
REGIONAL MAPPING OF SPEKBOOM CANOPY COVER USING VERY 

HIGH RESOLUTION AERIAL IMAGERY 

By DUGAL HARRIS 

Dissertation presented for the degree of Doctor of Philosophy in the Faculty of 

Science at Stellenbosch University 

Promotor: Prof A van Niekerk 

December 2019



i 

DECLARATION 

By submitting this research dissertation electronically, I declare that the entirety of the work 

contained therein is my own, original work, that I am the sole author thereof (save to the extent 

explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University 

will not infringe any third party rights and that I have not previously in its entirety or in part 

submitted it for obtaining any qualification. 

With regard to Chapters 3, 4 and 5 the nature and scope of my contribution were as follows: 

Chapter Nature of contribution Extent of contribution (%) 

Chapter 3 
This chapter was published as a journal article (Harris & Van Niekerk 
2019) and was co-authored by my supervisor who helped in the 
conceptualisation and writing of the manuscript.   

D Harris 85% 
A van Niekerk 15% 

Chapter 4 
This chapter was published as a journal article (Harris & Van Niekerk 
2018) and was co-authored by my supervisor who helped in the 
conceptualisation and writing of the manuscript.   

D Harris 85% 
A van Niekerk 15% 

Chapter 5 

This chapter was published as a journal article (Harris, Vlok & Van 
Niekerk 2018) and was co-authored by Jan Vlok, who helped in the 
problem formulation and data collection, and my supervisor who helped in 
the conceptualisation and writing of the manuscript.   

D Harris 70% 
J Vlok 15% 

A van Niekerk 15% 

Signature of candidate: Declaration with signature in possession of candidate and 

Supervisor 

Signature of supervisor: Declaration with signature in possession of candidate and 

Supervisor 

Date: 

Copyright © 2019 Stellenbosch University 

All rights reserved 

Stellenbosch University https://scholar.sun.ac.za



ii 

SUMMARY 

Widespread degradation of subtropical thicket (South Africa) by poorly managed pastoralism has 

led to substantial decreases in ecological functioning and biodiversity.  Once degraded, thicket 

does not recover after the removal of livestock, but requires active intervention for restoration.  It 

has been shown that planting spekboom (Portulacaria afra), a dominant and keystone thicket 

species, increases biomass, improves soil health and creates conditions that support the natural 

regeneration of biodiversity.  Spatial data, especially spekboom canopy cover maps, are required 

to inform and support large-scale restoration.  This research aimed to develop and demonstrate a 

semi-automated spekboom canopy cover mapping method.  A large study area in the Little Karoo 

in South Africa was selected to encompass the ecological heterogeneity of the wider region. 

Following a literature review, very high resolution (VHR) multi-spectral aerial imagery was 

identified as a viable data source for the fine-scale discrimination of spekboom.  A set of 2228 

aerial images covering the study area was subsequently acquired from Chief Directorate: National 

Geo-spatial Information (NGI).  Techniques for (1) radiometric correction and (2) feature selection 

were devised to address specific challenges of regional canopy cover mapping.  These techniques 

then formed components of the spekboom canopy cover mapping method.   

The need for the first technique, called radiometric homogenisation, arose from the presence of 

problematic radiometric variation in the aerial imagery.  Radiometric homogenisation corrects for 

varying atmospheric and bidirectional reflectance distribution function (BRDF) effects by 

calibration with concurrent and collocated satellite surface reflectance data.  In contrast to other 

radiometric correction methods, manual placement or acquisition of reflectance targets is not 

required.  Moreover, it is not necessary to have detailed knowledge of atmospheric conditions at 

the time of capture.  An experiment was conducted to establish the efficacy and accuracy of the 

technique.  Homogenised images of the study area were validated by visual inspection and 

statistical comparison to surface reflectance reference data.  Recognisable anomalies such as hot 

spots and seam lines were removed, and statistical results compared well to competing methods.  

While the technique was developed in the context of the spekboom canopy cover mapping 

problem, it could also be applied to general radiometric correction of VHR imagery.  Radiometric 

homogenisation is especially applicable to large study areas where radiometric uncertainty can 

prevent accurate classification.  

The second technique, called feature clustering and ranking (FCR), was devised to address 

problems of sub-optimality and instability that often arise when applying feature selection to 

redundant data.  Unlike other feature selection approaches, FCR allows for the optional inclusion 
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of factors other than relevance (such as computation and measurement cost) in the selection 

criteria.  An experiment was conducted to compare the effects of redundancy on popular feature 

selection approaches and FCR.  Results confirmed that redundancy has a negative impact on 

commonly used ranking and greedy search (stepwise) feature selection methods.  FCR provided 

the best accuracy and stability performance, confirming its value for selecting stable, informative 

features from high dimensional data containing redundancy.   

Finally, the radiometric homogenisation and FCR techniques were incorporated into a method for 

VHR spekboom canopy cover mapping.  Per-pixel spectral, textural and vegetation index features 

were generated from imagery that had been processed with the radiometric homogenisation 

technique.  FCR was subsequently used to select a reduced set of informative and computationally 

efficient features.  The core of the spekboom mapping method consisted of supervised 

classification of selected features, followed by morphological post-processing of classifier output 

maps to remove noise and smooth boundaries.   An experiment was carried out to test the accuracy 

of popular classifiers by comparing canopy cover estimates to ground truth data.  A decision tree 

provided the best performance of the tested classifiers.  Canopy cover maps exhibited some 

variation between different habitats, but provided good accuracy overall, with a mean absolute 

(canopy cover) error (MAE) of 5.85%.    

Regional vegetation maps are urgently required to inform responses to global issues, such as 

climate change.   While there is a known operational need for large-area VHR vegetation maps, 

there are surprisingly few studies that address the cost, computation and classifier transferability 

challenges associated with large spatial extents.  This research contributes to the important field 

of regional vegetation mapping through the development of the radiometric homogenisation and 

FCR techniques.  In the context of thicket restoration, a viable method for regional mapping of 

spekboom canopy cover was demonstrated, providing a valuable foundation for future expansion 

of maps to the rest of the thicket biome.  The techniques developed in this study will be useful for 

the mapping of other thicket vegetation traits, such as biomass.     

KEYWORDS 

Spekboom, Portulacaria afra, subtropical thicket, canopy cover, aerial image, very high 

resolution, radiometric correction, atmospheric effects, BRDF, surface reflectance, feature 

selection, clustering, supervised classification, machine learning, vegetation mapping 
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OPSOMMING 

Wydverspreide agteruitgang van subtropiese struikgewas (Suid-Afrika) as gevolg van swak 

bestuurde weiding het gelei tot aansienlike afname in ekologiese funksionering en biodiversiteit.  

Wanneer dit eers gedegradeer het, herstel struikgewasse nie sonder aktiewe ingryping ná die 

verwydering van lewende hawe nie.  Daar is getoon dat die plant van spekboom – 'n dominante en 

sleutelstruikgewasspesie – biomassa verhoog, die grondgesondheid verbeter en toestande skep wat 

die natuurlike regenerasie van biodiversiteit ondersteun.  Ruimtelike data, veral 

spekboomblaardakdekkingskaarte, word vir inligting oor en ondersteuning van grootskaalse 

restourasie benodig.  Hierdie navorsing se doel was om 'n semi-geoutomatiseerde 

karteringsmetode vir spekboomblaardakdekking te ontwikkel.  'n Groot studiegebied in die Klein 

Karoo in Suid-Afrika is gekies om die eienskappe van die ekologiese heterogeniteit van die breër 

streek in te sluit.  Na 'n literatuuroorsig is baie hoë resolusie (BHR) multispektrale lugfoto's as 'n 

lewensvatbare databron vir die fynskaalse diskriminasie van spekboom geïdentifiseer.  'n Stel van 

2228 lugfoto's wat die studiegebied dek, is daarna van die Hoofdirektoraat: Nasionale 

Georuimtelike Inligting (NGI) verkry.  Tegnieke vir (1) radiometriese korreksie en (2) 

eienskapseleksie is bedink om spesifieke uitdagings van die kartering van streeksblaardakdekking 

aan te spreek.  Hierdie tegnieke het dan komponente van die karteringsmetode van 

spekboomblaardakdekking gevorm.   

Die behoefte aan die eerste tegniek, genaamd radiometriese homogenisering, het as gevolg van die 

teenwoordigheid van problematiese radiometriese variasie in die lugfoto’s ontstaan.  

Radiometriese homogenisering korrigeer vir verskillende atmosferiese en effekte van 

tweerigtingweerkaatsingverspreidingsfunksie (TWVF) deur kalibrasie met samelopende en 

gegroepeerde data oor satelliet-oppervlakweerkaatsing.  In teenstelling met ander radiometriese 

regstellingsmetodes, is dit nie nodig om teikens vir weerkaatsing per hand te plaas of te verkry nie.  

Daarbenewens word gedetailleerde kennis oor atmosferiese toestande ten tye van die vaslegging 

nie benodig nie.  'n Eksperiment is uitgevoer om die doeltreffendheid en akkuraatheid van die 

tegniek te bepaal.  Gehomogeneerde beelde van die studiegebied is deur visuele inspeksie en 

statistiese vergelyking met verwysingsdata van oppervlakweerkaatsing gevalideer.  Herkenbare 

onreëlmatighede soos verligte punte en naatlyne is verwyder, en statistiese resultate het goed met 

mededingende metodes vergelyk.  Al is die tegniek in die konteks van die probleem van die 

kartering van spekboomblaardakdekking ontwikkel, kan dit ook op algemene radiometriese 

regstelling van BHR-beelde toegepas word.  Radiometriese homogenisasie is veral van toepassing 

op groot studiegebiede waar radiometriese onsekerheid akkurate klassifikasie kan voorkom.  
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Die tweede tegniek, genoem kenmerksaamgroepering en -rangordening (KSR), is ontwerp om 

probleme van suboptimaliteit en onstabiliteit aan te spreek wat dikwels voorkom wanneer 

kenmerkseleksie op oortollige data toegepas word.  In teenstelling met ander 

eienskapseleksiebenaderings, maak KSR voorsiening vir die opsionele insluiting van ander faktore 

buiten relevansie (soos berekenings- en metingskoste) in die siftingskriteria.  'n Eksperiment is 

uitgevoer om die effekte van oortolligheid op gewilde eienskapseleksiebenaderings en KSR te 

vergelyk.  Resultate het bevestig dat oortolligheid 'n negatiewe impak op die algemeen gebruikte 

rangskikking en gulsige soektog (stapsgewys) eienskapseleksiemetodes het.  KSR het die beste 

akkuraatheids- en stabiliteitsprestasie gelewer, wat sy waarde vir die kies van stabiele, 

insiggewende eienskappe van hoë-dimensionele data met oortolligheid bevestig.   

Ten slotte is die radiometriese homogenisasie- en KSR-tegnieke in 'n metode vir die kartering van 

BHR-spekboomblaardekking opgeneem.  Per-piksel spektrale, tekstuur en plantegroei-

indekskenmerke is van beelde wat met die radiometriese homogenisasie tegniek verwerk is, 

geskep.  KSR is gevolglik gebruik om 'n verkorte stel informatiewe en berekeningsdoeltreffende 

kenmerke te kies.  Die kern van die spekboomkarteringsmetode het uit gekontroleerde-

klassifikasie van geselekteerde kenmerke bestaan, gevolg deur morfologiese naverwerking van 

klassifiseerderuitsetkaarte om geraas en gladde grense te verwyder.  'n Eksperiment is uitgevoer 

om die akkuraatheid van gewilde klassifiseerders te toets deur blaardakdekkingskattings met 

veldwaarnemings te vergelyk.  'n Beslissingsboom het die beste prestasie van die getoetsde 

klassifiseerders gelewer.  Blaardakdekkingskaarte het 'n mate van variasie tussen verskillende 

habitatte getoon, maar het goeie algehele akkuraatheid behaal met 'n gemiddelde absolute 

(blaardakdekking) fout (GAE) van 5,85%.    

Streeksplantegroeikaarte word dringend benodig om reaksies op globale kwessies soos 

klimaatsverandering in te lig.   Alhoewel die operasionele behoefte aan grootskaalse BHR-

plantegroeikaarte bekend is, is daar verrassend min studies wat die uitdagings met betrekking tot 

koste, berekeningstyd en klassifiseerderoordraagbaarheid wat met groot ruimtelike areas verband 

hou, aanspreek.  Deur die ontwikkeling van die radiometriese homogenisasie- en KSR-tegnieke 

dra hierdie navorsing by tot die belangrike veld van die kartering van streeksplantegroei by.  In 

die konteks van die restourasie van struikgewasse is 'n lewensvatbare metode vir 

spekboomblaardekking op streeksvlak gedemonstreer. Dit bied 'n waardevolle grondslag vir 

toekomstige uitbreiding van kaarte na die res van die struikgewasbioom.  Die tegnieke wat in 

hierdie studie ontwikkel is, sal ook vir die kartering van ander struikgewasplantegroei-eienskappe, 

soos biomassa, van nut wees.     
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CHAPTER 1:  INTRODUCTION 

The subtropical thicket biome occurs predominantly in the southern and south-eastern parts of 

South Africa (Vlok & Euston-Brown 2002) and is characterised by a dense combination of small 

trees, spinescent shrubs, forbs and succulents in its pristine state.  Poorly managed goat browsing 

has degraded this habitat over much of its range (Lechmere-Oertel, Kerley & Cowling 2005; 

Lloyd, Van den Berg & Palmer 2002; Mills et al. 2005), resulting in severe reductions in 

biodiversity and ecological functioning.  Removal of browsing pressure does not bring about 

recovery, and restoration of these degraded habitats appears unlikely to occur without active 

intervention (Lechmere-Oertel, Kerley & Cowling 2005; Sigwela et al. 2009).  The planting of 

spekboom (Portulacaria afra), a dominant and ecologically important thicket species, has been 

identified as a practical means of restoring degraded areas (Mills & Cowling 2006; Powell, Mills 

& Marais 2005).  Figure 1.1 shows an example of degraded and intact thicket across a fenceline 

in the south-eastern Cape.  Spatial data, including spekboom canopy cover maps, are required to 

facilitate the planning, monitoring and funding of this important restoration work (Powell 2009).   

  
Figure 1.1  Intact and degraded subtropical thicket Source: Restoration Research Group (2012) 
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1.1 BACKGROUND 

1.1.1 Degradation of subtropical thicket 

In recent years, valuable work has been done to describe the character and extent of subtropical 

thicket (Cowling, ProcheÕ & Vlok 2005; Lechmere-Oertel, Kerley & Cowling 2005; Vlok, 

Euston-Brown & Cowling 2003).  It is only fairly recently that subtropical thicket has been 

recognised as a biome (Hoare et al. 2006; Tinley 1975; Vlok & Euston-Brown 2002), and this 

complex habitat remains a topic of ongoing research.  The general character of subtropical thicket 

can be seen in Figure 1.2, which shows an arid thicket habitat containing spekboom.  Thicket 

vegetation comprises a high diversity of species and growth forms (Cowling, ProcheÕ & Vlok 

2005).  Thicket can occur as extensive solid stands or as scattered bush clumps in a background 

mosaic of different vegetation (Vlok & Euston-Brown 2002) (known as “solid” and “mosaic” 

forms respectively).  Two main types of thicket are recognised: mainland and dune thicket (Vlok 

& Euston-Brown 2002).  Mainland thicket is further sub-divided into arid thicket, valley thicket 

and thicket structural types, which occur along a gradient of increasing rainfall.  The mainland 

thicket types can each occur in solid or mosaic form.  Arid and valley thicket types occur in drier, 

arid to semi-arid conditions and often contain an abundance of spekboom (Vlok, Euston-Brown & 

Cowling 2003).  Figure 1.3 shows the extents of the solid and mosaic thicket forms, and Figure 

1.4 shows the extents of the arid thicket, valley thicket and other thicket types.  There is an 

estimated 4.4 million ha of subtropical thicket habitat in southern and south-eastern South Africa 

(Lloyd, Van den Berg & Palmer 2002).   

  
Figure 1.2  Arid thicket in the Little Karoo, with spekboom in the foreground 
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Adapted from Vlok & Euston-Brown (2002) 

Figure 1.3  Extent of solid and mosaic thicket forms 
 

  
Adapted from Vlok & Euston-Brown (2002) 

Figure 1.4  Extent of arid thicket, valley thicket and thicket structural types 

Over-stocking with domestic livestock has resulted in extensive degradation of subtropical thicket.  

While thicket is tolerant of browsing by indigenous herbivores, it is highly susceptible to over-

browsing by goats (Moolman & Cowling 1994; Stuart-Hill 1992).  Sustained goat browsing thins 

the canopy, altering the under-storey micro-climate and exposing the rich layer of litter to dispersal 

(Lechmere-Oertel, Kerley & Cowling 2005) and the topsoil to erosion (Mills & Cowling 2010).  

Most thicket species do not germinate in exposed conditions (Adie & Yeaton 2013) but require 

the favourable under-storey micro-environment in which to reproduce (Adie & Yeaton 2013; 

Sigwela et al. 2009).  With little successful recruitment and sustained browsing, thicket is gradually 

transformed into sparsely scattered clumps, remnant trees and a covering of herbs (Lechmere-

Oertel, Kerley & Cowling 2005).  Degradation of this kind can occur in the space of a few decades, 

or possibly less (Hoffman & Cowling 1990; Kerley, Knight & De Kock 1995).  It is thought that 

Stellenbosch University https://scholar.sun.ac.za



  4 

the savannah-like degraded state is not a new stable state, but rather an intermediate step on a path 

towards a highly desertified landscape, consisting only of transitory (ephemeral) grasses and forbs 

(Lechmere-Oertel, Kerley & Cowling 2005).  Thicket degradation is accompanied by associated 

losses in biodiversity (Lechmere-Oertel, Kerley & Cowling 2005), carbon storage (Mills et al. 

2005), soil health (Lechmere-Oertel et al. 2008) and hydrological functioning (Van Luijk et al. 

2013).  An estimated 90% of subtropical thicket has been moderately or severely degraded (Lloyd, 

Van den Berg & Palmer 2002; Thompson et al. 2009). 

1.1.2 Spekboom and its role in subtropical thicket 

Spekboom (Portulacaria afra), an evergreen succulent shrub with small fleshy leaves, is a 

dominant and ecologically important species in the valley and arid thicket types that can grow up 

to 2.5 m (Vlok, Cowling & Wolf 2005).  It favours sunnier northern slopes and produces an 

unusually large quantity of leaf litter for a semi-arid plant (Lechmere-Oertel et al. 2008).  The 

ability to shift between CAM (crassulacean acid metabolism), where plants absorb carbon dioxide 

at night to improve water efficiency, and C3 photosynthetic pathways, depending on water 

availability (Guralnick & Gladsky 2017; Guralnick & Ting 1986), likely contributes to its high 

productivity (Mills & Cowling 2006).  Spekboom forms a dense, closed canopy which impedes 

rain throughfall (Cowling & Mills 2011), inhibiting decomposition of leaf litter and thereby 

improving incorporation of carbon into the soil.  The water-holding capacity and fertility of the 

soil is substantially enhanced by the accumulation of soil organic matter (Adie & Yeaton 2013; 

Lechmere-Oertel et al. 2008; Mills & Cowling 2010; Mills & Fey 2004).  The provision of shade, 

improved soil quality and moisture retention create a favourable environment for the germination 

of other plants (Adie & Yeaton 2013; Mills & Cowling 2010).  Spekboom is considered to be a 

keystone species (Lechmere-Oertel et al. 2008) or “ecosystem engineer” (Van der Vyver et al. 

2013) in subtropical thicket due to the role it plays in soil health and plant recruitment, but it is 

vulnerable to degradation.  Due to its palatability, spekboom is the first canopy species to be over-

browsed (Van Luijk et al. 2013; Vlok, Euston-Brown & Cowling 2003) and is often completely 

absent from degraded landscapes.  Of the 2.1 million ha of solid thicket habitat, roughly 1.7 million 

ha supports spekboom (Lloyd, Van den Berg & Palmer 2002).  An example of the growth form 

and dense canopy of spekboom can be seen in Figure 1.5, which shows a spekboom dominated 

slope in an arid thicket habitat.   
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Figure 1.5  Arid thicket near Oudtshoorn, dominated by spekboom  

1.1.3 Spekboom restoration 

Transformed subtropical thicket does not recover spontaneously, and restoration requires active 

intervention to reverse the desertification trajectory (Sigwela et al. 2009; Vlok, Cowling & Wolf 

2005; Van der Vyver et al. 2013).  Mass planting of spekboom has been identified as a viable 

means for restoring degraded arid and valley thicket habitats (Mills et al. 2007; Mills & Cowling 

2006; Powell, Mills & Marais 2005).  Spekboom propagates vegetatively and can be grown from 

truncheons (cuttings) (Stuart-Hill 1992), thereby avoiding nursery overheads (Mills & Cowling 

2010).  Restoration by planting spekboom is strongly motivated by its role as a keystone species 

(Adie & Yeaton 2013; Van der Vyver et al. 2013).  It has been observed that over a period of 40 

to 50 years, species composition in two spekboom restoration sites approached that of intact thicket 

(Van der Vyver et al. 2013).  While these results are encouraging, Powell (2009) notes that the re-

establishment of biodiversity is a critical and uncertain restoration outcome that warrants further 

research to confirm its realisation through spekboom planting.   

In addition to biodiversity improvement, restoration is motivated by a number of other factors.  

Re-establishment of spekboom in degraded areas will have significant benefits for hydrological 

functioning, including prevention of soil erosion, reduction in flood severity and improved water 

quality (Van Luijk et al. 2013; Mills & Cowling 2006).  Spekboom restoration also includes 
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benefits for local communities.  Increased biodiversity could boost income from tourism and 

provide sustained access to wood, fruit and medicines (Mills et al. 2007).  If restoration is 

implemented on a large scale, it can offer employment for thousands of workers (Mills et al. 2010).  

This is particularly relevant for the Eastern Cape where unemployment rates are the highest in 

South Africa at roughly 34 % (Statistics South Africa 2018). 

For an arid region plant, spekboom is unusually effective at storing (sequestering) carbon.  

Measurements at established restoration sites in Mills & Cowling (2006) and Van der Vyver et al. 

(2013) indicate that average rates of carbon storage lie between 1.2 and 4.2 t C ha-1 yr-1.  

Comparisons of degraded and intact sites show that restoration could sequester the order of 80 t C 

ha-1 in combined above and below-ground carbon (Marais, Cowling & Powell 2009; Mills et al. 

2005; Powell 2009).  In one instance, estimated carbon lost through degradation was as high as 

168 t C ha-1 (Van der Vyver et al. 2013).  These numbers compete with the carbon storage capacity 

of mesic forests (Mills et al. 2005).  Aside from the benefits to ecosystem functioning, carbon 

sequestration through restoration has obvious relevance in the context of climate change adaptation 

and mitigation (Clarke, Shackleton & Powell 2012; Mills et al. 2010; Powell 2009).   

Funding for spekboom restoration can be generated by verifying and trading stored carbon as 

credits on the international carbon market (Marais, Cowling & Powell 2009; Mills et al. 2007).  

This trade is facilitated by organisations such as Verified Carbon Standard (VCS) and Climate 

Community and Biodiversity Alliance (CCBA) who audit carbon accounting and environmental 

practice (Mills & Cowling 2014).  Verified carbon credits can be purchased by countries or 

corporations wishing to offset their carbon emissions (they may want to do this voluntarily to meet 

carbon tax requirements or to satisfy international agreements such as the Kyoto Protocol and Paris 

Agreement).  To date, 4.7 million ex ante carbon credits have been generated under VCS and 

CCBA by two thicket restoration projects (Mills et al. 2015). 

The Subtropical Thicket Restoration Programme (STRP) was created by the South African 

government in 2004 to create a restoration economy through the collaboration of government, 

academia and implementation agencies (Mills et al. 2010).  More than 10 000 ha of degraded 

thicket has been planted with spekboom cuttings as part of restoration experiments conducted 

under this programme (Mills et al. 2015).  Unfortunately, these experiments suffered from a 

number of shortcomings, including poor plot placement, entrenched planting practice and lack of 

scientific oversight, resulting in low spekboom survivorship (Mills et al. 2015; Mills & Robson 

2017).  There is a pressing need to rectify these shortcomings and increase the pace and scale of 

thicket restoration.  “The rate of restoration needs to increase by a factor of fifty if meaningful 
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progress towards restoring degraded thicket across the Eastern Cape is to be made over the next 

decade.” (Mills et al. 2015: 7)   

1.1.4 Monitoring of spekboom canopy cover 

Supporting spatial information is needed to aid in the planning and monitoring of subtropical 

thicket restoration.  Given the focus on spekboom planting and its dominant and keystone role in 

thicket, species specific maps of spekboom canopy cover are of particular interest.  In the 

restoration planning stage, spekboom canopy cover will help identify and prioritise candidate 

restoration areas.  Measures of intact spekboom canopy cover would assist in carbon storage 

forecasting (Mills & Cowling 2006) and in formulating the financial case for restoration (Mills et 

al. 2007).   Following the limited success of the STRP planting experiments, it has been 

recommended that future restoration protocols should be allowed to change dynamically based on 

emerging research and site specific results (Mills et al. 2015; Mills et al. 2018; Mills & Robson 

2017).  Regularly updated spekboom canopy cover can be used to monitor restoration progress 

and inform changes to protocol as necessary.  Accurate canopy cover monitoring may also 

contribute to the formulation of a biomass estimation technique, that would assist with the carbon 

accounting required for trading credits on the international market (Mills et al. 2010).   

Currently, spekboom canopy cover is measured manually in the field.  A number of different 

approaches have been used.  In Mills & Cowling (2006), carbon stocks were estimated using 

measured spekboom canopy cover at two sites.  At the first site, canopy cover was derived from 

the average distance between plants and planted rows, as measured in 10 random samples.  In the 

second site (a narrow strip of restored area), average spekboom canopy cover was measured along 

six line transects.  Stuart-Hill (1992) established spekboom canopy cover by visual estimate in a 

number of small circular plots.  Powell (2009)  measured canopy dimensions of individual plants 

and approximated canopy area as the area of the circle whose diameter was the mean of the longest 

axis of the canopy and the axis perpendicular to it.  At a much coarser resolution, regional 

vegetation maps have been produced by botanists through extensive field work (Vlok, Cowling & 

Wolf 2005; Vlok & Euston-Brown 2002).  Source data for these maps is generated by in situ visual 

inspection of large areas (usually from elevated positions), in conjunction with hand drawing of 

habitat (or other) extents on printed satellite (Landsat) imagery.  Vegetation habitat, degradation 

and spekboom canopy cover have been mapped in this way.  

Field measurements are known to be time-consuming and costly (Eisfelder, Kuenzer & Dech 2012; 

Lu 2006).  This is confounded in the subtropical biome by rugged terrain, dense vegetation and 
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complex growth forms (Powell 2009).  In situ visual estimates can suffer from repeatability 

problems due to their subjective nature.  Large-area field maps have been made at a necessarily 

coarse spatial resolution to reduce labour overheads (e.g. the Vlok & Euston-Brown (2002) map 

was made at a 1:100 000 and the Vlok, Cowling & Wolf (2005) map at a 1:50 000 scale).  

Monitoring small restoration sites and obtaining accurate spekboom canopy cover in small 

heterogeneous thicket clumps requires substantially finer spatial resolutions than those used for 

large-area field mapping.  “Ideally one should employ a mapping scale that would resolve all the 

vegetation units to solid types.  In the rather complex Little Karoo environment this probably 

implies a mapping scale of 1:5 000.” (Vlok, Cowling & Wolf 2005: 23)  However, current field 

techniques for high spatial resolution canopy cover mapping are only viable for small areas (Mills 

& Cowling 2006; Powell 2009; Stuart-Hill 1992).   

Generating a biome-wide, high spatial resolution canopy cover map using conventional field-based 

methods is highly impractical.  A cost-effective and accurate means of high spatial resolution 

mapping of large areas of spekboom canopy cover is therefore needed.   

1.1.5 Remote sensing of canopy cover 

Remotely sensed aerial or satellite images of the earth’s surface capture information that can be 

used for distinguishing vegetation species and determining their spatial extent.  An effective 

remote sensing approach would offer a means of mapping spekboom canopy cover and 

substantially reduce the costs and repeatability concerns associated with current field-based 

methods.  

A number of studies have applied optical remote sensing techniques to vegetation species mapping 

(i.e. species specific canopy cover mapping) problems.  Plant spectral characteristics in the visible 

to short wave infrared (SWIR) range are affected by species’ distinguishing traits (Fassnacht et al. 

2016; Niphadkar & Nagendra 2016).  Photosynthetic absorption features occur in the visible (400–

700 nm) region, while leaf and canopy traits, like internal cell scattering and water absorption, 

affect the near-infrared (NIR) (700–1300 nm) region (Fassnacht et al. 2016).  Vegetation exhibits 

a sharp transition from absorption to reflection around the red-NIR boundary (690–720 nm) termed 

the “red-edge”.  This feature has been found to be informative with regards to plant biochemical 

properties (Adjorlolo et al. 2012).  The thermal infrared (TIR) region has also been found to be 

promising for species mapping (Fassnacht et al. 2016).  TIR data has, however, seen little use in 

vegetation mapping due to availability and resolution constraints (Neinavaz 2017).  While spectral 

properties are useful for distinguishing plant species, they are not necessarily sufficient.  Plant 
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spectra are affected by numerous factors other than its species (Fassnacht et al. 2016).  These 

complicating factors include health (Waser et al. 2014), age (Einzmann et al. 2014), surrounding 

vegetation (Clark & Roberts 2012) and view-illumination geometry.     

The use of multi-spectral images for species mapping is common (Fassnacht et al. 2016; Vaz et al. 

2018), due in part to the increasing availability and relative cost-effectiveness of this form of data.  

Hyperspectral data provide a finer spectral resolution and potentially more informative description 

of distinguishing spectral features compared to multi-spectral data and have been used quite 

successfully for species mapping in a number of cases (Ganivet & Bloomberg 2019; Nguyen et al. 

2019).  It is, however, seldom used for landscape or country scale mapping due to associated costs 

and computational requirements (Adjorlolo et al. 2012; Ganivet & Bloomberg 2019).  Higher 

spatial resolutions provide more detailed plant information and can improve classification 

accuracy.  Small pixel sizes allow for the identification of individual plants and help reduce the 

problem of spectral mixing between target species, other vegetation and soil (Fassnacht et al. 

2016).  VHR imagery also has the advantage of being able to describe plant spatial structure 

through the use of texture measures (Basu et al. 2015; Neigh et al. 2018; Niphadkar & Nagendra 

2016).   

Recently, a number of studies have used LiDAR (light detection and ranging) data for describing 

plant growth forms as a complement to spectral information (Fassnacht et al. 2016; Vaz et al. 

2018).  Measures of plant phenological characteristics derived from multi-temporal image sets 

have also been found to assist in species mapping (Niphadkar et al. 2017; Tarantino et al. 2019).  

The use of unmanned aerial vehicles (UAVs) for remote sensing of vegetation is an emerging area 

of research (Choi et al. 2016; Matese, Di Gennaro & Berton 2017).  UAVs provide VHR imagery 

and flexible revisit times but have a limited flight range and therefore are not well suited to 

landscape or regional mapping (Vaz et al. 2018).  While higher resolution images and 

complementary data sources can improve mapping accuracy, the choice of imagery is often limited 

by operational concerns such as cost, coverage, and available computational capacity.  This is 

especially true for large-area studies which may require the use of thousands of images (Basu et 

al. 2015; Neigh et al. 2018).     

Supervised classification is typically used for species mapping (Ganivet & Bloomberg 2019).  In 

this approach, objects (image pixels or regions) with known class labels are used to build (“train”) 

a classifier that can predict labels for novel data.  Objects are represented by a set of features or 

image measurements that describe spatial and spectral characteristics.  To avoid overtraining, 

feature selection is used to reduce feature dimensionality to a salient minimum (Kononenko, Šimec 
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& Robnik-Šikonja 1997).  By minimising the number of measured and computed features, feature 

selection can also assist in reducing computational overheads and measurement costs (Jain, Duin 

& Mao 2000).  In the VHR species recognition and general vegetation mapping literature, feature 

selection is frequently omitted (Boyden et al. 2007; De Castro et al. 2012; Mehner et al. 2004), 

handled manually (Neigh et al. 2018; Tarantino et al. 2019) or executed with ranking methods 

(which are known to be sub-optimal and prone to instability in the presence of feature redundancy) 

(Basu et al. 2015; Johansen et al. 2007; Kollár, Vekerdy & Márkus 2013; Niphadkar & Nagendra 

2016).   

Radiometric and ecological variations increase over spatial and temporal scales.  A major 

challenge in the remote sensing of vegetation is reducing or otherwise addressing these variations 

so that methods can generalise beyond the area(s) used to build them (Baraldi et al. 2010; Eisfelder, 

Kuenzer & Dech 2012; Fassnacht et al. 2016; Lu 2006).  Examples of VHR vegetation mapping 

done at regional or country scales are very rare (Basu et al. 2015; Neigh et al. 2018).  Radiometric 

variations arising from changing atmospheric and anisotropic effects (i.e. the dependence of 

reflectance on view-illumination geometry) are more pronounced when working with large-area 

mosaics of imagery, captured at varying times (Fassnacht et al. 2016; Gehrke & Beshah 2016; 

Lelong et al. 2008).  Habitat, ecotype and phenological variations also increase over spatial and 

temporal scales and add uncertainty to the problem of classifying species (Fassnacht et al. 2016), 

especially in diverse and heterogeneous habitats (Bradley 2014; Ganivet & Bloomberg 2019).  In 

the vast majority of cases, species mapping studies are applied to small areas (often consisting of 

a single image) (Boyden et al. 2007; Ghosh & Joshi 2014; Johansen et al. 2007; Kollár, Vekerdy 

& Márkus 2013; Mehner et al. 2004; Ouyang et al. 2011) and thus do not need to comprehensively 

address these sources of variation (Fassnacht et al. 2016).  Despite numerous innovations, the 

effective separation of plant species from their surrounding environment remains a challenge 

(Bradley 2014). 

1.2 PROBLEM FORMULATION 

Spekboom planting is a viable way of restoring vast areas of degraded subtropical thicket (Mills 

et al. 2007; Mills & Cowling 2006; Powell, Mills & Marais 2005).  There is a pressing need to 

scale up restoration work for it to have a meaningful impact on the thicket biome (Mills et al. 

2015).  Spatial data, including spekboom canopy cover maps, are needed to support and inform 

these restoration efforts.  Accurate high-resolution spekboom canopy cover will assist in 

prioritising areas for restoration, monitoring small planting stands, informing changes in planting 

protocol and providing source data for carbon accounting.  Current methods of high-resolution 
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spekboom canopy cover mapping are costly, labour-intensive and only feasible for small areas.  

While larger canopy cover maps have been produced by in situ visual assessment, they are not 

suited to accurate restoration monitoring because of their coarse resolution and lack of 

reproducibility.  A remote sensing technique for regional VHR mapping of spekboom canopy 

cover would be a valuable tool for restoration planning and monitoring. 

Commercial VHR satellite imagery is costly at a regional scale and not a practical source for 

biome-wide spekboom canopy cover mapping (e.g. WorldView-2/3 imagery would cost in the 

region of R5 million to cover the approximately 1.7 million ha of spekboom rich thicket (LandInfo 

2018)).  The Chief Directorate: NGI, a component of the South African Department of Rural 

Development and Land Reform, acquires and supplies 0.5 m pixel-1 multi-spectral aerial imagery 

with blue, green, red and NIR bands (National Geo-spatial Information 2012).  Aerial surveys are 

repeated to achieve national coverage every three to five years.  This free of charge, VHR imagery 

is a promising source of data for regional vegetation mapping.  Unfortunately, as is typical with 

aerial imagery (Chandelier & Martinoty 2009; Collings et al. 2011; López et al. 2011), it contains 

pronounced radiometric variations due to atmospheric and anisotropic BRDF effects.  These 

variations add uncertainty to spectral and spatial measures and are not conducive to quantitative 

remote sensing of large areas.  Calibrating imagery to surface reflectance is beneficial, as 

reflectance is invariant to atmospheric and anisotropic effects.   

Existing methods for radiometrically calibrating large mosaics of VHR imagery to surface 

reflectance require placement of known reflectance targets (Collings et al. 2011) or field 

reflectance measurements (López et al. 2011) at the time of survey.  These field work components 

are time-consuming and costly (Chander, Meyer & Helder 2004; Gao et al. 2013; Liu et al. 2004), 

and not possible with historical imagery (such as the NGI archive).  A method for calibrating aerial 

imagery to surface reflectance (without field reflectance measurements or placement of targets) is 

needed to prepare it for quantitative remote sensing.  Such a method would be an important first 

step towards accurate spekboom canopy cover mapping of large spatial extents and possible repeat 

mapping for monitoring restoration progress.  It would also be of benefit to large-area VHR remote 

sensing in general. 

Computational efficiency affects operational effectiveness and flexibility and is an important 

consideration for large-area VHR applications (Basu et al. 2015; Neigh et al. 2018), requiring the 

processing of thousands of images.  In addition to addressing the “curse of dimensionality” (Jain, 

Duin & Mao 2000), feature selection provides a means of reducing computational overhead by 

reducing dimensionality. Commonly used image features can carry different computational and 
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measurement costs, but conventional feature selection methods do not allow for the incorporation 

of these costs into the selection process.  Relatively little is understood about how high dimensional 

redundant feature spaces affect stability and optimality of feature selection in a remote sensing 

context.  The trend towards increasing dimensionality of images and extracted features requires a 

structured approach to feature selection that is robust to high dimensional, redundant feature spaces 

and considers feature computation and measurement costs.   

Based on the importance of spekboom canopy cover maps for restoration and the need for related 

radiometric correction and feature selection investigations, the following research questions have 

been set:  

1. To what extent can radiometric variation in mosaics of aerial imagery be reduced 

without the need for in situ target placement or reflectance measurements? 

2. How do high dimensional, redundant feature spaces affect the stability and optimality 

of feature selection in remote sensing problems? 

3. How can feature selection be achieved in a way that is robust to high dimensional 

redundant spaces and allows the consideration of feature computation and measurement 

costs? 

4. Which features and classification techniques are suited to the regional mapping of 

spekboom canopy cover with VHR multi-spectral aerial imagery?  

5. Can VHR multi-spectral aerial imagery be used to accurately map spekboom canopy 

cover over a large region in a semi-automated manner?  

1.3 RESEARCH AIM AND OBJECTIVES 

The research aim is to develop a regional, cost-effective, semi-automated spekboom canopy cover 

mapping technique using multi-spectral VHR aerial imagery.  The technique is intended for 

application in the Little Karoo, a large semi-arid region in South Africa. 

To achieve the research aim, the objectives are to:  

1. Review the literature on vegetation species (canopy cover) mapping, radiometric 

correction and feature selection. 

2. Acquire suitable satellite and aerial imagery for radiometric correction.  Acquire 

machine learning data sets for feature selection comparison.  Collect in situ spekboom 
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canopy cover ground truth and create labelled image data for classifier training and 

validation.   

3. Develop and evaluate a method to radiometrically correct mosaics of aerial imagery 

without the need for in situ reflectance measurements or placement of known reflectance 

targets.  

4. Develop a feature selection method that addresses the problems of sub-optimality and 

instability associated with high dimensional redundant feature spaces and allows 

consideration of feature computation and measurement costs. 

5. Compare the performance of the feature selection method to conventional approaches 

on typical high dimensional remote sensing datasets. 

6. Using the established radiometric correction and feature selection methods, develop and 

evaluate a regional spekboom canopy cover mapping method.  

1.4 METHODOLOGY 

The research was experimental and explorative in nature.  An inductive approach was used to 

develop quantitative radiometric correction and feature selection methods.  Machine learning 

techniques, in conjunction with the developed radiometric correction and feature selection 

methods, were used to generate a spekboom canopy cover map of the study area.   

Image processing (interpolation), curve fitting (least squares regression) and statistical (regression 

analysis) techniques were used in the formulation of the radiometric correction technique, which 

contributed to research questions one and five.  This technique utilises a reference satellite surface 

reflectance image, to which the aerial imagery is calibrated.  An experiment was conducted to 

quantitatively and qualitatively evaluate the technique, which further contributed to research 

question one.  The experiment calibrated NGI aerial imagery to a MODIS surface reflectance 

reference.  Calibrated images were qualitatively evaluated by visual inspection and quantitatively 

evaluated by comparison to MODIS and SPOT 5 surface reflectance data.  An additional 

experiment was conducted to test assumptions made in the formulation of the method.  The 

linearity of the relationship between MODIS and Intergraph DMC (digital mapping camera) band 

averaged values was quantitatively analysed using regression analysis.  The experiment used 

reflectance spectra from the ASTER spectral library (Baldridge et al. 2009), in conjunction with 

MODIS and Intergraph DMC relative spectral response (RSR) data.   
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The feature selection method, developed using statistical (mutual information and affinity 

propagation) and machine learning (naive Bayes classification) components, contributed to 

research questions three, four and five.  The method aims to identify relevant features in high 

dimensional redundant feature spaces and to be stable in response to data perturbations.  An 

evaluative experiment was performed to quantitatively compare stability and accuracy 

performance of the feature selection method to conventional approaches. A number of machine 

learning data sets (i.e. data with class labels) were used for this comparison.  These data sets 

comprised two multi-spectral datasets from the UCI Machine Learning Repository (Lichman 

2013), two publicly available hyperspectral data sets (GIC 2014) and two primary data sets (i.e. a 

synthetic data set and a spekboom canopy cover data set derived from aerial imagery).   

The spekboom canopy cover mapping experiment aimed to answer research question four and five.  

The experiment was conducted on a large set of NGI aerial imagery, in conjunction with two 

empirical data sets, which were created to assist in training and evaluation.  The first empirical 

data set (called “in situ canopy cover”) comprised in situ spekboom canopy cover measurements, 

which were acquired in collaboration with a botanist.  The second empirical data set (called 

“labelled pixel data”) consisted of per-pixel class labels for selected regions in the aerial imagery.  

The aerial imagery was quantitatively prepared using the developed radiometric correction 

method.  Subsequently, the developed feature selection method was applied to reduce features 

extracted from the labelled pixel data.  Quantitative analysis of feature redundancy and relevance 

aimed to contribute to research question four.  An experiment was conducted to quantitatively 

compare the performance of different machine learning techniques (support vector machine, 

random forest, decision tree, k-nearest neighbour and maximum likelihood classifiers) on the 

labelled pixel and in situ canopy cover data.  This experiment contributed to research questions 

four and five.  Lastly, the best performing classifier was applied to radiometrically calibrated aerial 

imagery of the study area, and the resulting spekboom canopy cover map was qualitatively 

evaluated by visual inspection.  This final evaluation further contributed to research question five. 

Figure 1.6 shows a block diagram of the research design and how it relates to the thesis structure.  

This chapter gives background on the real world problem, formulates the research problem and 

questions, and sets aims and objectives.  Chapter 2 gives a general overview of optical remote 

sensing and pattern recognition, as well as a more specific review of radiometric correction, feature 

selection and classification, as background for the choice of methods used in the remaining 

chapters.  Chapter 3 presents the development and evaluation of the radiometric correction method.  

The development of the feature selection method, and its comparison to conventional techniques, 
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is described in Chapter 4.  The methods described in Chapters 3 and 4 are used in Chapter 5 to 

establish suitable features and classifiers for spekboom canopy cover mapping.  Chapter 5 also 

describes the generation and evaluation of a regional spekboom canopy cover map.  Chapters 3, 4 

and 5 were published as independent research articles, which made some repetition of study area 

description and background motivation for choice of methods necessary.  Study areas are described 

in Chapters 3 and 5 in the context of the methods presented in those chapters.  Chapter 6 

summarises and evaluates the research in the context of spekboom restoration.  Results are related 

back to the aims and objectives and research questions.  Recommendations are made for further 

research. 
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Figure 1.6  Research design and thesis structure 
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CHAPTER 2:  REMOTE SENSING OF VEGETATION 

2.1 FUNDAMENTALS OF REMOTE SENSING 

2.1.1 Electromagnetic spectrum 

Electromagnetic (EM) radiation is energy that is emitted and reflected by all objects.  One way of 

modelling the behaviour of this energy is as a wave, which propagates as continuous oscillating 

electrical and magnetic fields (Tempfli et al. 2009).  The wave model describes most of the EM 

radiation behaviour relevant to remote sensing.  EM energy also behaves as if it were comprised 

of discrete particles (photons).  The particle model is applicable to the process by which a sensor 

measures EM radiation.  The EM spectrum refers to the wavelength ranges of different types of 

EM radiation (see Table 2.1).  The human eye is sensitive to visible light (VIS), a very small part 

of the spectrum, occurring in the 0.38 to 0.72 µm wavelength range.  The optical spectrum consists 

of the UV, VIS and IR spectral regions (0.3 µm to 1 mm wavelength range).  EM radiation in this 

range obeys the laws of optics and can be focused and refracted with lenses.  Wavelengths shorter 

than those of visible light are mostly scattered or absorbed by the atmosphere and generally not 

used for remote sensing of the earth surface (Mather & Koch 2011).  The infrared portion of the 

spectrum is much wider than the visible portion and consists of wavelengths longer than those of 

the visible range.  Together with visible light, the near-infrared (NIR) and short wave infrared 

(SWIR) portions form part of the “reflective spectrum” (0.38 to 3.0 µm) i.e. radiation that is subject 

to reflection from the earth’s surface.  Thermal infrared (TIR) and far infrared spectral regions are 

emitted, rather than reflected, from the earth surface (Campbell & Wynne 2011).  Microwaves 

occur in the 1 mm to 30 cm range and are the longest wavelengths used in remote sensing.   

The sun is the main source of EM energy for Earth observation and emits radiation across most of 

the EM spectrum, with the bulk of the energy occurring in the visible light and NIR portions of 

the spectrum (Mather & Koch 2011).   Objects in the atmosphere and on the earth’s surface interact 

with EM radiation so as to alter its spectral content in distinctive ways.  The main basis of remote 

sensing is to use measurements of spectral and spatial patterns of EM radiation to distinguish and 

characterise objects based on these alterations (Campbell & Wynne 2011).   
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Table 2.1   Main divisions of the electromagnetic spectrum 

Division Wavelength Range 

Gamma rays < 0.03 nm 

X-rays 0.03 – 300 nm 

Ultraviolet (UV) 0.30 – 0.38 µm 

Visible light (VIS) 0.38 – 0.72 µm 

Infrared  

   Near-infrared (NIR) 0.72 – 1.30 µm 

   Short wave infrared (SWIR) 1.30 – 3.00 µm 

   Therrmal infrared (TIR) 3.0 – 15 µm 

   Far infrared  15 – 1000 µm 

Microwave  1 mm – 30 cm 

Radio ≥ 30 cm 

   Adapted from Liew (2001) and Campbell & Wynne (2011) 

2.1.2 Atmospheric and anisotropic effects  

Radiation interacts with the atmosphere and earth’s surface through processes of scattering, 

absorption and reflection.  Scattering deflects radiation from its path, while absorption reduces 

transmitted energy.  These processes affect the signal measured by the sensor (Mather & Koch 

2011).  The amount of scattering and absorption varies with the wavelength of the radiation and 

the composition of atmosphere.  Rayleigh scattering occurs off gaseous particles that are smaller 

than the wavelength of the radiation.  Mie scattering occurs off larger particles, such as water 

droplets, dust and smoke, and manifests as haze in the measured image.  As a general rule, shorter 

wavelengths of radiation are subject to more atmospheric scattering (Mather & Koch 2011).  Areas 

of the spectrum that are relatively unaffected by atmospheric scattering and absorption are called 

“atmospheric windows” (Campbell & Wynne 2011).  These windows define the usable areas of 

the spectrum for remote sensing.   

Figure 2.1 shows, in simplified form, how scattered components of radiation combine with direct 

path radiation to form the signal measured by the sensor.  In Earth observation, the direct path 

radiation, IS, is the important component as it contains information about the surface reflectance 

at the point of interest, P.  The direct path radiation is obscured and interfered with by the scattered 

components, IO and ID, which also appear to be coming from P.    The basic effect of scattering is 

to reduce image contrast.  
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Adapted from Mather & Koch (2011) 

Figure 2.1  Direct (I
S
) and scattered (I

O
 and I

D
) radiation components reaching the sensor  

 

Reflection is the re-direction of radiation by a surface. Smooth mirror-like surfaces exhibit 

specular reflectance.  In this form of reflectance, all radiation is reflected in a single direction.  

Diffuse, or isotropic reflection, occurs when light is reflected more or less equally in all directions.  

This form of reflection occurs off surfaces that are rough relative to the wavelength of incident 

radiation (Campbell & Wynne 2011).  The idealised form of this reflectance is called Lambertian 

reflectance, which is perfectly equal in all directions.  In contrast to isotropy, anisotropy refers to 

a pattern of reflectance that is not uniformly distributed over all directions.  Most natural surfaces 

exhibit some degree of anisotropy.  Patterns of reflectance off the earth’s surfaces change with the 

wavelength and orientation of the incident radiation (Campbell & Wynne 2011).  Bidirectional 

reflectance distribution functions (BRDFs) are used to describe directional reflectance behaviour.  

A BRDF is a mathematical function that models the strength of reflectance in a particular direction, 

given the angle of illumination.  Figure 2.2 shows the typical modes of scattering that cause BRDF 

effects.  Specular reflectance occurs off smooth surfaces, like water, and manifests as “sunglint” 

when it is directed towards the observer.   Scattering that occurs off homogenous leafy canopy is 

referred to as volume scattering.  Gap-driven scattering, also known as geometric-optical 

scattering, occurs in more heterogenous vegetation where there are height differences and spaces 

between plants (Strahler & Muller 1999).   

 

S
en

so
r 

I
S
 

I
O
 

I
D
 

P Q 

Stellenbosch University https://scholar.sun.ac.za



  20 

 Source Strahler & Muller (1999: 45) 

Figure 2.2  BRDF scattering modes 

2.1.3 Sensor type and platform 

There are two basic types of remote sensing instruments: passive and active.  In the passive type, 

the source of energy or illumination is external.  Passive sensors measure solar radiation reflected 

from the earth’s surface, or long thermal and microwave wavelengths that are emitted from the 

earth (Campbell & Wynne 2011).  Active sensors provide their own source energy and measure 

the reflection of this controlled source from the earth’s surface.  Examples of active sensors include 

radar and LiDAR (light detection and ranging).  Active sensors are less affected by atmospheric 

conditions than passive sensors and can operate in the day and night (Tempfli et al. 2009).  Figure 

2.3 shows examples of passive and active sensors and the spectral ranges in which they operate. 

 Source: Tempfli et al. (2009: 44) 

Figure 2.3  Sensor types and spectral ranges 
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Sensors can be mounted on airborne or spaceborne (satellite) platforms.  Airborne altitudes are 

substantially lower than those of spaceborne platforms.  Due to their lower altitude, airborne 

sensors are capable of higher spatial resolutions than spaceborne sensors but require a much wider 

field of view (FOV) to cover the same ground area (Markelin et al. 2012).  Lower altitudes also 

mean that airborne platforms are less affected by atmospheric interactions.  Airborne surveys cover 

large areas by following a flight path of regularly spaced parallel transects (Campbell & Wynne 

2011).  Flight patterns and imaging intervals are chosen so that there is “frontal overlap” between 

successive images along a flight line and “side overlap” between neighbouring images in adjacent 

flight lines.  An example of a flight plan is shown in Figure 2.4.   

 Adapted from Pix4D (2019) 

Figure 2.4  Airborne survey flight plan 

In contrast to airborne surveys that acquire images in a regularly spaced pattern, most Earth 

observation satellites follow near polar, sun-synchronous orbits (Liew 2001).  A near polar orbit 

is one where the orbital track is slightly inclined relative to the earth’s axis.  The combination of 

polar orbital movement with the earth’s rotation allows global or near-global coverage.  Sun-

synchronous orbits are designed so that successive passes over a particular location occur at the 

same local solar time (Campbell & Wynne 2011).  This is beneficial as it reduces view-

illumination variation by keeping the solar azimuth angle constant at a particular location (Mather 

& Koch 2011).  The rate of coverage achieved by satellites is substantially higher than that of 

airborne platforms due to their higher ground speed (Tempfli et al. 2009).  Table 2.2 shows key 

flight and image specifications for a popular selection of spaceborne and airborne image sources.  

It serves to highlight differences in spatial resolution, revisit time and image coverage between 

these different platforms and sensors.   
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Table 2.2   Representative sources of satellite and aerial imagery and their specifications 

Image source 
Spaceborne/ 

airborne 

Height 
above 
Earth  

Nadir 
swath 
width 

Spectral 
bands 

Spatial resolution Revisit time 

MODIS Spaceborne 705 km  2330 km 36 
Red, NIR (250 m), Blue, Green, IR 

(500 m),  TIR (1 km) 
0.5 day 

Landsat-8 OLI Spaceborne 705 km 185 km 9 
Panchromatic (15 m), VIS, NIR, 

SWIR (30 m) 
15 days 

SPOT-5 Spaceborne 832 km 60 km 5 
Panchromatic (2.5 m), VIS, NIR (10 

m), SWIR (20 m) 
26 days 

Sentinel-2 Spaceborne 786 km 290 km 13 
VIS, NIR (10 m), SWIR (20 m), other 

(60 m) 
5 days 

WorldView-3 Spaceborne 617 km 13 km 8 
Panchromatic (0.3 m), VIS, NIR (1.2 

m), SWIR (3.7 m) 
1 – 5 days 

NGI Airborne 5 km 7 km 4  VIS, NIR (0.5 m) 3 – 5 years 

2.1.4 Characteristics of optical images 

A remote sensing image is formed by a regular grid of pixels.  Each pixel represents a measurement 

of the intensity of radiation, reflected or emitted from a small portion of the earth’s surface.  Pixels 

usually consist of multiple measurements, called bands, where each band is the radiation intensity 

in a particular wavelength range.  Figure 2.5 shows the construction of an image in terms of pixels 

and bands.  The amount of detail or information contained in remote sensing images is determined 

by the spatial, spectral, radiometric and temporal resolutions.  Higher resolutions require 

sophisticated sensor and platform hardware, as well as increased data storage, transmission and 

processing capacity.  Practical trade-offs must therefore be made between the four resolutions 

when designing remote sensing systems (Campbell & Wynne 2011).  Careful consideration of the 

characteristics of available image sources is necessary when selecting an image source for a 

specific application.  Some form of compromise between the benefits of the four resolutions is 

usually required.    

Spatial resolution refers to the size of the smallest object that can be resolved and determines the 

amount of spatial detail that is discernible in an image.  It is specified by the size of a pixel on the 

earth’s surface.  Spatial resolutions of different image sources vary from centimetres (in the case 

of UAVs) to kilometres (in the case of weather satellites).  For classification problems, the pixel 

size should ideally be smaller than the size of the object of interest to avoid spectral mixing 

between classes (Campbell & Wynne 2011).   
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Figure 2.5  Remote sensing image characteristics 

Spectral resolution refers to the number of image bands available and over what wavelength range 

those bands are distributed.  Higher spectral resolution images provide a finer division of the EM 

spectrum.  Multi-spectral images typically contain less than 20 bands and provide a relatively 

coarse division of the EM spectrum.  Hyperspectral images may contain more than 100 bands, and 

provide a significantly more detailed division of the spectrum.  Hyperspectral data allows for the 

discrimination of patterns based on subtle differences in spectra. 

The smallest difference in reflectance or emittance that can be recorded by a sensor is termed the 

radiometric resolution (Tempfli et al. 2009).  This resolution is determined by the sensor bit-depth 

(i.e. the number of digital bits used to store the value of a pixel).   

Temporal resolution, also known as revisit time, is the time between successive images of the 

same area.  For spaceborne sensors, it is determined by the orbit parameters and the ability of a 

satellite to point off-nadir.  The temporal resolution of airborne surveys is variable.  Surveys may 

be conducted once-off, as needed, or at regular intervals (e.g. as part of a government programme).  

A higher temporal resolution allows for the detection of rapid change on the earth’s surface. 

2.2 IMAGE CLASSIFICATION  

Image classification refers to the process of assigning objects into classes based on the information 

contained in the image.  The classification workflow follows the steps of image preparation (often 

called pre-processing), segmentation (optional), feature generation, feature reduction (if needed), 

classification and accuracy assessment.  Preparing the image involves the application of pre-
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processing steps to reduce unwanted geometric and radiometric variations that may detract from 

the accurate identification of object classes.  Segmentation refers to the division of the image into 

meaningful objects or segments.  If no segmentation is carried out, each pixel is considered an 

individual image object. In the feature generation stage, a set of descriptive measurements 

(features) are extracted from the image to represent each image object.  Feature reduction is used 

to reduce the feature set to an informative minimum.  In the classification step, the feature space 

is partitioned into classes by decision boundaries.  Lastly, classification accuracy is evaluated by 

comparison to reference data. The following subsections describe these steps in more detail.  

2.2.1 Image preparation 

Before being used for quantitative analyses, remote sensing images may require geometric and or 

radiometric correction.  Airborne and spaceborne images contain geometric distortions due to 

sensor perspective (position and orientation) and terrain elevation effects.  The process of 

orthorectification adjusts for these effects and creates a planimetrically correct image, i.e. an image 

in which scale is consistent (Chuvieco & Huete 2009).  Relative object positions in an 

orthorectified image correspond to their relative geodetic positions.  Orthorectified imagery can 

consequently be used for spatial measurements.  In some situations, geometric distortions due to 

orbital variations, Earth rotation and lens distortion also require correction (Mather & Koch 2011).  

Orthorectification requires both a description of terrain elevation, usually in the form of a digital 

elevation model (DEM), and a model of the sensor geometry as input.  Sensor models describe 

how points in three-dimensional world space are transformed onto the two-dimensional image 

plane.  These models may be defined in terms of physical principles or approximated by a rational 

polynomial function (Toutin 2004).  Ground control points (GCPs), i.e. points whose image and 

geodetic co-coordinates are known, can be used to define or refine the sensor model (Tempfli et 

al. 2009).  The use of GCPs is generally a requirement for the accurate orthorectification of high 

spatial resolution imagery. 

Airborne and spaceborne images contain unwanted radiometric variations caused by atmospheric 

and BRDF effects.  These variations distort or otherwise obscure spectral information that is useful 

for the identification or characterisation of objects.  Aerial images are particularly prone to BRDF 

variations due to their relatively wider FOV, which results in greater viewing geometry variation 

across the image (Honkavaara et al. 2009; Mather & Koch 2011).   In addition, long aerial survey 

times result in variations in illumination geometry and atmospheric effects over the captured 

images.  Where images are used exclusively for qualitative or cartographic interpretation, these 

effects may be ignored or compensated for in a heuristic manner with the objective of creating an 
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aesthetically pleasing image (Tempfli et al. 2009).  This cosmetic approach is often used for 

preparing mosaics of aerial imagery.  Techniques such as dodging, colour balancing and histogram 

adaptation are used to reduce the appearance of “seam lines” (Gehrke 2010; Honkavaara et al. 

2009; Laliberte et al. 2011), which are radiometric discontinuities between adjacent aerial images.  

Cosmetic approaches can modify (damage) spectral information and are not suited to quantitative 

analyses such as image classification.   

A number of atmospheric correction approaches are based on the use of a radiometric transfer 

model (RTM), which describes scattering and absorption effects using physical principles.  These 

approaches estimate absolute radiometric quantities, such as surface reflectance, from image pixel 

values (“digital numbers” (DNs)).  The RTM is used in combination with knowledge of 

atmospheric conditions to compensate for absorption and separate the direct radiation component 

from its scattered counterparts (see Figure 2.1).  Further details on radiative transfer can be found 

in Section 3.3.1.  RTM approaches include atmospheric/topographic correction (ATCOR) (Richter 

1997), moderate resolution atmospheric transmission (MODTRAN) (Berk et al. 1999) and second 

simulation of a satellite signal in the solar spectrum (6S) (Vermote et al. 1997).  The benefits of 

correcting to absolute radiometric quantities is that these measurements have physical 

interpretations, can be fused with or compared to similar data and can be used in multi-temporal 

studies.  A disadvantage of the RTM approach is that detailed knowledge of atmospheric 

conditions at the time of imaging is required, which is often not available.  The RTM approach is 

also known for being complex and computationally demanding (Tempfli et al. 2009). 

Another class of radiometric correction, sometimes called “image-based atmospheric correction” 

(Campbell & Wynne 2011), uses a linear model to approximate the relationship between image 

DNs and ground reflectances (Tempfli et al. 2009).  The parameters of the model are found using 

two or more reference areas of known reflectance and the DNs from the corresponding image 

areas.  The reference areas may be placed targets of known reflectance or in situ ground reflectance 

measurements made concurrent or near-concurrent to the time of capture.  The linear model is a 

crude simplification of complex non-linear atmospheric and Earth surface interactions.  It 

nevertheless suffices in practice for applications where atmospheric effects are a relatively 

insignificant source of error (Tempfli et al. 2009).  A justification for the use of a linear model to 

approximate the relationship between surface reflectance and image DNs can be found in Section 

3.3.1. 

The correction of BRDF effects is problematic, largely because BRDF varies with land cover and 

is seldom known a priori (Honkavaara et al. 2009; Mather & Koch 2011).  BRDF correction is 
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most commonly achieved with the kernel-based approach (Roujean, Leroy & Deschamps 1992).  

The kernel approach approximates BRDF as a linear combination of weighted kernel functions 

that describe typical scattering modes (see Figure 2.2).  Ground measurements from multiple view-

illumination directions are required to estimate the kernel BRDF weights for a particular location.  

In practice, this is achieved using multi-temporal satellite data (e.g. MODIS (Strahler & Muller 

1999)) or specialised instruments such as the multi-angle imaging spectroradiometer (MISR).  

MISR captures multi-directional measurements of the same ground area over a few minutes 

(Mather & Koch 2011).  BRDF correction is important for image mosaicking, wide FOV image 

calibration and multi-temporal studies.  It is, however, seldom addressed in practice because of the 

complexities involved (Vescovi & Minchella 2017).    

2.2.2 Segmentation 

Image classification may adopt a per-pixel approach, where individual pixels are assigned to 

classes, or an object-based approach, where image regions or objects are the spatial units requiring 

classification.  In remote sensing, the object-based approach is referred to as geographic object-

based image analysis (GEOBIA) (Blaschke et al. 2014).  Segmentation is the process of dividing 

the image into homogenous and meaningful image regions for later classification.  In the per-pixel 

approach, the individual pixels are the objects to be classified, and segmentation is not required.  

Before the advent of VHR imagery, most image classification was conducted on a per-pixel basis 

as pixel sizes were generally larger than, or of a similar size to, the object of interest (Blaschke et 

al. 2014).  The per-pixel approach is limited to extracting information from individual pixels or 

from fixed size sliding windows.  By delineating related pixels, objects allow the extraction of 

richer and more specific information than is possible with individual pixels and sliding windows.  

The object-based approach represents a way of exploiting spatial and contextual information and 

has grown in popularity with the increasing availability of high spatial resolution imagery (Mather 

& Koch 2011).  The development of the eCognition commercial software has also been 

instrumental in the growth of GEOBIA (Blaschke 2010).   

A wide variety of segmentation approaches exist.  The main challenge in identifying image objects 

is defining a homogeneity criterion that results in a segmentation meaningful to the problem being 

investigated (Hay et al. 2005). Machine learning approaches using supervised classifiers (i.e. 

classifiers trained with labelled example data) are increasingly being used due to their success on 

specialised object detection problems, such as building and vehicle detection (Cheng & Han 2016).  

Statistical region merging (SRM) (Nock & Nielsen 2004) is a computationally efficient region-

growing approach that uses spectral differences to define objects.  It was used successfully in a 
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ground-breaking study that mapped tree cover with VHR aerial imagery for the whole of 

Continental United States (Basu et al. 2015).  A popular unsupervised segmentation method is the 

multiple resolution segmentation (MRS) algorithm (Baatz & Schäpe 2000), which is implemented 

in the eCognition software package (Trimble 2018).  The algorithm segments at different scales 

using spectral and geometric properties to define homogenous regions.  Watershed segmentation 

is a region-growing method that is sometimes used in GEOBIA (Carleer, Debeir & Wolff 2005; 

Hall et al. 2004).  This method treats pixel values as elevations in a three-dimensional landscape, 

which is segmented into catchment basins (i.e. groups of pixels for which the path of steepest 

descent ends at the same minimum).  Simpler approaches, such as Otsu segmentation (Otsu 1979), 

which derives thresholds from the intensity histogram, have also been applied successfully in 

demanding problems (Carleer, Debeir & Wolff 2005; Neigh et al. 2018).   

2.2.3 Feature generation 

A good feature is one that is discriminative, i.e. it assists the assignment of objects into classes.  

Feature generation (in combination with feature reduction) can be thought of as a transformation 

of the raw image band space into a feature space, which improves class separability (Jain, Duin & 

Mao 2000).  Feature design requires expert insight into the differentiating properties of the data 

and how these properties might be represented numerically.  It is recognised as being a critical step 

in the classification workflow; information lost at this stage cannot be retrieved in later steps 

(Fassnacht et al. 2016; Pekalska & Duin 2012).  Features may be generated per-object or per-pixel.   

One approach for generating features is through the transformation of the raw spectral band values.  

Band arithmetic is used to create ratios and indices that highlight spectral features while 

normalising for spurious variations (Campbell & Wynne 2011).  For example, the popular 

normalised difference vegetation index (NDVI) highlights the transition from the 

photosynthetically active region of the spectrum into NIR while normalising for intensity (i.e. 

overall illumination brightness) (Myneni et al. 1995).  Transformation of raw red-green-blue 

(RGB) spectral bands into alternative colour spaces, such as intensity-hue-saturation, is used to 

supress shadow and illumination variation by de-coupling intensity and colour information 

(Blauensteiner et al. 2006; Campbell & Wynne 2011).  Feature extraction approaches, such as 

principal component analysis (PCA), are also used to generate new features as (non-)linear 

combinations of the raw band values (Mather & Koch 2011).  More detail on feature extraction is 

given in Section 2.2.4.  Spectral features are often initially found per-pixel.  Statistics of the per-

pixel features (such as mean and variance) are then extracted per-object where a GEOBIA 

paradigm is followed.   
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Another important class of features are texture descriptors.  In contrast to band ratios and 

vegetation indices, which describe spectral relationships, texture descriptors describe spatial 

relationships and are calculated from a spatially connected group of pixels.  Texture features are 

particularly useful for exploiting information in high spatial resolution imagery (Puissant, Hirsch 

& Weber 2005).  The problem of numerically encoding complex and scale varying spatial patterns 

is challenging, and the development of novel texture descriptors is an active research field 

(Fassnacht et al. 2016; Mather & Koch 2011).  At a simple level, the variance of the pixel values 

in a small region gives an indication of local image “roughness” (Mather & Koch 2011).  More 

sophisticated methods for describing texture include statistics of the grey level co-occurrence 

matrix (GLCM) (Haralick, Shanmugam & Dinstein 1973), local binary patterns (Ojala, Pietikainen 

& Maenpaa 2002) and wavelet filters (Charalampidis & Kasparis 2002).  Texture features may be 

found inside a sliding window (in the case of the per-pixel approach) or per-object (for GEOBIA).   

GEOBIA provides the possibility of including features that describe object shape and size, which 

can be useful additions to spectral and texture descriptors.  Examples of commonly used shape 

descriptors include area, circularity and eccentricity (Zhang & Lu 2004).  Further details on typical 

spectral, textural and vegetation index features used in multi-spectral problems can be found in 

Section 5.4.3.  

2.2.4 Feature reduction  

In image classification, the amount of training data required to adequately represent class 

distributions in feature space increases exponentially as the number of features is increased – a 

phenomenon known as the “curse of dimensionality” (Bishop 2003). For finite training samples, 

increasing the features beyond a certain point results in overtraining and a decrease in the classifier 

accuracy.  This so-called “peaking phenomenon” (Jain, Duin & Mao 2000) requires the size of the 

feature set to be reduced to a salient minimum in order to achieve an accurate classification.  Two 

basic approaches to feature reduction exist: feature selection and feature extraction. 

In feature extraction the feature set is mapped into a new feature space of reduced dimensionality 

(Webb 2002).  Various criteria, such as separability and variance, are used to define the dimensions 

of the new ‘optimal’ space.  PCA (Webb 2002) is an example of a popular feature extraction 

method.  It uses a linear transform composed of the largest m eigenvectors of the covariance matrix 

to project the input features into a reduced space.  Other methods such as projection pursuit and 

independent component analysis (ICA) also incorporate linear projections but do not rely on 

covariance and are thus better suited to non-Gaussian distributed data than PCA (Jain, Duin & 
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Mao 2000).  Commonly used non-linear methods include kernel PCA (Schölkopf, Smola & Müller 

1998) and multidimensional scaling (MDS)  (Webb 2002).  A major disadvantage of the feature 

extraction approach is that it requires measurements and computations to produce the full feature 

set, which can be prohibitively costly. Feature extraction also hinders interpretability, as it alters 

the original representation of the features.   

Feature selection involves the selection of a subset of features from the original set according to 

some criterion of subset performance. A description of feature selection (its principles and typical 

approaches) can be found in Section 4.2.  The choice between feature extraction and feature 

selection is data and application dependent.  Feature selection retains the original meaning of the 

features and can provide computational and measurement savings.  Feature extraction might 

provide a more informative feature subset but with possible increases to measurement cost and 

computation time.  Note that feature extraction sometimes precedes feature selection, i.e. feature 

extraction can be used to generate features, some of which are subsequently discarded in a feature 

selection step (Jain, Duin & Mao 2000).   

2.2.5 Classification 

A statistical pattern recognition approach to image classification has been used widely in remote 

sensing (Fassnacht et al. 2016; Ganivet & Bloomberg 2019; Vaz et al. 2018).  In classification, 

statistical methods are used to partition the feature space into class regions in a training phase.  

Following this, objects are assigned class labels based on their position in feature space in a testing 

phase.  There are two basic types of classification: 1) supervised, where objects are assigned to 

known classes, or 2) unsupervised, where the classes are unknown and must be learnt from the 

data.  In the supervised approach, example labelled data is used to define a classifier that can then 

generalise to label unseen data.  Popular supervised classifiers used in image classification are 

decision tree, random forest, support vector machine (SVM), maximum likelihood (ML) and k-

nearest neighbours (kNN).  These methods are described in more detail in Section 5.4.5.  

Unsupervised classification (also known as clustering) finds related groups of objects (i.e. classes) 

using object similarity measures.  Affinity propagation (Frey & Dueck 2007), hierarchical 

clustering (Székely & Rizzo 2005) and k-means (Mather & Koch 2011)  are examples of clustering 

algorithms.  Image segmentation can also be understood as a form of unsupervised classification.  

Related pixels are grouped into image regions or objects, which, in effect, are the unknown classes 

that are learnt from the data.  Clustering is a challenging problem, as both the form and number of 

the classes are often unknown (Jain, Duin & Mao 2000). 
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When the form of the class distributions in feature space is known, the problem is termed 

“parametric”.  In this case, training becomes a parameter estimation problem and the class 

distribution parameters are fitted to the data.  The ML classifier is an example of a common 

parametric classifier that assumes the classes are normally distributed (Mather & Koch 2011).  A 

non-parametric classifier is one which makes no assumptions about the form of the class 

distributions or decision boundary (e.g. Parzen density estimation (Fukunaga & Hayes 1989)) but 

rather learns these from the data.   Parametric and non-parametric methods can be further sub-

divided into generative and discriminative approaches.  The generative approach models the class 

distributions in feature space.  An object is then assigned to the class in which it has maximum 

probability, i.e. the decision boundary is determined by the modelled class distributions.  ML and 

Parzen classifiers are examples of the generative approach.  Discriminative classifiers fit the 

decision boundary directly to training data.  The kNN (Bishop 2003) and SVM (Burges 1998) 

classifiers follow the discriminative approach.   

2.2.6 Accuracy assessment 

Classification accuracy is evaluated by testing on labelled example data.  The error rate, which is 

the percentage of available objects that were incorrectly classified, is the most common measure 

of classification performance (Jain, Duin & Mao 2000).  It is, however, only a single figure 

representation and can hide important performance details (Campbell & Wynne 2011).  The 

confusion matrix provides valuable and more detailed insight into classification performance.  The 

(i, j) th element of the confusion matrix represents the number of actual class j objects that were 

classified as class i (Webb 2002).  A number of useful accuracy metrics can be derived from the 

confusion matrix.  The user’s accuracy for a class is the total number of objects correctly assigned 

to the class, as a percentage of the total number of objects assigned to the class.   The producer’s 

accuracy for a class is the total number of objects correctly assigned to the class, as a percentage 

of the total number of objects belonging to the class.  The Kappa statistic describes the accuracy 

of the classifier compared to pure chance (Campbell & Wynne 2011).   

The performance of a supervised classifier on the training set is optimistically biased and not a 

reliable indication of operational performance (Jain, Duin & Mao 2000).   This is especially true 

when the number of objects in the data is small relative to the feature dimensionality (Webb 2002).  

Classifiers should consequently be trained and tested on separate data to avoid biased error 

estimates.  To obtain an accurate estimate of the classifier performance, the test set should be large 

enough to represent the underlying classes.  Similarly, the training set is also required to represent 

the underlying classes in order to obtain a classifier with good generalisation ability.  With limited 
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data this presents a trade-off in how the split into training and test sets is made (Jain, Duin & Mao 

2000).  In the holdout method, the data is simply split into two independent sets: one for training 

and one for testing.  Leave-one-out and rotation versions of cross-validation improve on the 

holdout method by reducing error bias and simultaneously increasing the amount of data available 

for training (Bishop 2003).  This is achieved by dividing the data into a number of subsets (P), 

training on P-1 subsets and testing on the remaining subset.  This is repeated until testing has 

occurred on all P subsets.  The bootstrap method uses resampling with replacement to generate 

many “new” data sets on which the classifier is trained and tested.  This approach can improve on  

cross-validation error estimates at the price of increased computation (Webb 2002).  

2.3 SPECIES-SPECIFIC VEGETATION MAPPING 

2.3.1 Spectral properties of vegetation 

The basic premise of spectral species recognition is that leaf chemistry and structure influence 

reflectance spectra in species specific ways (Clark & Roberts 2012).  Vegetation reflectance 

spectra at the leaf scale are controlled by biochemistry and morphology (Asner 1998; Clark, 

Roberts & Clark 2005).  In the visible portion of the spectrum, the reflectance of living vegetation 

is mainly affected by chlorophyll, the pigment that facilitates the absorption of sunlight for 

photosynthesis (Campbell & Wynne 2011).  Chlorophyll absorbs the majority of incident blue and 

red light while reflecting some green light, giving living vegetation its characteristic green colour.  

Leaves are strongly reflective in the NIR spectrum due to scattering by internal plant structures, 

rather than reflection and absorption by pigments.  Radiation passes through the leaf surface and 

is scattered by spongy mesophyll air-cell wall interfaces (Clark, Roberts & Clark 2005), resulting 

in both downward transmission and upwards reflectance.  There is a sharp transition from 

absorption to reflectance around the red-NIR boundary, known as the “red-edge” (Campbell & 

Wynne 2011).  In longer SWIR wavelengths, leaf reflectance diminishes and is dominated by 

absorption features resulting from water content (Asner 1998).  TIR emissivity spectra are affected 

by chemicals in plant tissues that form external surfaces and cell walls (Ribeiro da Luz & Crowley 

2007).     
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 Source: HSU (2019) 

Figure 2.6  Typical vegetation reflectance spectra 

At the plant or canopy scale, vegetation reflectance is influenced by the physical arrangement of 

leaves and other structures such as flowers, stems, fruits and branches (Asner & Martin 2008; 

Clark, Roberts & Clark 2005).  Small shadows cast amongst these canopy structures tend to 

decrease overall reflectance compared to leaf scale measurements.  The relative strength of NIR 

reflectance is, however, increased due to repeated transmission and reflectance (scattering) of these 

wavelengths between and within canopy layers (Campbell & Wynne 2011).  Canopy scale spectral 

effects can also contain species discriminating information, as they are influenced by plant 

morphology (Clark, Roberts & Clark 2005).  While informative spectral features have been found 

throughout the VIS-SWIR region (Fassnacht et al. 2016), the NIR spectrum is recognised as being 

particularly important for species identification (Asner 1998; Campbell & Wynne 2011; Clark & 

Roberts 2012; Clark, Roberts & Clark 2005).  Emissivity data in the TIR range has also been 

shown to be a promising source of species distinguishing information (Fassnacht et al. 2016).  

Typical vegetation reflectance is shown in Figure 2.6. 

2.3.2 Remote sensing of species specific plant traits 

Both hyperspectral and multi-spectral data has been used for remote sensing of vegetation species.  

Hyperspectral data is reported to provide superior classification performance due to its finer 

spectral resolution and ability to capture subtle spectral differences between species (Baldeck et 

al. 2015; Clark & Roberts 2012; Clark, Roberts & Clark 2005).  Use of hyperspectral data is, 

however, limited by its cost and processing requirements (Adjorlolo et al. 2012; Ganivet & 
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Bloomberg 2019; Vaz et al. 2018).  Multi-spectral imagery is increasingly being used due to its 

availability, coverage, high spatial resolution and relative cost-effectiveness.  It has proved 

sufficient for species identification in many cases (Fassnacht et al. 2016; Ganivet & Bloomberg 

2019; Vaz et al. 2018).  Wavelengths in the red-NIR region are the most frequently used sources 

of species discriminating information (Clark, Roberts & Clark 2005; Fassnacht et al. 2016).  TIR 

emissivity has also shown promise for species recognition (Neinavaz 2017; Ribeiro da Luz & 

Crowley 2007), but its use is very uncommon due to limited availability of data and challenges 

with calibration and atmospheric correction (Ribeiro da Luz & Crowley 2010).   

Numerous studies have confirmed the usefulness of spectral measurements for identifying plant 

species (Fassnacht et al. 2016; Ganivet & Bloomberg 2019; Vaz et al. 2018).  There are, however, 

a number of other factors, besides species, that contribute to plant spectral variation, making 

spectral species classification a challenging problem.  Plant spectra change as a result of phenology 

(Clark & Roberts 2012), senescence (Einzmann et al. 2014) and stressors such as moisture shortage 

and disease (Campbell & Wynne 2011; Waser et al. 2014).  Canopy scattering is highly anisotropic 

(Asner 1998), meaning that view-illumination geometry also impacts vegetation reflectance 

(Fassnacht et al. 2016; Strahler & Muller 1999).  Finally, spectral mixing with surrounding soil 

and vegetation further contributes to reflectance variation (Clark, Roberts & Clark 2005; Fassnacht 

et al. 2016), especially in heterogeneous and sparsely vegetated habitats (Campbell & Wynne 

2011; Eisfelder, Kuenzer & Dech 2012).   

High spatial resolution imagery allows for the description of vegetation spatial structure with 

texture descriptors.  Texture can capture aspects of plant morphology such as foliage size, foliage 

arrangement and branching patterns (Fassnacht et al. 2016).  A number of species recognition 

studies have found texture descriptors to be useful additions to spectral information (Ghosh & 

Joshi 2014; Kollár, Vekerdy & Márkus 2013; Mustafa & Habeeb 2014; Neigh et al. 2018; 

Niphadkar et al. 2017).  The encoding of complex scale-dependent patterns into meaningful texture 

descriptors is, however, a challenge (Mather & Koch 2011) that requires expert insight into the 

specific recognition task.  Texture is sensitive to shadowing variations caused by changes in view-

illumination geometry (Barbier et al. 2011) and is also prone to mixing between classes in 

heterogeneous habitats where a sliding window rather than object-based approach is followed 

(Blaschke 2010).   

Approaches to the remote sensing of plant phenological traits have been used to assist with species 

identification.  At a simple level, careful timing of snapshot (uni-temporal) imagery can help to 

capture distinguishing periods of seasonal plant growth (e.g. a target species may bloom while 
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others remain dormant) (Campbell & Wynne 2011; Niphadkar & Nagendra 2016).  Compared to 

snapshot imagery, multi-temporal images provide more detailed descriptions of spectral variation 

relating to seasonal growth patterns.  This form of data is seeing increasing use and can be useful 

for species identification where there are species discriminating phenological differences (Michez 

et al. 2016; Niphadkar et al. 2017; Tarantino et al. 2019).  Some species exhibit phenology that 

depends on spatially varying environmental factors such as weather, geology and altitude 

(Fassnacht et al. 2016; Niphadkar & Nagendra 2016).  These variations can be detrimental to 

classifier transferability.   

LiDAR data has been used to characterise aspects of vegetation structure such as canopy 

architecture, branching pattern, foliage arrangement and foliage density (Coops et al. 2007; 

Ganivet & Bloomberg 2019; Korpela et al. 2010), which can be difficult to assess using spectral 

imagery.   In a species identification context, LiDAR is often used complementary to passive 

optical multi-spectral or hyperspectral data (Alonzo, Bookhagen & Roberts 2014; Asner et al. 

2008; Fassnacht et al. 2016).  Promising results have been obtained using LiDAR waveform 

(intensity) data to describe features of tree structure such as crown and branch morphology for 

species recognition (Hovi et al. 2016; Korpela et al. 2010).  Challenges with LiDAR data include 

multiple scattering within the canopy (Korpela et al. 2010), which creates uncertainty as to the true 

source of returns and intra-species variation of plant structure (Hovi et al. 2016), which can hamper 

classifier performance.   

2.3.3 Features and classification methods 

Typical features generated for species identification include texture descriptors (Basu et al. 2015; 

Ghosh & Joshi 2014; Johansen et al. 2007; Kollár, Vekerdy & Márkus 2013; Mustafa & Habeeb 

2014; Neigh et al. 2018; Niphadkar & Nagendra 2016), vegetation indices and band ratios (Basu 

et al. 2015; Boyden et al. 2007; De Castro et al. 2011; Johansen et al. 2007; Kollár, Vekerdy & 

Márkus 2013; Mehner et al. 2004; Mustafa & Habeeb 2014; Niphadkar & Nagendra 2016; 

Tarantino et al. 2019), spectral derivatives (Clark & Roberts 2012; Fassnacht et al. 2014), LiDAR 

metrics (Alonzo, Bookhagen & Roberts 2014; Coops et al. 2007; Hernández-Stefanoni et al. 2014; 

Hovi et al. 2016; Jones, Coops & Sharma 2011) and dimensionality reduction transformations such 

as PCA (Clark & Roberts 2012).  Feature reduction is sometimes omitted or addressed using  

importance ranking (Basu et al. 2015; Clark & Roberts 2012; Johansen et al. 2007; Kollár, Vekerdy 

& Márkus 2013; Niphadkar et al. 2017) and manual band selection (Baldeck et al. 2015).  The use 

of feature selection methods that consider the sub-optimal effects of feature redundancy, such as 
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stepwise selection  (Clark, Roberts & Clark 2005; Ghosh & Joshi 2014), are uncommon in species 

identification.   

Supervised classification is the most frequently used approach for identification of species based 

on remotely sensed features.  Commonly used supervised classifiers are SVM (Baldeck et al. 2015; 

Ghosh & Joshi 2014; Tarantino et al. 2019), random forest (Clark & Roberts 2012; Nguyen et al. 

2019) and normal distribution based ML and linear discriminant analysis (LDA) techniques 

(Boyden et al. 2007; De Castro et al. 2012; Clark, Roberts & Clark 2005; Mehner et al. 2004; 

Niphadkar et al. 2017; Tarantino et al. 2019).   Algorithms implemented in the eCognition software 

package (Trimble 2018) such as the fuzzy and hierarchical approaches are also frequently used for 

vegetation identification (Johansen et al. 2007; Kollár, Vekerdy & Márkus 2013; Niphadkar et al. 

2017; Ouyang et al. 2011).   Dissimilarity-based approaches such as spectral mixture analysis 

(SMA) and spectral angle mapping (SAM) are sometimes used with hyperspectral data (Asner et 

al. 2008; Clark, Roberts & Clark 2005).  Unsupervised classification approaches have also been 

used (Neigh et al. 2018) but this is very unusual.   

2.3.4 Regional VHR vegetation mapping 

One of the main concerns in species recognition is that “there are few examples for tree species 

classifications over large geographic extents, and bridging the gap between current approaches and 

tree species inventories over large geographic extents is still one of the biggest challenges of this 

research field” (Fassnacht et al. 2016: 24).  Regional scale vegetation mapping is most commonly 

done at coarse or moderate spatial resolutions (González-Roglich & Swenson 2016; Immitzer et 

al. 2018; Liu et al. 2017; Mathieu et al. 2018).  Only two large area regional studies related to VHR 

vegetation species mapping were found in this literature survey.  Neigh et al. (2018) used 

WorldView-1 VHR panchromatic imagery for mapping crop fields over a 4.1 million ha area in 

Ethiopia.  A multi-level histogram thresholding (“Otsu multithresh”) method requiring no user 

input was employed for unsupervised classification.  This simple and efficient algorithm was 

applied to per-pixel texture features and provided an overall accuracy of 94 %.  Basu et al. (2015) 

mapped tree canopy cover over the Continental United States using multi-spectral VHR aerial 

imagery from the National Agriculture Imagery Program (NAIP) (National Agriculture Imagery 

Program 2019).  An initial per-pixel classification on spectral and textural features was followed 

by automated segmentation of the classifier output using a conditional random field (CRF) method 

to capture contextual relationships between neighbouring pixels.  An overall accuracy of 85 % was 

achieved.   

Stellenbosch University https://scholar.sun.ac.za



  36 

Regional applications are limited by operational concerns such as cost, coverage and availability 

when selecting data sources. While higher spatial, spectral and temporal resolution data can 

potentially improve discriminative ability, cost and computational burden increases with an 

increase in the volume and complexity of the data (Ørka & Hauglin 2016).  Regional studies 

generally need to compromise on data sophistication in order to remain operationally viable and 

cost-effective.  Multi-spectral VHR satellite data represents a relatively cost-effective data source 

with global coverage.  National programmes for the acquisition of aerial imagery such as NAIP in 

the United States (National Agriculture Imagery Program 2019) and NGI in South Africa (National 

Geo-spatial Information 2012) provide national coverage multi-spectral VHR aerial imagery free 

of charge.  Multi-spectral VHR aerial or satellite imagery is currently the most practical option for 

budget constrained studies requiring regional coverage (Basu et al. 2015; Mirik & Ansley 2012; 

Neigh et al. 2018).   

Due to the volume of data that needs to be processed, computational efficiency is also an important 

consideration for regional mapping applications.  Complex image segmentation methods (such as 

MRS) are frequently used in small-area studies (Johansen et al. 2007; Kollár, Vekerdy & Márkus 

2013; Niphadkar et al. 2017; Ouyang et al. 2011).  They are, however, computationally expensive 

and require user specification of parameters, and consequently do not scale well to projects 

requiring the automated processing of thousands of images (Basu et al. 2015; Neigh et al. 2018).  

Per-pixel classification provides adequate species identification accuracy in a number of cases 

(Boyden et al. 2007; De Castro et al. 2011; Mehner et al. 2004).  Spatial and contextual information 

can still be incorporated into a per-pixel approach by automated post-processing and segmentation 

of the per-pixel classifier output (Baldeck et al. 2015; Basu et al. 2015).  Computational efficiency 

of feature generation and classification is also relevant for regional methods (Basu et al. 2015; 

Neigh et al. 2018) but is often ignored in small-area studies (Boyden et al. 2007; Mehner et al. 

2004; Mirik & Ansley 2012; Mustafa & Habeeb 2014; Ouyang et al. 2011). 

Another crucial challenge of large-area methods is addressing sources of unwanted variation which 

hinder classifier generalisation ability (Fassnacht et al. 2016).  Atmospheric and BRDF effects 

cause radiometric variations, which increase with the spatial and temporal extents of imagery due 

to changes in view-illumination geometry and atmospheric conditions (Fassnacht et al. 2016; 

Gehrke & Beshah 2016; Lelong et al. 2008).  Mosaics of aerial images are particularly prone to 

radiometric variations due to wide image FOV and varying image capture times (Honkavaara et 

al. 2009; Korpela et al. 2014; Mather & Koch 2011).  Radiometric corrections are sometimes not 

applied in small study areas (Boyden et al. 2007) or partially handled using conversion to top of 
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atmosphere radiance (Johansen et al. 2007; Mehner et al. 2004; Niphadkar et al. 2017; Tarantino 

et al. 2019), which is still subject to atmospheric and BRDF effects.  Habitat, ecotype and 

phenological variations also increase over spatial and temporal scales and add uncertainty to the 

species recognition problem (Fassnacht et al. 2016), especially in diverse and heterogeneous 

habitats (Bradley 2014; Ganivet & Bloomberg 2019).   

2.4 LITERATURE EVALUATION 

Species-specific canopy cover maps are useful for restoration, forest management, invasive 

species management and conservation applications.  There is a large body of research on the use 

of remote sensing for vegetation mapping in general and species recognition in particular.  Remote 

sensing techniques have shown good potential for addressing these applications.  The increasing 

availability of high spatial, spectral and temporal resolution data, in conjunction with the 

development of associated data preparation and classification algorithms, has seen a growth in 

species mapping applications.  There nevertheless remain significant challenges to solving the 

species recognition problem.  There is a known operational need for large-area vegetation maps, 

yet there are surprisingly few studies that address the cost, computation and classifier 

transferability challenges associated with large areas. 

While LiDAR and hyperspectral data have been shown to improve species recognition accuracy, 

they are amongst the most expensive sources of data (Ørka & Hauglin 2016) and consequently are 

not viable data sources for this study.  VHR satellite imagery is frequently used as a relatively 

cost-effective source of multi-spectral data, but it is still too expensive for most regional-scale 

mapping exercises.  By using free of charge aerial imagery, the coverage and budget requirements 

of this study could be satisfied. This data has furthermore been used in other regional vegetation 

mapping work (Basu et al. 2015).  Aerial imagery does, however, contain substantial radiometric 

variation that requires correction.  Most vegetation mapping work has been applied to small study 

areas where radiometric variation due to atmospheric and BRDF effects is small enough to be 

ignored.  The radiometric correction of large mosaics of VHR imagery remains an open and 

challenging problem.   

Spectral and textural features are commonly used for vegetation mapping and are potential features 

for distinguishing spekboom.  Rigorous feature reduction is a somewhat overlooked processing 

step in the species recognition literature.  No studies comparing the effectiveness of established 

feature selection approaches for typical remote sensing data were found.  The frequent use of 

importance ranking type feature selection ignores the sub-optimal effects of feature space 
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redundancy.  With the majority of species recognition research being focused on small areas, issues 

of computational automation and efficiency are of limited importance and have consequently 

received little attention.  While GEOBIA allows the exploitation of spatial and contextual 

information for providing discriminating features, it is not necessarily the best approach for 

regional studies, which require the automated processing of thousands of images.  An alternative 

to traditional GEOBIA is an initial per-pixel classification, followed by post-processing of the 

classifier output to incorporate spatial context.  Computationally efficient and automated 

implementations of this approach has been used successfully in demanding applications.  The use 

of supervised classification for species identification is the norm.  The best combination of features 

and classifier for distinguishing spekboom is not known and requires investigation. 

This study aims to address the challenges of regional species recognition in the context of the 

spekboom canopy cover mapping application.  It will investigate means of radiometric calibration 

of large mosaics of multi-spectral VHR imagery; assess the optimality and stability of common 

feature selection approaches in a remote sensing context; investigate the possibility of 

incorporating computational cost into a novel feature selection method; determine the most 

informative features and best supervised classifier for per-pixel spekboom identification; and 

investigate the benefit of incorporating spatial context in a post-processing step.  Consideration 

will be given to computational efficiency in the selection and derivation of component methods 

and data.   
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CHAPTER 3:  RADIOMETRIC HOMOGENISATION OF AERIAL 

IMAGES BY CALIBRATING WITH SATELLITE DATA1 

3.1 ABSTRACT 

The use of very high resolution (VHR) aerial imagery for quantitative remote sensing has been 

limited by unwanted radiometric variation over temporal and spatial extents.  In this paper we 

propose a simple yet effective technique for the radiometric homogenisation of the digital numbers 

of aerial images.  The technique requires a collocated and concurrent, well-calibrated satellite 

image as surface reflectance reference to which the aerial images are calibrated.  The bands of the 

reference satellite sensor should be spectrally similar to those of the aerial sensor.  Using radiative 

transfer theory, we show that a spatially varying local linear model can be used to approximate the 

relationship between the surface reflectance of the reference image and the digital numbers of the 

aerial images.  The model parameters for each satellite pixel location are estimated using least 

squares regression inside a small sliding window.  The technique was applied to a set of aerial 

images captured over multiple days with an Intergraph digital mapping camera (DMC) system.  A 

near-concurrent moderate resolution imaging spectroradiometer (MODIS) nadir bidirectional 

reflectance distribution function (BRDF) adjusted reflectance image was used as the reflectance 

reference dataset.  The resulting DMC mosaic was compared to a near-concurrent satellite pour 

l’observation de la terre (SPOT) 5 reflectance image of a portion of the same area, omitting the 

blue channel from the DMC mosaic due to its absence in the SPOT 5 data.  The mean absolute 

reflectance difference was found to be 3.43% and the mean coefficient of determination (R2) over 

the bands was 0.84.  The technique allows the production of seamless mosaics corrected for coarse 

scale atmospheric and BRDF effects and does not require the manual acquisition (or provision) of 

ground reflectance references.  The accuracy of corrections is limited by the resolution of the 

reference image, which is generally significantly coarser than VHR imagery.  The method cannot 

correct for small scale BRDF or other variations not captured at the reference resolution.  

Nevertheless, results show a significant improvement in homogeneity and correlation with SPOT 

5 reflectance. 

                                                 

1 This chapter is published in the International Journal of Remote Sensing and consequently conforms to the prescribed structure of 

that journal 
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3.2 INTRODUCTION 

Very high resolution (VHR) aerial and drone imagery is increasingly being used in remote sensing 

studies.  The high spatial resolution of these images enables analyses on a finer spatial scale than 

most satellite-based platforms can provide and consequently allows the exploitation of information 

such as texture, object-based features and unmixed pixel spectra that is not available in lower 

resolution images (Chandelier & Martinoty 2009; Collings et al. 2011; Honkavaara et al. 2009; 

López et al. 2011; Markelin et al. 2012).  Accurate geometric calibration techniques for producing 

orthorectified images are well established and form part of typical aerial imagery processing 

workflows (Chandelier & Martinoty 2009).  Because aerial image mosaics are commonly 

produced for the purpose of visual interpretation, techniques such as dodging and lookup tables 

(LUTs) are often used to produce smooth and visually appealing results (López et al. 2011).  This 

kind of adjustment can damage the spectral information content and is not suited to quantitative 

remote sensing.  Also, spatial and temporal radiometric variations in aerial imagery limit the spatial 

and temporal extents to which quantitative remote sensing techniques can be successfully applied 

(Markelin et al. 2012). Ideally, quantitative analyses should be carried out on reflectance values.  

Atmospheric influences, bidirectional reflectance distribution function (BRDF) effects and sensor 

variations all contribute to radiometric variations in the imagery.  To obtain surface reflectance, 

these radiometric variations must be removed, or reduced as far as possible.  Transformation to 

surface reflectance is beneficial, as, unlike at-sensor quantities or surface radiance, surface 

reflectance is invariant to changes in atmospheric conditions and viewing geometry.  This allows 

the surface reflectance data to be used in physical models, fused with other reflectance data and 

used in multi-temporal studies (Downey et al. 2010; Vicente-Serrano, Pérez-Cabello & Lasanta 

2008).   

There is some confusion and ambiguity around the use of reflectance terminology in the literature 

(Schaepman-Strub et al. 2006).  In this paper, ‘surface reflectance’ is used to refer to the nadir 

BRDF-adjusted reflectance (NBAR) measurement provided by the moderate resolution imaging 

spectroradiometer (MODIS) MCD43 BRDF/albedo products.  NBAR is the bidirectional 

reflectance factor normalised to local solar noon and viewed at nadir.  It is worth noting that it is 

not possible or practical to correct for all the sources of radiometric variation in aerial imagery.  

The surface reflectance in most so-called ‘corrected’ or ‘calibrated’ images is only an 

approximation of the actual value. 

A number of techniques for the correction of BRDF effects are available, including the popular 

kernel-based method (Roujean, Leroy & Deschamps 1992).  Approaches based on radiometric 
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transfer modelling, such as atmospheric/topographic correction (ATCOR) (Richter 1997), 

moderate resolution atmospheric transmission (MODTRAN) (Berk et al. 1999) and second 

simulation of a satellite signal in the solar spectrum (6S) (Vermote et al. 1997) are used for 

atmospheric correction.  While these atmospheric and BRDF correction methods are effective on 

single images (Markelin et al. 2012), blocks of multiple aerial images present unique challenges.  

The large field of view of aerial imaging cameras causes the viewing geometry to vary significantly 

within images (Lelong et al. 2008).  Aerial campaigns are usually carried out over multiple days, 

resulting in significant variation in BRDF and atmospheric conditions.  Each land cover also has 

its own unique BRDF and corrections should ideally model each of these covers separately 

(Collings et al. 2011; Honkavaara et al. 2009).  Aerial campaigns can also consist of thousands of 

images, making it impractical to apply time-consuming atmospheric and BRDF correction models 

to every image (López et al. 2011).  Even if it was practical, remnant radiometric variation due to 

the inexact nature of BRDF and atmospheric corrections will result in discontinuities, or seam 

lines, between adjacent images (Gehrke & Beshah 2016). 

Approaches to calibrating mosaics of aerial imagery are receiving increasing attention (Chandelier 

& Martinoty 2009; Collings et al. 2011; Downey et al. 2010; Gehrke & Beshah 2016; López et al. 

2011).  Collings et al. (2011) introduced an empirical spatially varying model to perform combined 

atmospheric and BRDF correction.  Land cover is assumed uniform in each image, resulting in a 

per-image BRDF parameterisation.  The parameters of the model are solved by minimising a cost 

function that considers the internal accuracy of each image, similarity of overlapping image 

regions and smoothness (i.e. the lack of seam lines) of the mosaic.  In a second stage the entire 

mosaic is calibrated to absolute reflectance using specially placed ground targets with known 

reflectance.  In Chandelier and Martinoty (2009) a simple semi-empirical three parameter model 

of combined atmospheric and hot spot BRDF effects is fitted for each image by minimising the 

difference between ‘radiometric tie-points’, a selection of points in the overlapping image regions.  

It is a relative calibration method and no adjustment to absolute reflectance is made.  López et al. 

(2011) apply theoretical atmospheric and semi-empirical BRDF kernel models using field-

acquired spectral data.  Gehrke (2010) uses standard atmospheric and BRDF methods, followed 

by a relative radiometric normalisation step using invariant points in overlapping regions to smooth 

the mosaic.  A new radiometric normalisation method for heterogeneous image data, presented in 

Gehrke and Beshah (2016), improves on that of Gehrke (2010).  The shortcomings of existing 

atmospheric and BRDF image adjustments are corrected using a spatially varying linear model.  

Model parameters are found at points in overlapping image regions and then interpolated into the 

remainder of the images. 
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A disadvantage of the aerial mosaic calibration techniques described above is their complexity and 

need for known ground references to achieve transformation to absolute surface reflectance.  A 

number of the techniques also assume uniform BRDF characteristics within an image (Chandelier 

& Martinoty 2009; Collings et al. 2011; López et al. 2011).  The options of placing targets of 

known reflectance to be captured as part of the mosaic or measuring the reflectance of suitably 

invariant sites on the ground are often not possible or practical.  Many applications make use of 

archived imagery that had been captured prior to the commencement of the research and for which 

concurrent ground measurements are consequently not possible.  Another approach is to make use 

of vicarious calibration involving knowledge of the spectral characteristics of specific ground sites, 

but this is recognised as being labour-intensive and costly (Chander, Meyer & Helder 2004; Gao 

et al. 2013; Liu et al. 2004).   

In this paper, we propose a method of homogenising aerial imagery to coarse scale surface 

reflectance by calibrating to a concurrent and collocated satellite image that has been corrected for 

atmospheric and BRDF effects.  Satellite programmes such as MODIS make such coarse-

resolution surface reflectance products freely available.  The proposed method avoids the need to 

perform atmospheric and BRDF corrections explicitly.  It also does not require the placement of 

known reflectance targets or field spectral measurements, which can be impractical, error-prone 

and time-consuming in many instances.  The technique was applied to a large set of aerial images 

captured with an Intergraph digital mapping camera (DMC).  A near-concurrent MODIS 

MCD43A4 NBAR product was used as the reflectance reference dataset.  The resulting DMC 

mosaic was compared to a near-concurrent Satellite Pour l’Observation de la Terre (SPOT) 5 

reflectance image of the same area.   

3.3 METHODS 

3.3.1 Formulation of the local linear model 

The proposed method is based on approximating combined BRDF, atmospheric and sensor effects 

as a spatially varying linear relationship between surface reflectance and sensor measurement.  

Similar local linear relationships are used by Chandelier and Martinoty (2009), Collings et al. 

(2011) and Gehrke and Beshah (2016) for the radiometric correction of aerial image mosaics.  In 

this section, we show that a spatially varying linear model is supported by radiative transfer theory.  
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Following the notation of López et al. (2011), the digital number (DN) measurement of an aerial 

sensor for each band can be expressed as: 

DN = 𝑐0𝐿s + 𝑐1 
Equation 3.1 

where 𝐿s is the radiance at the sensor and 𝑐0 and 𝑐1 are coefficients determined by the 

characteristics of the sensor.  The proposed method requires the sensor radiance response to be 

linear; it should first be corrected for any non-linearity where this is not the case.  The radiance at 

the sensor is expressed as:   

𝐿s =
𝜌s𝐸scos𝜃

π
 

Equation 3.2 

where 𝜌s is the reflectance at the sensor, 𝐸s is the irradiance at the sensor, and 𝜃 is the solar zenith 

angle.  The reflectance of a uniform Lambertian surface at the sensor is described by the radiative 

transfer equation (Vermote et al. 2006):  

𝜌s = 𝜌a +
𝜌t

1 − 𝑆𝜌t
udg 

Equation 3.3 

where 𝜌a is the intrinsic atmospheric reflectance, 𝜌t is the surface reflectance and 𝑆 is the 

atmospheric albedo. u and d are the atmospheric transmittances due to molecular and aerosol 

scattering between the surface and sensor and between the sun and the surface respectively, and 

g is the global atmospheric transmittance due to molecular absorption.  It is common for aerial 

surveys to be conducted on clear days (Chandelier & Martinoty 2009).  This was the case for the 

imagery used in our study.  In clear sky conditions, the atmospheric albedo, 𝑆, is typically around 

0.07 (Manabe et al. 1964).  With a small value for 𝑆 and a maximum value of one for 𝜌t, the 

denominator in Equation 3.3 is approximately one and the reflectance at the sensor can be 

approximated as: 

𝜌s ≃ 𝜌a + 𝜌tudg 
Equation 3.4 

Equations Equation 3.1, Equation 3.2 and Equation 3.4 express the relationship between the sensor 

measurement, atmospheric conditions and the surface reflectance.  With the approximation of 

Equation 3.4, there is a linear relationship between surface reflectance and the sensor 

measurement.  This linear relationship can be expressed as: 
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DN = 𝑀𝜌t + 𝐶 
Equation 3.5 

where 

𝑀 =
1

π
𝑐0udg𝐸scos𝜃 

Equation 3.6 

and 

𝐶 = 𝑐1 +
1

π
𝑐0𝜌a𝐸scos𝜃 

Equation 3.7 

The parameters 𝑀 and 𝐶 are spatially varying functions of the viewing geometry and atmospheric 

conditions.  Implicit in any radiometric calibration technique is an approximation of these 

parameters so that the relationship can be inverted.  A discussion of pertinent model assumptions 

is provided in the following section.   

3.3.2 Parameter estimation 

In our proposed method, we solve for 𝑀 and 𝐶 of the aerial sensor using a reference estimate for 

the surface reflectance parameter, 𝜌t
ref, obtained from a well-calibrated satellite image.  The 

reference surface reflectance image should have been captured at a similar time to the uncalibrated 

aerial image(s).  The spatially varying property of the model allows the reduction of atmospheric 

effects that vary during aerial campaigns.  The time difference between the reference and 

uncalibrated aerial images should, however, be small enough to avoid phenological or structural 

land cover changes.  Such changes cannot be accounted for by the proposed method and will lead 

to errors (local to the area of change) in the calibrated result.  In this study we use a 16-day 

composite reference image comprised of data from 25 January to 9 February 2010 and aerial 

images captured over multiple days between 22 January and 8 February 2010.    

Least squares estimates of 𝑀 and 𝐶, for the aerial sensor, are found for each pixel of the reference 

image inside a sliding window.  Equation 3.5 can be rewritten in vector form, using the reference 

surface reflectance, 𝜌t
ref, for the pixels inside a sliding window.  

𝑫𝑵 = 𝑀𝝆t
ref

 
+ 𝐶1 

Equation 3.8 
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where 𝝆t
ref and 𝑫𝑵 are column vectors of the N values inside the sliding window and 1 is a column 

vector of ones of length N.  𝝆t
ref is obtained from the reference image and 𝑫𝑵 from the uncalibrated 

aerial image(s).  The parameters can then be estimated as follows:   

[
𝑀
𝐶
] = [𝝆t

ref    1]−1(𝑫𝑵) 
Equation 3.9 

In this form, the sliding window should consist of at least two pixels to solve for the two 

parameters.  In order to accommodate the differing spatial resolutions, 𝑀 and 𝐶 must be found at 

the reference spatial resolution, resampled to the aerial spatial resolution, and then used to estimate 

surface reflectance at this resolution by inverting the relationship of Equation 3.5.  The choice of 

the sliding window size involves a trade-off between the accuracy and effective spatial resolution 

of the estimated radiometric correction parameters, M and C.  In essence, it is the typical parameter 

estimation trade-off between bias and variance or under- and overfitting (Webb 2002).  Larger 

sliding windows will be less susceptible to overfitting on noisy data, while smaller sliding windows 

will provide higher spatial resolution correction parameters.  The choice of sliding window size 

for the case study is discussed in Sections 3.3.5 and 3.4.4, and the effect of varying the sliding 

window size is investigated in Section 3.4.4.   

The reference image will typically be at a substantially lower spatial resolution than the aerial 

imagery.  BRDF corrected surface reflectance products, such as those produced from MODIS and 

multi-angle imaging spectroradiometer (MISR), have resolutions of the order of 500 m while aerial 

images usually have resolutions of 2 m or higher.  This large resolution discrepancy affects the 

accuracy of the results.  While the Equation 3.5 model applies to an aerial pixel, M and C are 

estimated at the reference resolution before resampling them to the aerial resolution.  The reference 

resolution is only sufficient to capture gradual changes in BRDF and atmospheric conditions.  Real 

BRDF can vary significantly over short distances where land cover is heterogeneous.  This type 

of small scale BRDF variation is not captured at the resolution of the reference image and cannot 

be corrected for by the method.  The theoretical formulation of Section 3.3.1 is intended to lend 

support to the use of the local linear model.  It is acknowledged that the model involves a number 

of approximations and simplifications.  These include ignoring adjacency effects and BRDF 

coupling with atmospheric effects (Vermote et al. 2006).  We regard these approximations as 

necessary limitations of the method.  Related methods make similar assumptions about BRDF 

homogeneity, often assuming a per-image BRDF model (Chandelier & Martinoty 2009; Collings 

et al. 2011; López et al. 2011) and also using simplified local linear models for approximating 

radiative transfer (Chandelier & Martinoty 2009; Collings et al. 2011; Gehrke & Beshah 2016).    
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3.3.3 Incorporation of viewing geometry and relative spectral response effects 

The formulation of the local linear model in section 3.3.1 does not consider the effect of viewing 

geometry and relative spectral response (RSR) differences between the aerial and reference 

images.  In this section, we show that these effects can also be modelled as locally linear relations, 

which can then be combined with Equation 3.5 to form a single linear relation between 𝜌t
ref of the 

reference image and DN of the uncalibrated aerial image(s).  These combined effects are thus still 

approximated by a spatially varying linear model with parameters as estimated with Equation 3.9.     

The surface reflectance in Equation 3.4 represents the simplified case of a Lambertian reflector 

(i.e. it reflects equally in all directions), but in practice is subject to BRDF effects and so also 

varies with the viewing geometry (i.e. spatially) as in Equation 3.10.   

𝜌t = 𝑓(𝜉) 
Equation 3.10 

where 𝑓 is the BRDF and 𝜉 = (𝜃, 𝜗, 𝜙) is the viewing geometry, 𝜃 is the solar zenith angle, 𝜗 is 

the view zenith angle and 𝜙 the relative azimuth.  To incorporate BRDF into the model, it is 

necessary to account for the viewing geometry differences between the reference and aerial 

images.  It is not valid to simply replace the unknown aerial surface reflectance with the reference 

surface reflectance in Equation 3.5 when they occur at different viewing geometries.  To describe 

the relationship between the two reflectances at a particular location, we express their ratio in 

Equation 3.11. 

𝜌t
aerial

𝜌t
ref

=
𝑓(𝜉aerial)

𝑓(𝜉ref)
 

Equation 3.11 

Here 𝜌t
aerial and 𝜌t

ref are the aerial and reference surface reflectances respectively, and 𝜉aerial and 

𝜉ref are the aerial and reference viewing geometries respectively.  The aerial surface reflectance 

can then be expressed as a multiple of the reference surface reflectance. 

𝜌t
aerial =

𝑓(𝜉aerial)

𝑓(𝜉ref)
𝜌t
ref = 𝐹𝜌t

ref 
Equation 3.12 

𝐹 is a spatially varying function of the aerial and reference viewing geometries.  As this relation 

is locally linear, it can be incorporated into the model of Equation 3.5, maintaining the linearity 

and spatially varying properties.  Coupling between atmospheric and BRDF effects (Vermote et 
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al. 2006) are not included in the model.  The parameter F of Equation 3.12 is effectively estimated 

at the reference image resolution.  The effects of viewing angle variations at the aerial image 

resolution are approximated by interpolating the coarse scale homogenisation parameters to the 

aerial resolution.   

The model presentation in Section 3.3.1 ignored the effect of the spectral responses of the reference 

and uncalibrated sensors.  The relation between surface reflectance and sensor measurement in 

Equation 3.5 becomes non-linear when including the spectral response effect.  The surface 

reflectance in Equation 3.5 is a band averaged quantity, as represented by Equation 3.13.  

𝜌t =
∫𝜌t(𝜆)𝑅(𝜆)d𝜆

∫𝑅(𝜆)d𝜆
 

Equation 3.13 

where 𝜌t(𝜆) is the spectral surface reflectance and 𝑅(𝜆) is the sensor RSR for a particular band.  

Without knowledge of the surface reflectance spectra, it is not possible to completely calibrate for 

this effect.  However, for real world surface reflectances it can often be shown that the relationship 

between the band averaged values for different sensors is approximately linear (Gao et al. 2013; 

Jiang & Li 2009).  This means the relationship between surface reflectance and sensor 

measurement remains approximately linear even when the sensor spectral response is considered.  

We therefore approximate the effect of sensor spectral responses as a locally linear relationship 

that is incorporated into the linear model of Equation 3.5.  This approximation is supported by 

simulations for the case study sensors in Sections 3.3.6 and 3.4.1.   

3.3.4 Surface reflectance homogenisation 

The homogenisation procedure follows these steps: 

1. Resample uncalibrated aerial images to the reference image resolution and grid. 

2. With the output from step (1), calculate sliding window estimates of 𝑀 and 𝐶 for each pixel 

of each band of the reference image using Equation 3.9.  This forms two multi-band rasters 

M and C at the reference grid and resolution. 

3. Resample M and C rasters to the aerial image resolution and grid. 

4. Calculate estimated surface reflectance for each pixel of each band of the uncalibrated aerial 

image, using Equation 3.5. 
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The choice of resampling algorithms in steps 1 and 3 of the procedure are important, especially 

when there is a large difference in the spatial resolution of the aerial and reference images.  Optical 

imaging systems are linear and thus subject to the superposition principle, which manifests as 

spectral mixing (Akhmanov & Nikitin 1997).  Averaging the uncalibrated image over each 

reference pixel area is recommended when downsampling in step 1.  This will approximate the 

spectral mixing that occurs in the larger reference image pixels.   

It is necessary to produce smooth M and C rasters in step 3 to approximate slowly varying 

atmospheric and BRDF effects and to avoid discontinuities in the final image(s).  Of the standard 

interpolation algorithms, cubic spline interpolation, with its constraints of continuity of the first 

and second derivatives, best satisfies this requirement (Hou & Andrews 1978).  The Geospatial 

Data Abstraction Library (GDAL) (GDAL Development Team 2014) was used for implementing 

the resampling.   

Since adjacent aerial images are calibrated to match the same reference image, overlapping image 

areas are similar.  Blocks of aerial surface reflectance images generated with the procedure 

outlined above can generally be mosaicked without the need for additional colour balancing or 

normalisation procedures to reduce seam lines.  Due to the disparity between reference and aerial 

image resolutions, there may be situations (such as uneven, shadowed terrain) where fine-scale 

differences between adjacent images produce slight seam lines.  In these situations, one could use 

a feathering procedure to blend overlapping areas.  In the case study however, we did not find this 

to be necessary.   

3.3.5 Study site, data collection and preparation 

The surface reflectance homogenisation method proposed in this paper was tested in a 96 km  

107 km area (Figure 3.1) in the Little Karoo in South Africa.  This particular study site was chosen 

as the calibration work forms part of a larger vegetation mapping study being done in the area.   

The Chief Directorate: National Geo-spatial Information (NGI), a component of the South African 

Department of Rural Development and Land Reform, acquires and supplies national coverage 

aerial imagery.  VHR multi-spectral 0.5 m pixel-1 imagery of the study area was obtained from the 

NGI archive. The imagery was captured with a multi-spectral Intergraph DMC with red, green, 

blue and near-infrared (NIR) channels. 
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Figure 3.1   Study area orientation map 

The RSRs of the DMC and MODIS sensors are shown in Figure 3.2.  The peaks overlap well 

between the sensors in the red, green and blue bands, while the DMC NIR band is wider than that 

of MODIS.   

 
Figure 3.2   DMC’s and MODIS’s RSR 

The study site is covered by 2228 images captured during four separate aerial campaigns on 

multiple days from 22 January 2010 to 8 February 2010.  The inclusion of a large set of imagery 

acquired over multiple days allows an investigation into the robustness of the method to temporal 

variation (and the consequent BRDF and atmospheric variations).  There is an average sidelap of 

25% between images in adjacent flight lines and an average forward overlap of 60% between 

consecutive images in the same flight line (National Geo-spatial Information 2010).  The images 
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were captured close to nadir, with a maximum tilt of 5.0°, at a height of 5000 m above ground.  

The DMC has a 69.3° cross track and 42.0° along track field of view (FOV).  NGI campaigns are 

conducted on clear days such that images are free of clouds, cloud-shadows, smoke and excessive 

haze.  Flight times are chosen to achieve a solar altitude of at least 30.0° in order to minimise 

shadowing.  The mean aerosol optical depth (AOD) over the campaign days was 0.02 (the AOD 

provided by the MODIS MOD04 product was used for this calculation).  

The raw aerial imagery was corrected for lens distortion, band spatial alignment, sensor non-

linearity and dark current effects using the Intergraph Z/I Post-Processing Software (PPS).  The 

PPS corrected imagery has a linear radiance response (as required by Equation 3.1), with zero 

offset (i.e. 𝑐1 = 0).  This corrected imagery was orthorectified using existing aerotriangulation 

data supplied by NGI and a 5 m resolution digital elevation model (DEM) (Van Niekerk 2016).   

A MODIS MCD43A4 NBAR product for the period from 25 January 2010 to 9 February 2010 

was selected as a reference for the homogenisation.  This product has a 500 m resolution and 

contains NBAR data composited from the best values over a 16-day period.  The MODIS NBAR 

data has been processed with atmospheric and BRDF correction procedures (Strahler & Muller 

1999) and is recognised as a reliable reference source for cross-calibration (Gao et al. 2013; Jiang 

& Li 2009; Li, Yang & Wang 2012; Liu et al. 2004).  The NBAR data accuracy has been verified 

in a number of studies and is accurate to ‘well less than 5% albedo at the majority of the validation 

sites’ (MODIS Land Team 2014).  MODIS was also selected as it has similar spectral bands to the 

Intergraph DMC.  Bands 4, 1, 3 and 2 from the MODIS sensor were used to correspond to the red, 

green, blue and NIR bands from the DMC sensor respectively.  While Landsat surface reflectance 

(Schmidt et al. 2012) could be a useful source of reference data due to its relatively high spatial 

resolution of 30 m, no cloud-free Landsat imagery concurrent (or near-concurrent) to the aerial 

imagery was available for testing in the case study.   

The PPS processed imagery has zero offset, so the parameter 𝑐1 from Equation 3.7 was zero and 

the atmospheric reflectance, 𝜌a, was small as the surveys were conducted on clear days, meaning 

that C was small.  For the purposes of the case study, C was ignored and only the gain, M, was 

estimated.  With only one parameter to estimate, a sliding window of one pixel was used to achieve 

the best possible spatial resolution in the M raster.  The gain-only simplification is given support 

by the results of Collings et al. (2011) who found the gain term in their linear model to carry the 

majority of the corrective effect.  Nevertheless, it must be acknowledged that this is an initial 

approach and subsequent studies should be conducted to investigate the effects of including C.  
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The blue channel in particular could benefit from the inclusion of the offset (C) term due to its 

haze sensitivity.  

3.3.6 Linearity of band averaged values  

In formulating the method in Section 3.3.1, it was assumed that the effect of sensor RSR on 

measured surface reflectance is locally linear and can be incorporated in the model of Equation 

3.5.  To investigate the validity of this assumption, MODIS and DMC band averaged values were 

simulated for typical surface reflectance spectra and statistically compared.  Twenty surface 

reflectance spectra were selected from the ‘soil’, ‘vegetation’, ‘water’ and ‘man-made’ classes in 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral library 

(Baldridge et al. 2009) to represent commonly encountered land covers.  Band averaged values 

were then simulated for these representative spectra using Equation 3.13, with the MODIS and 

DMC RSRs as shown in Figure 3.2. 

3.3.7 Accuracy assessment 

Given that the DMC imagery was acquired in 2010, it was not possible to assess the accuracy of 

the reflectance retrieval method using ground-based spectral measures. Alternative methods for 

evaluating the results were consequently needed.  First, the DMC DN and calibrated surface 

reflectance images were stitched into mosaics and the mosaics were visually compared to 

determine if discontinuities between adjacent images were reduced and to what extent the 

radiometric variations were corrected.  Second, the DMC homogenised mosaic was resampled to 

the MODIS grid and resolution, and statistically compared to the MODIS reference image. Last, 

we quantitatively compared the DMC homogenised mosaic to a SPOT 5 scene, and the SPOT 5 

scene to the MODIS reference image.   

The 10 m resolution SPOT 5 level 1A image, acquired on 21 January 2010, covers portions of all 

four aerial campaigns as shown in Figure 3.3.  The image was orthorectified using a 5 m resolution 

DEM (Van Niekerk 2016).  The SPOT 5 DN image was converted to surface reflectance using the 

ATCOR 3 method (Richter 1997).  While the ATCOR 3 correction did not include explicit BRDF 

correction, SPOT 5 is subject to substantially lower BRDF effects than the aerial imagery due to 

its narrow FOV (Mather & Koch 2011).  Since the SPOT 5 sensor does not have a blue band, it 

was omitted from this comparison.  The SPOT 5 resolution of 10 m allows the homogenised 

surface reflectance result to be checked at a resolution significantly closer to the aerial resolution 

than the reference MODIS resolution.  This provides a useful check of the effect of approximating 

BRDF and atmospheric variations at the coarse scale of the reference image.  While the MODIS 
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comparison checks the DMC surface reflectance against the reference it was fitted to, the SPOT 5 

comparison uses an independent and ‘unseen’ source.   

To establish the relative accuracy of the corrected SPOT 5 scene, it was downsampled (by 

averaging) to the MODIS resolution and grid and statistically compared to the MODIS reference 

image using Equation 3.14.   

𝐸(𝑥, 𝑦) = |𝐼CMP(𝑥, 𝑦) − 𝐼SPOT(𝑥, 𝑦)| 
Equation 3.14 

where 𝐼CMP is the MODIS image, 𝐼SPOT is the SPOT 5 image, (𝑥, 𝑦) are the pixel coordinates and 

𝐸 is the difference image.  Mean absolute difference (MAD) and root mean square (RMS) statistics 

were found to establish a benchmark against which similar statistics for DMC homogenised mosaic 

could be compared.  

The DMC homogenised mosaic was then downsampled (by averaging) to the SPOT 5 resolution 

and grid, and statistically compared to the SPOT 5 surface reflectance image using Equation 3.14 

with  𝐼CMP as the DMC mosaic in this instance.   

 
Figure 3.3   SPOT 5 scene and mosaic extents 

The image resulting from the differencing process was used to identify spatial patterns in the 

discrepancies between the corrected SPOT 5 image and DMC mosaic.  MAD and RMS statistics 

were found for the image to allow comparison with the results of similar studies.  In addition to 
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the statistical evaluation, individual spectra from homogenous surfaces in the SPOT 5 surface 

reflectance image, and DMC homogenised and DN mosaics were compared.   

The impact of the sliding window size was investigated by repeating the comparison between the 

SPOT 5 image and homogenised DMC mosaic with increasing sliding window sizes.  A sub-

section of the full study area, as shown in Figure 3.3, was used for the sliding window size 

investigation, to expedite computation times. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Band averaged relationships 

The simulated band averaged reflectance relationship for typical surface reflectances between the 

two sensors is shown in Figure 3.4 with coefficient of determination (𝑅2) values.   

 
Figure 3.4   DMC versus MODIS simulated band averaged relationship for typical surface reflectances ((a) NIR, (b) 

red, (c) green and (d) blue bands) 

The correlation between the DMC and MODIS simulated band averaged values (Figure 3.4) is 

surprisingly strong and supports the incorporation of the band averaging effect into the linear 

reflectance model of Equation 3.5.  Similar linear relationships between different sensors for real 

world surface reflectances are reported in Gao et al. (2013) and Jiang and Li (2009).  As the 

proposed method only requires the relationship to be locally linear, the variety of land covers 

simulated here is unlikely to be present inside the sliding window used to estimate the model 

parameters.  For a small sliding window, the correlation of the band averaged values will 
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consequently be stronger than what is shown in Figure 3.4.  The NIR channel has the lowest 𝑅2, 

likely due to the relatively larger dissimilarity between MODIS and DMC RSRs, as evidenced in 

Figure 3.2.  One can consequently expect higher surface reflectance errors in this channel 

compared to the others.  

3.4.2 Mosaicking 

Figure 3.5 shows a RGB (red, green and blue) mosaic of DMC DN images (bordered in red), 

against a background of the MODIS reference image.  Seam lines between adjacent DMC images 

and radiometric variations over the set of images are clearly visible.  

 
Figure 3.5   Uncalibrated mosaic on MODIS reference image background 

Each DMC image was converted to surface reflectance using the proposed procedure. A RGB 

mosaic of the corrected images is shown in Figure 3.6, bordered in red, against a background of 

the MODIS reference image.  No seam lines or radiometric anomalies (e.g. hot spots) are apparent 

at this scale, and the corrected images match the reflectance of the MODIS reference image. 
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Figure 3.6   Homogenised mosaic on MODIS reference image background 

Figure 3.7 (a) shows a close-up section of the DMC DN mosaic where a hot spot (i.e. a BRDF 

effect where sunlight is strongly reflected back into the camera) and seam lines between adjacent 

images are visible.  Figure 3.7 (b) demonstrates the successful removal of the hot spot and seam 

lines after correction with the surface reflectance extraction method. 

 
Figure 3.7   Reduction of hot spot and seam lines, with (a) showing raw DN images including hot spot and seam 

lines and (b) the corrected surface reflectance image 
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3.4.3 MODIS statistical comparison 

Figure 3.8 shows scatter plots of the DMC DN and MODIS surface reflectance values with R2 

coefficients indicating correlation strength.  Figure 3.9 shows similar scatter plots for the DMC 

and MODIS surface reflectance values.  Differences in the MODIS and DMC surface reflectance 

values at MODIS resolution are in part due to the use of the cubic spline interpolation to upsample 

the M and C rasters from the MODIS to DMC resolution.  The spline interpolation is non-

invertible (i.e. downsampling the upsampled rasters does not produce the original M and C rasters, 

but successively smooths the data at each application).  As indicated by Figure 3.8 and Figure 3.9, 

the correlation of the DMC and MODIS values is significantly improved when using the 

homogenised DMC surface reflectance rather than DN values.  This improvement in correlation 

is not unexpected, as Figure 3.9 is effectively comparing calibrated values to the values that were 

used for calibration.  Nevertheless, this comparison serves as a general check on the validity of the 

method and as an indication of the effect of spline interpolation between the disparate MODIS and 

DMC resolutions.   

 
Figure 3.8   DMC DN values and MODIS surface reflectance correlation for the (a) NIR, (b) red, (c) green and (d) 

blue bands 
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Figure 3.9   DMC homogenised mosaic and MODIS surface reflectance correlation for the (a) NIR, (b) red, (c) 

green and (d) blue bands 

MAD, RMS and coefficient of determination statistics are given for the DMC and MODIS surface 

reflectance values in Table 3.1.  Reflectance differences are the greatest in the NIR band, most 

likely due to the dissimilar MODIS and DMC RSRs in this band (Figure 3.2).  This demonstrates 

the importance of using a reference image from a sensor with similar RSRs to those of the target 

imagery. 

Table 3.1   Statistical comparison between MODIS and DMC surface reflectance images 

Band MAD (%) RMS (%) R2 

Near-infrared 1.70 2.50 0.91 

Red 1.18 1.75 0.95 

Green 0.79 1.16 0.96 

Blue 0.48 0.69 0.96 

All 1.04 1.67 0.94 

3.4.4 SPOT 5 statistical comparison 

An indication of magnitude of discrepancies in the SPOT 5 image is shown in Table 3.2, which 

shows the statistics for the difference between the SPOT 5 and MODIS images. The relatively low 

mean overall absolute reflectance difference of 3.35% between the SPOT 5 and MODIS values is 

consequently a good indication that the SPOT 5 surface reflectance extraction is effective.  Note 

that the completeness of the SPOT 5 comparisons are limited by the missing blue band and partial 

coverage of the study area, as shown in Figure 3.3.   
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Table 3.2   Statistical comparison between SPOT 5 and MODIS surface reflectance images 

Band MAD (%) RMS (%) R2 

Near-infrared 4.81 5.79 0.86 

Red 2.83 3.55 0.88 

Green 2.40 2.91 0.87 

All 3.35 4.27 0.87 

Statistics for the reflectance difference between the corrected SPOT 5 image and the DMC 

homogenised mosaic are shown in Table 3.3.  Not all of the reflectance differences can be 

attributed to errors in the homogenised DMC surface reflectances.  Spatial misalignment of pixels 

due to orthorectification differences and BRDF errors in the SPOT 5 surface reflectances also 

contribute to the recorded differences.  Despite this uncertainty due to the contribution of other 

error sources, these reflectance differences compare well to figures reported by other aerial image 

correction methods.  Collings et al. (2011) achieved RMS reflectance errors of 1.37%–12.30% 

measured on placed targets of known reflectance for their aerial mosaic correction technique, and 

in the aerotriangulation approach of López et al. (2011), mean absolute reflectance differences of 

approximately 3.30%–5.00% were obtained on field measured test sites distributed throughout 

their study area.  Similarly to the MODIS comparison, the largest reflectance differences occur in 

the NIR band.  Again, this is likely due to dissimilarities in the RSRs of MODIS, DMC and SPOT 

5 sensor NIR bands (see Figure 3.2 and Figure 3.10).   

Table 3.3   Statistical comparison between SPOT 5 and DMC surface reflectance images 

Band MAD (%) RMS (%) R2 

Near-infrared 4.00 5.66 0.80 

Red 3.11 4.27 0.86 

Green 3.19 3.86 0.85 

All 3.43 4.66 0.84 

Scatter plots of DMC DN and SPOT 5 surface reflectance values are shown in Figure 3.11, and 

DMC surface reflectance and SPOT 5 surface reflectance values are shown in Figure 3.12, with 

R2 coefficients indicating correlation strength.  The R2 values show a moderately strong correlation 

of 0.84 averaged over the bands.  The lack of perfect correlation is due to, amongst other error 

sources, the effect of small scale land cover heterogeneity and differing SPOT 5 and DMC RSRs.  

The SPOT 5-MODIS scatter plots in Figure 3.13 show similar deviations from the one-to-one line 

as those for SPOT 5-DMC in Figure 3.12, especially for NIR.  This suggests that the SPOT 5 

image must be contributing, at least in part, to the SPOT 5-DMC differences. The effect of 

dissimilar SPOT 5, DMC and MODIS NIR RSRs is again evidenced in Figure 3.12 and Figure 

3.13 as the marked deviations of the NIR scatters from the identity lines.  Despite these disparities, 
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the homogenisation of DMC surface reflectance provides a substantial improvement in correlation 

between the DMC and SPOT 5 values.   

 
Figure 3.10   DMC and SPOT 5 RSRs 

 
Figure 3.11   DMC DN mosaic and SPOT 5 surface reflectance correlation for the (a) NIR, (b) red and (c) green 

bands 

 
Figure 3.12   DMC homogenised mosaic and SPOT 5 surface reflectance correlation for the (a) NIR, (b) red and (c) 

green bands 
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Figure 3.13   MODIS and SPOT 5 surface reflectance correlation for the (a) NIR, (b) red and (c) green bands 

The effect of increasing the sliding window size on the reflectance difference between the SPOT 

5 and DMC homogenised subsections is shown in Figure 3.14 (points are labelled with their 

corresponding window dimensions).  The general characteristic is for the MAD to increase with 

sliding window size, suggesting that there is not an overfitting problem for small window sizes.  

The approximation of radiometric transfer and viewing geometry effects as locally linear 

relationships (Equations Equation 3.5 and Equation 3.12) will be more precise for smaller sliding 

windows.  As the sliding window size increases, the effective resolution of the radiometric 

homogenisation decreases, which likely results in the increasing MAD.  This result supports the 

choice of a one pixel sliding window for the case study.   

 
Figure 3.14   Effect of sliding window size on SPOT 5 comparison 

Comparisons of diagnostic SPOT 5 and DMC spectra are shown in Figure 3.15.  These spectra 

were manually selected from single pixels in homogenous areas.  There is a marked improvement 

in the similarity of the DMC and SPOT 5 surface reflectance values after homogenisation for these 

critical cases.  The MAD and RMS difference of the SPOT 5 and DMC diagnostic reflectance 

spectra are 4.52% and 5.70% respectively.  While not representative of wider variation, these 

values are similar to the ones produced by the statistical image analysis (see Table 3.3).  
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Figure 3.15   Comparison of DMC and SPOT 5 spectra for (a) water, (b) bright sand, (c) bare ground, (d) vegetation 

type 1 and (e) vegetation type 2 surfaces 

 
Figure 3.16   DMC and SPOT 5 surface reflectance comparison with (a) DMC homogenised mosaic masked to 

SPOT 5 extent; (b) SPOT 5 surface reflectance image; and (c) contrast stretched absolute difference 

image 

Stellenbosch University https://scholar.sun.ac.za



  62 

False colour CIR (colour-infrared) renderings of the DMC, SPOT 5 and difference images are 

shown in Figure 3.16.  The contrast stretched difference image shows that most discrepancies 

occur in the rugged mountainous areas that extend west to east in the northern section of the scene 

and in densely vegetated areas along river banks in the southern section of the scene.  No shadow 

or terrain correction was performed on the SPOT 5 image.  Shadow variations occurring in the 

DMC images below the scale of the reference resolution are not accounted for by the proposed 

method.  Disparities in the mountainous areas are mainly due to differing, uncorrected shadow 

effects likely caused by variations in the time of day when the images were captured (the aerial 

images were captured throughout the day, while the SPOT 5 image was captured at 10:29).  A 

particularly bright area is noticeable in the upper right corner of the difference image.  This 

corresponds to an area of bare ground that is bright in both the DMC and MODIS images and 

likely corresponds to a BRDF correction failure.  It is not possible to say if this failure occurs in 

the SPOT 5 and/or DMC corrections.  The differences in the densely vegetated and cultivated areas 

are attributed to the differences in the MODIS, DMC and SPOT 5 sensor NIR RSRs being 

amplified by the known high NIR reflectivity of vegetation.  Abrupt changes in BRDF may occur 

between adjacent fields in cultivated areas along the major rivers.  As discussed in Section 3.3.2, 

these changes may not be captured at the MODIS resolution and could also be contributing to the 

NIR differences in these regions.   

3.5 CONCLUSIONS 

This study proposes a method of homogenising surface reflectance in aerial imagery by calibrating 

to a coarse-resolution, concurrent and collocated satellite image that has already been corrected 

for atmospheric and BRDF effects.  It is shown that a spatially varying linear model can be used 

to approximate the relationship between the DN measured by the aerial sensor and the surface 

reflectance of the satellite image.  The parameters of the model are estimated for each satellite 

pixel location using least squares regression inside a small sliding window.  The method is limited 

by the low resolution of the satellite reference image.  The effects of viewing geometry and land 

cover variations below the scale of a reference pixel are averaged out.  Only gradual BRDF and 

atmospheric variations that can be captured by the coarser resolution of the reference image are 

compensated for.    

The proposed surface reflectance homogenisation method was applied to 2228 Intergraph DMC 

images covering an area 96 km  107 km in size, omitting the offset parameter, C, from the model.  

A MODIS MCD43A4 NBAR product was used as the surface reflectance reference.  The DMC 

homogenised mosaic was free of visible seam lines and hot spots and matched the MODIS 

Stellenbosch University https://scholar.sun.ac.za



  63 

reference well.  The DMC homogenised mosaic was also compared to a concurrent SPOT 5 image 

in order to establish the method’s efficacy at a spatial resolution closer to that of the DMC source 

resolution than the MODIS reference.  The SPOT 5 image was corrected for atmospheric effects 

and converted to surface reflectance using the ATCOR 3 method.  The mean R2 value and the 

mean absolute reflectance difference between the DMC mosaic and SPOT 5 image were 0.84 and 

3.43% respectively.  Despite the limitations and approximations inherent in the method, these 

statistics are considered supportive of the method’s efficacy and are similar to figures reported by 

Collings et al. (2011) and López et al. (2011) for related correction techniques.  While the method 

was evaluated on aerial imagery, it is not limited to this type of data and could be applied to any 

multi-spectral VHR imagery, including satellite and unmanned aerial vehicle (UAV) imagery. 

The proposed technique does not require explicit BRDF and atmospheric correction; and mosaic 

normalisation techniques to reduce seam lines are not necessary.  The spatially varying linear 

model allows for flexibility in the BRDF characteristics that can be corrected for.  The method 

accuracy is limited by the accuracy of the reference surface’s reflectance i.e. the accuracy of the 

homogenised images can at best be that of the MODIS reference.  The method is also limited by 

the need for a reference image concurrent and spectrally similar to the aerial imagery.  Such an 

image may not always be obtainable.  The MODIS and DMC RSRs are quite different in the near-

infrared region of the spectrum (see Figure 3.2).  The surface reflectance homogenisation method 

approximates the effect of different sensor spectral responses with a linear relationship that is 

contained by the model of Equation 3.5.  This approximation was supported by a simulation of 

MODIS and DMC measurements for typical land cover spectra.  The relatively higher (4%) NIR 

reflectance difference between the DMC mosaic and the SPOT 5 values, and discrepancies in 

vegetated areas, are likely due to the more exaggerated differences in NIR RSRs between the 

MODIS, DMC and SPOT sensors.  

While the results of the surface reflectance homogenisation technique were surprisingly good 

given the simplicity of the method, some aspects warrant further investigation.  The effects of 

including the offset parameter, C should be investigated.  The offset parameter may improve 

homogenised results where atmospheric effects like haze are relatively severe.  Local terrain 

effects are poorly represented at the MODIS resolution.  Landsat surface reflectance offers a higher 

resolution alternative but has the drawback of no BRDF correction (Schmidt et al. 2012).  It could 

nevertheless be a useful homogenisation reference, as it will exhibit less BRDF variation than low 

altitude aerial imagery due to its narrower FOV. The MISR instrument is also a promising 

alternative to MODIS.  MISR RSRs are a better match to those of the Intergraph DMC than the 
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MODIS bands, and it is possible to obtain 275 m reflectance products using MISR-HR (Verstraete 

et al. 2012).  The MISR instrument captures data at nine different angles, which allows a more 

accurate modelling of the BRDF compared to the kernel-based approach followed in the 

calibration of the MODIS data (Strahler & Muller 1999).  It would be informative to test the 

performance of the method with Landsat and MISR surface reflectance reference images.   
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CHAPTER 4:  FEATURE CLUSTERING AND RANKING (FCR) FOR 

SELECTING STABLE FEATURES FROM HIGH DIMENSIONAL 

REMOTELY SENSED DATA1 

4.1 ABSTRACT 

High dimensional remote sensing data sets typically contain redundancy amongst the features.  

Traditional approaches to feature selection are prone to instability and selection of sub-optimal 

features in these circumstances.  They can also be computationally expensive, especially when 

dealing with very large remote sensing datasets. This article presents an efficient, deterministic 

feature ranking method that is robust to redundancy.  Affinity propagation is used to group 

correlated features into clusters.  A relevance criterion is evaluated for each feature.  Clusters are 

then ranked based on the median of the relevance values of their constituent features.  The most 

relevant individual features can then be selected automatically from the best clusters.  Other 

criteria, such as computation time or measurement cost, can optionally be considered interactively 

when making this selection.  The proposed feature selection method is compared to competing 

filter approach methods on a number of remote sensing data sets containing feature redundancy.  

Mutual information and naive Bayes relevance criteria were evaluated in conjunction with the 

feature selection methods.  Using the proposed method, it was shown that the stability of selected 

features improved under different data samplings, while similar or better classification accuracies 

were achieved compared to competing methods. 

4.2 INTRODUCTION 

In image classification, the amount of training data required to adequately represent class 

distributions in feature space increases exponentially as the number of features (variables) is 

increased – a phenomena known as the “curse of  dimensionality” (Bishop 2003).  For finite 

training samples, increasing the features beyond a certain point results in overtraining and a 

decrease in the classifier accuracy.  This so-called “peaking phenomenon” (Jain, Duin & Mao 

2000) requires the size of the feature set to be reduced to a salient minimum in order to achieve an 

accurate classification.  Support vector machine (SVM) (Burges 1998) and random forest 

(Breiman 2001) classifiers have become popular in remote sensing, partly because of their lack of 

sensitivity to the peaking phenomenon (Guyon et al. 2002), but several studies have demonstrated 

                                                 

1 This chapter is published in the International Journal of Remote Sensing and consequently conforms to the prescribed structure of 

that journal 
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the benefits of feature reduction when these classifiers were applied to high dimensional data 

(Guyon et al. 2002; Strobl et al. 2008; Tolosi & Lengauer 2011).  Reducing the number of features 

is also beneficial from the perspective of measurement costs and feature computation time.  This 

is particularly relevant in large-scale remote sensing studies involving very high resolution (VHR) 

imagery, as vast quantities of data require processing.   

Two basic approaches to feature set reduction exist: feature selection and feature extraction.  In 

feature extraction the feature set is mapped into a new feature space of reduced dimensionality 

(Webb 2002).  A major disadvantage of the feature extraction approach is that it requires 

measurements and computations to produce the full feature set, which can be prohibitively costly. 

Feature extraction also hinders interpretability as it alters the original representation of the features.  

A feature extraction approach was thus not followed in this study. 

Feature selection involves the selection of a subset of features from the original set according to 

some criterion of subset performance.  The number of possible subsets increases combinatorially 

with the size of the feature set and it is seldom practical to evaluate all possible subsets (Jain, Duin 

& Mao 2000).  A variety of search schemes exist for reducing the portion of feature space searched.  

The fastest and most straightforward search scheme is simply to rank features based on their 

individual performance and select the best N.  However, feature ranking approaches are 

problematic for data sets containing feature redundancy.  In these situations, correlated features 

are ranked similarly, resulting in sub-optimal and redundant feature sets.   

More advanced search schemes use greedy sequential approaches, such as forward selection and 

backward elimination.  Compared to the feature ranking approach, greedy search procedures are 

more likely to find the globally optimal feature set as they explore more of the search space and 

are less inclined to select multiple redundant features (Webb 2002). The forward selection (FS) 

approach starts with an empty feature set and proceeds in a number of steps where one feature is 

added to the selected set at each step.  The feature whose selection most improves an accuracy 

criterion is the one that is selected for that step.  The selection process proceeds for a set number 

of steps or until a stopping criterion is reached (Bishop 2003).  The backward elimination (BE) 

method starts with the full set of features and proceeds in a number of steps where one feature is 

eliminated from the selected set at each step.  The feature whose removal produces the best 

accuracy according to some criterion is the one eliminated for that step. Again, the BE selection 

process proceeds for a set number of steps or until a stopping criterion is reached (Bishop 2003).  

BE is computationally more costly than FS as it begins evaluation on the full feature set.  For the 

same reason, it also requires adequate data to represent the full feature set. 
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Feature selection methods can be grouped into filter, wrapper and embedded approaches.  In the 

filter approach, generic measures of separability or importance are used to evaluate feature subsets, 

while in the wrapper approach, the accuracy of a specific classifier trained on the feature subset is 

used as the selection criterion (Duin & Tax 2005).  An embedded approach is one where feature 

selection is incorporated into the classifier training procedure, such as with random forests 

(Breiman 2001).  Filter approaches have the advantage over wrapper and embedded approaches 

of making feature selection independent of the classifier, thus allowing for greater flexibility in 

the choice of classifier (Brown et al. 2012).  In general, filter approaches are also computationally 

more efficient than wrapper approaches.  This is an important consideration for large and high 

dimensional data sets such as those often encountered in remote sensing.  This study thus focuses 

on filter approaches. 

High dimensional feature spaces typically contain feature redundancy (Cukur et al. 2015; Tolosi 

& Lengauer 2011; Yu & Liu 2004).  Although feature correlation and redundancy are related, they 

are not strictly the same thing (Brown et al. 2012; Guyon & Elisseeff 2003).  Features can help 

improve separability when the within class correlation is stronger than the between class 

correlation.  We use the term “redundancy” to refer to correlation of features between classes.  The 

raw bands of multi-spectral imagery often have significant spectral overlap and consequently are 

correlated with one another.  This spectral overlap will exacerbate the redundancy amongst 

features derived from these raw bands (Cukur et al. 2015).  Hyperspectral imagery is also well-

known for containing redundancy amongst the bands (Yuan, Zhu & Wang 2015). 

A number of authors have noted difficulties in selecting features from high dimensional data sets.  

Kononenko et al. (1997), Guyon et al. (2002), Yu & Liu (2004) and Yousef et al. (2007) noted that 

feature redundancy can have a negative impact on the optimality of feature selection.  Feature 

redundancy not only leads to sub-optimal feature selection, but also makes selected features 

unstable and sensitive to small changes in the data used for selection (Guyon & Elisseeff 2003; 

Kalousis, Prados & Hilario 2007; Li, Harner & Adjeroh 2011; Tolosi & Lengauer 2011). 

The increasing availability of high spatial and spectral resolution imagery necessitates 

computationally efficient feature selection techniques robust to high dimensional redundant 

spaces.  In this article we propose a computationally efficient filter approach feature selection 

method for addressing the problems of sub-optimality and instability associated with high 

dimensional, redundant feature spaces of remotely sensed data.  We adopt the filter approach due 

its separation of feature selection and classification tasks.  The method employs affinity 

propagation (Frey & Dueck 2007) to identify clusters of redundant features and redundancy is 
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reduced by selecting a single representative feature from the most relevant clusters.  The method 

requires no prior knowledge of the number of clusters.  Correlation is used to measure feature 

similarity, which allows a broader encapsulation of feature redundancy than distance measures 

such as Euclidean distance (Chen et al. 2017).  Assumptions of linear dependence between features 

and class labels made in structured sparsity regularisation approaches (Gui et al. 2017) are also 

avoided by selecting features with a relevance heuristic, based on the use of naive Bayes or mutual 

information criteria.  The proposed method can be fully automated, or it can be used interactively 

to allow for consideration of computation time and measurement cost. The performance of the 

proposed method is compared to popular feature selection approaches, on a number of remote 

sensing data sets.  The various feature selection methods are evaluated based on computation time, 

classification accuracy and stability of selected features under different data samplings. 

4.3  METHODS 

4.3.1 Related work 

A number of feature selection approaches have been developed to address the issues of stability 

and sub-optimality encountered in high dimensional and redundant data.  These methods consider 

the trade-off between feature relevance (i.e. how much information the feature contains about the 

class labels) and redundancy.   

A means of selecting good features from redundant spaces was devised by Yousef et al. (2007), 

who used a k-means algorithm to produce a fixed number of clusters of correlated features.  The 

accuracy of a SVM classifier is found for all the features of each cluster and the lowest performing 

clusters are eliminated, the remaining features combined, and the process is repeated until a desired 

number of clusters is reached.  A related feature selection method that finds and removes 

redundancy by clustering features into similar groups was presented by Mitra, Murthy & Pal 

(2002).  They used a novel clustering algorithm to group correlated features based on a similarity 

measure they call “maximal information compression index”, which is the smallest eigenvalue of 

the feature covariance.  Sahu & Mishra (2011) also used k-means clustering to group redundant 

features.  The best feature, according to an importance measure, is then selected from each cluster.  

Cukur et al. (2015) proposed a similar method, where redundant features are clustered and top 

ranked features selected from each cluster using an importance measure called “minimum 

redundancy maximum relevance” (mRMR).   

A two-step procedure called the “Fast Correlation Based Filter” (FCBF), was developed by Yu & 

Liu (2004).  It first creates a reduced set of relevant features, using a non-linear correlation 
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measure, called symmetrical uncertainty, that measures both feature relevance and redundancy.  

Relevance is measured by how well features are correlated with class labels and redundancy is 

measured by how well features are correlated with each other.  Redundant features are then 

removed from this set using a search procedure based on Markov blanket filtering.     

Wu et al. (2013) compared a number of filter approach feature selection methods for reducing 

redundancy in three hyperspectral data sets.  They used a number of performance measures for 

comparison, including classifier accuracy, feature stability, and their own criterion called the 

maximal minimal associated index quotient (MMAIQ).  MMAIQ uses Cramer’s V-test values to 

trade feature relevance against redundancy and is applied in a FS type routine.  While the authors 

concluded that MMAIQ provided the best overall performance, it did not provide good stability 

for high dimensional data. 

A number of feature importance measures (including the FCBF) were incorporated by Brown et 

al. (2012) into a common theoretical framework.  These measures all consider both relevance and 

redundancy in some way.  A comprehensive empirical study was used to compare the performance 

(in terms of stability and classifier accuracy) of these measures.  The study tested the criteria in a 

FS search scheme, under varying conditions, including redundancy in high dimensional feature 

spaces.  They concluded that joint mutual information (JMI) (Yang & Moody 2000) provides the 

best feature selection performance overall.  

In recent years, a number of feature selection approaches based on structured sparsity 

regularisation have been developed (Chen et al. 2017; Chen & Gu 2015; Gui et al. 2017; Nie et al. 

2010).  Structured sparsity regularisation modifies the traditional sparsity regularisation approach 

by incorporating prior knowledge of the group structure of features to improve performance (Gui 

et al. 2017).  The supervised multiview feature selection (SMFS) method of Chen et al. (2017) 

uses a structured sparsity approach that groups features by similarity and uses this similarity 

structure to address the trade-off between feature relevance and redundancy.  In SMFS, features 

are clustered into homogenous groups or “views” using affinity propagation (AP) with a squared 

Euclidean distance similarity measure.  A sparse set of features is selected from these views by a 

joint 𝓁1,2-norm minimisation of an objective function comprised of loss function and 

regularisation terms.  The formation of the loss function assumes a linear dependence between 

features and class labels.  Feature view structure is incorporated into the 𝓁1,2-norms so as to 

encourage the sparsity of selected features within views, while retaining the information of 

multiple heterogeneous views.  The objective function is minimised with quadratic programming, 

which is computationally expensive compared to greedy search type feature selection methods 
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such as FS and JMI.  Feature weights produced by the optimisation procedure can be considered 

an importance measure that trades relevance against redundancy.    

4.3.2 Feature clustering and ranking 

Within the context of the related research overviewed in the previous section, our proposed feature 

selection method consists of the following three steps: 

1. Perform AP clustering (Frey & Dueck 2007) of the feature set using the absolute value of 

the correlation coefficient as the similarity metric. 

2. Rank each cluster’s importance by finding the value of a relevance criterion for each 

individual feature and then finding the median of the feature relevance values in the cluster. 

3. Select a single feature from each of the N clusters with best importance scores. 

AP is a clustering technique that identifies cluster representatives (“exemplars”), and their 

corresponding clusters, by an iterative scheme of message passing between data points (Frey & 

Dueck 2007).  A matrix of pairwise similarities and a “preference” parameter are required as 

inputs.  The preference parameter affects the number of identified clusters and may be chosen 

automatically based on the values of the similarities.  The proposed feature selection method sets 

the preference parameter to the median of the similarities, which results in a moderate number of 

clusters (Frey & Dueck 2007).  Unlike clustering techniques such as k-means, AP does not require 

prior knowledge of the number of clusters.   

Two kinds of messages, “availability” and “responsibility”, are passed between data points at each 

iteration.  The values of these messages express the current affinity one point has for choosing 

another as its exemplar.  The responsibility 𝑟(𝑖, 𝑘) reflects the accumulated evidence that feature 

k is the exemplar for feature i, taking into consideration other possible exemplars for feature i.  The 

availability 𝑎(𝑖, 𝑘) reflects the accumulated evidence for how appropriate it would be for feature i 

to choose feature k as its exemplar, taking into consideration support from other features for 

choosing k as their exemplar.   

To initialise, the availabilities are set to zero, 𝑎(𝑖, 𝑘) = 0.  In our method, the similarity 𝑠(𝑖, 𝑘) 

between feature i and k, is set to the absolute value of the correlation coefficient, and the self-

similarities, 𝑠(𝑘, 𝑘), are set to the preference value.  At each iteration, the responsibilities are 

updated using the rule: 
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𝑟(𝑖, 𝑘) ← 𝑠(𝑖, 𝑘) − max
𝑘′ 𝑠.𝑡.  𝑘′≠𝑘

{𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)}  Equation 4.1 

The availabilities are correspondingly updated using the rule: 

𝑎(𝑖, 𝑘) ←

{
 
 

 
 
min {0, 𝑟(𝑘, 𝑘) + ∑ max{0, 𝑟(𝑖′, 𝑘)}

𝑖′ 𝑠.𝑡. 𝑖′∉{𝑖,𝑘} 

} , 𝑖 ≠ 𝑘

∑ max{0, 𝑟(𝑖′, 𝑘)}

𝑖′ 𝑠.𝑡. 𝑖′≠𝑘

, 𝑖 = 𝑘

 
Equation 4.2 

The exemplar for feature i is identified by the value of k that maximises 𝑎(𝑖, 𝑘) +  𝑟(𝑖, 𝑘). The 

iterations continue until the clusters (and their corresponding exemplars) remain stable for ten 

consecutive updates.   

We investigated the performance of two different feature relevance measures: the accuracy of a 

naive Bayes classifier and the mutual information (MI) between the feature and the class labels.  

The naive Bayes classifier, using a histogram to model class densities, was chosen primarily 

because it makes no assumptions about the form of the class distributions and can thus provide a 

generic measure of separability.  It is simple, fast and recognised as being accurate for a variety of 

problems (Hand & Yu 2001).  The “naive” assumption of feature independence is of no 

consequence when testing individual features.   

MI  is a measure of the dependence between two random variables (Brown et al. 2012).  Given 

two random variables 𝑋 and 𝑌, with probability distributions 𝑝(𝑥) and 𝑝(𝑦) and joint probability 

distribution 𝑝(𝑥, 𝑦), the MI between 𝑋 and 𝑌 is defined as:  

𝐼(𝑋; 𝑌) = ∑∑𝑝(𝑥, 𝑦)log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦∈𝒴𝑥∈𝒳

 Equation 4.3 

The MI between a feature and the class labels gives a useful indication of that feature’s relevance 

or importance (Brown et al. 2012).  The probability distributions in Equation 4.3 are not known 

and are estimated using histograms. 

The cluster importance measure for the kth cluster is expressed as 
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𝐶𝑘 = median
𝑋𝑗∈𝐺𝑘

𝑅(𝑋𝑗 , 𝑌) Equation 4.4 

where 𝐺𝑘 is the set of features in cluster k and 𝑅(𝑋𝑗, 𝑌) is the MI or naive Bayes feature relevance 

measure for feature 𝑋𝑗 and class labels 𝑌.  Once the clusters of similarly relevant features have 

been ranked according to their importance measures, single features may be selected from the best 

clusters using an automatic procedure or by the user, taking measurement cost and computation 

time into account.  The process of selecting a representative feature from each of the top ranked 

clusters reduces redundancy while retaining relevance.  For automatic feature selection, the feature 

with the maximum relevance measure is selected from each of the N best clusters.  When criteria 

of measurement cost or computation time require consideration, the user should hand select 

features minimising these values from the N best clusters.   

The number of clusters to select, N, can be specified by the user based on the size of the training 

set or by using a grid search with the final classifier accuracy as performance measure.  To avoid 

biased accuracy estimates, all classifier accuracy evaluations, for cluster ranking or selection of N, 

are done on unseen test data using a five-fold cross-validation (Bishop 2003).   

4.3.3 Data sets 

Five remote sensing and one synthetic data set (Table 4.1) were used for comparing the proposed 

method against popular existing feature selection methods.  The “difficulty” in the last column of 

Table 4.1 is calculated as 𝑁/(𝑚𝑐), as in Brown et al. (2012), where 𝑁 is the number of objects, 𝑚 

the number of features and 𝑐 the number of classes.  Smaller values indicate that the data is less 

representative of the underlying class distributions, which results in more challenging feature 

selection and classification tasks.   

Table 4.1   Data sets 

Name Abbreviation 
Number of  
Features 

Number of  
Objects 

Number of 
Classes 

Difficulty 

Spekboom Spekboom 46 57877 3 419.40 

Synthetic Synthetic 17 10000 2 294.12 

Statlog Landsat Landsat 36 3756 6 17.39 

Urban land cover Urban 147 261 9 0.20 

Botswana Botswana 145 1330 14 0.66 

Kennedy space centre KSC 176 1365 13 0.60 

The spekboom set consists of 46 spectral and textural features derived from four band multi-

spectral, 0.5 m spatial resolution aerial imagery.  The classes represent three types of vegetation 
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found in the Little Karoo, a semi-arid region in South Africa.  It was created as part of a vegetation 

mapping project being conducted by the authors. 

The two-class synthetic data set was generated to have redundancy amongst the features.  The first 

five features for class 𝑗 were generated from a normal distribution, 𝑁(𝜇𝑗, 1), with mean 𝜇𝑗 and 

standard deviation of one (𝑗 = 1. .2).  The mean, 𝜇𝑗, of each distribution, was generated from the 

standard normal distribution, 𝑁(0,1).  The same number of objects were generated for each class.  

To introduce redundancy, an additional five features were generated by adding normally 

distributed noise, 𝑁(0,0.25), to the original five features.  A further five redundant features were 

similarly generated, but by adding normally distributed noise, 𝑁(0,0.5), to the original features.  

Finally, two spurious features, sampled from a standard normal distribution, 𝑁(0,1), were added 

to the data set.   

The Statlog Landsat and Urban Land Cover data sets were obtained from the UCI Machine 

Learning Repository (Lichman 2013).  The Statlog Landsat features are generated from six band 

multi-spectral pixel values in three by three neighbourhoods.  The data set consists of six land 

cover classes.  The features of the Urban Land Cover data set are comprised of multi-scale spectral, 

size, shape and textural measures, derived from high-resolution aerial imagery (Johnson & Xie 

2013).   

Kennedy Space Centre (KSC) and Botswana are public hyperspectral data sets with vegetation and 

land cover classes (GIC 2014). The Botswana data were acquired by the Hyperion sensor on board 

the NASA EO-1 satellite and consist of 145 bands in the 400-2500 nm portion of the spectrum, at 

a 30 m pixel resolution.  The KSC data were acquired by the NASA AVIRIS (Airborne 

Visible/Infrared Imaging Spectrometer) sensor and consist of 176 bands in the 400-2500 nm range, 

acquired at a spatial resolution of 18 m.   

4.3.4 Experimental design 

The proposed feature clustering and ranking (FCR) method was compared to a number of other 

established and competing feature selection methods.  We adopted a similar, although reduced, 

evaluation approach to that of Brown et al. (2012) and Wu et al. (2013).  The compared methods 

included the standard search approaches of ranking, FS and BE.  These standard approaches and 

FCR, were each evaluated with two different feature relevance criteria: MI and the naive Bayes 

classification accuracy.  The MI relevance criterion for FCR and ranking approaches finds the MI 

between individual features and the class labels.  To integrate the MI relevance criterion into FS 
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and BE, it is necessary to compute the MI of a set of multiple candidate features with the class 

labels.  In this situation, the candidate features are first merged into a joint variable and then the 

MI of the class labels with this joint variable is computed (Brown et al. 2012).  We used histograms 

with ten bins along each dimension to approximate probability densities for both the MI and naive 

Bayes criteria (Webb 2002), to avoid difficulties and inefficiencies associated with estimating 

probability densities for continuous variables (Brown et al. 2012).   

In addition to the MI and naive Bayes criteria, two other criteria, namely JMI and maximum 

relevance minimum redundancy (mRMR), were included in our study to represent “state of the 

art” performance.  Brown et al. (2012) compared the performance of several feature selection 

criteria in redundant high dimensional spaces, and found the JMI criterion gave the best overall 

performance in terms of classification accuracy and stability.  The JMI measure for feature 𝑋𝑘 is 

𝐽JMI(𝑋𝑘) = ∑ 𝐼(𝑋𝑘𝑋𝑗; 𝑌)

𝑋𝑗∈𝑆

 Equation 4.5 

where 𝑌 are the class labels and 𝑆 is the set of previously selected features.  JMI considers the MI 

between the class labels and the joint variables 𝑋𝑘𝑋𝑗, which are the pairwise combinations of the 

candidate feature with each feature already selected.  It measures how well the candidate feature 

complements selected features in describing the class labels.  

The popular mRMR criterion, introduced by Peng, Long & Ding (2005), expresses the trade-off 

between feature relevance and redundancy using MI measures. The mRMR measure for candidate 

feature 𝑋𝑘 is 

𝐽𝑚𝑅𝑀𝑅(𝑋𝑘) = 𝐼(𝑋𝑘; 𝑌) −
1

|𝑆|
∑ 𝐼(𝑋𝑘; 𝑋𝑗)

𝑋𝑗∈𝑆

 Equation 4.6 

The first term expresses relevance as the dependence between the candidate feature and class 

labels, while the second term approximates the redundancy as the mean pairwise dependencies 

between the candidate and previously selected features.  The JMI and mRMR criteria are used in 

a FS search scheme.  The evaluated methods are detailed in Table 4.2.  In this evaluation, the term 

“method” is used to refer to a combination of search scheme, such as FS, and criterion, such as 

JMI. 
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Table 4.2   Methods as combinations of search schemes and criteria 

Search scheme Criterion 
Method 

abbreviation 

Forward selection Joint mutual information FS-JMI 

Forward selection 
Maximum relevance 

minimum redundancy  
FS-MRMR 

Feature clustering and ranking Naive Bayes FCR-NaiveBC 

Ranking Naive Bayes Rank-NaiveBC 

Forward selection Naive Bayes FS-NaiveBC 

Backward elimination Naive Bayes BE-NaiveBC 

Feature clustering and ranking Mutual information FCR-MI 

Ranking Mutual information Rank-MI 

Forward selection Mutual information FS-MI 

Backward elimination Mutual information BE-MI 

To quantify the stability of the selected features, we used the consistency index developed by 

Kuncheva (2007).  If 𝐴 and 𝐵 and are subsets of the full feature set 𝑋, with |𝐴| = |𝐵| = 𝑘, 𝑟 =

|𝐴 ∩ 𝐵| and 0 < 𝑘 < |𝑋| = 𝑛, the consistency index is  

𝐶(𝐴, 𝐵) =
𝑟𝑛 − 𝑘2

𝑘(𝑛 − 𝑘)
 

Equation 4.7 

Its value lies in the range [−1,+1], where positive values indicate similar sets, zero indicates a 

random relation and negative values indicate an anti-correlation between the feature sets 

(Kuncheva 2007).  To evaluate stability for a particular method, we select features from bootstrap 

samples of the data.  The consistency index is found for each pairwise combination of selected 

features over ten bootstraps of the data and averaged to give a measure of overall stability.   

A k-nearest-neighbour (k-NN) classifier (with 𝑘 = 3) was used to evaluate the accuracy of the 

features selected by each method.  k-NN is a generic classifier that makes no assumptions about 

the data and requires no tuning.  While other classifiers may be more accurate in particular 

situations, k-NN allows a relative comparison of the feature selection methods, independent of the 

influence of classifier tuning for specific data.  For each of the feature sets found from the bootstrap 

samples, the k-NN accuracy was found as the average per-class accuracy from a ten-fold cross-

validation.  For each method and data set combination, an overall accuracy was computed as the 

average of the bootstrap accuracies.   

The number of features to select for each data set was fixed across methods.  This parameter was 

selected by using the accuracy of a k-NN classifier (𝑘 = 3), trained on the first N features selected 

by FS-NaiveBC, as the criterion in a grid search.  A low value of N that achieved good accuracy 
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was selected for each data set. The number of features selected for each data set are detailed in 

Table 4.3.   

Table 4.3   Feature selection parameters 

Data Set 
Number of 
Features to 

Select 

Spekboom 6 

Synthetic 5 

Statlog Landsat 4 

Urban land cover 4 

Botswana 6 

Kennedy Space 
Centre 

7 

The FCR methods (FCR-MI and FCR-NaiveBC) required some specific treatment to integrate 

them into the evaluation.  After bootstrapping, clusters were assigned unique indices, ensuring 

identical clusters had the same index.  The consistency index was then found using the selected 

cluster indices rather than feature indices.  This was done to simulate hand-selection of preferred 

features from the best clusters for each bootstrap, while allowing the FCR algorithm to 

automatically choose the top ranked feature from each cluster (for the sake of simplicity and 

speed).  In other words, the cluster index was used to represent the index of the preferred feature 

that could otherwise have been selected by hand from the cluster contents.   

We followed a similar approach to that of Brown et al. (2012) for computing a single “non-

dominated” ranking of the methods that considers stability and accuracy performance 

simultaneously.  The concept of “Pareto optimality” was used to find a single optimal solution in 

terms of multiple criteria.  In the context of our evaluation, the “Pareto front” is the set of methods 

on which no other method can improve without degrading either the accuracy or stability.  The 

methods in this set are called “non-dominated” (Mishra & Harit 2010).  Successive Pareto fronts 

can be formed iteratively by finding the current Pareto front of the set of methods that excludes 

members of the previous fronts.  A method was thus given a non-dominated rank of N if it was a 

member of the Nth Pareto front.  The average of the non-dominated ranks for each method over the 

six data sets was used to produce an overall ranking.   

The bulk of the software implementation was done in MatlabTM, making use of the PRTools 

toolbox (TU Delft 2015).  The MI, JMI and mRMR criteria were computed using the FEAST 

(FEAture Selection Toolbox) C++ implementation (Brown et al. 2012).   
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4.4 RESULTS AND DISCUSSION 

The results of the stability and accuracy evaluations for each method and data set combination are 

shown in Figure 4.1 and Figure 4.2 respectively.  The methods appear along the x axis in order of 

their mean stability in Figure 4.1, and mean accuracy in Figure 4.2, over the six data sets.  The 

wide range of stabilities confirms the sensitivity of some methods to variations in the data.  The 

method accuracies span a smaller range than the method stabilities.  Nonetheless, there were 

substantial differences in accuracy between the best and worst methods.  Compared to the other 

data sets, the stability of the spekboom, Synthetic and Landsat data was noticeably superior.  As 

reflected in the “difficulty” values in Table 4.1, these data sets are more representative of the 

underlying distributions and are thus less sensitive to disturbances.   

 
Figure 4.1   Method stability per data set (methods along the x axis are ordered by their mean stability over the data 

sets) 
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Figure 4.2   Method accuracy per data set (methods along the x axis are ordered by their mean accuracy over the 

data sets) 

FCR-NaiveBC and FCR-MI occupy the top two positions for both performance measures. The 

ranking methods, Rank-MI and Rank-NaiveBC both had poor accuracy performance.  This was 

expected as these methods do not consider feature complementarity and only measure relevance 

of features in isolation.  The relatively poor accuracy and stability of FS-JMI was surprising in the 

context of the results of Brown et al. (2012), where it produced the best overall performance.  The 

FS-JMI results nevertheless provide a benchmark that helps confirm the usefulness of the FCR 

method for the type of data investigated in our study.   

As with classifier design, there is a “curse of dimensionality” problem with computing the MI of 

joint variables.  As the number of features increases, the number of objects needed to adequately 

represent the feature distribution increases exponentially (Brown et al. 2012).  For this reason, the 

MI criterion is not well suited for evaluating the BE search scheme, which requires computation 

of the relevance criterion for the full feature set.  This likely explains the poor performance of BE-

MI in terms of both accuracy and stability.  Part of the motivation for the JMI and mRMR 

formulations is to circumvent this kind of representivity issue by using a low dimensional 

approximation to MI.   

The method execution times, summed over the six data sets, are provided in Table 4.4.  The 

execution time of FCR competed well with the other methods, although mRMR was the fastest 

overall.  The naive Bayes criterion is slower to compute than the MI criterion as it uses a five-fold 
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cross-validation to evaluate the classification accuracy, while MI is computed once-off.  Methods 

using the naive Bayes criterion are consequently slower than their MI counterparts.  FS-JMI is 

faster than the related FS-MI method, as the criterion only requires MI computations between 

pairwise combinations of features and the class labels, while the MI criterion is evaluated on the 

combination all selected features.  BE is known to be less efficient than FS (Guyon & Elisseeff 

2003), and was the slowest of the tested search schemes.  

Table 4.4   Method cumulative execution time over all data 

Method Time (s)  

FS-MRMR 1.40 

Rank-MI 2.11 

FS-JMI 2.46 

FCR-MI 3.01 

FS-MI 12.08 

FCR-NaiveBC 72.61 

Rank-NaiveBC 73.05 

BE-MI 242.39 

FS-NaiveBC 429.76 

BE-NaiveBC 3340.84 

Table 4.5 presents the non-dominant ranking of the methods, in terms of both accuracy and 

stability.  The best ranked method overall was FCR-MI, followed by FCR-NaiveBC.  The Rank-

NaiveBC, Rank-MI, BE-NaiveBC and BE-MI methods were ranked lowest due to the known 

limitations of these methods. The FS-MRMR method was competitive on all measures, and was 

the third ranked method overall.   

Table 4.5   Non-dominated ranking of methods by accuracy and stability 

Method Rank 

FCR-MI 1 

FCR-NaiveBC 1.67 

FS-MRMR 2 

FS-JMI 2.50 

FS-MI 2.83 

FS-NaiveBC 2.83 

Rank-MI 3 

BE-NaiveBC 3.33 

Rank-NaiveBC 3.33 

BE-MI 4 

If the clustering step were omitted, FCR-MI and FCR-NaiveBC would simplify to Rank-MI and 

Rank-NaiveBC respectively.  FCR-MI and FCR-NaiveBC showed a substantial improvement in 

performance compared to Rank-MI and Rank-NaiveBC, which lends support to the effectiveness 

of the clustering step.  Considering the combination of the MI and naive Bayes criteria with each 

search scheme in isolation, there was a general trend for MI to produce better stability and naive 
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Bayes to produce better accuracy.  While FCR worked well with either criterion, the results 

favoured the use of MI as it is faster and produced a better non-dominant ranking than naive Bayes.  

On the whole, the evaluations demonstrate that the proposed FCR method is effective at selecting 

accurate and stable features from high dimensional remote sensing data containing redundancy.   

4.5 CONCLUSIONS 

Small changes in data sets containing redundancy can result in substantial changes in selected 

features.  Feature redundancy is also known to cause selection of sub-optimal features.  This study 

presented and evaluated a new method for selecting stable and informative features from redundant 

data by ranking correlated clusters of features.  The method uses AP to identify a moderate number 

of clusters of correlated and similarly relevant features.  It then ranks the clusters using an 

importance measure, calculated as the median of a relevance criterion evaluated on each individual 

feature in the cluster.  By selecting an individual feature from each of the best clusters, a set of 

informative features is found while simultaneously removing redundancy from the data.  These 

features may be selected automatically based on their relevance, or interactively, taking criteria 

such as computation time and measurement cost into account.  The option to include factors other 

than relevance and redundancy in determining selected features distinguishes FCR from related 

feature selection methods; although this option is currently limited to a manual procedure.  Future 

work will investigate ways of combining relevance with other criteria to allow feature selection 

without user input.     

The effectiveness of the proposed FCR method was evaluated by comparing its accuracy, stability 

and execution time to a set of popular feature selection methods.  Two criteria were tested for 

measuring feature relevance: the MI between the candidate feature(s) and the class labels, and the 

accuracy of a naive Bayes classifier trained on the candidate feature(s).  Unlike structured sparsity 

regularisation approaches, these relevance criteria do not assume a linear dependence between 

features and class labels.  FCR performed well overall, with both naive Bayes and MI criteria and 

was the highest ranked method when considering the accuracy and stability measures in 

combination.  Another benefit of FCR is its relative speed compared to greedy search FS and BE 

type methods.  Ever increasing quantities of high spatial and spectral resolution remote sensing 

data are being produced and require interpretation (Chi et al. 2016).  In this context, instability and 

sub-optimality associated with feature selection from high dimensional redundant data will 

become increasingly important.  Computationally efficient techniques, such as FCR, are required 

to address these challenges.    
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CHAPTER 5:  REGIONAL MAPPING OF SPEKBOOM CANOPY 

COVER USING VERY HIGH RESOLUTION AERIAL IMAGERY1 

5.1 ABSTRACT 

Very high resolution (VHR) canopy cover maps of spekboom are required to assist with the 

restoration of degraded habitat in the Little Karoo, a large semi-arid region in South Africa.  

Variations in habitat and level of degradation, in addition to radiometric variations in the imagery, 

make spekboom mapping at a regional scale a challenging problem.  In this article, we present a 

per-pixel classification approach for canopy cover mapping of spekboom using multi-spectral 0.5 

m resolution aerial imagery.  The imagery was radiometrically homogenised with a technique that 

uses satellite data to convert digital numbers to estimated surface reflectance values.  A feature 

selection procedure that is robust to redundancy was applied in order to select an informative 

feature subset from a typical set of spectral, textural and vegetation index features.  Support vector 

machine (SVM), random forest, decision tree, k-nearest neighbour (kNN) and Bayes normal 

classifiers were evaluated against labelled pixel data and spekboom canopy cover ground truth 

acquired at 20 field sites.  The results showed that all the classifiers, except the Bayes normal 

classifier, performed well.  The decision tree produced the best results (mean absolute canopy 

cover error of 5.85% with a standard deviation of 4.65%).   

5.2 INTRODUCTION 

Spekboom (Portulacaria afra) is an evergreen succulent shrub with a dense canopy of small fleshy 

leaves that can grow up to 2.5 m in height.  It occurs in the subtropical thicket biome in the semi-

arid Eastern Cape and Little Karoo regions of South Africa (Vlok, Cowling & Wolf 2005).  “The 

subtropical thicket habitat types are most easily recognised by the occurrence of woody trees, 

spinescent shrubs and a relative abundance of succulents. When occurring as solid stands the 

vegetation can form impenetrable dense thickets, but this is uncommon in the Little Karoo. In most 

of the area the subtropical thicket vegetation occurs as discrete bush clumps, usually in a matrix 

of Succulent Karoo vegetation” Vlok, Cowling & Wolf (2005: 37).  While spekboom tolerates 

browsing by indigenous herbivores, it is highly susceptible to over-browsing by goats (Marais, 

Cowling & Powell 2009; Mills et al. 2007; Mills et al. 2005; Sigwela et al. 2009).  Poorly managed 

                                                 

1 This chapter is published in the Journal of Applied Remote Sensing and consequently conforms to the prescribed structure of that 

journal 
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goat grazing has transformed thicket over much of its range into sparsely scattered thicket clumps, 

isolated trees and a covering of herbs (Mills et al. 2005).   

The benefits of restoring degraded thicket habitat are evident from a number of perspectives.  

Spekboom is unusually effective at storing carbon for an arid region plant (Mills et al. 2005).  

Subtropical thicket furthermore provides an important source of food for many herbivores, 

including domesticated livestock (Thompson et al. 2009; Vlok, Cowling & Wolf 2005).  The re-

establishment of spekboom in degraded areas will reduce erosion and flood severity and improve 

water quality (Van Luijk et al. 2013; Mills & Cowling 2006).  The restoration of spekboom is also 

attractive from an employment perspective, since the restoration process could potentially create 

thousands of jobs in impoverished areas if implemented on a large scale.  Currently, the most 

practical option for thicket ecosystem restoration is through the planting of spekboom cuttings 

(Mills et al. 2007; Van der Vyver et al. 2012).  Spekboom is a keystone species and facilitates the 

creation of a favourable environment for the spontaneous recruitment of other plants (Adie & 

Yeaton 2013; Mills & Cowling 2010).   

Spekboom canopy cover maps are required for assisting in the restoration process.  There is a need 

for greater accuracy and repeatability than that provided by field-based mapping techniques.  Field 

mapping is time consuming and costly and is not practical over large areas (Eisfelder, Kuenzer & 

Dech 2012; Lu 2006; Powell 2009).  Manual field mapping is confounded by the density 

(inaccessibility), heterogeneous nature and complex growth forms of the subtropical thicket biome 

(Powell 2009).  

Thompson et al. (2009) conducted a general degradation mapping study of the biomes occurring 

in the Little Karoo.  A 1:50000 vegetation map, developed by Vlok, Cowling & Wolf (2005), was 

used to delineate different habitats so they could be treated separately.  A coarse three-level 

degradation classification of subtropical thicket was derived by thresholding 250 m resolution 

MODIS normalised difference vegetation index (NDVI) data.  The study was successful at 

estimating three degradation levels (intact, moderate and severe) of spekboom thicket at the 250 

m MODIS resolution.   

There is an initiative to involve private land owners in subtropical thicket restoration in order to 

broaden its impact (Curran et al. 2012; Mills et al. 2010).  Spekboom is to be planted in stand sizes 

as small as three hectares on these lands.  VHR imagery is required to produce maps of sufficient 

spatial detail for accurately monitoring spekboom canopy cover in these small stands.  Spekboom 

often occurs in small clumps amongst a complex and varying mosaic of other vegetation.  While 
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regional scale vegetation mapping is most commonly done at moderate to coarse spatial resolutions 

(González-Roglich & Swenson 2016; Immitzer et al. 2018; Liu et al. 2017; Mathieu et al. 2018), 

these low spatial resolutions suffer from spectral mixing of spekboom, other vegetation and soil 

in this heterogeneous biome (Thompson et al. 2009).  VHR imagery is therefore necessary to 

facilitate fine-scale discrimination of spekboom from surrounding soil and vegetation.  To achieve 

sufficient accuracy for restoration monitoring and carbon storage estimations, it is necessary to 

estimate spekboom canopy cover in finer detail than the three levels of degradation and 250 m 

resolution used in Thompson et al. (2009).   

Multi-spectral VHR imagery has been used for vegetation mapping in a number of studies.  A 

combination of spectral band, vegetation index, band ratio and textural features are commonly 

used to provide informative measures capable of distinguishing vegetation classes (Basu et al. 

2015; Ghosh & Joshi 2014; Johansen et al. 2007; Kollár, Vekerdy & Márkus 2013; Mustafa & 

Habeeb 2014).  Object-based approaches to image classification, where homogenous image 

objects are first generated through segmentation and then classified as a whole, have become 

popular in vegetation studies (Ghosh & Joshi 2014; Kollár, Vekerdy & Márkus 2013; Ouyang et 

al. 2011).  These approaches are often favoured for VHR imagery (Basu et al. 2015; Ghosh & 

Joshi 2014; Johansen et al. 2007; Kollár, Vekerdy & Márkus 2013; Mustafa & Habeeb 2014; 

Ouyang et al. 2011) because they are potentially able to better exploit the additional spatial 

information and deal with unwanted variation when compared to the more traditional per-pixel 

approach (Ghosh & Joshi 2014; Ouyang et al. 2011).  The segmentation problem is, however, 

recognised as being poorly posed, requiring manual adjustment of parameters and being difficult 

to solve (Baraldi et al. 2010).  Per-pixel classification provided good and useful mapping accuracy 

in a number of studies (Boyden et al. 2007; De Castro et al. 2012; Mehner et al. 2004) and is a 

simpler and faster method, not requiring user specification of algorithms and associated 

parameters.  

A variety of supervised approaches are used for classifying features derived from VHR imagery.  

Some authors found the Bayes normal (maximum likelihood (ML)) classifier to adequately model 

their class distributions (Boyden et al. 2007; De Castro et al. 2012; Mehner et al. 2004).  Others 

adopted more sophisticated approaches such as SVMs (Ghosh & Joshi 2014) and neural networks 

(Basu et al. 2015; Mustafa & Habeeb 2014).  Algorithms implemented in the eCognition software 

package (Trimble 2016), such as the fuzzy and hierarchical approaches, are also frequently used 

for VHR image classification (Johansen et al. 2007; Kollár, Vekerdy & Márkus 2013; Ouyang et 

al. 2011). 
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As the number of features increases, the amount of data required to adequately represent class 

distributions in the increased feature space increases exponentially.  This is known as the “curse 

of  dimensionality” (Bishop 2003).  For finite training samples, increasing the features beyond a 

certain point results in overtraining and a decrease in the classifier’s ability to generalise.  This 

“peaking phenomenon” (Jain, Duin & Mao 2000) makes it necessary to apply feature selection to 

reduce the size of the feature set to a salient minimum in order to achieve an accurate classification.  

Feature selection by ranking, based on some separability or importance measure of individual 

features, is frequently used (Basu et al. 2015; Johansen et al. 2007; Kollár, Vekerdy & Márkus 

2013).  While fast, feature ranking is known to be sub-optimal for feature spaces containing 

redundancy (Tolosi & Lengauer 2011).  Ghosh & Joshi (2014) used recursive feature elimination 

(also known as backward elimination) – a greedy search technique to select informative features.  

Of the reviewed studies, Ghosh & Joshi (2014) were the only ones to use a feature selection method 

that considers the effect of feature redundancy by evaluating features in combination.   

The majority of the reviewed VHR vegetation mapping studies were applied to small areas, 

typically covered by a single satellite image (Boyden et al. 2007; Ghosh & Joshi 2014; Johansen 

et al. 2007; Kollár, Vekerdy & Márkus 2013; Mehner et al. 2004; Ouyang et al. 2011).  Radiometric 

corrections are sometimes not applied in small study areas (Boyden et al. 2007) or partially handled 

using conversion to top of atmosphere radiance (Johansen et al. 2007; Mehner et al. 2004).  These 

corrections do not compensate for varying atmospheric and bidirectional distribution function 

(BRDF) effects, characteristic of datasets containing hundreds or thousands of aerial images.   

In this paper, we present a method for mapping spekboom canopy cover at a spatial resolution of 

0.5 m.  A total of 2228 multi-spectral aerial images, acquired over multiple days from 22 January 

to 8 February 2010, were used as input.  Radiometric variations due to atmospheric and BRDF 

effects in the images were reduced using a simple yet effective technique for homogenising the 

digital numbers to approximate surface reflectance.  This not only allows for the application of a 

single classification algorithm to the entire set of images, but also provides the possibility of 

extending the presented mapping technique spatially and temporally.  An informative feature 

subset was selected from a typical set of spectral band, band ratio, vegetation index and textural 

features using a novel feature selection method that is robust to redundancy typically found in high 

dimensional feature sets.  The selected features were used to evaluate a set of candidate classifiers. 
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5.3 DATA 

5.3.1 Study area 

The Little Karoo is a semi-arid, biodiverse area located in the Western Cape Province of South 

Africa (Figure 5.1).  The subtropical thicket biome makes up 35.3% of the 23 439 km2 area (Vlok, 

Cowling & Wolf 2005).  A total of 54 habitat types are present, of which 10 support spekboom 

(Vlok, Cowling & Wolf 2005).  It is estimated that about 90% of the spekboom thicket in the area 

is degraded (Thompson et al. 2009).  In the Little Karoo, thicket usually occurs as scattered bush 

clumps in a background mosaic of different vegetation types including Fynbos, Succulent Karoo 

and Renosterveld (Vlok, Cowling & Wolf 2005).  A 5893 km2 (25%) representative portion of the 

Little Karoo was chosen as the study area, as shown in Figure 5.1.  This area includes nine of the 

ten habitat types supporting spekboom.  Details of study area spekboom habitats and mosaic 

vegetation types are shown in Figure 5.2. 

 
Figure 5.1   Little Karoo study area 

5.3.2 Imagery 

VHR aerial imagery of the study area was acquired from Chief Directorate: National Geo-spatial 

Information (NGI), a division of the South African Department of Rural Development and Land 

Reform.  The images were captured at 0.5 m resolution with an Intergraph digital mapping camera 

(DMC) that provides multi-spectral red, green, blue and near-infrared (NIR) bands.  The study 

area is covered by 2228 images, acquired over multiple days from 22 January to 8 February 2010, 

during the area’s dry season.  A distinguishing characteristic of spekboom is its year-round 

productivity (Ting & Hanscom 1977).  The dry season imagery helped contrast the productive 

spekboom against the comparatively drier background vegetation. 
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5.3.3 Data collection 

Two datasets were constructed: one for evaluating the fractional spekboom canopy cover estimates 

obtained from the classifier outputs, and a second for training and evaluating the spekboom 

classifier on a per-pixel basis.  The first dataset consisted of in situ estimates of spekboom canopy 

cover acquired at 20 different sites, each of roughly one hectare.  A botanist knowledgeable about 

the area provided expertise in the selection of sites to encompass variation in geology, habitat and 

level of degradation.  Boundary polygons were recorded for each site by walking the perimeter 

with a differential global positioning system (DGPS) device.  The DGPS coordinates were post-

processed to provide about 30 cm accuracy.  The characteristic lime-green colour and dense growth 

form of spekboom makes it relatively easy to visually distinguish from surrounding vegetation.  

During the field visits, visual estimates of spekboom canopy cover inside the site perimeters were 

made.  The locations of the ground truth sites and their corresponding area names are shown in 

Figure 5.2.  Details of the surrounding (“mosaic”) vegetation type, geology and estimated canopy 

cover of each site are given in Table 5.1.  A three-level degradation measure, as used in Thompson 

et al. (2009), is reported for each site.  This dataset is referred to as the “in situ canopy cover data” 

and was used for evaluating the accuracy of fractional spekboom canopy cover estimates, 

determined as the portion of pixels classified as spekboom over an area of interest. 

 
Figure 5.2   Study area spekboom habitats and field ground truth sites 

Source: Vlok, Cowling & Wolf (2005) 
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Table 5.1   In situ canopy cover data 

Area Number Geology Mosaic Degradation 
Spekboom 
Cover (%) 

Matjiesvlei 1a Shale Arid spekboom Intact 6.0 

 1b   Intact 22.5 

 2   Intact 70.0 

 3   Intact 85.0 

 4   Intact 65.0 

 5   Intact 37.5 

 6   Intact 17.5 

 7   Intact 15.0 

 8   Intact 2.0 

Groenfontein 1 Shale Arid spekboom Severe 0.0 

 2   Severe 4.0 

 3   Severe 10.0 

 4   Moderate 25.0 

Grootkop 1 Enon conglomerate Succulent Karoo Intact 22.5 

 2   Severe 0.5 

 3   Moderate 42.5 

 4   Intact 77.5 

Rooiberg 1 Sandstone Fynbos Intact 20.0 

 2   Moderate 11.0 

 3   Severe 0.0 

Figure 5.3 shows an example of a site perimeter on a background of the NGI imagery, rendered in 

RGB (red, green and blue).  This in situ canopy cover data was gathered in November 2012, while 

the imagery was captured in January 2010.  This time lag was unavoidable due to limited 

availability of the aerial imagery.  Some change in spekboom canopy cover may have occurred 

during this time in recovering areas, but spekboom is relatively slow-growing (Vlok, Cowling & 

Wolf 2005), and these changes are not considered significant.   

 
Figure 5.3   Matjiesvlei2 canopy cover ground truth site 

For the second dataset, a labelling scheme of three classes was adopted as described in Table 5.2.  

While spekboom canopy cover mapping is in essence a two-class problem (spekboom and 

everything else), the addition of a third class, consisting of non-spekboom woody trees (labelled 
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as tree), was beneficial.  By merging multiple classes into a single class, the ability to adjust the 

priors of individual merged classes is lost.  The class priors, or “weights”, control the relative 

emphasis the classifier places on identifying each class correctly (Mingguo, Qianguo & Mingzhou 

2009).  Differentiation between spekboom and woody trees is a challenging part of the problem.  

Thus, the addition of the tree class is useful, as it allowed control over the classification accuracy 

of trees relative to the other classes.  The size of the background class was reduced to be the same 

as the spekboom class by taking a random subsample.  This was done to expedite classifier training 

times.   

Table 5.2   Class descriptions 

Class Name Description 

Spekboom Spekboom 

Tree 
Any recognisable tree other than spekboom, but especially the darker Euclea and Pappea trees commonly 

found intermingled in stands of spekboom 

Background Bare ground, small shrubs, herbs and anything else not included in the first two classes 

 

 
Figure 5.4   Example image class labels 

 

Table 5.3   Details of labelled pixel data 

Class Name Polygons Pixels 

Spekboom 52 27260 

Tree 64 3357 

Background 44 182044 

Total 160 212661 

Due to the small (0.5 m) pixel size, limited DGPS and image spatial accuracy, dense vegetation 

growth and rugged terrain, it was not practical to obtain per-pixel class labels by in situ 

observation.  Per-pixel class labels for the second dataset were therefore obtained by visual 

discrimination and the hand labelling of images.  The distinctive colour and growth form of 

spekboom greatly facilitates this process (Thompson et al. 2009).  Image areas belonging to the 

various classes were delineated as polygons in a GIS package.  An example is shown in Figure 

5.4.  All pixels within a polygon object were assigned the same class label.  Polygon areas were 

selected to encompass variability in habitat and level of degradation.  The total number of polygons 

Class Label 
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and pixels labelled for each class is shown in Table 5.3.  This dataset is referred to as the “labelled 

pixel data” and was used for training and evaluating the classifier on a per-pixel basis.   

5.4 METHODS AND EXPERIMENTS   

5.4.1 Radiometric homogenisation  

While the imagery provided by NGI is orthorectified, no radiometric corrections were applied to 

it.  The NGI imagery contains variations due to BRDF and atmospheric effects, which makes it 

poorly suited to quantitative remote sensing techniques.  The imagery was consequently 

radiometrically homogenised through the application of a surface reflectance estimation technique 

(Harris & Van Niekerk 2019).  This technique corrects for coarse scale atmospheric and BRDF 

effects using a well-calibrated, concurrent and collocated surface reflectance satellite image as a 

reference.  We used a MODIS MCD43A4 composite image for the period of 25 January 2010 to 

9 February 2010 for this purpose.  This image has a 500 m resolution and contains nadir BRDF-

adjusted reflectance data composited from the best values over a 16-day period.  While Sentinel-

2 (ESA 2015) or Landsat (Schmidt et al. 2012) surface reflectance could also serve as reference 

data, no cloud-free imagery concurrent (or near-concurrent) to the aerial imagery was available 

from those sources.  The relative spectral responses (RSRs) of the DMC and corresponding 

MODIS bands are shown in Figure 5.5.  Radiometric correction is important as it allows accurate 

snapshot mapping of large spatial extents and provides the possibility of repeating the spekboom 

canopy cover mapping to evaluate restoration progress. 

 
Figure 5.5   MODIS and DMC RSRs 
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5.4.2 Mapping methodology 

The image resolution of 0.5 m, combined with the tendency of spekboom to grow in continuous 

stands, meant that there was little spectral mixing and that pixels covering spekboom were 

relatively pure.  This supported a per-pixel classification approach to distinguish spekboom from 

the surrounding vegetation.  The pixel-based approach also ensured that the complexities 

associated with segmentation could be avoided.  The fractional canopy cover was determined as 

the portion of pixels classified as spekboom over an area of interest.   

Given the large number of images, computation time was an important consideration in the 

formulation of our method.  Radiometric homogenisation and classification software tools were 

developed using the GDAL (GDAL Development Team 2014) and OpenCV (Bradski 2000) 

software libraries.  Careful consideration was given to computational efficiency in the selection of 

features and classification algorithm.   

5.4.3 Features 

A set of 46 features that would aid in describing the visual characteristics of spekboom were 

evaluated.  The set included a typical combination of spectral features, vegetation indices and 

texture features.  Similar features have been used in Li et al. (2010) and Trias-Sanz, Stamon & 

Louchet (2008).  The features can be grouped into two broad categories: per-pixel and sliding 

window features.  The per-pixel features are found with the spectral information from only one 

pixel, while the sliding window features are found from a statistic of the pixels inside a small local 

neighbourhood.  While the spectral resolution of the VHR imagery is poor, the spatial resolution 

enables a description of the vegetation structure and spatial patterns, which is not possible with 

lower resolution satellite imagery.  Texture features are a popular way of encapsulating spatial and 

structural information.  Measures of vegetation texture are sensitive to shadow variations, an 

unavoidable phenomenon in aerial imagery caused by the long flight times and varying sun angle.  

Nevertheless, texture is recognised as an important feature in biomass estimation in complex 

habitats (Lu 2006; Singh, Malhi & Bhagwat 2014).  The sliding window features were included to 

exploit this source of information when distinguishing the classes.   

Although the imagery was calibrated to surface reflectance, it was done at a coarse spatial scale 

and fine resolution radiometric variations were not taken into account.  A normalised colour space 

was consequently included in the features to reduce intensity variations not removed by the surface 

reflectance corrections.  Colour is captured by the relative amounts of the raw colour bands rather 

than their absolute values.  Normalised colour features are defined as (Blauensteiner et al. 2006):  
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𝑐𝑖
𝑛 =

𝐶𝑖
∑ 𝐶𝑖
4
𝑖=1

 Equation 5.1 

where 𝐶𝑖 are the raw R, G, B and NIR band values and 𝑖 is the band number.  The denominator 

normalises for intensity.   

Green, living vegetation absorbs light in the photosynthetically active radiation region of the 

spectrum, which corresponds to the red band.  There is a sharp transition from absorption to 

reflection around 700 nm (Gates 1980) which is captured by the DMC R and NIR wavelength 

ranges (see Figure 2.1).  Vegetation is highly reflective in the near-infrared band as the energy in 

these wavelengths is insufficient for photosynthesis and potentially harmful due to its heating 

effects.  Various vegetation indices exploit these spectral properties.  The ratio vegetation index 

(RVI) is given by: 

𝑅𝑉𝐼 =
𝑁𝐼𝑅

𝑅
 Equation 5.2 

It has a range of zero to infinity and increases as the vegetation becomes denser and 

photosynthetically more active (Myneni et al. 1995).  The well-known NDVI is defined as 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 Equation 5.3 

NDVI is limited to the range -1 to 1 and contains the same information as RVI, but is easier to 

visualise and interpret due to its limited range.  Both indices are unaffected by intensity changes.   

The tasselled cap transform is a linear transform of the raw band feature space to a new orthogonal 

co-ordinate system, similar to a principal component transform.  It was designed for agricultural 

wheat classification and was intended to reduce variability in soil and wheat classes by removing 

variation due to topography, sun angle and wheat growth stage (Kauth & Thomas 1976).  The 

tasselled cap transform was approximated in this study by using a principal component transform 

derived from the variance of the spekboom class.  The first component was aligned with spekboom 

variation rather than wheat variation, as in the original tasselled cap transform.  As it is simply a 

rotation of the raw band space, it is more useful as a dimensionality reduction technique (similar 

to principal components analysis (PCA)) than an extractor of novel features.  The principal 

components of the normalised colours of Equation 5.1 were also included as features in the 

classification process.  
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Entropy is a statistic that describes the amount of randomness in a variable.  It was included in our 

feature set as a texture feature to describe complexity in the local neighbourhood of a sliding 

window.  The entropy of the values in the image window 𝐱 is defined as (Trias-Sanz, Stamon & 

Louchet 2008): 

𝐸(𝐱) = −∑ℎ𝑖(𝐱)

𝑖

log2 ℎ𝑖(𝐱) Equation 5.4 

where ℎ𝑖(𝐱) is the probability in the 𝑖𝑡ℎ histogram bin of 𝐱. A total of 256 bins were used in all 

cases. 

Table 5.4   Features 

No. Name Description 

1 R Red 

2 G Green 

3 B Blue 

4 NIR Near-infrared 

5 rN Normalised R 

6 gN Normalised G 

7 bN Normalised B 

8 nirN Normalised NIR 

9 NDVI Normalised difference vegetation index 

10 RVI Ratio vegetation index 

11–14 tc1–4 Tasselled cap components 

15–18 pc1–4 Principal components of raw bands 

19–22 nc1–4 Principal components of normalised bands 

23–26 Entropy## Sliding window entropy of pc1, RVI, NDVI and gN 

27–30 Std## 
Sliding window standard deviation of pc1, RVI, NDVI and 

gN 

31–34 Mean## Sliding window mean of pc1, RVI, NDVI and gN 

35–38 Median## Sliding window median of pc1, RVI, NDVI and gN 

39–42 Skewness## Sliding window skewness of pc1, RVI, NDVI and gN 

43–46 Kurtosis## Sliding window kurtosis of pc1, RVI, NDVI and gN 

In addition to the entropy, the median and the four central moment features (mean, standard 

deviation, skewness and kurtosis) of Li et al. (2010) were included as sliding window features.  

The first principal component, RVI, NDVI and normalised green channel were all used as inputs 

to the sliding window feature set.  The complete feature set and their labels are listed in Table 5.4.  

A sliding window size of five was selected using a cross-validated grid search, with the accuracy 

of a naive Bayes classifier trained on the EntropyPc1 feature as the performance criterion.  This 

size seemed sensible as it is comparable to that of a small spekboom clump.   
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5.4.4 Feature selection 

The bands of the imagery have significant spectral overlap (Intergraph 2008) and consequently are 

highly correlated.  Given that the bands are the source data for all the derived features, the derived 

feature definitions also contain inter-dependencies.  A number of authors have noted that feature 

redundancy can cause instability and sub-optimality in selected features when traditional 

approaches (such as ranking, FS and BE) are used (Sahu & Mishra 2011; Strobl et al. 2008; Tolosi 

& Lengauer 2011; Yousef et al. 2007).  Redundancy can be reduced by using a feature extraction 

approach such as PCA, but requires computation of the full feature set and is not practical in 

computationally demanding applications such as ours.  

A feature selection method, called feature clustering and ranking (FCR), was used to select 

relevant features in the presence of redundancy. The approach is based on Harris & Van Niekerk 

(2018) but uses hierarchical clustering instead of affinity propagation to group redundant features.  

It is described as follows: 

1. Perform average-linkage hierarchical clustering (Székely & Rizzo 2005) of the feature set 

using the correlation coefficient as the dissimilarity metric.   

2. Select a dissimilarity threshold at which to extract a natural number of clusters containing 

high correlation by visual inspection of the dendrogram. 

3. Rank each cluster’s importance by finding the value of a relevance criterion for each 

individual feature and then finding the median of the feature relevance values in the cluster. 

4. Select a single feature from each of the N clusters with the best importance scores. 

The number of clusters, N, was chosen using a grid search with the final classifier accuracy as 

performance measure.  In this study, the accuracy of a naive Bayes classifier was used as the 

feature relevance criterion.  The naive Bayes criterion makes no assumption about the form of the 

class distributions and can thus provide a generic measure of separability.  It is simple, fast and 

recognised as being accurate for a variety of problems (Hand & Yu 2001).  To avoid biased 

accuracy estimates, all classifier accuracy evaluations for feature relevance or selection of N, were 

done on unseen test data using a ten-fold cross-validation (Bishop 2003).  The cluster-ranking 

method has the advantages of being quick and allowing hand-picking of the single features that 

represent each cluster.  The flexibility to choose features enables the user to favour those features 

that are fastest to compute, or perhaps to choose those features that are more readily understood.  

The method was applied to the labelled pixel data. 
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5.4.5 Classification and spekboom canopy cover estimation 

The decision tree, random forest, SVM, Bayes normal and k-nearest-neighbour (kNN) classifiers 

were evaluated in this study. A decision tree is a tree of binary decision nodes based on thresholds 

of different features.  Data is recursively split at each branch node until a terminal representing a 

class label is reached (Breiman et al. 1984).  Training is performed by a greedy procedure, which 

iteratively adds nodes and selects features producing the best split for each node.  Criteria used for 

choosing the best feature at each node include the information content, node purity and Fisher’s 

criterion (Jain, Duin & Mao 2000).  Overtraining is a concern and trees can be pruned in a post-

training step to reduce variance.  Decision trees are known for their speed of execution and ease 

of interpretation.  Node decisions can help provide insight into the problem.  Decisions are usually 

binary and based on a single feature.  As a result, the decision boundary is comprised of stepwise 

sections parallel to the feature axes and is at best an approximation of the optimal boundary (Jain, 

Duin & Mao 2000).  Decision trees are flexible and broadly applied as they are non-parametric 

(i.e. they make no assumption about the form of class distributions) and can deal with categorical 

as well as continuous variables (Breiman et al. 1984).   

Random forests are classifiers that use bootstrapped aggregation (bagging) (Breiman 1996) of a 

large collection of decision tree classifiers.  Each tree is trained on a bootstrapped version of the 

dataset and the decision feature for each node is selected from a random subset of the full feature 

set (Breiman 2001).  The bootstrapping and random feature subsets help introduce variation 

amongst the base tree classifiers.  The uncorrelated decision trees, in combination, have greater 

predictive power than any single one.  Importantly, a random forest is not prone to overtraining.  

Random forests are also robust to mislabelled training data.  Both training and execution demand 

a moderate amount of computation time.  The two main parameters for tuning a random forest are 

the number of trees and the number of features considered for each node. 

Ground-breaking and widespread pattern recognition work has been done with the SVM (Amorós 

López et al. 2011; Li et al. 2010; Sahu & Mishra 2011; Yousef et al. 2007).  The SVM was initially 

defined as the two-class linear decision boundary that maximised the distance to the nearest 

objects, called “support vectors” (Burges 1998).  The decision boundary is determined only by the 

support vectors, not directly by features or generative descriptions of class distributions.  The SVM 

minimises the Vapnik-Chervonenkis dimension, a measure of the complexity of the classifier.  

This is an important property of the SVM and explains how it effectively adapts its complexity to 

the data, is robust to overtraining and performs well in high dimensional feature spaces.  The 

original formulation was extended to the case of overlapping multi-class problems using a penalty 
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term with user-defined multiplier C, which punishes class overlap.  Using the kernel trick, the 

linear SVM was further extended to allow modelling of non-linear decision boundaries (Burges 

1998).  Different kernels such as polynomials or radial basis functions (RBF) may be chosen to 

suit the given problem.  In kernel form, the SVM can be considered a non-parametric classifier.  

In our evaluation, an RBF kernel was used for the SVM classifier.  The training is done by using 

a computationally demanding quadratic optimisation problem.  However, execution is fast as it 

only requires an evaluation of the kernel function for the support vector – object vector pairs (Jain, 

Duin & Mao 2000). 

The Bayes normal classifier, sometimes referred to as the maximum likelihood (ML) classifier, 

assumes that the classes are normally distributed.  Mean and covariance parameters are estimated 

for each class from the data, usually with the ML criterion.  Bayes’ rule is then used to define the 

decision boundary (Duin & Tax 2005).   

The kNN classifier labels test objects by finding the mode of classes of the closest k training 

objects (Bishop 2003).  Any distance metric can be used for finding neighbours, but the Euclidean 

distance measure is prevalent and was used in our study.  This classifier is a useful benchmark as 

it almost always performs reasonably well, requires only one parameter and is non-parametric 

(Jain, Duin & Mao 2000).  It requires finding distances to the full training set, which can slow 

execution for large datasets. 

User supplied tuning parameters for the classifiers were found with cross-validated grid searches.  

Table 5.5 details the parameter values selected for each classifier.  Descriptions of the parameters 

can be found in the OpenCV documentation (OpenCV Development Team 2014).   

Table 5.5   Classifier parameters 

Classifier Parameters 

Decision tree 
Maximum depth = 12, Use surrogates = false, Truncate pruned tree = true, Minimum sample count = 34, 

Priors = [0.33 0.33 0.33] 

Random forest 
Maximum number of trees = 5, Size of feature set = 4, Maximum tree depth = 10, Forest accuracy = 0.025, 

Priors = [0.2 0.4 0.2] 

kNN K = 5, Priors = [0.33 0.33 0.33] 

SVM SVM type = C Support vector classification, Kernel = RBF, Kernel width = 25, C = 1, Priors = [0.33 0.33 0.33] 

Bayes normal Priors = [0.33 0.33 0.33] 

Morphological operators (Serra & Soille 1994) were applied as a post-processing step to the 

classifier produced maps to remove noise and smooth boundaries.  Assuming that the majority of 

spekboom plants were big enough to cover more than one pixel, a morphological opening was 

applied to remove isolated spekboom pixels.  Following this, spurious wrinkles and holes in the 

spekboom boundaries were removed with a morphological closing operation; the assumption 
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being that spekboom typically grows in solid clumps and any real gaps in these clumps would be 

more than a pixel wide.  These operations can be seen as a way of further incorporating spatial 

context into the classification.   

5.4.6 Evaluation 

The per-pixel performance of the candidate classifiers on the selected features was evaluated with 

the labelled pixel data.  To avoid biased estimates of performance, ten-fold cross-validation was 

used for classifier evaluation.  The fractional spekboom canopy cover performance of the 

classifiers was tested on the in situ canopy cover data.  After applying the classifiers and 

morphological operations to the relevant images, canopy cover estimates were extracted by 

evaluating the fractional portion of spekboom inside the areas of the field site polygons.  These 

estimates were compared to the in situ canopy cover data.  A flowchart illustrating the 

methodology for spekboom canopy cover estimation and evaluation is shown in Figure 5.6. 

 

Figure 5.6   Methodological flowchart 
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5.5 RESULTS 

5.5.1 Feature selection 

The dendrogram showing the clustering of our feature set, is plotted in Figure 5.7.  The dotted line 

shows the dissimilarity threshold value at which the feature clusters were extracted.  This value 

was selected on the basis of being a relatively stable point in the hierarchy and being a point where 

the correlation amongst features is strong.  Table 5.6 lists the clusters ordered by their importance, 

along with their component features.  Using a grid search, it was found that a total of six features 

gave the best decision tree classification performance.  The NDVI, pc1, EntropyPc1, gN, bN and 

nc2 features were selected from the top six clusters. 

 
Figure 5.7   Clustering of correlated features 
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Table 5.6   Ranked clusters 

Rank Importance (%) Features 

1 68.27 rN, nirN, NDVI, RVI, tc2, pc2, nc1, MeanRVI, MedianRVI, MeanNDVI, MedianNDVI 

2 61.38 R, G, B, NIR, tc1, pc1, MeanPc1, MedianPc1 

3 60.41 EntropyPc1 

4 55.23 gN, MeanGn, MedianGn 

5 54.52 bN 

6 53.57 nc2, nc4 

7 50.57 tc4, nc3  

8 49.34 pc4  

9 47.93 EntropyRVI, StdRVI, EntropyNDVI, StdNDVI 

10 43.96 StdPc1 

11 43.62 EntropyGn, StdGn 

12 42.65 tc3, pc3 

13 41.29 SkewnessRVI, SkewnessNDVI 

14 35.27 SkewnessGn 

15 35.19 KurtosisRVI, KurtosisNDVI 

16 35.03 SkewnessPc1 

17 34.86 KurtosisGn 

18 33.86 KurtosisPc1 

5.5.2 Classification and spekboom canopy cover estimation  

Table 5.7 compares the performance of the candidate classifiers.  The table results are sorted 

according to the mean absolute canopy cover error (MAE) in the last column.  Of the performance 

measures in the table, this is the only one evaluated against the in situ canopy cover data; the rest 

were evaluated against the labelled pixel data using cross-validation.  Three- and two-class errors 

are reported as the class prior weighted errors i.e. the mean of the errors of omission.  Cohen’s 

Kappa and user’s and producer’s accuracies are given for the two-class case.  Standard errors are 

given for all cross-validated performance measures that were evaluated on the labelled pixel data.  

The standard deviation of absolute errors (SAE) gives an indication of the variability in the 

spekboom canopy cover performance.  Times taken for each classifier to process a single 12000 

pixel × 8000 pixel image are listed in Table 5.8.   

Table 5.7   Classifier performance comparison 

Classifier 
3 Class Error 

(%)a 
2 Class Error 

(%)a 
UA (Bg / Sb)a PA (Bg / Sb)a Kappa a MAE (SAE)a 

Decision 
tree 

9.49 ± 0.47 3.59 ± 0.31 95.26 ± 0.44 / 98.05 ± 0.37 98.32 ± 0.32 / 94.50 ± 0.53 0.930 ± 0.006 5.85 (4.65) 

Random 
forest 

9.15 ± 0.95 2.69 ± 0.23 97.24 ± 0.25 / 97.45 ± 0.30 97.74 ± 0.27 / 96.89 ± 0.28 0.947 ± 0.005 7.09 (6.07) 

kNN 10.28 ± 0.41 1.70 ± 0.13 98.95 ± 0.18 / 97.52 ± 0.25 97.05 ± 0.42 / 98.84 ± 0.20 0.965 ± 0.002 7.60 (6.20) 

SVM 9.98 ± 1.51 2.47 ± 1.95 98.90 ± 0.21 / 96.08 ± 3.85 96.27 ± 3.90 / 98.80 ± 0.22 0.949 ± 0.041 7.99 (8.33) 

Bayes 
normal 

16.31 ± 0.86 9.03 ± 0.50 86.95 ± 0.62 / 98.09 ± 0.28 98.55 ± 0.21 / 83.38 ± 0.88 0.826 ± 0.010 8.08 (8.35) 

a ± = standard error of cross-validated performance measure, UA = User’s accuracy (%), PA = Producer’s accuracy (%), Bg = 
Background, Sb = Spekboom , MAE = Mean absolute canopy cover error on in situ canopy cover data (%), SAE = Standard 
deviation of absolute canopy cover errors on in situ canopy cover data (%) 
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Table 5.8   Classifier computation times 

Classifier Time (secs)a 

Decision tree 47 

Random 
forest 

138 

kNN 2067 

SVM 788 

Bayes 
normal 

61 

a computation time per 12000 pixel × 8000 pixel image 

The decision tree three-class and two-class confusion matrices and performances, obtained from 

the labelled pixel data, are given in Table 5.9 and Table 5.10 respectively.  The three-class 

confusion matrix shows that the tree class overlaps with both the spekboom and background 

classes, but that the overlap is larger with the background class.   

Table 5.9   Decision tree three-class confusion matrix 

 Background Spekboom Tree Total PA (%)a 

Background 24776 330 2154 27260 90.89 ± 0.49 

Spekboom 297 25762 1201 27260 94.50 ± 0.53 

Tree 282 183 2892 3357 86.15 ± 1.33 

Total 25355 26275 6247 57877  

UA (%)a 97.72 ± 0.29 98.05 ± 0.37 46.34 ± 1.50   

Kappa 0.866 ± 0.007     

Overall Error (%) 9.49 ± 0.47     

a ± = standard error of cross-validated performance measure, UA = User’s accuracy, PA = Producer’s accuracy  

 

Table 5.10   Decision tree two-class confusion matrix 

 Background Spekboom Total PA (%)a 

Background 30104 513 30617 98.32 ± 0.32 

Spekboom 1498 25762 27260 94.50 ± 0.53 

Total 31602 26275 57877  

UA (%)a 95.26 ± 0.44 98.05 ± 0.37   

Kappa 0.930 ± 0.006    

Overall Error (%) 3.59 ± 0.31    

a ± = standard error of cross-validated performance measure, UA = User’s accuracy, PA = Producer’s accuracy 

Table 5.11 shows the spekboom canopy cover estimates obtained from the post-processed decision 

tree output for each of the in situ canopy cover sites.  The mean of the absolute canopy cover error 

is 5.85%, with a standard deviation of 4.65%.   
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Table 5.11   Decision tree canopy cover estimates 

Area No. Ground Truth (%) Classifier (%) 

Groenfontein 1 0.00 0.07 

 2 4.00 0.47 

 3 10.00 8.21 

 4 25.00 17.44 

Matjiesvlei 1a 6.00 7.21 

 1b 22.50 31.37 

 2 70.00 67.38 

 3 85.00 73.12 

 4 65.00 70.34 

 5 37.50 35.95 

 6 17.50 12.01 

 7 15.00 25.74 

 8 2.00 5.42 

Rooiberg 1 20.00 6.03 

 2 11.00 1.03 

 3 0.00 0.00 

Grootkop 1 22.50 8.05 

 2 0.50 0.22 

 3 42.50 34.38 

 4 77.50 71.27 

MAE (SAE)a 5.85% (4.65%) 

aMAE = Mean of absolute canopy cover errors (%), SAE = Standard deviation of absolute canopy cover errors (%) 

The decision tree classifier was applied to the image mosaic of the study area to produce a 

spekboom canopy cover map that was morphologically post-processed.  Figure 5.8 shows close-

up examples of the resulting spekboom canopy cover map for each of the canopy cover ground 

truth areas (as described in Table 5.1).  Spekboom boundaries, shown in blue, are overlaid on 

colour-infrared (CIR) aerial imagery.  Figure 5.9 shows the final spekboom canopy cover map of 

the study area (the vegetation map of Vlok, Cowling and Wolf (Vlok, Cowling & Wolf 2005) was 

used to mask areas not supporting spekboom). 
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Figure 5.8   Example spekboom canopy cover maps showing classified spekboom boundaries (a) Matjiesvlei 

(Habitat: arid thicket with spekboom), (b) Groenfontein (Habitat: valley thicket with spekboom); (c) 

Rooiberg (Habitat: arid thicket with spekboom and fynbos mosaic); and (d) Grootkop (Habitat: arid 

thicket with spekboom and succulent Karoo mosaic) 
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Figure 5.9   Global spekboom canopy cover map 

5.6 DISCUSSION 

5.6.1 Feature selection 

Table 5.6 reveals a number of interesting properties of the features.  First, it is clear that there is 

significant redundancy amongst the features.  The correlation between the R, G, B and NIR bands 

is strong (>0.7), likely due to strong coupling with intensity. The bands are consequently all 

grouped into a single cluster.  While the definitions of the nirN, NDVI and RVI features are quite 

different, they are all describing the same spectral property of vegetation, namely high absorption 

in the red band and high reflectance in the NIR band.  This is confirmed by their collection in the 

same cluster.   

EntropyPc1 is ranked highly (third) in its own cluster, which supports the hypothesis that texture 

is an important property for mapping vegetation in VHR imagery.  It is, however, the only texture 

feature in the best eight clusters.  At the 0.5 m image resolution, texture will be descriptive of bush 

clumps more than individual spekboom plants.  The bush clumps vary significantly in their 

composition and character with variation in habitat and level of degradation.  We believe that the 

paucity of texture features in informative clusters is likely due to bush-clump and shadow 

variations.  

The importance of bN was unexpected.  The blue channel is particularly susceptible to haze effects 

and intuitively should not hold much discriminating power for vegetation.  Inspecting bN images 
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shows an inversion of the topography shading seen in other channels.  Sunlit northern slopes are 

dimmer and shaded southern slopes brighter.  This occurs because the blue light in the shaded 

areas, which scatters more readily, is the dominant band of illumination.  The contribution of bN 

is not fully understood but we believe its value lies in this property and that it helps to distinguish 

shaded vegetation from genuinely dark vegetation.  In their tree mapping study, Key et al. (2001) 

also found the blue band to be valuable due to its insensitivity to shadowing issues. 

The gN feature, its mean and its median form their own cluster.  The mean sliding window feature, 

median sliding window feature and source feature operated on by those sliding windows are 

strongly correlated, as is expected. 

The NDVI, pc1, EntropyPc1, gN, bN and nc2 features were selected from the top six clusters.  

Selection of sliding window features was avoided where possible as they are computationally more 

demanding than the per-pixel features.  NDVI was selected from the first cluster simply because 

it is popular and easy to interpret.  In the second cluster, pc1 was chosen as it is the first principal 

component of the raw bands and should therefore be more informative than any one of them in 

isolation.  There is only one sliding window feature, EntropyPc1, in our final selection.   

5.6.2 Classification and spekboom canopy cover estimation 

With the exception of the Bayes normal classifier, the classifiers’ performance was good.  The 

performances of the kNN and decision tree classifiers are as good as or better than the more 

complex SVM and random forest classifiers (see Table 5.7).  The excellent performance of a 

diverse group of classifiers suggests that an informative feature set was selected.  The notably 

poorer performance of the Bayes normal classifier implies that the classes are not normally 

distributed.  The three-class errors are larger than the two-class errors due the tree class 

overlapping substantially with the background class.  Errors due to tree samples being assigned to 

the background class, and vice versa, are negated when the tree class is lumped into the background 

class.  The classifier performance variability on the labelled pixel data was low in general, as 

evidenced by the standard errors in Table 5.7, with the SVM producing the highest variability of 

the tested classifiers. 

Of the performance measures in Table 5.7, the MAE is considered the most important for classifier 

comparison as it has the most direct relationship with actual spekboom canopy cover mapping 

accuracy over the study area.  Taking the MAE and image ground truth performance into account, 

the decision tree was selected as the final classifier.  It has the best canopy cover performance and 
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is the fastest option (see Table 5.8).  While it is one of the poorer performers on the labelled pixel 

data, it is still very accurate when applied to this data.    

The classifier performed well in the Groenfontein, Matjiesvlei and Grootkop areas, but 

underestimated spekboom canopy cover in all the Rooiberg sites.  As a result of the 

sandstone/quartzite geology of the area, the spekboom plants at Rooiberg are smaller and have a 

canopy that is less dense than those in other sites. We believe this partially explains the canopy 

cover underestimation in this area.   

A visual inspection of the spekboom canopy cover map revealed some spatial variation over the 

study area.  Figure 5.8 shows close-up canopy cover map examples for each of the canopy cover 

ground truth areas (as described in Table 5.1).  Arid areas, such as Rooiberg, seem more prone to 

underestimation, probably due to spectral mixing occurring with bare ground around the canopy 

borders and also due to the smaller and less dense stands occurring in these areas.  Conversely, 

there tends to be a slight overestimation in more densely vegetated areas, likely the result of 

confusion due to spectral mixing with other green vegetation.  In general, however, the spekboom 

canopy cover map of the study area appears accurate.   

This study is one of few examples of vegetation mapping using VHR imagery over a large area 

(Eisfelder, Kuenzer & Dech 2012; Lu 2006).  While the mapping accuracies achieved compare 

well with related studies (Baraldi et al. 2010; Ghosh & Joshi 2014; Heumann 2011; Johansen et 

al. 2007; Mehner et al. 2004), there are possible avenues for improvement.  Ancillary information 

such as elevation, slope aspect or habitat could be incorporated into the classifier, similarly to 

Thompson et al. (2009) and Su (2009).  This could be done by including it either as a feature or 

by designing separate classifiers for different ranges or categories of the ancillary variable.   

5.7 CONCLUSIONS 

Accurate spekboom canopy cover estimates were obtained across the study area using a per-pixel 

classification approach.  Homogenisation to surface reflectance by calibration with satellite data 

provided radiometric consistency and allowed application of a single classification algorithm over 

an extended area.  Six distinguishing features of spekboom, consisting of a combination of spectral, 

textural and vegetation index type measures, were selected using a FCR method.  Out of a set of 

candidate classifiers, a decision tree produced the best spekboom canopy cover accuracy, and was 

subsequently used to produce a map of the study area.  A MAE of 5.85% over 20 ground truth 

sites was achieved.   
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Species distinguishing traits can be subtle, subject to variation and not easily captured with coarse 

spectral resolution imagery such as the NGI multi-spectral aerial imagery (Fassnacht et al. 2016).  

In this study, the distinctive lime-green colour and dense growth pattern of spekboom likely 

contributed to the successful separation of spekboom from background vegetation. While some 

variation in the canopy cover accuracy was observed over different habitats, the classifier’s general 

performance was consistent over the study area.  By incorporating ground truth from new areas, 

the techniques used to produce this map could be applied to the rest of the thicket biome.  The 

availability of a spekboom canopy cover mapping technique will be a valuable starting point for 

developing measures of other environmental variables such as biomass and biodiversity (Eisfelder, 

Kuenzer & Dech 2012; Ludwig, Reynolds & Whitson 1975; Suganuma et al. 2006).   
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CHAPTER 6:  DISCUSSION AND CONCLUSIONS 

6.1 SUMMARY  

Spekboom is a dominant and ecologically important species in subtropical thicket.  Its presence 

improves soil health, sequesters carbon and creates a suitable environment for the germination of 

other plants.  It is, however, highly sensitive to browsing by domestic livestock and is one of the 

first species to disappear under sustained browsing pressure.  Vast areas of the subtropical thicket 

biome have been degraded, mostly by goat over-browsing.  In response, wide-scale planting of 

spekboom has been identified as a viable and cost-effective means of restoring degraded thicket 

ecosystems.  Regional spekboom canopy cover maps are needed to assist with the planning and 

monitoring of the restoration process.  This research set out to develop a regional, cost-effective 

spekboom canopy cover mapping technique using multi-spectral VHR aerial imagery.   

A literature review of remote sensing, image classification and vegetation species mapping was 

provided in Chapter 2 to address Objective 1.  The literature review identified a number of 

remotely sensed data sources suitable for vegetation species mapping.  Of these, multi-spectral 

VHR aerial imagery was selected as a viable source for spekboom mapping that met constraints 

of the application (i.e. regional coverage, high spatial resolution and low cost).  Challenges 

associated with regional vegetation species mapping that had not been adequately considered by 

previous work were highlighted.  These challenges included the reduction of unwanted radiometric 

variation, generalised classification across heterogeneous ecologies and the computationally 

efficient processing of thousands of images.  Another limitation of the reviewed species mapping 

methods was a lack of attention to the problem of sub-optimal feature selection resulting from 

feature space redundancy.   

Chapter 3 presented the development of a radiometric homogenisation technique to alleviate the 

problem of unwanted radiometric variation in VHR aerial imagery (Objective 3).  The technique 

adjusts images to approximate surface reflectance by fusion with a collocated and concurrent 

satellite surface reflectance image.  A spatially varying linear model is used to model the 

relationship between the aerial image digital numbers (DNs) and satellite surface reflectance 

values.  A set of 2228 0.5 m resolution multi-spectral aerial images of the study area, captured 

over multiple days, was obtained from Chief Directorate: National Geo-Spatial Information (NGI).  

These images contained substantial radiometric variations due to spatially and temporally varying 

atmospheric and BRDF effects.  The homogenisation technique was applied to the aerial imagery 

using a MODIS nadir BRDF-adjusted reflectance (NBAR) product as surface reflectance 
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reference.  A visual inspection of the homogenised mosaic confirmed that seam lines and BRDF 

effects that were apparent in the raw imagery had been removed.  Performance was quantitatively 

measured by comparing the homogenised mosaic to a collocated and concurrent SPOT 5 surface 

reflectance image.  Mean R2 and mean absolute difference (MAD) values of this comparison were 

0.84 and 3.43% respectively.  Overall, results compared well to related methods.  The acquisition 

of the aerial, MODIS and SPOT 5 images partially addressed Objective 2. 

Feature space redundancy is known to lead to sub-optimal feature selection.  In addition, 

redundancy can make selected features unstable and sensitive to small changes in the data.  The 

feature clustering and ranking (FCR) method overviewed in Chapter 4 was developed to address 

these problems (Objective 4).  A secondary motivation for the development of FCR was to allow 

factors of feature computation and measurement cost to be included in the selection criteria.  FCR 

uses affinity propagation to form a moderate number of clusters of correlated and similarly relevant 

features.  The clusters are ranked by their importance and an individual feature is selected from 

each of the best N clusters.  Features may be selected automatically based on their relevance or 

interactively, taking criteria such as computation time and measurement cost into account.  

Redundancy is effectively discarded by choosing a single feature from each cluster of correlated 

features.   

Chapter 4 presented a comparison of the performance of the FCR method and popular feature 

selection methods on five remote sensing data sets and one synthetic data set (all containing 

redundancy).  Results highlighted poor accuracy and stability performance of ranking type feature 

selection.  Forward selection (FS) methods performed relatively well in terms of accuracy but also 

suffered from instability.  The comparison demonstrated the effectiveness of the FCR approach 

for selecting stable and informative features from redundant spaces.  Overall, FCR ranked highest 

in combined accuracy and stability measures.  FCR provided substantially better stability and 

slightly better accuracy compared to competing approaches.  The feature selection comparison 

addressed Objective 5 and the acquisition of the comparison data sets further contributed to 

Objective 2.   

A per-pixel classification method for the regional mapping of spekboom canopy cover was 

developed and tested in Chapter 5 (Objective 6).  The radiometrically homogenised multi-spectral 

aerial imagery produced in Chapter 3 was used to provide discriminating features.  Classifier 

training data was produced by delineation and labelling of image areas.  In situ canopy cover data, 

encompassing regional habitat and degradation variation, was gathered for purposes of map 
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validation.  The acquisition of the training and validation data completed the requirements of 

Objective 2.   

Common spectral, textural and vegetation index features were generated from the imagery.  The 

FCR procedure of Chapter 4 was used to select six informative features from the generated set.  

FCR allowed computationally expensive features to be excluded where closely correlated 

alternatives existed.  Five candidate classifiers (ML, decision tree, kNN, random forest and SVM) 

were trained on the labelled data.  Per-pixel classifier outputs were post-processed with 

morphological operations to remove noise and smooth boundaries.  The post-processing step 

served as a rudimentary means to further incorporate spatial context into the spekboom canopy 

cover map.  Of the candidate classifiers, the decision tree produced the best spekboom canopy 

cover accuracy, with a mean absolute error (MAE) of 5.85%.  Somewhat fortuitously, this 

classifier also had the fastest execution time of those investigated.   

6.2 CRITICAL EVALUATION 

The radiometric homogenisation method developed in this study was effective at calibrating a 

large and radiometrically diverse set of imagery.  Unlike other radiometric correction techniques, 

this method does not require manual field reflectance measurements (López et al. 2011), placement 

of targets of known reflectance (Collings et al. 2011) or detailed knowledge of atmospheric 

conditions at the time of capture (Berk et al. 1999; Richter 1997; Vermote et al. 1997).  Adjustment 

of problematic BRDF variations is made implicitly.  In contrast to existing mosaic correction 

methods, which adopt a uniform per-image BRDF model (Chandelier & Martinoty 2009; Collings 

et al. 2011; López et al. 2011), radiometric homogenisation can adjust for local BRDF variations 

within each image.  The method can potentially be applied to any VHR imagery, including satellite 

and UAV imagery.  It is particularly suited to regional mapping, where radiometric uncertainty is 

often detrimental to classification accuracy.  Currently, the use of national coverage aerial imagery 

such as the NGI archive is often limited to visual interpretation (Campbell & Wynne 2011; López 

et al. 2011; Tempfli et al. 2009).  Radiometric homogenisation offers a relatively simple means of 

extending the use of this valuable data to quantitative remote sensing applications.  The method 

is, however, not without its limitations.  The accuracy of the homogenised imagery is influenced 

by the accuracy of the reference surface reflectance data and radiometric variations occurring 

below the scale of the reference resolution cannot be accommodated.  The method is also limited 

by the need for a reference image that is concurrent and spectrally similar to the aerial imagery.  

Results suggested that a lack of spectral similarity has a negative effect on accuracy.   
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FCR provides computationally efficient feature selection that is robust to redundancy typically 

found in high dimensional remote sensing data.  The ability to include selection factors other than 

relevance (e.g. measurement and computation cost) distinguishes FCR from other methods (Brown 

et al. 2012; Jain, Duin & Mao 2000; Wu et al. 2013) and lends its use to computationally 

demanding or budget-limited applications.  FCR provides a structured way of reducing these costs 

without affecting feature relevance.  The consideration of other factors is, however, limited to a 

manual procedure, requiring user intervention.  Another limitation arises from the clustering 

algorithm, which depends on the specification of a “preference” parameter to determine the 

number of clusters.  While an automated specification of this parameter produced satisfactory 

results for the feature selection comparison, user adjustment of the “preference” parameter could 

give superior performance in some cases.  The results of feature selection comparison experiments 

imply that best-practice feature selection should avoid the use of ranking methods, as they are 

particularly sensitive to data redundancy.  FS methods produced comparatively good accuracy 

performance and could be used as a benchmark algorithm where feature stability is not a concern.   

Unwanted radiometric variation, classifier transferability and computational efficiency are 

challenges for regional vegetation mapping (Basu et al. 2015; Neigh et al. 2018), which have 

received little attention in the literature (Fassnacht et al. 2016).  The spekboom canopy cover 

mapping method developed in this study is distinguished by its regional applicability.  In 

vegetation mapping, radiometric variation is sometimes ignored (Boyden et al. 2007) or dealt with 

by conversion to top of atmosphere radiance (Johansen et al. 2007; Mehner et al. 2004; Neigh et 

al. 2018; Niphadkar et al. 2017; Tarantino et al. 2019), which is still subject to atmospheric and 

BRDF effects.  In this study, radiometric homogenisation sufficiently reduced spatially varying 

atmospheric and BRDF effects in the selected aerial imagery and allowed application of a single 

classifier over a large heterogeneous area.  FCR provided stable informative features and improved 

the processing time of a large set of imagery by allowing computationally expensive (sliding 

window) features to be excluded.   

The spekboom classifier exhibited some variation in performance between different habitats, with 

a 4.65% standard deviation of absolute errors (SAE).  Generated maps revealed a tendency to 

overestimate spekboom canopy cover in densely vegetated areas and underestimate in sparsely 

vegetated areas.  This was likely due to spectral mixing between spekboom and surrounding 

vegetation or bare ground.  Despite this variation, useful canopy cover accuracies were obtained 

over diverse conditions, demonstrating the potential of the method for application to larger areas.  

Results of this study suggest that per-pixel approaches should not be disregarded for regional 
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mapping, confirming similar conclusions in Baldeck et al. (2015) and Basu et al. (2015).  It is 

possible to incorporate spatial context into the per-pixel method with texture features and the post-

processing of classifier output maps.  The simplicity and computational efficiency of the per-pixel 

approach make it an attractive option for applications requiring automated processing of thousands 

of images.  

There is a pressing need for large-area vegetation maps to inform responses to national and global 

issues such as climate change.  One of the principal motivations for remote sensing is that it can 

provide cost-effective analyses over far greater spatial extents than field methods.  This potential 

is, however, yet to be fully realised with VHR imagery where the majority of vegetation mapping 

studies are focused on small areas.  VHR imagery provides discriminating spatial information not 

available in medium resolution imagery and is needed for plant scale vegetation mapping.  This 

research adds to the important body of work addressing regional VHR vegetation mapping and its 

associated challenges.   

6.3 RECOMMENDATIONS 

Local terrain effects are poorly represented at the 500 m resolution of the MODIS NBAR reference 

data used in this study and additional radiometric homogenisation experiments using alternate 

sources of surface reflectance data are  recommended.  Higher spatial resolution products such as 

Landsat, Sentinel-2 and MISR could improve fine-scale calibrations.  While Landsat and Sentinel-

2 surface reflectance products are not BRDF corrected, they are subject to significantly less BRDF 

variation than aerial imagery due to their narrower field of view (FOV).  Consequently, they may 

produce improved fine resolution performance compared to the MODIS surface reflectance 

reference.  MISR imagery provides a slight improvement (275 m) on the MODIS spatial 

resolution, with the benefit of rigorous BRDF correction.  In addition to the use of alternate 

reference images, it is recommended that the effectiveness of including the offset parameter, C 

(which was excluded in the Chapter 3 experiments), is tested.  The offset term may improve 

homogenised results where atmospheric effects are relatively severe. 

Some means of automating the inclusion of computation and measurement costs into the selection 

criteria of FCR would be beneficial.  This could be implemented as a weighted sum of criteria or 

by a combined ranking such as the non-dominated ranking that was used for comparing 

performance in Section 4.3.4.  The correlation coefficient dissimilarity metric used for defining 

clusters is only capable of detecting linear associations between features.  It would be worthwhile 

testing the use of metrics that can describe non-linear correlation, such as mutual information or 
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distance correlation (Székely, Rizzo & Bakirov 2007).  While these metrics require increased 

computation, they could assist in further removal of redundancy due to their increased sensitivity.   

The spekboom canopy cover map was produced using a simple classification approach and a 

number of opportunities exist for improving performance.  Investigating a spatially stratified 

approach as a means of reducing performance variation due to ecological heterogeneity is 

suggested.  Training separate classifiers for different strata (e.g. the habitat types delineated in the 

map of Vlok, Cowling & Wolf (2005)) could reduce ecological variation per stratum and allow 

classifiers to target stratum specific spekboom traits.  Spekboom favours sunnier north-facing 

slopes (Vlok, Cowling & Wolf 2005) and inclusion of a slope aspect feature would likely improve 

general separation of spekboom from background vegetation.  In their national tree mapping study, 

Basu et al. (2015) used a post-processing step that applied a conditional random field (CRF) (i.e. 

a supervised probabilistic technique for considering local spatial relationships) to per-pixel 

classifier outputs.  This automated and computationally efficient method provided a valuable 

improvement to per-pixel accuracy.  While the spekboom mapping method used texture features 

and morphological post-processing to exploit spatial information, a more sophisticated 

incorporation of spatial context through the post-processing technique of Basu et al. (2015) could 

also benefit mapping performance.  Finally, it is recommended that spatial and temporal extensions 

of the method be tested through the acquisition of further imagery and ground truth. 

6.4 CONCLUSIONS 

The planting of spekboom has been identified as an ecologically and operationally viable means 

of restoring vast areas of degraded subtropical thicket.  Spatial information, including spekboom 

canopy cover maps, are needed for the effective co-ordination of biome-wide restoration.   

This research developed a method for the semi-automated mapping of spekboom canopy cover 

using VHR multi-spectral aerial imagery and made contributions to the field of regional vegetation 

mapping.  Novel techniques for radiometric homogenisation and feature selection were developed 

to assist with related components of the spekboom mapping problem.   

The successful demonstration of the spekboom mapping method on a large heterogeneous study 

area provided a foundation for its extension to the thicket biome.  The techniques developed in this 

research also present a starting point for the mapping of related thicket vegetation characteristics 

such as biomass.  There is an urgent need for large-scale thicket restoration, which has myriad 

benefits, including the increasingly critical mitigation of climate change.  The availability of 

spekboom canopy cover maps will greatly facilitate this important work. 
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