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Abstract 

Poor understanding of preterm infant physiology attributes to the high infant 
mortality rates, as well as its corresponding financial burden. Prematurity 
compromises the respiratory and regulatory systems of infants. This manifests 
itself in characteristic respiratory dynamics consisting of apneas, periodic 
breathing and regular breathing. These dynamics, if captured, quantified and 
visualised have potential to track maturational changes in infants. This can aid 
physicians in the difficult task of assessing a preterm infant’s level of physiological 
maturity and offer insight into the infant’s regulatory systems.  

The primary objective of this study was to develop a transition model representing 
the behaviour of and temporal relationship between the different respiratory 
states of preterm infants. Secondary objectives consisted of the following: 
Analysing 2 – 5 s cessations, their contribution to breathing cessation and 
relationship to apnea; temporally tracking the respiratory stability of preterm 
infants; and studying the relationship between breathing cessations and heart rate 
behaviour.   

Transition models were developed that adequately represented the respiratory 
dynamics of preterm infants. It showed that respiratory events are related in time, 
but that periodic breathing rarely precedes apnea of prematurity. On average 9% 
of breathing cessation and less than 1% of periodic breathing was found in the 
dataset. It was found that the contribution of short cessations were large, and that 
there is a temporal periodicity to the percentage cessations in the respiratory 
signal. Coupling between the respiratory and cardiac systems could be observed, 
with an apparent common temporal periodicity between some heart rate 
variability measures and percentage cessation in breathing signal.  

In conclusion, all objectives were successfully addressed and greater insight was 
gained into the physiology of preterm infants. Future value exists in applying these 
analyses on a larger, more longitudinal and clinically annotated dataset.  
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Uittreksel  

ŉ Swak begrip van premature kinderfisiologie dra by tot wêreldwye hoë 
kindersterftesyfers, asook die ooreenstemmende finansiële las. Prematuriteit 
kompromieer die respiratoriese en regulatoriese stelsels van babas. Dit 
manifesteer in kenmerkende respiratoriese dinamieke wat bestaan uit apnee, 
periodiese asemhaling en normale asemhaling. Indien hierdie dinamieke 
gemonitor, gekwantifiseer en gevisualiseer kan word, het dit die potensiaal om die 
volwassewording van premature babas te monitor. Dit kan dokters help in die 
moeilike taak om 'n premature kind se vlak van fisiologiese volwassenheid te 
bepaal. Dit kan ook insig gee rakende die regulatoriese stelsels van die baba. 

Die primêre doel van hierdie studie was om 'n oorgangsmodel te ontwikkel wat 
die gedrag van en tydelike verband tussen die verskillende respiratoriese 
toestande van premature babas verteenwoordig. Sekondêre doelwitte het 
bestaan uit die volgende: Studie van 2 - 5 s asemhalingstakings, hul bydrae tot die 
totale asemhalingstaking en verhouding tot apnee; om die respiratoriese 
stabiliteit van premature babas relatief tot tyd te bestudeer; en die verband tussen 
asemhalingstake en variasie in hartklop te observeer. 

'n Oorgangsmodel is ontwikkel wat die respiratoriese dinamika van premature 
babas voldoende verteenwoordig het. Dit het getoon dat respiratoriese gebeure 
verbonde is in tyd, maar dat apnee van prematuriteit selde deur periodiese 
asemhaling voorafgegaan word. Gemiddeld is 9% asemhalingstaking en minder as 
1% periodieke asemhaling in die datastel gevind. Daar is bevind dat die bydrae van 
kort asemhalingstakings groot was en dat daar 'n temporale periodisiteit is vir die 
persentasie stakings in die respiratoriese sein. Koppeling tussen die respiratoriese 
en kardiale stelsels kon waargeneem word, met 'n skynbare algemene temporale 
periodisiteit tussen sommige hartklopveranderings-maatreëls en persentasie 
staking in die asemhalingssein. 

Ten slotte is alle doelwitte suksesvol aangespreek en is meer insig verkry in die 
fisiologie van premature babas. Toekomstige waarde bestaan in die toepassing 
van hierdie ontledings op 'n groter, meer longitudinale en klinies geannoteerde 
datastel. 
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1 Introduction 

1.1 Background 

Prematurity compromises the respiratory and regulatory systems of infants. This  
manifests itself in characteristic respiratory dynamics consisting of apneas, 
breathing cessations, periodic breathing and regular breathing [1–3]. These 
dynamics, if captured, quantified and visualised have potential to track 
maturational changes in infants. Not only can this aid physicians in the difficult 
task of assessing a preterm infant’s level of physiological maturity, but it could also 
potentially aid in the rapid identification and treatment of diseases such as apnea 
of prematurity, bronchopulmonary dysplasia and sepsis. Standalone, respiratory 
dynamics should provide physiological insights into the infant’s regulatory 
systems. More accurate measurement and a deeper understanding of these 
dynamics can have a positive impact on neonatal healthcare as well as its 
accompanying financial burden.  

This project proposes an in-depth study of preterm infant respiratory dynamics. It 
will analyse respiratory signals and classify them into periods of apnea (or 
breathing cessations), periodic breathing and regular breathing. An extensive 
literature study will be done pertaining to the current definitions of these 
respiratory events, since the classifications are continuously evolving. Existing bio-
signal measurement tools from literature and databases will be identified and 
used to develop the algorithms necessary to detect and quantify respiratory 
events. 

Furthermore, relationships between the classes of breathing will be explored using 
descriptive analytics and statistical methods. These will eventually be summarised 
in a transition model. This will give a clear visualisation of these relationships and 
enable a holistic picture of the respiratory activity in preterm infants. 
Development of this transition model serves as the primary objective of this 
research project, summarising the key aspects explored and insights gained, as 
well as offering the possibility to track respiratory maturity.  

In addition to this, three secondary areas of interest will be explored. Firstly, unlike 
other studies, short cessations in breathing (2 – 5 s) will be specifically analysed. 
This will help to better quantify respiratory dynamics as well as aid in the 
investigation of whether short cessations in breathing are related to apneas. It will 
also enable a comprehensive picture of exactly how large their routinely ignored 
contribution is to the overall time a preterm infant spends in breathing cessation. 
Secondly, this project aims to track respiratory stability temporally, investigating 
whether there is a periodic time-relationship in the behaviour of cessations. Lastly, 
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the relationship between breathing cessations and heart rate behaviour will be 
studied. This relationship, along with how it is currently quantified and analysed, 
will also be explored in the literature review.  

Finally, the project will end in a discussion of the obtained results, focussing on 
their clinical relevance and potential, as well as how they fit into the context of the 
existing body of knowledge. The limitations of this study will be presented and the 
suggestions for future work outlined.  

1.2 Objectives 

The main aim of this thesis is to do a comprehensive analysis of the respiratory 
dynamics of preterm infants, enabling a better understanding of their respiratory 
regulatory systems. One primary objective and three secondary objectives have 
been identified in order to achieve this goal.  

1.2.1 Primary objective  

Objective 1: Develop a transition model representing the behaviour of and 
temporal relationship between the different respiratory states of preterm infants.   

1.2.2 Secondary objectives  

Objective 2.1:  Analyse 2 – 5 s cessations, their relationship to apneas and their 
contribution to the overall time a preterm infant spends in breathing cessation.  

Objective 2.2: Temporally track the respiratory stability of preterm infants.  

Objective 2.3: Study the relationship between breathing cessations and heart rate 
behaviour.   

1.3 Motivation 

It is important to gain a deeper insight into the physiology of preterm infants. 
Global neonatal mortality rates are high enough to warrant concern from 
institutions like the United Nations (UN), with goals constantly being set to 
improve the chances of survival for these very vulnerable children. These mortality 
rates are even more concerning when the focus is placed on preterm infants. 
Adequate monitoring plays a very important role in helping preterm infants 
survive. However, even when monitoring is sufficient, large amounts of data are 
acquired but not effectively utilised. Analysing this data holds many possibilities 
to improve the outcomes of preterm infants. In particular, properly studying 
respiratory signals could aid in tracking the maturation of these infants, which 
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could aid clinicians in assessing whether they are healthy enough to be discharged 
from the neonatal intensive care unit (NICU).  

Infants born before 37 weeks of gestation are clinically defined as preterm. 
Globally, 15 million of these infants are born per year and in 2015, almost one 
million of them died. Using current, cost-effective interventions could have 
prevented three-quarters of these deaths. Even if these infants do survive, many 
of them  end up facing a life of disabilities [4].  

In 2000 the UN held the Millennium Summit. Here they established eight 
international developmental goals to achieve by 2015, namely the Millennium 
Developmental Goals (MGDs). The fourth goal was to reduce child mortality, with 
one of its three subsections focusing specifically on infant mortality. Since the 
implementation of these goals, great strides have been made. The under-five 
mortality rate has dropped from 78 to 41 deaths per 1000 live births since the year 
2000 [5].  

Although the MDGs inspired positive progress in many areas around the globe, 
many children are still at risk. In 2016, 5.6 million children died before reaching 
their fifth birthday [5]. In addition, the neonatal mortality rate of neonates (infants 
up to 28 days of age) only decreased from 33 to 19 deaths per 1 000 live births. 
This is a less significant decrease than the under-five mortality rates, resulting in 
neonatal deaths now accounting for a growing share of these under-five deaths. 
This increase in relationship was seen in every region in the world [6]. In their 2015 
report on the success of the MDGs, the UN places emphasis on the importance of 
keeping newborn and child survival at the heart of the post-2015 global 
development agenda [6].  

In 2016, the MDGs were replaced by a collection of 17 new goals, formally known 
as “Transforming our World: the 2030 Agenda for Sustainable Development”. It is 
generally referred to as the 2030 Agenda or Sustainable Development Goals 
(SDGs). Goal three is specified as “Good health and well-being”, with a list of 
targets. Specific to preterm infants, all preventable deaths of newborns should be 
ended, with all countries aiming to reduce their neonatal mortality rate to at least 
12 deaths per 1000 live births. In addition, through prevention and treatment, 
premature mortality from non-communicable diseases should be reduced by one 
third [5].   

Presently, the chances of achieving these targets seem slim. 533 million children 
live in countries where these goals are currently unachievable [5]. If current trends 
continue, 10 million additional lives will be saved. However, around 60 million 
children under five will still have died between 2017 and 2030 due to largely 
preventative causes, with more than half these deaths occurring in sub-Saharan 
Africa. In addition, over 60 countries will miss the SDG 2030 neonatal mortality 
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goal. Nearly 40 of these countries need to more than double their current rate of 
progress to have a chance of meeting these goals [5].  

Infant mortality is a higher risk among poorer communities, with children born 
into poverty being almost twice as likely to die before five years of age than those 
born to wealthier families [7]. In low-income communities half of the infants born 
at or below 32 weeks of gestation die due to a lack of cost-effective and feasible 
healthcare, such as basic care for infections and breathing difficulties [8]. 
Worldwide, 75% of neonatal deaths occur very early on with prematurity 
accounting for 40% of these and complications of asphyxia (oxygen deprivation, 
or suffocation) for 23% [9]. The UN reports similar statistics, attributing 35% of 
these neonatal deaths to preterm birth complications [6]. 

Of these early deaths mentioned, 44% are linked to healthcare related factors 
which are mostly avoidable. In 22% of deaths due to immaturity, administrative 
problems were reported. The main problem cited was a lack of adequate facilities 
and no access to an ICU unit with applicable equipment, therefore also indicating 
a lack of adequate monitoring. The 2010 – 2011 Saving Babies report lists the top 
two health-worker-related reasons as (i) fetal distress monitored but not detected 
and (ii) distress not monitored and therefore not detected [10].  

A 2011 audit done on neonatal mortality at the Steve Biko Academic Hospital listed 
spontaneous preterm labour and intrapartum asphyxia (a condition associated 
with abnormal breathing) as two of the five primary obstetric causes of death. 
Constant monitoring and data collection play a large and important part in 
controlling conditions like these. In most cases, with proper monitoring and data 
screening present, these deaths could be avoided. In fact, inadequate 
resuscitation and monitoring was reported as one of the top personnel-related 
factors contributing to death [9]. 

The importance of adequate monitoring cannot be overstressed, especially with 
infants under 32 weeks and/or under 1500 g birth weight [11]. However, even 
when sufficient monitoring takes places, the large amount of data amassed 
normally remains underutilised. Further exploration and analysis of this data can 
offer insight into the physiological systems of infants, as well as the interactions 
between these systems. One area that can be aided by such analysis, is the 
discharge practices in the NICU.  

Functional maturity serves as the main criteria in the clinical decision concerning 
an infant’s readiness for discharge. This maturity is mainly demonstrated by the 
infant’s control of breathing and respiratory stability, two factors that are greatly 
undermined by the occurrence of an apnea. Therefore, when an apnea occurs, it 
indicates that the infant is not medically stable enough to be discharged. This leads 
to a practice of implementing a safety period between the occurrence of an apnea 
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and the time at which the infant is discharged. However, very little data exist 
pertaining to what the optimum duration of this safety period should be. Lee et al. 
suggests a duration of eight days, but believes a better justification of this norm is 
needed [12]. Still, this practice differs widely among medical practitioners, with 
one study showing this disparity with a survey: 74% of neonatal specialists work 
with an apnea-free period of five to seven days; 14% suggest two to four days; 
11% employ no safety period; while 9% suggest ten days or more; and less than 
1% suggest one, eight or nine days respectively [13], [14].    

The discrepancy above is worrisome for two main reasons. Firstly, neonates, 
especially those born preterm, are very fragile. They require proper care and often 
constant monitoring. Therefore, discharging an infant after five days when ten 
days is the more medically sound option could be potentially very dangerous. 
Secondly, the cost associated with keeping an infant in the NICU is very high. In 
the US, daily NICU costs can exceed $3 500, and it is possible for the entire NICU 
stay to exceed $1 million in costs [15]. Locally, this problem is just as evident. 
Netcare’s tariff calculator determines that one day in a NICU in a private South 
African hospital will cost R16 114.80 [16]. These factors make detecting apneas 
critical to the discharge process.  

Reducing preterm infant mortality is of great importance around the globe, not 
only to the parents of these infants, but also to institutions like the UN and the 
governments that work alongside them. A large percentage of infants die due to 
complications caused by prematurity, and many of these complications are related 
to the respiratory system. In order to solve these problems and reduce the 
mortality rate, a better understanding of the respiratory system of preterm infants 
is needed. Monitoring plays an integral role in this aim, particularly respiratory 
monitoring and the ability to detect respiratory abnormalities, such as apneas. 
There is a high likelihood that these signals may be useful to clinicians in assessing 
the respiratory maturity level of preterm infants. Tracking the maturation process 
of the respiratory system will lead to safer decision making on NICU discharges, 
which in turn will contribute to reducing preterm infant mortality rates.  However, 
it is only possible to understand something once it has been quantified. Therefore 
this study undertakes to properly quantify and analyse the dynamics of the 
respiratory systems of preterm infants in the hopes of understanding how to 
improve their chances of survival.       

1.4 Thesis structure 

This project will start with the necessary background knowledge needed to fully 
comprehend the literature study and methods applied. This knowledge will also 
aid in clarifying the importance of the eventual conclusions made. Then an in-
depth literature study will be done. It will discuss what has been done up to date 
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and clearly define the physiological events the study aims to identify. In addition, 
it will clarify this study’s position in and contribution to the current body of 
knowledge. Then the methods applied will be discussed in detail, leading into the 
results obtained. Lastly, along with stating the limitations for this study and future 
work to be explored, these results will be discussed, and relevant conclusions will 
be drawn.   

Stellenbosch University  https://scholar.sun.ac.za



7 

2 Background 

This section offers background information in support of this study. It gives an 
overview of the physiology relevant to this study, discusses the acquisition and 
monitoring of the biosignals and concludes with a detailed discussion on the 
processing of these types of signals. It lastly summarises what has been learned 
throughout the section, and places it in the context of the study that follows.   

2.1 Physiology 

Physiological systems consist of a multitude of organs which are made up of 
biological tissue that enables them to perform complex functions. Three of these 
systems are relevant to this project, namely the circulatory, cardiac and 
respiratory systems, discussed in Sections 2.1.1, 2.1.2 and 2.1.4 respectively. The 
circulatory system links the respiratory and cardiac system to each other. Along 
with the cardiac system, heart rate variability, which is discussed in Section 2.1.3, 
is also relevant to Objective 2.3, while the respiratory system is relevant to all of 
the set objectives. The standard functioning of these systems differ in the 
physiology of a preterm infant, therefore prematurity and its effects are discussed 
in Section 2.1.5. A common consequence of prematurity is apnea of prematurity 
(AOP), which forms an integral part of the analysis done in this study and is 
therefore discussed in Section 2.1.6.  

2.1.1 Circulatory system 

The circulatory system functions as a distribution network consisting of 
cardiovascular, pulmonary and systematic components. The heart, blood and 
blood vessels make up the cardiovascular component, while the pulmonary 
component consists of the lungs. From the heart, several major arteries and veins 
are spread through the body to and from its extremities. These blood vessels (the 
systematic component) reach every part of the body via very thin capillary 
networks that branch out of the major vessels. This system delivers oxygen from 
the lungs to the heart via the pulmonary vein. The heart then pumps this 
oxygenated blood along with necessary nutrients and hormones from glands to 
the body through the aorta and various arteries [17]. No cell in the body is more 
than 100 μm from a capillary, ensuring that gasses can be transported to and from 
all cells in the body [18].  

The circulatory system also regulates the body’s temperature via various methods, 
for example by removing the heat generated by the body’s metabolic processes. 
The capillary network makes it easy for small solutes (like O₂ and CO₂) to diffuse 
from and to the bloodstream, depending on the body’s needs, as well as the 
concentrations and partial pressure gradient at a given moment in time.  
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The heart is the driving force behind this network. Its function is similar to that of 
two perfectly integrated pumps, one on the left side and one on the right side. 
Both consist of two chambers: the atrium, which receives blood, and the ventricle, 
that pumps the blood away from the heart. The right side receives the 
deoxygenated blood from the body and pumps it to the lungs so CO₂ can be 
expelled from the body. The left side then receives oxygenated blood from the 
lungs and pumps it to the rest of the body [17]. 

2.1.2 Cardiac cycle 

The cardiac cycle is the repeating pattern of systole and diastole (contraction and 
relaxation) of the heart chambers. These patterns regulate the heart’s activities 
and are illustrated in Figure 2.1. This pattern originates from a self-generating 
electrical pulse in the pacemaker cells of the sinoarterial nodes. The sudden 
electrical change in this node is due to ions moving across the plasma membranes 
of the cells. The plasma membrane’s permeability to Na⁺ ions (thus the layer’s 
ability to let these ions move through it) increases dramatically and the ions rush 
into the cell. This process changes the electrical potential across the membrane 
and is called depolarisation.  Depolarisation is the loss of the difference in charge 
between the inside and outside of the plasma membrane of a muscle or nerve cell 
due to this change in permeability and migration of sodium ions to the interior. As 
soon as depolarisation takes places, sodium-potassium pumps are activated to 
restore the ion balance in the cells, repolarising the cells. This occurrence is called 
an action potential, an electrical event where the potential of a plasma membrane 
rapidly reverses and is then quickly restored to its original position. Since cardiac 
cells are tightly linked, the action potential spreads throughout the heart [19]. 
  

 
 

Figure 2.1: Cardiac cycle [20] 
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Contraction takes place when a cardiac cell depolarises and atrial systole moves 
blood from the atriums to the ventricles. Corresponding to this, the activation 
wavefront moves to the atrioventricular (AV) node. This allows the ventricles to 
be filled with blood from the atriums before this blood is transported to the rest 
of the body. When the activation wavefront leaves the AV node, it travels to the 
Purkinje system. This system consists of specialised conduction tissue that speeds 
up the wavefront and spreads it to multiple cells in both ventricles. Here it moves 
through to cause ventricular systole in both the chambers [19]. If the changes in 
voltage potentials caused by this process are measured, they result in an 
electrocardiogram (ECG). 

 

Figure 2.2: Characteristic ECG waveform [21] 

A normal ECG is illustrated in Figure 2.2. The P-wave, a small deflection wave that 
represents arterial depolarisation, is the first characteristic that can be observed. 
This is followed by the PR-interval. The QRS-wave complex are three waves that 
represent ventricular depolarisation. The Q-wave is very small and often hard to 
see on an ECG. It corresponds to the depolarisation of the interventricular septum. 
The R-wave is much larger since it represents the depolarisation of the main mass 
of ventricles. The final depolarisation (at the bottom of the heart) is reflected in 
the S-wave. The ST-interval that follows represents a period of zero potential 
between ventricular depolarisation and repolarisation. When ventricular 
repolarisation occurs, it is reflected in the T-wave [21].   

Stellenbosch University  https://scholar.sun.ac.za



10 

2.1.3 Heart rate variability 

Heart rate variability (HRV) is the variation in the time between consecutive heart 
beats. It is predominantly dependent on the extrinsic regulation of the heart rate 
(HR) and represents the heart’s ability to respond to unpredictable stimuli and 
changing circumstance within the body. It aids in assessing overall cardiac health, 
but also specifically the autonomic nervous system (ANS), which is responsible for 
regulating cardiac activity [22].  

The ANS consist of the parasympathetic nervous system (PNS) and the 
sympathetic nervous system (SNS). The HR is slowed down via the release of 
acethylcholine, which is regulated by the PNS. The influence from the PNS is 
dominant during resting conditions, often referred to as ‘rest-and-digest’. The SNS 
is dominant during more stressful or stimulating situations, and is called the ‘fight-
or-flight’ system. It accelerates the HR by releasing epinephrine and 
norepinephrine from the nerve terminals and adrenal glands.  

At rest, a high HRV indicates good autonomic and cardiorespiratory response, 
suggesting that the body can quickly respond to stimuli and equally quickly return 
to its baseline state. Therefore, the body has a high stress tolerance and can 
quickly recover from prior accumulated stress. In contrast to this, low HRV 
suggests that the PNS and SNS aren’t coordinating well enough to deliver an 
appropriate response. Therefore fluctuations in HR are indicative of the 
relationship between the PNS and SNS [23]. PNS, SNS and hormonal factors 
influence HR instantly. HRV reflects the dynamic, rapidly occurring changes in 
autonomic regulations caused by primary systems controlling the HR [24].  

Studying HRV can show signs of impending disease. Extracting and analysing HRV 
parameters can be a very useful diagnostics tool. It is commonly used in the 
surveillance of post-myocardial infarction and diabetes patients. The advantages 
of measuring HRV is that it is non-invasive and HRV measures are fairly easy to 
compute [22]. There is, however, a lack of understanding concerning what these 
measures mean in relation to preterm infants. It is important to note that the 
behaviour of a neonatal heart differs from that of an adult hart, and that 
prematurity amplifies these differences [22]. This physiological dissimilarity urges 
caution when interpreting HRV measures.  Inherently, preterm infants exhibit a 
wider range of RR values, owing to their experience of acute tachycardia and 
bradycardia. Taking this into account, further exploration is needed concerning 
how traditional HRV measures relate to preterm infants.   

2.1.4 Respiratory system 

The respiratory system functions alongside the cardiac system to aid the 
circulatory system in facilitating gas exchange throughout the body. It comprises 
three main parts: the lungs, its conducting airways and the respiratory muscles of 
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the thorax. These parts can be divided in the conduction zone and the respiratory 
zone. The conduction zone, consisting of the mouth, nose, sinuses, pharynx, 
trachea, bronchi and bronchioles, is responsible for warming, humidifying, filtering 
and cleaning the air that enters the body. The respiratory bronchioles, alveoli and 
clusters of alveolar sacs make up the respiratory zone and form the surfaces for 
gas exchange between blood and air [19]. Figure 2.3 illustrates this biology. 

 

Figure 2.3: Respiratory system [19] 

Functioning together, this system mechanically moves air into and out of the lungs 
with movements referred to as inspiration and expiration respectively. In addition, 
the system facilitates gas exchange between the air and blood in the respiratory 
zone [25]. Rhythmic ventilation is an automatic process. It is controlled by the 
central nervous system, where groups of cells in the brainstem are responsible for 
generating this basic rhythm. The rhythm is modulated by conscious actions, as 
well as reflexes. Chemoreceptors regulate the carbon dioxide and oxygen levels in 
the blood [26].  

With inspiration, a process takes place whereby oxygen is diffused through the gas 
exchange surfaces into the blood. Here it binds with the haemoglobin in the red 
blood cells and is subsequently transported through the circulatory system, 
enabling oxygen delivery to the body. Excess carbon dioxide is also diffused to the 
air to remove it from the body [25]. 

The blood vessels of the pulmonary circulation carry the deoxygenated blood from 
the heart to the lungs and return oxygen-rich blood from the lungs to the heart. 
The development of these structures are essential for a newborn infant’s overall 
respiratory function [19]. However, in preterm infants these systems are often 
underdeveloped.    
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2.1.5 Prematurity and its effects 

Birth before 37 weeks of gestation is considered preterm, with full-term defined 
as 40 weeks. The final weeks before birth are crucial for weight gain as well as the 
full development of vital organ systems. Prematurity often leads to mortality, but 
modern medical advances have significantly increased the chances of survival for 
preterm infants. Still, prematurity remains the leading cause for infant mortality 
and one of the main contributing factors to long-term nervous system disorders in 
children. It can also result in other long-term health issues, both mental and 
physical [27].  

It is often unclear why preterm labour occurs, although health issues like diabetes 
and high blood pressure increase the chances. There are also several pregnancy-
related factors that can contribute to the possibility, for example poor nutrition, 
smoking, certain infection and an abnormal uterus. After birth, preterm infants 
are typically placed in a NICU, where the focus is on supporting the development 
of their vital organ systems. There is no set timeframe for how long an infant 
spends in the NICU. The time can vary from days to months. Apart from the 
evident low body weight, preterm infants can also have trouble breathing and an 
inability to regulate their body temperature. Therefore, infants are placed in 
incubators to control their environment, with attention given to regulating 
temperature. Routine NICU monitoring will dictate if equipment will be attached 
to the infant to monitor their HR, blood oxygen levels and breathing. Life-
threatening conditions that are commonly encountered include haemorrhaging 
(bleeding) in the brain (meningitis) or lungs, as well as neonatal respiratory 
distress syndrome and AOP [27].  

2.1.6 Apnea of prematurity 

A major concern associated with prematurity is the underdevelopment of an 
infant’s lungs and respiratory regulatory systems.  This can result in problems like 
respiratory distress syndrome, pneumonia or AOP [28]. AOP is a common 
manifestation of preterm infants’ immature respiratory control. A decrease in 
gestational age increases the vulnerability for apnea.  

Upper airway obstruction often accompanies apnea, with the location of the 
obstruction usually being within the pharynx (see Figure 2.3). The presence of this 
obstruction leads to classifying apnea into one of three categories. Firstly, during 
obstructive apnea, obstructed breaths can be observed. Chest wall movements 
persist throughout the entire apnea, while no nasal air flow can take place. 
Secondly, during central apnea, all inspiration efforts cease, and no breaths can be 
observed. Central apneas are a direct result of an immature nervous system. 
Thirdly, when central and obstructive apnea occur in conjunction, it is referred to 
as mixed apnea. This is the most commonly observed apnea in preterm infants 
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and is responsible for 50% to 75% of occurrences. The proportion of pure central 
apnea decreases the longer an apnea episode persists, while the chances for 
mixed apnea increases [25]. An example can be seen in Figure 2.4. Note where 
there is activity in the signal, respiration is occurring. The part of the signal that 
seems to flat-line is the central apnea. 

 

Figure 2.4: Chest impedance respiratory signal with central apnea [29] 

Mostly, the frequency of apnea decreases as the infant matures, making an 
underlying neuropathological process unlikely. It has been hypothesized that 
when central and peripheral chemoreceptor responses have developed 
sufficiently to maintain blood gas levels, the presence of apnea is resolved. The 
development of the medullary respiratory control centres’ ability to activate upper 
airway dilating musculature synchronously with increasing ventilatory drive [25].  

The cessation of respiration during apnea has serious ventilatory and reflex 
cardiovascular consequences for preterm infants. Prolonged apnea is 
accompanied by hypoxemia (low oxygen levels in blood) and hypercarbia 
(abnormally elevated carbon dioxide levels in blood). The body’s reflex behaviour 
to apnea includes changes in HR. Bradycardia (abnormally low HR) can occur 
within seconds of apnea onset [25], [30]. Reflex control between HR and breathing 
presents a complex relationship. Allowing increased ventilation to offset 
hypoxemia can result in tachycardia (abnormally high HR), but preventing this 
reflex increase in ventilation leads to bradycardia. When an apnea starts, cessation 
in ventilation and hypoxemia occurs quickly and simultaneously, producing 
bradycardia. Whether apnea with accompanied bradycardia and hypoxemia has a 
long-term negative impact on development is currently still under speculation.   

It is believed that idiopathic apnea, i.e., apnea that occurs suddenly and without 
any clear cause, and prematurity are related. Although rarely occurring, underlying 
specific familial neuropathology can manifest as apnea. Examples of such 
conditions are: olivopontocerebellar atrophy, which is marked by degeneration of 
neurons in specific parts of the brain; myotonic dystrophy, which is associated by 
decreasing muscle function; and brain stem infarction that result from asphyxia 
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(suffocation), therefore a stroke due to lack of blood to the brainstem. A main 
factor in the pathogenesis of AOP is depression of immaturity of the central 
inspiration drive. This could explain why apneas can be preceded by a diverse 
group of specific clinicopathologic events. Another proposal has been that neural 
networks consisting of immature circuits are susceptible to inhibitory 
neurotransmitters and neuroregulators, such as adenosine. Unfortunately, no 
ideal animal model of spontaneous apnea has been identified to study in the non-
anesthetized state. The maturation of infants’ central respiratory integrative 
mechanisms as well as their biochemical neurotransmitters to date are 
inaccessible to study [25].  

Contributing to the theory that apnea is caused by immature brain stem 
development, it has been found that brain stem conduction times of auditory 
evoked responses are longer in preterm infants with apnea than in preterm infants 
without. The absence of respiratory muscle activity during central apnea and its 
partial absence during mixed apnea indicates a depression in respiratory centre 
output  [25].  

There are other factors that can increase the chances of AOP occurring. Apnea 
occurs more frequently during active (or rapid eye movement (REM)) sleep than 
during indeterminate (or transitional) sleep, since active sleep is accompanied by 
breathing patterns that are irregular both in regard to their timing and amplitude. 
Sepsis also makes infants more prone to respiratory compromise, which includes 
susceptibility to apnea. Apnea is sometimes attributed to gastroesophageal reflux, 
however, this is not necessarily the case. Although this reflux often coexists with 
apnea, they are not usually temporally related, meaning that the occurrence of 
one does not usually result in the occurrence of the other.  

Several therapies exist to treat AOP. Apart from physical stimulation, a 
nonpharmacological approach that is often used is continuous positive airway 
pressure (CPAP).  It is considered safe, and most preterm infants tolerate nasal 
CPAP well. This therapy limits upper airway closure and stabilizes the lungs. It is 
particularly useful because most apnea involve an obstructive component. Since 
the 1970s, mythelxanthine therapy has been used to prevent and treat AOP 
pharmacologically. Xanthines inhibit nonspecific adenosine receptors and in so 
doing excites respiratory neural output. The most commonly used xanthine is 
caffeine, which increases central respiratory drive. To do this, it elicits complex 
neurotransmitter interactions, making the safety of its use a concern, with the long 
term effects still unknown.  

Studying the long-term effects of these treatments, as well as studying anything 
else related to physiology, requires data, specifically biosignals. This allows for the 
quantification of processes and effects, and enables conclusions to be drawn, as is 
discussed next in in Section 2.2.   
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2.2 Biosignals 

A biosignal, often referred to as a physiological signal, is defined as an endogenous 
(natural) or exogenous (manmade) record that is time-varying and continuous, 
containing information on the internal functioning of a physiological system [31]. 
In physiological systems a signal can be one of many things, for example a force, 
pressure or, as is the case with this study, an electrical potential. Biosignals are 
generally acquired by a sensor which converts it to a current or voltage for further 
processing. There are two main rationales behind biosignal processing. Firstly, it 
aims to extract desired information about a physiological system. Secondly, to 
interpret the nature of physiological processes based on the signal observed, or 
the characteristic changes in a signal based on a physical change [32].  

These signals are inherently noisy due to interfering noise from other processes 
occurring simultaneously in the body. Ambient noise also contaminates the signal 
[31]. It is very important for a user to be able to distinguish between noise and the 
desired signal. Struggling to discriminate noise from signal is a common problem, 
since biosignals usually have a low signal to noise ratio. Accurate processing and 
filtering of these signals are crucial, since an abnormal signal can indicate disease 
or health deterioration.  

All physiological systems are to some degree interconnected [31]. Indications of 
interconnection between signals suggest that there is a relationship between two 
signals. Generally, there are two possibilities. Either one signal directly activates 
or influences the second one, or a third unobserved signal influences both the first 
two [32]. Physiological systems are usually multiple input, multiple output 
systems, with interactions and cross-couplings with other systems. This cross-
coupling is a result of shared nervous system pathways, hormones affecting more 
than one system or sharing an effector organ. Physiological systems also have lag 
times between their nodes, which can be reflected as instabilities in their 
representative signals. These systems are always non-linear. Physiological systems 
consist of a magnitude of cells that work in coherence to achieve a goal, making 
these systems massively parallel [31].  

An additional problem is that many biosignals do not adhere well to the principles 
of Fourier analysis [22]. These signals are inherently nonstationary, since the 
processes at their origin changes over time [31]. Many research efforts are 
focussed on alternative methods for decomposing these signals. Time-frequency 
analysis is a prominent and relevant field of interest and is further discussed in 
Section 2.4.2.  

Due to the fragility of preterm infants, continuous monitoring is employed in NICU 
setups. A cardiopulmonary monitor is usually used to monitor respiration and 
heart activity, in most part to determine HR and breathing rate (BR), as well as 
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problems arising from these rates deviating from their expected norms. Details 
concerning the methods for monitoring these are discussed in Section 2.3. Oxygen 
saturation and temperature are also routinely continuously monitored, but these 
are outside the scope of this project and are therefore not further discussed.  

2.3 Biosignal monitoring 

The electrical potentials relevant to this study are impedance plethysmography or 
inductance plethysmography, both of which represent respiratory activity, and 
ECG signals, which reflects cardiac activity. These are discussed in Sections 2.3.1 
and 2.3.2 respectively.   

2.3.1 Respiration monitoring 

Chest wall motion is commonly measured using impedance plethysmography, 
otherwise known as pneumography. If the volume in a chosen electrical field 
varies, this causes a change in electrical resistance within that space. This is useful, 
since if an alternating current is applied across this volume, the resistance can be 
measured. This type of resistance is called impedance. When measuring the 
respiratory activity of preterm infants, the source currents applied are of high 
frequency, or what can be seen as “constant”. This makes it possible to measure 
resistive breathing changes without biological potentials interfering [33]. Bedside 
monitors employ algorithms that detect apneas based on continuous monitoring 
of chest impedance [12].  

Another method that is frequently used to monitor respiratory activity is 
inductance plethysmography. Inductors are passive elements relating the voltage-
current relationship with Equation 2.1, with v referring to voltage, l referring to 
inductance and di and dt representing the changes in current and time 
respectively. In circuits containing inductors, changes at the source being 
measured do not result in an instantaneous change in the signal, but more natural 
and reflective of the form of response of the change at the source [19].  

𝑣 = 𝑙 (
𝑑𝑖

𝑑𝑡
) (2.1) 

Inductance plethysmography monitors breathing patterns without airway 
instrumentation and is often used in critical care setups. Two degrees of freedom 
of chest wall movement are monitored by placing two sensors on the body, at the 
level of the nipples and one at the level of the naval. The sensors are calibrated to 
obtain volume-motion coefficients reflective of the setup of each of the two 
signals. These signals are then summed to give an output signal representing the 
change in lung volume [34].  
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2.3.2 ECG monitoring 

The electrical manifestation of the heart’s contractile activity is called the ECG, as 
was previously mentioned in Section 2.1.2. It can be recorded by placing surface 
electrodes on a subject’s chest or limbs. In a conventional ECG measurement 
setup, 12 leads are used. They are placed at different angles to record the overall 
magnitude of the electrical potential of the heart as well as the depolarisation that 
takes place [35].  

The electrical activity across an infant’s heart is monitored by placing three leads 
with sensors on the infant’s chest. These leads are often in a band and are 
connected to a monitor. It can record and display an electrocardiogram (ECG) 
waveform, representing the activity in the cardiac cycle. This waveform, which can 
be seen in Figure 2.2, provides a visualisation of HR trends as well as beat-to-beat 
variability [36]. Various measures can be extracted from signals like an ECG by 
means of signal processing, which is discussed next in Section 2.4. 

2.4 Biosignal processing 

Signal processing is the manipulation of a signal through analysis, synthesis and 
modification with the goal of extracting information or gaining insight from the 
signal. It is usually based on mathematical processes, but qualitative methods are 
just as valid when studying biosignals. There are three main reasons for signal 
processing. Firstly, removing unwanted components that interfere with the signal 
that needs to be detected. Secondly, to render the signal in a more convenient 
form where useful information can be more easily seen. Thirdly, to predict future 
values to understand the potential behaviour of the source.  

Overall standards, for example the Nyquist theorem in Section 2.4.1, ensure that 
the signal is properly acquired to aid analysis. Yet even at adequate sampling 
frequencies, signals recorded from the body are often contaminated with noise 
and artefacts, as are outlined in Section 2.4.3. This often obscures the signal 
desired for analysis. Applying linear and non-linear filtering is necessary to 
improve the signal-to-noise ratio (SNR). Sometimes simple linear band pass 
filtering has merit, but the non-linear and non-stationary nature of these signal 
often require more complex methods. Standard operations exist, such as Fourier 
analysis, but often a time-frequency analysis is necessary when processing 
biosignals, as will be explained in Section 2.4.2.   

2.4.1 Nyquist sampling theorem 

An important basis for the processing of any biosignal, is ensuring that it has been 
acquired at a sampling rate that adequately captures all of the necessary 
information. Implementing a very high sampling rate will result in accurate 
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information but can waste memory and computational energy. A too low sampling 
rate can lead to a misrepresentation of data resulting in aliasing. The Nyquist 
sampling theorem, shown in Equation 2.2, states that aliasing can be prevented if 
the sampling rate is twice the frequency of the original signal [37]. The expected 
maximum activity that needs to be monitored is represented by 𝑓𝑚𝑎𝑥, while 
𝑓𝑛𝑦𝑞𝑢𝑖𝑠𝑡 refers to the desired Nyquist frequency.          

𝑓𝑛𝑦𝑞𝑢𝑖𝑠𝑡 = 2 ∗ 𝑓𝑚𝑎𝑥 (2.2) 

Technically, adhering to the Nyquist theorem should ensure that aliasing does not 
occur. However, sampling is usually done at five to ten times the maximum 
frequency of the analogue signal to ensure no important data is lost [37]. 

2.4.2 Time-frequency analysis of biosignals 

Joint time-frequency analysis (JTFA) is a mathematical tool to describe non-
stationary biosignals [31]. Examples of these are short-term Fourier analysis, 
Gabor transforms and wavelets. These methods transform a signal that is one-
dimensional in time into a two-dimensional distribution, enabling the study of the 
signal at different frequencies. The decision concerning which method to use is 
based on considerations of the computational complexity and time, the trade-offs 
in time-frequency resolution and lastly, what the best algorithm to use is 
considering the expected artefacts. The analysis done in this study relies heavily 
on JTFA, specifically on wavelets.  

Wavelets are an active field of development, with many new applications being 
constantly discovered. It offers a very adaptable and flexible method for studying 
non-stationary signals. Wavelets have plenty of application in biomedical sciences. 
Since most biosignals are localised in both the time and frequency domain, 
wavelets are very useful in aiding their analysis. In addition to the application to 
detect periodic breathing (PB) in respiratory signals as will be discussed in 
Section 4.3, they are also useful in detecting abnormalities in ECG signals. Wavelet 
transforms are used to explain the patterns of cardiac rate control during 
reperfusion, a process where blood flow is restored to tissue after it has been 
blocked. These transforms have also been used to calculate time-frequency 
parameters extracted from nocturnal heart period analysis to aid in the diagnosis 
of obstructive sleep apnea syndrome in adults [22]. In addition, medical imaging 
has also benefited greatly from advances in wavelet technologies, with 
applications like compression, denoising and enhancement. One example is 
functional neuroimaging, where wavelets are used to investigate the neuronal 
activity of the brain [38].   

A wavelet is essentially a finite-duration transient waveform, i.e., a waveform that 
ends after a specific time. Many different wavelets exist, each having their own 
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shape and specific properties. An original of a type of wavelet is often referred to 
as mother wavelet, and the scaled variations of the original are referred to as 
daughter wavelets.  

Wavelets must adhere to three specifications. Firstly, the admissibility condition 
stated by Equation 2.3 specifies that the wavelet must have a zero mean. In this 
equation, 𝜓(𝑡) represents the mother wavelet, 𝑡 depicts time and 𝑑𝑡 refers to the 
change in time [31].   

∫ 𝜓(𝑡)𝑑𝑡
∞

−∞
= 0 (2.3) 

Secondly, a wavelet’s norm must also be of finite form, a condition represented 
by Equation 2.4. Here 𝐶𝜓 is the wavelet’s constant and 𝜓(𝜔) represents the 

continuous Fourier transform (CFT) of 𝜓(𝑡). The CFT is a representation of a 
continuous waveform in the frequency domain.  Lastly, wavelets are also expected 
to have some variation of damped oscillation. 

𝐶𝜓 =
1

2𝜋
∫

|𝜓(𝜔)|2

|𝜔|
𝑑𝜔 <  ∞

∞

−∞
 (2.4) 

There are two types of wavelets transforms, the discrete wavelet transform (DWT) 
and continuous wavelet transform (CWT). Since biosignals are generally 
continuous, CWTs are necessary to accurately analyse them. Equation 2.5 depicts 
this CWT.  

𝐶𝑊𝑇(𝑠, 𝜏) = (
1

√𝑠
) ∗ ∫ ∫ 𝑢(𝑡)𝜓 ∗ [

𝑡−𝜏

𝑠
] 𝑑𝑡 (2.5) 

The time shift parameter is called the translation of the wavelet, and denoted as 
𝜏. The scale (or dilation) of the wavelet is represented by 𝑠. A mother wavelet is 

the case where s = 1 and 𝜏 = 0. (
1

√𝑎
) is for energy normalisation and * denotes the 

complex conjugate. The CWT is computed by integrating the wavelet over the 
length of the relevant signal denoted by 𝑢(𝑡), shifting it along by 𝜏 after each 
integration. Note that a close relationship exists between wavelet transforms and 
convolution, which is a measure of correlation or area overlap. It has even been 
argued that CWT is in fact a form of convolution [31].   

2.4.3 Noise, interference and artefacts 

During the acquisition of any biosignal, noise and interference contaminates signal 
recordings. These problems are often amplified in cases involving preterm infants. 
Artefacts can be divided into two main categories, physiological and non-
physiological. Adequate filtering centres on the user’s knowledge of the signal 
they are aiming to explore. They need to understand what constitutes their signal 
and what naturally cannot be their signal, and therefore contaminates it.  
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2.4.3.1 Physiological 

Biological activity in the human body generates signals that interfere with the 
signal being acquired. There are many examples of this. Muscle (electromyogram) 
activity often interferes with biopotential recordings [35]. Hormonal changes can 
have a sudden impact on signals, while physical movement causes significant 
artefacts.  

In many cases these artefacts are expected in signals, and as such standard 
filtering practices have been put in place. However, a type of artefact that remains 
a problem is the interference of cardiac activity in the respiratory signals of infants 
due to a potential frequency overlap between the HR and BR. Although ECG 
interference is not uncommon in most biosignal acquisition [32], with premature 
infants this is particularly concerning. Cessation in breathing results in a decrease 
in HR (i.e., bradycardia), as was discussed in Section 2.1.6. This causes ECG 
behaviour to move into the expected frequency range of the BR, essentially 
confusing monitoring devices. The artefacts caused by the cardiac activity result in 
changes in the measured electrical impedance that mimic respiratory activity. This 
perceived breathing activity is detected in lieu of the actual respiratory signal, 
which would at this point have indicated a lack of breathing.   

This is particularly evident in chest impedance monitoring [12], [39]. Figure 2.5 
gives an example from literature, and this type of interference is referred to as the 
cardiac artefact throughout this project. Outlined in red is the influence of cardiac 
activity on the respiratory impedance signal. Note the synchronisation between 
the artefact and the corresponding ECG signal below. An example of where this 
artefact was detected in this study can be seen in Appendix A.  
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Figure 2.5: Cardiac artefact [39] 

2.4.3.2 Non-physiological 

In addition to physiological noise discussed in Section 2.4.3.1, ambient noise can 
also contaminate biosignal recordings. Various types of noise can occur during 
signal acquisition. Some noise can be persistent, as in the case of power line 
interference (PLI) and electromagnetic interference (EMI). PLI occurs due to 
differences in electrode impedance and stray currents in the cables that are 
connected to subjects, as well as the frequency of the power mains. Capacitive 
and inductive coupling are also sources that contribute to this. EMI arises in cables 
transferring signals from examination rooms to monitors due to ubiquitous power 
supply lines [35].  Baseline drift also often occurs, which is the short time variation 
of the baseline of a signal from the expected straight line. This drift can be caused 
by fluctuations in either the electric signal measured or the temperature of the 
contact surface.  

Additionally, interferences occur in the measurement sensor due to friction or 
slippage between the sensor and skin. Poor conduction between the skin and 
electrodes results in reduced signal amplitude and thus low SNR [35]. It is 
challenging to acquire acceptable signals when working with preterm infants since 
so many variables affect the monitoring output. Inadequate electrode adhesion, 
improper positioning of electrodes and excess or inadequate gel on the contact 
area all contribute to poor waveform resolution and the presence of artefacts. 
With very low birth weight infants it is even more difficult, since removing the 
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electrode can strip the stratum corneum skin layer [2]. In addition, artefacts are 
also observed due to clinical handling and feeding.  

2.5 Summary  

This study will perform an in-depth analysis of the respiratory system of preterm 
infants in order to develop a transition model representing their respiratory 
dynamics. In the process, it will study short respiratory cessations, temporally 
track repository stability and study the relationship between respiratory 
cessations and heart rate behaviour. In order to achieve this, an understanding is 
necessary of two different disciplines.  

Firstly, at its core, this is a study about an aspect of the physiology of preterm 
infants. Therefore, comprehension of the normal functioning of the circulatory, 
cardiac and respiratory system is needed (Sections 2.1.1, 2.1.2 and 2.1.4). This 
study in particular looks at how these systems function for an infant who has been 
born prematurely (Section 2.1.5). In keeping with the primary objective 
concerning the respiratory dynamics of preterm infants, AOP, is of particular 
interest (Section 2.1.6). However, nothing in the human body functions in 
isolation, so interest is also taken in HRV, a measure useful in studying certain 
interactions within the body (Section 2.1.3).   

Secondly, quantifying and analysing these physiological systems and their 
irregularities requires techniques and knowledge from the discipline of 
engineering. The field of signal processing is continuously evolving to offer 
innovative tools to more effectively assess many natural processes. Section 2.4 
offered insight into some of these tools. Keeping in mind the different noise and 
interference sources discussed, JTFA techniques will be employed to achieve the 
set out goals. The application of these, as well as several mathematical and 
statistical tools, are outlined in the methods in Section 4. The dataset on which 
these analyses are applied, as is further described in Section 4.1, contains the chest 
inductance and ECG waveforms discussed in Section 2.3.  

Before commencing with the analysis proposed in this study, an extensive 
literature study is done in Section 3 to assess the current state of the art, as well 
as what has contributed to it.  
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3 Literature review 

Preterm infants are arguably the most fragile members of society, yet much of 
their physiology is not well understood. These infants, born at gestational age 
younger than 37 weeks, often need to be continuously monitored. Due to their 
inability to express pain or discomfort, their heart and respiratory activity, as well 
as temperature and blood oxygen saturation levels need to be constantly 
examined to determining whether the infant is in distress. Modern technological 
advances have made this monitoring possible in NICUs, and increased storage 
space and software capabilities make it possible to record high resolution 
waveform data in great detail. Respiration and ECG are two such waveforms of 
which large amounts of information are never utilized [2]. They are primarily used 
to determine BR and HR, yet greater physiological insight can be gained from these 
waveforms regarding the cardiorespiratory systems of preterm infants. Capturing, 
quantifying and visualising the dynamics of these signals, and thereby their 
underlying physiology, has the potential to track maturational changes in infants. 
It could also possibly aid in the identification, treatment and prognosis of diseases 
such as AOP, bronchopulmonary dysplasia and sepsis.   

3.1 AOP and its evolution in literature 

Respiratory problems are very common in small infants, since the respiratory and 
regulatory systems of these infants are compromised by prematurity. This 
manifests itself in characteristic respiratory dynamics, or specific variations in the 
behaviour of the respiratory waveform. For the purposes of this study, these 
dynamics are defined as consisting of apneas, breathing cessations, PB and regular 
breathing [1–3]. These events usually occur in association with bradycardia (a drop 
in HR) and hypoxemia (a decrease in blood oxygen levels) and contribute to infant 
morbidity. 

Although many advances have been made in neonatology over the past 60 years, 
there is still a great deal of uncertainty concerning AOP [40]. This is reflected in 
the continuously evolution of the definition of apnea from the 1960s to the 
present day. Currently, AOP is clinically defined in one of two ways. AOP is seen as 
a cessation of breathing exceeding 20 s. Alternatively, a cessation of at least 10 s 
accompanied by bradycardia under 100 beats per minute (bpm) or desaturation 
below 80% is also considered AOP [41]. One of the difficulties in studying AOP and 
its developmental correlation has been the discrepancies between the different 
definitions of apnea used by researchers in the field [25]. It is widely accepted that 
AOP has a negative effect on the health of an infant, as it can increase the risk of 
hypoxemia, hypoglycaemia, neurological injury and sepsis. These are all factors 
that contribute to infant morbidity [2], [12]. The theory exists that apnea without 
associated bradycardia or hypoxemia is clinically irrelevant, but this hypothesis 
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remains unproven [12]. A study found that AOP of more than 45 s could lead to 
mottling (patch-like discoloration of the skin), cyanosis (blueish discolouration), 
hypotonia (lack of muscle tone and strength) and unresponsiveness to breathing 
stimulation. They conclude that early intervention is crucial in order to prevent 
hypoxia and central respiratory depression from apnea [33]. AOP is directly linked 
to a lack of maturation in brain centres for respiratory control. An increase in post 
menstrual age (PMA) and postnatal age (PNA) will cause a progressive decrease in 
the presence and severity of  AOP [42].    

Consequently, if an apnea is identified in an infant, caregivers typically intervene 
by mechanical or physical intervention (i.e., delivering CPAP or physical 
stimulation), as well as by administering pharmacological therapy (i.e., caffeine, 
theophylline or aminophylline) [43]. However, the long-term effects of these 
physical and pharmacological interventions are not well understood [41]. Preterm 
infants have an immature neurological system, making them especially susceptible 
to AOP [12]. While AOP occurs in 50% of all preterm infants, it almost always 
occurs in infants with birth weight under 1000 g, making the burden of AOP 
considerable due to this underdevelopment of their respiratory and regulatory 
systems [3], [41]. Symptomatic AOP can still be a problem in late preterm infants, 
with prevalence rates of up to 10% [42]. 

Many issues remain regarding the study of and knowledge concerning AOP. 
Importantly, the long-term effects of AOP in neurodevelopmental outcomes are 
unknown. These effects are difficult to study, since not intervening when AOP 
occurs can lead to infant morbidity. The effects of oxygen loss on 
neurodevelopment and other organs can be very severe or even fatal.  In addition, 
there is a lack of standardization and definition for AOP. There is also a dearth of 
real time data on the monitoring AOP events as well as associated documentation, 
with no baseline studies available [41].  

3.2 PB in literature 

PB is a common physiological event in newborns which is closely associated with 
AOP [33], [44]. It occurs due to the immaturity of the respiratory cycle, meaning 
the more severe the prematurity, the more frequently it occurs [45].  In a case 
several years ago, excessive amounts of PB were observed in both the respiratory 
patterns of an infant who died of Sudden Infant Death Syndrome (SIDS) as well as 
her sibling [46], causing increased interest in this physiological event. A widely 
accepted version of the continuously evolving clinical definition of PB is a pattern 
of at least three cycles (a cycle representing one-part cessation, one-part regular 
breathing). In 1973 it was seen as breathing of 10 to 15 s alternating with 
cessations of durations 5 to 20 s [45]. Cessations should be a minimum of 3 s in 
duration with a maximum of 20 s of regular breathing between cessations. One 
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study suggests that on average PB lasts for 15 s [47], while another reports that 
the cessations are generally 10 to 20 s [48], with a third study indicating that 
cessations up to 20 s should be taken into account [29].  

However, Mohr et al. [49] believe that these definitions are not broad enough to 
show signs of impeding pathology. Brief episodes as described above are very 
common, even where no pathology is evident. In addition, physiological models of 
PB show clear distinction between transient and sustained oscillations. 
Hypersensitivity of chemoreceptors in infants trigger breaths in response to 
changes in the blood gasses. During the transition from fetus to neonate, there is 
an acute increase in blood oxygen, causing the desensitization of chemoreceptors 
at birth. This physiological change resets after about a week postpartum, causing 
PB to emerge during the neonatal period. This study suggests that it is common 
for PB to occur during quiet sleep [29], while another observed it more frequently 
during REM sleep [1].     

A study performed on PB found that it occurred in 36.1% of infants over 2 500 g 
birth weight and in 94.5% of infants with low birth weight under 2 500 g. Typically, 
PB starts a day or two after birth and continues for a few weeks. This study defined 
PB as cycles of apneas of 5 to 10 s followed by regular breathing periods lasting 10 
to 15 s. They reported the mean respiratory frequency where PB is present to be 
30 to 40 breaths/minute, in contrast to the regular breathing frequency of 50 to 
60 breaths/minute. PB is most likely to occur in small infants, it peaks in week two 
or three and the more premature the infant, the longer PB persists. It is unlikely 
to occur in infants with birth weight over 2 kg and more than 36 weeks’ gestational 
age. The frequency of PB differed not only from infant to infant, but also between 
different episodes experienced by the same infant [1].    

Currently, some studies suggest PB has no pathologic significance. It is seen as 
benign, and therefore needs to be sharply distinguished from apnea, which is not. 
[45]. Contradictorily, another study suggests that PB is a common cause of 
prolonged desaturation in preterm infants at discharge, and therefore is in fact 
not benign [50]. The exact relationship between AOP and PB is unclear, in some 
part because the definitions of these respiratory events keep evolving. One study 
aimed to correlate these events. In 1116 apnea spells, they found only one 
occurred within an epoch of PB. In addition, less than 0.6% of significant apneas 
occurred within two minutes of a PB epoch ending, implying that PB is not a 
precursor for apnea [1].  

3.3 AOP, PB and alarm fatigue 

The detrimental effects of AOP and PB are poorly understood, largely because 
breathing dynamics are difficult to measure due to the inaccuracy of the current 
solutions for monitoring [51]. The two most common methods, inductance 
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plethysmography and impedance plethysmography, both fail to reliably detect 
apnea events due to the non-stationary, noisy and unstable nature of infant 
respiratory signals [52]. The continuous monitoring of these signals in NICUs 
generates a high number of alarms. Frequently, these alarms are false. An excess 
of these leads to a well-known condition called alarm fatigue [53].  

Several options have been suggested to combat alarm fatigue. Two of these are 
customization of alarm threshold and judging the appropriateness of continuous 
monitoring for a patient population [53]. However, given the fragility of preterm 
infants, the first seems preferable. There is a need to recognize relationships 
among events in order to group them as a one-alarm event or grouping recognised 
clusters into a single alarm. Ideally, work should be done towards diagnostic 
alarms [53]. Alarm fatigue is evident throughout all populations, but the preterm 
neonate population is especially susceptible due to their developmental 
immaturity. The loud sounding has negative short-term effects on cardiovascular 
and respiratory systems of preterm infants. It also disrupts their sleep and is 
believed to have a negative effect on their neurodevelopment [53], [54]. 

3.4 AOP and NICU discharge  

Accurate detection of apnea is important, since, in addition to reducing false 
alarms, it is often a key factor in the clinical decision to discharge an infant from 
hospital [12], [55]. The discharge readiness required is demonstrated by functional 
maturity, therefore clinicians need to be able to assess whether these infants are 
physiologically mature enough to be discharged. This is important, since the 
environment they will then be exposed to will lack the continuous 
cardiorespiratory monitoring of the NICU [13].  

Simply waiting for the infant to reach an agreed upon PMA will not suffice, since 
the more premature an infant is born the longer it takes for respiratory control to 
become fully functionally mature [13]. Since no clear measure is available on this, 
they aim to assess control of breathing and respiratory stability. These two factors 
are greatly undermined by the occurrence of an apnea. The practice of the “safety 
period” between apnea and discharge is followed by most neonatologists. 

However, the length of this period is debated, mainly because very little concrete 
data exist to support a specific duration. In 1997, Darnall et al. tried to resolve this 
disagreement concerning the existing quasi-standard. They concluded that for 
otherwise healthy infants, eight days is an appropriate duration [13] . Lee et al. 
agrees with this eight day duration, however, they suggested that a better 
justification of this standard is necessary [12]. One survey determined that 45% of 
neonatal specialists suggest seven days, while 9% work with a period ten or more 
days free from apnea [14].  
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This discrepancy is disconcerting for two main reasons. Firstly, neonates, 
especially preterm infants, need to be properly cared for, therefore discharging a 
preterm infant after five days when ten days is the more medically sound option 
could be dangerous. Secondly, the cost associated with keeping an infant in the 
NICU is significant. In the US, daily NICU costs can exceed $3 500 per infant, and it 
is not uncommon for the total costs of a prolonged stay to exceed $1 million [15]. 
Therefore, precise discharge protocol is necessary for cost management.  

3.5 NICU monitoring and respiratory detection 
algorithms  

Monitoring in the NICU has significantly advanced since the detection of AOP 
started. Until the 1960s vital signs were merely noted down by a bedside nurse if 
the infant was believed to be ill enough to warrant it. Once it was realised that 
prolonged apnea could have detrimental long term effects, apnea monitors using 
impedance (as discussed in Section 2.3.1) were introduced [33]. The monitors had 
alarms set to go off if the infant stopped breathing for more than 15 s. After this 
continuous heart rate monitors were also introduced, and cardiorespiratory 
monitoring became a standard procedure in NICUs. In the 1970s speculation 
existed pertaining to the link between apnea and SIDS, which is as of yet unproven. 
However, this induced parental fear of SIDS paved the way for a home apnea 
monitoring industry, creating monitors that parents could use in their nurseries at 
home [56].   

Recently, significant progress has been made towards improving the 
understanding of infant respiratory dynamics with the development of algorithms 
which can retrospectively detect apneas and PB. Traditionally the automated 
detection of apnea is based on simple threshold techniques. However, this offers 
poor specificity. In 2011, three new methods were designed and tested against 
clinical opinion. These were based on combinations of the HR, RR and oxygen 
saturation (SpO2). The first method looked at the sum of these measures’ time 
series, along with the sum of their Shannon entropy. This yielded a performance 
of 94.53% sensitivity, 74.72% specificity and 77.84% accuracy. Secondly, an 
artificial neural network was used to correlate the here signals. This gave a 
performance of 81.85% sensitivity, 75.83% specificity and 76.78% accuracy. The 
last method employed a derivative of the three time series. This yielded 100% 
sensitivity, 96.19% specificity and 96.79% accuracy [57].      

In 2012, a novel apnea detection algorithm was proposed by Lee et al. Along with 
addressing the presence of a cardiac artefact which is known to interfere with 
accurate apnea detection, it also only requires the respiratory and ECG waveform, 
not the SpO2 [12]. Their results showed an accuracy of over 90%. This research 
group also made further advances, proposing a second algorithm which identifies 
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and analyses PB events in infants [58]. This algorithm aims to detect PB by 
determining whether cessations are occurring in a sustained pattern, adhering to 
the definition of PB [49]. Previous methods have also characterized PB by 
comparing the respiratory signal behaviour with an amplitude-modulated signal 
[59].  

3.6 HRV in literature 

In addition to an immature respiratory system, these infants also have an 
immature ANS. HRV is regulated by the ANS and therefore provides insight into 
changes in autonomic regulations [24]. A better understanding of autonomic 
regulation could also aid in quicker diagnoses of abnormal developmental 
trajectories [60]. See Section 2.1.3 for a discussion on HRV, as well as how it differs 
between adults and preterm infants.  

In 1965 researchers first appreciated the clinical relevance of HRV when it was 
noted that when fetal distress occurs, variance in the interbeat intervals can be 
seen before a significant change in HR is observable. In the 1970s it was discovered 
that reduced HRV is associated with a higher risk of death post-infarction, 
solidifying its importance as an analytic and diagnostic tool. In the 1980’s power 
spectral analysis was introduced to quantitatively evaluate beat-to-beat 
cardiovascular control [61]. Subsequently, in 1997, the Task Force of the European 
Society of Cardiology noted that the HRV of preterm infants is an important field 
of investigation which could provide early warning of distress. In addition, proper 
application of HRV can offer insight into the autonomic maturation of the 
developing fetus, and by association preterm infants [61]. Continuous measures 
of physiological interaction could be useful in assessing the maturity of infants in 
the NICU. They may also be useful in making decisions concerning developing 
illness, as well as hospital discharge [62]. 

3.7 Cardiorespiratory coupling  

Determining whether a preterm infant has an acceptable level of physiological 
maturity is an important and difficult task for the clinician caring for them. 
Investigation of the functional organization of cardiorespiratory systems is 
profusely challenging. Only noninvasive observation can be used, and these 
systems are inherently complex [60]. In addition, this interdependence is very 
difficult to monitor due to the variability in BR and HR, as well as the quality of the 
signals being lower than desired.  Cardiorespiratory synchronization is achieved by 
the connection that the heart and lungs share through brain stem chemosensory 
pathways as well as the ANS. This preferential tendency for two systems to 
function in connection with each other is referred to as coupling. The nervous 
system or extracellular signaling enables organs to couple together. One such 
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example is respiratory sinus arrhythmia (RSA), which refers to heart rate increase 
or decreasing along with BR. This is controlled by the baroreflex and respiratory 
gating. The presence of RSA correlates with good ICU outcomes [62].  

Several studies have very recently been done on cardiorespiratory coupling. In 
2012, Clark et al. looked at the continuous changes in cardiorespiratory interaction 
in preterm infants. They determined the probability of heartbeats as a function of 
respiratory phase to serve as a measure of cardiorespiratory coupling. This theory 
hinges on the fundamental assumption that the differential distribution of 
heartbeats within the respiratory cycle serves as evidence for cardiorespiratory 
coupling [62].  

Their main hypothesis was that measuring this coupling could be useful in 
assessing developmental maturity. They aimed to achieve this by studying the 
temporal association of heartbeats within the respiratory phase to quantify 
cardiac dependence on respiration. The study found that cardiorespiratory 
interaction increased with postnatal age, however, this relationship was 
independent of both birth weight and gestational age at birth. No direct evidence 
for RSA was observed in their NICU patient dataset. They concluded that a 
multitude of mechanisms contribute to cardiorespiratory coupling, and the 
uncertainty surrounding these mechanisms lead to an inability to quantify them 
[62].  

They urged further studies to investigate the underlying physiology of 
cardiorespiratory interaction. However, they confirmed that cardiorespiratory 
interaction in preterm infants coincides with brain stem development and that 
increasing PMA coincides with decreasing prevalence of AOP, indicating 
improvement of the central respiratory control in the ventrolateral medulla. 
Surprisingly, the rate of increase is not affected by gestational age at birth [62]. 
They emphasized that it is too uncommon to get waveforms from the NICU that 
are uninterrupted for long enough to apply conventional time- and frequency 
domain measures to study cardiorespiratory interaction. They recommended that 
future studies should employ techniques that are less sensitive to missing data, as 
well as look for the link between this coupling and other factors that reflect brain 
stem maturity, such as a decrease in the incidence of apnea [62].   

While infants are sleeping, autonomic control is responsible for modulating 
respiratory activity and HRV. The mechanisms responsible for these modulations 
have been studied but are not yet fully understood. Complex mutual relationships 
modulate respiratory and cardiovascular systems. Many approaches have been 
tried to measure linear and non-linear relationships between these systems, one 
example being cross-spectral analysis. However, these techniques are limited as 
they cannot do a directional analysis.  This led to a study in 2017 that looked at 
the interaction between respiratory variability and HR in newborn infants, 
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particularly relating to the differences in this interaction pertaining to sleep state, 
mainly active versus quiet. This study determined a novel parameter, namely 
Transfer Entropy, which quantifies the flow of information between the 
respiration and RR series, as well as vice versa. This enabled the study of the 
bidirectional flow between these systems, taking into account both linear and 
non-linear aspects [60]. In June of 2018, this same research group aimed to study 
system interrelationships by looking at the possible presence of casual or 
directional interplays. They proposed that the parameters  calculated in this study 
be used as a tool for the development of early markers of cardiorespiratory 
dysregulation in these infants [63].  

3.8 Conclusion 

This study aims to test the hypothesis that the ability to monitor, quantify and 
visualise the respiratory dynamics and HRV of preterm infants is useful in the 
clinical assessment of the maturation of these infants. As discussed, many tools 
exist and are continuously developed to assess the respiratory and cardiac systems 
of preterm infants. Yet, the signals representative of these processes have not 
been exhaustively explored, and quantifying the different dynamics in respiratory 
signals could offer a more holistic picture of the maturation of respiratory 
regulatory processes in preterm infants. It may offer clinicians the possibility to 
better track the maturation of a preterm infant’s respiratory system, enabling 
them to make more informed clinical decisions regarding an infant’s readiness for 
discharge from the NICU. Also, it may provide physiological insight into the infant’s 
regulatory system, helping clinicians to better understand why cessations in 
breathing occur.     
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4 Methods 

This section will discuss in detail the methods applied to achieve the set objectives. 
It will start by looking at the dataset chosen, as well as how it was selected. 
Sections 4.2 and 4.3 will discuss the cessation and PB detection algorithms, which 
form the foundation for all the other analyses. Section 4.4 discusses the setup of 
the transition models, which serve as the primary objective for this project. 
Sections 4.5 to 4.7 discuss how the HRV will be quantified and related to the 
respiratory activity. Section 4.8 gives an overview of how these data are then 
analysed. All algorithms and analysis were implemented in MATLAB (MathWorks, 
Natick, MA, USA). 

4.1 Dataset 

A dataset from PhysioNet, the Preterm Infants Cardiorespiratory Signals (PICS) 
database, was identified for the evaluation of these methods [64], [65]. This 
included the raw waveforms for chest inductance and ECG of ten preterm infants 
as described in Table 4.1 (mean PMA was 31 1/7 weeks and ranged between 29 
3/7 and 34 2/7 weeks, while the mean weight was 1468 g, with a range from 843 
to 2100 g). No oxygen saturation data were available. The recordings of the chest 
inductance and ECG signals are synchronised in time, and had sampling 
frequencies of 50 Hz and 250 Hz respectively. Each infant contributed between 20 
and 70 hours of data, with the total being 401 hours. This dataset was chosen 
because it provided the necessary respiratory and cardiac signals with 
synchronised start times. It was also readily available from a trusted source, was 
recorded in a NICU and contained sufficient data to serve the purpose of this 
study. Further details on the PICS dataset are available in Gee et al. [65].  

Table 4.1: Description of dataset 

Infant no. 1 2 3 4 5 6 7 8 9 10 

PMA 
(weeks) 

29 
3/7 

30 
5/7 

30 
5/7 

30 
1/7 

32 
2/7 

30 
1/7 

30 
1/7 

32 
3/7 

30 
4/7 

34 
2/7 

Weight  
(kg) 

1.20 1.76 1.71 0.84 1.67 1.14 1.11 2.10 1.23 1.90 

Signal 
length 
(hrs) 

45 43 43 47 23 47 20 22 70 41 

 

Two other datasets were explored but were ultimately found unsuitable for these 
purpose. Firstly, MIMIC II was examined [66], [64]. Although the information the 
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database has to offer was suitable and sufficient, they urge against using the 
waveforms for frequency sensitive analysis. Since this dataset’s respiratory and 
ECG recordings are slightly out of sync, the cardiac filter, which requires precisely 
time-synchronized signals, cannot be applied. By default, this excluded this 
dataset.  

Secondly, the CHIME dataset was explored, which is a large infant home 
monitoring project [67]. This database had sufficient information on preterm 
infants, but it was unclear whether it contained enough continuous data for this 
study. In addition, it was uncertain what the quality of the waveforms would be, 
since the home monitoring was administered by primary caregivers and not 
clinical professionals. Although these caregivers had received some measure of 
education on how to work with the equipment, it is likely that the data are less 
reliable than if acquired in a NICU.  

4.2 Cessation detection  

The Lee et al. algorithm was implemented to detect apneas in preterm infants. 
After removing the cardiac artefacts from the respiratory signal, the algorithm can 
retrospectively identify periods of breathing cessations [12]. It was also modified 
to include the 2 – 5 s cessations ignored by Lee et al.’s original algorithm. A high 
level overview of this algorithm is illustrated in Figure 4.1. This algorithm was 
tested and extensively validated by Lee et al., where there proved to be a more 
than 90% agreement between the algorithm and expert analysis.  

 

Figure 4.1: High level overview of Lee et al. algorithm 

4.2.1 Cardiac artefact filter 

Cessations in breathing often occur in association with bradycardia. This results in 
the HR slowing down and moving into the normal frequency range of breathing, 
causing in difficulties in discriminating between them. Section 2.4.3.1 offers a 
more in-depth explanation of this. To overcome this challenge, Lee et al.’s 
algorithm detects the RR intervals (i.e., the time between consecutive R peaks in 
an ECG signal) and then resamples the respiratory signal using the RR intervals as 
the clock. Therefore instead of the sampling frequency being related to seconds, 
it is related to the RR intervals. An existing peak detection algorithm was used to 
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detect R-peaks in the ECG waveforms [68], as can be seen in Figure 2.2. At this 
stage, the cardiac artefacts can be visualised by applying a Discrete Fourier 
Transform (DFT), which yield clear peaks at integer or half-integer frequencies. 
These artefacts are then removed using a band stop filter, which was implemented 
using a low order Butterworth filter that removes values at 0.5, 1, 1.5 and 2 Hz 
(±0.02 Hz). Once the cardiac artefacts have been removed, the respiratory signal 
is resampled to its original sampling rate for further analysis [58]. Appendix A 
provides a detailed overview of this filter. It gives an example of RR peaks detected 
with the specified algorithm in the ECG waveform. In addition, it provides 
examples of the artefact detected and removed in both the frequency and time 
domain, both from this study and from the original Lee et al. study.   

4.2.2 Breathing cessation detector  

After the cardiac filter has been applied, the signal is passed through a detector 
adhering to Lee et al.’s specifications to determine the periods of breathing 
cessation. The aim is to get an output of the probability of apnea versus time, 
which is referred to as Weighted Apnea Duration (WAD). This is accomplished by 
applying a high pass filter at 0.4 Hz, since information of a lower frequency than 
this are seen as irrelevant to respiratory activity [12]. It is then divided by a moving 
low pass filter envelope of 0.0025 Hz to smoothen the signal, applied to facilitate 
localised normalisation. It requires eight minutes of future information, as well as 
eight minutes of past information to perform this normalisation. This operation is 
applied with a two-minute moving window. Next, a weighted probability that an 
apnea is occurring, namely Pfit, is determined by applying Equation 4.1,  

𝑃𝑓𝑖𝑡(𝜎) =  
1

[1+exp [𝑏(𝜎−𝑎)]]
, (4.1) 

where a and b are constants set to 0.44 and 12, respectively [12]; while 𝜎 
represents the moving standard deviation of the respiratory signal. Parameters a 
and b were determined by Lee et al. and meticulously validated by three experts 
who worked through 500 relevant events to distinguish between apnea and 
regular breathing. The area under this yielded probability of apnea function is 
defined as the WAD. This WAD is then classified according to four rules. Firstly, if 
it has a magnitude of less than 0.1 it is disregarded. Secondly, if a WAD event has 
a duration of less than 2 s, it is also ignored. For the third rule, they consider the 
proximity of shorter events in relation to longer ones. WAD events of between 2 
and 5 s which are within 5 s of another cessation event are retained, while isolated 
segments are disregarded. Lastly, cessation events within 3 s of each other are 
merged [58]. Appendix B provides more details on this method, specifically 
pertaining to an evaluation between the recreated algorithm and the original, as 
well as the low pass moving envelope filter, the programming logic applied, and 
an example of breathing cessations detected using it.  
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4.2.3 Modification of the Lee et al. algorithm 

The Lee et al. algorithm focuses on the detection of apneas according to the 
current clinical definition of AOP outlined earlier. However, in this study, a 
differentiation is made between apneas and cessations in breathing. This is done 
to investigate whether cessations in breathing 2 – 5 s are prognostically significant. 
To make this possible, the Lee et al. algorithm was modified slightly by ignoring 
the third rule. This ensures that the isolated 2 – 5 s breathing cessation events are 
retained thereby enabling further analysis [58]. Figure 4.2 illustrates all the rules 
applied according to Lee et al. The omitted Rule 3 is highlighted in red on this 
figure.   

4.2.4 Limitations of Lee et al. algorithm 

All of the methods applied, including detection of PB, build on this cessation 
detection algorithm. This merits a discussion of the inherent limitations of this 
algorithm. Firstly, it is important to note that time-synchronised respiratory and 
cardiac signals are essential. The method is set up for retrospective analysis, it 
does not work in real-time. Obstructive apnea cannot be detected with this 
method, since it is accompanied by struggling motions of the infant. As with all 
signals, motion artefacts or other noise contaminants make the signal 
uninterpretable to the algorithm at times. The low pass envelope filter mentioned 
in Section 4.2.2 requires at least 16 minutes of uninterrupted respiratory and 
cardiac waveforms to function. A reliable analysis is also difficult if the respiratory 
signal has a very low amplitude [12].   

This algorithm forms the basis for Mohr et al.’s algorithm to detect PB, a condition 
associated with AOP [49]. Therefore, the above stated limitations also apply to the 
PB detecting algorithm discussed in Section 4.3 that follows.  
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Figure 4.2: Overview of the: (top) Lee et al. cessation detection algorithm and 
(bottom) Mohr et al. PB detection algorithm (bottom). The purple line highlights 
the link between them. 
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4.3 PB detection 

This algorithm builds on the algorithm in Section 4.2 and aims to distinguish 
between breathing cessations and PB. Normally, serious cessations are detected 
in conjunction with bradycardia and oxygen desaturation. However, PB is usually 
observed in cycles with cessation too short to lead to bradycardia and oxygen 
desaturation significant enough to cause alarm [49]. The proposed method 
therefore enables PB to be detected without monitoring of oxygen desaturation 
and bradycardia, essentially bypassing this problem and adhering to the dataset 
limitations.  

It employs wavelets, which were discussed in more detail in Section 2.4.2, and 
through continuous template matching, aims to identify the characteristic pattern 
of PB. Two mother wavelets, 𝜓(𝑡), were designed with six cycles each. These 
wavelets were designed to model the appearance of the probability of apnea 
signal discussed in Section 4.2.2. A sine window was used to weight the middle of 
each mother wavelet heavier than the ends. This allows for detection after as few 
as three cycles of breathing and cessation, which satisfies the definition that PB is 
a pattern of at least three cycles (a cycle representing one part cessation, one part 
regular breathing) [1]. The first mother wavelet, seen in Figure 4.3, represents PB 
with a A:B ratio of 1:1, meaning that equal amounts of time is spent in apnea (A) 
(or cessation) and breathing (B) (or non-cessation). 

 

Figure 4.3: Mother wavelet with a ratio of one-part cessation and one-part 
breathing (A:B = 1:1) 
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The second mother wavelet represents a A:B ratio of 2:1, therefore PB with double 
the time spent in cessation comparatively to the time spent in non-cessation. 
Figure 4.4 shows a representation of this. This same mother wavelet can be used 
for a A:B ratio of 1:2, thus half the time spent in cessation compared to non-
cessation. If Figure 4.4 were to be vertically flipped, it would represent a wavelet 
of this ratio. Using these wavelets are sufficient to detect PB with A:B ratios 
ranging from 1:4 to 4:1 [49].  

 

Figure 4.4: Mother wavelet with a ratio of two parts cessation and one part 
breathing (A:B = 2:1) 

Daughter wavelets, 𝜓𝑠,𝜏(𝑡), are then created by expanding or contracting these 
mother wavelets with regards to time (thus along the x-axis). This accounts for the 
varying length of PB cycles of durations of 10 to 40 s [49]. The basic formula for 
the wavelet is seen in Equation 4.2, with 𝑝 = ½. The mother wavelet is represented 
by 𝜓, 𝑡 refers to time, and 𝜏 and 𝑠 refer to coefficients of time and scale 
respectively.  

𝜓𝑠,𝜏(𝑡) =  |𝑠|−𝑝𝜓(
𝑡−𝜏

𝑠
) (4.2) 

Each wavelet is continuously convolved (Note: Convolution refers to a measure of 
correlation or area overlap.) with the WAD signal, moving the wavelets at quarter 
second intervals. For this analysis, the WAD signal is taken right after Rule 2 is 
applied, as illustrated with the purple arrow in Figure 4.2. At this stage the only 
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constraints placed on the WAD is that it must have a magnitude larger than 0.1 
and be of duration greater than 2 s. Cessation of lengths corresponding to the 
cycle lengths of the wavelets are isolated to aid in the analysis. These are outlined 
in Table 4.2. Blue rows represent A:B of 1:1. Red rows and green rows represent 
A:B of 1:2 and 2:1 respectively. Note that the cells marked with N/A indicate that 
designing a wavelet for those specifications would contradict the definition of PB. 
(Figure C-2 in Appendix C gives an explanation of such a case.) This isolation of 
cessations was done to avoid high convolution values due to mismatched areas 
between a wavelet and the WAD signal. An example of such a mismatch would be 
if a wavelet with cycle length 40 s was convolved over an area with many short 
cessations. The convolution will pick up a significant overlap in areas, but this is 
not a reflection of periodicity in cessations occurring. It is important for this 
algorithm to be able to distinguish between PB and clustered apneas [49]. 
Examples of this are also given in Appendix C.  

Table 4.2: Lengths of cessations analysed per wavelet 

Wavelet 
length (s) 

Length of one 
cycle (s) 

A:B Length of A (s) Length of cessations 
analysed (s) 

60 10 1:1 5 2 – 6.25 

1:2 3.33 2 – 4.15 

2:1 6.67 4 – 8.3 

90 15 
 

1:1 7.5 6.25 – 8.75 

1:2 5 4.15 – 5.85 

2:1 10 8.3 – 11.7 

120 20 
 

1:1 10 8.75 – 11.25 

1:2 6.67 5.85 – 7.5 

2:1 13.33 11.7 – 15 

150 25 1:1 12.5 11.25 – 13.75 

1:2 8.33 7.5 – 9.8 

2:1 16.67 15  - 18.3 

180 30 
 

1:1 15 13.75 – 16.25 

1:2 10 9.8 – 10.85 

2:1 20 18.3 – 20 

210 35 1:1 17.5 16.25 – 18.75 

1:2 11.67 10.85 – 12.5 

2:1 N/A N/A 

240 40 1:1 20 18.75 – 20 

1:2 13.3 12.5 – 14.15 

2:1 N/A N/A 
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The outcome of this convolution, 𝛾(𝑠, 𝜏), is a parameter that is a measure of both 
time and frequency, as can be seen in Equation 4.3. Here 𝜓̅𝑠,𝜏(𝑡) refers to the 
scaled daughter wavelet. The function that the wavelet is convolved with is 
referred to as 𝑢(𝑡), in this case the WAD as discussed earlier in this section. This 
study makes the differentiation between pure wavelet transforms as discussed in 
Section 2.4.2 and using the wavelet for template matching, as is discussed here.   

𝛾(𝑠, 𝜏) =  ∫ 𝑢(𝑡)𝜓̅𝑠,𝜏(𝑡)𝑑𝑡
∞

−∞
 (4.3) 

The output of the convolution was normalised by dividing by the maximum value 
of the wavelet’s convolution with itself. This output value is referred to as the PB 
index, and instances where the PB index output is higher than or equal to 0.6 were 
then identified as PB [49]. A preliminary analysis of the PB index done by Mohr et 
al. aided them in empirically determining this threshold. This research group 
validated their method by having four neonatologists evaluate 200 instances of 
possible PB, and comparing it to the results from the algorithm. The maximum 
value over a 40 s window was recorded every 20 s, since the aim is detect PB with 
cycle duration of up to 40 s [49].  

Appendix C offers more insight into the working of this algorithm. It shows the 
programming logic applied to execute it, an example of the wavelet being moved 
over the probability of cessation signal, as well as a examples of PB detected.  

4.4 Transition models 

The algorithms in Sections 4.2 and 4.3 were used to create models that represent 
the relationship between different respiratory events. This enables a more holistic 
view of the relationship between the respiratory dynamics of these preterm 
infants.    

Note that the idea for these transition models were derived from a Markov model.  
Decision trees are often used in clinical decision making, however they are not 
always sufficient to represent every type of clinical problem. In some cases 
employing a decision tree would require an oversimplification of the problem. 
Markov models are often preferred when the following is true: there is a risk 
involved that is continuous over time; the events in question can occur more than 
once; and the timing of the events are important. The ability of the model to 
represent repetitive events and their corresponding time dependence and 
probability makes it useful to represent clinical issues. In the model, the 
assumption is made that a patient is always in one of a finite number of specified 
states, and that within a cycle of specified duration, they can transition from one 
to another. Arrows between states indicate one transitioning into the other, while 
an arrow leading from a state to itself indicates that the patient can stay in that 
state for consecutive cycles [69].  
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It should, however, be clearly noted that the models developed in this section are 
not Markov models, since the models allow for more than one state to precede 
another state, while in Markov models a state can only be preceded by a singular 
state [69]. 

4.4.1 Respiratory transition model  

This model aims to illustrate the probability that, given a current respiratory event 
is occurring, another event will occur within a certain timeframe. Three events 
were identified to create a model that visualises the breathing dynamics of 
preterm infants. Each of these represent a state of breathing, and a fourth state 
constitutes a lack of events, essentially normal breathing. These are outlined in 
Table 4.3. Note that while discussing these models Cessation and Apnea are 
capitalised to indicate that they are part of the model and adhere to the 
specifications of Table 4.3. 

Table 4.3: Events and states of transition model 

State Event Description 

1 Cessation A pause in breathing of 5 – 20 s 

2 Apnea A pause in breathing longer than 20 s 

3 PB Periodic breathing using all A:B relationships 

4  The absence of events 

Cessations were broken into two events. The first (‘Cessations’), represents 
cessations 5 – 20 s. This is distinguished from cessations over 20 s, which can be 
classified as apneas even without the detection of bradycardia or hypoxemia [12].  
2 – 5 s are ignored in this model due to the frequency of their occurrence. For a 
specific ∆t (length of time), the algorithm retrospectively searches the signal 
before an event occurs to check whether a certain event has occurred. If, for 
example, Event 2 is within ∆t of Event 1, the assumption is made that Event 2 ‘leads 
into’ Event 1, as illustrated in Figure 4.5. If no events occur within ∆t of Event 1, 
the assumption is made that normal breathing ‘leads into’ Event 1. 

 

Figure 4.5: Analysis done in respiratory transition model 
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The analysis for each event is done as follows. Firstly, the WAD signal is adapted 
to remove all identified 2 – 5 s cessations. Throughout the signal for all ten infants, 
the event is identified as well as the index of where it starts occurring. A count is 
done of the total number of times this event occurs, as well as the percentage of 
each infant’s signal taken up by this event. From these percentages the median 
and interquartile ranges (IQR) are determined. To determine the events 
transitioning into this one, a search is done retrospectively over ∆t. A count is done 
of how often another event occurs within the preceding ∆t, and from that a 
percentage is calculated representing the probability of the preceding event 
transitioning into the studied event. A percentage is also calculated of how often 
no events precede the studied event within ∆t. This is then denoted as normal 
breathing preceding the event. This model enables the study of the relationships 
between these respiratory dynamics. An example of this model is shown in 
Figure 4.6. Note that normal breathing is a state, not an event, and therefore no 
events lead into it. 

 

Figure 4.6: Respiratory transition model 

4.4.2 Event centred transition model 

This model, which is an adaptation from the model described in Section 4.4.1, 
looks at the respiratory behaviour surrounding a specific event. Once again it 
detects the specified event and searches retrospectively over ∆t for events 
preceding it. However, in addition it also finds the index where the specified event 
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ends, and searches ∆t into the future to see what the probability is of certain 
events following the studied event. This is outlined in Figure 4.7 below.  

 

Figure 4.7: Analysis done in event centred transition model 

Figure 4.8 illustrates the model gained as output, with the event in the middle 
representing the event under consideration. All percentages leading into the 
studied event represents the frequency of another event occurring within ∆t 
before the studied event occurs. Likewise, the percentages leading out of the 
studied event represent how often an event occurs within ∆t after the studied 
event. This enables the study of behaviour surrounding a specific respiratory 
event.  

 

Figure 4.8: Event centred transition model 
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4.5 Heart rate variability 

As mentioned in Section 4.2.1, R peaks were extracted from the ECG waveform 
using an existing algorithm [68]. From this the interbeat intervals were calculated, 
or as referred to from henceforth, the RR signal. (The time series of these RR beats 
is called a tachogram.) HRV can be studied using frequency and time domain 
related measures. Two advantages of using HRV measures are that they are non-
invasive and fairly easy to perform [22]. All time-domain techniques start out with 
calculating the beat-to-beat interval, considering only QRS complexes and ignoring 
any abnormal beats. In this case only beats between 200 ms and 600 ms are 
considered physiologically reasonable and taken into account [24]. The RR interval 
is also often called the NN (normal to normal) interval, and all the measures 
outlined below refer to it as such.   

The standard deviation of the NN intervals is calculated over a certain time as 
shown in Equation 4.4 to yield the SDNN.  

𝑆𝐷𝑁𝑁 =  √
1

𝑛−1 
 ∑ (𝑅𝑅𝑖 −  𝑅𝑅̅̅ ̅̅ )2𝑛

𝑖=1  (4.4) 

This measures the total variability that arises from both periodic and random 
sources. However, SDNN cannot differentiate between sources that contribute to 
variability. RMSSD is calculated by taking the square root of the mean squared 
difference between successive RR intervals, as shown in Equation 4.5. This 
measure assesses the beat to beat variability in the RR signal.  

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑛−1 
 ∑ (𝑅𝑅𝑖+1 −  𝑅𝑅𝑖)2𝑛−1

𝑖=1  (4.5) 

In addition, pNN50 is calculated in Equation 4.6, representing the percentage (or 
proportion) of successive RR intervals differing with more than 50 ms. It is 
calculated every minute based on data from the previous five minutes. This aims 
to solve the problem concerning SDNN by extracting periodic variability from a 
baseline heartbeat. Note that 𝑛 represents the total number of RR intervals in the 
series.   

𝑝𝑁𝑁50 = 100 ∗ (∑ (|𝑅𝑅𝑖+1 − 𝑅𝑅𝑖| > 50 𝑚𝑠))/𝑛 𝑛
𝑖=1  (4.6) 

Although at higher respiratory frequencies, as are present here, this technique is 
less accurate and struggles to quantify dynamic changes in HRV on a beat–to-beat 
basis [23].  

Two additional measures are calculated that are specifically applicable to preterm 
infants. Since transient, repetitive decelerations of HRV are potential signs of 
illness or distress, pDec is calculated. The percentage of decelerations, calculated 
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as the percentage of NN intervals longer than the mean NN interval of the previous 
five minutes. It aims at explicitly extracting variations in HRV that arises due to 
decelerations [24]. There is also a need to capture the magnitude of these 
decelerations. For this SDDec is calculated, which represents the standard 
deviation of decelerations and therefore the standard deviations of all the NN 
intervals that contribute to pDec [24]. Figure 4.9 shows a high level overview of 
how these measures are extracted from the RR signal.  

 

Figure 4.9: Logic flow diagram for pDec and SDDec 

4.6 Phase Rectified Signal Averaging 

Phase Rectified Signal Averaging (PRSA) can be used to study quasi-periodic 
oscillations in non-stationary signals, enabling the assessment of a system despite 
the presence of noise and phase-resetting. This technique is capable of not only 
detecting these oscillations, but also quantifying them. It was first applied on 
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tachograms to predict mortality after myocardial infarctions, where it proved to 
be more successful than traditional measures [70].  

This signal processing operation is performed by identifying anchor points to 
phase-rectify the signal by aligning fluctuating oscillations and averaging the 
points surrounding them [71]. Firstly, the anchor points are chosen. This can be 
done according to a variety of criteria. Equation 4.7 gives one such a method.  

1

𝑇
∑ 𝑢𝑖+𝑗

𝑇−1
𝑗=0 >  

1

𝑇
∑ 𝑢𝑖−𝑗

𝑇−1
𝑗=1  (4.7) 

u represents the signal analysed, and T is a variable determining the amount of 
points over which the averaging is done. This is freely changeable, and increasing 
it essentially has the effect of low pass filtering, thereby smoothing the signal. 
Choosing T as one would result in every increased point being identified as an AP. 
In this case, T is chosen as five, meaning that an anchor point is identified when 
the mean of five values are greater or smaller than the mean of the previous five 
values. T set to one will highlight mechanism responsible for beat-to-beat changes 
in heart rate, while choosing a higher T obtains the underlying mechanisms for 
more sustained HR increases and decreases. Anchor points corresponding to an 
increase in signal aims to capture decelerations in the signal, and anchor points 
based on signal decreases aim to capture accelerations. By these definitions, it is 
natural that about half the signal points are identified as anchor points. Bauer et 
al. specify that at least 1000 anchor points are needed for an accurate analysis 
[72]. 

Secondly, L number of points are identified both before and after the anchor point 
to create the PRSA window of length 2L. Anchor points too close to the beginning 
or end of signal are disregarded since the full PRSA window is not available. Many 
of these windows overlap. The parameter L should exceed the expected 
coherence time of periodicities in data, in this case chosen as 20 s (thus window 
of 40 s). This ensures that the window should be larger than the period of slowest 
oscillation that needs to be detected.  

Thirdly, the output, namely the PRSA waveform, is determined by averaging over 
all anchor point- centred windows. Figure 4.10 gives a high level overview of this 
method applied on a RR signal. Due to this averaging, non-periodic components 
that are not time synchronized with the anchor points, will cancel out. These 
include noise, non-stationaries and artefacts due to sensor-inefficiencies, other 
physiological processes, movements, etc. Only events that have a fixed point 
relationship with the anchor points (thus any periodicities or quasi-periodicities) 
will survive this averaging [71].   
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Figure 4.10: Logic flow diagram of applying PRSA on RR signal 

Corresponding to this, deceleration capacity (DC) and acceleration capacity (AC) 
are also calculated. These measures are used specifically to study HR and cardiac 
vagal modulation, essentially looking at the relationship between accelerations 
and decelerations in the signal. It is used in conjunction with the PRSA technique 
[70], [73]. Equation 4.8 depicts this measure, with 𝑋(0) denoting the anchor point. 
In literature, these values are generally calculated across four points. The AC is 
calculated in the same way, just using a PRSA window created by using increases 
in the signal as anchor points.   

𝐷𝐶 =  
𝑋(0)+𝑋(1)−𝑋(−1)−𝑋(−2)

4
 (4.8) 

4.7 Bivariate Phase Rectified Signal Averaging  

Bivariate phase rectified signal averaging (BPRSA) is an adaptation of the PRSA 
method that allows the study of correlation between two different, time 
synchronized biosignals. Natural systems generate periodicities at different time 
scales. In living systems, periodic modulations often reflect closed loop regulation 
processes. This method is based on the assumption that the periodic modulations 
in one signal, the trigger signal, cause the periodicities in another, denoted as the 
target signal [74].  

BPRSA follows the same structure as PRSA, with the main difference being that the 
anchor points are identified in the trigger signal and then translated to the target 
signal. Initially, the anchor point criteria, for example Equation 4.7, is applied to 
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the trigger signal. The potions of the anchor points detected are then noted, and 
at these same positions, anchor points are positioned on the target signal. From 
there the remaining steps are performed, namely identifying the windows of 
length 2L with the anchor point in the centre and averaging the signal segments 
over that window to obtain the result. Figure 4.11 gives a high level overview of 
applying this method.  

 

Figure 4.11: Logic flow diagram of applying BPRSA 

4.8 Data analysis 

Each signal was preprocessed by removing segments in which sensor detachment 
had occurred and then subtracting it by its own mean to obtain a zero mean signal. 
Both the cessation detection and PB detection algorithms were then applied to 
the entire dataset, classifying each infant’s respiratory signal into cessations, non-
cessations and PB. The temporal evolution of the percentage breathing cessation 
was examined. To do this, a moving percentage of cessation was calculated based 
on one hour segments and a sliding window of 15 minutes. This calculation 
accounted for all cessation events, as well as cessation events of duration 2 – 5 s, 
5 – 10 s and more than 10 s, respectively. All outputs were then plotted against 
each other to visually examine their level of correlation.  
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The algorithms were also used to identify events outlined in Table 4.3, enabling 
the creation of the transition models described in Section 4.4. The behaviour 
surrounding each detected event was studied, regardless of which infant displayed 
this behaviour. The model in Section 4.4.2 was set up for apnea, since it is regarded 
as the most threatening respiratory event studied here. In addition, short 
respiratory cessations tend to be self-limiting, while ones as long as apneas often 
require intervention [25]. In both cases ∆t is taken as two minutes. This ∆t was 
chosen empirically. Since one of the events in the model is Apnea, which is 
cessations of more than 20 s, ∆t less than two minutes was deemed too short. 
Models were also determined with ∆t of longer durations, but two minutes was 
used for the main model due to the rapidly changing nature of preterm infant 
physiology.     

The HRV was calculated and studied temporally in relations to the percentage 
cessation. The average HRV measure was calculated based on one hour segments, 
averaged every 15 minutes, similar to the percentage cessation. In addition, the 
PRSA was calculated using the RR signal, as described in Section 4.6. Before the 
PRSA and BPRSA analyses were done, the signals were divided by their 75th 
percentile value, normalizing them to oscillate roughly between 1 and -1 in 
magnitude.  

The DC and AC were calculated using adaptations of Equation 4.8, where the 
measures are calculated over 4 s, 8 s and 20 s, all centred on the anchor point. In 
calculating the BPRSA in Section 4.7, this RR signal also serves as the trigger signal. 
BPRSA was calculated twice, using variations of the respiratory signal as the target 
signal. The first BPRSA was calculated with the output of Equation 4.1, therefore 
the WAD signal. The second result was determined using the respiratory signal 
after only the cardiac filter had been applied. L and T were still chosen as 20 s and 
five respectively, with the goal to obtain the mechanisms for more sustained 
increases and decreases, as was discussed in Section 4.6. Addition calculations 
were also done with T chosen as one and ten to observe the influence of changing 
this parameter. 

Additionally, applying the BPRSA requires that both the trigger and target signal 
are uniformly sampled. Due to this, the RR signal needed to be resampled using 
spline interpolation to correspond to the both target signals’ sampling in time. 
Figure 4.12 gives an overview of the steps executed to achieve this.   
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Figure 4.12: Logic flow diagram of uniformly resampling the RR signal (trigger)   
to correspond to the target signal 

      

 

 

Stellenbosch University  https://scholar.sun.ac.za



50 

5 Results 

The most significant results obtained are presented below. Section 5.1 focuses on 
the cessation and PB detected by the Lee et al. and Mohr et al. algorithms. The 
output for these algorithms form the basis for all the following results. Section 5.2 
discusses the transition models created, which serves to satisfy Objective 1. An 
analysis of the 2 – 5 s cessations is done in Section 5.3, which aligns with 
Objective 2.1. Section 5.4 supports Objective 2.2 by temporally analysing 
cessations. Lastly, Sections 5.5 and 5.6 look at the relationship between the 
cardiac and respiratory systems in preterm infants, thereby addressing 
Objective 2.3. 

5.1 Cessation and PB detection  

On average 89.9% of each infant’s data was usable. Table 5.1 shows the total 
percentage of time spent in cessation per infant, according to the Lee et al. 
algorithm and the modified version of it, respectively. As expected, with the 
modified algorithm the time spent in cessation was higher, since this includes the 
2 – 5 s cessations disregarded by the original algorithm (see Sections 4.2.2 and 
4.2.3). The absolute increase in the percentage of time spent in the cessation of 
breathing was between 3.0 – 4.3%. The mean time spent in cessation computed 
by the Lee et al. algorithm for the dataset was 9.1%, with a range from 2.6% to 
17.3%. For the modified algorithm, the mean was 12.5%, with a corresponding 
range between 5.8% and 21.1% [58]. 

Table 5.1: Percentage time spent in breathing cessation 

 

 Original algo*  

% 
Modified algo+ 

% 
Severity 

Infant 1 12.0 15.0 M 

Infant 2 14.4 17.9 H 

Infant 3 17.3 21.1 H 

Infant 4 2.6 5.8 L 

Infant 5 11.1 14.4 M 

Infant 6 5.4 9.0 L 

Infant 7 6.8 10.5 M 

Infant 8 5.1 8.1 M 

Infant 9 3.9 6.5 L 

Infant 10 13.2 17.5 H 
*:  Includes all > 5 s cessations and 2 -5 s segments in close proximity to other cessations  
+:  Includes all > 5 s cessations and all 2 -5 s segments 
Abbreviations used: H = high, M = medium, L = low, algo = algorithm 
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The average amount of PB detected was 0.63%. Infant 4 and 8 displayed no PB 
within their respiratory signal and excluding them the average PB is 0.79%. The 
maximum percentage PB is 3.1% for Infant 3, which is also the infant with the 
highest percentage cessations. The PB results for each infant are presented in 
Table 5.2. On average there was a 0.27% overlap (0.34% ignoring Infants 4 and 8) 
in the signals between cessations and PB. Looking at the percentage PB detected, 
this is consistent with the idea that PB consists of equal parts breathing and 
cessation.    

Table 5.2: Percentage time spent in PB 

Infant  % PB % Overlap with 
cessations 

% Overlap with 
cessations > 10 s 

% Overlap with 
cessations > 20 s 

1 0.7 0.3 0.1 0 

2 1.3 0.6 0.2 0 

3 3.1 1.3 0.4 0 

4 0 0 0 0 

5 0.2 0.1 0 0 

6 0.2 0.1 0 0 

7 0.4 0.2 0 0 

8 0 0 0 0 

9 0.1 0 0 0 

10 0.3 0.1 0.1 0 

The overlap between PB and cessations longer than 10 s is 0.08%, or 0.1% ignoring 
Infants 4 and 8. Another aspect of the results that was explored is the frequency 
of PB being detected by wavelets of different A:B relationships. It can be noted 
that A:B = 1:1 and A:B = 1:2 detect the vast majority of PB, with mean values 57.3% 
and 53.8% respectively. On average, the PB detected by these two relationships 
overlap by 12.5%. Very minimal PB was detected by A:B = 1:2, with  mean value of 
3.7%. The details of these results are presented in Table 5.3. Note the N/A for 
Infants 4 and 8, since no PB was detected in their respiratory signals. 
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Table 5.3: PB detected by different A:B ratios 

5.2 Transition model 

5.2.1 Respiratory transition model  

Figure 5.1 depicts the transition model for ∆t equal to two minutes and taking into 
account all ten infants. It shows how frequently events (namely PB, Cessations and 
Apnea, as outlined in Table 4.3) were preceded by states (all the events and 
normal breathing). It also shows the median and inter quartile range (IQR) for each 
state, along with the total number of each event detected. The number of PB, 
Apnea and Cessations events detected were 103, 682 and 12004 respectively, 
therefore enabling the model to be built. The median PB detected was 0.3% (IQR: 
0.1 – 0.8%), the median Apnea 1.6% (IQR: 0.5 – 2.8%) and median Cessations 6.8% 
(IQR: 4.4 – 10.4%).   

Infant 
no. 

% detected % overlap 

A:B relationship A:B relationship 

1:1 2:1 1:2 1:1 and 2:1 1:1 and 1:2 2:1 and 1:2 

1 51.7 56.7 0 8.3 0 0 

2 45.7 59.6 8.5 7.6 4.1 6.7 

3 57.0 74.3 8.1 33.6 2.1 5.1 

4 N/A N/A N/A N/A N/A N/A 

5 43.9 71.4 0 14.3 0 0 

6 83.3 38.9 0 22.2 0 0 

7 33.3 73.3 13.3 14.3 16.7 0 

8 N/A N/A N/A N/A N/A N/A 

9 100 0 0 0 0 0 

10 43.5 56.5 0 0 0 0 

Mean 57.3 53.8 3.7 12.5 2.9 1.5 

Stellenbosch University  https://scholar.sun.ac.za



53 

 

Figure 5.1: Respiratory transition model for ∆t of two minutes  

All events were strongly preceded by Cessations, which was the most frequently 
occurring event. Events were rarely preceded by PB, and Cessations were rarely 
preceded by Apnea. Normal breathing precedes PB less than 5% of the time, while 
preceding Cessations and Apnea more than 20% of the time. An increase in ∆t 
strengthened the relationship between events, and subsequently reduced the 
likelihood of an event being preceded by normal breathing. Figure 5.2 
demonstrates this model for ∆t of ten minutes.      

Cessations, Apnea and PB had a 95.8%, 96.9% and 99.0% chance of being preceded 
by cessations. There was a less than 3% chance that any event was preceded by 
the state of normal breathing. In the ten minutes leading up to an Apnea, there 
was a 50.1% chance of another apnea occurring.  

5.2.2 Event centred transition model 

This model centres on Apnea, since it is seen as the most clinically significant 
breathing event out of the three considered. It illustrates its interaction with all 
four states. It quantifies the interaction both preceding and following Apnea 
within ∆t of two minutes. Figure 5.3 illustrates this.  
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Figure 5.2: Respiratory transition model for ∆t of ten minutes 

 

 

Figure 5.3: Apnea centred transition model with ∆t of two minutes 

The strongest relationship is both preceding and following Apnea (80 % preceding, 
71.4 % following), is with Cessations. There is a notable, albeit less prominent, 
relationship between Apnea and itself (22.9 % preceding, 22.6 % following), as well 
as Normal breathing (21.3 %preceding, 14.6 % following). The relationship 
between Apnea and PB is the weakest (22.9 % preceding, 22.6 % following). 
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Figure 5.4 illustrates these relationships for ∆t of ten minutes. The preceding and 
following relationship between Apnea and other states appear to be symmetrical. 
There is about a 50% chance that Apnea will precede or follow itself. The likelihood 
that Apnea was preceded or followed by Cessations is close to 100%. There is an 
approximately 7% chance that Apnea is preceded or followed by PB, while there 
is an even lower chance of normal breathing surrounding Apnea, with the 
probability being lower than 3%.  

 

 

Figure 5.4: Apnea centred transition model with ∆t of ten minutes 

5.3 Short cessation (2-5 s) prevalence 

The results presented in Figure 5.5 and 5.6 show representative results from one 
infant of each of three classes of breathing cessation identified. Infant 4 had a low 
severity level and the lowest percentage of cessation, Infant 5 had medium 
severity level, closest to the mean; while Infant 3 had a high severity level, with 
the highest percentage cessation. The figures show the contribution of each of the 
specified events to the total percentage of time spent in cessation for each of 
these three infants, with the first bar representing the 2 – 5 s cessation events.  

Figure 5.5 shows these results for the cessations detected by the original cessation 
detection algorithm (from Section 4.2.2), while Figure 5.6 shows the results for the 
modified algorithm (from Section 4.2.3). In Figure 5.5 the contribution 5 – 10 s 
overshadows that of 2 – 5 s cessations for all severity levels.  However, for the 
modified algorithm in Figure 5.6 this is not the case. In the top plot (high severity), 
an almost equal number of 2 – 5 s events and 5 – 10 s events can be seen. 
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However, the contribution of the 5 – 10 s events to the overall time spent in 
cessation is higher.  In the middle plot (medium severity) both the contribution 
and number of 2 – 5 s cessation events increase, while in the low severity case 
seen in the bottom plot the 2 – 5 s events outweigh both the number and 
contribution of 5 – 10 s events. In fact, for Infant 4 it outweighs all other cessations 
combined, with 88 s per hour spent in cessations longer than 5 s and 119 s spent 
in the 2 – 5 s cessation category. It can also be noted that there are almost no 
cessations above 20 s duration present.  

 

Figure 5.5: Contribution of cessation events of different lengths with the 
corresponding time and % spent in cessation per hour displayed on top of each 
bar for the original algorithm. Top: Infant 3, high severity. Middle: Infant 5, 
medium severity. Bottom: Infant 4, low severity. 

Infant 3 

Infant 5 

Infant 4 

High  
severity 
 

Medium  
severity 

Low  
severity 
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Figure 5.6: Contribution of cessation events of different lengths with the 
corresponding time and % spent in cessation per hour displayed on top of each 
bar for the modified algorithm.  Top: Infant 3, high severity. Middle: Infant 5, 
medium severity. Bottom: Infant 4, low severity. 

Figure 5.7 visualises the relationship between the 2 – 5 s cessation events, and 
longer cessation events with a scatter plot. The relationships are evaluated with 
5 – 10 s events (X), longer than 10 s events (■) and longer than 20 s events (●). A 
line of best fit is plotted for each, and the accompanying correlation coefficients 
(R2) is 0.53, 0.38 and 0.23, respectively. The closest correlation is observed 
between 2 – 5 s and the 5 – 10 s events, followed by 10 s and up, and 20 s and up.  

High  
severity 

Medium  
severity 
 

Low  
severity 

Infant 3 

Infant 5 

Infant 4 
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Figure 5.7: Relationship between 2 - 5 s events and longer cessation events. 

5.4 Temporal evolution of percentage cessations 

Figure 5.8 shows how the percentage of cessation changes over time for each of 
the three identified infants, while Figure 5.9 shows this change for Infant 9. This 
infant has the longest available signal, enabling an observation of the temporal 
changes in cessation over a longer period. These figures indicate the total 
percentage cessation (--), as well as the contribution of the grouped duration 
events over time, specifically the contributions from > 10 s (- -), 5 – 10 s (-·-·) and 
2 – 5 s (···) events respectively. Periodic trends are present in all four plots, 
regardless of the severity level. The plot for events of 5 – 10 s and more than 10 s 
seem to correlate with the trend of the overall percentage cessation.   
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Figure 5.8: Temporal evolution of percentage cessation in breathing over a 12-
hour period. Top: Infant 3, high severity. Middle: Infant 5, medium severity. 
Bottom: Infant 4, low severity. 

 

Figure 5.9: Temporal evolution of percentage cessation in breathing over a 70-
hour period for Infant 9 
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5.5 Temporal evolution of HRV 

Figures 5.10 to 5.14 below show the temporal evolution of measures that track 
HRV. In all cases, the top graph displays the temporal evolution of total cessations, 
as discussed in Section 5.4. In each case, the bottom graph represents the HRV 
measure. It was found that SDNN appears to have the closest temporal 
relationship to cessation. Figure 5.10, using data from Infant 1 over 24 hours, gives 
a clear indication of this relationship.  

 

Figure 5.10: Both for Infant 1. Top: Temporal evolution breathing cessations. 
Bottom: Temporal evolution of SDNN 

The SDNN in the bottom graph of Figure 5.10 has a similar periodicity to the 
percentage of breathing cessations. Visually it seems to be that the peaks coincide 
at similar points in both waveforms. Note that at some points a lack of signal is 
evident due to too many NaN values being present at that point to accurately 
calculate the relevant measure.   

Similarly, Figures 5.11 to 5.14 display these temporal trends for RMSSD, pNN50, 
pDec and SDDec respectively, all for Infant 1.  
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Figure 5.11: Both for Infant 1. Top: Temporal evolution breathing cessations. 
Bottom: Temporal evolution of RMSSD 

Figure 5.11 shows the same figure for RMSSD versus percentage cessation. 
Although periodicity is noted in both signals, they seem less closely related since 
the peaks in both signals seem to coincide less clearly than in the case of SDNN. 
The behaviour of pNN50 and percentage cessation seem to once again mimic each 
other to some extent, as can be seen in Figure 5.12. The temporal evolution of 
pDec, as seen in Figure 5.13, does not seem to follow the same pattern as the 
percentage cessation. 
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Figure 5.12: Both for Infant 1. Top: Temporal evolution breathing cessations. 

Bottom: Temporal evolution of pNN50  

 
Figure 5.13: Both for Infant 1. Top: Temporal evolution breathing cessations. 

Bottom: Temporal evolution of pDec 
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However, looking at SDDec in Figure 5.14, once again visually it seems to be that 
the peaks coincide at similar points in both waveforms.  

 

Figure 5.14: Both for Infant 1. Top: Temporal evolution breathing cessations. 
Bottom: Temporal evolution of SDDec 

These results suggest that some relationship may exist between percentage 
cessation and HRV measures. However, this is not definitive since the signals had 
been heavily processed to allow this temporal analysis relative to the percentage 
cessations detected. This indicated the need for a more detailed and precise 
analysis, of which the results are presented in Section 5.6 that follows.   

5.6 PRSA and BPRSA 

The PRSA was determined for each infant. Sufficient anchor points could be 
determined for each analysis, as is outlined in Appendix D. The PRSA behaviour, 
seen in the top graphs of Figures 5.15 and 5.16, agreed with what was as expected 
from literature [71]. This was calculated for Infant 1 (- ∙ - ∙) as well as for the 
average of all ten infants (----), and the behaviour is similar for both.   

The BPRSA with RR signal as trigger and WAD as target (middle graphs of Figures 
5.15 and 5.16) show that there is a relationship between these two signals [75]. In 
Figure 5.15 (middle), it can be observed that decelerations in the RR signal are in 
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some way linked to an increased chance of cessations. Figure 5.16 (middle) 
represents the relationship between accelerations in the RR signal and the WAD. 
It should be noted that these graphs represent the interaction between the trigger 
and target signal, they do not represent direct numerical values of the signals. 
Therefore, although the target signal represents the probability of a cessation 
occurring, a negative value on the graphs does not represent a negative 
probability. This graph indicates that accelerations in the RR signal coincide with a 
decreased chance of cessations. This trend was evident in all infants except for 
Infant 5, which displayed no relationship at all (i.e., a flat line). Note the similarity 
in behaviour between the Infant 1 and Average plot. Appendix D contains these 
graphs for all infants.  

 

Figure 5.15: Top: Deceleration PRSA of RR signal. Middle: Deceleration BPRSA 
with RR signal as target signal and WAD as target signal. Bottom: Deceleration 
BPRSA with RR signal as target signal and respiratory signal as target signal  
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The bottom graphs in Figures 5.15 and 5.16 show the relationship between the RR 
signal and respiratory signal after it has been normalized and the cardiac filter has 
been applied. It clearly shows interaction between these signals, however, there 
is no evident trend throughout the behaviour for all infants. Note the dissimilarity 
between the Average plot and plot for Infant 1.   

 

 

Figure 5.16: Top: Acceleration PRSA of RR signal. Middle: Acceleration BPRSA 
with RR signal as target signal and WAD as target signal. Bottom: Acceleration 
BPRSA with RR signal as target signal and respiratory signal as target signal 
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The average plot in each graph appears symmetrical about the y-axis (where time 
is 0 s), particularly the middle graphs in both Figures 5.15 and 5.16. It can also be 
observed that the set of deceleration graphs (Figure 5.15) and acceleration graphs 
(Figure 5.16) appear to be inverses of each other. The graphs for all ten infants can 
be seen in Figures D-2 to D-11 in Appendix D. As mentioned in Section 4.6, more 
than 1000 anchor points are needed for an accurate analysis. In the case of these 
signals, the number of anchor points identified were much higher than this. For 
Infant 1 there were 344 666 anchor points for deceleration and 471 334 for 
acceleration. The anchor points for all infants can be found in Appendix D.  

The DC and AC values were calculated for the PRSA of the RR signal and can be 
seen in Table 5.4. The cessation severity levels from Section 5.1 were added to aid 
analyses. Increasing the window time decreases the mean AC and DC values. For 
a window of 4 s, the mean DC is 12.33 ms and the mean AC is -9.46 ms. Increasing 
the window to 20 s reduces these to 7.07 ms and -4.90 ms respectively. These 
decreasing numbers show how the oscillatory behaviour in the PRSA dies down, 
indicating how the body responds to changes in HR and reacts to restore it to 
normal. 

Table 5.4: DC and AC 

 

Note that in addition to containing these graphs for each infant, Appendix D also 
contains the graphs for Infant 1 with T set to one and ten respectively, to show the 
effect of changing T.  

 

Infant 
no. 

Window: 4 s Window: 8 s Window: 20 s Cessation 
severity 
level 

DC 
(ms) 

AC 
(ms) 

DC 
(ms) 

AC 
(ms) 

DC 
(ms) 

AC 
(ms) 

1 4.00 -3.11 4.22 -2.21 2.95 -2.44 M 

2 13.09 -11.28 10.83 -9.66 6.26 -6.28 H 

3 6.93 -5.75 6.50 -5.39 4.24 -3.49 H 

4 2.10 -1.89 2.25 -2.05 1.80 -1.70 L 

5 28.89 -23.35 20.92 -17.46 8.84 -8.34 M 

6 7.31 -6.26 6.17 -5.69 3.14 -3.73 L 

7 21.80 -12.30 20.79 -9.83 14.89 -3.55 M 

8 4.74 -3.56 5.58 -4.19 4.61 -3.44 M 

9 6.12 -5.50 6.21 -5.68 4.77 -4.56 L 

10 28.29 -21.64 29.57 -21.64 19.15 -11.45 H 

Mean 12.33 -9.46 11.30 -8.38 7.07 -4.90  
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6 Discussion 

This study analysed a signal dataset of preterm infants, with the aim of gaining 
greater insight into their respiratory behaviour, as well as how it links to their 
cardiac behaviour. The results obtained provide new insight into the respiratory 
dynamics of preterm infants, addressing a variety of objectives. Firstly, the primary 
goal of the transition models is discussed along with the implementation of the 
algorithms to detect breathing cessations and PB. The secondary goals are 
addressed, namely the contribution of 2 – 5 s cessations, the temporal behaviour 
of cessations and the relationship between cessations and HRV. It is important to 
note that this study has several limitations, but also various opportunities for 
future work. Lastly, a conclusion will be drawn.  

6.1 Objective 1: Transition model 

The Lee et al. and Mohr et al. algorithms for detecting breathing cessations and 
PB respectively were implemented [12], [49]. The mean time spent in cessation 
for the dataset was 9.1%, with a range from 3.0% to 17.0%. On average only 0.63% 
PB was detected over all ten infants, with Infants 4 and 8 displaying no PB. Mohr 
et al obtained an average of 3%, which also indicates that PB does not occupy a 
large part of preterm infant respiration. It seems that an increase in cessation 
matches an increase in PB, as would be expected since PB is closely associated 
with AOP  [33], [44]. As mentioned in Section 5.1 the maximum percentage PB is 
3.1% for Infant 3, which is also the infant with the highest percentage cessations. 
The overlap between PB and cessations longer than 10 s is 0.08%. This corresponds 
with the findings by the original study that PB generally consists of cessations less 
than 10 s, specifically 6 - 9 s [49]. PB occurred in 80% of infants, while in another 
study it was reported that 94.5% of infants in a similar weight class to those in this 
study displayed PB [1].    

Three A:B relationships (cessation : non-cessation) were employed to detect PB. 
Very minimal PB was detected by A:B = 2:1, meaning that within this dataset PB 
with cycles where cessations are double the lengths of breathing is rarely 
detected. This could suggest that computational cost could be wasted by testing 
for this ratio, particularly because the convolution method employed has a high 
computational cost and is very time consuming.     

The transition model from Section 5.2.1 gives visualisation to the respiratory 
dynamics of preterm infants (Figure 5.1). It indicates that respiratory events are 
more likely to be preceded by other respiratory events than by a state of normal 
breathing, suggesting that these events are related. This relationship between 
respiratory events becomes stronger as ∆t increases, which is to be expected. In 
all cases, there is a low probability that the identified respiratory events are 
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preceded by PB. This contradicts the theory that all apneas begin in expiration 
during PB [33]. It does, however, agree with Barrington et al., who found that less 
than 0.6% of significant apneas occurred within two minutes of a PB epoch ending. 
This study found a similar probability of 1.5%, which agrees with their conclusion 
that PB is not often a precursor for apnea [1].  

Within a ten minute window, about half of apneas are preceded by other apneas, 
suggesting the event has a strong relationship with itself (Figure 5.2). It also 
indicates that when an apnea has ended, it does not necessarily mean that the 
infant has regained control of its respiratory system. However, due to the lack of 
clinical annotations of the dataset, it is also unknown whether an apnea was 
resolved naturally or due to clinical intervention.  

The model presented in Section 5.2.2 suggests that the respiratory behaviour 
surrounding apneas is fairly symmetric (Figure 5.3). This behaviour holds true for 
an increase in ∆t, as seen with ∆t set to ten minutes in Figure 5.4. From this it 
seems that apneas are equally likely to be preceded and followed by an event. The 
increasing relationship between apneas and itself, as well as with cessations 
indicate that rather than occurring in isolation, apnea forms part of general 
respiratory instability. This could aid in the development of a dynamically changing 
‘respiratory stability index’ (or ‘risk of apnea’ index) allowing more nursing 
attention to be directed to higher-risk infants [58]. 

Since it is known that respiratory instability is related to immaturity and 
underdevelopment of regulatory systems [2], [3], [12], [29], this respiratory 
transition model (Figures 5.1 and 5.2) holds the potential to track the maturation 
of these preterm infants in a novel way. The data used to develop this model is 
recorded as standard practice in NICUs all around the world. For example, this 
model could be automatically created at the end of each day, using information 
from the previous 24 hours. This would enable clinicians to visually track these 
respiratory dynamics, giving a holistic perspective to how these dynamics and their 
interactions with each other progress. Since respiratory stability is an important 
factor in infant discharge, this will aid clinicians in making better decisions, as well 
as drawing attention to infants who need closer observation than others.  

Alarm fatigue is another well-known NICU problem. This model also has the 
potential to be used to help combat this. It could contribute to customization of 
alarm thresholds or the judging of the appropriateness of continuous monitoring 
for a particular patient. In future, it could even be used in research towards 
diagnostic alarms [53]. 

The second breathing dynamics model (Figures 5.3 and 5.4) can produce equally 
valuable clinical insights, however, it is tailored to a single respiratory event. Since 
AOP is known to have a negative impact on infant health [2], [12], it could be 
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beneficial to analyse the occurrence of apnea, as well as its interaction with other 
respiratory dynamics, over a selected period of time. Similarly, clinicians may want 
to specifically observe an infant’s PB, since studies have noted excessive amounts 
of PB in the respiratory pattern of an infant who died of SIDS, as well as her sibling 
[46].  

6.2 Objective 2.1: Analysis of 2 – 5 s cessations 

This project analyses short cessations of breathing (2 – 5 s). Routinely, cessations 
in breathing are only noted when apneas are detected. This only happens after 
respiratory activity has already ceased for 20 s [12], or in some cases 15 s [57]. In 
their algorithm, Lee et al. mainly looks at cessations longer than 5 s, ignoring 
isolated 2 – 5 s cessations. All of this indicates a lack of understanding of the 
contribution of short cessations. Although there is a lack of understanding 
regarding the long-term neurodevelopmental effects of apnea, it is known that a 
lack of oxygen has detrimental effects on infant physiology [38]. Herein lies the 
danger on ignoring these short cessations, since they add to the total time a 
preterm infant spends without taking in oxygen.   

This study shows that the contribution of these short cessations to the overall time 
spent in cessation is large (Figure 5.6). In particular, infants that tend to have 
longer cessations spend more time undergoing short cessations as well, as is also 
shown in Figure 5.7. This might be explained by the well-known, albeit variable 
and non-linear relationship between the underdeveloped brainstem and neural 
control of respiration that contributes to long cessations, including apneas [76]. In 
theory, infants with better-developed regulatory control mechanisms may be able 
to auto-stimulate respiratory activity following a short cessation and thus have 
fewer long cessations, including clinically defined apneas. Fortunately, such apneic 
cessations in breathing occur infrequently. However, by monitoring short 
cessations (which are typically considered clinically irrelevant), which occur more 
often, it may again be possible to develop a dynamically changing ‘respiratory 
stability index’ (or ‘risk of apnea’ index) as was discussed in Section 6.1 [58]. 

6.3 Objective 2.2: Temporally track respiratory 
stability  

Figure 5.8 shows a prominent periodicity in the changes in the percentage 
breathing cessation over time for infants from all severity classes, with the 
behaviour following a two to three hour cycle. It is even more apparent in 
Figure 5.9, where it is tracked over a period of days.  All event classes follow this 
trend, suggesting a physiological response to periodically performed clinical 
intervention, e.g., enteral feeding, nursing care, etc. [53], [77]. However, this 
remains uncertain since the dataset used lacks clinical annotations. Such analyses 
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of breathing dynamics might offer a useful metric for determining which amongst 
the multiple methods of enteral feeding cause the least physiological distress to 
infants. This knowledge could lead to change in clinical practice in NICUs, or at 
least an increased awareness of the possibility of apnea surrounding a particular 
feeding method. Although other studies have noted a suspected link between 
feeding and apnea, no study has looked at it temporally in this continuous manner.  

6.4 Objective 2.3: Study relationship between 
breathing cessations and heart rate behaviour 

Section 5.5 outlines the temporal relationship between the percentage cessation 
occurring and the different HRV measures. As discussed in Section 6.3, the 
percentage cessation shows prominent periodicity. Some of the HRV measures 
seem to mimic this periodicity, suggesting a relationship between cardiac and 
respiratory behaviour. It is a known fact that cardiorespiratory coupling exists, 
however, the mechanisms behind this are obscure. SDNN, a measure of overall 
variability, seemed to be the measure related the closest temporally to percentage 
cessation. Figure 5.10 shows a clear example of a similar trend in both the cardiac 
and respiratory behaviour. This indicates that when more cessations occur, more 
variation is found in the RR intervals of the HR.  

Although these results seemed promising, further analysis in this line proved 
difficult, since the signals had been heavily processed. Therefore, the need arose 
for a more detailed analysis, which lead to the PRSA and BPRSA analysis in 
Section 5.6. This analysis was interesting, firstly, because it is a fairly new method. 
Secondly, because this analysis has rarely been applied to preterm infants. Thirdly, 
the BPRSA has never been analysed with the RR signal as trigger and the 
probability that a cessation is occurring as target so essentially between variability 
in cardiac activity and respiratory instability. This method is also robust, in that is 
can be applied even when there are missing values in signal [71], [72]. Clark et al. 
encouraged applying methods with this robustness, as a lack of continuous signal 
was a problem they encounter in their cardiorespiratory study [62].  

Concerning the top graph in both Figures 5.15 and 5.16, the PRSA on the RR yields 
results that indicate that there is a quasi-periodic relationship within the RR signal, 
as is expected [71]. This added to the confidence that the method has been 
correctly applied. The second and third graphs in Figures 5.16 and 5.17 illustrates 
BPRSA relationships. It is important to note that in the absence of any sort of 
interrelationship between the trigger and target signals, the BPRSA would be a 
relatively flat line. Therefore coupling is evident in both the case of the respiratory 
signal and the probability of cessation signal acting as the target signal (in both 
cases the RR signal serves as the trigger signal).  
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Although coupling is evident between the respiratory signal and RR signal, there is 
no clear trend as to how this coupling manifests when taking into account all ten 
infants. Regarding the BPRSA of RR signal (trigger) and probability of cessation 
signal (target), a clearer pattern forms. Either this indicates that periodic 
modulations in one lead to corresponding behaviour in the other, or that a third 
physiological system is causing modulations in both. In all infants (except for 
Infant 5) the BPRSA curves for both deceleration and acceleration are symmetric 
about the y-axis (where time is equal to 0 s). The acceleration and deceleration 
graphs also seem to virtually be inverses of each other, leading to the conclusion 
that there is likely a third mechanism coupling with both these signals and causing 
them [75]. Concerning the AC and DC values calculated in Table 5.4, they 
demonstrate how the oscillatory behaviour in the PRSA dies down, indicating that 
the body responds to changes in HR and reacts to restore it to normal. However, 
there seemed to be no clear link between an infant’s AC and DC values and their 
cessation severity levels.  

6.5 Limitations 

This study has several limitations, notably the absence of contextual information 
such as the enteral feeding routine and periods of nursing care as well as absence 
of useful vital signs such as oxygen saturation. The availability of such information 
would greatly aid a study of the physiological etiology of these findings. The 
availability of longitudinal data would also enable greater insight into respiratory 
dynamics over time. In addition, not knowing the PMA at which these recording 
were taken prohibits some comparisons to literature. The study also relies on the 
recreation of algorithms developed, tested and validated by other research 
groups, with no validation of its own done.   

6.6 Future work   

Ideally, this study should be applied on a larger longitudinal dataset to see whether 
the behaviour displayed in the transition model holds true. In addition, this 
transition model can be created for different infant populations to see the 
difference as well as similarities in trends. Different population groups should be 
studied, for example extremely preterm versus late preterm infants, or infants 
who developed sepsis versus those who did not. This could offer many interesting 
insights.   

Applying the temporal tracking of cessations to a clinically annotated dataset can 
hold great promise. This can offer insight into the NICU schedule affects an infant’s 
respiratory stability, as well as the effectiveness of the caffeine titration employed 
to stimulate breathing.  
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The HRV of preterm infants is an important field of investigation which could 
provide early warning of distress. In addition, proper application of HRV measures 
can offer insight into the autonomic maturation of the developing fetus, and by 
association preterm infants [61].  However, the Task Force of the European Society 
of Cardiology urges against over interpreting measures when it comes to health or 
diagnostic markers. They note the attractiveness of using markers for autonomic 
activity, but urge against it if there is no clear and defensible mechanistic link 
between the variables and the related physiological events. This could lead to 
misinterpretations and incorrect assumptions, which is particularly dangerous in 
this field [61].  

Due to the time limitation of this study, many possibilities regarding the study of 
cardiorespiratory coupling could not be explored. Quantities measures should be 
explored to study the temporal link between HRV measures and percentage 
respiratory cessation. The power spectra for the PRSA and BPRSA is one such a 
possibility. Studying the frequency components can be used to analyse the 
contribution of different physiological processes to the overall. The BPRSA should 
also be calculated with the trigger and target signals swapped to see if the 
relationship holds true. This will also help establish whether there is in fact a third 
physiological system modulating both the respiratory and cardiac systems [72]. 
Various other newly developed measures could also be applied to study the 
interaction, such as Transfer Entropy [60].   
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7 Conclusions 

The study completed an in-depth analysis of the respiratory dynamics of preterm 
infants and addressed various objectives successfully. Established algorithms were 
recreated to enable the detection of breathing cessations and PB. This aided in the 
development of transition models to study how respiratory dynamics interact with 
each other, confirming their relationship in time and offering a tool to visually 
track the maturation of the respiratory system. It was determined that the 
contribution of routinely ignored 2 – 5 s cessations to overall time spent in 
cessation is significant and that there is a pronounced periodicity to the evolution 
of percentage cessations in respiratory signal over time. An investigation was also 
done into cardiorespiratory coupling, concluding there is a common temporal 
periodic trend in percentage cessation and some HRV measures.    

Determining whether a preterm infant has an acceptable level of physiological 
maturity is an important and difficult task for the clinician caring for them. This 
study provided new insights into aspects of the physiology of these infants. It also 
proposes a tool for quantifying and supporting the assessment of these difficult to 
measure physiological dynamics to better track maturation. The hope is that by 
adding to this body of knowledge, advances can be made in reducing the mortality 
rate of these fragile infants.  
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Appendix A  Cardiac filter 

This Appendix offers additional insight into different steps in the cardiac filter 
discussed in 4.2.1. In short, the respiratory signal is resampled using the RR 
intervals as the clock. This allows for the cardiac artefact to be revealed at integer 
or half-integer frequencies when observed in the frequency domain, making it 
simple to filter out. The respiratory signal is then resampled to its original sampling 
rate, and the cessation detection analysis continues.  

Firstly, an example is given in Figure A-1 of the RR peaks detected in the ECG 
waveform using the selected R-peak detection algorithm [68].  

 

Figure A-1: ECG with RR peaks detected 

As mentioned, when the respiratory signal is resampled with the RR intervals 
detected acting as the clock, the cardiac artefact becomes isolated at integer or 
half-integer frequencies. This enables easy filtering out of this artefact. Figure A-2 
gives an example from this study of the isolated cardiac artefact before it is filtered 
out, outlined in red, while Figure A-3 shows it removed. In this figure, a chest 
impedance signal is seen instead of the chest inductance signals used throughout. 
Cardiac artefacts are more prominent in impedance signals than in inductance 
signals, therefore the filter was first tested on an impedance signal to ensure that 
it is working correctly before applying it to the PICS dataset.  
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Figure A-2: Fft of resampled respiratory signal with cardiac artefact isolated at 
0.5 Hz and 1 Hz 

 

 

Figure A-3: Fft of resampled respiratory signal with cardiac artefact removed 
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This cardiac artefact can also be seen in the time domain. Figure A-4 gives an 
example of this from Lee et al. Note that a) show the RR (black line) and HR (red 
line) moving into the same frequency band, while b) shows this in the time 
domain.  

 

Figure A-4: Cardiac artefact from Lee et al. 

Figure A-5 gives an example from this study of the artefact removal in the time 
domain. Note that activity of a low amplitude throughout the signal at a seemingly 
similar frequency has been removed between the upper and lower graph. 
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Figure A-5: Top: Original respiratory signal in time domain with cardiac 
artefact present. Bottom: Respiratory signal in time domain after cardiac 
artefact removal.  
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Appendix B  Lee et al. algorithm 

This study recreated a breathing cessation detection algorithm developed, tested 
and validated by Lee et al. [12]. The instruction given in their paper was closely 
followed to ensure that cessation detection is as accurate as possible. Where 
possible, results obtained during various steps of the process were compared to 
results outlined in their paper. The cessations detected were also visually expected 
to see if the algorithm was acting as expected.  

When developing the equation to determine the probability of apnea 
(Equation 4.1), the histogram of the distribution of the variance of the filtered 
respiratory signal (𝜎) was studied. The result of this is seen in Figure B-1b. This 
was a point were clear comparison could be drawn between Lee et al. (Figure B-
1a) and this study. Therefore, this same distribution was calculated in this study, 
and the similarity in results added to the confidence in the recreated algorithms 
similarity to the original.     

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure B-2 gives a visualisation of this process if it were to be applied to a 
22-minute signal. 
 

Figure B-1: a) The distribution of the variance filtered respiratory signal (𝝈) in 
Lee et al. [12]  b) The distribution of the variance filtered respiratory signal (𝝈) 
for Infant 2 in this study 

(b) 
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Figure B-2: Visualisation of normalisation of signal using a moving low pass filter 
envelope 

16 minutes of respiratory signal is analysed at a time, represented by the blue 
segment. As mentioned, the low pass filter is applied to this segment. The 
respiratory waveform is then divided by the output of this low pass filter. From 
the now normalised 16-minute segment, the middle two minutes are taken (as 
outlined in green on Figure B-2) and added to the eventual output of this 
operation, as suggested by the black arrows. A new 16-minute segment of signal 
is then selected by means of a moving window of two minutes, and then the 
process is repeated. The first 7 and last 7 minutes of signal is lost in this process 
(outlined in yellow in Figure B-2), since there is not both 8 minutes of future and 
past information available at those stages. Corresponding to these lost segments, 
NaN values are placed in the output to ensure the signal structure and length is 
preserved. Note that the shortest signal is 20 hours long, so losing 14 minutes is 
insignificant to the overall analyses.  

Figure B-3 gives an example of the output of this normalisation from the signal of 
Infant 1. As can be seen when comparing the second halves of the signal, the 
amplitude is more evenly scaled throughout in the bottom one, which represents 
the normalised signal.  
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Figure B-3: Respiratory waveform before normalisation had been applied. 
Bottom: Respiratory signal after normalisation had been applied 

This normalisation is important to scale the data. Parts of the respiratory cessation 
detection algorithm is based on whether values exceed set thresholds, and 
therefore normalisation is necessary to make adequate comparisons, avoiding 
false detection of cessations or missed cessations.  

Figure B-4 shows the outline of the programming logic followed to recreate the 
cessation detection algorithm.  
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Figure B-4: Programming the logic for Lee et al. cessation detection algorithm 
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Lastly, Figures B-3 to B-5 give an examples of cessation detected in the respiration 
signal. The blue signal is the chest inductance signal (representative of the 
respiratory signal), while the red boxes outlines the areas where a cessation in 
breathing is detected. As can be observed, wherever reduced activity is detected 
for a relevant amount of time in the respiratory signal (outlined by the rules in 
Section 4.2.2) , cessations are noted as occurring.  

 

Figure B-5: First example of cessations detected in respiratory signal 
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Figure B-6: Second example of cessations detected in respiratory signal 

 

Figure B-7: Third example of cessations detected in respiratory signal 
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Appendix C  Mohr et al. algorithm 

This Appendix gives greater insight into the PB detection algorithm described in 
Section 4.3. In brief, wavelets, designed to adhere to the expected characteristics 
of PB, are convolved over the WAD signal. (The WAD signal represents the 
probability that a cessation is breathing is occurring.) It the output of this 
convolution is higher than the set threshold of 0.6, it is noted that PB is occurring. 
Figure C-1 gives a visualisation of the wavelet moving across the WAD signal to be 
convolved. The red arrow indicates the direction in which it is moved. 

 
 

Figure C-1: Wavelet moving across WAD signal representing the probability 
that a cessation in breathing is occurring 
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Figure C-2: A wavelet broken in its A:B ratio of 2:1, with the orange frame 
referring to the A and the green frame referring to the B.  

As was mentioned in Section 4.3, wavelets have different A:B rations, with A 
referring to breathing cessations and B referring to non-cessations, therefore 
regular breathing. Figure C-2 shows a wavelet with an A:B ratio of 2:1, with its A 
parts framed in green and its B parts framed in orange. In reference to Table 4.2, 
if the wavelet were to be set up to detect PB of cycle 15 s, it would aim to detect 
10 s of cessation and 5 s of regular breathing. However, if for example a cycle of 
40 s is to be detected, this A:B ratio of 2:1 would not be applied. In the case of a 
40 s cycle, this wavelet would search for cessations of around 26.7 s, which fall 
outside of the definition for PB. Therefore in this case only the A:B ratios of 1:2 
and 1:1 would be employed.  

Figures C-3 to C-5 give examples of PB detected. The blue lines represent the chest 
inductance respiratory signal. The orange areas show where cessations in 
breathing were detected. Encompassing the red areas are yellow areas. This 
yellow represents the PB detected. As can be seen, PB is detected where a 
sustained pattern of cessations is detected. It is important for this algorithm to be 
able to discern between PB and simply clustered apneas [49]. In Figure C-3 it seems 
like the left side could also be PB, but when studying the lengths of the cessation 
it becomes apparent that there are discrepancies. Therefore the algorithm does 
not determine it to be PB. Similar situations can be seen in Figures C-4 and C-5.  
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Figure C-3: First example of detected PB 

 

Figure C-4: Second example of detected PB in respiratory signal 
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Figure C-5: Third example of detected PB in respiratory signal 
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Appendix D  PRSA and BPRSA 

A set of PRSA and BPRSA graphs were calculated for each infant, as explained in 
Sections 4.6 and 4.7. Section 5.6 outlines the results with focus on Infant 1 and the 
overall average, while Section 6.4 discusses the results. As mentioned in 
Section 4.6, at least 1000 anchor points are needed for accurate analysis. Table D-
1 gives the anchor points for all infants.  

Table D-1: Number of anchor points for each infant 

Infant  Anchor points 
for deceleration 

Anchor points 
for acceleration 

1 344 666 471 334 

2 338 630 411 260 

3 344 803 414 178 

4 379 065 461 550 

5 163 188 210 976 

6 370 205 499 796 

7 160 180 202 793 

8 164 664 216 611 

9 563 850 674 242 

10 347 214 394 781 

Figure D-1 gives the PRSA and BPRSA graphs for Infant 1, with T set to one for the 
left graph, and T set to ten for the right graphs. Note the differences in the graphs. 
With T set to one, it is much more sensitive, as is evident in the fine detail visible 
in the signal. For T set to ten, the signal appears smoother, demonstrating how 
increasing T acts like a low pass filter.  

Figure D-2 to D-11 give graphs for all ten infants respectively, with both 
acceleration and deceleration plotted against each other. As indicated in 
Section 5.6, there is a common behaviour in the second graphs, namely the BPRSA 
with the RR signal as trigger and the WAD as target signal. In addition, the 
behaviour for the acceleration and deceleration are noticeably symmetrical. These 
trends hold true for all infants apart from Infant 5, which shows no coupling 
between any of the trigger and target signals.  
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Figure D-1: Decelerations and acceleration graphs for Infant 1. All the left graphs 
have T = 1, and the right graphs have T = 10. Top: PRSA of RR signal. Middle: 
BPRSA with RR signal as target signal and WAD as target signal. Bottom: BPRSA 
with RR signal as target 
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Figure D-2: Decelerations and acceleration graphs for Infant 1. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-3: Decelerations and acceleration graphs for Infant 2. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-4: Decelerations and acceleration graphs for Infant 3. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-5: Decelerations and acceleration graphs for Infant 4. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-6: Decelerations and acceleration graphs for Infant 5. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-7: Decelerations and acceleration graphs for Infant 6. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-8: Decelerations and acceleration graphs for Infant 7. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-9: Decelerations and acceleration graphs for Infant 8. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-10: Decelerations and acceleration graphs for Infant 9. Top: PRSA of RR 
signal. Middle: BPRSA with RR signal as target signal and WAD as target signal. 
Bottom: BPRSA with RR signal as target signal and respiratory signal as target 
signal 
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Figure D-11: Decelerations and acceleration graphs for Infant 10. Top: PRSA of 
RR signal. Middle: BPRSA with RR signal as target signal and WAD as target 
signal. Bottom: BPRSA with RR signal as target signal and respiratory signal as 
target signal
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