
Taxonomy and distribution of moonshine 

worms (Diopatra sp.) in Knysna Estuary 

by 

Hendré van Rensburg 

Thesis presented in fulfilment of the requirements for the degree of 

Master of Science in Zoology 

Department of Botany and Zoology 

Faculty of Science 

Stellenbosch University 

Supervisor: Prof. Carol Anne Simon 

Co-supervisor: Prof. Conrad Matthee 

December 2019



i 

Declaration 

By submitting this thesis electronically, I declare that the entirety of the work contained therein 

is my own, original work, that I am the sole author thereof (save to the extent explicitly 

otherwise stated), that reproduction and publication thereof by Stellenbosch University will not 

infringe any third party rights and that I have not previously in its entirety or in part submitted 

it for obtaining any qualification. 

Copyright © 2019 Stellenbosch University 

All rights reserved 

Stellenbosch University https://scholar.sun.ac.za



ii 

Abstract 

Polychaetes as fish bait have become increasingly popular in the Knysna Estuary over the last 

decade. The presence of an unknown polychaete, Diopatra sp. was first reported in the Knysna 

Estuary ten years ago, when it was harvested as fish bait in small quantities by local fishermen 

who called it the moonshine worm. Since this very conspicuous species was not detected by 

intensive biodiversity sampling in the estuary in the 1950s and 1990s, it should thus be 

considered new to the estuary. A preliminary morphological investigation showed that 

Diopatra sp. may be Diopatra neapolitana (Delle Chiaje, 1841). However, D. neapolitana is a 

pseudo-cosmopolitan species with local distribution restricted to Durban and Port Elizabeth. As 

several cosmopolitan species have recently been described as cryptic endemic species, it is 

likely that Diopatra sp. in the Knysna Estuary may also represent an undescribed cryptic 

endemic species. The aims of this study were firstly to identify Diopatra sp. using molecular 

and morphological techniques and secondly to determine the density and distribution of the 

species throughout the estuary and estimate population size and baiting pressure (the percentage 

of worms recently removed from an area due to baiting) for conservation management. 

Bayesian and maximum likelihood analysis of COI and 16S markers indicated that the species 

in South Africa is Diopatra aciculata (Knox & Cameron, 1971) from Australia. Although 

sequence divergence between D. aciculata and D. neapolitana is lower than among other 

species in the genus, it was still an order of magnitude greater than the intra-specific sequence 

diversity of either of these species. The separation of these species is confirmed by species 

delimitation analysis. Molecular similarity between D. aciculata and D. neapolitana is reflected 

by morphological similarity, and the two species have so many features in common that it is 

very difficult to tell them apart. The morphology of D. aciculata from South Africa closely 

matched descriptions from Australia. The confirmation of the moonshine worms as an alien 

rather than an undescribed indigenous species increases the need for understanding population 
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densities as management focus has shifted from conservation to mitigation or extirpation. 

During November and December 2017, density of D. aciculata was determined at 18 sites in 

the Knysna Estuary; 13 in the intertidal zone and 5 in the subtidal zone. Five sites also fell 

within the invertebrate reserve where baiting is prohibited. Diopatra aciculata was present 

throughout the estuary up to where freshwater conditions dominated. Distribution was patchy, 

with median densities ranging from 0 ± 0.03 to 8 ± 1.03 worms.m-2 (median ± standard error) 

and a maximum of 58 worms.m-2. Despite overall low mean density 3.54 worms.m-2, the 

estimated population size occupying the total potential habitable area of 6,487,600m2 exceeds 

22 million worms. Bait collecting by fishermen is unlikely to be effective for large scale removal 

as baiting pressure was very low (5.48% maximum). Urgent research is needed to determine 

the impact of this species in the estuary as the Knysna Estuary is one of the most important 

estuaries in South Africa and alien ecosystem engineers such as Diopatra can have profound 

physical and biological impacts on their surroundings.  

Stellenbosch University https://scholar.sun.ac.za



iv 
 

Opsomming 

Gesegmenteerde wurms as vis lokaas het die afgelope dekade toenemende gewildheid ervaar 

in die Knysna-riviermonding. Die teenwoordigheid van ‘n onbekende wurm, Diopatra sp. is 

tien jaar gelede vir die eerste keer in die Knysna-riviermond aangemeld toe dit in klein 

hoeveelhede as vis lokaas geoes is deur plaaslike vissers wat na die wurms as maanskyn-wurms 

verwys het. Aangesien hierdie baie opvallende spesie nie deur intensiewe biodiversiteit opname 

in die riviermonding in die 1950's en 1990's bespeur is nie, moet dit dus as nuut in die 

riviermonding beskou word. ‘n Voorlopige morfologiese ondersoek het getoon dat Diopatra 

sp. mag dalk Diopatra neapolitana (Delle Chiaje, 1841) wees. Diopatra neapolitana is egter 'n 

pseudo-kosmopolitaanse spesie met plaaslike verspreiding beperk tot Durban en Port Elizabeth. 

Aangesien verskeie kosmopolitiaanse spesies onlangs as kriptiese endemiese spesies beskryf 

is, is dit waarskynlik dat Diopatra sp. in die Knysna-riviermond ook 'n onbeskryfde kriptiese 

endemiese spesie verteenwoordig. Die doelstellings van hierdie studie was om eerstens 

Diopatra sp te identifiseer deur die gebruik van molekulêre en morfologiese tegnieke en 

tweedens om die digtheid en verspreiding van die spesies regdeur die riviermonding te bepaal 

asook die bevolkingsgrootte en die lokaasdruk (Hoeveelheid wurms onlangs verwyder in ŉ area 

weens lokaas oes) vir bewaringsbestuur. Bayesiese en maksimum waarskynlikheid analise van 

COI en 16S merkers het aangedui dat die Diopatra sp. in Suid-Afrika is Diopatra aciculata 

(Knox & Cameron, 1971) van Australië. Alhoewel DNS verskille tussen D. aciculata en D. 

neapolitana laer is as tussen ander spesies in die genus, was dit steeds 'n orde van grootte groter 

as die intra-spesie DNS diversiteit van albei spesies. Die skeiding van hierdie spesies word 

bevestig deur spesie-afbakening analise. Molekulêre ooreenkomste tussen D. aciculata en D. 

neapolitana word weerspieël deur morfologiese ooreenkomste en die twee spesies het soveel 

kenmerke in gemeen dat dit moeilik is om tussen hulle te onderskei. Die morfologie van D. 

aciculata uit Suid-Afrika het sterk ooreenkomste met beskrywings van Australië. Die 
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bevestiging van die maanskyn-wurms as uitheems eerder as 'n onbeskryfde inheemse spesie, 

intensifiseer die behoefte om die digtheid van die bevolking te verstaan, aangesien fokus van 

bewaring tot versagting of uitwissing verskuif is. Gedurende November en Desember 2017 is 

digtheid van D. aciculata bepaal op 18 plekke in die Knysna-riviermonding; 13 in die 

tussengety-sone en 5 in die subgety-sone. Vyf plekke het ook in die ongewerwelde reservaat 

geval waar die oes van lokaas verbied is. Diopatra aciculata is regdeur die riviermonding 

aangetref tot aar varswater toestande begin oorheers het. Verspreiding was lappend, met 

mediaan digthede wat wissel van 0 ± 0.03 tot 8 ± 1.03 wurms.m-2 (mediaan ± standaard fout) 

en 'n reeks van 58 wurms.m-2. Ten spyte van ‘n algehele lae gemiddelde digtheid van 3.54 

wurms.m-2, is die beraamde bevolkingsgrootte in die potensiële woonbare oppervlakte van 

6,487,600m2 meer as 22 miljoen wurms. Dit is onwaarskynlik dat lokaas oes deur vissers 

effektief sal wees vir grootskaalse verwydering, aangesien die lokaasdruk baie laag was (5,48% 

maksimum). Dringende navorsing is nodig om die impak van hierdie spesie in die 

riviermonding te bepaal aangesien die Knysna-riviermonding een van die belangrikste 

riviermondings in Suid-Afrika is en uitheemse ekosisteem-ingenieurs soos Diopatra 

diepgaande fisiese en biologiese impakte op hul omgewing kan hê. 
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Chapter 1: Polychaetes as bait and the gaps in South 

African bait research 

1.1 Background and introduction 

Fishing is a popular sport as well as an important means of subsistence for many people in 

South Africa (SA). The last estimates of local subsistence fishing found that about 30,000 

fishermen provide sustenance for well over 150,000 people (Arnason and Kashorte, 2006; 

Branch and Clark, 2006; Clark et al., 2002). However, these estimates are outdated and are 

likely an underestimation (Masifundise Development Trust, 2010). In addition to subsistence 

fishing, the popularity of recreational angling (Beckley et al., 2008; Brouwer et al., 1997; 

McGrath et al., 1997) have led Branch and Clark (2006) to estimate that this category now 

number over 750 000 individuals in South Africa, however, these estimates are also over a 

decade old and it is unclear how many of these are marine shore fishermen. In South Africa, 

most shore fishermen are likely involved in collection of bait which may include smaller fishes 

or a variety of marine invertebrates including  crustaceans, molluscs and polychaetes (Fielding, 

2009; Griffiths and Branch, 1997; Napier et al., 2009; Simon et al., 2019a; Turpie et al., 2003; 

van Herwerden, 1989). Thus, recreational and subsistence fishermen can be expected to exert 

a high pressure on bait species harvested from the intertidal zone (Hodgson et al., 2000a; Napier 

et al., 2009; Turpie et al., 2003; Wynberg and Branch, 1994). Furthermore, seasonal influxes 

of tourists to popular holiday destinations in the summer months can further exacerbate the 

regional exploitation of marine resources (Hodgson et al., 2000a; Nel and Branch, 2014; Simon 

et al., 2019a).  
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1.2 South African research bias 

Despite the frequent extraction of bait species from the intertidal zone, only the sandprawn, 

Callichirus kraussi (Stebbing, 1900), and the mudprawn, Upogebia africana (Ortmann, 1894) 

have received significant scientific attention. Studies targeting these species have focused on 

themes such as reproduction and development (Cretchley, 1996; Hanekom and Baird, 1992; 

Hanekom and Erasmus, 1989; Hill, 1977; Mendes et al., 2001), physiology (Harris et al., 1991; 

Schaefer, 1970; Thompson and Pritchard, 1969), population dynamics and distribution (Dubula 

and Lasiak, 2003; Emmerson, 1983; Hanekom and Erasmus, 1988; Hanekom and Russell, 

2015; Hodgson et al., 2000b; Nel and Branch, 2013; Wooldridge and Loubser, 1996), 

anthropogenic exploitation (Cretchley, 1996; Hanekom and Baird, 1992; Hodgson et al., 2000a, 

2000b; Nel and Branch, 2014; Wynberg and Branch, 1997, 1994, 1991) and interactions with 

surrounding environment or biota (Forbes et al., 2007; Henninger and Froneman, 2013; Pillay 

et al., 2012, 2011, 2007; Siebert and Branch, 2006, 2005). These studies either directly or 

indirectly contributed towards creating more effective and efficient management strategies for 

both species, specifically to protect and preserve stock levels and promote sustainable use 

(Fielding, 2009; Griffiths and Branch, 1997; Napier et al., 2009; Nel and Branch, 2013; Simon 

et al., 2019a). 

 

The scope and magnitude of studies targeting U. africana and C. kraussi likely reflect their 

popularity; prawns have repeatedly been recognized as the most frequently collected bait 

species among shore fishermen in South Africa (Hodgson et al., 2000a; Napier et al., 2009; Nel 

and Branch, 2014; Wynberg and Branch, 1991). However, recurring studies investigating 

fishermen’s use and preference of bait in the Knysna Estuary indicate a growing preference for 

polychaetes (Hodgson et al., 2000a; Napier et al., 2009; Simon et al., 2019a). Yet, despite bait 

worms being well studied topics in other countries (Arias et al., 2013; Arias and Paxton, 2014; 
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Cohen, 2012; Cohen et al., 2001; Cohen and Carlton, 1995; Conti and Massa, 1998; Costa et 

al., 2006; Daǧli et al., 2005; De Carvalho et al., 2013; Kenny, 1969; Sypitkowski et al., 2009; 

Younsi et al., 2010), it remains a relatively understudied topic in South Africa; and is restricted 

to bloodworm, musselworm and estuarine wonderworm (Barham, 1979; Gaigher, 1979; Lewis, 

2005a, 2005b; Lewis and Karageorgopoulos, 2008; van Herwerden, 1989).  

 

1.3 Global use of polychaetes 

Polychaetes are harvested as bait by recreational and subsistence fishermen globally, including 

in the Mediterranean, Japan, India, Canada, Australia and the United States of America (Cole 

et al., 2018; Cunha et al., 2005; De Carvalho et al., 2013; Gambi et al., 1994; Miller and Smith, 

2012; Watson et al., 2016; Younsi et al., 2010). The taxa utilized globally are quite diverse, 

with 12 of the 81 families being represented, with Arenicolidae, Eunicidae, Nereididae and 

Onuphidae being the most popular (Cole et al., 2018). At least 60 species are utilized, and use 

of individual species mostly reflect their natural distributions around the world (see Cole et al., 

2018 supplementery material for summary of global use trends). The presence of undiscovered 

cryptic endemic species (i.e., genetically distinct but morphologically indistinguishable 

species), however, are likely to increase the number of utilized species (Bickford et al., 2007; 

Brasier et al., 2016; Nygren, 2014). Recently, many such species have been discovered among 

what are now considered pseudo-cosmopolitan species sensu Darling and Carlton (2014). A 

good example is Marphysa sanguinea (Montagu, 1833) that was previously considered 

cosmopolitan; taxonomic investigations have revealed that this nominal species comprises at 

least six endemic species, Marphysa mullawa Hutchings & Karageorgopoulis, 2003 (Hutchings 

and Karageorgopoulos, 2003), Marphysa acicularum Webster, 1884, Marphysa nobilis 

Treadwell, 1917, Marphysa viridis Treadwell, 1917 (Molina-acevedo and Carrera-parra, 2016) 
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and Marphysa victori Lavesque, Daffe, Bonifácio & Hutchings, 2017 (see more below) 

(Lavesque et al., 2017).  

 

1.4 Value and exploitation of bait polychaetes 

The popularity of polychaetes as bait species is further reflected in their value. Watson et al. 

(2016) found that when using retail price per kg, the five most expensive marine species sold 

on the global market are the bait polychaetes, Glycera dibranchiata Ehlers, 1868, Diopatra 

aciculata Knox & Cameron, 1971, Alitta virens (M. Sars, 1835), Arenicola defodiens Cadman 

& Nelson-Smith, 1993, and M. sanguinea. They also estimated that globally 121 000 metric 

tons of polychaetes are collected annually at a value of 7.63 billion USD (United-States dollar). 

It is thus clear that bait worm fisheries are of global importance and economic significance. 

Furthermore, the use of polychaetes for fish bait may also be growing in popularity. A 2009 

study investigating G. dibranchiata harvesting in Maine, USA, found that the number of worms 

harvested per bait collector in 2007 was more than twice the mean harvests for 2004 and 2005 

(Sypitkowski et al., 2009). Similarly in Turkey, harvesting of D. neapolitana Delle Chiaje, 1841 

increased while stocks plummeted, with local collectors claiming that their catch per unit effort 

decreased tenfold in the preceding decade due to over exploitation caused by the increasing 

popularity of these worms (Daǧli et al., 2005). Moreover, Gambi et al. (1994) voiced concern 

over the commercial exploitation of bait polychaetes in Italy and the Mediterranean while very 

little is known about their biology. Given the high value and importance of bait polychaetes in 

many other countries, it is understandable why the topic has received so much more attention 

in places such as the U.S.A. (Cohen, 2012; Cohen et al., 2001; Cohen and Carlton, 1995; 

Coleman et al., 2004; Sypitkowski et al., 2009), Argentina (Bruschetti et al., 2016, 2009, 2008; 

Etchegoin et al., 2012; Schwindt and Iribarne, 2000) or Australia (Knox and Cameron, 1971; 

Stellenbosch University https://scholar.sun.ac.za



5 
 

McPhee et al., 2002; Paxton, 1993, 1986, 1979). Yet, in South Africa there are almost no data 

on the stocks or exploitation trends of bait polychaetes. 

 

1.5 Local research on bait polychaetes 

According to the marine recreational activity brochure issued by the Department of Agriculture, 

Forestry and Fisheries (DAFF), South African fishermen may legally collect wonder-, shingle-

, moonshine-, coral-, pot-, pudding-, rock- and bloodworms for bait. Furthermore, the Cape reef 

worm and mussel worm are not to be harvested (Department of Agriculture Forestry and 

Fisheries, 2018). However, in this guide common names of only bloodworm and the two 

prohibited species, musselworm and Cape reefworm, are linked to genera; there are no pictures 

or other guidelines to help with identification of the bait species that can be collected. The 

identities of some species may be gleaned from research articles and identification keys. Day 

(1969) mentions that Diopatra cuprea (Bosc, 1802) (case worm) makes good bait and in 

another publication also reported Arenicola loveni Kinberg, 1866 (bloodworm) and 

Pseudonereis podocirra (Schmarda, 1861) (musselworm, as P. variegata (Grube, 1857)) as bait 

species (Day, 1969). Eight years later, van der Westhuizen and Marais (1977) reported D. 

neapolitana being used as bait by fishermen in the Swartkops Estuary in Port Elizabeth in the 

Eastern Cape Province. Furthermore, a field guide for the Eastern and Southern Cape coasts 

mentioned A. loveni and P. podocirra (as P. variegata), together with Eunice aphroditois 

(Pallas, 1788) (wonderworms), as bait (Lubke and De Moor, 1998). A South African 

fishermen’s guide listed blood-, mussel-, wonder and moonlight (likely moonshine) worms as 

being used but provided no scientific names and included only one illustration of a bloodworm 

(Whibley, 2003).  A study by Napier et al. (2009) mentions a moonshine worm as Diopatra sp. 

being used as bait in the Knysna Estuary. Finally, the popular Two Oceans guide to marine life 

in southern Africa (Branch et al., 2017) explicitly identifies five species used as bait; E. 
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aphroditois, A. loveni, P. podocirra (as P. variegata) and then Marphysa elityeni Lewis & 

Karageorgopoulos, 2008 (estuarine wonderworm) and Gunnarea gaimardi (Quatrefages, 1848) 

(as G. capensis (Schmarda, 1861)) (Cape reef-worm). Thus, only the bloodworm (A. loveni), 

wonderworm (E. aphroditois), musselworm (P. podocirra) and Cape reef-worm (G. gaimardi) 

that are listed in the DAFF brochure as worms allowed for baiting, can be reliably traced to 

species names in the literature. This leaves the shingle-, pot-, pudding-, rock-, coral- and 

moonshine worms without any confirmed species identification. 

 

As opposed to the more than 30 scientific studies that specifically targeted the two prawn bait 

species in South Africa, only eight studies have focused on three bait polychaete species. 

Arenicola loveni, the most popular bait polychaete in South Africa (Cockcroft et al., 2002; 

Fielding, 2009; Napier et al., 2009; Nel and Branch, 2014), is the only species that has been the 

subject of  several research topics. Studies that focused on reproduction and development 

(Barham, 1979; Lewis, 2005a, 2005b) and population dynamics (Gaigher, 1979) could 

contribute to understanding the sustainability of its use and others may provide insight for 

commercialization (Yearsley et al., 2011). By contrast, a single study by van Herwerden (1989) 

showed that harvesting of daily quotas of musselworm destroyed more than the daily allowance 

of mussels and Cape reef worms, leading to the prohibition of collection of both worm species 

as bait  (Department of Agriculture Forestry and Fisheries, 2018). The two remaining studies 

showed that two of the bait species, previously thought to have cosmopolitan distributions, were 

in fact misidentified indigenous species. The indigenous P. podocirra was previously 

misidentified as the pseudo-cosmopolitan Pseudonereis variegata  (see Kara et al., 2018) and 

M. elityeni was another endemic species previously wrongly identified as M. sanguinea (Lewis 

and Karageorgopoulos, 2008). The remaining three species, E. aphroditois, D. cuprea, and D. 

neapolitana, have never been the focus of ecological, reproductive or taxonomic studies in 
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South Africa and similarly, all three of these species have been described as having 

cosmopolitan distributions. Therefore, these species records in SA may also represent pseudo-

cosmopolitan misidentifications of indigenous species. 

 

From the above it can be seen how insight provided by a single study (van Herwerden, 1989) 

can change baiting regulations (Department of Agriculture Forestry and Fisheries, 2018). In 

fact, most species that have enjoyed some scientific focus had regulations tailored to their 

individual biology by either banning collections or lowering daily allowed limits. For the 

remaining worms, a generic daily limit of ten individuals has been set, even though no 

information on reproductive cycles, population dynamics, dispersal and distribution, 

physiology, exploitation or biological interactions exist for any of these worms. Most 

importantly, accurate identification of these species are required before more meaningful 

studies could be undertaken, especially since some understudied species may be cryptic 

endemics which may have significant impacts on management. 

 

1.6 Rationale for study 

The shortage of research on bait polychaetes in South Africa may be reflective of its use and 

perceived value. However, the value of polychaete bait as perceived by fishermen (Napier et 

al., 2009) and researchers (Turpie et al., 2003) has increased. In South Africa, the trade of 

polychaetes is not legal and as such, it is difficult to provide accurate estimates of the value of 

such worms. Nonetheless, Turpie et al. (2003) estimated the value of bait polychaetes at about 

R1 per worm. Six years later, Napier et al. (2009) found that subsistence fishers charged about 

R2 per worm (excluding A. loveni sold at R3 off-season and R5–10 in season) that was sold on 

the illegal market. Recent personal observations in this area suggest the value of these worms 
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has at least doubled as asking prices varied between R4 – R8 per worm. Thus, bait worms hold 

value both as a means of income and subsistence as it can either be sold or used as bait for 

catching fish to eat or sell.  

 

Recent studies investigating bait preference among fishers in the Knysna Estuary also 

demonstrated a proportionate increase in utilization of polychaetes as bait by both subsistence 

and recreational fishermen (Hodgson et al., 2000a; Napier et al., 2009; Simon et al., 2019a). 

Additionally, there has been a shift in polychaete species preference for moonshine worms, 

Diopatra sp., which is now the most sought-after bait polychaete among fishermen in Knysna 

Estuary (Simon et al., 2019a). Globally, Diopatra are widely distributed, very popular as bait 

in several countries and even contains one of the top five most expensive marine species (Cole 

et al., 2018; Watson et al., 2016). Yet, this genus has been mentioned only a few times in South 

African literature (Branch et al., 2017; Day, 1967, 1960, 1957, 1934; Field, 1971; Macnae, 

1957, 1956; McIntosh, 1925; Mclachlan et al., 1984; Napier et al., 2009; van der Westhuizen 

and Marais, 1977) with the van der Westhuizen and Marais (1977) study being the only one 

confirming the use of a Diopatra species as bait in a South African estuary (Swartkops Estuary). 

 

The Knysna Estuary is a popular tourist destination where several scientific studies have been 

conducted since the 1950s (Allanson et al., 2014, 2016, 2000b; Barnes, 2014; Claassens et al., 

2018; Hodgson et al., 2000b; Largier et al., 2000; Marker, 2000; Marker and Maree, 2004; 

Napier et al., 2009; Russell, 1996; Schumann, 2000; Simon et al., 2019a; Teske et al., 2003). 

Yet, despite knowing that Diopatra sp. has been harvested as bait here for at least ten years 

(Napier et al., 2009), the identity of the species has not been conclusively determined. Similarly, 

the identification of D. neapolitana in the Swartkops Estuary by van der Westhuizen and Marais 

Stellenbosch University https://scholar.sun.ac.za



9 
 

(1977) cannot be confirmed since they did not deposit any type material, nor did they provide 

a description of the species. From previous studies and reports it can be inferred that the 

Diopatra sp. in Knysna may represent Diopatra neapolitana or D. cuprea as both these species 

were previously reported to be used as bait in South Africa (Branch et al., 2017; Day, 1969; van 

der Westhuizen and Marais, 1977). However, based on a superficial observation of Diopatra 

sp. it does not conform well with the description of D. cuprea in Day (1976). The length of D. 

cuprea is given as 120mm whereas Diopatra sp. is considerably longer. Also, D. cuprea is 

described with a uniformly brown anterior with no pigmentation patterns while Diopatra sp. 

has clear black markings on the mid dorsum of the anterior and varying colour morphs. Thus, 

Diopatra sp. likely represents either D. neapolitana or an undescribed indigenous species 

previously misidentified as D. neapolitana. Furthermore, although the species is increasingly 

exploited as bait in Knysna, there is no information regarding its densities or distribution in the 

estuary that may inform management strategies that would enable sustainable use. Thus, it is 

important to collect density and distribution data of the Diopatra sp. in the Knysna Estuary to 

inform conservation management (currently under the custodianship of South African National 

Parks) of its sustainable use once an accurate identification has been confirmed.  

 

1.7 Aims  

The first aim of this study was to identify and clarify the taxonomy of the Diopatra sp. used as 

bait in Knysna and Swartkops estuaries (Chapter Two). 

The second aim was to determine the distribution and densities of the Diopatra sp. throughout 

the Knysna Estuary and whether current baiting activities are having appreciable impacts on 

worm densities (Chapter Three). 
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Chapter 2: Taxonomic clarification of common bait 

species Diopatra sp. used as bait in the Knysna and 

Swartkops estuaries 

 

2.1 Introduction 

Diopatra neapolitana, was originally described as a large, tube building polychaete occurring 

in the region of Naples in the Mediterranean. However, this description was rather poor (being 

brief and lacking detail). Using this description, the species was considered cosmopolitan, being 

reported from many places including Japan, India, Angola, Philippines, Arabian Peninsula and 

South Africa (Augener, 1931; Augener and Michaelsen, 1918; Choe, 1960; Day, 1967, 1934, 

Fauvel, 1953, 1932, 1930, 1923a; McIntosh, 1925; Monro, 1936, 1930; Parameswaran, 1973; 

Treadwell et al., 1943; Wehe and Fiege, 2002). The Diopatra sp. first reported in the Knysna 

Estuary ten years ago (Napier et al., 2009) is likely Diopatra neapolitana, or a morphologically 

similar cryptic endemic species (see Chapter One). As such it is worth considering the historical 

reports and accounts of D. neapolitana in Southern Africa. 

 

2.1.1 Historical reports of D. neapolitana in southern Africa 

Diopatra neapolitana was first recorded in Angola in 1923 (Fauvel, 1923b). Soon after this, 

McIntosh (1925) recorded it in the Cape Province after which two more reports followed from 

Angola (Augener, 1931; Monro, 1930). In 1934, Day reported the species from dredged 

samples in shallow waters (1–99m) from the Agulhas Bank and Mozambique. However, he 

noted that there was some confusion over the taxonomy of the species although he didn’t cite 

any authorities (Day, 1934). Two more accounts from Angola followed, one from the subtidal 

zone (Monro, 1936) and one from the intertidal zone (Treadwell, 1943). The earliest records of 
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D. neapolitana being reported in more specific locations was in the 1950s. In South Africa, D. 

neapolitana was reported from the Swartkops Estuary, near Port Elizabeth (Macnae, 1957, 

1956) and Durban Bay (Day, 1957), while in Mozambique it was reported from Morrumbene 

Estuary, near Inhambane and Inhaca Island, near Maputo (Day, 1957). 

 

In 1960, Day published part five of his “Polychaete fauna of South Africa” series in which he 

discussed the genus Diopatra Audouin & Milne Edwards, 1833, and specifically D. neapolitana 

in detail. In particular, Day (1960) discussed the taxonomic uncertainty associated with the 

genus and the controversy over whether it comprised several localised species or a single widely 

distributed species with many variations. He confirmed the validity of several species after 

examining his own collection together with several specimens from the British Museum. 

Furthermore, due to the lack of type material and the poor original description of D. 

neapolitana, he collected specimens from its type locality (Region of Naples) and re-described 

it so that it could be better defined and distinguished from other species. Subsequently, referring 

to his redescription of D. neapolitana, he stated that: “specimens in the British Museum labelled 

D. neapolitana from South Africa, West Africa, West Indies, various parts of the Indian Ocean 

and Australia were not this species” (Day, 1960). He concluded that all D. neapolitana that he 

had previously recorded in South Africa were in fact Diopatra cuprea, except for specimens 

collected from Durban Bay, which were indeed D. neapolitana. Thus, he confined the 

distribution of D. neapolitana in South Africa to Durban Bay alone. Furthermore, he described 

a subspecies Diopatra neapolitana capensis Day, 1960 occurring in deeper waters, originally 

recovered from a depth of 38.5m, from dredges in Algoa Bay, though it was also recovered 

from dredges along most of the SA coast from Port Nolloth on the west coast to Port St. John’s 

on the east coast in depths ranging from 13 – 117m (Day, 1960). 
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Seven years later, Day published his Monograph on the Polychaeta of Southern Africa (Day, 

1967). In the introduction he used D. neapolitana as an example to oppose claims of 

polychaetes not being restricted to zoogeographical regions and stated that the cosmopolitan 

distributions for many has been overstated. He predicted that if cosmopolitan species were to 

be studied in more detail, many of them would probably have been previously misidentified. 

Later in the text he expanded occurrence records of D. neapolitana in southern Africa to include 

South-West Africa (Namibia today) but still listed the distribution of the species as 

Mediterranean only. 

 

In the 1970s, D. neapolitana capensis was reported in False Bay (Field, 1971) in line with the 

distribution given by Day (1960, 1967). Despite the previous restriction of distribution to 

Durban Bay, D. neapolitana was once again reported in Swartkops Estuary (van der 

Westhuizen and Marais, 1977) and later, both D. neapolitana and D. neapolitana capensis 

(previously only in deeper waters of the coast) were reported in the Sundays River Estuary, just 

25 km northeast of the Swartkops Estuary (Mclachlan et al., 1984). Thus, these were either 

misidentifications of D. neapolitana or Day (1960, 1967) underestimated its distribution 

implying the Swartkops Estuary reports from Macnae (1956, 1957) were accurate. Otherwise, 

D. neapolitana were indeed originally only present in Durban Bay (Day, 1960) but spread to 

Sundays River Estuary by the early 1980’s. In 1989, D. neapolitana was reported from 

Langstrand in Namibia (Donn and Cockcroft, 1989) in congruence with Day (1967). Presently, 

Two Oceans, a guide to marine life of southern Africa (Branch et al., 2017) list both D. 

neapolitana and D. cuprea although their descriptions do not match those of Day (1967). 

Rather, the descriptions of D. cuprea and D. neapolitana in Branch et al. (2017) matches those 

of D. neapolitana and D. n. capensis respectively sensu Day (1967). Furthermore, the 

distribution of both are given as along the South African coast in sheltered bays and estuaries, 
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rather than the punctuated distributions as described in Day (1967). From the above it is clear 

that accounts of D. neapolitana in southern Africa are very confusing and often conflicting. 

 

2.1.2 Crypticity and pseudo-cosmopolitanism of D. neapolitana 

Recent advances in Diopatra taxonomy suggest that Day (1960) might have been right about 

D. neapolitana all along. This species was recently re-described (Arias et al., 2016) with its 

native range confirmed as the Mediterranean Sea and north-east Atlantic coasts, with the 

authors casting doubt on the occurrence of D. neapolitana beyond the current confirmed range. 

As morphological and molecular techniques have advanced it has become more apparent that 

several polychaete species previously thought of as cosmopolitan are in fact part of cryptic 

endemic species (Hutchings and Kupriyanova, 2018; Nygren, 2014; Nygren et al., 2018). This 

was recently demonstrated for D. neapolitana in two ways. The first involves the discovery of 

a cryptic species, Diopatra biscayensis Fauchald, Berke & Woodin, 2012 (Fauchald et al., 

2012), occurring in sympatry with D. neapolitana in its native range. The second involves the 

discovery of another localised cryptic species D. sugokai Izuka, 1907 from Japan, originally 

reported as D. neapolitana, occurring outside the native range of  D. neapolitana (see Paxton, 

1998). Thus, D. neapolitana should be considered pseudo-cosmopolitan sensu Darling and 

Carlton (2018) until identifications outside of the Mediterranean can be confirmed molecularly. 

The idea of pseudo-cosmopolitanism and underestimated endemism is further supported by 

other  polychaete species that were previously considered cosmopolitan, but are now known to 

be indigenous to South Africa (Kara et al., 2018; Simon et al., 2019b, 2018). Therefore, it may 

be likely that worms previously reported as D. neapolitana in South Africa are instead also a 

distinct native species. 
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Sometimes a single species truly is widespread and this is usually a consequence of human-

mediated vectors (Çinar, 2013; Zenetos et al., 2012). Therefore, there is a possibility that the 

Diopatra sp. used as bait in Knysna and Swartkops can be a non-indigenous species. At least 

292 polychaete species are reported to have been transported by humans around the world’s 

oceans and 180 of these species have become established (Çinar, 2013). As discussed in Chapter 

One, many countries trade polychaetes as bait and some of this trade has led to introductions of 

species in non-native areas (Arias et al., 2013; Çinar, 2013; Cohen and Carlton, 1995; Costa et 

al., 2006; Nishi and Kato, 2004; Zenetos et al., 2012). However, it is unlikely that the Diopatra 

sp. was transported to South Africa in this way as trade in live polychaetes is prohibited. Still, 

it is possible that it could have arrived via an alternative vector, such as shipping, especially 

since the four species of Onuphidae: Epidiopatra hupferiana hupferina Augener, 1918, 

Epidiopatra hupferiana monroi Day, 1957, Longibranchium atlanticum (Day, 1973) and 

Onuphis eremita oculata Hartman 1951 listed as invasive by Cinar (2013) are suggested to have 

been introduced in this manner.  

 

2.2.3 Identification approach 

Both morphological and molecular data are increasingly included in species descriptions (Arias 

et al., 2016; Pires et al., 2010; Rodrigues et al., 2009), and when clarifying the identities of 

pseudo-cosmopolitan species (Kara et al., 2018; Lavesque et al., 2017; Zanol et al., 2016). For 

example, Simon et al. (2019) showed that Spirobranchus kraussii (Baird, 1865), a species 

indigenous to SA but with an apparently wide distribution, actually comprises a complex of 

genetically distinct species. Given that a cryptic species as well as another species 

morphologically similar to D. neapolitana have been detected in its native range (Arias and 

Paxton, 2014; Fauchald et al., 2012; Pires et al., 2010), it is possible that the Diopatra sp. in 
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Knysna and Swartkops is also a similar but distinct species. It is therefore imperative that this 

species is investigated using morphological and molecular information. 

 

For animals, one of the most widely used molecular markers for phylogenetic analysis and 

species delimitation is the mitochondrial Cytochrome c Oxidase subunit 1 (henceforth COI) 

(Hebert et al., 2003b; Patwasdhan et al., 2014; Pentinsaari et al., 2016). The COI marker has 

been shown to be effective in distinguishing 94–95% of tested animal species from one another 

(Hebert et al., 2016; Stoeckle and Thaler, 2018). Thus, the usefulness of the COI marker has 

led to it being considered the barcoding marker for animals (Folmer et al., 1994; Hebert et al., 

2003b, 2003a; Stoeckle, 2003). Barcoding works by amplifying a small stretch of DNA and 

comparing it to a reference library of known species. Thus, a single sequence from an unknown 

organism can be used to identify it to species level, much like scanning a barcode on a product 

in the supermarket, greatly minimizing the effort required to identify some species. For this 

technique to work, interspecific variation needs to be greater than intraspecific variation to 

create the so called “barcoding gap” used to delimit species (Hebert et al., 2016, 2003b; Meyer 

and Paulay, 2005; Stoeckle and Thaler, 2018). There is, however, no universal standard for the 

size of the gap; while most experts would consider a 2–3% interspecific difference as adequate, 

others deem an order of magnitude difference necessary (Hebert et al., 2003b; Lobo et al., 

2016). Thus, each taxon should be considered within its own context as some taxa may display 

greater inter-species variation than others.  

 

For phylogenetic analysis it is standard practice to use more than one marker as different 

markers evolve at different rates in different taxa and so the COI marker cannot provide the 

same insight for all taxa (Vences et al., 2005). The 16S mitochondrial marker has also been 
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used as an effective marker and has been popularly used in phylogenetic studies (Budaeva et 

al., 2016; Novo et al., 2010; Patwasdhan et al., 2014; Pires et al., 2010; Simon et al., 2019b; 

Struck et al., 2006; Vences et al., 2005; Zanol et al., 2010; Zhou et al., 2010). Furthermore, 

there are several COI and 16S sequences available in public sequence libraries allowing for 

better comparison among Diopatra species. COI and 16S are linked as both are mitochondrial 

genes. Thus, they only provide information on the maternal line of evolution. Ideally, a marker 

of nuclear origin would also be amplified. However, the applicable sequences available for 

comparison are currently limited to mitochondrial markers. 

 

2.1.4 Aims and hypothesis 

The main aim of this study was to identify the Diopatra species used as bait in the Knysna and 

Swartkops estuaries, using morphological and molecular techniques. I hypothesised that a 

single species occurs in both estuaries, and this species is not reciprocally monophyletic with 

D. neapolitana and will instead represent an indigenous but previously undescribed species. 

 

2.2 Materials and Methods 

2.2.2 Specimen collection and storage 

As permitted by sampling permit RES2017-27 issued by the Department of Agriculture, 

Forestry and Fisheries to Prof. Carol A. Simon; a minimum of 20 animals per site were collected 

from the Knysna Estuary (34°03'37.4"S 23°02'52.5"E) in Knysna and the Swartkops Estuary 

(33°51'37.9"S 25°37'03.9"E) in Port Elizabeth using the same methods used by bait collectors. 

This involved pushing a thin wire with a hooked tip into the burrow, turning it a few times to 

hook the worm and extracting by slowly pulling out the wire. After harvesting, specimens were 

kept alive in tanks with aerated fresh seawater, for no longer than 16 hours, before euthanasia. 
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Animals were anaesthetized in a 7% Magnesium Chloride solution in tap water after which 

specimens were photographed. Close-up photos of anterior and mid-sections of live worms 

were taken using a Samsung Galaxy Note 4 with LIEQI macro lens attachment for mobile 

telephones. A section of the mid body was removed and stored directly in 96% ethanol for 

molecular analysis. The rest of the animal was fixed in 4% seawater formalin and stored in 70% 

ethanol for future reference. All formalin-fixed specimens will be lodged at the IZIKO South 

African Museum, Cape Town. 

 

2.2.3 DNA extraction, sequencing 

DNA was isolated from sampled tissues using Quick-DNA miniprep plus kit (Zymo Research) 

following the stipulated protocol. A small piece of preserved tissue was cut from the worm and 

washed in distilled water to remove the ethanol. This was done to prevent the inhibition of 

Proteinase-K by excess ethanol. Care was taken to remove as much gut contents from sample 

material as possible to minimize risk of contamination. Tissue was cut into smaller pieces to 

ensure maximum DNA yield. During the final elusion step, at least 50µl elusion buffer were 

left to incubate for about 5 minutes at room temperature and then centrifuged at high speed for 

30 seconds for the elution of DNA. This step was repeated up to two more times to extract all 

possible DNA. 

 

To check for successful extraction a 5µl sample of each extracted elusion was loaded into a 1% 

Agarose gel together with 1µl gel loading dye batter (Thermo Scientific™) for electrophoresis 

at 100V for 90 minutes. Loading dye batter consisted of 30ml glycerol, 0.250g bromophenol 

blue and 0.250g xylene cyanol and diluted with distilled water to 100ml. Images of gels were 
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taken using Labnet Enduro™ GDS imaging system. The DNA was then stored in -80° freezer 

until needed for Polymerase Chain Reaction (PCR). 

 

Genomic DNA was amplified using PCR. Primers are listed in the Appendix. The total PCR 

volume of 25µl contained 12.5µl of EconoTaq® PLUS GREEN 2X Mastermix (Lucigen™), 

8.5µl of Ambion Nuclease-free water (Invitrogen™), 0.5µl of forward and reverse primers at 

10µM concentration each, 1µl bovine serum albumin (BSA) and 2µl of template DNA. An 

Applied Biosystems GeneAmp® PCR system 2700 was used for PCR and cycle conditions are 

in the Appendix. PCR products were stored in a refrigerator at 12 °C. 

PCR products were run on a 1% agarose gel on 100V for 90mins using 2–5µl of PCR product 

with 1µl gel loading dye batter as described above. Images of gels were taken using Labnet 

Enduro™ GDS imaging system. Finally, PCR products were sequenced at the Central 

Analytical Facility of Stellenbosch University. Sequence data will be deposited on Genbank 

and Barcode of Life Database (BOLD). 

 

2.2.4 Genetic analysis 

Sequences were processed and trimmed in BioEdit v.7.2.6 (Hall, 1999) and aligned with 

ClustalX® v.2.1 (Larkin et al., 2007). Trimmed sequences were BLASTed on Genbank to look 

for sequence similarity and to confirm the authenticity of the data. Comparative sequences were 

downloaded from BOLD for the COI marker and from Genbank for the 16S marker. BOLD is 

a specialized database for the COI sequences which is used as a barcoding reference library. 

Thus, it has stricter sequence uploading rules and therefore more reliable sequences. Outgroups 

were chosen from the BLAST results as the closest matching taxa that is in a different genus 

but same family. Downloaded sequences included 107 sequences from eight species for the 
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COI marker and 14 sequences from eight species for the 16S marker (downloaded sequence 

information in the Appendix). After the addition of the downloaded sequences both datasets 

were aligned and trimmed again if necessary, before further analysis. 

 

Intra-species sequence diversity and inter-species sequence divergences were determined in 

MEGA X® ver. 10.0.5 (Kumar et al., 2018) using uncorrected p-distances for both markers. 

Species delimitation was analysed using the automatic barcode gap discovery (ABGD) method 

(http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) with Pmin set to 0.001, Pmax set to 

0.019 and barcode gap threshold (X) set to 3 and ran for 40 steps. The optimal models that 

described molecular evolution of both markers were determined in MEGA X® (Kumar et al., 

2018) using the corrected Akaike Information Criterion (AICc) (Akaike, 1973; Burnham and 

Anderson, 2004). Maximum likelihood trees were constructed in MEGA X® (Kumar et al., 

2018) and node support calculated with 10 000 bootstrap iterations. Bayesian inference trees 

were generated with the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) package 

(Suchard et al., 2018) using a strict clock with a clock rate of 0.011 (Chevaldonné et al., 2002; 

Jolly et al., 2006; Nygren, 2014) for 10 000 000 chains and discarding the first 25% of trees 

generated as burn-in. 

 

2.2.5 Morphological analysis 

Permanent slides were prepared of individual segments to observe chaetal structure. This was 

done by mounting a thin section of representative segments from the anterior, mid- and 

posterior body on a microscope slide using mounting fluid and sealing with clear nail polish. 

Whole preserved animals and sections were examined on dissecting (Leica MZ 7.5) and light 

(Leica DM1000) microscopes and images were captured using a  Leica EC3 microscope camera 
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and the Leica Application Suite EZ (LAS EZ) software. Live animals were photographed using 

a Samsung Galaxy S6 smartphone. 

 

For scanning electron microscopy, specimens were dehydrated according to a protocol 

developed by Dr L. M. Joubert (Central Analytic Facility, Stellenbosch University); two washes 

in 100% ethanol of 10 minutes each, then one wash in a 1:1 mixture of 100% ethanol and 

Hexamethyldisalazane (HMDS) for 15 minutes, and finally two washes in HMDS for 30 

minutes each. The HMDS was then poured off and the specimens left overnight for residual 

HMDS to evaporate off. Specimens were sputter-coated with gold palladium and viewed on a 

Zeiss Merlin scanning electron microscope at the Stellenbosch University Central Analytical 

Facility. 

 

The following diagnostic features were considered: the arrangement and structure of branchiae, 

number of rings of the ceratophores of the antennae, length of antennae, presence and structure 

of pseudo-compound hooks in anterior chaetigers, serrated blades, number of teeth on comb 

chaetae, general colouration and pigmentation patterns and size of the animal. Tube structure 

was also described. Specimens were identified using published descriptions or identification 

keys for species of this genus (Arias et al., 2016; Budaeva and Fauchald, 2011; Day, 1967; 

Paxton, 1979). 
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2.3 Results 

2.3.1 Molecular results 

2.3.1.1 PCR yield 

Extraction, PCR and sequencing yielded 15 COI sequences from Knysna specimens and ten 

from Swartkops specimens. Amplification of 16S marker yielded 16 sequences from Knysna 

specimens and 19 from Swartkops specimens. After alignment and trimming the COI dataset 

contained 547 base pairs and the 16S dataset had 483 base pairs. 

 

2.3.1.2 Intra-specific sequence diversity and inter-specific sequence divergence 

Intra-specific COI sequence are summarised in Table 2.1. Mean intra-specific distances for all 

species were under 0.5% and the maximum range was 1.9% for Diopatra neapolitana. Inter-

specific COI sequence divergences are summarised in Table 2.2. The lowest sequence 

divergence of 0.3% was between all RSA Diopatra sp. and both Diopatra aciculata and 

Diopatra dentata Kinberg, 1865. The divergence between these three were all 4.5% from D. 

neapolitana. The largest distance of 22.4% was between RSA Diopatra sp. and Diopatra 

ornata. Excluding D. aciculata and D. dentata the rest of the identified Diopatra species all 

had interspecific distances between 16.0% – 22.4%.  

 

Mean intra-specific distances for 16S could only be calculated for four species as the remaining 

species were only represented by single sequences. There was 0.1% intra-specific sequence 

diversity among RSA Diopatra sp. and 0.0% within each D. neapolitana and Diopatra 

tubercalantennata Budaeva & Fauchald, 2008 and finally, 0.2% within Diopatra sugokai. Inter-

specific 16S sequence divergences are summarised in Table 2.3. The smallest sequence 

divergence between species was between Diopatra sp. and both D. aciculata and D. dentata at 
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0.1%. The largest divergence of 22.3% was between D. ornata Moore, 1911, and Diopatra 

micrura Pires, Paxton, Quintino & Rodrigues, 2010. Excluding D. aciculata and D. dentata, 

the rest of the identified Diopatra species all had interspecific divergences between 9.9 – 

22.3%.  

 

Table 2.1: Estimated evolutionary sequence diversity within species for the COI marker. Number of base substitutions per 

site is shown in the diversity column with estimated standard errors in second column. RSA Diopatra includes all specimens 

from Knysna and Swartkops estuaries. 

  Diversity Standard error Range 

RSA Diopatra 0.003 0.002 0.006 

D. dentata N/A N/A N/A 

D. aciculata N/A N/A N/A 

D. ornata N/A N/A N/A 

D. micrura 0.002 0.002 0.002 

D. marocensis 0.004 0.001 0.015 

D. cuprea 0.002 0.002 0.004 

D. neapolitana 0.001 0.000 0.019 
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Table 2.2: Estimated evolutionary sequence divergence between species at the COI marker. Number of base substitutions per site is shown below the diagonal with estimated standard errors above the 

diagonal. Analysis was conducted using uncorrected p-distances in MEGA X. RSA Diopatra includes all specimens from Knysna and Swartkops estuaries. Eunice chicasi is the outgroup. 

 RSA Diopatra D. aciculata D. dentata D. neapolitana D. micrura D. marocensis D. cuprea D. ornata E. chicasi 

RSA Diopatra  0,001 0,001 0,008 0,016 0,016 0,017 0,017 0,018 

Diopatra aciculata 0,003  0,003 0,008 0,017 0,016 0,017 0,017 0,018 

Diopatra dentata 0,003 0,005  0,008 0,016 0,016 0,017 0,017 0,018 

Diopatra neapolitana 0,045 0,045 0,045  0,016 0,015 0,017 0,017 0,018 

Diopatra micrura 0,174 0,176 0,173 0,160  0,014 0,016 0,015 0,017 

Diopatra marocensis 0,189 0,190 0,188 0,183 0,166  0,016 0,015 0,017 

Diopatra cuprea 0,198 0,201 0,196 0,196 0,188 0,193  0,016 0,017 

Diopatra ornata 0,224 0,223 0,225 0,208 0,171 0,190 0,187  0,018 

Eunice chicasi 0,255 0,255 0,255 0,251 0,245 0,230 0,233 0,262  

 

Table 2.3: Estimated evolutionary sequence divergence between species at the 16S marker. Number of base substitutions per site is shown below the diagonal with estimated standard errors above the 

diagonal. Analysis was conducted using uncorrected p-distances in MEGA X. RSA Diopatra includes all specimens from Knysna and Swartkops estuaries. Eunice norvegica is the outgroup. 

 RSA 

Diopatra 
D. aciculata D. dentata D. neapolitana D. micrura D. marocensis D. sugokai D. tuberculantennata D. ornata E. norvegica 

RSA Diopatra  0,001 0,001 0,003 0,014 0,015 0,017 0,018 0,017 0,019 

Diopatra aciculata 0,001  0,002 0,003 0,014 0,015 0,017 0,018 0,017 0,019 

Diopatra dentata 0,001 0,002  0,003 0,014 0,015 0,017 0,018 0,018 0,019 

Diopatra neapolitana 0,005 0,004 0,006  0,014 0,015 0,017 0,018 0,017 0,019 

Diopatra micrura 0,107 0,106 0,108 0,108  0,016 0,018 0,018 0,019 0,020 

Diopatra marocensis 0,129 0,128 0,131 0,133 0,146  0,017 0,018 0,019 0,019 

Diopatra sugokai 0,180 0,180 0,182 0,180 0,201 0,188  0,018 0,014 0,021 

Diopatra tuberculantennata 0,197 0,198 0,195 0,202 0,188 0,186 0,182  0,017 0,021 

Diopatra ornata 0,184 0,183 0,186 0,183 0,223 0,203 0,099 0,176  0,020 

Eunice norvegica 0,229 0,228 0,230 0,232 0,230 0,246 0,287 0,279 0,281  
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2.3.1.3 Species delimitation 

The COI distance analysis showed inter-specific divergences between Diopatra sp., D. 

aciculata, D. dentata and D. neapolitana were at least three times smaller than other inter-

specific divergences of species analysed. Thus, only these four species were considered for 

species delimitation analyses. Using the COI dataset, the ABGD method consistently returned 

two putative species groups (PSGs). The first (PSG-1) contained Diopatra sp., D. aciculata and 

D. dentata with a maximum sequence diversity between these sequences of 0.6%. The second 

group (PSG-2) contained all of the D. neapolitana sequences and had a maximum intraspecific 

sequence diversity of 1.9%. Thus, the sequence divergence is great enough to separate D. 

neapolitana from Diopatra sp. but could not separate Diopatra sp. from D. aciculata and D. 

dentata. 

 

2.3.1.4 Trees 

Model selection for COI sequences yielded the general time reversible (GTR) model with 

gamma distribution and invariant sites as the best suited with a 5839.998 corrected Akaike 

information criteria (AICc) score. The maximum likelihood (ML) tree shows D. aciculata and 

D. dentata as part of a monophyletic clustering with the Knysna (KN) and Swartkops (PE) 

specimens which supports the grouping of these into PSG-1 (Figure 2.1). PSG-1 and PSG-2 

show well supported separation into two sister clades. Bayesian analysis showed significant 

support for most nodes including separating of PSG-1 and PSG-2 (Figure 2.1). BEAST analysis 

of the COI sequences revealed PSG-1 only diverged from D. neapolitana about 2.28 million 

years ago whereas other species in the genus diverged 8.2 – 12.2 million years ago. 
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Model selection for 16S sequences yielded the GTR model with invariant sites as the best suited 

with a 4058.582 corrected Akaike information criteria (AICc) score. The maximum likelihood 

(ML) tree similarly shows support for the separation of PSG-1 and PSG-2 though the separation 

is not as pronounced (Figure 2.2). 
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Figure 2.1: COI maximum likelihood tree generated in MEGA X with Bayesian inference support added to nodes. South African 

samples together with Diopatra aciculata and Diopatra dentata samples from Australia (grouped as PSG-1 through species 

delimitation) sorts as a sister clade to Diopatra neapolitana (PSG-2), with high bootstrap and posterior probability (number 

in italics) support. Diopatra cuprea, Diopatra marocensis, Diopatra micruara, PSG-1 and PSG-2 are well supported as 

monophyletic groups by Bayesian inference. Eunice chicasi was the chosen outgroup. RSA = Republic of South Africa; KN = 

Knysna Estuary; PE = Swartkops Estuary.
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Figure 2.2: 16S maximum likelihood tree generated in MEGA X with Bayesian inference support added to nodes. South African 

samples together with Diopatra aciculata and Diopatra dentata samples from Australia (grouped as PSG-1 through species 

delimitation) sorts as a monophyletic clustering with Diopatra neapolitana with high bootstrap and posterior probability 

support. Within this clustering D. neapolitana is supported as monophyletic group though PSG -1 is not. Eunice norvegica was 

the chosen outgroup.
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2.3.2 Morphological results 

2.3.2.1 Systematics 

 

Family Onuphidae Kinberg, 1865 

Subfamily Onuphinae Kinberg, 1865 

Genus Diopatra Audouin & Milne Edwards, 1833 

Species Diopatra aciculata Knox & Cameron, 1971 

(Figs 2.3 – 2.9) 

 

As  D. aciculata   Knox & Cameron, 1971:31, figs. 20 – 25 

    Day & Hutchings, 1979:118 

    Paxton 1986:19,38, fig. 12  

    Paxton 1993:144, figs. 6, 31 – 35  

As ? D. neapolitana  Macnae, 1956:42 (Swartkops, Eastern Cape) 

    Macnae, 1957:372 (Swartkops, Eastern Cape) 

Day, 1960:341, fig. 9 a – g  

    Day, 1967:413, fig 17.10 e – k  

 van der Westhuizen & Marais, 1977:501 (Swartkops, Eastern  Cape) 

    Mclachlan et al., 1984:56 (Sundays River, Eastern Cape) 

As ? D. cuprea   Branch et al., 2016:68, fig. 26.3 

As Diopatra sp.  Napier et al., 2009:300 (Knysna, Western Cape) 

Allanson et al., 2016:53 (Knysna, Western Cape) 

    Simon et al., 2019 (Knysna, Western Cape) 
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2.3.2.2 Material examined 

Non-type material: 16 specimens, incomplete, Knysna Estuary (34°04'17.6"S 23°03'30.5"E), 

Knysna, Western Cape, South Africa, coll. H. van Rensburg, 20 February 2017; 15 specimens, 

incomplete, Swartkops Estuary (33°52'00.7"S 25°36'42.5"E), Port Elizabeth, Western Cape, 

South Africa, coll. H. van Rensburg, 30 March 2017. 

 

2.3.2.3 Description 

All specimens large adults. Maximum live length at least 60cm, maximum preserved width 

excluding parapodia was 11.4 mm at chaetiger 10. Longest preserved anterior fragment 158mm 

with 131 chaetigers. Preserved body colour pale to dark brown, anterior regions darker. In live 

specimens, anterior often iridescent dark blue-green (Figure 2.3 A) otherwise darker brown 

(Figure 2.3 B). Inside of tentacular cirri brown (Figure 2.3 A, B), pigment lost during 

preservation. The inner surface of ceratophore rings brown (Figure 2.3 B, C), live specimens 

with small white spots irregularly spaced on antennae styles (Figure 2.3 B). Single short black 

middorsal bar on anterior margin of each chaetiger in branchial region (Figures 2.3 A, B, 2.7 

A), difficult to see on live specimens with darker anterior regions. Ceratophore and mid-dorsal 

pigmentations maintained during preservation. Median and posterior segments pale brown to 

cream in colour. 
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Figure 2.3: Anterior regions of (A) A darker and (B) A lighter live Diopatra aciculata and one (C) preserved specimen. Mid-

dorsal bars (MDB) very difficult to see in live individuals, especially darker specimens. Red circle shows longer distal ring of 

ceratophore. Live animals photographed with Samsung Galaxy S6, preserved animal photographed using EC3 microscope 

camera attachment. AS = Antennae styles; BS = Brown spot in center of nuchal organ; CR = Ceratophore rings; LA = Lateral 

antennae; MA = Median antennae; MDB = Mid-dorsal bar; PA= Palps;  TC = Tentacular cirri; UL = Upper lips; WS = White 

spots. 
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Prostomium extended anteriorly with two frontal subulate lips, cirriform, smooth and tapering. 

Upper ventral lips have distal lobes (Figure 2.3 C). Three occipital antennae and two ventro-

lateral palps mounted on 12 – 20 ceratophore rings, rings equally sized proximally with a longer 

distal one (Figure 2.3). Antennae styles smooth, long, slender, tapering to blunt end, reaching 

to chaetiger 9 – 15 (median) or 13 – 17 (lateral). Rows of interrupted sensory buds on antennae 

(Figure 2.4 B, C), buds flattened, circular and irregularly spaced (Figure 2.4 C, D), serous gland 

pores gradually disappearing distally. Nuchal groove almost completely circular, opening 

toward anterior (Figure 4 A), some live specimens have small brown dot present in centre of 

nuchal organ (Figure 2.3 B).  

 

Peristomium as long as succeeding chaetiger, two widely spaced tentacular cirri 1.5 – 2 times 

length of the peristomium mounted on anterior margin, laterally to posterior occipital antennae 

(Figure 2.3 A, B; 2.4, A). 

 

Three or four anterior chaetigers abranchiate; parapodia larger than on branchiate chaetigers, 

directed antero-ventrally; dorsal cirri elongated, slender, tapering, longer than ventral cirri 

(Figure 2.5 A). Pre-chaetal lobes rounded, post-chaetal lobe long and subulate (Figure 2.5 A). 

Pseudo-compound hooks distally uni- or bi-dentate, covered in pointed hood. 

 

Unmodified parapodia usually from fifth chaetae. Dorsal cirri slender, elongated, longest in 

branchial region, similar in length to branchiae. Ventral cirri pad-like (Figure 6). Post-chaetal 

lobe elongated, triangular (Figure 2.6 B, C). Pre- and post-chaetal lobes gradually become 
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smaller toward posterior. Pre-chaetal lobe disappears but post-chaetal lobe remains distinct. 

Limbate and pectinate chaetae present with pectinate chaetae having 5–10 teeth (Figure 2.5 B, 

C), one lateral tooth often thicker than the rest. Middle region of chaetae become serrated 

towards end of branchial region (Figure 2.5 D). Chaetal serrations remain to posterior. Two 

bidentate subacicular hooks from chaetiger 19–23 onwards (Figure 2.6 B, C). 

 

Spiraled branchiae from fourth or fifth chaetiger, up to 20 brachial whorls arranged close 

together, brush-like or bushy appearance tapering towards tips (Figure 2.7). After 20–40 

segments, branchiae gradually shorten and whorls reduce until only a single filament remains, 

terminate shortly thereafter (Figure 2.7).  
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Figure 2.4: Scanning electron micrographs of Diopatra aciculata collected in Knysna and Swartkops estuaries showing (A) Nuchal grooves and tentacular cirri; (B) Irregular rows of sensory buds on 

antenna styles; (C) Mid antenna area with fewer serous gland pores in sensory buds; (D) Closer view of serous gland pores in sensory buds. Yellow scale bars denote: A) 500μm; B) 500μm; C) 100μm 

and D) 100μm. AS = Antennae styles;  CR = Ceratophore rings; N = Nuchal organ encircled by nuchal groove; SBR = Sensory bud rows; SGP = Serous gland pores; TC = Tentacular cirri. 
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Figure 2.5: Scanning electron micrograph of Diopatra aciculata collected in Knysna and Swartkops estuaries showing (A) Modified parapodia; and (B–D) chaetae. (A) Ventral cirri elongated and 

subulate; (B) Pectinate cheatae with 5–10 teeth with hooked tips; (C) Closeup of Pectinate cheatae; (D) Serrated surface of mid regions of cheatae. Yellow scale bars denote: A) 400μm; B) 50μm; C) 

10μm and D) 5μm. DC = Dorsal cirri; PC = Pectinate chaetae; POL = Post-chaetal lobe; PRL = Pre-chaetal lobe; VC = Ventral cirri. 
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Figure 2.6: Progression of parapodia of Diopatra aciculata collected in Knysna and Swartkops estuaries showing (A) Latero-ventral view of branchial region with very long dorsal cirri, pad-like ventral 

cirri and presence of a ventral lobe on parapodia and lack of subacicular hooks. (B) Ventral view towards end of branchial region, longer dorsal cirri visible in background, appearance of subacicular 

hooks. (C) Lateral view past branchial region dorsal cirri become reduced, ventral lobe and pre-chaetal lobe disappear, subacicular hooks remain. BR = branchiae;  DC = Dorsal cirri; POL = post-

chaetal lobe; PRL = Pre-chaetal lobe; SA = subacicular chaetae; VC = Ventral cirri;  VL = ventral lobe. 
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Figure 2.7: Progression of branchiae from dorsal view of Diopatra aciculata collected in Knysna and Swartkops estuaries showing (A) Main branchial region where branchiae has several whorls, large 

and bushy in appearance, dorsal cirri here characteristically long, mid-dorsal bar clearly present in preserved specimens. (B) Shows branchiae reducing, branchiae eventually disspear, absence of mid-

dorsal bar. BR = Branchiae; DC = Dorsal cirri; MDB = Mid-dorsal bar.  
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2.3.2.4 Taxonomic remarks 

The specimens from South Africa resemble both D. aciculata and D. neapolitana with regards 

to the number of chaetigers with subulate ventral cirri (four), branchiae starting on chaetiger 4–

5, circular sensory buds, horseshoe to almost complete circular shape of nuchal groove, number 

of rings on ceratophores (10–18), maximum number of brachial whorls (20), pectinate chaetae 

teeth number (5–10) and presence of uni- and bi-dentate pseudo-compound hooks. 

The specimens examined here conformed best with the descriptions of D. aciculata by Paxton 

(1993, 2016). Similar features included width at tenth chaetiger (11.5mm) and lengths of palps, 

median and lateral antennae reaching chaetigers 2–5, 8–15 and 8–15 respectively. However, 

the adult specimens from South Africa differed from D. aciculata in that they never presented 

with tridentate hooks (Paxton, 1993:146 fig. 34) and were often twice as long as the 340mm 

length reported by Paxton (1993, 2016) though an accurate measure of total length of specimens 

were difficult as no complete specimens could be collected. Tentacular cirri of South African 

specimens were 1.5 – 2 times longer than the peristomium, in accordance with Paxton (2016) 

rather than the longer 2 – 3 times length described in Paxton (1993). 

The South African specimens differ from D. neapolitana in a few ways; they were 28 – 43% 

wider at 10th chaetiger and had longer palps, antennae and dorsal cirri (Arias et al., 2016). 

Furthermore, the branchial region terminated slightly before it did in D. neapolitana. The 

observed length of live specimens collected here agreed best with newer descriptions of D. 

neapolitana (Arias et al., 2016). 

Morphologically D. aciculata and D. neapolitana have a lot in common and are exceedingly 

difficult to tell apart, although  the longer dorsal cirri, wider bodies and longer antennae of D. 

aciculata may be the best morphological traits to use to tell the species apart. Molecular COI 

analysis is, however, the easiest method to differentiate between the two species. 
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2.3.2.5 Distribution 

Knysna and Swartkops estuaries. 

 

2.3.2.6 Ecology 

Tubes lined with white parchment-like material. In sandy environments, tubes have protruding 

chimneys that are often bent horizontally (Figure 2.8 A). Chimneys are made of sand with a 

smooth texture and plant material and shell fragments usually embedded into the tube with 

larger shell pieces often found distally (Figure 2.8 A). Some chimneys had no plant or shell 

attachments and appeared smooth. In muddy or silty environments, openings of tubes are flush 

with sediment surface and off-white mucus lining clearly visible (Figure 2.8 B). 

 

Figure 2.8: Identification of Diopatra aciculata tubes. (A) In more sandy areas tubes protrude from substrate and are often 

bent in the direction of water flow with shell and plant fragments attached. (B) In areas with more muddy/silty substrates, 

often amongst seagrasses, tubes are flush with substrate but can be differentiated from other infauna by the presence of the 

off-white inner lining of the tube. 
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2.4 Discussion 

This study showed that the Diopatra species used as bait by fishermen in Knysna and Swartkops 

estuaries is a single, non-indigenous, species, Diopatra aciculata, that was originally described 

from Australia (see Knox and Cameron, 1971). This conclusion is based on both morphological 

and molecular data combined as both the morphological and molecular datasets alone are 

unclear. This was unexpected for two reasons. Firstly, given the history of pseudo-cosmopolitan 

species being re-described as indigenous species in South Africa, I expected Diopatra sp. to be 

an undescribed indigenous species previously misidentified as Diopatra neapolitana. Secondly, 

I expected that if the Diopatra sp. proved to be non-indigenous, it would be D. neapolitana 

from the Mediterranean. 

 

2.4.1 D. aciculata or D. dentata 

Intra- and inter-specific distances for COI and 16S show the same trends; inter-specific 

distances between the South African Diopatra sp. and D. aciculata and D. dentata fall within 

the intra-specific distance among South African specimens for both markers, providing strong 

evidence that these are all a single species. The South African specimens examined in the 

current study strongly agree with the description of Diopatra aciculata, especially that provided 

by Paxton (2016) with regards to width and lengths of palps, median antenna, lateral antennae 

and dorsal cirri. By contrast, D. dentata also originally described from Australia, differs from 

D. aciculata as it is much shorter (max 245mm) and thinner (7mm width) and has shorter lateral 

antennae (reaching chaetiger 7–10) and much shorter dorsal cirri (only reaching 2nd – 3rd 

branchial whorl). Furthermore, D. dentata has more teeth on its pectinate chaetae (11 – 20) and 

no ventral lobe on the anterior parapodia. Thus, the inclusion of a sequence of D. dentata within 
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the clade with D. aciculata most likely represents an error in identification or labelling (Zanol 

et al., 2010).  

 

2.4.2 Comparison of D. aciculata and D. neapolitana 

Several researchers have noted the morphological similarity between D. aciculata and D. 

neapolitana (Daǧli et al., 2005; Paxton, 2016, 1993; Rodrigues et al., 2009). Diopatra aciculata 

was first described in 1971 by Knox and Cameron though they only provided two distinguishing 

features that could be considered unique for the species. These were dorsal cirri that are as long 

as, or longer than, the branchial whorls and a knob-like secondary tooth on the pseudo-

compound hooks. In 1993, Paxton noted only the longer dorsal cirri and smoother burrow tube 

of D. aciculata as distinctly different from D. neapolitana and suggested that the knob-like 

appearance of the secondary tooth on the pseudo-compound hooks, as described by Knox and 

Cameron (1971), was likely an optical illusion. From the current study I agree with Paxton 

(1993) on the knob-like secondary tooth and longer dorsal cirri in D. aciculata. However, I 

observed burrow chimneys covered in shells and plant material as well as some with no 

“decorations” that apear smooth. Furthermore, in other areas burrows did not have chimneys at 

all and were flush with the ground. Therefore, I’m not confident that this can be  considered a 

diagnostic feature. I suspect that burrow chimneys are not built out from the ground but rather 

appear when sediment is moved through hydrodynamic forces as burrows appeared flush with 

sediment in areas with less tidal influence, more silty sediment or more vegetation. When sand 

moves and a bare tube is exposed it appears smooth until shell and plant material are added on, 

most likely to provide structural integrity. Later this will provide refugia for other infuanal or 

meifuana. Still, Paxton (1993) argued for keeping the two species separate until more evidence 

to the contrary is produced. Daǧli et al. (2005) also commented on the morphological 

similarities of these two species and suggested molecular analysis be undertaken to reliably 
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conclude the taxonomic validity of D. aciculata and molecular results in this study have 

confirmed that D. aciculata and D. neapolitana are separate but very similar species.  

 

Rodrigues et al. (2009) were the first to molecularly compare D. aciculata and D. neapolitana. 

They compared a single sequence of D. aciculata to 45 sequences of D. neapolitana obtained 

from one site and found 5% and 1% distances between COI and 16S respectively. In this study 

with regards to COI, I compared 27 D. aciculata sequences from four sites to 80 D. neapolitana 

sequences from at least 17 sites and found that these differences first reported by Rodrigues et 

al. (2009) are consistent. The distances between these two species are an order of a magnitude 

greater than their respective intra-specific distances. However, the distance between D. 

aciculata and D. neapolitana is also an order of a magnitude lower than distances among other 

congenerics tested. But, there is no set gap threshold which defines when species are valid, 

although when using COI sequences to differentiate species most agree the inter-specific 

distance needs to be either a minimum of 2 – 3% higher or at least an order of magnitude greater 

than the intra-specific distances (Hebert et al., 2003b; Lobo et al., 2016). Therefore, the 4.6% 

inter-specific distance between D. aciculata and D. neapolitana reported here is at least 3% 

higher and an order of magnitude greater than the 0.6% intra-specific distance of D. aciculata. 

Furthermore, the ABGD species delimitation analysis and Bayesian analysis both support the 

existence of two separate species with PSG-1 representing D. aciculata and PSG-2 representing 

D. neapolitana. Finally, the BEAST timescales show the recent divergence of D. aciculata from 

D. neapolitana not overlapping with other species divergences. Thus, D. aciculata and D. 

neapolitana are closely related sister taxa that diverged more recently than any of the other 

Diopatra sequences considered here. It is therefore clear that D. aciculata is very closely related 

to, but a distinct species from, D. neapolitana. 
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2.4.3 Cryptic invasion of D. aciculata in South Africa 

A cryptic invasion may occur when a non-indigenous species is misidentified as an indigenous 

species (Morais and Reichard, 2018). The reason D. aciculata has never been reported from SA 

could be that it was misidentified as D. neapolitana, a pseudo-cosmopolitan species as opposed 

to an indigenous species. Certainly, when Day was identifying Diopatra from SA during the 

1930s to 1960s period, D. aciculata had not been described yet so despite his reservations he 

reported D. neapolitana. This misidentification is understandable as the differences between D. 

neapolitana and D. aciculata are subtle. Furthermore, Day, as the leading authority on South 

African polychaetes at the time, likely influenced subsequent studies regarding the presence of 

D. neapolitana (e.g., Macnae, 1957, Napier et al. 2009). Indeed, even the hypothesis of this 

study was predicated based on Day’s outputs, especially Day (1967) which is still a highly 

regarded taxonomic reference for polychaete taxonomists in South Africa (Griffiths et al., 

2010). 

 

This study provides the first record of D. aciculata as a non-indigenous species anywhere in 

the world. It is notable that despite all the work being conducted in Knysna Estuary, no study 

ever explored the identity of a large polychaete that builds very conspicuous burrows which 

had not been reported there before but has become increasingly popular as a bait species. 

However, the reason for this might be that D. aciculata closely resembles D. neapolitana, a 

species which has previously been described from SA (Day, 1967). Furthermore, Knysna falls 

within the supposed distribution range of D. neapolitana in SA (Branch et al., 2017) so the 

identity of the moonshine worm was never investigated as nobody thought its presence unusual. 
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This led to the cryptic invasion of D. aciculata and uncertainty of when the species arrived in 

the Knysna Estuary or how far it has spread into the estuary. 
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Chapter 3: Opening a can of worms: distribution, 

densities and population estimate of D. aciculata in 

the Knysna Estuary. 

 

3.1 Introduction 

The Knysna basin supports substantial recreational and subsistence fisheries that are 

increasingly relying on polychaetes as bait as described in Chapter One (but see also Hodgson 

et al., 2000; Napier et al., 2009; Simon et al., 2019). As such, valid permit holders may collect 

up to ten polychaete and other marine worms for bait per day, depending on the species 

(Department of Agriculture Forestry and Fisheries, 2018). Apart from these general restrictions, 

the Knysna Estuary falls within a large protected area under the management jurisdiction of 

South African National Parks (SANParks). This estuary therefore has additional restrictions on 

activities, most of which apply to an area demarcated as an invertebrate reserve where 

swimming, fishing and bait collecting are prohibited with the aim to preserve a natural refuge 

for many fauna and flora, including invertebrate species harvested as bait (van der Walt et al., 

1990). 

 

3.1.1 Shift in study perspective 

In Chapter Two I demonstrated that a popular bait polychaete species known locally as the 

moonshine worm is an invasive species, Diopatra aciculata, originally described from 

Australia (Knox and Cameron, 1971; Paxton, 1993). Currently very little is known of the 

ecology or impact of the species in the Knysna Estuary. As my initial hypothesis predicted the 

identification of an indigenous species, this study began intending to understand the distribution 
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and exploitation of the species in view of conservation. However, the perspective shifted to 

understanding the potential impact of a non-indigenous species with a view to management and 

potential extirpation. Invasive species are usually, but not always, considered major 

contributors to biodiversity loss (Charles and Dukes, 2007; Lovell et al., 2006; Lowe et al., 

2000; Miehls et al., 2009; Mooney and Cleland, 2001; Pimentel et al., 2005; Vilà et al., 2011). 

However, in rare cases invasive species can facilitate improved fitness of some native species 

(Robinson et al., 2005; Rodriguez, 2006). Finally, invasive species can have no net negative or 

positive effects and considered neutral, at least as far as can be measured (Mabin, 2017). 

 

3.1.2 Potential impacts of D. aciculata in Knysna Estuary 

Species of the genus Diopatra have been described as ecosystem engineers as they construct 

parchment-like burrows that may protrude from the sediment, altering the surrounding 

environment (Arias and Paxton, 2015; Berke et al., 2010; Harwell and Orth, 2001; Volkenborn 

et al., 2009). Diopatra burrows in particular are known to stabilize sediment (Bailey-brock, 

1984; Luckenbach, 1986), facilitate the dispersal and growth of eelgrass and algae (Harwell 

and Orth, 2001; Thomsen and McGlathery, 2005), provide refuge to other invertebrates (Ban 

and Nelson, 1987) as well as increase richness and abundance of surrounding invertebrates and 

infauna (Thomsen et al., 2011; Woodin, 1981). Thus, if an ecosystem engineer such as D. 

aciculata invades an ecosystem, it may cause compounding problems through cascading effects 

on resident biota as the environment is altered (Crooks, 2002; Cuddington and Hastings, 2004; 

Volkenborn et al., 2009). However, it could also provide benefits within the Knysna Estuary 

such as facilitating the recovery of native eelgrass. Furthermore, D. aciculata could become a 

new important link in the local food chain as benthic polychaetes are important prey items for 

many southern African fish and birds (Coetzee, 1986; Harrison and Cherry, 1997; Heemstra 

and Heemstra, 2004; Kalejta, 1992; Macpherson, 1989; Marais, 1984; van der Westhuizen and 
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Marais, 1977). Thus, D. aciculata presence could potentially have either positive or negative 

effects on the Knysna Estuary ecosystem.  

 

3.1.3 Importance of density information 

The first step towards understanding the impact that D. aciculata might have is to determine 

their density and distribution within the estuary. Then, informed decisions can be made towards 

either extirpation from the estuary or mitigation of impacts within the estuary. Extirpation of 

invasive species can depend on the size of the invading population and the stage of the invasion 

(Allendorf and Lundquist, 2003; Blackburn et al., 2011; Zavaleta et al., 2001). Thus, if the 

moonshine worm population is localised and small, extirpation might still be feasible. However, 

once invading populations are large and integrated into the native ecosystem, usually by 

outcompeting and replacing native biota in ecosystem roles, complete extirpation can be 

impossible or even have undesired negative effects (Allendorf and Lundquist, 2003; Bergstrom 

et al., 2009; Zavaleta et al., 2001). 

 

If extirpation is not feasible, mitigation options need to be considered. “Maintenance 

management” is a mitigation strategy whereby invader densities are kept low enough to mitigate 

severe negative impacts (Simberloff, 2002). This is known as density maintenance and can be 

done through chemical, mechanical or biological control (Simberloff et al., 2002). To help 

control population numbers of Diopatra aciculata, SANParks may capitalize on the fact that it 

is currently the second most popular polychaete species harvested as bait in the Knysna Estuary 

(Simon et al., 2019a). This may seem counterintuitive since baiting activity can have significant 

direct and indirect negative impacts on target and non-target species through overexploitation, 

by-catch and habitat destruction (Cunha et al., 2005; De Carvalho et al., 2013; Griffiths and 
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Branch, 1997; McPhee et al., 2002; Napier et al., 2009; Pillay et al., 2010; Shepherd and Boates, 

1999; Watson et al., 2007). For example, in Europe, Diopatra are usually harvested using hand 

rakes, which efficiently removes the worms, but causes physical destruction of the associated 

environment (Daǧli et al., 2005; De Carvalho et al., 2013). Luckily, moonshine worms in 

Knysna are harvested in an environmentally friendly manner, directly from their burrows using 

a thin wire with a hooked tip, causing no by-catch and little physical destruction to the 

surroundings (Chapter Two). 

 

3.1.4 Baiting pressure 

The way D. aciculata is harvested in Knysna usually leaves an intact empty tube that may 

persist for several days before collapsing (Pers. Obs.). This provides a proxy to measure the 

relative impact that baiting may have on the D. aciculata population as only human bait 

harvesting can leave such pristine intact burrows. This is very different to the way fish and birds 

feed on worms. Benthivorous fish usually feed using digging and/or suction mechanisms that 

greatly disturb surrounding sediment (Gerking, 2014; Hoogenboezem, 1991; Roozen et al., 

2007) and birds would destroy the worm burrows either through bill probing or pecking 

behaviour (Elner et al., 2005; Le and Durell, 2000). This difference in collection methods meant 

that I could use empty tubes as a proxy for recent removal due to baiting. Thus, relative numbers 

of unoccupied Diopatra tubes enables the measurement of recent baiting extraction rate (ER), 

while the baited area (BA) could be determined by the prevalence of unoccupied tubes 

throughout the estuary. Together, extraction rate and baited area can provide an estimate of 

baiting pressure (BP). Such a measurement can help inform feasibility of using bait collectors 

to help control D. aciculata populations in a maintenance management scenario.  

 

Stellenbosch University https://scholar.sun.ac.za



48 
 

3.1.5 Aims and hypothesis 

The aims of the study were therefore to determine the current distribution and densities of D. 

aciculata in the Knysna Estuary and to estimate its population size. Furthermore, I aimed to 

ascertain whether baiting activity can have an appreciable impact on densities of D. aciculata 

by calculating the baiting pressure where applicable. As fishermen can’t collect bait in the 

subtidal zone, I hypothesised baiting pressure here to be zero. I also hypothesised baiting 

pressure to be lower in the reserve (where bait collecting is prohibited) than in the public areas. 

 

3.2 Materials & Methods 

3.2.1 Study area 

The Knysna Estuary meets all the criteria of being an estuary although it is more accurately 

described as a marine or estuarine embayment as most of the estuary is entirely marine 

dominated (Allanson et al., 2000a). During high water spring tide, the tidal flow covers an area 

of 1827 hectares with a tidal range of about 1.8m and a spring tide prism of 19 million m3. Tidal 

and saline influence extends 19 km from the mouth, also known as “The Heads”, along the 

main winding channel (Allanson et al., 2000a; Largier et al., 2000). The estuary contains two 

inhabited islands, Leisure Island (LI) and Thesen Island (TI), and is bordered to the east by the 

Knysna central business district (CBD). 

 

 

3.2.2 Sampling sites 

I sampled 18 sites in the Knysna Estuary from the mouth (The Heads) to the Red Bridge about 

14 km upstream (Figure 3.1). These sites cover most of the estuary and include sites previously 

surveyed by Day (1950) and Allanson et al. (2000) and are popular bait collecting sites sampled 

by Hodgson et al. (2000), Napier et al. (2009) and Simon et al. (2019). Thirteen sites were in 
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the low intertidal zone (i.e., at the spring low-water mark ± 0.5m) and five were in the subtidal 

zone (i.e., below the intertidal zone) (Figure 3.1). Three intertidal and two subtidal sample sites, 

Leisure Island (LI) sandbanks, LI mudbanks, LI salt marsh, The Heads and both LI north sites 

respectively, fell within the invertebrate reserve, while the rest were open to the public (Figure 

3.1). SANParks officials reported that illegal baiting activity regularly took place at two 

locations in the Ashmead channel (between Thesen Island and Leisure Island) within the 

invertebrate reserve, so these areas were avoided (M.K. Smith, Unpublished data). Sampling 

was conducted during spring tides in November 2017.  
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Figure 3.1: Map of the Knysna Estuary showing all the sites where sampling for Diopatra aciculata took place. Intertidal sites 

are given as letters A–M and subtidal sites are denoted 1–5. The invertebrate reserve is shown as the shaded area. WB = White 

Bridge, TI = Thesen Island, LI = Leisure Island, IR = Invertebrate reserve, RB = Red Bridge, IT = Intertidal, ST = Subtidal.9 
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3.2.3 Sampling methodology 

All sampling took place for four hours around low tide. Using a 1m2 steel quadrat, a minimum 

of 20m2 were sampled at each site within the defined sampling zones. In each quadrat the 

number of visible Diopatra aciculata tubes were recorded first, then the number of worms 

present in the tubes (i.e., density). Worms were detected by luring them to the openings of their 

burrows using bait bags (frozen sardines (Clupeidae) in 44 decitex nylon stockings) that were 

squeezed near the burrow entrances. Subtidal sampling was conducted by two free-divers 

following the same protocol. 

 

3.2.4 Extraction rate, Baited area and Baiting pressure 

Extraction rate (ER) represents the rate at which worms are extracted in a given area. This 

calculation was made for each quadrat containing D. aciculata according to the equation: 

𝐸𝑅 (
%𝑤𝑜𝑟𝑚𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝑚2 ) =  100 − ((
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑚𝑠 𝑖𝑛 𝑞𝑢𝑑𝑟𝑎𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑏𝑒𝑠 𝑖𝑛 𝑞𝑢𝑎𝑑𝑟𝑎𝑡
 ) × 100) (Equation 1) 

The baited area (BA) represents the extent of baiting at a given site. This calculation is made 

for each sampled site where at least 20 quadrats contained worms as follows: 

𝐵𝐴 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑚𝑝𝑡𝑦 𝑏𝑢𝑟𝑟𝑜𝑤𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑢𝑟𝑟𝑜𝑤𝑠
 . . . (Equation 2) 

The baiting pressure (BP) represents the impact of baiting activities on the D. aciculata 

population. The BP is given as a percentage where 0% would indicate no baiting activity in the 

area and 100% would mean complete removal of all observable individuals in an area. The BP 

is calculated for each quadrat using the BA value for the relevant site according to the equation: 

𝐵𝑃 = 𝐸𝑅 × 𝐵𝐴 . . . . . . . (Equation 3) 

The BP of subtidal and intertidal sites as well as public and reserve sites were compared. 
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3.2.5 Population estimate 

To calculate a population estimate for the estuary we used the following equations (Wheater et 

al., 2011): 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑃̌) =  
𝑥̅ × 𝑛

𝑆𝐹
=  

𝑚𝑒𝑎𝑛 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟
  (Equation 4) 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑆𝐹) =  
𝐴𝑟𝑒𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
  . . . . (Equation 5) 

95% 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  
2 ×𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 ×𝑛

𝑆𝐹
  . . . (Equation 6) 

The mean number of worms per sample necessary for Equation 5 was calculated using data 

from all sites where D. aciculata was present. Area sampled in Equation 6 was calculated using 

data from these same sites where D. aciculata occurred. The total area used for Equation 5 was 

calculated using a conservative estimate of the area likely occupied by moonshine worms based 

on the area covered by water during neap low tide as D. aciculata has been found in deeper 

waters than the deepest part of Knysna Estuary (c.f. Knox and Cameron, 1971; Largier et al., 

2000; Paxton, 1993).  

 

3.2.6 Statistical analysis 

All statistical analyses were performed in R-STUDIO run in the R v.1.0.153 environment. In 

all instances data were tested for normality using Shapiro-Wilks tests. Differences in density 

between sampling sites were calculated using Kruskal-Wallis rank sum test followed by Dunn’s 

post hoc test for multiple comparisons using rank sums with Bonferroni correction. Differences 

in BP among 1) subtidal and intertidal sites and 2) sites in- and outside of the reserve were 

tested using Mann-Whitney U-tests.  
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3.3 Results 

A total of 860m2 were sampled at the eighteen sites resulting in a mean of 47.8m2 covered per 

site. The maximum number of samples at a single site covered 88m2 at the site south of Leisure 

Island while a minimum of 20m2 was sampled at the three sites north of the White Bridge (Sites 

L, M & N, Figure 3.1). In total, 458m2 were sampled in the intertidal zone, of which 203m2 

were in the invertebrate reserve. In the subtidal zone, a total of 402m2 were sampled, of which 

160m2 were in the invertebrate reserve. No worms or holes were found in the three sites north 

of the White Bridge (Sites L, M & N, Figure 3.1), and these sites, totaling 60m2, were therefore 

excluded from further analyses. Of the 800 quadrats sampled from the remaining fifteen sites, 

443 quadrats had no worms in them. 

 

3.3.1 Densities and distribution 

The median density was above zero at only seven sites: Bollard Bay, Railway Bridge, Thesen 

Island (TI) east, Leisure Island (LI) mudbanks, LI north, White Bridge (WB) and Knysna 

Angling and Diving Association (KADA). Densities were highest at Bollard Bay and Railway 

Bridge with medians of 8 worms.m-2 at each site, and a maximum of 52 worms.m-2 at the former. 

At the remaining five sites, median density ranged between 3–5 worms.m-2. Densities varied 

significantly by site (Kruskal-Wallis H(14, 800) = 376.55; p << 0.01, Figure 3.2). Post-hoc 

analysis revealed six overlapping homogenous groups (Figure 3.2). All the data could be 

divided into two exclusive groups, one with high densities and one with low densities (I and II, 

respectively, Figure 3.2). The high-density group (I) contained the seven sites with median 

densities of 3–8 mentioned above, while the low-density group contained the remaining eight 

sites. Overall, there were two groups containing high-density sites (I and III), two groups 
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containing low-density sites (II and VI) and two intermediate groups containing a mixture of 

high- and low-density sites (IV and V). All but one site (KADA) from the high-density groups 

were from the intertidal zone. Despite all the overlap, two sites in groups I and III (Bollard Bay 

and Railway) never overlapped with sites in groups II and VI. Diopatra aciculata densities 

appeared to be patchily distributed throughout the estuary (Figure 3.3).  
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Figure 3.2: Boxplots showing densities of Diopatra aciculata in Knysna Estuary at all sampled sites where worms were found. Results of post hoc Dunn’s test showing homogenous groups (I   ̶ VI) are 

shown visually as bars above boxplots. Crosses (X) denote means while centre bars show medians (indistinguishable in groups II & VI). Box and whiskers shows quartiles with minimum and maximum 

values. Dots represent outliers.10 
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3.3.2 Population estimate 

As worms were absent beyond the White Bridge, these sites were excluded from the population 

estimate and area calculations. The mean density per sample was 3.47 worms.m-2 for 800 

samples, covering a total area of 800m2. A conservative estimate of the total area that could be 

occupied by D. aciculata was determined as the area submerged during neap low tide south of 

the White Bridge (Figure 3.1). This amounted to 6,487,600m2 of the 18,270,000m2 area of the 

Knysna Estuary. The sampling factor (SF) was therefore 1.233 x 10-4, and the population size 

estimate was calculated as 22,514,193 worms with a 95% confidence interval of 2,338,229 

worms. Thus, the estimated population size of D. aciculata in the Knysna Estuary is between 

20 and 24 million worms if distribution throughout the habitable part of the estuary is 

continuous.  

 

3.3.3 Baiting pressure 

Baiting pressure (BP) is summarised in Table 3.1 and displayed visually in Figure 3.3. Only 

Bollard Bay, Railway, TI east, LI mudbanks, LI north intertidal, WB, KADA, LI north subtidal, 

The Heads, Brenton, LI sandbank contained enough quadrats with tubes to be considered for 

baiting pressure analysis. The overall BP was very low; in 292 of the 357 quadrats with tubes, 

BP was 0%. The channel east of Thesen Island had the highest BP, 5.48%, of all sites. This was 

followed closely by LI north intertidal with a BP of 5.35%. All subtidal sites had zero BP.  
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Table 3.1: Baiting pressure given as percentage for eleven sites that had at least 20 quadrats containing Diopatra aciculata 

tubes in Knysna Estuary. Arranged in decreasing Baiting Pressure. 4 

 

Baiting pressure was significantly higher in intertidal than subtidal sites (Wilcoxon W (n = 335) 

= 18,197; p << 0), but there was no significant difference between public and reserve sites 

(Wilcoxon W (n = 335) = 14,003; p = 0.453). When only intertidal public and reserve sites were 

compared, no significant difference was found (Wilcoxon W (n = 190) = 4,136; p = 0.9). Baiting 

pressure did vary significantly by site (Kruskal-Wallis H(10, 335) = 95.03; p << 0.01), but no 

meaningful homogenous groups could be recovered from post-hoc analysis. 

Site Access Tidal Zone Baiting Pressure (%) Standard error 

F TI east Public Intertidal 5.48 1.16 

C LI north IT Reserve Intertidal 5.35 1.14 

B Bollard Bay Public Intertidal 3.16 0.79 

D LI Mudbanks Reserve Intertidal 1.5 0.6 

G Railway Public Intertidal 0.87 0.32 

J White Bridge Public Intertidal 0.53 0.26 

A LI south Reserve Intertidal 0.33 0.23 

3 KADA Public Subtidal 0.0 0.0 

2 LI north Reserve Subtidal 0.0 0.0 

1 The Heads Reserve Subtidal 0.0 0.0 

5 Brenton Public Subtidal 0.0 0.0 
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Figure 3.3: Density of Diopatra aciculata and baiting pressure at sampling sites in Knysna Estuary. Intertidal sites are given 

as letters A–M and subtidal sites are denoted 1–5. Circle fill colour represents density, high density representing medians of 3 

– 8 worms.m-2 and low density representing a median density of 0 worms.m-2, circle outline represents baiting pressure. Black 

denotes no/insufficient data. WB = White Bridge, TI = Thesen Island, LI = Leisure Island, IR = Invertebrate reserve, RB = 

Red Bridge, IT = Intertidal, ST = Subtidal 11 
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3.4 Discussion 

3.4.1 Densities of D. aciculata in Knysna Estuary 

Diopatra aciculata was found throughout the estuary at all of the sites from the Heads near the 

mouth up to the White Bridge (WB) about 12km upstream. Although species in the genus 

Diopatra are marine-adapted, many occur in estuaries around the world (Arias and Paxton, 

2014; Arias et al., 2010; Cunha et al., 2005; de Carvalho et al., 2013b; Pires et al., 2010; Pires 

et al., 2012; Rodrigues et al., 2009; van der Westhuizen and Marais, 1977; this study). Paxton 

(1993) reported D. aciculata from several large, marine-dominated estuaries around southern 

Australia and thus the conditions predominating in most of the Knysna Estuary (Allanson et al., 

2000a; Largier et al., 2000) provided a favourable environment that facilitated the establishment 

and spread of D. aciculata. However, the absence of the species from sites north of the White 

Bridge may be related to the fact that high freshwater input here frequently results in salinities 

that drop below 25g.L-1, a level linked to increased mortality in the closely related Diopatra 

neapolitana (Freitas et al., 2015; Pires et al., 2015). Additionally, dissolved oxygen 

concentrations start dropping rapidly beyond the White Bridge (Allanson et al., 2000a; Largier 

et al., 2000), probably further contributing to the unsuitability of this part of the estuary for the 

species.   

 

Species of the genus Diopatra can often attain high densities (Arias et al., 2016; Arias and 

Paxton, 2015; Berke et al., 2010; Conti and Massa, 1998; Cunha et al., 2005; Daǧli et al., 2005; 

Harwell and Orth, 2001; Rodrigues et al., 2009). For example, the mean densities of D. 

neapolitana, a similarly sized and closely related species, may be as low as 20 and as high as 

200 worms.m-2 in different parts of the Mediterranean (Arias et al., 2016; Arias and Paxton, 

2015; Berke et al., 2010; Daǧli et al., 2005). At a mean of 3.47 worms.m-2 (and maximum of 

51 worms.m-2), densities of D. aciculata in Knysna are well below the densities reported for D. 
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neapolitana, but it is not known whether densities have reached saturation. As D. aciculata 

only arrived in the Knysna Estuary sometime between 10 – 20 years ago, it is likely that the 

population is still growing. Furthermore, the current distribution and densities throughout the 

estuary suggest a rather rapid dispersal and growth of the D. aciculata population in Knysna 

since settlement. Dispersal through the estuary would probably be facilitated by broadcast 

spawning and the production of planktonic larvae, as is found in other large Diopatra species 

(Arias et al., 2016; Pires et al., 2012). However, because this is the first study that measures 

densities and distribution of D. aciculata in Knysna it is impossible to know at what rate the 

population is growing. Furthermore, there is no information regarding threshold densities for 

ecological impacts so without further studies it is impossible to say if D. aciculata is having 

any significant ecological impacts in the estuary. Nevertheless, if the published densities of D. 

neapolitana indicate biological potential, the population of D. aciculata in Knysna may still 

increase. 

 

3.4.2 Patchy distribution of D. aciculata 

Density of D. aciculata was not consistent throughout the Knysna Estuary. Instead, the patchy 

distribution of dense aggregations suggests that density may be related to site-specific 

environmental conditions. Unfortunately, there is no information on environmental preferences 

of D. aciculata, and I can only speculate that water flow rate may be influencing D. aciculata 

settlement within the estuary (c.f., Mangum et al. (1968)).  Previous studies showed that 

densities of Diopatra cuprea increased with current velocity (Mangum et al., 1968), and this 

may apply to D. aciculata in Knysna Estuary too. At Bollard Bay, where the highest density 

per quadrat occurred, quadrats in the shallow intertidal banks were empty or had very few 

worms, but more clusters of D. aciculata were present in the deeper intertidal, towards the main 

channel where water flowed markedly faster. At the Railway site, where all quadrats sampled 
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were close to the main channel in moving water, the densities of worms were more consistent. 

Similarly, north of Thesen Island (TI) I only found worms in deeper areas (>15 cm under water) 

with faster flowing water that formed part of the main channel. Thus, I predict if this area were 

to be resampled with efforts focused toward this middle channel a higher density would be 

recorded. By contrast, low densities were found at sites with very weak water currents during 

most of the low tide, such as at LI salt marsh and Leisure Island (LI) south sites. The salt marsh 

is characterized by stagnant warm water with long residency times throughout the tidal cycle 

(Pers. Obs.). During spring low tides, there is little water movement here and the four worms 

that I found all occurred within the only small stream of permanently flowing water in this area. 

Similarly, the LI sandbank to the south of the island is exposed for long periods during the tidal 

cycle. During spring low tide there are very few pockets and streams of water in this area. Thus, 

lack of moving water for large periods of the tidal cycle may make it difficult for worms to 

survive as, in general, they appeared to mainly occupy well-flushed areas closer to the main 

channels or other faster moving streams within the estuary (Pers. Obs.). This preference for 

faster flowing water may be related to feeding habits. As a discretely motile omnivorous 

scavenger (Fauchald and Jumars, 1979; Jumars et al., 2015), fast-flowing water is more likely 

to move plant or detrital material to within feeding range of the burrow. Alternatively, the 

worms may avoid areas where water flows slowly and at risk of having low oxygen levels. 

However, two studies on congeneric D. cuprea indicated that they used unusually low amounts 

of oxygen (Mangum et al., 1968; Mangum and Cox, 1971) which would refute this.  

 

The reasons for low densities at other sites in group II were not always obvious but may be 

related to competitive interactions with other species. Interactions with other biota may keep 

D. aciculata populations from growing in certain areas. For example, the bloodworm, Arenicola 

loveni, which is also present in the estuary (Branch et al., 2017; Smith and Smith, 2012) may 
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potentially exclude D. aciculata from its surrounding environment. The former species is also 

an environmental engineer, but as a bioturbator it is the functional opposite of a sediment 

stabiliser such as D. aciculata (Berke et al. 2010). Arenicolid-rich patches are characteristically 

devoid of algal and vascular plants and harbour lower diversities of infaunal species (Berke et 

al., 2010). It has been shown that invertebrate tubes, such as those of Diopatra, can have 

negative impacts on burrowing species such as arenicolids but how it translates to fitness of the 

animal is not known (Brenchley, 1982). Nevertheless, opposing ecosystem functions and 

limited space in the benthic community may cause exclusion of one of these species by the 

other (Volkenborn et al., 2009). 

 

3.4.3 Population size estimate 

I estimated that 20 to 24 million D. aciculata occur in the Knysna Estuary. However, this 

estimate should be considered within the context of the study. My sampling effort only 

represents 0.01% of the total area of the estuary, and I found distribution of D. aciculata to be 

patchy. Such patchy distributions can lead to gross misrepresentations when not sampled 

thoroughly. Therefore, using the mean density of 3.47 worms.m-2 from such a small portion of 

the total area to estimate population size may be crude. Consequently, it is important that further 

sampling take place to get a more accurate estimate, especially in light of D. aciculata being an 

alien species. Still, the data that I gathered shows that D. aciculata likely already plays a role 

in the Knysna Estuary ecosystem. I hypothesise that a mean of 3.47 worms.m-2 is not high 

enough to cause cascading ecosystem engineering effects so those risks can still be mitigated. 

However, the presence of 20 million individuals could undoubtedly have an impact on other 

biota if only by serving as extra food for benthivorous fish. 
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3.4.4 Baiting pressure 

The baiting pressure (BP) throughout the estuary was quite low and unevenly distributed, but 

this should not be disregarded. A baiting pressure of 5% means that 5% of the detectable D. 

aciculata were removed from that site in the days immediately preceding sampling only. 

Unfortunately, it is not known exactly how long empty tubes remain before disappearing and 

so it is difficult to quantify over which time period worms were extracted. Furthermore, because 

the BP only reflects very recent baiting, the calculated BP for each site may not be an accurate 

reflection of the mean BP a site may experience throughout a year. Sampling for this study was 

done before the peak baiting season determined by Simon et al. (2019a) and results may be 

different if sampled again during or after December or Easter holidays. 

 

In some places such as Bollard Bay, LI north IT, LI mudbanks and TI east high densities of D. 

aciculata may explain the comparatively high baiting pressure in these areas. Some of these 

sites also correspond with popular bait collecting sites determined in Simon et al. (2019). 

However, sites such as Railway and WB south also harbour high D. aciculata densities, yet 

baiting pressure here is very low. Here, the low baiting pressure may reflect difficulty of access 

to these sites. For example, bait collectors need to walk about 1 km on the dangerous abandoned 

railway bridge to reach the Railway bait collecting site. Similarly, the White Bridge site is about 

8km from the Knysna CBD, and even further from the large informal settlements, which are 

much farther than the other sites. Most subsistence fishermen walk to their bait collecting sites 

(du Toit and Simon, Unpublished data) so the White Bridge site will only be baited by those 

living nearby. Extraction from this site may be further discouraged, as it is very muddy, 

requiring much more effort to move around. Thus, recreational fishers would rather walk or 

drive to LI and subsistence fishers would walk to the nearest place that is convenient in 

concordance with what Simon et al. (2019) found. 
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No subtidal sites experienced any baiting pressure. This was expected as baiters need to see the 

worm and burrow clearly to extract it and so they cannot extract D. aciculata from deeper 

waters. Unexpectedly, there were no significant differences in baiting pressure between public 

and reserve sites. Since I specifically did not sample at sites in the reserve where SANParks 

had reported regular illegal baiting, this suggests that baiting activity within the reserve is more 

prevalent than previously thought.  

  

Stellenbosch University https://scholar.sun.ac.za



65 
 

Chapter 4: Study overview with management and 

research recommendations for Knysna estuary 

 

The Knysna Estuary is the largest clear-water estuary along the coast of South Africa (Allanson 

et al., 2000a), and based mainly on its size and the many habitats and high biodiversity which 

it supports, it was ranked the most important estuary in the country (Turpie and Clark, 2007). 

As a consequence, the Knysna Estuary has been, and still is, a hotspot for research focusing on 

topics such as diversity mapping (Allanson et al., 2014, 2000b; Barnes, 2014, 2004; Day et al., 

1951; Hodgson et al., 2000a, 2000b), hydrology and sand bank movement (Allanson et al., 

2000a; Largier et al., 2000; Marker and Maree, 2004), pollution (Allanson et al., 2016), 

conservation (Claassens et al., 2018; Teske et al., 2003) and bait collecting (Hodgson et al., 

2000a; Napier et al., 2009; Simon et al., 2019a). Furthermore, Knysna Estuary falls within the 

Garden Route National park and is therefore managed by South African National Parks 

(SANParks). Additionally, the Knysna Basin Project (KBP) (http://knysnabasinproject.co.za/) 

runs several programs such as Knysna Estuary Management Platform (KEMP) and 

ShoreSearch that aim to aid in the conservation of the estuary. However, despite all the 

conservation efforts and research, nobody recognized the significance of the appearance and 

spread of the moonshine worm. This study therefore aimed to identify this species and 

determine its distribution within Knysna Estuary. 

 

4.1 Study overview 

In Chapter Two, I identified the Diopatra sp. from Knysna Estuary as Diopatra aciculata and 

showed that the non-indigenous Diopatra aciculata has invaded two estuaries on the South 

African south-east coast. Diopatra aciculata from South Africa was described and shown to be 
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a different but closely related species to D. neapolitana using both morphological and molecular 

techniques. 

In Chapter Three, I established that the alien D. aciculata is widely distributed within the 

Knysna Estuary from the White Bridge all the way to The Heads with densities reaching as high 

as 51 worms.m-2 in places. The species seems to prefer low intertidal areas with higher water 

flow rates and is also present in subtidal areas. Furthermore, I calculated a crude population 

estimate for D. aciculata in Knysna to be between 20 – 24 million worms. Lastly, I found that 

overall baiting pressure was very low, except at two popular baiting sites, and baiting activity 

inside the invertebrate reserve appears to be more widespread than expected.  

 

4.2 Factors that led to the cryptic invasion of D. aciculata 

The earliest reference to D. aciculata in Knysna (as Diopatra sp.) was only published in 2009 

(Napier et al., 2009). Yet, nobody recognized that the species was new to the estuary or that it 

was not indigenous. Instead, it was misidentified as the indigenous wonderworm (Allanson et 

al., 2016) or Marphysa elityeni (see Smith and Smith, 2012), while descriptions of pseudo-

cosmopolitan Diopatra species in a popular field guide (Branch et al., 2017) are too vague to 

enable accurate identification. However, accurate species identification was probably inhibited 

by the taxonomic difficulties of the Diopatra genus (Day, 1960; Paxton, 1993). Thus, the 

cryptic invasion by D. aciculata was possible not because of failed detection but rather of failed 

identification. This cryptic invasion was probably further facilitated by the decrease in 

professional and amateur taxonomists (Griffiths et al., 2010; Herbert et al., 2001; Hopkins and 

Freckleton, 2002; Martens and Hamer, 1999; Smith et al., 2008) active in the region, who may 

have been able to identify the species.  
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The re-examining of previous accounts of D. neapolitana outside of the Mediterranean should 

be made a priority as such specimens may represent an alien presence of D. aciculata as it did 

here. This may also be true for other apparently cosmopolitan species which emphasizes the 

need to re-examine all such species. If a non-indigenous species is wrongfully identified as an 

indigenous species, a cryptic invasion may even be facilitated through management strategies 

aimed towards protecting the falsely identified species. 

 

4.3 Feasibility of mechanical removal of D. aciculata from Knysna Estuary 

The unified framework for biological invasions suggests that once a species has become 

invasive, management should focus on extirpation, containment or mitigation to avoid negative 

effects on surrounding native biota (Blackburn et al., 2011). Though there have been numerous 

cases of successful eradication of invasive species, most involved removing vertebrates from 

islands as it is easier to meet conditions for extirpation for small populations of isolated species 

that have no dormant life stages and relatively low reproductive rates (Veitch and Clout, 2002). 

The situation is quite different for marine species. In an attempt to remove the invasive crab 

Carcinus maenas (Linnaeus, 1758) from Hout Bay harbour, a total of 36,244 crabs were 

removed, six times the most recent population estimate, yet extirpation was still deemed 

unsuccessful (Mabin, 2017). Given that I estimated that there are between 20 and 24 million 

worms in the Knysna Estuary, extirpation may prove impossible or even counterproductive (see 

also Bergstrom et al., 2009; Veitch and Clout, 2002; Zavaleta et al., 2001). 

 

Due to the value of the estuary (Turpie and Clark, 2007), extirpation efforts need to be non-

destructive. Luckily, D. aciculata are removed by a wire inserted into individual tubes, which 

does not disturb the sediment or inadvertently kill non-target species. With practice, it is 
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possible to collect a worm within 20 seconds (Pers. Obs.), but it can take several minutes to 

find worm tubes and moving between patches containing worms. It is therefore difficult to 

estimate a realistic extraction rate, though most fishermen to whom I spoke said they could 

collect their daily bag limit (10 worms) within 20–60 minutes (Unpublished data). Thus, 10–

30 worms may be collected within an hour if the collector already knows where the worms are. 

Currently there are about 500 full–time and part-time subsistence fishermen active in the 

Knysna Estuary (Simon et al., 2019a). If they were all employed on a full-time basis for four 

hours a day (only extractable during day-time low tide), five days a week, and extract 30 worms 

per hour, it would take more than 20 months to remove the maximum estimated 24,852,422 

worms that occur in the estuary. However, not all worms are extractible since many occur in 

the subtidal zone. Additionally, worms that were removed may be replaced by new recruits 

spawned by worms that have not yet been removed. Thus, the worms in the subtidal zone could 

act as a source of recruits for the rest of the estuary. Thus, this effort would have to be ongoing 

and complete removal may not be possible. 

 

Eradication programs such as these also have financial implications (Mabin, 2017). The 

recommended minimum wage in South Africa is R20 per hour excluding farm- and domestic 

workers (National Minimum Wage Panel, 2016). Thus, if 500 workers received minimum wage 

during the removal scenario described above, it would cost more than R18 million over 20.7 

months. However, as extirpation would undoubtedly be an ongoing process, costs would not 

end after 20.7 months.  Costs can be cut nearly in half by classifying the extirpation effort as a 

public works program cutting minimum compensation almost in half to R11 per hour (National 

Minimum Wage Panel, 2016). Costs may be further offset due to the commercial value of D. 

aciculata. In the global fisheries market, D. aciculata has been sold at US$141,62 per kilogram. 

Those employed for extirpation efforts could be allowed to keep what they remove for their 
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own use or to sell, though this may have unintended consequences (Fielding, 2009). For 

example, baiters may then want to use more efficient but destructive methods, such as shoveling 

or pumping, to collect worms at a greater tempo. Also, if baiters are paid to remove worms from 

the estuary for as long as they are there, it would be in their best interest to not remove all the 

worms as this would bring an end to their income. Thus, paying baiters for the removal of D. 

aciculata in Knysna may not be a permanent or final solution but rather a means of maintenance 

management as part of a mitigation strategy. 

 

4.4 Management recommendations 

The failure to detect the presence and spread of a conspicuous alien species such as D. aciculata 

could have been avoided if well-designed and properly executed biodiversity monitoring 

programs were implemented (Lindenmayer et al., 2012; Niemelä, 2000; van der Zanden et al., 

2010). Lindenmayer et al. (2012) provided five outcomes that such biodiversity monitoring 

programs should provide, 1) information on trends in key aspects of biodiversity (e.g., 

population shifts), 2) early warning of problems that might be difficult or too expensive to 

reverse if left unattended (such as biological invasions), 3) evidence of success or failure of 

conservation effort, 4) information regarding management inefficiencies, and 5) information on 

the return on conservation investment. A monitoring program that can deliver all these 

outcomes could incur considerable cost, however, the return on such an investment could be 

immeasurable. Furthermore, a program such as this may require manpower that isn’t always 

available to SANParks and thus such monitoring efforts may need to be outsourced or 

approached more efficiently. There are several ways to improve efficiency and cut costs of 

traditional biodiversity monitoring programs, including using citizen scientists and molecular 

techniques (Bohmann et al., 2014; Darling and Mahon, 2011; Goldberg et al., 2015; Schmeller 

et al., 2008; Thomsen and Willerslev, 2015).  
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The use of volunteers and citizen science could add value to such a program without adding 

much cost. Evaluation of large-scale monitoring programs in Europe has shown that, contrary 

to popular belief, volunteer-based data can be reliable and deliver unbiased results (Schmeller 

et al., 2008). However, the precision of such programs is a function of volunteer involvement 

(Schmeller et al., 2008) so it would be important to promote a culture of reporting biodiversity 

among those who frequently make use of the estuary which could likely be done through 

workshops and education initiatives although it can be difficult to implement these in ways that 

have measurable positive outcomes (see Simon et al., 2019a). Furthermore, an online data portal 

or smartphone application would make it easy and convenient for volunteers to log reports, 

thereby promoting its use. 

 

In an estuary as large and important such as Knysna, a biodiversity monitoring program should 

be routine. The Knysna Estuary should have a structured monitoring program that would 

measure key aspects of biodiversity, such as presence and abundance of keystone species, at 

regular intervals on both coarse and finer scales. The Knysna Basin Project (KBP) developed 

the ShoreSearch biodiversity monitoring program that assesses biodiversity in ten sites in the 

estuary annually on a seasonal basis (Knysna Basin Project, 2019). However, the program is 

mostly citizen science- and volunteer-based and thus likely do not have the necessary 

taxonomic expertise to accurately identify all organisms and furthermore, would not have 

access to molecular techniques. These circumstances could explain why D. aciculata was never 

detected during ShoreSearch monitoring. 
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With taxonomy at the basis of any biodiversity monitoring program, the decline in taxonomic 

expertise is concerning. Without clear and accurate taxonomic references any biodiversity 

monitoring program would be meaningless. However, molecular techniques (such as DNA 

barcoding) has made it easier than ever for non-taxonomists to accurately identify species. 

Unfortunately, there are many pitfalls related to barcoding (see Da Silva and Willows-Munro, 

2016), the main one being the need for accurate reference libraries which may not always be 

available. This was seen in this study where a sequence of D. aciculata was uploaded as D. 

dentata. Another molecular technique that has seen a rise in popularity, especially in 

biodiversity monitoring, is the collection of environmental DNA (eDNA) (Bohmann et al., 

2014; Darling and Mahon, 2011; Goldberg et al., 2015; Thomsen and Willerslev, 2015). 

Environmental DNA are trace DNA molecules shed from plants and animals through blood, 

sperm, fecal matter, mucus etc. into the water or sediment which, when analyzed, can show 

which species had recently been present in the area. This method has been shown to be effective 

at detecting rare and elusive species as well as alien species (Bohmann et al., 2014; Thomsen 

and Willerslev, 2015). The use of molecular techniques such as eDNA can provide cost 

effective ways to monitor biodiversity and detect alien species in the future. Collection of 

eDNA is a purely molecular technique and does not involve collection of organisms that can be 

stored as reference in a museum. Thus, it heavily relies on an accurate comparative library of 

identified sequences as there is no deposited material to re-examine at a later point. Such 

reliable reference libraries should ideally be generated by taxonomic experts using a total 

evidence approach. So, while molecular techniques can hasten and simplify identification of 

species, the reference library required for its use takes a lot of time and effort to compile.  
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4.5 Research recommendations 

Other sheltered bays and estuaries, especially well-flushed ones, should be thoroughly surveyed 

to get a more complete record of D. aciculata distribution in SA. These could start in areas 

where Diopatra neapolitana has been previously reported, such as Durban Bay and Sundays 

River. Furthermore, it might be helpful to examine records of D. neapolitana from South Africa 

stored in the British Museum (Day, 1960) as it may provide insight on the historical aspects of 

the invasion. Lastly, Branch et al. (2017) should modify the description of D. neapolitana to 

reflect that of the subspecies, Diopatra neapolitana capensis, and include an entry for D. 

aciculata. Diopatra aciculata should be included in the register of alien species held by the 

South African National Biodiversity Institute and its current distribution be given as Knysna 

and Swartkops in both sandy and silty sediment. This record can then be updated as new 

information emerges. Additionally, DAFF needs to update their annual guide to recreational 

fishing to include more specific descriptions of bait which would ideally include pictures. 

 

Given the projected cost, effectiveness and duration of the hypothetical extirpation strategy 

outlined, it is likely that complete extirpation is unachievable at this point. Though, if it can be 

managed sustainably, a baiting incentive strategy may be pursued to mitigate possible impacts 

of the non-indigenous species by keeping population numbers low. However, it is still not 

known what kind of impact this species has or will have in the estuary as neither this species 

nor a closely related one have ever been reported as invasive from elsewhere. 

 

In the above scenarios it is assumed that D. aciculata has negative impacts on surrounding 

native biota, which would justify the extirpation effort. However, invasive species do not 

always have negative impacts on surrounding biota and can have no discernable effects (Mabin, 
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2017). Nevertheless, D. aciculata should still be treated with caution and prioritized for further 

in-depth studies. 

 

Given the potential ecological and financial implications of extirpation, the first goal of future 

research should be to determine the nature of direct or indirect impacts of D. aciculata on the 

surrounding environment, ecological structure or trophic levels (Alexander et al., 2016). For 

example, determine if D. aciculata is facilitating spread of native eelgrass or increasing 

biodiversity within its surroundings. The species may also be competing with other native 

species for food, while it may also be a source of food for others. Furthermore, determine if a 

displacement interaction exists between D. aciculata and a functionally opposite ecosystem 

engineer such as the native Arenicola loveni. Furthermore, information regarding reproductive 

cycles and population structure could be informative in developing management strategies that 

will enable effective mitigation or removal with minimum re-colonization.  

 

Studies that follow up on this one should be done to discern the rate of change in population 

size and/or densities, especially also during a year, such as right after peak baiting season. 

 

Future research should thus, as a priority, focus on generating information that can clarify the 

urgency of necessary management strategies. Furthermore, information should be generated 

that would help inform more efficient and effective management strategies. 
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Appendix 

 

PCR conditions 

Marker 
Primer 
Name 

Direction Primer Sequence Cycle Conditions 

COI 

LCO1490 Forward 
GGT CAA CAA ATC ATA AAG  
ATA TTG G 

1 cycle: 94 °C/3 min 

40 cycles: 94°C/1min , 
40°C/1min, 72°C/90 s 

HCO2198 Reverse 
TAA AAC TTC AGG GTG ACC 
AAA AAA TCA 

1 cycle: 72°C/7 min 

16S 

16SarL Forward CGC CTG TTT ATC AAA AAC AT 

1 cycle: 94 °C/3 min 

40 cycles: 94°C/30 s, 51°C/30 s, 
72°C/70 s 

16S-OnuR Reverse 
GTC TGA ACT CAG CTC ACG 
TAG G 

1 cycle: 72°C/7 min 
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COI sequence information 

Ascension ID Species name Species authority Sequence origin Reference 

AY838867 Diopatra aciculata Knox & Cameron, 1971 Australia Struck et al., 2006 

GQ497522 Diopatra dentata Kinberg, 1865 Australia Zanol et al., 2010 

EU878539 Diopatra neapolitana Delle Chiaje, 1841 Portugal  Rodrigues et al., 2009 

JQ950321 Diopatra neapolitana Delle Chiaje, 1841 France Pires et al., 2012 

KF815718 Diopatra neapolitana Delle Chiaje, 1841 India Genbank entry (Unpublished) 

GQ456164 Diopatra neapolitana Delle Chiaje, 1841 Portugal  Rodrigues et al., 2009 

KT992099 Diopatra neapolitana Delle Chiaje, 1841 Spain  Arias et al., 2016 

KT992100 Diopatra neapolitana Delle Chiaje, 1841 Spain  Arias et al., 2016 

FJ428832 - FJ428835 Diopatra neapolitana Delle Chiaje, 1841 Spain, France, Italy  Berke et al., 2010 

FJ428846 - FJ428866 Diopatra neapolitana Delle Chiaje, 1841 Spain, France, Italy  Berke et al., 2010 

FJ428877 - FJ428889 Diopatra neapolitana Delle Chiaje, 1841 Spain, France, Italy  Berke et al., 2010 

FJ428895 - FJ428913 Diopatra neapolitana Delle Chiaje, 1841 Spain, France, Italy  Berke et al., 2010 

FJ428926 - FJ428951 Diopatra neapolitana Delle Chiaje, 1841 Spain, France, Italy  Berke et al., 2010 

KR916810 Diopatra neapolitana Delle Chiaje, 1841 Portugal  Lobo et al., 2016 

FJ428890 - FJ428894 Diopatra cuprea Bosc, 1802 Spain, France, Italy  Berke et al., 2010 

FJ428914 - FJ428925 Diopatra marocensis 
Paxton, Fadlaoui & 
Lechapt, 1995 

Spain, France, Italy  Berke et al., 2010 

FJ646632 Diopatra marocensis 
Paxton, Fadlaoui & 
Lechapt, 1995 

Portugal  Rodrigues et al., 2009 

GQ456165 Diopatra marocensis 
Paxton, Fadlaoui & 
Lechapt, 1995 

Portugal  Rodrigues et al., 2009 

GQ456161 Diopatra micrura 
Pires, Paxton, Quintino & 
Rodrigues, 2010 

Portugal  Pires et al., 2010 

GQ456162 Diopatra micrura 
Pires, Paxton, Quintino & 
Rodrigues, 2010 

Portugal  Pires et al., 2010 

MBI-SCCWRP-00172 (BOLD ID) Diopatra ornata Moore, 1911 USA - California Direct Submission 
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ECOSUR-OH-P0040 (BOLD ID) Eunice chicasi 
Leon-Gonzalez, Rivera & 
Romero, 2004 

Mexico Direct Submission 

ECOSUR-OH-P0042 (BOLD ID) Eunice chicasi 
Leon-Gonzalez, Rivera & 
Romero, 2004 

Mexico Direct Submission 

ECOSUR-OH-P0043 (BOLD ID) Eunice chicasi 
Leon-Gonzalez, Rivera & 
Romero, 2004 

Mexico Direct Submission 

ECOSUR-OH-P0046 (BOLD ID) Eunice chicasi 
Leon-Gonzalez, Rivera & 
Romero, 2004 

Mexico Direct Submission 

ECOSUR-OH-P0050 (BOLD ID) Eunice chicasi 
Leon-Gonzalez, Rivera & 
Romero, 2004 

Mexico Direct Submission 

 

 

  

Stellenbosch University https://scholar.sun.ac.za



98 
 

16S sequence information 

Genbank ID Species name Species authority 
Sequence 
origin Reference 

AY838826.1 Diopatra aciculata Knox & Cameron, 1971 Australia Struck et al., 2006 

GQ478129.1 Diopatra dentata Kinberg, 1865 Australia Zanol et al., 2010 

KT992097.1 Diopatra neapolitana Delle Chiaje, 1841 Spain Arias et al., 2016 

KT992096.1 Diopatra neapolitana Delle Chiaje, 1841 Spain Arias et al., 2016 

KT992095.1 Diopatra neapolitana Delle Chiaje, 1841 Spain Arias et al., 2016 

EU878538.1  Diopatra neapolitana Delle Chiaje, 1841 Portugal  Rodrigues et al., 2009 

JQ950322.1 Diopatra neapolitana Delle Chiaje, 1841 France Pires et al., 2012 

GQ456163.1 Diopatra micrura Pires, Paxton, Quintino & Rodrigues, 2010 Portugal  Pires et al., 2010 

FJ473306.1 Diopatra marocensis Paxton, Fadlaoui & Lechapt, 1995 Portugal  Rodrigues et al., 2009 

KJ027327.1 Diopatra sugokai Izuka, 1907 Japan Budaeva et al., 2016 

KJ027326.1 Diopatra sugokai  Izuka, 1907 Japan Budaeva et al., 2016 

KJ027324.1  Diopatra ornata  Moore, 1911 USA Budaeva et al., 2016 

KJ027328.1 Diopatra tuberculantennata Budaeva & Fauchald, 2008 Belize Budaeva et al., 2016 

KJ027329.1 Diopatra tuberculantennata  Budaeva & Fauchald, 2008 Belize Budaeva et al., 2016 

GQ478147.1 Eunice norvegica Linnaeus, 1767 Stockholm Zanol et al., 2010 
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