloading and the 

application of a partial load factor.  

To complete the investigation of the design scenario, β was also compared to a target value of 

3.0. Table 3.9 shows that for spans ranging from 5 to 25 metres β is less than 3.0, while for 

spans 30 to 50 metres β exceeds a value of 3.0. 

 

Table 3.9: Overall reliability indices (β) for the first design scenario. 

Span length (m) 5 10 15 20 25 30 35 40 45 50 

Reliability index (β) -1.23 -1.58 1.21 1.65 2.84 3.79 4.29 5.12 5.24 5.62 

 

3.5.2.2 Design Scenario 2 

The second design scenario considered a typical ramp design for a one-lane bridge. A basic 

lane width of 3.7 m was chosen, with a shoulder width of 2.5 m on both sides (Burrell, Mitchell 

& Wolhuter, 2002). The width allows vehicles to pass by a broken-down truck and provides an 

accessible road width while maintenance and repairs are in process. The total carriageway 

width equalled 8.7 m, which resulted in the extreme case of using three notional lanes to cater 

for the traffic load effects of one traffic lane.  

The 50-year maximum load effect distribution was used for the reliability analysis (see Section 

3.4.5), together with the design load effects obtained for three notional lanes (see Table 3.8). 

The obtained β for each span length is given in Table 3.10. As expected, β attains a very high 
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value in comparison to the target values of 3.8 and 3.0, and for most span lengths β exceeds a 

value of 10. Thus, the probability of failure is negligibly small. The results indicate that TMH-

7 is very conservative in this design scenario. Recall that the results are based on global load 

effects on the bridge. The reliability results may differ when considering the load effects 

imposed on a critical member of the bridge.  

 

Table 3.10: Overall reliability indices (β) for the second design scenario. 

Span length (m) 5 10 15 20 25 30 35 40 45 50 

Reliability index (β) 9.68 10.82 15.01 10.55 10.28 10.64 10.35 10.11 10.22 10.70 

 

3.5.2.3 Design Scenario 3 

In consideration of the extreme case presented in the second design scenario, a more realistic 

design would be to allow for future expansion of the one-lane bridge to a two-lane bridge. 

Thus, for the third design scenario, two traffic lanes were fitted on the one-lane bridge 

described in Section 3.5.2.2. The same design load effects were used as for the second design 

scenario (see Table 3.8).  

The WIM data in this case study is limited to a single measured lane, i.e. the slow lane. In order 

to investigate a two-lane bridge, the slow lane data needs to be utilised in such a way as to find 

representative load effects for the adjacent lane. A conservative assumption was made that the 

second lane of loading could be obtained by multiplying the slow lane load effects with a 

multiple lane reduction factor (MLF). The factor reduces the loading in the second lane to 

account for the low probability of adjacent lanes being simultaneously loaded with multiple 

heavy vehicles (Bakht and Mufti, 2015).  

A new method for obtaining MLFs was locally developed by Van der Spuy et al. (2019), which 

proposes a MLF of 0.752 to be used to obtain the traffic load effects in the second traffic lane. 

The derivation of this value is based on WIM data on the National Route 1 (N1) near 

Kilnerpark, and it is deemed applicable to other WIM sites with comparable traffic conditions 

(Van der Spuy et al., 2019). Roosboom and Kilner Park WIM sites are both situated on heavy 

freight routes. Therefore, it is a reasonable assumption to use an MLF of 0.752 in the Roosboom 
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case study. This assumption should be superseded by actual traffic load effects, if the WIM 

data at Roosboom station is extended in the future to include the second traffic lane. 

The sum of the traffic load effects in the two lanes describe the global traffic load effects for 

the two-lane bridge. By using the MLF, the global traffic load effects can be found by 

multiplying the traffic load effects in the slow lane with a factor of 1.752. The monthly maxima 

distribution for the two traffic lanes has the same skewness and COV as the monthly maxima 

distribution obtained in Section 3.4 for one traffic lane. The only difference is that it has a 

larger mean and standard deviation. The same procedure was used as described in Section 3.4.3 

to 3.4.5, where a LN3 distribution was fitted to the monthly maxima for two traffic lanes, and 

projected to obtain the 50-year maximum load effect distribution, which is also represented by 

a LN3 distribution.  

The design load effects for three notional lanes were used in the reliability analysis. The overall 

β values are presented in Table 3.11, which shows that β exceeds the target values of 3.8 and 

3.0 for all span lengths, except for a 5 m span where β is just below 3.8. The results conclude 

that TMH-7 provides a good reliability performance for all spans in this design scenario. The 

reliability indices also seem more reasonable than the extremely high values obtained for the 

second design scenario. 

 

Table 3.11: Overall reliability indices (β) for the third design scenario. 

Span length (m) 5 10 15 20 25 30 35 40 45 50 

Reliability index (β) 3.77 4.16 7.51 6.06 6.22 6.56 6.44 6.34 6.47 6.90 

 

3.5.2.4 Design Scenario 4 

The fourth design scenario aims at investigating a narrow two-lane bridge, which is designed 

with two notional lanes (see Table 3.8). The actual traffic load effects correspond to two lanes 

of WIM data as in the third design scenario.  

The reliability results are presented in Table 3.12. For short spans ranging from 5 to 25 metres, 

the overall β is less than 3.8. Whereas for spans 30 to 50 metres, β is equal to or more than 3.8. 

When comparing β to a target value of 3.0, only spans 5 to 15 metres obtain values smaller 

than 3.0. The trend in the results is similar as for the first design scenario, where a narrow one-
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lane bridge was investigated. The findings indicate that NA loading again does not provide an 

adequate reliability level for short narrow span bridges, but performs satisfactory for longer 

spans.  

 

Table 3.12: Overall reliability indices (β) for the fourth design scenario. 

Span length (m) 5 10 15 20 25 30 35 40 45 50 

Reliability index (β) -0.72 -0.69 2.33 3.24 3.6 3.91 3.87 3.84 3.99 4.37 

 

Table 3.13 provides an overview of the reliability results for the four design scenarios. It 

consists of the reliability indices obtained for each span length. 

 

Table 3.13: Overall reliability indices (β) provided for each design scenario and corresponding to a 50-year 

period. 

Span length (m) Design scenario 1 Design scenario 2 Design scenario 3 Design scenario 4 

5 -1.23 9.68 3.77 -0.72 

10 -1.58 10.82 4.16 -0.69 

15 1.21 15.01 7.51 2.33 

20 1.65 10.55 6.06 3.24 

25 2.84 10.28 6.22 3.60 

30 3.79 10.64 6.56 3.91 

35 4.29 10.35 6.44 3.87 

40 5.12 10.11 6.34 3.84 

45 5.24 10.22 6.47 3.99 

50 5.62 10.70 6.90 4.37 

 

3.5.2.5 General Findings 

The results for the reliability analyses were considered before and after model uncertainty was 

included. The findings reveal that β decreases when model uncertainty is included. This is 

because the new distribution function for the load effects has a larger standard deviation than 

the distribution function before model uncertainty is included. The findings also show that the 

larger the COV of model uncertainty relative to that of the load effects, the larger the influence 
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of model uncertainty on β. In general, the influence of the model uncertainty is seen to decrease 

from short spans to longer spans.  

Before model uncertainty was included, it was found that an irregular jump in β values occurred 

at a 15 m span. The determined β values were much larger than the β values obtained for the 

10 m and 20 m adjacent span lengths. The β values smoothed out to more regular values when 

model uncertainty was included, as it had a large influence on β for 15 m spans. It is known 

that individual axles and axle sets govern the extreme load effects for 5 to 15 m spans 

(Anderson, 2006). The sample characteristics show that 10 m and 15 m spans have the lowest 

skewness and tend towards a normal distribution (see Section 3.4). This could be explained by 

the possibility that a certain axle set, e.g. a tridem axle, with a limited range of axle weights 

and spacing, governs the extreme loading events. The 15 m span is the only span with a 

negative skewness for monthly maxima, thus it takes longer to converge to its maxima domain. 

As a result, the 15 m span has the lowest 50-year skewness and COV. These characteristics 

make the 15 m span distribution much more sensitive to the location of the design load effects, 

in comparison to other span lengths. However, as these results are only based on a single WIM 

station, different results may be obtained for other stations. 

 

3.6 Chapter Summary 

This chapter discussed the case study based on WIM data from Roosboom station located on 

the N3. The main purpose was to investigate the reliability performance of TMH-7 in catering 

for normal traffic conditions on a highway bridge. This was done by performing a reliability 

analysis for simply supported spans ranging from 5 to 50 metres, based only on the traffic load 

effects. The load effect is represented by the bending moment at midspan.  

The block maxima approach was applied to extract the maximum load effect per month from 

the WIM-based traffic load effects. With the sample skewness and COV known, applicable 

models were identified to represent the monthly maxima. It included the GEV distribution 

(representing the Weibull distribution for maxima) and the LN3 distribution. MLE provided 

estimates for the model parameters, while goodness-of-fit tests assessed the quality of fit of the 

models. The 50-year maximum load effect distribution was then obtained by means of 

statistical projection of the monthly maxima distribution. Furthermore, it was decided to use 

the LN3 distribution for the reliability analysis.  
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The reliability analysis was performed for four design scenarios, using FORM in Comrel. The 

limit state function included the design load effects for NA loading in TMH-7, the load effect 

model uncertainty and the actual traffic load effects described by the 50-year maximum load 

effect distribution. Lastly, the obtained reliability indices were compared to target values to 

estimate the reliability performance of each span length.  

 

3.7 Conclusion 

The different design scenarios provide insight into the reliability performance of NA loading 

for different span lengths. The results show that NA loading is not performing satisfactory for 

short, narrow span bridges, especially for 5 and 10 m spans. That is, when the number of 

notional lanes equal the number of traffic lanes on the bridge. The findings agree with previous 

studies that identified deficiencies in the traffic load model for short, narrow span bridges 

(Oosthuizen et al., 1991; Anderson, 2006). However, this design scenario is not typical for 

highway bridges, owing to the geometry of a highway bridge deck (Burrell, Mitchell and 

Wolhuter, 2002) and the way notional lanes are defined in TMH-7 with floating lane widths 

(CSRA, 1981). For a highway bridge, the number of notional lanes typically exceeds the 

number of traffic lanes. As a result, the findings show that TMH-7 performs satisfactory for 

short and medium span bridges, ranging from 5 to 50 metres. 

In addition, the results for the design scenarios reveal that TMH-7 is inherently conservative in 

its design for longer spans. This is evidently seen for spans ranging from 30 to 50 metres, where 

the obtained reliability indices exceed the target reliability indices. This finding may be the 

result of decisions that were made during the derivation of NA loading for longer spans. That 

is, decisions regarding the idealised vehicle combinations, overloading and the application of 

partial load factors (Anderson, 2006). 

It is recommended for future studies to update the assumed sensitivity factor of -0.7 for the 

traffic load effects. The value is a reasonable assumption for short spans, where the traffic load 

is deemed to be the leading action. However, as the span length increases, the dead load of the 

bridge will become more dominant, leading to a reduced sensitivity of the reliability 

performance to the traffic load on the bridge. For this case study, a smaller sensitivity factor 

for longer spans would mean that the overall reliability indices would increase even more, 

supporting the finding that NA loading overestimates sagging moments for longer spans. 
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Furthermore, future research should also investigate the reliability performance of NA loading 

for shear forces. Anderson (2006) refers to Liebenberg’s work on deriving the traffic load 

model for NA loading, where it is stated that the form of the loading curve was dictated by 

shear forces. Oosthuizen et al. (1991) found that NA loading also showed deficiencies for shear 

forces in short, narrow span bridges up to 10 m in length. There is thus a need to extend the 

investigation to include shear forces, as it may represent the critical load effect for some spans. 
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4 Kilner Park Case Study 

4.1  Introduction 

In this chapter, a reliability analysis of a bridge is conducted based on traffic load effects 

obtained from Weigh-in-Motion (WIM) data on the National Route 1 (N1). The site is located 

near Kilner Park in the Gauteng Province of South Africa. The WIM data includes 

measurements for four traffic lanes, i.e. two traffic lanes in both the northbound and 

southbound direction. They consist of the outer lane, identified as the slow lane, and the second 

outer lane, identified as a fast lane. The N1 is known to be a heavy freight route and three years 

of WIM data from 2015 to 2017 are available to provide a good representation of the traffic 

conditions at this site.  

Access to four lanes of WIM data allows for the investigation of a typical highway bridge with 

more than one traffic lane. It was decided to conduct a critical element reliability analysis, 

which includes the resistance, permanent load and traffic load imposed on the critical member 

in proportion to transverse stiffness. The analysis provides a way to measure the reliability 

performance of the critical member. For optimum design, failure of a bridge is assumed to 

occur when the critical member fails. The failure mode under consideration is defined as 

follows: Failure occurs when the ultimate bending moment capacity of the critical member is 

exceeded by the load effects imposed on it.  

The scope of this case study is limited to the investigation of a single span bridge designed for 

two traffic lanes with paved shoulders. The load effect under consideration is the bending 

moment at midspan for the ultimate limit state (ULS). It was decided to investigate a 20 m 

reinforced concrete bridge with a twin spine deck, where the critical member is represented by 

a single flanged spine beam. A 20 m span is typically found in highway bridges. Furthermore, 

a twin spine deck is an economical choice for the design of a 20 m span bridge (Benaim, 2008). 

 

4.2  Methodology 

The main objective of this case study was to carry out a critical element reliability analysis on 

the selected critical member. The first step was to design the twin spine deck according to 

Technical Methods for Highways 7 (TMH-7). The sizing of members was primarily based on 

the guidelines set out in Robert Benaim’s book on The Design of Prestressed Concrete Bridges: 

Concepts and Principles (2008). After finding the geometric and material properties of the 
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bridge deck, the properties were used to model the bridge deck in Midas Civil. A simple grillage 

analysis served to obtain the design load effects of the critical spine beam in accordance with 

the loading requirements of TMH-7 Part 2 (CSRA, 1981). The loading accounts for the 

permanent load and traffic load on the bridge deck, where the traffic load is representative of 

NA loading in TMH-7. Provisions of TMH-7 Part 3 (CSRA, 1989) subsequently allowed for 

the calculation of the required reinforcement quantities. 

The second step focused on finding the load effects generated in the critical spine beam due to 

the actual traffic on the bridge. A simple transverse influence line from the grillage model, 

along with the traffic load effects corresponding to the WIM data, led to the calculation of the 

total combined traffic load effects in the spine beam.  

The third step considered the probabilistic modelling of the combined traffic load effects in the 

spine beam. The block maxima approach enabled the assessment of the extreme traffic load 

effects, where a block period of a month was considered. Thereafter, the parameters of the 

selected model were estimated with the maximum likelihood estimation (MLE) method. In 

order to determine the applicability of the selected model to the data set, diagnostic plots and 

hypothesis testing were utilised. This was followed by the statistical projection of the monthly 

maxima distribution to obtain the maximum load effect distribution for a 50-year reference 

period. 

Finally, the fourth step proceeded with the formulation of the limit state function to describe 

the failure mode in terms of the resistance, dead load and traffic load effects for the critical 

spine beam. The probabilistic description of the traffic load effects is based on the WIM data, 

while the rest of the basic variables are described by probabilistic models adopted from 

literature. The First Order Reliability Method (FORM), along with the limit state function, was 

then employed to perform the critical element reliability analysis. As a result, the analysis 

obtained reliability indices corresponding to a 50-year period that were compared to target 

reliability indices. Lastly, a sensitivity analysis was conducted to determine the relative 

contribution of each variable on the obtained reliability indices.  
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4.3  Bridge Deck Design and Analysis 

4.3.1 Bridge Deck Properties 

This section describes the properties of the 20 m twin spine deck. Some advantages of the twin 

spine deck over a solid slab deck, is that it increases the reinforced concrete lever arm and 

reduces the self-weight of the deck (Benaim, 2008). The dimensions of a twin spine deck of an 

existing reinforced concrete bridge in South Africa (Van der Spuy and Niehaus, 2019), were 

considered to find preliminary dimensions for the bridge deck. The dimensions were then 

amended for a 20 m span length and to concur with the guidelines set out in Benaim’s book on 

The Design of Prestressed Concrete Bridges: Concepts and Principles (2008). The cross-

sectional layout of the bridge deck, together with the traffic lane arrangement, is provided in 

Figure 4.1. 

The following decisions were made regarding the geometric properties of the bridge deck: 

• According to Benaim (2008), the ratio between the span of the side cantilever and the 

span of the centre slab should range between 2.3 and 2.8. This ratio prevents the spine 

beams from rotating under dead loads. For the bridge deck, it was decided to use a side 

cantilever of 2.75 m and a centre slab of 6.45 m, which obtains a ratio of 2.345. 

• The span/depth ratio of a simply supported span generally ranges between 1/20 and 

1/15 (Benaim, 2008). Benaim (2008) recommends a minimum ratio of 1/20 and a more 

typical ratio of 1/18 for twin spine decks. A 1/20 ratio was decided on, which resulted 

in a 1 m deck height. Furthermore, a trapezoidal web with a bottom width of 1.8 m was 

selected for the spine beams. 

• Benaim (2008) recommends a minimum slab thickness of 200 mm for cantilevers that 

span between 1.4 to 1.7 metres, depending on the loading code used. When the 

cantilever has a longer span, a haunch should be added to the cantilever with a root 

thickness equal to or more than 1/7 or 1/9 of the cantilever length (Benaim, 2008). The 

cantilever length refers to the distance from the edge of the cantilever to the root of the 

haunch. For the bridge deck, this length was calculated as 1.75 m. Thus, it was decided 

to use a 200 mm slab thickness for the edge of the cantilever, which increases to 300 

mm at the root of the haunch. 

• The slab between spine beams should provide sufficient transverse stiffness for the 

deck, in order to effectively distribute loads transversely to the spine beams. A slab 

thickness of (clear span)/25 to (clear span)/20 is recommended, where the clear span 
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stretches between the two spine beams (Benaim, 2008). For the bridge deck, a slab 

thickness of 250 mm was chosen for a clear span of 4.45 m. 

 

Figure 4.1: Cross-section of bridge deck with the lane arrangement (units in mm). 

 

For the material properties of the bridge deck, a concrete cube strength (fcu) of 50 MPa was 

selected, which corresponds to a modulus of elasticity (E) of 34 GPa. Moreover, it was decided 

to use a density of 25 kN/m3 for the reinforced concrete.  

For the bridge analysis, dead loads and superimposed dead loads, along with the traffic load 

were considered. The dead load consists of the self-weight of the bridge deck (see Figure 4.1), 

while the superimposed dead loads include the asphalt road surfacing and parapets on the deck. 

A thickness of 40 mm (SANRAL, 2010) and a density of 21 kN/m3 (CSRA, 1989) were 

assumed for the asphalt surfacing. Typically, a F-shape Type A parapet is used for a highway 

bridge (SANRAL, 2012). Therefore, the weight of the parapets was represented by a line load 

of 10 kN/m placed on both edges of the bridge deck in the longitudinal direction.  

 

4.3.2 Bridge Deck Analysis in Midas Civil 

The bridge deck was modelled in Midas Civil (MIDAS, 2016), an engineering software used 

for the design of bridges and other civil structures, using a simple grillage analysis. A grillage 

analysis involves modelling a structure using a two-dimensional grid pattern and assuming 

linear-elastic behaviour. The grid pattern allows for the bridge deck to be seen as a series of 

longitudinal and transverse elements rigidly connected at the nodes. The grid layout for this 

case study is illustrated in Figure 4.2, where the longitudinal and transverse members are 
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identified. Moreover, the cross-sectional properties of the spine beams, representing the 

longitudinal members, are shown in Figure 4.3.  

The deck slab was modelled using 2 m wide beams, representing the transverse members. The 

beams provided for the actual stiffness of the slab by describing the member thickness in 

accordance with the slab thickness in Figure 4.1. No density was assigned to the transverse 

members as not to introduce additional loading.  

A dummy beam was created as a longitudinal member on the edge of the bridge deck, in order 

to apply the parapet line load to the deck. No density was assigned to the dummy beam, and it 

was given a very small cross-section to make its stiffness negligible. 

 

Figure 4.2: Plan view of grid layout of bridge deck. 

 

Figure 4.3: Cross-section of spine beam modelled in Midas Civil as a longitudinal member. 
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The bridge was assumed simply supported; thus, provision was made for pinned connections. 

The node numbering of the grillage model is shown in Figure 4.4. Node 12 and 23 were 

prevented from translation in the x, y and z-direction, while node 22 and 33 were prevented 

from translation in the y and z-direction.  

 

Figure 4.4: Plan view of node numbering for grillage model in Midas Civil. 

 

The loading, as set out in Section 4.3.1, was applied to the grillage model. Midas Civil has 

TMH-7’s traffic load model built in, which allows NA loading to be applied on the bridge deck. 

Regular optimisation is recommended for NA loading, where the loading is shifted between 

the extreme left, middle or extreme right of the traffic lane, to obtain the worst loading position. 

Midas Civil also allows for the partial loading of an influence line in order to obtain the 

maximum loading at the specific location. Thus, it alleviates the need to compensate for partial 

loading with the k-factor, as discussed in Section 2.2.4.  

A carriageway width of 10.9 m requires three notional lanes, with a width of 3.633 m each, to 

be considered for NA loading (CSRA, 1981). For the analysis, a vehicle width of 1.9 m was 

assumed (CSRA, 1981). Midas Civil applies the NA loading as a moving load. When the point 

of interest is specified, the NA loading is positioned in such a way as to provide the worst 

loading at that point. The loading is then accordingly converted to represent a static load. For 

the bridge deck, the point of interest was specified at node 17 (see Figure 4.4), which is the 
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mid-section of the selected critical spine beam. The corresponding loading arrangement is 

shown in Figure 4.5. As the deck is symmetrical, either one of the spine beams could have been 

selected as the critical spine beam.  

 

Figure 4.5: Position of NA loading for design of spine beam at midspan. 

 

Partial factors were applied to the loading in order to find the ultimate design bending moment 

for the spine beam at midspan. The ULS partial factors are based on Combination 1 of Table 

17 in TMH-7 Part 2 (CSRA, 1981), and consist of the partial load factor (γfL) and the partial 

effect factor (γf3). For the dead load and superimposed dead loads, γfL = 1.2 and γf3 = 1.1 were 

applied (CSRA, 1981), which equates to a partial factor of 1.32. For NA loading, γfL = 1.5 and 

γf3 = 1.1 were used (CSRA, 1981), which equates to a partial factor of 1.65. NA loading 

accounts for dynamic load effects with the Swiss impact factor (φ2), which for a 20 m simply 

supported bridge is equal to 0.2 (see Equation 2.3 in Section 2.2.3). In order to obtain static 

load effects from NA loading in the analysis, the Swiss impact factor was removed by dividing 

NA loading with a factor of 1.2.  

The unfactored global reaction forces and bending moments at midspan were obtained from 

the grillage analysis. Unfactored load effects refer to characteristic load effects, i.e. before 

partial factors are applied. To confirm the soundness of the grillage model, these values were 

compared to unfactored global reaction forces and bending moments calculated by hand. The 

comparison is presented in Table 4.1.  
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The results show that the grillage model adequately represents the bridge deck. The small 

difference shown for the parapet bending moment is due to the small longitudinal stiffness of 

the dummy beam. The difference between the NA loading results is caused by the difference 

in the way partial loading of an influence line is addressed. The grillage model allows for a 

partial loading of an influence line, and thus eliminates the use of a k-factor, whereas the 

analytical model uses a k-factor to account for partial loading. As can be seen from the results, 

the analytical model produces more conservative load effects due to the approximate k-factor.  

 

Table 4.1: Check global reactions and bending moments for the grillage model. 

Load component 
Reaction force at support (kN) Bending moment at midspan (kNm) 

Grillage model Analytical model Grillage model Analytical model 

Dead load 1460.6 1460.6 7303.1 7303.1 

Parapets 200 200 1006.7 1000 

Asphalt surfacing 91.6 91.6 457.8 457.8 

NA loading 863.7 941.2 5279.5 5390.8 

 

From the grillage model, the design bending moment for ULS was found for the selected 

critical spine beam at midspan. The design value for each load component is shown in Table 

4.2. Table 4.2 also includes the characteristic (unfactored) moment for each load component, 

which is later used in the reliability analysis (see Section 4.6). 

 

Table 4.2: Maximum bending moment of critical spine beam at midspan. 

Load component 
Maximum bending moment at ULS (kNm) 

Unfactored Factored 

Dead load 3651.6 4820.1 

Parapets 503.3 664.4 

Asphalt surfacing 228.9 302.2 

NA loading 3528.3 5821.6 

Total = Ʃ(load components) 7912.1 11608.3 

 

4.3.3 Spine Beam Design 

The bending moment resistance of the spine beam at midspan is dependent on the area of 

longitudinal steel reinforcement provided at the section. With the ultimate design bending 
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moment known, the required area of steel reinforcement was determined. For design, the spine 

beam cross-section was idealised as a T-beam. The idealised cross-section of the spine beam 

is shown in Figure 4.6. The geometric properties were calculated to give an adequate 

representation of the spine beam properties. Attention was given especially to the cross-

sectional area, the moment of inertia, and the centroid of the section.  

 

 Figure 4.6: Idealised cross-section of spine beam. 

 

Table 4.3 provides the input parameters assumed for the calculation of the steel reinforcement 

in the spine beam. The parameters are primarily based on TMH-7 Part 3 (CSRA, 1989), though 

the South African National Standard, SANS 10100-1 (2000), was also consulted. Two layers 

of steel reinforcement was assumed, which resulted in an average effective depth (d) of 895 

mm from the top of the beam to the tension reinforcement. 

 

Table 4.3: Input parameters to determine the steel reinforcement. 

Input parameter Measurement 

Effective flange width  5.7 m 

Coarse aggregate size 19 mm 

Spacer bar between layers 20 mm 

Nominal cover 40 mm 

Shear link diameter 16 mm 

Steel bar diameter 40 mm 

Steel yield strength 450 MPa 

 

The ultimate moment of resistance is equal to the sum of the design bending moments for the 

permanent and variable loads. The calculation is done with Equation 4.1, where Md,R is the 
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ultimate moment of resistance, Md,G is the design moment for permanent loads and Md,Q is the 

design moment for variable loads. The permanent loads include the dead load and 

superimposed dead loads of the bridge deck, while the variable load represents the traffic load. 

According to the grillage model (see Table 4.2), Md,R is equal to 11608.3 kNm for the spine 

beam. 

 

𝑀𝑑,𝑅 = 𝑀𝑑,𝐺 + 𝑀𝑑,𝑄 (4.1) 

Equation 4.2 and 4.3, obtained from TMH-7 Part 3 (CSRA, 1989), were simultaneously solved 

to obtain the area of tension reinforcement (As) for the spine beam. For the equations, fy denotes 

the steel yield strength, z denotes the internal lever arm, b denotes the effective flange width 

and d denotes the effective depth to the tension reinforcement. The ultimate moment of 

resistance is denoted by Mu and it is equal to the value obtained for MR,d. 

 

𝑀𝑢 = 0,87𝑓𝑦𝐴𝑠𝑧 (4.2) 

 

𝑧 = [1 −
1,1𝑓𝑦𝐴𝑠

𝑓𝑐𝑢𝑏𝑑
] 𝑑 (4.3) 

The solution for the tension reinforcement is summarised in Table 4.4. The section is ductile 

with z = 0.93d and the compression block situated in the flange. Moreover, no compression 

reinforcement is required. For the reinforcement layout, 15 bars were placed in the first bottom 

layer and 14 bars in the second bottom layer, with a clear spacing of 75 mm between bars. 

 

Table 4.4: Area of tension reinforcement for the spine beam. 

Properties Measurement 

Area of Y-40 bar 1256.6 mm2 

As required 35587 mm2 

No. of bars required 28.3 

No. of bars provided 29 

As provided 36442 mm2 
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4.4 Traffic Load Effects on Critical Spine Beam 

This section considers the actual traffic load effects obtained from WIM data. The objective 

was to find the influence of the traffic load effects in each traffic lane, on the critical spine 

beam. First, the influence line describing the lateral load distribution over the carriageway 

width was obtained. Depending on the position of the traffic lane on the bridge deck, the 

concurrent traffic load effects in each lane were multiplied by lateral load distribution factors 

to obtain the load contribution of each lane on the critical spine beam.  

 

4.4.1 Lateral Load Distribution 

The lateral distribution of loading on the bridge deck was considered in order to accurately 

characterise the traffic load effects imposed on the critical spine beam. Benaim (2008) explains 

the structural response of a spine beam when a load is applied to its centreline at midspan. The 

rotation of the spine beam is prevented by the stiffness of the slab surrounding the load. This 

allows load effects to be generated in the slab, which transfers a proportion of the loading to 

the other spine beam. A transverse influence line can be used to describe the proportion of 

longitudinal bending moment carried by the spine beam at the section of interest. This is done 

by positioning a unit point load or longitudinal distributed load at the section, and varying its 

position across the carriageway width (Benaim, 2008). 

For the study, a uniformly distributed line load applied over the span of the bridge was chosen 

as unit load to represent the traffic loading on the bridge. As the full length of a truck can be 

carried by a 20 m span bridge, a uniformly distributed load is deemed more representative than 

a unit point load.  

The grillage model in Midas Civil (Section 4.3.2) was used to obtain the influence line for the 

lateral load distribution on the critical spine beam at midspan. A longitudinal unit load of 10 

kN/m was placed on the edge of the carriageway and moved across the carriageway width. At 

each position, the bending moment in the critical spine beam was measured at midspan and the 

lateral load distribution factor (LLDF) was determined. The LLDF is simply the ratio between 

the bending moment generated in the spine beam and the global bending moment on the bridge 

deck.  

Table 4.5 summarises the proportion of the global bending moment carried by each spine beam, 

corresponding to the position of the unit load on the carriageway width. For illustrative 
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purposes, the critical spine beam is called Beam 1 and the other spine beam is called Beam 2. 

The table also includes the LLDFs for the critical spine beam, i.e. Beam 1. In Table 4.5, 

Location 1 and 11 are positioned at the edges of the carriageway width. Location 3 and 9 are 

at the centreline of Beam 1 and 2, respectively. And Location 6 is at the centreline of the 

carriageway width, where the global bending moment is distributed evenly between the two 

spine beams.  

 

Table 4.5: Lateral load distribution at midspan. 

Location 

Position from edge 

of carriageway 

width closest to 

Beam 1 (m) 

Bending moment 

in Beam 1 (kNm) 

Bending moment in 

Beam 2 (kNm) 
LLDF for Beam 1 

1 0 588 -88 1.18 

2 1.177 515 -15 1.03 

3 2.354 442 58 0.88 

4 3.386 378 122 0.76 

5 4.418 314 186 0.63 

6 5.450 250 250 0.50 

7 6.482 186 314 0.37 

8 7.514 122 378 0.24 

9 8.546 58 442 0.12 

10 9.723 -15 515 -0.03 

11 10.900 -88 588 -0.18 

 

The LLDFs are illustrated in Figure 4.7, where the line describes the proportion of the global 

bending moment in Beam 1.  
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Figure 4.7: Lateral influence line of critical spine beam at midspan. 

 

4.4.2 Calculation of Load Effects on Critical Spine Beam 

The traffic load effects used in this case study are described by the bending moment at midspan 

and based on WIM data from a site near Kilner Park on the N1. The traffic load effects were 

obtained from a previous study (Van der Spuy et al., 2019) that used a moving load analysis to 

derive the traffic load effects in each traffic lane. An overview of the calculation of the traffic 

load effects is given in Chapter 3 Section 3.3.1. In addition, the time history of the traffic load 

effects was used to find the concurrent load effects in each traffic lane (Van der Spuy et al., 

2019), i.e. the load effects that occur simultaneously. 

The concurrent load effects at any given time can be combined, along with their corresponding 

LLDFs, to obtain the combined load effects carried by the critical spine beam. This is illustrated 

in Equation 4.4, where Q1, Q2,…, Qn represent concurrent traffic load effects in each traffic 

lane. Here, n is the number of traffic lanes on the bridge, Q1 is the load effect in the first traffic 

lane (closest to the critical spine beam), Q2 is the load effect in the second traffic lane and Qn 

is the load effect in the n-th traffic lane (furthest away from the critical spine beam). Here, Q1, 

Q2,..., Qn represent load effects that occur at the same time. The combined load effects, relating 

to the concurrent load effects and their respective LLDFs, are denoted by Qcombined.  
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𝑄𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐿𝐿𝐷𝐹1(𝑄1) + 𝐿𝐿𝐷𝐹2(𝑄2)+ . . . + 𝐿𝐿𝐷𝐹𝑛(𝑄𝑛)  (4.4) 

A discussion follows, where firstly it is explained how the relevant LLDFs for each traffic lane 

were determined. Secondly, it describes how the actual traffic lanes were used in different 

combinations to find the combined load effects on the critical spine beam. The different 

combinations are called load cases. Lastly, it describes how the maximum load effects on the 

critical spine beam were extracted from the data set of combined load effects. 

With the help of the influence line in Figure 4.7, the LLDF for each traffic lane on the bridge 

was determined. The 20 m span bridge is designed for two traffic lanes with a width of 3.7 m 

each. In order to represent the worst loading on the critical spine beam, the actual traffic lanes 

were shifted to the edge of the carriageway width closest to the critical spine beam. The vehicle 

centreline was assumed to follow the traffic lane centreline. The position of each traffic lane’s 

centreline on the carriageway width was obtained and then used to find the LLDF at that 

position. Subsequently, the centrelines of the first and second traffic lane were positioned at 

1.85 m and 5.55 m from the edge of the carriageway width. As a result, the corresponding 

LLDFs for the first and second traffic lanes are 0.95 and 0.49, as shown in Figure 4.8. 

 

Figure 4.8: Lateral load distribution factors corresponding to the position of traffic load effects in two lanes. 

 

Following the investigation of two traffic lanes, three traffic lanes were fitted on the bridge 

deck to determine the influence an additional traffic lane would have on the combined load 

effects. A traffic lane width of 3.5 m was assumed, and the lanes were shifted to the edge of 

the carriageway width. Subsequently, the centrelines of the first, second and third traffic lanes 

Traffic Lane 1 Traffic Lane 2 
3.7 m 3.7 m 

LLDF
1
 = 0.95  

LLDF
2
 = 0.49  

-0.18 

1.18 
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were found at 1.75 m, 5.25 m and 8.75 m from the edge of the carriageway width. The 

corresponding LLDFs are 0.96, 0.52 and 0.09, as seen in Figure 4.9. The LLDF of 0.09 for the 

third traffic lane is very small. Hence, the loading in this lane has a very small contribution to 

the combined load effects imposed on the critical spine beam. 

 

Figure 4.9: Lateral load distribution factors corresponding to the position of traffic load effects in three lanes. 

 

The WIM station provides data for the two outer traffic lanes in the northbound (Nb) and 

southbound (Sb) direction. Figure 4.10 shows the notation adopted from (Van der Spuy et al., 

2019) to describe the traffic lanes. The notations Nb1 and Sb1 refer to the slow lanes, while 

Nb2 and Sb2 refer to the fast lanes in the northbound and southbound direction.  

 

Figure 4.10: Traffic lane notation. 

Traffic Lane 1 Traffic Lane 2 

3.5 m 3.5 m 

LLDF
1
 = 0.96  

LLDF
2
 = 0.52  

3.5 m 

Traffic Lane 3 

LLDF
3
 = 0.09  

-0.18 

1.18 
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For the case study, different load cases were considered in calculating the combined load 

effects on the critical spine beam. The load cases are described by different combinations of 

the actual traffic lanes on the bridge deck. Moreover, the load cases provide for the possibility 

that the critical spine beam may be located under the slow lane (outer lane) or the fast lane 

(inner lane). That is, considering a single direction of traffic and the fact that the bridge is 

symmetrical with only two spine beams. 

The load cases, describing two traffic lanes on the bridge, are presented in Table 4.6. The table 

shows which traffic lane is located above the critical spine beam. This traffic lane relates to 

LLDF1 equal to 0.95, and thus the load effects in this lane correspond to Q1 (see Equation 4.4). 

The other traffic lane then relates to LLDF2 equal to 0.49, and the load effects in this lane 

correspond to Q2 in Equation 4.4. 

 

Table 4.6: Load cases used to find combined load effects on critical spine beam, when considering two traffic 

lanes. 

Load Case Traffic lane corresponding to Q1 Traffic lane corresponding to Q2 

1 Nb1 Nb2 

2 Sb1 Sb2 

3 Nb2 Nb1 

4 Sb2 Sb1 

5 Nb1 Sb1 

6 Sb1 Nb1 

 

The load cases, for three traffic lanes fitted on the bridge deck, are presented in Table 4.7. The 

three lanes consist of a slow lane (outer lane) and two fast lanes, which represents the typical 

lane arrangement of three lanes in one direction. Here, the critical spine beam is assumed below 

the slow lane. Thus, the slow lane relates to LLDF1 equal to 0.96, and the traffic load effects 

in this lane correspond to Q1 in Equation 4.4. The second traffic lane relates to LLDF2 equal to 

0.52 and the traffic load effects correspond to Q2. Lastly, the third traffic lane relates to LLDF3 

equal to 0.09 and the traffic load effects correspond to Q3. 
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Table 4.7: Load cases used to find combined load effects on critical spine beam, when considering three traffic 

lanes. 

Load Case 
Traffic lane 

corresponding to Q1 

Traffic lane 

corresponding to Q2 

Traffic lane 

corresponding to Q3 

7 Nb1 Nb2 Sb2 

8 Sb1 Sb2 Nb2 

 

Similar to Roosboom Case Study in Chapter 3, the block maxima approach was utilised to 

assess the extreme traffic load effects on the critical spine beam. With three years of data 

available, the sample size was deemed sufficient to use a block period of a month. This block 

period eliminates temporal variations and less critical loading events that would surface in a 

smaller block period. By using a large enough block period, the dependencies between loading 

events are also eliminated. 

For each load case, the combined load effects were captured at time steps of 0.02 s, thus, 

providing a continuous output of bending moments at midspan. Equation 4.4 is restated in 

Equation 4.5, to show how the maximum load effect per month, denoted by Qmax, is extracted 

from the combined load effects per month, denoted by the vector {Qcombined}.  

  

{𝑄𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑} = 𝐿𝐿𝐷𝐹1{𝑄1} + 𝐿𝐿𝐷𝐹2{𝑄2}+ . . . + 𝐿𝐿𝐷𝐹𝑛{𝑄𝑛}  

𝑄𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑄
𝑐𝑜𝑚𝑏ⅈ𝑛𝑒𝑑

} 

 

(4.5) 

Equation 4.5 was used to extract Qmax for each month in the recorded period of three years. The 

new data set consists of the monthly maximum load effects carried by the critical spine beam, 

hereafter referred to as combined monthly maxima. A data set of combined monthly maxima 

were obtained for each load case.  

To give an example, consider Load Case 1, where Nb1 is situated above the critical spine beam 

and Nb2 is the adjacent traffic lane. Then, Nb1 corresponds to LLDF1 and Nb2 corresponds to 

LLDF2. Considering Equation 4.5, the concurrent load effects in Nb1 and Nb2 are then denoted 

by Q1 and Q2, respectively. The combined load effects (Qcombined), obtained from the concurrent 

load effects and corresponding LLDFs, are then captured every 0.02 seconds for the duration 

of the recorded period. Finally, the maximum load effect per month is extracted from the 

combined load effects to obtain a data set of combined monthly maxima. 
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4.5 Probabilistic Modelling of Traffic Load Effects 

The extreme traffic load effects are represented by the combined monthly maxima. This section 

provides a discussion on the assessment and probabilistic modelling of the extreme traffic load 

effects, in finding the maximum load effect distribution for a 50-year reference period. This 

period agrees with target reliability indices found in existing standards such as the Eurocode, 

EN 1990. 

 

4.5.1 Statistical Characteristics and Model Selection 

For each load case, the statistical characteristics describing the combined monthly maxima 

were obtained. The sample mean, standard deviation, skewness and coefficient of variation 

(COV) were calculated according to Equation 2.13, 2.14 and 2.15 in Section 2.3.1. These 

characteristics are summarised in Table 4.8 for each load case.  

Table 4.8 shows that two traffic lanes in the southbound direction (Load Case 2 and 4) provide 

a larger mean for the combined monthly maxima, compared to two traffic lanes in the 

northbound direction (Load Case 1 and 3). As the traffic load effects corresponding to Q1 have 

the largest LLDF, the combined monthly maximum is typically obtained at the time increment 

when the maximum load effect from Q1 occurs. Table 4.8 further shows that the COV of the 

load cases varies between 0.061 and 0.081. The skewness varies between a minimum of 0.301 

for Load Case 4 and 1.839 for Load Case 3. This shows that the right tail of the distribution is 

quite sensitive to which traffic lanes are considered together and which traffic lane is situated 

closest to the critical spine beam.  

Load Case 5 and 6 represent two slow lanes on the bridge. One would assume that more heavy 

side-by-side trucks would be present for these cases, and that at least the mean value would be 

larger than for load cases with a slow lane and a fast lane (see Load Case 1 to 4). However, 

Table 4.8 shows that Load Case 5 and 6 have similar characteristics to Load Case 1 to 4. This 

suggests that the combined monthly maximum generally occurs when the maximum load effect 

for Q1 occurs and there is a small or no load effect in the other lane. Furthermore, the 

characteristics of Load Case 7 and 8 (with three traffic lanes) are similar to that of the load 

cases with two traffic lanes. This may be because the contribution of the third traffic lane on 

the critical spine beam is negligibly small. 
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Table 4.8: Sample characteristics for combined monthly maxima on critical spine beam. 

Load Case Mean (kNm) Standard deviation (kNm) COV Skewness 

1 1948.7 158.2 0.081 0.408 

2 2053.4 137.6 0.067 0.777 

3 1849.0 112.4 0.061 1.839 

4 1985.0 153.1 0.077 0.301 

5 1955.3 135.6 0.069 0.413 

6 2005.1 126.7 0.063 0.450 

7 1987.3 155.4 0.078 0.380 

8 2101.5 136.2 0.065 1.010 

 

A similar approach to Roosboom Case Study was followed to select an applicable model to 

represent the combined monthly maxima. The sample skewness and COV for each load case 

can be used to find an applicable model to represent the sample. This approach was developed 

by Holický (2013) and adjusted to include the Fréchet and Weibull distribution. The relation 

between the COV and skewness was used to plot the characteristics of each load case on the 

diagram in Figure 4.11, where the COV is denoted by V. From the figure it can be seen that 

the sample skewness varies considerably, which makes the three-parameter lognormal (LN3) 

distribution an appropriate model.  

The generalised extreme value (GEV) distribution can represent the Gumbel, Fréchet or 

Weibull distribution for maximum values. The GEV distribution was also assessed, but only 

for comparative purposes. It was decided not to use the Weibull distribution in order to avoid 

characterising the combined monthly maxima with a fixed upper bound, which remains 

constant irrespective of the reference period projected to. See Chapter 3 Section 3.4.7 for more 

on this topic. It was also decided not to use the Gumbel distribution, as the fixed skewness 

could overestimate or underestimate the combined monthly maxima. In using the LN3 

distribution to assess the extreme traffic load effects, the case study stays consistent with 

Roosboom Case Study.  
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Figure 4.11: A diagram where the relation between skewness and coefficient of variation is used to find applicable 

models to represent the combined monthly maxima for each load case (Holický, 2013). 

 

4.5.2 Estimation of Model Parameters and Assessment of Selected Model 

Goodness-of-fit tests were used to assess the quality of fit of the LN3 distribution in 

representing the combined monthly maxima. The tests consist of diagnostic plots and 

hypothesis testing, whereas the former is the primary focus. The R code in Appendix B provides 

the procedure to apply the goodness-of-fit tests.  

MLE was used in Mathcad to estimate the model parameters describing the combined monthly 

maxima for each load case. The log-likelihood function in Section 3.4.3 Equation 3.2 was used 

to obtain the MLE parameters, which include the mean, standard deviation and skewness. The 

MLE parameters are summarised in Table 4.9, together with the COV and lower bound of the 

LN3 distribution.  
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Table 4.9: MLE parameters for combined monthly maxima fitted with a LN3 distribution. 

Load Case Mean (kNm) Standard deviation (kNm) Skewness COV Bound (kNm) 

1 1949.1 162.7 1.025 0.083 1455.4 

2 2053.9 142.6 1.370 0.069 1722.5 

3 1849.3 112.5 1.880 0.061 1650.6 

4 1985.1 153.9 0.665 0.078 1279.7 

5 1955.3 134.2 0.519 0.069 1171.2 

6 2005.1 125.6 0.553 0.063 1316.1 

7 1987.6 158.2 0.897 0.080 1443.3 

8 2102.1 141.1 1.614 0.067 1818.2 

 

The MLE parameters were then used to find diagnostic plots in R to graphically confirm the 

appropriateness of using the LN3 distribution. The diagnostic plots primarily include the Q-Q 

plot and P-P plot, followed by plots for the theoretical and empirical probability density 

function and cumulative distribution function (CDF). Definitions of the diagnostic plots are 

given in Chapter 3 Section 3.4.4.1, and in summary they show the accuracy of the theoretical 

model in representing the empirical model. 

The LN3 distribution can easily be assessed by subtracting the bound value from each data 

point and by fitting a two-parameter lognormal (LN) distribution to the shifted data 

(NIST/SEMATECH e-Handbook of Statistical Methods). This simplified assessment approach 

was followed and the diagnostic plots were obtained using the fitdistrplus package in R 

(Delignette-Muller and Dutang, 2015). For illustrative purposes,  Figure 4.12 shows the 

diagnostic plots for Load Case 2, where the data is measured in kNm. Appendix D contains the 

diagnostic plots for all the load cases.  

Visual inspection of the diagnostic plots shows that the LN3 distribution fits the combined 

monthly maxima reasonably well. The points on the Q-Q plot and P-P plot show a fairly linear 

pattern, indicating that the data can be represented by the LN3 distribution. This is confirmed 

by the density plot and CDF plot. The least linear fit is seen for Load Case 1, 5 and 7. This 

observation is discussed at the end of this section. The diagnostic plots for the LN3 distribution 

were compared to the GEV distribution diagnostic plots. The comparison showed that the 

diagnostic plots for the two models gave similar fits. The diagnostic plots for the GEV 

distribution can be found in Appendix D, however, the study proceeded with using the LN3 

distribution to represent the combined monthly maxima. 
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 Figure 4.12: Diagnostic plots provided in R for Load Case 2 fitted with the LN3 distribution. 

 

The modified Anderson-Darling test was used as a numerical measure to substantiate the results 

obtained from the diagnostic plots. The test provides a p-value that should be higher than a 

general significance level of 0.05, in order for the selected model to be accepted. A higher p-

value provides a higher confidence in the selected model to represent the data set. 

The relationship between the LN3 distribution and normal distribution was utilised to perform 

the modified Anderson-Darling test for each load case. A random variable X, in this case the 

combined monthly maxima, can be transformed to Y = log(X- x0), where x0 is the bound of the 

LN3 distribution fitted to X. If Y is normally distributed, then X is lognormally distributed. 

Thus, for the modified Anderson-Darling test the combined monthly maxima were 

transformed, and a normal distribution was fitted to the transformed data. The p-value obtained 

for each load case is listed in Table 4.10. It shows that the p-values exceed a significance level 
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of 0.05, which confirms that the LN3 distribution can be used to represent the combined 

monthly maxima.  

 

Table 4.10: Anderson-Darling p-values for the normal distribution fitted to the transformed, combined monthly 

maxima  

Load Case p-value 

1 0.112 

2 0.981 

3 0.882 

4 0.630 

5 0.145 

6 0.891 

7 0.110 

8 0.710 

 

The results show relatively high p-values for all the load cases, except for Load Case 1, 5 and 

7 that have much lower p-values. This observation concurs with what was seen in the diagnostic 

plots. What these three load cases have in common is that the traffic load effects from Nb1 

represents Q1. That is, the concurrent traffic load effects in the northbound slow lane has the 

greatest contribution to the combined monthly maxima.  

The traffic characteristics of Nb1 were investigated to acquire a better understanding of the 

results for Load Case 1, 5 and 7. First only the maximum load effects produced in Nb1 per 

month were considered. Secondly, the global traffic load effects on the bridge were considered 

for Nb1 together with Nb2. The data set included the unfactored, combined monthly maxima 

obtained from the concurrent load effects, i.e. no LLDFs were included. Visual inspection of 

the probability plots for both cases did not show a prominent deviation from a linear pattern. 

However, the deviations in the probability plots and the lower p-values for Load Case 1, 5 and 

7, suggest that the combined monthly maxima imposed on the critical spine beam may originate 

from a mixture of loading events. For example, the combined monthly maxima may include 

side-by-side truck events together with single or following truck events.  

The study is limited to processed data that makes no distinction between different loading 

events. It is therefore recommended that future research should investigate ways for separating 

different loading events and fitting distributions to the individual loading event types. For each 
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loading event type, the load effects are then deemed identically distributed. Caprani et al. 

(2008) for instance have explored fitting separate GEV distributions to different loading event 

types and combining the results using a composite distribution statistics model. They found 

that this approach is less conservative than fitting a distribution to a mixture of loading events, 

and provides more accurate results when statically projecting to another reference period. 

Although the above-mentioned limitation is acknowledged in this study, a good fit is seen for 

the rest of the load cases, i.e. Load Case 2, 3, 4, 6 and 8, when fitting a LN3 distribution to the 

combined monthly maxima. It is thus deemed acceptable to still use a single distribution to 

represent the combined monthly maxima. 

 

4.5.3 50-year Maximum Load Effect Distribution 

The combined monthly maxima were used to obtain the maximum load effect distribution for 

a 50-year reference period (Fn(x)). This was done by raising the probability distribution 

function for the combined monthly maxima (F(x)) to an appropriate power n. A 50-year 

reference period was selected to compare the obtained reliability indices to target reliability 

indices corresponding to this period. The statistical projection is formulated in Equation 4.6, 

and the theory is discussed in Chapter 3 Section 3.4.5. Traffic load effects are represented by 

the random variable X, with realisations x. And the number of combined monthly maxima in a 

50-year period is denoted by n and equals 600 (12 x 50). The calculation was done in Mathcad.  

 

𝐹𝑛(𝑥) = [𝐹(𝑥)]𝑛 (4.6) 

It was established that the 50-year maximum load effect distribution can be adequately 

represented by a LN3 distribution. The moment parameters for the 50-year maximum load 

effect distribution were determined in Mathcad using Equation 2.10, 2.11 and 2.12 in Section 

2.3.1. The parameters include the mean, standard deviation and skewness.  

Table 4.11 presents the moment parameters together with the COV and lower bound of the 50-

year maximum load effect distribution. The COV ranges from 0.032 to 0.074 and a significant 

right skewness is seen, which varies between 1.006 and 1.656 depending on the load case. 
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Table 4.11: Statistical parameters of the 50-year maximum load effect distribution, represented by a LN3 

distribution. 

Load Case Mean (kNm) 

Standard 

deviation 

(kNm) 

Skewness COV Bound (kNm) 

1 2730.0 157.2 1.252 0.058 2333.6 

2 2823.6 177.2 1.419 0.063 2424.3 

3 2550.8 189.7 1.656 0.074 2177.4 

4 2626.6 109.6 1.077 0.042 2309.1 

5 2480.9 83.3 1.006 0.034 2223.6 

6 2504.2 80.6 1.022 0.032 2259.3 

7 2711.2 137.8 1.190 0.051 2347.1 

8 2922.0 204.9 1.534 0.070 2490.9 

 

4.6  Critical Element Reliability Analysis 

This section presents the procedure and results for the reliability analysis performed on the 

critical spine beam. This is followed by a discussion on the sensitivity analysis, where the 

relative importance of the basic variables on the obtained reliability level is identified. 

 

4.6.1 Formulation of Limit State Function 

A limit state function was formulated to determine the reliability performance of the bending 

moment capacity of the critical spine beam at ULS. The formulation of the limit state function 

(Z) is based on the basic requirement that the resistance (R) should be larger than the load effect 

(E) (Holický, 2009). Structural failure occurs when Z is negative, i.e. E ≥ R. The structure is 

deemed safe when Z ≥ 0.  

The basic limit state function is shown in Equation 4.7. The basic variables in the limit state 

function are random in nature and assumed independent of each other. Each basic variable is 

described by a probabilistic model in terms of its mean and standard deviation. The mean of 

each basic variable is obtained in terms of its characteristic or nominal value.  

 

𝑍 =  𝑅 −  𝐸 (4.7) 
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The limit state function can be refined to represent the bending limit state function for the 

structure, as seen in Equation 4.8. The resistance moment (MR) should be larger than the sum 

of the permanent load moments (MG and MGW) and variable load moment (MQ). For the critical 

element reliability analysis, MR represents the resistance moment of the critical spine beam. 

MG represents the dead load moment due to the self-weight of the critical spine beam. MGW 

represents the moments imposed on the critical spine beam by the superimposed dead loads, 

i.e. parapets and asphalt surfacing. A distinction is made between MG and MGW to allow for 

different statistical characteristics. MQ describes the moments imposed on the critical spine 

beam by the traffic load on the bridge. 

The limit state function accounts for the uncertainties introduced by the probabilistic models 

representing the basic variables. Model uncertainty is a significant variable, as it accounts for 

the uncertainties associated with idealising or approximating the physical behaviour of a 

structure with a mathematical model (Faber, 2009). The variable for model uncertainty is 

denoted by θ and introduced into the limit state function by a multiplicative relationship, as 

shown in Equation 4.8. The model uncertainty corresponding to the resistance, permanent loads 

and variable loads are denoted by θR, θG and θQ, respectively. Model uncertainty does not 

necessarily have to be divided between permanent and variable loads, but the distinction allows 

for different statistical characteristics. For this study, it was assumed that the sample size of 

traffic load effects is large enough to ignore statistical uncertainty. Exploration of statistical 

uncertainty is recommended for future research. 

 

𝑍 =  𝜃𝑅𝑀𝑅  −  [𝜃𝐺(𝑀𝐺 + 𝑀𝐺𝑊) + 𝜃𝑄𝑀𝑄] (4.8) 

The bending limit state function can further be detailed to describe MR in terms of the area of 

reinforcement, denoted by As. The variable As describes the area of tension reinforcement in 

the bottom of the critical spine beam at midspan. To express MR in terms of As, Equation 4.9 

and 4.10 were considered, where z is the internal lever arm, d is the effective depth to the 

tension reinforcement, s is the simplified compression block depth and fy is the steel yield 

strength. 

 

𝑀𝑅 = 𝑓𝑦𝐴𝑠𝑧 (4.9) 
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𝑧 = 𝑑 −
𝑠

2
 (4.10) 

To find s in terms of As, Equation 4.11 was used, where Fst represents the tension force in the 

reinforcement and Fcc represents the resultant force of the concrete compression stresses. 

Moreover, fcu denotes the concrete cube strength and b denotes the effective flange width. 

According to TMH-7 Part 3 (CSRA, 1989), a value of 0.67 relates the concrete cube strength 

to the bending strength in a flexural member. 

A new expression for the resistance moment, MR, was found by substituting Equation 4.10 and 

4.11 into Equation 4.9. The final bending limit state function for the critical spine beam is 

shown in Equation 4.12. Here, G, Gw and Q represent the bending moment variables associated 

with the dead load, superimposed dead loads and traffic load on the critical spine beam. 

 

𝑍 = 𝜃𝑅𝑓𝑦𝐴𝑠 [1 −
𝑓𝑦𝐴𝑠

1.34𝑓𝑐𝑢𝑏𝑑
] 𝑑 − 𝜃𝐺(𝐺 + 𝐺𝑤) −  𝜃𝑄𝑄  (4.12) 

 

4.6.2 Statistical Description of Basic Variables 

The basic variables in the bending limit state function are represented by probabilistic models 

to account for the variability in measurements. They were selected based on literature, except 

for the traffic load effects, which were based on actual data. Unless stated otherwise, the basic 

variables presented in this section were adopted from Holický’s book Reliability analysis for 

structural design, Table 1 of Annex 4 (2009). Holický (2009) provides conventional theoretical 

models for basic variables that are primarily based on working documents of the Joint 

Committee on Structural Safety (JCSS, 2001). Whenever convincing data is available, the 

uncertainties presented in the statistical description of the basic variables should be further 

reduced. 

The basic variables and their probabilistic models are given in Table 4.12, where the following 

abbreviations are applicable: N for normal, LN for two-parameter lognormal, LN3 for three-

 𝐹𝑠𝑡 = 𝐹𝑐𝑐 

𝑓𝑦𝐴𝑠 = 0,67𝑓𝑐𝑢𝑏𝑠 

𝑠 = [
𝑓𝑦𝐴𝑠

0,67𝑓𝑐𝑢𝑏
] 

 

(4.11) 
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parameter lognormal and Det for a deterministic value. The subscript k denotes the 

characteristic value of the variable. The following sections provide a discussion on the basic 

variables summarised in Table 4.12. 

 

Table 4.12: Conventional probabilistic models for the basic variables. 

Name of basic variable 

Symbol of 

basic 

variable (X) 

Unit 
Distribution 

type 
Mean (μX) 

Standard 

deviation 

(σX) 

Dead load G kNm N Gk 0.05μX 

Superimposed dead load Gw kNm N Gwk 0.1μX 

Traffic load (50 years) Q kNm LN3 
(see Table 

4.11) 

(see Table 

4.11) 

Concrete strength fcu kPa LN fcuk + 1.645σX 0.18μX 

Yield strength fy kPa LN fyk + 1.645σX 30E+03 

Effective flange width b m Det bk 0 

Effective depth to 

reinforcement 
d m N dk 0.02μX 

Area of reinforcement As m2 N 1.02*As(nom) 0.02μX 

Permanent load model 

uncertainty 
θG - N 1 0.07μX 

Traffic load model 

uncertainty 
θQ - LN 1 0.1μX 

Resistance 

model 

uncertainty 

Probabilistic 

model 1 
θR - LN 1 0.06μX 

Probabilistic 

model 2 
θR - LN 1.1 0.1μX 

Probabilistic 

model 3 
θR - LN 1.2 0.15μX 

 

4.6.2.1 Geometric Properties 

The statistical description of basic variables, such as the geometric properties of a concrete 

cross-section and steel reinforcement, have been extensively investigated in literature and are 

well-established (fib COM3 TG3.1, 2016). The geometric properties include variables such as 

the effective flange width (b), the effective depth to reinforcement (d) and the area of steel 

reinforcement (As). The values in Table 4.12 are based on normal quality control measures. It 

is typically found that b and d have a bias of 1, meaning that the mean value is equal to the 
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characteristic value (Holický, 2009). Whereas the area of steel bars (As) has a slight bias of 

1.02 (Holický, 2009). The variable d was taken to be normally distributed with a standard 

deviation of 0.02μX (Lenner and Sýkora, 2017). The reliability analysis showed that b had a 

negligible contribution to the obtained reliability index, and was therefore applied as a 

deterministic quantity. 

 

4.6.2.2 Material Properties 

Holický (2009) recommends a mean of (fk + 2σ) for the steel yield strength (fy) and concrete 

strength (fcu), instead of (fk + 1.645σ). Meaning that in reality, the specified 5 % characteristic 

value (fk) actually represents a 2 % characteristic value. This is based on sample inspection that 

suggests that better quality production standards are maintained in European countries 

(Holický, Retief and Wium, 2010). The 5 % characteristic value is equivalent to a 95 % 

probability of exceedance, whereas a 2 % characteristic value represents a 98 % probability of 

exceedance. Nevertheless, for this case study the 5 % characteristic strength specified in TMH-

7 (CSRA, 1989) was used, i.e. (fk + 1.645σ), as the same level of quality is not necessarily 

realised by South African production standards (Mensah, 2015). A fixed standard deviation of 

30 MPa was used for fy and a conservative standard deviation of 0.18μX (fib COM3 TG3.1, 

2016) was assumed for fcu, to account for uncertainties in the quality control level. 

 

4.6.2.3 Permanent Loads 

The statistical description of the dead load (G) and superimposed dead loads (Gw) of the bridge 

are dependent on the volume and density of the members. The variability of the two properties 

are greatly influenced by the tolerances on the dimensions of the cross-section and the 

production quality of the materials (CIB, 1989). Both G and Gw are normally distributed with 

a mean equal to the characteristic value, however, G generally has a lower variability than Gw. 

A standard deviation of 0.05μX was assumed for G, as the cross-section of the twin spine deck 

is symmetrical and fairly simple with a constant cross-section along the span. A standard 

deviation of 0.10μX was assumed for Gw. For instance, to account for variability in the thickness 

of the asphalt surfacing that can differ significantly. These values agree with literature sources 

(Von Sholten et al., 2004; Holický, 2009). 
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4.6.2.4 Load Effect Model Uncertainty 

The following model uncertainties were introduced into the limit state function. It is 

recommended to use a traffic load model uncertainty (θQ) that is lognormally distributed with 

a mean of 1.0 and a COV of 0.1 (JCSS, 2001; Holický and Sýkora, 2012; fib COM3 TG3.1, 

2016). The permanent load model uncertainty (θG) is considered normally distributed with a 

mean of 1.0 and a COV ranging between 0.05 and 0.1 (Holický, 2009). Moreover, θG should 

generally be set equal to or less than θQ. For the investigation, a COV of 0.07 was assumed for 

θG based on literature (Steenbergen and Vrouwenvelder, 2010; Lenner and Sýkora, 2017), and 

owing to the simplicity of the spine beam cross-section. 

 

4.6.2.5 Resistance Model Uncertainty 

More variability is seen in literature for the statistical description of the resistance model 

uncertainty (θR). Therefore, three probabilistic models were considered to investigate the 

influence of different parameters for the mean and COV. A two-parameter lognormal (LN) 

distribution is typically used to describe θR. The three probabilistic models are summarised in 

Table 4.13 with the appropriate references.  

 

Table 4.13: Different probabilistic models describing the resistance model uncertainty θR. 

Probabilistic model Distribution type Mean (μ) COV (σ/μ) Reference 

1 LN 1.0 0.06 fib COM3 TG3.1 (2016) 

2 LN 1.1 0.1 Sýkora et al. (2015) 

3 LN 1.2 0.15 JCSS (2001) 

 

It has been mentioned in literature that the JCSS Model Code provides fairly general and 

limited information on the selection of a mean value and COV for θR (Holický, Retief and 

Wium, 2010; Lenner and Sýkora, 2017). According to fib Bulletin 80 (2016), the mean of 1.2 

and COV of 0.15 provided by JCSS account for members experiencing bending in the presence 

of axial and shear forces, and that smaller uncertainties can be expected for pure bending. For 

sound reinforced concrete cross-sections, the COV can even reduce to values in the order of 2 

to 5 % (fib COM3 TG3.1, 2016). Thus, the first two probabilistic models are more appropriate 

in representing the resistance model uncertainty. Consequently, the focus is on the reliability 
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results obtained for the first and second probabilistic models. The third probabilistic model, 

based on JCSS, is only included for comparative purposes. 

 

4.6.3 Input Parameters for Limit State Function 

Finally, the input parameters of the basic variables are presented in Table 4.14. The resistance 

and permanent load properties of the critical spine beam were obtained from the bridge design 

in Section 4.3. The permanent load properties were obtained from the unfactored bending 

moments, provided in Table 4.2, which represent the characteristic values. As is based on the 

nominal (design) value, provided in Table 4.4, which was obtained for the spine beam under 

NA loading and permanent loads. The traffic load properties were derived from actual WIM 

data and it is described by the 50-year maximum load effect distribution presented in Table 

4.11 for Load Case 1 to 8. By designing the bridge according to TMH-7 and loading it with the 

actual traffic load effects, the reliability performance of TMH-7 can be estimated. 

 

Table 4.14: Statistical input parameters for basic variables in bending limit state function. 

Name of basic variable 

Symbol of 

basic 

variable (X) 

Unit 
Distribution 

type 
Mean (μX) 

Standard 

deviation 

(σX) 

Dead load G kNm N 3651.6 182.6 

Superimposed dead load Gw kNm N 732.2 
 

73.2 

Traffic load (50 years) Q kNm LN3 
(see Table 

4.11) 

(see Table 

4.11) 

Concrete strength fcu kPa LN 71E+03 12.8E+03 

Yield strength fy kPa LN 499.4E+03 30E+03 

Effective flange width b m Det 5.7 0 

Effective depth to 

reinforcement 
d m N 0.895 0.018 

Area of reinforcement As m2 N 37.2E-3 0.74E-3 

Permanent load model 

uncertainty 
θG - N 1 0.07 

Traffic load model 

uncertainty 
θQ - LN 1 0.1 

Resistance 

model 

uncertainty 

Probabilistic 

model 1 
θR - LN 1 0.06 
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Name of basic variable 

Symbol of 

basic 

variable (X) 

Unit 
Distribution 

type 
Mean (μX) 

Standard 

deviation 

(σX) 

Resistance 

model 

uncertainty 

Probabilistic 

model 2 
θR - LN 1.1 0.11 

Probabilistic 

model 3 
θR - LN 1.2 0.18 

 

4.6.4 Reliability Analysis Results and Discussion 

The critical element reliability analysis was conducted on the bending limit state function. It 

involved a time-invariant analysis performed in the reliability software called Comrel (RCP, 

2007), using FORM. The FORM-analysis determined the overall reliability index (β) and 

corresponding probability of failure (pf) for a 50-year reference period. The results for the 

reliability analysis are provided in Table 4.15. It contains the results for Load Case 1 to 8 in 

accordance with the three probabilistic models selected to describe the resistance model 

uncertainty (θR). 

 

Table 4.15: Reliability indices (β) and probability of failure (pf) corresponding to a 50-year reference period. 

Load Case 
Probabilistic model 1 Probabilistic model 2 Probabilistic model 3 

β pf β pf β pf 

1 7.08 7.38E-13 6.61 1.98E-11 5.60 1.08E-08 

2 6.63 1.73E-11 6.45 5.70E-11 5.52 1.74E-08 

3 6.34 1.18E-10 6.36 9.91E-11 5.72 5.34E-09 

4 7.56 2.07E-14 6.78 5.96E-12 5.70 6.00E-09 

5 7.81 2.99E-15 6.96 1.75E-12 5.83 2.85E-09 

6 7.78 3.71E-15 6.93 2.06E-12 5.81 3.19E-09 

7 7.32 1.27E-13 6.66 1.37E-11 5.62 9.41E-09 

8 6.20 2.88E-10 6.17 3.45E-10 5.42 2.97E-08 

 

The results in Table 4.15 show that a high reliability level is achieved for the ultimate bending 

capacity of the critical spine beam. For the different probabilistic models, β ranges between 

5.42 and 7.81. When compared to typical target reliability indices (βt) of 3.8 (CEN, 2002) and 

3.0 (SABS, 2019) corresponding to a 50-year period, the obtained β is seen to be much higher. 

This observation shows that TMH-7 is providing a good reliability performance for the bending 
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capacity of a 20 m span bridge, when designed according to NA loading. According to Tabsh 

and Nowak (1991) and Matos et al. (2019), uneconomically high β-values (larger than 5-6) 

could be expected for structures in a good condition.  

Table 4.15 shows that the first probabilistic model for θR obtains the highest β-values, where β 

varies with a maximum difference of 1.61 between load cases. Whereas, the third probabilistic 

model obtains the lowest β-values. The results show that the statistical description of θR has a 

large influence on the reliability results, which agrees with literature (Allaix, 2007; Holický, 

Retief and Wium, 2010). Consider Load Case 5, where the pf ranges between 2.99E-15 and 

2.85E-09 depending on the description of θR. When the mean and COV of θR increases, the 

corresponding β-value decreases and the pf increases. In short, the larger the uncertainty or 

variability in the resistance model, the less confidence there is in the safety of the structure. 

The smallest β-values are obtained in Load Case 8, which is characterised by three traffic lanes 

positioned on the bridge, where the slow lane in the southbound direction (Sb1) has the largest 

loading contribution on the critical spine beam. 

It is important to note that the obtained reliability results for the 20 m twin spine deck may not 

necessarily be true for other types of 20 m span bridges. The deck type and material type of a 

bridge may have a significant influence on the reliability performance of a critical member 

(Tabsh and Nowak, 1991), as it influences the self-weight, required reinforcement and 

transverse stiffness of the deck. Although a twin spine deck is recommended for a 20 m span 

bridge (Benaim, 2008), other bridge deck types can also be considered, e.g. multiple T-girders 

or a box-girder. Additionally, bridges can have different material types, i.e. reinforced concrete 

or prestressed concrete. With this in mind, TMH-7 needs to cater for a wide range of practical 

design situations for a 20 m span bridge. Therefore, it is recommended for future research to 

explore other design situations to determine whether the reliability results concur with what is 

found for the twin spine deck. 

 

4.6.5 Sensitivity Analysis Results and Discussion 

A sensitivity analysis was performed on the basic variables in the limit state function, using 

FORM. The FORM-analysis produces sensitivity factors, denoted by α, which describe the 

significance of each variable in the reliability analysis. The larger the α-factor, the larger the 

influence of the basic variable on the obtained β-value. The relative importance of each variable 

on the obtained β-value can be assessed with α2, where the sum of α2 for all the variables are 
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equal to 1. The relative importance (α2) of each basic variable is presented in Table 4.16 as 

percentage values, where α2 for all the basic variable in the limit state function sums to 100 %. 

Except for the traffic load effects, the basic variables are based on theoretical models. 

For every load case in Table 4.16, the basic variables with the three largest α2-values are colour-

coded for each probabilistic model. As discussed in Section 4.6.2.5, the focus is primarily on 

the first and second probabilistic models. The results show that depending on the load case, the 

resistance model uncertainty (θR) or the traffic load effects (Q) have the most significant effect 

on the obtained β. 

 

Table 4.16: Relative importance (α2) of the basic variables provided as a percentage (%). 

Load Case Basic variable θR fy As fcu d G Q GW θG θQ 

1 

Prob. model 1 15.21 13.69 1.69 0.16 1.96 1.44 49.00 0.25 3.61 12.96 

Prob. model 2 51.84 17.64 1.96 0.25 2.25 2.89 7.84 0.49 6.76 9.00 

Prob. model 3 72.25 10.89 1.21 0.16 1.44 1.96 2.25 0.36 4.84 4.84 

2 

Prob. model 1 10.24 9.61 1.00 0.16 1.21 0.81 65.61 0.09 1.96 10.24 

Prob. model 2 43.56 14.44 1.69 0.16 1.96 1.96 20.25 0.36 4.84 9.61 

Prob. model 3 70.56 10.89 1.21 0.16 1.44 1.69 3.24 0.25 4.84 5.29 

3 

Prob. model 1 6.25 5.76 0.64 0.09 0.81 0.36 77.44 0.04 1.00 7.29 

Prob. model 2 19.36 6.25 0.81 0.09 0.81 0.49 64.00 0.09 1.44 6.76 

Prob. model 3 68.89 10.24 1.21 0.16 1.44 1.96 5.76 0.25 4.84 4.84 

4 

Prob. model 1 30.25 28.09 3.24 0.36 3.61 4.41 5.76 0.64 10.24 13.69 

Prob. model 2 54.76 18.49 2.25 0.25 2.56 3.24 2.25 0.49 7.84 7.84 

Prob. model 3 72.25 10.89 1.21 0.16 1.44 1.96 1.00 0.36 5.29 4.84 

5 

Prob. model 1 31.36 29.16 3.61 0.36 4.00 4.84 2.25 0.81 11.56 12.25 

Prob. model 2 54.76 18.49 2.25 0.25 2.56 3.61 1.00 0.49 8.41 7.29 

Prob. model 3 73.96 10.89 1.21 0.16 1.44 2.25 0.49 0.36 5.29 4.41 

6 

Prob. model 1 31.36 29.16 3.61 0.36 4.00 4.84 1.96 0.81 11.56 12.25 

Prob. model 2 56.25 18.49 2.25 0.25 2.56 3.61 1.00 0.49 8.41 7.29 

Prob. model 3 73.96 10.89 1.21 0.16 1.44 2.25 0.49 0.36 5.29 4.41 

7 

Prob. model 1 23.04 22.09 2.56 0.25 2.89 2.89 25.00 0.49 6.76 14.44 

Prob. model 2 53.29 17.64 1.96 0.25 2.25 2.89 4.41 0.49 7.29 9.00 

Prob. model 3 72.25 10.89 1.21 0.16 1.44 1.96 1.69 0.36 4.84 4.84 

8 

Prob. model 1 8.41 7.84 0.81 0.09 1.00 0.49 70.56 0.09 1.44 9.00 

Prob. model 2 27.04 9.00 1.00 0.09 1.21 0.81 49.00 0.16 2.25 9.00 

Prob. model 3 68.89 10.24 1.21 0.16 1.44 1.69 5.29 0.25 4.41 5.76 
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Table 4.16 shows that for the first probabilistic model, Q shows the largest contribution to β 

for Load Case 1, 2, 3 and 8, while θR shows the largest contribution for Load Case 4, 5 and 6. 

For Load Case 7, Q and θR show similar results. These results can be explained by considering 

the skewness and COV of Q for each load case (see Table 4.11). When Q governs, its skewness 

and COV are the largest relative to its parameters in the other load cases. When Q shows the 

smallest skewness and COV relative to other load cases, θR governs. This concludes that the 

significance of the traffic load effects (Q) is highly sensitive to its variability and tail behaviour. 

It also shows that the sensitivity of β to θR is dependent not only on the COV of θR, but also on 

the skewness and COV of Q.  

The results show that θR is the most significant variable for all load cases in the second 

probabilistic model, except for Load Case 3 and 8 where Q governs. From Table 4.11 it can be 

seen that Q has the largest skewness and COV for Load Case 3 and 8, and thus shows 

significance. In the third probabilistic model, θR has the largest significance, as its COV is 

much larger than any of the other basic variables. 

In addition to the above findings, the steel yield strength (fy) consistently shows a significant 

contribution to β, with α2-values reaching a maximum value of 29.16 %. This observation can 

be attributed to the standard deviation of 30 MPa recommended for fy (Holický, 2009), which 

leads to a relatively high COV of 0.06. Its influence on β is further enhanced by its expression 

in the bending limit state function, where fy is raised to the power of two. Actual measurements 

may lead to a smaller COV, which will reduce the relative importance of fy and increase the 

obtained β-value. Furthermore, Table 4.16 shows that the traffic load model uncertainty (θQ) 

and dead load model uncertainty (θG) can reach a maximum value of 14.44 % and 11.56 %, 

respectively. Thus, θQ and θG also have a considerable contribution on the reliability results. 

An important remark is that the relative importance of the basic variables may change for other 

span lengths. This can partially be explained by the change in ratio between the traffic load (Q) 

and permanent loads (G and Gw). In general, the permanent loads increase as the span length 

increases, leading to a larger relative importance. Concurrently, the significance of the traffic 

load decreases. The probabilistic description of the traffic load will also look differently for 

other span lengths, as different loading events will become more prominent. For instance, 

single axles or axle sets govern for shorter spans, whereas for longer spans, multiple truck event 

becomes more important. As a result, the description of the COV and skewness may vary and 

influence the relative importance of the traffic load. Lastly, the geometric properties of the 
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bridge deck will change for different span lengths, which will influence the relative importance 

of the resistance variables. 

 

4.7 Chapter Summary 

This chapter discussed the case study based on WIM data from a station near Kilner Park, 

located on the N1. The main purpose was to investigate the reliability performance of TMH-7 

in catering for normal traffic conditions on a highway bridge. This was done by conducting a 

critical element reliability analysis. 

For the analysis, a 20 m reinforced concrete twin spine deck was selected, where the spine 

beam represented the critical member. The bridge deck was designed in accordance with NA 

loading in TMH-7, and analysed in Midas Civil using a grillage analysis. Thereafter, the 

concurrent traffic load effects derived from the WIM data, along with their lateral load 

distribution factors, were used to obtain the total traffic load effects carried by the critical spine 

beam. This was done for different load cases, describing different traffic lane combinations. 

The block maxima approach was applied, where the maximum load effect per month was 

extracted. This was followed by the probabilistic modelling of the extreme traffic load effects 

using the LN3 distribution. MLE provided estimates for the model parameters, while goodness-

of-fit tests assessed the quality of fit of the model. Through statistical projection, the 50-year 

maximum load effect distribution was then obtained and used to represent the traffic load 

variable in the bending limit state function. The probabilistic description of the other basic 

variables was acquired from literature.  

Finally, to perform the critical element reliability analysis, FORM was utilised in Comrel, 

together with the bending limit state function. The analysis obtained reliability indices, which 

were then compared to target values to draw conclusions on the reliability performance of the 

bending moment capacity of the spine beam. In addition, a sensitivity analysis was performed 

to determine the relative importance of each basic variable on the reliability index. 

 

4.8 Conclusion 

Based on the work done in this chapter, conclusions can be drawn concerning the reliability 

performance of a 20 m span bridge, designed according to NA loading in TMH-7 and carrying 

traffic load effects derived from WIM data. The critical element reliability analysis obtained 
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reliability indices for a 50-year period that are much higher than the target values of 3.8 and 

3.0 (see Table 4.15). The results indicate that the beam resistance is substantially higher than 

the load effects applied to it. Thus, the results suggest that a design according to TMH-7 

provides a good reliability performance for the bending moment capacity of a 20 m span bridge. 

However, the bridge deck type and material type can have an influence on the reliability 

performance of the bridge. Therefore, it is recommended for future research to explore different 

design situations, in order to confirm that a 20 m span in general agrees with the high reliability 

results obtained in this case study. 

The results from the sensitivity analysis show that the resistance model uncertainty and traffic 

load obtain the largest sensitivity factors, depending on the load case. A high sensitivity factor 

signifies that the variable has a large influence on the obtained reliability index. The findings 

suggest that TMH-7 is conservative in its representation of normal traffic conditions for a 20 

m span. Notwithstanding, the reliability performance of NA loading may differ for other load 

effects, such as hogging moments and shear forces. Therefore, further study is recommended 

to determine the performance of NA loading for other load effects. 

Actual data improves the uncertainty quantification of a variable, which in turn influences the 

relative importance of the variable and the obtained reliability index. Therefore, it is 

recommended that future research should verify and improve the theoretical probabilistic 

models of the basic variables. This is especially important for the resistance model uncertainty, 

which largely influences the reliability results. In addition, the yield strength and model 

uncertainties for load effects also show a noticeable significance.  

When considering the monthly maximum traffic load effects carried by the critical spine beam, 

the diagnostic plots showed deviations from a linear fit for some load cases. This suggests that 

the data set of monthly maxima are not completely iid (independent and identically distributed) 

and may originate from a mixture of loading events. The study is limited to processed data that 

makes no distinction between these loading events. It is therefore recommended that future 

research should identify and separate single truck events, following truck events and side-by-

side truck events and fit distributions to the individual loading events. This will improve the 

assumption of iid and also lead to more reliable results. 

In describing the extreme traffic load effects derived from WIM data, different probabilistic 

descriptions were obtained for each load case. The COV and skewness of the model varied, 

depending on whether the traffic moved in the northbound or southbound direction and whether 
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a slow lane or a fast lane was located above the critical spine beam. Moreover, the sensitivity 

analysis reveals that the relative importance of the traffic load is highly sensitive to the COV. 

Therefore, it is recommended for future reliability analyses to investigate different load cases 

in order to find the governing load case for the critical member under consideration. 

Furthermore, different loading events may govern for other span lengths. For instance, for 

shorter spans, single axles or axle sets may become more critical. Therefore, no direct 

correlation can be drawn between the reliability performance of a 20 m span bridge and the 

performance of other span lengths. Consequently, other span lengths will need to be 

investigated to obtain a more comprehensive understanding of the overall reliability 

performance of TMH-7 for normal traffic conditions. The procedure set out in this case study 

can serve as guideline for future studies. 
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5 Conclusion and Recommendations 

5.1 Conclusion 

The structural performance of a bridge is essential in ensuring a sound road transport network. 

South Africa’s bridge design code, called Technical Methods for Highways 7 (TMH-7), is 

partially based on an outdated code and the traffic load model was last revised in 1988. Since 

then, the road freight industry has expanded significantly, further exacerbated by changes to 

the traffic regulations. As a result, the question was raised as to whether TMH-7 is still able to 

cater for the current traffic demand.  

The purpose of this study was to carry out an investigation into the reliability performance of 

bridges designed according to TMH-7 and loaded with actual traffic loads. Past studies have 

identified deficiencies in TMH-7’s traffic load model for normal traffic conditions, called NA 

loading (Oosthuizen et al., 1991; Anderson, 2006). In response, the study focused on the 

investigation of the reliability performance of TMH-7 for normal traffic conditions. For the 

investigation, the performance of a bridge at the ultimate limit state (ULS) was of concern, 

where the load effect was represented by the bending moment at midspan of a simply supported 

bridge. 

In achieving the study’s purpose, reliability analyses were performed for two case studies, 

based on actual traffic load effects derived from site-specific Weigh-in-Motion (WIM) data. 

For each reliability analysis, a reliability index was obtained to measure the reliability level of 

the structure. The obtained reliability indices were compared to target reliability indices from 

existing standards to draw inferences with regard to the reliability performance of TMH-7 for 

normal traffic conditions. 

For both case studies, the sub-objectives were achieved. The traffic load effects describing the 

extreme loading events, were extracted and described in a probabilistic manner using the three-

parameter lognormal (LN3) distribution. The maximum load effect distribution was obtained, 

relating the extreme traffic load effects to a 50-year reference period. The limit state function 

was formulated to describe the failure mode. The First Order Reliability Method (FORM) was 

then used to conduct the reliability analysis and to obtain a reliability index. Lastly, the 

reliability indices were compared to target values of 3.8 (CEN, 2002) and 3.0 (SABS, 2019) 

corresponding to a 50-year period. 
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For the first case study (discussed in Chapter 3), only the traffic load effects were considered 

in the reliability analysis. The limit state function defined failure as the instance the actual 

traffic load effects exceed the design value for NA loading. The overall reliability indices for 

short to medium spans were obtained for different design scenarios. It was found that NA 

loading generally performs well for spans ranging from 5 to 50 metres. However, a poor 

reliability performance is seen for short narrow span bridges, especially for 5 m and 10 m spans. 

That is, when the number of traffic lanes is equal to the number of notional lanes for NA 

loading. The findings agree with Oosthuizen et al. (1991) and Anderson (2006), who also found 

deficiencies in NA loading for short and narrow span bridges. Notwithstanding, a highway 

bridge typically exhibits more traffic lanes than the number of notional lanes, owing to the 

geometry of the bridge deck (Burrell, Mitchell and Wolhuter, 2002) and the way notional lanes 

are defined in TMH-7 with floating lane widths (CSRA, 1981). The results also conclude that 

NA loading is inherently conservative in its design for longer spans. This is evident for 30 m 

to 50 m spans. This finding may be attributed to decisions made regarding idealised vehicle 

combinations, overloading and partial load factors in deriving the load model for NA loading. 

The reliability analysis in the first case study is valuable, as it identifies deficiencies in TMH-

7 for normal traffic conditions. It also identifies span lengths that achieve a high reliability 

performance, where design could be optimised to be more cost-effective. 

The second case study is discussed in Chapter 4. A critical element reliability analysis was 

performed on the spine beam of a 20 m reinforced concrete bridge with a twin spine deck. The 

limit state function accounted for the resistance and permanent loads in accordance with TMH-

7, whereas the traffic load was based on WIM data. Failure was defined as the instance the load 

effects exceed the resistance of the spine beam. The comparison of the overall reliability indices 

revealed that the obtained reliability indices far exceeded the target values. This concludes that 

TMH-7 NA loading is providing a high reliability performance for the bending moment 

capacity of the 20 m span bridge. The results agree with the findings in the first case study, 

where high reliability indices were obtained for a typical highway bridge with a 20 m span.  

A sensitivity analysis in the second case study identified the traffic load effects and resistance 

model uncertainty as having the greatest influence on the reliability performance of the spine 

beam. The results suggest that NA loading is conservative in its representation of traffic load 

effects on a 20 m span bridge. Revision of the load model for a 20 m span could lead to potential 
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cost savings. However, other load effect types will need to be investigated to confirm this 

observation. 

With regard to bending moments at midspan, the findings indicate that TMH-7 is able to cater 

for the current normal traffic conditions, although concern is raised for short narrow span 

bridges. The study consists of an investigation into the reliability performance of TMH-7 for 

normal traffic conditions. Therefore, the findings are insightful but not conclusive in 

representing the overall reliability performance of TMH-7 for normal traffic conditions. Future 

research is recommended to confirm and elaborate on the performance of TMH-7. 

 

5.2 Recommendations 

The study reveals the enormity of the task to verify the reliability performance of TMH-7 and 

that it consists of many different components. Recommendations can assist future research in 

making this task more attainable. 

It is recommended for future research to make use of the extensive database of WIM data, 

available at different locations in South Africa, to verify and confirm the findings in this study. 

The focus should be on WIM stations on heavy freight routes. The investigation should be 

extended to include load effects described by the shear forces and hogging moments on single 

and continuous spans, as appropriate. These load effects may supersede sagging moments in 

representing the failure mode of the structure, and thus provide more insight into the 

performance of the load model. Moreover, future research should examine the dynamic load 

effects of moving traffic on a bridge, as it may have a significant effect on the reliability 

performance.  

For the analysis of normal traffic conditions, it is recommended to find a way to identify and 

separate loading events caused by standard trucks, illegally overloaded trucks and permit 

trucks. Probabilistic models are sensitive to different types of loading events. Therefore, by 

fitting distributions to the individual loading event types, the accuracy of the probabilistic 

models will improve. This will also lend further support to the assumption of iid (independent 

and identically distributed) for the extreme traffic load effects. Another consideration is that 

for multiple lane bridges, a mixture of loading event types becomes more prominent. It may 

include single truck, following trucks and side-by-side truck events that require different 

probabilistic descriptions. The study is limited to processed data that makes no distinction 
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between these loading events. Similar as before, it is recommended that future research should 

identify and separate these loading event types and fit distributions to them individually. This 

will improve the assumption of iid and also lead to more accurate results. 

It is further recommended to extend the critical element reliability analysis to other span lengths 

and bridge deck types, where the dead load, geometric properties and transverse stiffness of 

the bridge will differ. Moreover, different loading events will govern for different span lengths. 

Therefore, no direct correlation can be drawn between the reliability performance of one span 

length and another. The procedure used in Chapter 4 can serve as guideline to perform critical 

element reliability analyses for other span lengths. The broadened investigation will provide a 

better understanding of the overall reliability performance of NA loading.  

Furthermore, except for the traffic load effect variable, the basic variables in the reliability 

analysis were obtained from literature. The literature sources provide rather general 

probabilistic descriptions of the basic variables and they are not specific to South Africa. 

Therefore, when possible, future research should use actual measurements to improve the 

probabilistic description of the model uncertainties and resistance variables related to quality 

control. It is especially important for the resistance model uncertainty, which was shown to 

have a large influence on the reliability results. 

The work presented in this thesis contributes to an improved understanding of the reliability 

performance of a bridge designed according to TMH-7 for normal traffic conditions. With 

regard to bending moments at midspan, the study was able to identify deficiencies in the traffic 

load model for NA loading. It also identified spans where design could be optimised to be more 

cost-effective. These insights can help direct future revisions of the traffic load model for 

normal traffic conditions. 
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Appendix A: Maximum Likelihood Estimation 

This appendix provides an example to show the implementation of the maximum likelihood 

estimation (MLE) method in Mathcad. The method is used to determine the model parameters 

of the three-parameter lognormal (LN3) distribution. Moreover, the example makes use of the 

monthly maxima data set for a 50 m span, as discussed in Chapter 3 Section 3.4.3. 

Figure A.1 shows the expression used in Mathcad for the probability density function of the 

LN3 distribution, where m denotes the mean, s denotes the standard deviation and w denotes 

the skewness. The expression originates from the equations in Section 2.3.2.2.  
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Figure A.1: Probability density function for LN3 distribution, written in terms of mean (m), standard deviation (s) and skewness (w). 
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  Example in Mathcad to illustrate MLE: 

 

Monthly maxima for 50 m span (measured in kNm): 

 

Sample size: 

  

Use sample characteristics to provide initial values for the model parameters: 

  -  mean 

  -  standard deviation 

V  -  coefficient of variation 

  -  skewness 

    

    

Maximum likelihood estimation (MLE) of model parameters for LN3 distribution: 

 

   

  

 

ORIGIN 1=

data 1 2 3 4 5 6

1 38.032·10 38.481·10 37.468·10 38.618·10 37.731·10 ...
=

n cols data( )= n 84=





w

 M mean data
T( )=  M Stdev data

T( )= VM

 M

 M

= wM skew data
T( )=

 M 8310.95=  M 716.20= VM 0.086= wM 0.481=

MLM  MLM  MLM wMLM ( )
1

n

i

ln fLN data
T( )

i
 MLM  MLM wMLM 











=

=

 MLM  M=  MLM  M= wMLM wM=

Given 0.5  M  MLM 1.5  M

0.8  M  MLM 1.2  M
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MLE parameters:

 

 

    





w











8311.847

728.42

0.838











=

V



= V 0.088=

 8311.85=  728.42= V 0.088= w 0.838=
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Appendix B: R Code 

The R code on the following page represents the procedure to obtain the diagnostic plots for 

each distribution type, along with the application of the modified Anderson-Darling test. The 

procedure is applicable to both case studies presented in Chapter 3 and Chapter 4. 
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library(evd) 
 
library(fitdistrplus) 

library(ismev) 

library(VGAM) 

library(extRemes) 

library(survival) 
 
library(SPREDA) 
 
library(stats4) 
 
library(FAdist) 

library(nortest) 
 
library(gnFit) 

 

getwd() 

d<-read.table("Sagging moments monthly max (84).txt", header=FALSE, sep="              
") 
print(d) 

 collection<-data.matrix(d) 
 noCol<-ncol(collection) 
 noRow<-nrow(collection) 
 
 mean.vec <-matrix(nrow=noCol, ncol=1) 
 sd.vec <-matrix(nrow=noCol, ncol=1) 
 
 m<-read.table("MLE parameters for LN3.txt", header=FALSE, sep="") 
 print(m) 

 ln3MLE<-data.matrix(m) 
 skewvec<-ln3MLE[,3] 
 boundvec<-ln3MLE[,4] 
 
 cat("Number of columns ",noCol) 

 

 #Normal distribution fitted to transformed data 
  
 for(j in 1:noCol){ 
    
   cat("Column = ",j) 
   col<-collection[,j] 
   boundi<-boundvec[j] 
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   for(k in 1:noRow){ 
     col[k]<-log(abs(col[k]-boundi)) 
   } 
    
   normfit<-fitdist(col,"norm",method="mle") 
    
   mean.vec[j,]<- normfit$estimate[1] 
   sd.vec[j,]<- normfit$estimate[2] 
    
   print(ad.test(col)) 
   plot(normfit) 
   print(normfit) 
    
 } 

 

 # Lognormal distribution fitted to shifted data 
  
 for(j in 1:noCol){ 
    
   cat("Column = ",j) 
   col<-collection[,j] 
   bound<-boundvec[j] 
   skew<-skewvec[j] 
    
   if(skew>0){ 
     for(k in 1:noRow){ 
     col[k]<-col[k]-bound 
     } 
   } 
    else{ 
       for(k in 1:noRow){ 
         col[k]<-((-1)*col[k])+bound 
       } 
     } 
    
   lnormfit<-fitdist(col,"lnorm",method="mle") 
    
   plot(lnormfit) 
   print(gofstat(lnormfit)) 
   print(lnormfit) 
    
 } 

 

 #Generalised Extreme Value distribution fitted to data 
  
 for(j in 1:noCol){ 
    
   cat("Column = ",j) 
   col<-collection[,j] 
    
   fgevfit<-gev.fit(col, ydat=NULL, mul=NULL,sigl=NULL,shl=NULL, 
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                    mulink=identity,siglink=identity,shlink=identity, 
                    muinit=NULL,siginit=NULL,shinit=NULL, 
                    show=TRUE) 
    
   gev.diag(fgevfit) 
   gnfit(col,"gev",pr=fgevfit$mle) 
 
 } 

 

  

Stellenbosch University https://scholar.sun.ac.za



Appendices  136 

Appendix C: Diagnostic Plots for Roosboom Case Study 

The relevant diagnostic plots for Chapter 3 Section 3.4.4.1 are provided in this section. The 

data represents the monthly maxima (measured in kNm) for each span length. Figure C.1 to 

Figure C.10 show the diagnostic plots for the normal distribution fitted to the transformed data. 

The diagnostic plots for the three-parameter lognormal (LN3) distribution are shown in Figure 

C.11 to Figure C.20, where a two-parameter lognormal (LN) distribution is fitted to the shifted 

data. The diagnostic plots include the Q-Q plot, P-P plot, density plot and cumulative 

distribution (CDF) plot, as described in Section 3.4.4.1. This is followed by the diagnostic plots 

for the generalised extreme value (GEV) distribution fitted to the data. The diagnostic plots for 

the GEV distribution are presented in Figure C.21 to Figure C.30, which include the Q-Q plot, 

P-P plot, density plot and return level plot. 
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Figure C.1: Diagnostic plots for 5 m span: normal distribution fitted to transformed monthly maxima. 

 

Figure C.2: Diagnostic plots for 10 m span: normal distribution fitted to transformed monthly maxima. 
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Figure C.3: Diagnostic plots for 15 m span: normal distribution fitted to transformed monthly maxima. 

 

Figure C.4: Diagnostic plots for 20 m span: normal distribution fitted to transformed monthly maxima. 
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Figure C.5: Diagnostic plots for 25 m span: normal distribution fitted to transformed monthly maxima. 

 

Figure C.6: Diagnostic plots for 30 m span: normal distribution fitted to transformed monthly maxima. 
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Figure C.7: Diagnostic plots for 35 m span: normal distribution fitted to transformed monthly maxima. 

 

Figure C.8: Diagnostic plots for 40 m span: normal distribution fitted to transformed monthly maxima. 
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Figure C.9: Diagnostic plots for 45 m span: normal distribution fitted to transformed monthly maxima. 

 

Figure C.10: Diagnostic plots for 50 m span: normal distribution fitted to transformed monthly maxima. 
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Figure C.11: Diagnostic plots for 5 m span: LN distribution fitted to shifted monthly maxima. 

 

Figure C.12: Diagnostic plots for 10 m span: LN distribution fitted to shifted monthly maxima. 
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Figure C.13: Diagnostic plots for 15 m span: LN distribution fitted to shifted monthly maxima. 

 

Figure C.14: Diagnostic plots for 20 m span: LN distribution fitted to shifted monthly maxima. 
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Figure C.15: Diagnostic plots for 25 m span: LN distribution fitted to shifted monthly maxima. 

 

Figure C.16: Diagnostic plots for 30 m span: LN distribution fitted to shifted monthly maxima. 
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Figure C.17: Diagnostic plots for 35 m span: LN distribution fitted to shifted monthly maxima. 

 

Figure C.18: Diagnostic plots for 40 m span: LN distribution fitted to shifted monthly maxima. 
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Figure C.19: Diagnostic plots for 45 m span: LN distribution fitted to shifted monthly maxima. 

 

Figure C.20: Diagnostic plots for 50 m span: LN distribution fitted to shifted monthly maxima. 
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Figure C.21: Diagnostic plots for 5 m span: GEV distribution fitted to monthly maxima. 

 

Figure C.22: Diagnostic plots for 10 m span: GEV distribution fitted to monthly maxima. 
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Figure C.23: Diagnostic plots for 15 m span: GEV distribution fitted to monthly maxima. 

 

Figure C.24: Diagnostic plots for 20 m span: GEV distribution fitted to monthly maxima. 
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Figure C.25: Diagnostic plots for 25 m span: GEV distribution fitted to monthly maxima. 

 

Figure C.26: Diagnostic plots for 30 m span: GEV distribution fitted to monthly maxima. 
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Figure C.27: Diagnostic plots for 35 m span: GEV distribution fitted to monthly maxima. 

 

Figure C.28: Diagnostic plots for 40 m span: GEV distribution fitted to monthly maxima. 
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Figure C.29: Diagnostic plots for 45 m span: GEV distribution fitted to monthly maxima. 

 

Figure C.30: Diagnostic plots for 50 m span: GEV distribution fitted to monthly maxima. 

Stellenbosch University https://scholar.sun.ac.za



Appendices  152 

Appendix D: Diagnostic Plots for Kilner Park Case Study 

The relevant diagnostic plots for Chapter 4 Section 4.5.2 are provided in this section. The data 

represents the combined monthly maxima (measured in kNm) carried by the critical spine 

beam. Figure D.1 to Figure D.8 represent the diagnostic plots for the three-parameter lognormal 

(LN3) distribution, where a two-parameter lognormal (LN) distribution is fitted to the shifted 

data. Figure D.9 to Figure D.16 show the diagnostic plots for the generalised extreme value 

(GEV) distribution fitted to the data. Load Case 1 to 8 are described in Section 4.4.2 and 

labelled in the figures according to which traffic lane is closest to the critical spine beam (in 

descending order). The notation for two traffic lanes is (Q1;Q2) and for three traffic lanes is 

(Q1;Q2;Q3).  
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Figure D.1: Diagnostic plots for Load Case 1 (Nb1;Nb2): LN distribution fitted to shifted data. 

 

Figure D.2: Diagnostic plots for Load Case 2 (Sb1;Sb2): LN distribution fitted to shifted data. 
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Figure D.3: Diagnostic plots for Load Case 3 (Nb2;Nb1): LN distribution fitted to shifted data. 

 

Figure D.4: Diagnostic plots for Load Case 4 (Sb2;Sb1): LN distribution fitted to shifted data. 
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Figure D.5: Diagnostic plots for Load Case 5 (Nb1;Sb1): LN distribution fitted to shifted data. 

 

Figure D.6: Diagnostic plots for Load Case 6 (Sb1;Nb1): LN distribution fitted to shifted data. 
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Figure D.7: Diagnostic plots for Load Case 7 (Nb1;Nb2;Sb2): LN distribution fitted to shifted data. 

 

Figure D.8: Diagnostic plots for Load Case 8 (Sb1;Sb2;Nb2): LN distribution fitted to shifted data. 
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Figure D.9: Diagnostic plots for Load Case 1 (Nb1;Nb2): GEV distribution fitted to data. 

 

Figure D.10: Diagnostic plots for Load Case 2 (Sb1;Sb2): GEV distribution fitted to data. 
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Figure D.11: Diagnostic plots for Load Case 3 (Nb2;Nb1): GEV distribution fitted to data. 

 

Figure D.12: Diagnostic plots for Load Case 4 (Sb2;Sb1): GEV distribution fitted to data. 
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Figure D.13: Diagnostic plots for Load Case 5 (Nb1;Sb1): GEV distribution fitted to data. 

 

Figure D.14: Diagnostic plots for Load Case 6 (Sb1;Nb1): GEV distribution fitted to data. 
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Figure D.15: Diagnostic plots for Load Case 7 (Nb1;Nb2;Sb2): GEV distribution fitted to data. 

 

Figure D.16: Diagnostic plots for Load Case 8 (Sb1;Sb2;Nb2): GEV distribution fitted to data. 
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