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Abstract

A space-mapping (SM) framework that allows an automated approach to solv-
ing computer-aided design (CAD) optimisation problems for electromagnetic
(EM) devices is presented. Direct optimisation of detailed, high-�delity/�ne
EM models can be computationally expensive and can restrict the adoption of
optimisation for large systems.

SM allows the incorporation of low-�delity/coarse models that are quick to
evaluate, without sacri�cing the accuracy of results. The SM framework builds
up a surrogate model from a coarse model that is aligned programmatically
to the �ne model. Optimisation is carried out using the surrogate model.
If the surrogate is evaluated far away from where the alignment took place,
the results may diverge. A trust-region (TR) is introduced as a method of
improving the robustness of the framework. The TR governs the bounds of
the optimisation space.

Four types of SM are implemented within the automated framework: input,
output, implicit and frequency SM. Literature using some of these techniques
is investigated, and a detailed analysis on the original SM implementation
and a frequency SM approach is included. A basic TR implementation, from
literature, is also investigated in detail.

The methodology used to develop the automated framework is explained,
andMatlab implementation details for each stage are discussed. Model align-
ment and surrogate building for each of the SM techniques are discussed. The
user's interface to the TR enhanced SM optimisation system is detailed. The
available high-�delity solvers are FEKO and CST, while those for low-�delity
are AWR-MWS and Matlab.

A microstrip stub example is used to demonstrate input, implicit and fre-
quency SM. FEKO and AWR-MWS are used for these examples. A mi-
crostrip double folded stub �lter is taken from literature and used to evaluate
the system. This bandstop example has three design variables and is required
to meet three S-parameter goals. An additive input and implicit SM approach
is chosen to solve this problem. Each iteration is analysed and the SM frame-
work successfully meets speci�cation within four �ne model evaluations.

Finally, improvements to the automated framework are presented. A gen-
eral mathematical model is suggested for unit-testing, and an object orientated
design is suggested.
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Opsomming

'n Ruimteafbeelding (SM) raamwerk wat 'n outomatiese benadering vir die
oplos van rekenaar gesteunde ontwerp (CAD) optimeringsprobleme vir elek-
tromagnetiese (EM) toestelle toelaat word aangebied. Direkte optimering van
gedetailleerde, hoëtrou EM modelle kan bewerkingsintensief wees, en kan die
gebruik van optimering in groot stelsels beperk.

SM laat die inkorporasie van lae-vertroue/growwe modelle toe wat vinnig
is om te evalueer, sonder om die akkuraatheid van die resultate in te boet.
Die SM raamwerk bou 'n surrogaatmodel vanaf die growwe model op, wat
programmaties belyn word met die hoëtrou/fyn model. Optimering word uit-
gevoer deur van die surrogaatmodel gebruik te maak. As die surrogaat ver
van enige punt waar belyning plaasgevind het geëvalueer word, mag die resul-
tate divergeer. A vertrouegebied (TR) word voorgestel as 'n metode om die
robuustheid van die raamwerk te versterk. Die TR beheer die grense van die
optimeringsruimte.

Vier tipes SM word geïmplementeer binne die outomatiese raamwerk: in-
tree, uittree, implisiete en frekwensie SM. Literatuur wat gebruik maak van
party van die tegnieke word bestudeer, en 'n gedetailleerde analise van die
oorspronklike SM implementasie en 'n frekwensie SM implementasie word in-
gesluit. 'n Basiese TR implementasie, van die literatuur, word ook in detail
ondersoek. Die metodiek wat gebruik is om die outomatiese raamwerk te on-
twikkel word verduidelik, enMatlab implementeringsdetails vir elke stadium
word bespreek. Die gebruikerskoppelvlak na die TR-verbeterde SM optimer-
ings stelsel word bespreek. Die beskikbare hoëtrou oplossers is FEKO en CST,
terwyl, vir die growwe modelle, AWR-MWS en Matlab gebruik word.

'n Mikrostrook stomplyn voorbeeld is gebruik om die gebruik van intree,
implisiete en frekwensie SM toe te lig. FEKO en AWR-MWS word vir hi-
erdie voorbeelde gebruik. 'n Mikrostrook dubbelgevoude stomplyn �lter word
van die literatuur geneem en gebruik om die stelsel te evalueer. Hierdie band-
stop voorbeeld het drie ontwerpsveranderlikes en daar word verwag dat drie
S-parameter doelfunksies bereik word. 'n Optellings intree en implisiete SM
benadering is gekies om hierdie probleem op te los. Elke iterasie is geanaliseer
en die SM raamwerk haal suksesvol die spesi�kasie binne vier fyn model eval-
uasies.

Ten slotte word verbeterings aan die outomatiese raamwerk voorgelê. 'n
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DECLARATION iv

Algemene wiskundige model word voorgestel vir eenheidstoetse, en toekom-
stige werk wat objek georiënteerde ontwerp voorstel word bespreek.
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Chapter 1

Introduction

Bandler, in his 1969 paper, postulates that a fully automated design and opti-
misation is surely one of the ultimate goals for computer-aided design (CAD)
[1]. He takes this even further and suggests that the more human intervention
that is required to come to an acceptable design is a measure of how ignorant
the designer was in setting up the problem, and in specifying goals and con-
straints in a meaningful way [1]. The use of CAD within the radio frequency
(RF) and microwave circuit disciplines has indeed become standard practice
for many engineers [2]. Electromagnetic (EM) solvers are ever-increasingly
being used for design veri�cation and are themselves improving in accuracy
(higher �delity) [3]. While EM solvers improve in accuracy and e�ciency,
industry continually pushes computational boundaries requiring �ner meshes,
for intricate designs, and analysing the e�ects within a multi-physics context
[4, chap. 3, pg. 34]. For complex problems, the cost of solving them directly
can be prohibitive and hamper adoption of the using these solvers in an op-
timisation context as this inevitably require solving the high-�delity models
multiple times [3, 5].

Di�erent optimisation techniques have been applied within the EM �eld
[1, 6�8]. A typical direct optimisation can be described as follows. Firstly let
the design parameters of the model be represented listed as an Nn dimensional
vector labelled x f . That is to say

x f ε <Nn×1 . (1.1)

The response of the model, given the design parameters, form an Nm dimen-
sional vector Rf , where

Rf ε <Nm×1 . (1.2)

Typically, a response can be scattering-parameters (S-parameters), directivity
or a power quantity. These quantities correspond to a set of frequencies, in this
case Nm is the number of frequencies points selected. The subscript f repre-
sents a link to the �ne model. Fine models are typically very accurate/high in
�delity and give results that are comparable to real-world measurements. This

1
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CHAPTER 1. INTRODUCTION 2

type of simulation/modelling can be computationally expensive, especially for
computational electromagnetic (CEM) simulations [5]. An optimal solution
has some criteria that makes it better than some other point. Goals within a
system are de�ned to capture this. A goal could be, for example, when looking
at s-parameters in �lter design, that the response decays quick enough, or for
directivity that the side-lobes are as low as possible. A given goal is pulled
into a function U where a single value is given for how well a goal is met. This
is called the objective or error function. The optimisation routine will try to
minimise this function and is described mathematically as

x ∗f = arg min
xf

U (Rf (x f )) . (1.3)

where x ∗f is then that optimal point where U is a minimum [5]. In Figure 1.1
a �ow diagram of a typical �ne model optimisation routine is shown. Here i
represents the iteration count starting at zero,

i = 0, 1, 2, . . . . (1.4)

The initial design, that is set up by the user, has input parameters x
(0)
f . It

is common that the search space is constrained and the optimiser is to only
work within this feasible region. The constraints can arise because of project
speci�cation, where a system needs to �t into a particular volume, or due to
solver criteria to ensure the model remains valid. If the error function has
been minimised, then the current �ne model parameters are at the optimal
point x ∗f = x

(i)
f . If U is not yet at a minimum, then the iteration count is

incremented by one, i = i+ 1 (or using a shorter version i+ +). An updated

set of design variables are calculated x
(i)
f and a �ne model evaluated takes

place. The evaluation uses a high-�delity solver to get the most accurate
results possible. This is often external to the optimiser itself and thus drawn
outside the grey optimiser block in Figure 1.1.

Several techniques have been used to try overcome the simulation run-
time bottle-necks in high-�delity simulations. These include table lookup rou-
tines [1, 9], surface modelling and multidimensional interpolations [10], model-
reduction techniques [11] and arti�cial neural networks [12].

In their 1994 paper Bandler et al. introduce a concept called space-mapping
(SM) in an attempt to reduce the number of accurate �ne model evaluations
required to complete a successful optimisation [13]. Here a mapping is built up
by pairing high-�delity EM simulations with circuit simulations. The circuit
models are low-�delity models that have a low CPU cost but are not as accurate
[4, chap. 8.4, pg. 160]. They still have underlying physical characteristics that
are shared with full-wave EM solvers, but there will still be discrepancies
between the results [5]. The low-�delity model is also referred to as the coarse
model.

When the low and high-�delity models have a strong similarity in char-
acteristics, then there is normally a one-to-one mapping between the design
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CHAPTER 1. INTRODUCTION 3

Optimiser

Initial
Desin

Evaluate Model

Termination
Condition

Update Design

EM Solver

Final
Design

x
(0)
fi = 0

Rf (x
(i)
f )

Yes x ∗f = x
(i)
f

No

i+ +

x
(i)
f

Figure 1.1: Flow diagram showing a direct high-�delity optimisation

parameters used in the models. Therefore, the input parameter vector, for the
coarse model is de�ned as

x c ε <Nn×1 , (1.5)

where Nn is the same size as in (1.1). The response of the coarse model Rc is
also expected to be the same size as the �ne model response,

Rc ε <Nm×1 , (1.6)

where Nm is the number of samples (typically frequency) points. To compen-
sate for the di�erences between the models, a parameter extraction (PE) or
calibration phase is carried out [13]. Once this mathematical representation,
reducing the di�erences has been built up, it can be applied to the other coarse
models and transform them into a more accurate form. The updated coarse
model is called a surrogate model and its response is given by Rs. The process
of updating the coarse model to get a surrogate model response that closely
resembles the �ne model response is called alignment. It is the minimisation
of the di�erence/error between the surrogate and �ne model responses. The
error between the surrogate and the �ne model response is given by

ε = ||Rs(x c)−Rf (x f )|| , (1.7)

where || ◦ || represents a norm such as l1, l2, or Huber [14]. Here the design
parameters x c and x f represent the low- and high-�delity spaces respectively.
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CHAPTER 1. INTRODUCTION 4

These are usually the same value as both spaces have the same underlying,
physical representation. If this is the case then the subscripts are dropped
and the design variable representation reduces simply to x . Once the error
between the responses has been minimised, the surrogate model is passed to
an optimisation routine that �nds an optimal point in low-�delity space, x ∗c .
This is used to evaluate the next iteration in �ne model space. The �ow
diagram in Figure 1.2 shows how the di�erent stages link together. Once
he �ne model evaluation has completed it can be compared against its goal
speci�cation, in the same way as (1.3) and will terminate if the model meets the
speci�cations. Some general space-mapping algorithms evaluate the optimal
coarse model response to see if the initial speci�cation has been reached [4,
chap. 8.3, pg. 158]. If the speci�cations are not met yet then the iteration count
is incremented and the process continues.

SM Optimiser

Initial
Desin

Evaluate
Fine Model

Termination
Condition

Update Surrogate
Model (PE)

Optimise Sur-
rogate Model

EM Solver

Coarse Solver

Final
Design

x
(0)
fi = 0

Rf (x
(i)
f )

Yes

x ∗f = x
(i)
f

No i = i+ 1

Rs(x
(i)
c )

x
(i)
f = x ∗c

Figure 1.2: Flow diagram showing a space-mapping based optimisation

Generally, space-mapping algorithms can be summarised as consisting of
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CHAPTER 1. INTRODUCTION 5

four main steps [3]. They are as follows:

1. Run a �ne model simulation, Rf (x
(i)
f ).

2. Extract the parameters of a coarse or surrogate model.

3. Update the surrogate or mapping functions.

4. Use an optimisation routine on the surrogate model.

In the more than two decades since that �rst paper there have been numer-
ous improvements [3]. An aggressive space-mapping (ASM) approach uses the
�ne model evaluations to build the surrogate as soon as they are available [14].
The parameter extraction phase can result in a non-unique solution and the
algorithm can break down [15]. To improve various approaches are suggested:
step multipoint PE [15, 16], penalty based PE [17] and aggressive PE [18, 19].

The likelihood that a space-mapping optimisation routine will succeed,
rests heavily on how similar the �ne and surrogate models are [20]. In other
engineering disciplines, surrogate models are often built up without there be-
ing any underlying physical basis between the models and instead only using
�ne model data [21�25]. A proper choice of coarse and surrogate models can
improve convergence and even the overall performance of the space-mapping
system [26, 27]. Even with a suitable model and mapping type convergence
to a �nal design is not guaranteed and it may be necessary to manually verify
the result [20, 23]. Furthermore, zero and �rst-order consistency conditions
are not necessarily satis�ed [23] between the �ne and coarse models. This
arises because the value and �rst-order derivative between the surrogate and
�ne models may not align at each iteration [20]. There is, therefore, no guar-
antee that the error will be reduced between iterations [27]. For an automated
approach to attaining an optimal solution e�ciently, this is of serious concern.

Incorporating a trust-region (TR) to the space-mapping algorithm can im-
prove robustness and protect against convergence problems [27�31]. Koziel
et al. suggest that even though applying a trust-region to the space-mapping
algorithm does not rigorously ensure convergence, it instead becomes a heuris-
tic that does indeed improve robustness [20]. A trust-region operates by re-
stricting the design space optimisation to within a region (radius) where the
�ne and surrogate models have a reasonably good agreement. This is done by
setting up a trial point and evaluating di�erent metrics of how well the reduc-
tion of error between surrogate models compares with the reduction between
the �ne models [29]. If there is a good agreement then the radius in which the
optimisation is bounded is increased as it appears that the surrogate model
accurately represented the �ne model at the last iteration. The agreement
between the two models can change throughout the design space and thus the
trust-region is used throughout the optimisation process. If an improvement
between the surrogate and high-�delity runs is not seen, then the trust-region
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CHAPTER 1. INTRODUCTION 6

radius is reduced around the last iteration point (where there was good align-
ment). A new trial step is then set out within this new reduced region and the
process continues.

Before the entire system is put together, some parts are analysed inde-
pendently. In Chapter 2 the original space-mapping algorithms is outlined, a
detailed example of frequency space-mapping (FSM) is carried out in isolation
and the basic trust-region (BTR) algorithm is explained through the use of an
example.

Once the robustness of the system is suitable to handle a fairly wide variety
of problems, it can be presented to a user. The purpose of this project is to
present a space-mapping framework to a user in an automated way for the
intention of using it for device optimisation. Filters and radiating structures,
at microwave frequencies, form a use-case of the type of device intended to be
optimised using the system presented in this thesis.

AMatlab based methodology is presented in Chapter 3, [32]. A number of
space-mapping approaches are combined into a general and automated system
that can be used in various di�erent con�gurations. Available space-mapping
options include input, output, frequency and implicit space-mapping. The
automated system interfaces with a variety of external high and low-�delity
solvers including Matlab based circuit models [32, 33], AWR-MWS [34],
CST [35] and FEKO [36]. The user speci�es their initial, pre-constructed �ne
and coarse models through an input directive and selects which form of space-
mapping the system should use. Default optimisers are speci�ed for alignment
and design space optimisation, but these can be speci�ed directly by the user.

The space-mapping framework is analysed in Chapter 5. The framework is
tested using a simple mathematical model that is built up to handle a greater
number of design variables. Detailed examples of each space-mapping type
are explored within the context of the entire system using a simple microstrip
stub example. FEKO is used as the �ne model solver while a coaxial AWR-
MWS example is used as the coarse model. The design of a gap wave-guide
�lter is carried out using CST as the high-�delity model and Matlab circuit
components as the low-�delity model [37].

Finally, in Chapter 6, closing remarks and recommendations for future is
given.
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Chapter 2

Space-Mapping Optimisation
Techniques/Approaches

Space-mapping establishes a correction between high-�delity simulation results
Rf and that of low-�delity approximate results Rc. The corrected low-�delity
or coarse model is called a surrogate model and its response is denoted Rs.

In this chapter, a selection of space-mapping techniques are presented that
form a base for operating on a variety of di�erent model types. The origi-
nal space-mapping approach, by Bandler et al. [13], is introduced �rst in Sec-
tion 2.1. This is the foundation from which the other techniques were built.

Koziel et al. break the space-mapping procedure up into four main groups
[4, chap. 3.3.4.2, pg. 48]:

1. Input space-mapping, where a multiplicative term B and an additive
term c, are applied directly to the model design parameters, see Fig-
ure 2.1a. Once the design parameters have been adjusted, they are then
passed through to the low-�delity solver, which is directly the surrogate
response, Rs = Rc(Bx + c)

2. Output space-mapping (OSM) applies a correction to the response of the
coarse model. Once again a multiplicative A and additive d factor can
be used. The coarse model is initially evaluated and then the factors
are applied, see Figure 2.1b. Here the surrogate response is given by
Rs = ARc(x ) + d .

3. Implicit space-mapping (ISM) introduces extra parameters into the coarse
model x p, see Figure 2.1c. This allows extra degrees of freedom through
which the coarse model can be corrected to match the �ne model. It is
evaluated using the low-�delity solver which gives the surrogate response
Rs = Rc(x , x p). This is a powerful technique that allows insu�ciencies
in the coarse model to be compensated for.

4. Custom corrections which act on the independent axis. In the EM �eld
this is often applied as frequency space-mapping (FSM). A frequency

7
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shift δ or axis scaling σ can be applied, see Figure 2.1d. The surrogate
response is then calculated using the low-�delity solver giving Rs =
Rc(x , σf c + δ).

Input SM

B c

Coarse Model
x Bx + c Rc(Bx + c)

(a) Input parameter space-mapping.

Coarse Model Output SM

A d

x Rc(x ) ARc(x ) + d

(b) Output response space-mapping.

Coarse Model
with preassigned

parameters

x p

x Rc(x , x p)

(c) Implicit space-mapping.

Coarse Model
Frequency SM

σ δ

x

σf c + δf c

Rc(x , σf c + δ)

(d) Frequency space-mapping.

Figure 2.1: Four main space-mapping categories.

Each of these techniques can be applied to various di�erent engineering prob-
lems. A detailed explanation of FSM in given in Section 2.2. Its origin, use in
literature and some subtle implementation details are presented.
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To address robustness issues when using the various space-mapping ap-
proaches [20], a detailed trust-region (TR) explanation is given in Section 2.3.
The trust-region places a limit on the optimisation space of the design vari-
ables. An optimisation is carried out using an aligned surrogate model that is
built up using one, or a combination of, space-mapping techniques. The im-
provement between the responses of the surrogate model before and after the
con�ned optimisation is compared against the actual improvement between
�ne model responses. If the change in aligned surrogate model changes in the
same way as the �ne model, then it is trusted. However, if the way the re-
sponses change from iteration to iteration diverge, then the region is shrunk
back to where it was last trusted.

2.1 Original Space Mapping Algorithm

Bandler et al. , combine the use of computationally cheap circuit model approx-
imations, and that of high �delity EM simulations, to accurately and e�ciently
optimise some speci�c microstrip problems [13]. In this paper, they develop
a system where a mathematical mapping is created between optimised circuit
models that correspond to EM evaluations. The fast evaluating circuit model
is called the coarse model. The EM evaluation, that has a good accuracy, is
the �ne model.

A formal de�nition for the input parameters of the �ne model are shown
in (1.1) and that of the response is described in (1.2). Similarly, the coarse
model's input/design parameters x c are de�ned in (1.5). The output response
Rc, of the given design parameters is de�ned in (1.6). The dimensions of the
�ne and coarse model responses do not need to match but this is often the
case.

In contrast to the typical direct optimisation routine, shown in (1.3), Bandler
et al. bring together the coarse and �ne parameter spaces using a transforma-
tion/mapping function P . This mapping is represented by

x c = P(x f ) , (2.1)

which must satisfy
Rc(P(x f )) ≈ Rf (x f ) (2.2)

in the region of interest. This only holds where the high-�delity and coarse
approximation models have a reasonable agreement. If they do not, then the
norm of the responses will not tend to ε. Or said another way, an error between
the coarse and �ne model can be de�ned as

||Rf (x f )−Rc(P(x f ))|| ≤ ε , (2.3)

where || ◦ || is a suitable norm and ε is as small a positive constant as possible
[13]. Di�erent norm functions are described later in Section 3.5.5.5.
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To �nd an estimation for x ∗f , without direct optimisation (1.3), x f is de�ned

x f
4
= P−1(x ∗c) , (2.4)

where x ∗c is the optimal solution of the coarse model and x f is the image of
x ∗c subject to (2.3), [13].

Bandler et al. adopt an iterative process to build up P using the previous
�ne model evaluations [13]. Typically, P is a simpli�ed zero or �rst order
model. A dimension k set of evaluations is represented by

Df = {x (1)
f , x

(2)
f , . . . , x

(k)
f } . (2.5)

To build up the set, an initial point x
(1)
f is chosen within the parameter space.

This point can be determined by �nding the optimal coarse model x ∗c . Fig-
ure 2.2 shows the steps that the algorithm goes through to obtain an accurate
model taking coarse model parameters to the �ne model space [13]. The left-
hand side set of axes represent the coarse model space and the points where
responses are calculated. The �ne model space is on the right-hand side axes.
Figure 2.2a shows the �rst step where the �ne model is evaluated at the same
point as the optimal coarse model.

Next, a further k evaluations in the neighbourhood of x
(1)
f are evaluated,

see Figure 2.2b. k is a prede�ned number of solutions to be evaluated. The
additional �ne models are used to get a good mapping function. Bandler
et al. use �ve additional points in their example, [13].

Through parameter extraction, the coarse model set

Dc = {x (1)
c , x (2)

c , . . . , x (k)
c } , (2.6)

is found such that (2.3) holds. Each parameter pair between D (1)
c and D

(1)
f

are evaluated allowing the mapping P1 to be created. Figure 2.2c show the
new coarse model evaluations and an optimal coarse model evaluation.

The inverse transform P−1j is applied to the optimal coarse model point to
�nd the next jth �ne model point,

x
(kj+1)
f = P−1j (x ∗c) . (2.7)

This point in �ne model parameter space will be di�erent to that of the coarse
model space until there is no further mapping required to get the previous k
�ne and coarse model responses to align. This step is shown in Figure 2.2d.

The responses Rc(x
∗
c) is compared to the new �ne model response Rf (x

(kj+1)
f ).

If the di�erence,

||Rf (x
(kj+1)
f )−Rc(x

∗
c)|| ≤ ε , (2.8)

then Rf (x
(kj+1)
f ) is the desired �ne model solution x f . If the termination

criteria is not met, then Df is expanded to include the new �ne model.
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x1

x2

Coarse model

x ∗c

x1

x2

Fine model

x
(1)
f

(a) An initial, optimal coarse model is
found. The �ne model is evaluated at
this point.

x1

x2

Coarse model

x ∗c

x1

x2

Fine model

(b) Fine model design parameter is
perturbed in the vicinity of the �rst
�ne model evaluation.

x1

x2

Coarse model

x ∗c

x1

x2

Fine model

(c) Parameter extraction is used to ob-
tain a mapping where the coarse and
�ne models give the same response.

x1

x2

Coarse model

x ∗c

x1

x2

Fine model

x
(6)
f

(d) P
−1 is applied to the optimal

coarse model point to �nd the next
�ne model.

x1

x2

Coarse model

x ∗c

x1

x2

Fine model

x
(6)
f

x
(6)
c

(e) Parameter extraction is carried out
of the new �ne model evaluation to
obtain x

(6)
c .

x1

x2

Coarse model

x ∗c

x1

x2

Fine model

x f

(f) Applying the updated inverse
transform and meeting termination
criteria.

Figure 2.2: Snapshots of how the original space-mapping algorithm moves
through the di�erent stages of the algorithm.
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Generate base Df

and �nd response Rf

Find optimal
solution in coarse

domain x ∗c

Extract Dc such that
||Rf (x f )−Rc(x c)|| ≤ ε

Find the trans-
formation
x c = P(x f )

Find x
(kj+1)
f from

x
(kj+1)
f = P−1(x ∗c)

Evaluate
Rf (x

(kj+1)
f )

||Rf (x f )
(kj+1) −Rc(x

∗
c)|| ≤ ε

x f = x
(kj+1)
f

Add x
(kj+1)
f

to Df

Stop

Yes

No

Figure 2.3: Flow diagram of the original SM algorithm
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model, continues until termination criteria (2.8) is met.
The �nal step is shown in Figure 2.2f, where, x f , the �nal image of x ∗c ,

being found. Figure 2.3 shows a detailed �ow diagram of the steps and loops
[13].

This original space-mapping algorithm uses mapping functions to calculate
the surrogate model. The example presented in the next section manipulates
the independent variable used to evaluate the coarse model.

2.2 Frequency Space-Mapping (FSM)

Bandler et al. introduce a custom correction approach to space-mapping, in
their 1995 paper [14], by acting on the independent variable. When evaluating
models, within the EM �eld, the independent variable is often frequency. This
method is therefore called frequency space-mapping (FSM).

Figure 2.1d shows that the frequency is fed into the coarse model evalua-
tion. This is from an overview perspective with an initial optimisation having
already been completed. The �gure shows σ and δ terms being applied to the
next evaluation. When the σ and δ terms are calculated, only the data from
one coarse model evaluation is required. Interpolation is used on that data
to get the new results for the surrogate response. This section is speci�cally
about the way that the σ and δ points are calculated.

Adjusting the frequency of the coarse model response Rc can provide an
e�cient alignment to the �ne model response Rf . This can take the form of
a shift/o�set in frequency δ, and/or a scaling factor σ [14]. The frequency of
the �ne model f f is kept constant while the frequency of the coarse model f c
is adjusted to get the coarse model's response data to align with that of the
�ne model's response. The frequencies that show the best match/alignment
of the responses is given as f s. A mapping between the coarse and optimal
frequency is given by

f s = σf c + δ . (2.9)

To e�ectively align Rc to Rf the following minimisation takes place,

arg min
σ,δ
||Rc(x c, σf c + δ)−Rf (x f )|| , (2.10)

where || ◦ || is a suitable norm. Norm functions discussed in Section 3.5.5.5. x c
and x f remain constant through this optimisation [14]. The surrogate response
is de�ned as

Rs = Rc(x c, σf c + δ) . (2.11)

To demonstrate the e�ect of δ and σ, a frequency shift and scaling examples
are presented below. Simple inverse tangent mathematical models are used
in both examples. Even though mathematical examples evaluate extremely
quickly the coarse model is expressed as a simpler function of the �ne model.
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The �ne model has some extra shift or scaling applied to it that the aligning
phase must reduce when building the surrogate model, see (2.10).

2.2.1 Frequency Shift Example

The coarse model response Rc uses an inverse tangent functions with an in�ec-
tion point around 25Hz, see Table 2.1. The in�ection point is chosen so that
only positive frequency points need to be evaluated. The function is calculated
between 0 − 50Hz, with 13 samples. This frequency range is chosen so that
there is su�cient space around the in�ection point and that the function can
tend to a constant at the start and end, even when shifted. The number of
samples is small so that the graphs do not appear cluttered and the shifts can
be seen clearly, typically this should have more samples for accurate results.

The �ne model response Rf is the same as the coarse model, except it is
shifted by a further 10Hz, see Table 2.1.

Just one input parameter x1 is used for these functions. It starts o� at a
value of one and does not change in this example because only the alignment
phase of FSM is described. As with most SM problems, the input parameter
is the same for both the �ne and coarse model (x c = x f = x1).

Table 2.1: Fine and coarse model equations for FSM frequency shift example

Coarse model response Fine model response
Rc = tan−1(x1(f)− 25) Rf = tan−1(x1(f − 10)− 25)

Figure 2.4a shows the initial �ne and coarse models. The black crosses
represent the calculated points of the �ne model. It crosses zero at about
35Hz. The coarse model's in�ection point can be seen 10Hz earlier, (red
squares). For easy comparison lines are plotted through the �ne and coarse
models for all the �gures in Figure 2.4, (dotted line for �ne and dashed line
for coarse).

Both models have the same underlying function and are just o�set from one
another. A frequency shift can be applied to the coarse model to su�ciently
align it with the �ne model. To do this (2.9) is used. For this example case,
the o�set is known so it is easy to determine the multiplicative and additive
constants (σ and δ). No scaling is required so σ = 1. The o�set total o�set
between the graphs is used for the additive constant, δ = −10. These values
are not typically known and this is solved as an optimisation problem using
(2.10).

Figure 2.4b shows these delta and sigma values applies to the frequency
axis f s. A 10Hz shift is clearly seen with the blue pluses. The actual axis is
shifted and new response data is required. The green region of Figure 2.4b
shows points where the coarse model response can be used to acquire surrogate
data. There is no data for the surrogate between -10− 0Hz and is highlighted
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(a) Initial �ne and coarse model re-
sponses for frequency shift example.

(b) Independent axis adjustment to
allow alignment. Sampling sections
highlighted to show valid data points.
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(c) The interpolated coarse model
data with invalid points removed. The
data is plotted on both the original
frequency axis and the cleaned new
axis.
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sponse interpolated using existing
data and end points.

Figure 2.4: The di�erent stages of FSM for a frequency shift example.

by a red region. The region between 40 − 50Hz is not relevant to the new
frequency axis and is thus not highlighted red nor green.

Now that there is an axis to work from, the values of the surrogate response
Rs can be calculated. This is done through interpolation in the region where
the surrogate axis f s and the coarse model's axis f c overlap (the green region
in Figure 2.4b). Values outside of the common region are set to NaN since no
data is available.

The Matlab function interp1 is used to do the interpolation [38]. This
is a 1-D table lookup type of interpolation with various interpolation meth-
ods. Three of the available methods are considered for this problem: a shape-
preserving piecewise cubic method called pchip, spline and linear. See
Figure 2.5 for a comparison between these three interpolation methods. By
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default, the pchip and spline functions extrapolate and values outside the
overlapping region must be set to NaN and cleaned up manually. For exam-
ples like this, with relatively small samples sets, the spline gives a less-smooth
transition as the in�ection starts, these regions of di�erence are highlighted in
Figure 2.5. Even though both the pchip and spline method appear to be
better candidates in this example linear is used for this stage of the alignment.

It is important to note that the input data need to be free of invalid values,
i.e. values at ± in�nity or NaN. The interp1 returns invalid results or gives
an error under these circumstances. Furthermore, values from an extrapolation
region with the interp1 function are set to NaN. To clear invalid values, the
result data points and their associated frequency points should be removed.
The result of the coarse model interpolation, with invalid points removed, is
shown in Figure 2.4c - blue circles. Note that there are no blue circle values
between 40 − 50Hz. The clean data is now projected back onto the original
frequency axis, see Figure 2.4c - magenta stars. There are no magenta star
values from 0− 10Hz.

Figure 2.5: Plot of the di�erence between Matlab interpolation (interp1)
techniques: pchip, spline and linear

The last step is to ensure that the surrogate data matches up with the �ne
model's. The validation of data in the previous steps removed values leaving
an inconstancy in the number of points. Furthermore, the endpoints could
have been removed resulting in a data step at the ends. If the new frequency
axis starts higher or ends lower than the original frequency axis, the �rst/last
original axis value is prepended/appended to the new frequency axis values.
The associated data value is also taken from the original coarse model. In the
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same way that this example has a �at start and end, so too is it expected for
most examples. This is a zero order extrapolation. If derivative information
is known, and it is non-zero, then a �rst order extrapolation can be applied.
This is not done here in these illustrative examples because they do not have
enough samples.

Once this is done, an additional interpolation of the surrogate data from the
new frequency axis to the original frequency axis is performed. This ensures
that the new values line-up correctly for future comparisons with the �ne model
response. Now that the boundary values are correct and all irregularities have
been removed from the frequency points the pchip shape-preserving method
can be used instead of linear. This validation step is useful, but it is still
necessary to ensure that good responses are generated that are su�ciently
sampled and contain critical data at the centre of the response. It is also
possible to only evaluate a speci�c, narrower, section of the response, this
allows the system to ignore edge anomalies. These regions are typically de�ned
around the goal region.

The �nal result is shown in Figure 2.4d - blue circles. There is a good
agreement between the �ne and the surrogate results. In the next example, a
scaling of the independent axis is required instead of a shift.

2.2.2 Frequency Scaling Example

As in the previous example, an inverse tangent function is used. It is evaluated
between 0− 50Hz, with 21 samples. The in�ection point is once again around
25Hz. Here the �ne model is scaled up by a factor of 3.5 instead of being
shifted, see Table 2.2. The coarse model is scaled down by 0.7 to further
emphasise the di�erence between the two models.

A single input parameter x1 is given a value of one. This example is just
looking at the alignment phase so the parameter does not change (x c = x f =
x1).

Table 2.2: Fine and coarse model equations for FSM frequency scaling example

Coarse model response Fine model response
Rc = tan−1(3.5x1(f − 25)) Rf = tan−1(0.7x1(f − 25))

Figure 2.6a shows the initial �ne (black crosses) and coarse models (red
squares) responses.

To change the coarse model so that it aligns to the �ne model, the gradient
needs to increase. This is done by manipulating the frequency axis so that
samples are pushed closer together at the centre. The axis is then stretched out
(using a factor of 3.5/0.7 = 5.0) to exist between -100−150Hz, see Figure 2.6b.

Only �ve points of this new axis lie on the original axis. These points will
not necessarily line up with any of the original points. Matlab's interp1
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sponse interpolated using existing
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Figure 2.6: The di�erent stages of FSM for a frequency scaling example.

function is used to acquire points from the coarse model using the new and
the original axis. It is very important to note that only interpolation from
existing points is possible. Using extrapolation methods on this function are
unlikely to succeed. It is however still possible to use an interpolation routine
like pchip when acquiring points from the coarse model. By default, the pchip
and spline routines use extrapolation, thus values would need to be forced
to NaN outside the valid original axis. In this example the linear option
for interp1 is used. The newly interpolated points are shown as blue circles
in Figure 2.6c. These �ve points line up successfully with the coarse model
and are now moved onto the original frequency axis, see the green crosses in
Figure 2.6c. The values line up with the �ne model.

Values are still required from 0 − 20Hz and from 30 − 50Hz, where NaN
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values where forced. The �rst and last coarse model values are used here. In
general, if the �rst frequency from the original axis is lower than that of the
cleaned axis then the �rst data point from the coarse model is assigned to the
�rst element for the surrogate's data. Similarly, if there is a higher frequency
on the original axis, that the cleaned axis, then the �nal point is added to
the end of the surrogate's data. Once these points have been inserted, then
the �nal interpolation phase can be carried out. Matlab's interp1 function
using pchip, is used for here. Only valid data exists and the end-point values
have been inserted. Interpolated points at the start and the end could just be
�lled linearly but points along the rest of the results bene�t from the curve
�tting interpolation. The �nal result of this surrogate is shown in blue circles
on Figure 2.6d. Typically, only having �ve points of useful data would result
in erogenous results but in this trivial case, it is su�cient.

30 40 50

Frequency (Hz)

1.5

G
en

Error in handling end and start values.

Rf-origninalFreq
Rc-origninalFreq
Rs-origninalFreq

Figure 2.7: Error when using the last/�rst value from the coarse model to
replace NaN values

The usage of the coarse model as the �nal/starting point for the surrogate
can result in errors. An enlarged version of the top-right part of Figure 2.6d is
shown in Figure 2.7. Here there is a clear discrepancy between the surrogate
and the �ne model. In general, this error is still signi�cantly less than using an
extrapolation routine. If a �rst order extrapolation method were to be used,
this error could be reduced.
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2.2.3 Overview

Steps from the two examples above can be used to summarise the approach for
FSM alignment. Figure 2.8 shows a �ow diagram of the various stages. In the
bigger scheme of things, the FSM alignment phase runs as part of the broader
optimisation.

An initial �ne and coarse model are received. If the response has complex
values then pre-formatting takes place by taking the absolute value or convert-
ing the response to decibels. This is di�erent for frequency space-mapping in
comparison to other space-mapping techniques. The phase information is use-
ful for alignment and matching both the real and imaginary part is typically
done.

New σ and δ terms are calculated and applied to the original frequency
values. The new values are used by an interpolated routine to obtain useful
response data in the overlapping region. Invalid values are then removed and
any necessary boundary values are appended. The response data, correspond-
ing to new frequency values, is pushed through another interpolation routine
using the original frequency values. This is e�ectively the response of the
surrogate.

The �ne model and surrogate responses can now be compared. The norm
of the di�erences between them is calculated and used as the error that is sent
to the optimiser. This stage forms part of the parameter-extraction/updating
the surrogate model phase seen in Figure 1.2. An inner loop iterates until
a suitable surrogate is found. Once the error/di�erence has been su�ciently
reduced, the σ and δ values are returned to the main algorithm as the chosen
FSM parameters for this alignment. The surrogate model is now known and
can be used in the next optimisation phase where the overall surrogate response
Rs goals are minimised to �nd the next optimal design space parameter x ∗c .

In the next section, a technique for improving the robustness of the outer
optimisation loop is discussed. This is used in combination with a space-
mapping technique such as FSM.

2.3 Trust-Region Convergence Safeguard

The space-mapping framework allows for optimisation problems to be solved
quickly and with less computational resources. It is important to ensure that
the optimal coarse model solution is feasible in the �ne model space. If the
coarse model and �ne models do not give similar results then the optimisation
is likely to fail. This falls into a broader topic of convergence and robustness of
the space-mapping algorithm. Divergence is observed when the error between
iterations is not reduced or there is a reduction in either the coarse/surrogate
model or the �ne model. The �rst step to achieving convergence is to ensure
there are underlying physical similarities between the �ne and coarse model
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Figure 2.8: Flow diagram of FSM.

[20, 26]. Even if this is the case, convergence is not ensured. Another step is
to ensure that the limits are set up correctly for both models. For example, if
in the �ne model geometric quantity changes result in overlaps the simulation
may become invalid. Some EM solvers require geometry that is overlapping to
be unioned together. For low-�delity solvers, there are often approximations
that only hold within speci�c regions of operation. If limits are not set up to
ensure these regions are avoided, invalid results may be obtained.

For convergence to be guaranteed �rst- and second-order consistency con-
ditions would need to be satis�ed between the surrogate and �ne models [23].
Since this is not the case, other convergence safeguards are required [20, 27, 39].
This is especially important for an automated system.
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These safeguards restrict the optimisation space to ensure that convergence
is achieved. A trust-region is a form of safeguard that restricts the optimiser
for taking steps that are too big to be correct in both the surrogate and �ne
models. Typically, an optimiser chooses the step-size and the direction is
speci�ed as �downhill�. Here, with a trust-region, the step-size is limited and
the direction is left up to the optimisation routine. Koziel et al. note that
the trust-region method is not formally justi�ed dues to �rst-order constancy
mismatch [20]. However, they still �nd it to be a useful heuristic to apply [20].
.

For SM, the trust-region is applied in the main optimisation loop where the
coarse model evaluations explore the parameter space. The basic algorithm is
described below.

2.3.1 Basic Trust-Region Algorithm (B.T.R.)

Conn et al. provides a detailed explanation of how to implement a Basic Trust-
Region algorithm (B.T.R.) [29, chap. 6.1, pg. 115]. A simpli�ed �ow diagram
of their algorithm is shown in Figure 2.9, this highlights �ve key stages to the
algorithm [29, chap. 6.1, pg. 116].

1. Initialisation, boundaries of parameters, starting point, initial trust-
region radius and constant de�nitions.

2. Model de�nition, where a surrogate model is built up.

3. Trial point calculation, running an optimisation on the surrogate model.

4. Evaluation of trial point, where the change in the �ne model is run at
the trial point and the success of the iteration is evaluated.

5. Trust-region radius update, that updates the region for the optimisation
in the next iteration. The radius is updated di�erently depending on of
whether the evaluated trial point was considered a success or not.

A mathematical example is used to illustrate the di�erent stages of the
algorithm and the choices made along the way. As before, the set of parameters
is represented by x and now a superscript k represents the iteration number.
For example, x (0) is a vector of the model parameters at the start of the �rst
iteration. The example presented is an adaptation from [29, chap. 1, pg. 1].
Consider the �ne model, with two parameters, given by

Rf (x1, x2) = -15x21 + 15x22 − 6 sin(x1x2) + 2x1 + 2x41 . (2.12)

In a practical problem it would be far too expensive to evaluate the entire
model in high �delity space, but for this simple mathematical example it is
done to give the reader an overview. A contour plot of the �ne model is shown
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Figure 2.9: B.T.R. �ow diagram

in Figure 2.10. Equation (2.12) is evaluated from -3.5−3.5 along both parame-
ters. There are steep walls around the edge of the model with two minima near
the centre, one slightly lower than the other. For this mathematical function
it is also possible to compute the gradient at each point, this is also shown
in Figure 2.10 with arrows. If the entire �ne model space is known, then it
is trivial to choose the optimal point x ∗ that gives a �ne model minimum at
Rf (x

∗). In practice a computationally cheaper operation would be desirable,
for example employing this B.T.R. approach.

2.3.1.1 Initialisation

The bounds in which the �ne model can be evaluated are known and the
parameter values make physical sense. For a mathematical model, like this
example, that translates to checking that there should be no singularities or
unde�ned points. In physically based examples other check can be carried
out like checking that geometry/meshes do not overlap or that the limits of
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BTR fine model example.
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Figure 2.10: Fine model contour plot for B.T.R. example

solution methods are not exceeded. Once the valid region is known, a starting
point can be chosen. Although fairly arbitrary, this is a just a point where the
�ne model can be evaluated. In this example the initial point (iteration 0) and
the �ne model evaluation is given by

x (0) = (0.25, -1.92) R
(0)
f = Rf (x

(0)) = 57.64 . (2.13)

The B.T.R. algorithm is iterative and uses the previous evaluation in future
iterations, therefore the value of each parameter and the response is stored.
The trust-region is the set of all parameters

B(k) = {x ε <n | ||x − x (k)|| ≤ ∆(k)} , (2.14)

where ∆(k) is the trust-region radius and || ◦ ||(k) is an iteration-dependent
norm [29, chap. 6.1, pg. 115]. Various norms can be applied, this is discussed
later in Section 3.5.5.5. For this example a Euclidean vector norm is used [29,
chap. 6.7, pg. 162]. The size of the trust-region radius is worked out as a factor
of the entire boundary size. The initial trust-region size is set to

∆(0) = 1.75 ,

centred around point x (0). Conn et al. suggest using an iterative approach to
determine the initial trust-region radius using the model's Hessian and ensuring
that the Cauchy point lies on the boundary [29, chap. 17.2, pg. 784].
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2.3.1.2 Model De�nition

At this stage only a single point, within the bounded region, is actually known
(in a real problem). Various approximations can be made from the �ne model
that are valid as long as they are evaluated within a suitably small neighbour-

hood around the �ne model point. One of the functions of the trust-region
is to ensure that the neighbourhood of the low �delity model remains valid,
more on this follow in Section 2.3.1.6. A transformation can be applied to the
coarse model so that it aligns better to the �ne model. If this is done, then
the transformed model it is called the surrogate model. The previous section
discusses in detail the use of an alignment mechanism. For the simplicity of
this example no alignment phase is actually carried out, however, the surrogate
term is still used because it is typically the case.

To evaluate the surrogate model at a point away from R
(0)
f (the point x (0)

where the �ne model was evaluated), a trial point s(k) is introduced. Once
again, k represents the iteration number. This point is the distance, in each
parameter, that is moved away from the original point. The trial step must
remain within the trust-region radius. Typically, a local optimiser controls
where this step is taken and is discussed in Section 2.3.1.3. For this example
steps are taken throughout the entire region to show what the surrogate space
looks like and to illustrate how dangerous it can be to allow the trusted region
to grow. Conn et al. build up a surrogate model by adopting a quadratic form
that uses the last �ne model response, its derivative at that point, and if
available the second derivative too [29, chap. 6.1, pg. 117]. The quadratic form
is used because it is better than a linear approximation and still relatively
cheap and easy to optimise. Formally this surrogate model response Rs is
de�ned as

Rs(x
(k) + s(k)) = Rf (x

(k)) + 〈gk, s(k)〉+
1

2
〈s ,Hk s

(k)〉 , (2.15)

where Rf (x
(k)) is the result of the previous �ne model evaluation, gk =

∇xRf (x
(k)) the Jacobian and Hk the symmetric approximation or Hessian

∇xxRf (x
(k))[29, chap. 6.1, pg. 117]. The angle brackets 〈◦〉 represent the Eu-

clidean inner product (dot product)

〈a,b〉 =
n∑
i=1

ai bi . (2.16)

Using this approximation as the surrogate model, and extending trial steps
to test every point in the sample space, a contour plot of the model can be
developed, see Figure 2.11. The trust-region is shown by a dashed line, the
original point where the last �ne model was evaluated is shown by a circle and
�nally, a cross shows the trial point. The selection of a trial point is discussed
in Section 2.3.1.3.
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BTR surrogate model, iteration 0.
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Figure 2.11: Surrogate modelR(0)
s , based onR

(0)
f . Fine model mini-map shown

on the bottom right.

There are a number of characteristics to note while analysing the surrogate
model (2.15), and when comparing the graphs of the surrogate and �ne models,
Figure 2.11 and Figure 2.10 respectively. At the original point, both the �ne
and the surrogate model response have the same values. Clearly, this happens
because the step size is zero leaving the only non-zero term being the �ne
model response. This may be trivial to note, but it is an important check to
carry out when developing di�erent models. Furthermore, from the graphs, it
can be seen that within the neighbourhood of this original point the landscape
appears similar between the two. As the step moves further away from this
point the surrogate model starts losing accuracy. Towards the east and west
it runs steeply downhill whereas in the �ne model those edges build up again.
This surrogate model is a good approximation, but not su�cient to be used
throughout the space/domain. In a real problem, the accuracy of the surrogate
model would not be known since there is only one �ne model evaluation. It
can now be seen how a balance needs to be struck between remaining in a valid
region and not wasting time re-evaluating the �ne model when calculating a
new trial point.
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2.3.1.3 Trial Point Calculation

Using the surrogate model space, a local optimisation can be run, minimising
Rs,

x ∗(k)s = x (k) + s(k) = arg min
x
(k)+s

(k)
U (Rs(x

(k) + s(k))) , (2.17)

where x ∗s or x (k) + s(k) is the trial point in surrogate space. The trial point
is made up of the original point x (k), that is kept the constant, and the trial
step s(k), that is adjusted. The trial step s(k) is restricted to the size of the
trust-region radius ||s(k)||k ≤ ∆(k) and is an element of B(k). This restricts
the optimiser and quanti�es (albeit fairly arbitrary at the �rst iteration) the
assumption of trust. A local optimiser is likely to follow the slope to the lowest
point within the trust-region radius. The trial point, at iteration zero, is shown
by a red cross in Figure 2.11. The value of the point and the surrogate result
are given below:

x ∗(0)s = x (0) + s(0) = (-1.26, -1.04) Rs(x
(0) + s(0)) = -34.12

This is a signi�cant decrease compared to R
(0)
f = 57.64, see (2.13). There

is no guarantee that the �ne model will have changed in the same way as
the surrogate though. Deciding on whether or not the trial step is valid is
described next.

2.3.1.4 Accepting a Trial Point

Once this optimal trial point has been found, the �ne model is run at the
point too, Rf (x

(k) + s(k)). The change in response, from x (k) → x (k) + s(k), is
compared for both the �ne and surrogate models. The surrogate model should
have improved, else the optimisation failed. However, the �ne model could
very well have deteriorated. For this example the �ne model response is

Rf (x
(0) + s(0)) = -10.87 . (2.18)

This is a reasonable improvement to the original �ne model evaluation (R
(0)
f =

57.64), see (2.13). To decide if the trial point should be accepted or rejected, a
ratio of these changes can be determined. The ratio ρ is de�ned as

ρ(k) =
U(Rf (x

(k)))− U(Rf (x
(k)) + s(k))

U(Rs(x (k)))− U(Rs(x (k) + s(k)))
. (2.19)

Note here that U(◦) is used to show that it is actually the cost of the response
that is used. In this example a simple response is used and a single value is
returned, therefore the reference to the cost function is omitted. It is how-
ever important to take this into account for instances where the response is
itself a function of something (e.g. frequency), then a cost function must be
determined, see Section 3.6.1.
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In iteration zero of this example, the ratio is calculated as

ρ(0) =
Rf (x

(0))−Rf (x
(0) + s(0))

Rs(x (0))−Rs(x (0) + s(0))
=

57.64− (-10.87)

57.64− (-34.12)
= 0.75 .

A constant η1 is used to decide if the trial point should be accepted or not,

η1 = 0.05 . (2.20)

Conn et al. suggest that the only way to �nd a value for η1 is through ex-
perimentation [29, chap. 17.1, pg. 781]. If the change in ρ is greater than η1
it is considered an improvement and then the step is accepted. Therefore, a
criterion for accepting a trial point for iteration k, is de�ned by the following
condition,

ρ(k) ≥ η1 . (2.21)

If this criterion is met, then, the trial point becomes the starting/original point
for the next iteration x (k+1) = x (k) + s(k).

The trial step, in iteration zero, results in a relative improvement (between
the �ne and surrogate models) that is good enough to be classi�ed as success-
ful, (ρ(0) > η1). The surrogate model approximation is su�cient to be used
instead of the �ne model within the trust-region. It is not known if the radius
could have been larger or not. It is possible to increase the radius and try to
reuse the existing surrogate model again. However, since there is another �ne
model evaluation, a new surrogate model can be constructed. This is typi-
cally not more costly an operation than evaluating the surrogate model again.
Therefore, the iteration count is incremented k = k+1 and the algorithm goes
back to �nding a new surrogate model de�nition.

2.3.1.5 Rejecting a Trial Point

Now that a successful step has been taken a surrogate model is built and
iteration one (k = 1) begins. The original point in this iteration is taken
from the combination of the previous parameter position and the trial step
change x (1) = x (0) + s(0). The �ne model has already been evaluated at this
point (R

(1)
f = Rf (x

(1)) = Rf (x
(0) + s(0))) and this becomes the basis for the

surrogate model for iteration one, using (2.15). A contour plot of the response
of this surrogate model R(1)

s is shown in Figure 2.12, where once again the blue
circle represents the original point for this iteration x (1), the dotted circle is
the trust-region that is the same size as iteration zero,

∆(1) = ∆(0) = 1.75 ,

and the red cross represents the optimal trial point. The trial point is evaluated
using the same minimisation shown in (2.17).
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BTR surrogate model, iteration 1.
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Figure 2.12: Surrogate model R(1)
s , based on R

(1)
f with the same sized trust-

region as in iteration zero. Fine model mini-map shown on the bottom right.

The optimal trial point in the surrogate space, and the response at that
point is found to be

x ∗(1)s = x (1) + s(1) = (-2.75, -0.29) Rs(x
(1) + s(1)) = -43.68 .

This is once again at the edge of the trust-region and appears to be a signif-
icant improvement. Now the trial point needs to be evaluated to see if the
improvement is seen in �ne model space. Evaluation the �ne model response
gives

Rf (x
(1) + s(1)) = -7.59 . (2.22)

This does not appear to be an improvement from the original point for this
iteration one, see (2.18). ρ(1) is calculated, using (2.19), to formally decide if
this is a successful step,

ρ(1) =
Rf (x

(1))−Rf (x
(1) + s(1))

Rs(x (1))−Rs(x (1) + s(1))
=

(-10.87)− (-7.59)

(-10.87)− (-43.68)
= -0.1 .

Comparing this to the success criteria in (2.21) it is seen that this is a failing
trial point, ρ(1) < η1. The criteria for rejecting a trial point for iteration k can
be de�ned as

ρ(k) < η1 . (2.23)

When a trial point is rejected, the algorithm returns to last point where the
surrogate model and the �ne model were trusted, i.e. the original point from
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the iteration. This point is used, once again, as the initial point in the next
iteration x (k+1) = x (k). The region in which the surrogate was trusted needs
to be reduced so that the next iteration of the optimiser is con�ned to a search
area that is more reliable.

2.3.1.6 Trust-Region Radius Update

The trust-region radius is updated after the success of the last iteration has
been evaluated, see Figure 2.9. Success is measured using ρ which is a ratio
of the change in �ne model and surrogate model over the last iteration, see
(2.19). If the iteration is unsuccessful the trust-region radius is reduced, if the
result is moderately successful then the radius is kept the same, and if there
is a signi�cant improvement then the radius is increased.

An unsuccessful trial step occurs if (2.21) is satis�ed. In this case the
trust-region radius is reduced to restrict the optimiser to only evaluate a re-
gion in which the surrogate model correctly approximated the �ne model. In
Figure 2.13, the original point is kept from iteration one, and the radius is
shrunk by a factor

γ1 = 0.5 , (2.24)

where this constant is proposed in [29, chap. 6.1, pg. 117]. This means that,
for iteration two, the trust-region radius is reduced by half

∆(2) = γ1∆
(1) = 0.875 .

The same surrogate model, from iteration one, is evaluated within the new
trust-region. The optimal point is found to be

x ∗(2)s = x (2) + s(2) = (-1.99, -0.59) Rs(x
(2) + s(2)) = -34.78 .

Evaluating the �ne model at this point gives

Rf (x
(2) + s(2)) = -32.33 . (2.25)

Using the success ratio from (2.19), the ratio for iteration two is

ρ(2) =
Rf (x

(2))−Rf (x
(2) + s(2))

Rs(x (2))−Rs(x (2) + s(2))
=

(-10.87)− (-32.33)

(-10.87)− (-34.78)
= 0.89 ,

which satis�es η1 < ρ(2), suggesting a successful step. The �ne model improve-
ment is similar to that of the surrogate model and can be trusted. Therefore,
the trust-region does not need to be shrunk again for the next iteration. With
this updated the next iteration k = 3 can be started.

A new surrogate model is established and is shown in Figure 2.14. A small
step is taken to the optimal point within this trust-region radius,

x ∗(3)s = x (3) + s(3) = (-1.95, -0.35) Rs(x
(3) + s(3)) = -33.92 .

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. SPACE-MAPPING OPTIMISATION

TECHNIQUES/APPROACHES 31

BTR surrogate model, iteration 2.
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Figure 2.13: Surrogate model R(2)
s , based on R

(2)
f . A reduced trust-region due

to previously trial step failing. Fine model mini-map shown on the bottom
right.

The �ne model is evaluated at this point,

Rf (x
(3) + s(3)) = -33.97 , (2.26)

and the success ratio is calculated,

ρ(3) =
Rf (x

(3))−Rf (x
(3) + s(3))

Rs(x (3))−Rs(x (3) + s(3))
=

(-32.33)− (-33.97)

(-32.33)− (-33.92)
= 1.03 .

Although the trial step in iteration three is not very large, and the change in
�ne model response is small, this is considered a very successful step. Another
success constant η2 is introduced to describe how successful a trial step is:

η2 = 0.9 . (2.27)

If the success ratio, (2.19), results in

ρ(k) ≥ η2 , (2.28)

then the trust-region radius can be increased. There is such a good correlation
between the �ne model and the surrogate that it is possible that the surrogate
model can be evaluated further away from the original point. This is the case
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BTR surrogate model, iteration 3.
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Figure 2.14: Surrogate model R(3)
s , based on R

(3)
f with the same sized trust-

region as in iteration two. Fine model mini-map shown on the bottom right.

for iteration three and the radius is expanded by the same amount that it was
shrunk in iteration two. Therefore,

∆(3) = 2.0×∆(2) = 1.75 ,

and the iteration number is incremented to k = 4.
Iteration four is shown in Figure 2.15 with the dotted black line showing

the increased trust-region. A new trial step is calculated, but for all intents
and purposes, the optimal point has already been reached. This is one way
that the algorithm can terminate, see Section 2.3.2 for more on termination
criteria. Even though the trust-region radius increased, there is still no better
solution.

This is the end of the B.T.R. example. In general the trust-region radius,
for the next iteration, is updated as follows:

∆(k+1) ε


[∆(k),∞) if ρ(k) ≥ η2

[γ2∆
(k),∆(k)] if η1 ≤ ρ(k) < η2

[γ1∆
(k), γ2∆

(k)] if ρ(k) < η1

. (2.29)

2.3.2 Termination criteria

There are several reasons that the trust-region loop should terminate. One
mentioned in the section above is that the `optimal' solution is obtained within
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BTR surrogate model, iteration 4.
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Figure 2.15: Surrogate model R(4)
s , based on R

(4)
f . Trust-region radius increas-

ing due to previous models aligning well. Fine model mini-map shown on the
bottom right.

some prede�ned tolerance.
Another typical termination condition that is important to consider is a

maximum number of iterations. If this is not in place and the solution does
not succeed, then the operation would continue inde�nitely.

Another safeguard is to de�ne a minimum size for the trust-region or the
step size that can be taken. If the optimiser has reached a point where mean-
ingful steps are not being made, then the `best' solution has probably been
found.

2.4 Overview

Two space-mapping techniques are descried in great detail. They show the
implementation details in isolation without being complicated by other design
decisions. The original approach places shows how the space-mapping ap-
proach started and through the coming chapter is seen how it has developed.

The trust-region is a crucial development that can provide robustness
through various device optimisations. The detailed, example lead approach
allows the reader to become familiar with the topic before it is interwoven into
the broader automated space-mapping optimisation system.
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Methodology

To achieve an automated and robust system space-mapping techniques and
convergence safeguards need to be combined and presented to the user in an
encapsulated form. The system needs to be �exible enough to handle a variety
of problems and di�erent solvers but simple enough to be picked up by a new
user. Extendibility and maintainability of the system must also be kept in
mind.

The generalised implicit space-mapping (GISM) framework that Koziel
et al. present in their 2006 paper [39] is a starting point for how to achieve such
a system. Matlab is also used as the basis for their space-mapping framework
(SMF) using number of solvers/drivers including Sonnet`s em, MEFiSTo, Alig-
ilent`s ADS and FEKO [39]. There are several steps that a user must follow
to set up a model in the SMF. To set up the problem arguments are passed
to the SMF to con�gure it, a starting point and design variables are given,
frequencies of interest are speci�ed and the type of space-mapping is chosen
[39]. Once the �ne and coarse models have been speci�ed a user-interface is
available to adjust built-in trust-region speci�c options and initiating execu-
tions [39]. Concepts outlined in the Koziel et al. SMF are used as a basis for
the custom implementation introduced below.

Within this chapter a custom implementation that pulls together four dif-
ferent space-mapping techniques and wraps them within a trust-region en-
hanced optimisation routine. The space-mapping techniques include those
presented in Figure 2.1, input (ISM), output (OSM), implicit (ISM) and fre-
quency space-mapping (FSM). The basic trust-region (BTR) method presented
in Section 2.3.1 forms the basis for the safeguard enhancement. The sections
of this chapter are presented in the order of operation of the algorithm. This
allows the reader to have the base that is required to understand each follow-
ing step. An overview of the algorithm is shown in Figure 3.1. Initialisation
defaults and normalisation of design parameters is discussed �rst in Section 3.1
and 3.2 respectively. Ways to �nd a suitable starting point within the design
space are discussed in Section 3.3. An option to pre-populate the workspace
is also presented in this section. It is useful for stopping and starting the

34
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Figure 3.1: Overview of custom space-mapping algorithm.

system or to change the SM approach initially chosen. The initial �ne model
simulation run is discussed in Section 3.4.1 following which the process for
building a surrogate model and carrying out alignment is detailed. Di�erent
space-mapping techniques and how they interface with various Matlab opti-
misation routines is presented. The main optimisation loop and the integration
of the trust-region is discussed in Section 3.6. Finally, results are plotted.

Following the formulation of the algorithm an additional three sections
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are presented. An interface between the di�erent coarse and �ne solvers is
described in Section 4.2 and the user-to-framework interface is explained in
Section 4.1.

3.1 Initialisation and Defaults

A number of variables/constants are set with defaults so that the user does
not need to set them ever time. They are all however con�gurable.

A tolerance TolX is speci�ed as a termination condition. If none of the de-
sign variable change more than the tolerance, then the algorithms terminates.
The default tolerance is set to

TolX = 10-2 . (3.1)

The number of main loop optimisation iterations is capped to Ni. If the count
i meets this value, then algorithm terminates. By default,

Ni = 10 . (3.2)

The trust-region loop count TRNi is also capped. By default, it is also set to

TRNi = 10 . (3.3)

The trust-region default parameters are given the following default values,

η1 = 0.05 (3.4)

η2 = 0.9 (3.5)

α1 = 2.5 (3.6)

α2 = 0.25 (3.7)

∆init = 0.25 . (3.8)

η1 and η2 are de�ned in (2.20) and (2.27) respectively. α1 and α2 are constants
that govern the rate at which the trust-region changes size [29, chap. 17.1, pg. 782].
∆init is the initial trust-region radius.

3.2 Normalise Design Parameters

Normalisation allows the optimiser to successfully operate on design parame-
ters that di�er by orders of magnitude. A simple normalisation is applied to
all design parameters. Design parameters are denoted x . The user speci�ed
a maximum and minimum values for each of the design variables, these are
denoted xmax and xmin respectively. The normalised design parameters are
given by xn where

xn =
x − xmin

xmax − xmin
. (3.9)
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This e�ectively bring the values into a range of zero to one. Clearly the
minimum and maximum then become

xnmin = 0 (3.10)

xnmax = 1 . (3.11)

3.3 Design Parameter Starting Point

Using only the coarse model space, see Section 4.2.1, a suitable starting point
is found. This can improve the initial alignment of the �rst surrogate model.
A global optimisation routine can be run �rst to evaluate the entire space. A
local optimisation is then initiated to �nd the optimal point x ∗c .

Although similar to the main optimisation loop, this is done �rst as a
stand-alone step.

3.3.1 Global Optimisation for Initial Point

A globOpt �ag is set to control when the global optimiser is used.

� 0: This is the default option and means that no global optimisation is
conducted.

� 1: Speci�cally only the �rst iteration has a global optimisation run.

� 2: Each iteration goes through global optimisation phase.

Thus, for the initial design starting point run, option one or two results in
a global optimisation run. Approach for setting up the global optimiser is
discussed in Section 4.1.3. The normalised design parameter upper and lower
bounds are passed through to the optimiser and no inequality or equality values
are set.

After the global optimisation routine has completed, a local optimisation
step is conducted using the design parameters found.

3.3.2 Direct Local Optimisation for Initial Point

The local optimisation step either accepts a starting point set up by the user or
from a global optimisation routine. Con�guring the local optimiser is discussed
in Section 4.1.3. The normalised design parameter upper and lower bounds are
passed through to the optimiser and no inequality or equality values are set.
The design parameters found from the local optimisation are passed through
to the alignment phase.
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3.3.3 Initial Point from Externally Speci�ed Surrogate

Here the initial design space optimisation phase is skipped. The surrogate is
speci�ed from the outside and no computation is required. This is useful when
designing circuits, such as �lters, where the optimal response is known. The
useScAsOpt boolean �ag is set to use this feature.

3.3.4 No Optimisation - Align from Speci�ed point

This option mainly used for testing as no initial optimisation is carried out,
instead the algorithm starts at the initial point speci�ed by the user. The
variable startWithIterationZero is used to turn this feature on or o�. Once
an initial point has been decided on, then the models for alignment can be
acquired.

3.4 Acquire Model for Alignment

The coarse model is quick to evaluate but not very accurate. The space-
mapping builds up a surrogate model that takes the coarse model and aligns it
to a high-�delity model. At this point in the algorithm there are no evaluations
in �ne model space. A �ne model evaluation is either run now or taken from
a save point in a previous space-mapping framework run.

3.4.1 Calculate Fine Model Response at Initial Point

The point chosen in Section 3.3 is where �ne model response Rf is calculated.
Details of which solvers are available and how they are initialised are given in
Section 4.2.2.

3.4.2 Pre-Populate Space

A pre-populated space is a way to continue from a save point from previous
run. At the end of each successful alignment phase save point is created. If
the iteration is not successful, then the save is not trigged. For a successful
iteration a Matlab log is created containing various useful properties that
can be used to carry on where that iteration left o�. The iteration count
and design variables are streamed. The �ne, coarse, surrogate and aligned
surrogate responses as well as all the trust-region details are also written out.
These variables are also useful when analysing how a particular iteration went
and what path the system took to get to a �nal result. There is enough data
available to re-run plotting routines making it easy to change the way graphs
are presented without redoing the optimisation runs.

The �les are written out to the location where the currentMatlab system
run is taking place. The name of the �le begins with SMLog followed by the
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make of the �ne model and the date/time. A Once the �le has been written
out, it can be read in to a new system run using the prepopulatedSpaceFile
variable. This variable is set to the name of the �le to use.

The save point can also be used to change the space-mapping options or
optimiser without losing the runs that have already been carried out.

3.5 Building a Surrogate and Alignment Phase

In this phase the optimisation variables revolve around building the surrogate
model. This is not to be confused with the main optimisation loop where the
design variables are the optimisation focus.

Here the space-mapping parameters are established that build up a surro-
gate model that takes a coarse model response and adapts it to closely resemble
the �ne model response. This stage is both a building and an alignment step.
All four of the space-mapping techniques described in Figure 2.1 are available
in this framework. These techniques are output, input, implicit and frequency
space-mapping and are explained in detail in the following sections. Their
form as well as the way they are initialised, their constraints and how they are
used in the alignment process are detailed.

Constraining the optimiser is necessary to ensure that a valid surrogate
model is obtained. A maximum and minimum value is known for each design
parameter, if a value outside this bound is given as a result that iteration must
be excluded. This is in addition to the lower and upper bounds on the space-
mapping parameters. The optimisers in use only accept less than or equal to
constraints therefore greater than constraints are multiplied with negatives. A
general optimisation problem is built up that can be used for both global and
local constrained optimisers from the Matlab Optimisation Toolbox.

After the di�erent space-mapping techniques have been described they are
pulled together and used in the parameter-extraction or alignment phase. Here
the optimiser is run and the best alignments values are found within the bounds
described. The way that the new surrogate model is evaluated is by using error
function, options for this step is also outlined in the coming section.

3.5.1 Input Space-Mapping (B & c)

Input parameter space-mapping works directly with the input parameters or
design variables, see Figure 2.1a. The multiplicative B and additive c com-
ponents are applied in the following way

Bx + c , (3.12)

where the values in x are the design parameters. B is an (Nn × Nn) matrix
and c is a column vector of dimension (Nn). The resulting parameters are fed
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into the coarse model. This �nally results in a surrogate response

Rs = Rc(Bx + c) . (3.13)

Within this framework the getB �ag is used to enable the multiplicative aspect
of this technique and getc for the additive.

3.5.1.1 Initialisation and Bounds

The multiplicative input space-mapping can be used in three ways:

1. The entire matrix is set to be used. The initial values for the o�-diagonal
or cross terms are set to -0.5 and the main diagonal is 0.5.

B init =

 0.5 −0.5 −0.5

−0.5
. . .

...
−0.5 . . . 0.5

 (3.14)

The maximum bounds for the B matrix cross terms is 0.5 and on the
main diagonal it is 2.0.

Bmax =

2.0 0.5 0.5

0.5
. . .

...
0.5 . . . 2.0

 (3.15)

The minimum bounds matrix is the same as the initial matrix.

Bmin =

 0.5 −0.5 −0.5

−0.5
. . .

...
−0.5 . . . 0.5

 (3.16)

2. Using only the main diagonal, which keeps the o�-diagonal terms zero.
This results in fewer terms to evaluate. An initial value of 0.5 is also
used on the main diagonal,

B init =

0.5 0.0 0.0

0.0
. . .

...
0.0 . . . 0.5 .

 (3.17)

This is once again the minimum value and 2.0 for the upper bound

Bmax =

2.0 0.0 0.0

0.0
. . .

...
0.0 . . . 2.0

 (3.18)

Bmin =

0.5 0.0 0.0

0.0
. . .

...
0.0 . . . 0.5 .

 (3.19)
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3. Speci�c entries in the matrix can be included/excluded. If they are
excluded they are simply zero.

The additive input space-mapping term has an initial value of zero,

cinit =
[
0 . . . 0

]T
(3.20)

and bounds directly related to that of the design variables and the multiplica-
tive matrix

cmin = xmin −Bmax xmax (3.21)

cmax = xmax −Bmin xmin . (3.22)

3.5.1.2 Constraints

For a surrogate to be valid it needs to translate into a valid model in coarse
and �ne model space. Therefore, the bounds for those spaces must be taken
into account here. To do that inequality constraints are applied.

For input space-mapping the following equation form constraints for the
space-mapping parameters. The maximum

Bx (i) + c ≤ xmax (3.23)

and minimum
Bx (i) + c ≥ xmin .

The minimum then becomes

−Bx (i) − c ≤ −xmin , (3.24)

where x (i) are the design parameters from the last �ne model evaluation. Equa-
tions (3.23-3.24), for input space-mapping, are reorganised and reshaped into
the following form



−x1 0 0 . . . −xNn 0 0 −1 0 0

0
. . .

... . . . 0
. . .

... 0
. . .

...
0 . . . −x1 . . . 0 . . . −xNn 0 . . . −1
x1 0 0 . . . xNn 0 0 1 0 0

0
. . .

... . . . 0
. . .

... 0
. . .

...
0 . . . x1 . . . 0 . . . xNn 0 . . . 1





B1,1
...

BNn,1
...

B1,Nn

...
BNn,Nn

c1
...
cNn



≤



−x1min
...

−xNnmin
x1max
...

xNnmax


.

(3.25)
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The left-hand-side matrix has dimensions ((2Nn)× (N2
n +Nn)) and is denoted

by LHSinput. The left-hand-side column vector has dimension (N2
n +Nn) and

denoted by vecinput. Finally, the right-hand-side column vector has dimension
(2Nn) and is represented by rhsinput. Substituting the new terms into (3.25)
gives

LHSinput vecinput ≤ rhsinput . (3.26)

This form of the constraints is accepted by the optimiser containers described
in Section 3.5.5.2.

3.5.2 Output Space-Mapping (A & d)

Output space-mapping applies a correction to the response of the coarse model.
Figure 2.1b show a �ow diagram that describes this process. The coarse model
Rc is evaluated at the speci�ed design parameter position x . A multiplicative
A and additive d term are then applied to give the surrogate response

Rs = ARc(x ) + d . (3.27)

The getA �ag is used to select the multiplicative term while getd is used for
selecting the additive term.

This method can be used in conjunction with other space-mapping tech-
niques. It is applied last, after the e�ects of the other methods have been
applied.

3.5.2.1 Initialisation and Bounds

The multiplicative value A can be applied to the system in two ways:

1. As a single value that is applied to each response point. In this case the
A matrix resolves to a single value. It is initialised to

Ainit = 1 . (3.28)

The lower and upper bounds are set to

Amin = 0.5 (3.29)

Amax = 2.0 . (3.30)

2. A di�erent value for each response point. A then becomes a diagonal
matrix of dimension (Nm ×Nm). It is initialised to

Ainit =

1.0 0.0 0.0

0.0
. . .

...
0.0 . . . 1.0

 . (3.31)
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The maximum is set to

Amax =

2.0 0.0 0.0

0.0
. . .

...
0.0 . . . 2.0

 (3.32)

(3.33)

and the minimum to

Amin =

0.5 0.0 0.0

0.0
. . .

...
0.0 . . . 0.5

 . (3.34)

The additive term d is an Nn column vector and is initialised to zeros.

3.5.2.2 Constraints

Output space-mapping parameters do not directly operate on the other space-
mapping parameters and a place-holder zero vector,

[
0 . . . 0

]  A1
...

ANm

 . (3.35)

The left-hand-side row vector has dimension (1×Nm), or one, and is denoted
lhsoutput. The left-hand-side column vector has dimension (Nm × 1), or one,
and is denoted vecoutput. There is no right-hand-side constraint vector added
since this is simply a place-holder. This gives

lhsoutput vecoutput . (3.36)

The additive term is applied right at the end and does not form part of the
alignment optimisation. Therefore, there are no associated constraints.

3.5.3 Implicit Space-Mapping (G & x p)

Implicit space-mapping introduces new parameters into the coarse model which
gives extra degrees of freedom to align the coarse model to high-�delity models.
As with the previous two space-mapping options, there is an additive and a
multiplicative part. Within this framework the getxp �ag is used to enable
the additive part of this technique and getG for the multiplicative.

The additive part or pre-assigned parameters x p introduces extra variables
alongside the design variables x , see Figure 2.1c. These variables are not
within the main design space and are only used when evaluating the coarse
model. x p is a column vector of dimension (Nq).

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODOLOGY 44

The pre-assigned parameters can be dependent on design variables, in
which case a multiplicative term G is applied to the input design variables.
This takes the form

Gx + x p , (3.37)

where G is a matrix of dimension (Nq ×Nn).

3.5.3.1 Initialisation and Bounds

The pre-assigned parameter initial values x p init must be set by the user, these
values cannot be inferred. If there is no coupling to the design parameters then
the bounds, x pmin and x pmax, are also speci�ed by the user. A new variable
p is de�ned for the bounds because it is possible that they are not simply
the limits on the pre-assigned parameters and these concepts should not be
confused. This resolves simply to

pmin = x pmin (3.38)

pmax = x pmax . (3.39)

If, however, there is a dependency on design variables then the bounds include
the multiplicative term,

pmin = x pmin −Gmax xmax (3.40)

pmax = x pmax −Gmin xmin . (3.41)

There is not typically a signi�cant dependency on existing design variables and
so

G init =

0.0 0.0 0.0

0.0
. . .

...
0.0 . . . 0.0

 . (3.42)

The minimum and maximum G terms are de�ned as follows

Gmax =

2.0 2.0 2.0

2.0
. . .

...
2.0 . . . 2.0

 (3.43)

Gmin =

−2.0 −2.0 −2.0

−2.0
. . .

...
−2.0 . . . −2.0

 (3.44)

This is if getG equals one. Specifying it as a vector allows speci�c design
variables to be included of excluded. Each values in the Nn vector that is one
includes the corresponding variable while zeros exclude it. The entire matrix
can be set manually by making getG is an Nq ×Nn matrix.
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3.5.3.2 Constraints

For implicit space-mapping the constraints are built up from the maximum

Gx + x p ≤ pmax (3.45)

and minimum
Gx + x p ≥ pmin .

The minimum becomes

−Gx − x p ≤ −pmin . (3.46)

Once again equations (3.45-3.46) are broken up and reshaped to form



−x1 0 0 . . . −xNn 0 0 −1 0 0

0
. . .

... . . . 0
. . .

... 0
. . .

...
0 . . . −x1 . . . 0 . . . −xNn 0 . . . −1
x1 0 0 . . . xNn 0 0 1 0 0

0
. . .

... . . . 0
. . .

... 0
. . .

...
0 . . . x1 . . . 0 . . . xNn 0 . . . 1





G1,1
...

GNq ,1
...

G1,Nq

...
GNq ,Nq

xp1
...

xpNq



≤



−p1min
...

−pNqmin
p1max

...
pNqmax


.

(3.47)
that is also used in Section 3.5.5.2. Here the left-hand-side matrix, denoted
LHSimplicit has dimensions ((2Nq)× (NqNn +Nq)), the left-hand-side column
vector vecimplicit has dimension (NqNn +Nq) and the right-hand-side column
vector rhsimplicit has dimension (2Nq).

LHSimplicit vecimplicit ≤ rhsimplicit . (3.48)

3.5.4 Frequency Space-Mapping (F)

Alignment is achieved by changing the frequency axis though either applying
a scaling factor σ, or shifting it by a factor δ, or a combination of both,
see Figure2.1d. Within this framework the getF �ag is used to enable this
technique. In Section 2.2 a detailed example is given using frequency space-
mapping for alignment. F is de�ned as a column vector containing these two
factors

F =

[
σ
δ

]
. (3.49)
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3.5.4.1 Initialisation and Bounds

An initial value, where no scaling and no shift is applied,

F init =

[
1
0

]
. (3.50)

The scaling term is limited between 0.5 and 2.0,

σmin = 0.5 (3.51)

σmax = 2.0 (3.52)

while this shift bounds are linked to the maximum and minimum frequencies
in combination with the scaling terms,

δmin = 0.9fmin − σmax fmax (3.53)

δmax = 1.1fmax − σmin fmin . (3.54)

The maximum and minimum shift includes the `worst case' scaling so that
a suitable shift can still be achieved when scaling is used. These form the
maximum and minimum terms for the F vector

Fmin =

[
σmin
δmin

]
(3.55)

Fmax =

[
σmax
δmax

]
. (3.56)

3.5.4.2 Constraints

Frequency space-mapping constraints relate to the absolute minimum and
maximum frequencies

[fmax + 1]F ≤ 1.1fmax (3.57)

[fmin + 1]F ≥ 0.9fmin

[−fmin -1]F ≤ −0.9fmin , (3.58)

where fmin and fmax are the minimum and maximum frequencies for the given
problem. The F column vectors have dimension two. Reshaping and moving
equations (3.57-3.58) gives[

−fmin −1
fmax 1

] [
σ
δ

]
≤
[
−0.9fmin
1.1fmax

]
, (3.59)

where the left-hand-side matrix LHSfreq has dimensions (2 × 2), the column
vector vecfreq dimension two and the right-hand-side vector rhsfreq also has
dimension two.

LHSfreq vecfreq ≤ rhsfreq . (3.60)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODOLOGY 47

3.5.5 Parameter Extraction - Optimisation of
Space-Mapping Parameters

Now that all the available space-mapping techniques, their initial values and
constraints have been outlined the parameter extraction phase can be dis-
cussed. The coarse model must be changed in such a way that the resulting
surrogate model response matches that of the �ne model response. An optimi-
sation process is used to determine the space-mapping values that are required
to achieve this. In Section 3.5.5.5 an error function is constructed to be used
in the optimiser. The optimiser minimises the error and this resolves simply
to

SM∗ = arg min
SM
||Rf −Rs|| , (3.61)

where ||◦|| is a norm and SM are the space-mapping variables for the particular
space-mapping techniques chosen. Global or local optimisation routines can
be used to achieve e�cient and accurate alignment variables.

The optimiser options are discussed next in Section 3.5.5.1. Matlab ac-
cepts the problem in a speci�c format. This preparation of data for the bounds,
constraints and speci�c options are discussed in Section 3.5.5.2. An argument
for normalisation of the space-mapping parameters and for removing �xed
parameters are presented in Section 3.5.5.3 and Section 3.5.5.4 respectively.
Once all the improvements have been made, the error/objective function is
described in detail. The error function operates on complex values to ensure
phase information is retained. Di�erent response types are useful to de�ne
goals and are converted from the complex values. The supported response
types are de�ned in Section 3.5.5.6. Finally, the optimisation routine is run
and special considerations are mentioned.

3.5.5.1 Choice of Optimiser

For all the space-mapping techniques, except for output space-mapping, the
coarse model must be run using the new variables. The space-mapping param-
eters changes to the design parameters can result in the coarse model being
evaluated outside of its bounds. To ensure that this is not the case constrains
are set for each of the space-mapping parameters and applied to the optimiser
used. The constrains are outlined in the previous sections for the di�erent
space-mapping types. This limits the optimisers that can be used from the
Matlab optimisation toolbox. The default local optimiser that is used is
called fmincon.

Before the local optimisation is run, a global routine can be used. Koziel
et al. recommend always running a global optimisation routine for the very
�rst alignment stage for all surrogate based optimisers [4, chap. 3.3.4, pg. 45].
This gives a good starting point for the local optimiser to work from that is
not within a local minimum. A genetic algorithm is used by default for the
global optimiser.
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Matlab allows the de�nition of a general problem that can be used by a
number of di�erent optimisers, both global and local. The following section
outlines the use of this general problem format for parameter extraction.

3.5.5.2 Prepare the Base Problem for Optimiser

The general Matlab optimisation problem has several parts.

� The objective function is the error function that must be minimised. This
is discussed in Section 3.5.5.5.

� The initial values of the space-mapping parameters are de�ned in Sec-
tions 3.5.2.1, 3.5.1.1, 3.5.3.1 and 3.5.4.1. They are combined into a col-
umn vector,

x0 = init =


Ainit

B init

cinit
G init

p init
F init

 . (3.62)

Matlab uses x0 to de�ne the initial values but to avoid confusion with
the design parameters init is rather used. If a global optimiser is used
then the optimal values from that optimisation run are passed through
to the local optimiser as its starting point.

� Upper and lower bounds for the space-mapping are speci�ed using ub
and lb respectively. The lower bounds column vector is made up of the
minimum values for the various space-mapping techniques,

lb =


Amin

Bmin

cmin
Gmin

pmin
Fmin

 . (3.63)

The upper bounds vector is built up in the same way,

ub =


Amax

Bmax

cmax
Gmax

pmax
Fmax

 . (3.64)

See Sections 3.5.1.1, 3.5.2.1, 3.5.3.1 and 3.5.4.1 for the maximum and
minimum de�nitions.
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� For inequality constrained systems, such as this parameter extraction,
Aineq de�nes the matrix of linear inequality constant and bineq the in-
equality constraint vector forming

Aineq x ≤ bineq . (3.65)

To avoid confusion with the A space-mapping parameter and input pa-
rameters x , this equation changes to the following form

LHS vec ≤ rhs . (3.66)

Here the left-hand-side matrix is made up of all inequality constraint
matrices. The matrices are placed consecutively e�ectively on a big
diagonal and o�set with zeros. The vectors are appended one after the
other. Combining all the constraints from (3.36, 3.26, 3.48, 3.60) and
reshaping into a single system a full constraint problem is obtained,

lhsoutput
...

LHSinput 0 0

0 0 LHSimplicit 0
0 0 0 LHSfreq




vecoutput

vecinput

vecimplicit

vecfreq

 ≤
 rhsinput

rhsimplicit

rhsfreq

 .

(3.67)

Even though the constraints are stipulated, the optimiser can evaluate
the problem at points outside this range. It should, however, discard
these results evaluated outside the constrained space. This means that
low �delity models must be robust enough to handle potentially erro-
neous evaluations. Additional hard limits can be placed within the model
evaluation stage to give warnings through to the user if invalid parame-
ters are requested, see Section 4.2.1.

� Depending on the optimiser being used, options can be speci�ed to en-
able settings or limits. Display and diagnostic options are useful for
debugging evaluating the success of this stage. A value DiffMinChange
can be set to force a change in variables to be greater than zero for
�nite-di�erence gradients [32]. This is useful when the parameters start
around zero and initial step sizes are not known.

3.5.5.3 Normalise Alignment Parameters

It is desirable for all the parameters to be in a similar range compared to
one another, as well and not being too large or small. If there is an outlier,
the step size within the optimiser may be distorted. It is feasible that one
length in system may change by a factor of 0.1 while another in the range of
10.0. This is already two orders of magnitude di�erent. Furthermore, even
if all the parameters are of a similar order, values that are very large 103 or
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very small 10-3 can also result in di�culties �nding a suitable step size. The
same step size is applied to all degrees of freedom and if one requires very large
changes then it is not possible to make small changes required by others or vice
versa. For this alignment/parameter extraction phase this is very important
especially because some parameters, like c and x p, are directly linked to the
design variables.

The lower bounds lb and upper bound ub of each of the space-mapping
parameters can be used to scale the parameters to a consistent range. The
optimisation routine can use these parameters and a conversion back to the
actual values can be done when they are applied to the model and the errors
are calculated.

A general approach for normalisation, for each parameter v, is undertaken:

1. Calculate a delta ∆v term,

∆v = vmax − vmin . (3.68)

2. Subtract minimum from value and divide by delta,

vn =
v − vmin

∆v

. (3.69)

3. The lower bound is set to zero,

lbv = 0 . (3.70)

4. The upper bound is set to one,

ubv = 1 . (3.71)

The di�erent space-mapping parameters are normalised as follows:

� A is an output space-mapping parameter and applied to the model sep-
arately at the end, so it is not normalised. Values of B typically reside
in the range of negative two and positive two which is a reasonably good
slope and it, therefore, not normalised either. G, like B is a slope but
is often very close to zero, therefore, it is multiplied by 10.

� c and x p are normalised directly against the bounds of x and x p respec-
tively.

� For frequency space-mapping the scaling factor σ remains unchanged,
but the additive δ term is normalised using the minimum and maximum
frequencies (∆ = fmax − fmin).
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Inequality constraints matrix LHS values that correspond to c, x p and δ
also needs to be normalised. Values on the diagonals are set to ∆x, ∆xp and
∆F respectively. The inequality vector rhs also needs to be adjusted. A vector
of the minimum values is subtracted from the vector,

rhs−



-xmin
xmin
-x pmin
x pmin
-fmin
fmin

 =


0

∆x

0
∆xp

0
∆F

 , (3.72)

where rhs is expanded in (3.67).
Once normalisation has been completed, the problem could be passed

through to the optimiser. De-normalisation takes place when the model is
run and the error function is evaluated, see Section 3.5.5.5.

3.5.5.4 Removed Fixed Parameters

Unnecessary parameters add extra complexity to the alignment optimisation
problem. This is done by removing parameters that have the same upper and
lower bounds. These bounds can be set by the user which allows overriding
default behaviour and removing particular parameters.

When bounds are set equal, the bounds themselves are removed from the
problem. The corresponding inequality constraints are also removed from the
LHS and rhs. Finally, the parameter is removed from vec. Reconstruction of
the problem is required before the model is run and errors are calculated. Even
though a parameter may not be optimised it is still required for the surrogate
model to be built up correctly. The initial values are used and reshaping of
the space-mapping parameter matrices requires that all the parameters are in
place. The parameters cannot be excluded right from the beginning because
the full problem is required at the evaluation stage.

Now that the space-mapping parameters have been reduced and normalised
the optimiser can evaluate the error/objective function.

3.5.5.5 Error Function De�nition

The objective of the optimiser is to minimise the error function. It is the
di�erence between the �ne and surrogate model responses. The closer the sur-
rogate response is to that of the �ne model the smaller the error. The surro-
gate is evaluated by taking the coarse model response and applying the chosen
space-mapping parameters. Space-mapping parameters are varied through the
optimisation until the lowest possible error is found.

First of all the optimisation problem must be converted back into the cor-
rect form. De-normalisation and reconstruction of �xed parameters needs to
take place, see Section 3.5.5.3 and 3.5.5.4 respectively.
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The response of the evaluated surrogate is de�ned as Rs, the �ne model
response Rf and the coarse model as Rc. The responses can be made up of
a number output parameters for example S-parameters and gain. Alignment
must be carried out over all the output parameters. A weighting can be spec-
i�ed to allow one output parameter to have higher priority or for one to have
a lower priority. The weighted errors are added together to give a total error
of this surrogate iteration which is passed back to the optimiser.

Speci�c frequency bands within an output parameter can be highlighted.
This is typically done over goal regions where the rest of the response is not as
important. This mask/weighting errW is applied over the di�erence between
the �ne and the surrogate models,

diffR = errW · (Rf −Rs) , (3.73)

where this is done individually for each output parameter. The weighting does
not have to be binary and speci�c bands can have a higher importance than
others.

A norm is then applied to the di�erences at each weighted frequency point
diffR. The type of norm used can be speci�ed by the user but typically a
1-norm (L1 norm) is used here on the result di�erences.

A 1-norm, for an arbitrary vector y, is de�ned as

||y||1 =
Nm∑
m=1

|ym| , (3.74)

where Nm is the number of points in the vector. A 2-norm, or Euclidean
distance, for a vector is de�ned as

||y||2 =

√√√√ Nm∑
m=1

|ym|2 . (3.75)

A p-norm, for a vector is de�ned as

||y||p =

(
Nm∑
m=1

|ym|p
)1

p
, (3.76)

where p is an integer greater than one.
The norm for each output parameter is multiplied by the weighting scale

factor and added together ready for the next stage.
Better results are found when calculating the error using complex response

values rather than converting them to dB or taking the absolute values. A
smoother graph has fewer outliers and is less likely to skew the norm. The 1-
norm is also more robust at handling outliers. For a 2-norm, outliers may end

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODOLOGY 53

up dominating the error contributions. In the same way very steep/quickly
varying results may be di�cult to align because even just a small change will
result in a large error. If a graph has a small steep section, for example an
edged or a deep null, then that small section may result in a large error that
dominates the alignment criteria. It is often useful to use the errW to skip or
reduce the e�ect of such regions.

The framework allows the error to be calculated from multiple �ne models.
This allows a surrogate to be built that is valid over a large region. Extra �ne
model evaluation points can referred to as in�ll points and the process of using
many points for alignment can be referred to as multi-point alignment [4] [30,
chap. 3.4, pg. 55]. Nc is the number of input point cells/�ne models available.
To achieve this the error of all, or some (depending on the options chosen),
of the �ne model responses are evaluated against the current surrogate. That
is to say the current surrogate is evaluated at a previous design parameter
point and compared to that corresponding �ne model. Once again a weighting
can be applied to error from previous models, for example having the last �ne
model counting more than the rest. A better surrogate model can be obtained
by including the extra accurate �ne models available. However, including all
of them can make the evaluation slow and give skewed results. The number of
space-mapping unknowns can help decide how many �ne models to use because
that is how many unknowns there are for the alignment optimisation to solve.
The SM framework option to set this is wk. Its options are:

� wk - empty: Only use most recent �ne model.

� wk - length one: De�ne NSMUnknowns.

� wk = 0: Use a maximum of NSMUnknowns �ne models of Nc. Each
is weighed as one. NSMUnknowns starts o� as zero below.
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1 i f getA == 1
NSMUnknowns = NSMUnknowns + 1 ;

3 e l s e i f getA == 2
% Diagonal

5 NSMUnknowns = NSMUnknowns + 1*Nm;
end

7 i f getd == 1
NSMUnknowns = NSMUnknowns + Nm*1 ;

9 end
i f getB == 1 % Ful l

11 NSMUnknowns = NSMUnknowns + Nn*Nn;
e l s e i f getB == 2 % Diagonal

13 NSMUnknowns = NSMUnknowns + Nn*1 ;
e l s e % Custom diagona l

15 NSMUnknowns = NSMUnknowns + sum( getB ) ;
end

17 i f ge tc == 1
NSMUnknowns = NSMUnknowns + Nn*1 ;

19 end
i f getG == 1 % Ful l

21 NSMUnknowns = NSMUnknowns + Nq*Nn;
e l s e % Custom diagona l

23 NSMUnknowns = NSMUnknowns + (sum( getB ) *Nq) ;
end

25 i f getxp == 1
NSMUnknowns = NSMUnknowns + Nq ;

27 end
i f getF == 1

29 NSMUnknowns = NSMUnknowns + 2 ;
end

� wk 6= 0: Use all Nc models available but weight them as speci�ed.
The weighting is applied in a power form:

1 wk = wk . ^ [ 1 : Nc ] ;

� wk - length greater than one: The vector is taken as is an applied to the
associated �ne model to surrogate di�erences.

� Default - Assign a weighting of one to all Nc �ne models available and
use them all.

The weighted errors from the di�erent �ne model comparisons are also
summed together and this is then returned to the optimiser. As mentioned
before, if possible, complex values are used to calculate the error. The user
can however specify a response type that is only single values. This same error
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calculation is applied regardless of the response type. The response types are
discussed next.

3.5.5.6 Response Types

Although complex values are used internally wherever possible, the requests
viewed by the user can be speci�ed. The goalResType variable used to switch
between values. It takes the following form for S-parameters

Sb,a_unit

where the unit is extracted and used for conversions. Supported unit types
are:

� complex

� real

� imag

� dB

� abs

� angle

� deg

A Gen option is also available that can be used for �eld values.

3.5.5.7 Do Optimisation

All the tools are in place to run the optimiser and retrieve the space-mapping
parameters that bring the surrogate model response as close to the �ne model
response as possible. The base problem outlined in Section 3.5.5.2 is passed
through to a general method that switches on the problem.solver variable.
Local options that are set up include

� fmincon: AMatlab routine available in the Optimisation Toolbox that
attempts to minimise constrained nonlinear multivariable problems [38].
As a constrained optimiser this routine is useful to use for parameter
extraction, but can also be used as the main optimisation loop optimiser.

� fminsearch: AMatlab routine that uses a simplex search method used
for unconstrained multivariable problems. This makes it useful for the
main optimisation loop, but not for parameter extraction.

� fminsearchcon: Based on fminsearch, but with bound constrained
functionality [40]. With the addition of constraints, this is useful for
parameter extraction.

The global optimisers include

� ga: A Genetic Algorithm that is part of the Matlab Global Optimisa-
tion Toolbox [32].
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� patternsearch: Pattern Search is a routine that looks for the minimum
using an adaptive mesh technique. It is also part of the Matlab Global
Optimisation Toolbox [32].

Both of these global optimisers accept constrains which makes then useful for
parameter extraction phase and within the main optimisation loop.

If normalisation is used, then the space-mapping parameter returned must
be de-normalised and if �xed parameters were removed then they must be set.

The additive output space-mapping value is not applied during the optimi-
sation and if selected is applied right at the end. The direct di�erence between
the �ne and aligned surrogate thus far R′s is calculated and becomes the value
for d .

d = Rf −R′s (3.77)

The full �nal surrogate model Rs is built and returned to the main opti-
misation loop.

3.5.5.8 Special Considerations for Frequency Space-Mapping

Phase is not taken into account for the cost/error function of frequency space-
mapping evaluations. The coarse and surrogate responses are therefore con-
verted to decibels. For values at deep nulls this will push them even deeper and
in�nity values may be encountered. Many optimisers are not able to handle
this therefore, an interpolation to get rid of these undesired values is required.

To do this the position of in�nity values (or other NaN values potentially)
are found. An array of clean values is then established ignoring the incompat-
ible values. The results at these locations are then extracted along with the
actual frequencies at those positions. A griddedInterpolant is constructed and
given the clean result along with the frequency vector. Finally, the interpolant
is used to overwrite the incompatible values in the original response.

3.6 Main Optimisation Loop

The surrogate model described in the previous section is used to evaluate
the system at di�erent points in the design space. The system is evaluated
through the use of two di�erent loops. Figure 3.2 gives an overview of how
they interact. The decision diamonds represent points where the algorithm
can terminate but also other success/failure criteria that is discussed later in
this section.

Termination criteria can be met within the main optimisation loop or the
trust-region loop. The main loop iterates on variable i and the trust-region
uses k. If at either point the number of iterated exceeds Ni or Nk respectively,
then current outputs are returned. Other termination scenarios and criteria
are discussed in Section 3.6.3.
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Inputs

Main loop
i < Ni

Outputs

TR loop
k < Nk

Setup problem

Do optimisation

Fine model

Evaluate
TR

Build surrogate
at S(t)

Save point

i = 1

k = 1

terminate

fail

fail t = i

success

t = i+ 1

k + +

te
rm
in
at
e

success

i+ +

Figure 3.2: Detailed main optimisation loop �ow diagram. Inputs from ini-
tialisation of defaults and building up an initial aligned surrogate. Outputs go
to plotting and post processing.
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An initial starting point and surrogate model are required as inputs to
the main loop. These and other inputs are discussed in Section 3.6.2 below.
Once the main optimisation and trust-region loops have been initialised the
optimisation problem is set up. A di�erent optimiser can be used to that of the
alignment described in Section 3.5.5.2. Section 3.6.4 below outlines building
the design space optimisation problem and running it. The objective/error
function and goal types that the user can specify are discussed in Section 3.6.1.

The optimiser speci�es a new position which is evaluated running a coarse
model and the latest surrogate model. The trust-region framework limits the
parameter space ensuring that the surrogate model does not drift out of sync
with the �ne model. This is done by specifying bounds on the optimiser.
Once a new optimum point is found, the surrogate model is updated and the
next iteration commences unless under termination conditions. This phase is
discussed in Section 3.6.6. Lastly the outputs are discussed and an overview
is given.

3.6.1 Goals Types and Error/Objective Function

The objective of an optimiser is typically to minimise a particular quantity
(reduce its cost). Within the EM context a user is likely to, for example, want
to acquire a particular S-parameter response for a subset of the frequency
range, or perhaps a speci�c gain. The response types that are catered for
are discussed in Section 3.5.5.6. Di�erent goalTypes can be used to de�ne a
particular goal, the di�erent type that this system is con�gured to accept is
discussed later in this section. Multiple goals can be speci�ed for the same
response type forming an Ng row vector of the goal types, where g represents
the number of goals. The options for the goals are also speci�ed as Ng row
vectors where each row corresponds to the goal type speci�ed. Goal members
include

� goalResType, the response type that this goal applies to .

� goalWeight which scales the particular goal. The default it one.

� goalValue is value of the goal on the response. For example for an
S1,1_dB result type, −20 may be a goal value for a less or greater than
response type.

� goalStart and goalStop are the start and end frequencies over which
the goal applies.

� goalCent is the centre point if a bandwidth goal type is used.

� errNorm a particular error norm can be speci�ed for each goal type if
need be. Integers or inf are accepted.
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The objective/error function used by the optimiser is based on the cost of
the total surrogate model responses having the relevant goals applied. Firstly,
the design variables are received in normalised form and are denormalised, see
Section 3.2. The response type for each response (of Nr responses) is queried
and the surrogate is evaluated.

Once the responses have been determined, the cost of the function is cal-
culated. Here a cost is calculated for each goal Ng. The goal has an associated
response type that is then used to retrieve the correct response for the col-
lection. Response points falling between the start and end or centre goal
frequencies are de�ned as Rvalid and are �ltered out from the rest of the points
by setting the rest to zero. The cost of each goal c0 is calculated though a
couple of steps. Firstly, the di�erence, at each point, between the goal value
goalValue and the valid response points must be calculated, let this be de-
�ned as y. Secondly, the norm of the di�erences is taken to reduce the cost
from each goal to a single value. norm is a Matlab function and is described
in Section 3.5.5.5. The available goalTypes and their calculations are de�ned
below:

� lt - less than:

y = Rvalid − goalValue ;
2 y (y < 0) = 0 ;
c0 = norm(y , errNorm ) ;

� gt - greater than:

y = Rvalid − goalValue ;
2 y (y > 0) = 0 ;
c0 = norm(y , errNorm ) ;

� eq - equal to:

i f l ength ( goalValue ) == length (Ri . r )
2 y = Rvalid − goalValue ( i S t a r t : iStop ) ;
e l s e

4 y = Rvalid − goalValue ;
end

6 c0 = norm(y , errNorm ) ;

� eqPhaseTune - softer than eq, hard tunes the �rst frequency phase to be
equal:
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1 pDi f f = ang le ( Rval id ( iCent ) ) − ang le ( goalValue ( iCent ) ) ;
Rval id = Rvalid .* exp(−1 i .* pDi f f ) ; % Force f i r s t f requency

phases equal at l e a s t . . .
3 i f l ength ( goalValue ) == length (Ri . r )

y = Rval id − goalValue ( i S t a r t : iStop ) ;
5 e l s e

y = Rval id − goalValue ;
7 end
c0 = norm(y , errNorm ) ;

� minimax - the maximum of the response:

1 c0 = max( Rval id ) ;

� bw - bandwidth:

y = Rvalid − goalValue ;
2 iVa l i d = f i nd (y < 0) ;

i f isempty ( iVa l i d )
4 c0 = Nm + min(y ) ;
e l s e

6 % Get the lowest in band index
i 1 = iVa l i d (1 ) ;

8 % Get the h i ghe s t in band index
i 2 = iVa l i d ( end ) ;

10 % Get number o f indexes to es t imate a s e n s i b l e pena l ty
f a c t o r

Ni = i2−i 1 ;
12 % New va l i d r eg i on response

y i = y ( i 1 : i 2 ) ;
14 y i ( y i < 0) = 0 ;

i f max( y i ) == 0
16 b = 0 ;

e l s e
18 b = 10*Ni . /max( y i ) . ^ 2 ;

end
20 iCent = round (Nm/2) ;

c0 = −min( i2−iCent , iCent−i 1 ) + b*norm( yi , 2 ) ;
22 end

where Nm is the number of output responses.

� nPeaks - number of peaks in the response:
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1 pks = f indpeaks ( Rval id ) ;
c0 = ( goalValue − l ength ( pks ) ) . / goalValue ;

� peakVal - equal peak value:

1 pks = f indpeaks ( Rval id ) ;
y = pks − goalValue ;

3 c0 = norm(y , errNorm ) ;

This gives a cost c0 for one goal. The cost is scaled by the goal weight and
added to the total cost

csum = goalWeight× c0 .

Once the total cost of all the goals has been determined, the averaged is cal-
culated. This is done by summing all the weights wsum and dividing the total
cost by this value

cost =
csum
wsum

.

The �nal cost can be returned to the optimisation loop.

3.6.2 Inputs to the Main Optimisation Loop

Figure 3.2 start at the top with inputs into the system. These are values
set up before the loop starts depending on the di�erent options that the user
speci�es.

In Section 3.4.1 the process for acquiring an initial �ne model is outlined,
given the initial stating point set in Section 3.3. The �ne model evaluation and
a coarse model has been used to create an aligned surrogate model as discussed
in Section 3.5. This initial surrogate model along with the goals speci�ed by
the user (Section 3.6.1) and the error function are passed through to the main
loops where they are used for the design space optimisation.

Default values for tolerances, termination criteria and trust-region con-
stants are introduced in Section 3.1. Termination condition are discussed next.

3.6.3 Termination Criteria

The main optimisation loop terminates if any one of the following criteria are
met at the start of an iteration.

� Main loop iteration count i reaches a prede�ned maximum Ni, i.e.

i ≤ Ni . (3.78)
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� Trust-region iteration count k reaches a prede�ned maximum Nk, i.e.

k ≤ Nk . (3.79)

� The cost of the �ne model is reduced to zero i.e. the speci�cation is
reached for all the speci�ed goals, see Section 3.6.1.

� A prede�ned tolerance in x is met. If x does not move a meaningful
amount, then the optimisation runs should stop. The tolerance is de-
�ned as the L2 norm of the current normalised design parameter x (i)

subtracted from the new position xi+1. This norm is then compared a
tolerance (default 10−2).

3.6.4 Do Design Space Optimisation

All the building blocks are in place to run the optimiser. This Matlab opti-
miser is set up in the same way as the in the alignment phase with a general
problem, see Section 3.5.5.2. The design variables are directly on hand and so
no equality nor inequality constraints are required. The lower bound lb and
upper bound ub are directly the normalised bounds of the design variables
scaled by the trust-region radius ∆. This translates to

lb =
[
max(x (i) −∆(i), xnmin)

]
, (3.80)

and
ub =

[
min(x (i) −∆(i), xnmax)

]
. (3.81)

Here the minimum and maximum are taken between the trust-region adjusted
values and the absolute normalised bounds to ensure that the values do not
exceed their bounds even if the trust-region were to allow it. Each iteration
the trust-region radius is updated and set to corresponding iteration count i.

The starting point is simply the previous normalised design parameter

x0 = x (0)
n . (3.82)

Normalisation of design parameters and bounds is discussed in Section 3.2.
The objective function is set to the cost function described in Section 3.6.1.
There are a couple of di�erent options the user can choose between for

running the optimisation.

� If the globOpt �ag is set to two then the global optimiser routine will
be run on each and every simulation. Recall that if the �ag is set to
one then only the initial iteration runs through a global optimiser, see
Section 3.3.1.

� If the global optimiser has been run, then its optimal point is assigned
to x0. The local optimiser then runs through and select the next trial
point.
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� If the useScAsOpt �ag is set then no optimisation is carried out, see
Section 3.3.3. Instead, the next trial point is taken from the surrogate
speci�ed by the user.

Once a trial point has been found, the trust-region evaluation takes place.

3.6.5 Trust-Region Evaluation

A basic trust-region (B.T.R.) algorithm is detailed in Section 2.3.1. The same
approach is used here with a couple of minor changes. In the previous section
an optimisation routine is used to �nd the trial point x (i+1). It is made up
of the current design space position x (i) and a trial step away from it s(i). In
the B.T.R. described before the k iterator is used but here i + 1 is used. In
practice, it is not necessary to keep track of unsuccessful trial steps. Instead,
the i+ 1 term is overwritten and only successful trial points are kept and used
in the following main iteration.

At the start of each main loop iteration the k iterator is set to one. This
allows the trust region loop to keep track of how far along it is and when it
should terminate. To evaluate how successful the trial point is, the change in
�ne model response against change in surrogate is compared. This marker of
success is de�ned as ρ(k) described in (2.19) from Section 2.3.1.4. Within the
context of the main optimisation loop this equation can be rewritten as

ρ(k) =
U(Rf (x

(i)))− U(Rf (x
(i) + s(i)))

U(Rs(x (i)))− U(Rs(x (i) + s(i)))
. (3.83)

If ρ(k) is great that or equal to η1 or η2, see (2.20) and (2.27) respectively,
the trial step is accepted. The η1 criteria is the minimum requirement and is
used in the �ow diagram shown in Figure 2.9. Including η2 allows for three
possible outcomes from the trial point.

� For ρ(k) < η1 then the trial step is considered a failure and a new trial
point needs to be calculated. The trust-region is shrunk so that the
surrogate is only evaluated in a region where it is a good approximation
to the �ne model. The existing trust-region is overwritten to be reused
when setting up the next optimisation problem. Here i is not incremented
because the trial point failed. The trust-region becomes

∆(i) = α2||s(i)|| , (3.84)

where || ◦ || is the Euclidean norm (or 2-norm) and α2 is de�ned in (3.7).

� For η1 ≤ ρ(k) < η2 the trial point is considered a success. The same
trust-region is carried through to the next iteration

∆(i+1) = ∆(i) . (3.85)
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� If ρ(k) ≥ η2, the trial point is considered very successful. The trust-region
radius is expanded as there is a strong agreement between the changes
in surrogate and �ne model. The new trust-region becomes

∆(i+1) = max(α1||s(i)||,∆(i)) , (3.86)

where once again || ◦ || is the Euclidean norm and α1 is de�ned in (3.6).

For a successful run, the iteration count i is incremented and the once the
new surrogate is built the algorithm will move through a save point before
starting the next main loop iteration, as seen in Figure 3.2. With an unsuc-
cessful trial-step the trust-region radius is reduced and i is not incremented,
i.e. the main loop will not continue unless an improvement is seen. Even if
the trial-step is not successful, the �ne model is used to achieve a better sur-
rogate model. The only di�erence is that the target count t is di�erent. If the
trial point is successful, t = i + 1. However, if the step is unsuccessful then
the target count becomes t = i. This is also re�ected in the main loop �ow
diagram seen in Figure 3.2. Building of the surrogate within a design space
optimisation loop context is discussed next.

3.6.6 Build Surrogate and Alignment in Main
Optimisation Loop

Once the trust-region evaluation has concluded, the surrogate model can be
updated using the extra �ne model evaluation that is available. As mentioned
before, if the trial point is successful then the surrogate model is set to be used
in the next main iteration i.e. t = i+1. If however the trial point is unsuccess-
ful, then the target count becomes t = i and overwrites the current surrogate
model and is used in the next trust-region cycle. Any extra information about
the �ne model space can be useful when building up the surrogate model, this
is discussed further in Section 3.5.5.5. If the useAllFine �ag is true, then the
new �ne model response R

(i+1)
f (corresponding to x (i+1)) is appended to a vec-

tor of all the other �ne model evaluations and passed through to the surrogate
building and alignment phase, see Section 3.5. If useAllFine is false, then
only the last latest �ne model response is passed to the surrogate building and
alignment phase.

3.6.7 Output and Overview

With a new surrogate model available the next iteration can commence. If
the trial point is unsuccessful the trust-region criteria then the trust region
iteration count increments k++ and the optimisation operates with a reduced
trust-region radius. If the trial point is successful then the Matlab space
is written out as a save point that can be used by a di�erent system run if
desired, see Section 3.4.2. The main iteration loop count is incremented i+ +
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and the process starts again. The termination conditions are checked and if
any one of the conditions are met, the output is prepared and the loops are
exited. Besides the save/log �le that is written out there are a number of
variables that are returned from the main loop SMmain.

All the �ne model responses are returned along with the corresponding
design parameters. The last design parameter is the optimal point, given
the users goals. The space-mapping parameters that make up the surrogate
model are also returned, but only if they resulted in a successful trial step.
Debug output is also returned. This included the cost at each iteration, the
optimiser output, the limits at each iteration and the trust-region information
from each iteration (successful or not), radii, step sizes, and each ρ. Plots that
are generated from the output are shown in Chapter 5.
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Framework Interface

To run an optimisation the user must specify at least three items:

1. An input con�guration �le that calls the SM framework.

2. A high-�delity model.

3. A low-�delity model.

In this chapter these three inputs to the framework are de�ned and dis-
cussed.

4.1 User to Framework Interface

There are a number of con�guration option available to the user. These are
explained as needed throughout Chapter 2 and 3. There are some input that
are required, these are outlined below.

4.1.1 Specify Fine Model

The high-�delity model name and path must be speci�ed. The solvers available
and how they operate is discussed in Section 4.2.2. A mf variable is used to
contain all the �ne model options. The type of solver is speci�ed as text, for
example

Mf . s o l v e r = 'FEKO' ;

66
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The path to the �ne model is required. This can be determined using the
following commands:

f i l ename = mfilename ( ' .m' ) ;
2 f u l l p a t h = mfilename ( ' f u l l p a t h ' ) ;
currentPath = rep l a c e ( f u l l pa th , f i l ename , ' ' )

Once the currentPath is known, the relative path of the model can be
speci�ed. Typically, each solver �le is placed in its own folder so that all the
�les generated by that program are self-contained. The path and the name of
the �le is speci�ed, for example

Mf . path = [ currentPath , 'FEKO\ ' ]
2 Mf . name = ' DoubleFoldedStub_base ' ;

With the model speci�ed the design space parameters can be speci�ed along
with their upper and lower bounds. An extract from the double folded stub
�lter example, shown in Section 5.2, input �le is used.

1 Mf . name = ' DoubleFoldedStub_base ' ;
Mf . s o l v e r = 'FEKO' ;

3 Mf . params = { ' l 1 ' , ' l 2 ' , ' s ' } ;
Mf . ximin = [ 35 . 0 , 35 . 0 , 1 . 0 ] ' ;

5 Mf . ximax = [ 90 . 0 , 90 . 0 , 15 .0 ] ' ;

The parameters are listed in cells with corresponding minimum and maximum
values.

The last item that must be speci�ed is the frequency to be used.

fmin = 5e9 ;
2 fmax = 20 e9 ;
Nm = 151 ; % Number o f f r e qu en c i e s

4 Mf . f r e q = reshape ( l i n s p a c e ( fmin , fmax ,Nm) , Nm, 1) ;
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4.1.2 Specify Coarse Model

The coarse model is set up in a similar way:

1 Mc. path = [ currentPath , 'AWR\ ' ] ;
Mc. name = ' DoubleFoldedStub_base ' ;

3 Mc. s o l v e r = 'AWR' ;
Mc. params = { ' l 1 ' , ' l 2 ' , ' s ' } ;

5 Mc. ximin = Mf . ximin ;
Mc. ximax = Mf . ximax ;

7 Mc. f r e q = reshape ( l i n s p a c e ( fmin , fmax ,Nm) , Nm, 1) ;

The upper and lower bounds are reused from the �ne model bounds.
Extra information that can be speci�ed in the coarse model are the im-

plicit parameters. This is once again taken from the example in Section 5.2.

Mc. Iparams = { 'cm ' , ' l 3 ' ' eps_r ' } ;
2 Mc. xpmin = [ 1 5 . 0 , 20 .0 08 .0 ] ' ;
Mc. xpmax = [ 9 0 . 0 , 40 .0 14 .0 ] ' ;

4.1.3 Specify Optimiser options

The maximum number of main loop optimisations is set using

OPTopts . Ni = 5 ;

The maximum number of trust-region iterations

OPTopts .TRNi = OPTopts . Ni *2 ;

The type of response and the associated goals

OPTopts . Rtype = { 'S2 , 1 ' } ;
2

OPTopts . goalType = { ' gt ' , ' l t ' , ' gt ' } ;
4 OPTopts . goalResType = { 'S2 , 1_dB ' , ' S2 , 1_dB ' , ' S2 , 1_dB ' } ;
OPTopts . goalVal = {−3, −30, −3};

6 OPTopts . goalWeight = {1 , 1 , 0 . 1 } ;
OPTopts . g oa lS t a r t = {5 .0 e9 , 12 .0 e9 , 16 .5 e9 } ;

8 OPTopts . goalStop = {9 .5 e9 , 14 .0 e9 , 20 .0 e9 } ;
OPTopts . errNorm = {1 , 1 , 1} ;

Although this is not used in the example mentioned this is how the global
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optimiser is set

OPTopts . globOpt = 1 ;
2 OPTopts . g l oba l S o l v e r = ' ga ' ;

The global optimisers that the space-mapping system handles are

� ga � patternsearch

Similarly for the local optimiser

1 OPTopts . l o c a l S o l v e r = ' fminsearchcon ' ;

There are defaults for these options, therefore the user does not need to set
them.

The supported local optimisers are

� fmincon

� fminsearchcon

� fminsearch

4.1.4 Specify Space-Mapping options

Space-mapping options are selected as follows

SMopts . getA = 0 ;
2 SMopts . getB = 0 ;
SMopts . ge tc = 1 ;

4 SMopts . getG = 0 ;
SMopts . getxp = 1 ;

6 SMopts . getF = 0 ;
SMopts . getE = 0 ;

8 SMopts . getd = 0 ;

This automated approach allows the user to easily switch between the di�erent
options with the implementation details abstracted away in the framework.

When implicit parameters are used, initial values must be speci�ed

1 xp i n i t = [ 44 . 5 , 30 , 9 . 9 ] ' ;

The space-mapping framework optimiser is set as follows
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SMopts . g l oba l So l v e r = ' ga ' ;
2 SMopts . optsGlobalOptim = optimopt ions ( ' ga ' ) ;

4 SMopts . l o c a l S o l v e r = ' fminsearchcon ' ;

Once again this is not required as it is set-up with default.

4.1.5 Run Main Space-Mapping routine

Finally, the command to actually run the space-mapping framework optimiser
is:

1 SMmain( x in i t , S in i t , SMopts , Mf , Mc, OPTopts , plotOpts ) ;

Here the initial design values are given as xinit, for example

x i n i t = [ 66 .727 , 60 .228 , 9 . 5 9 2 ] ' ;

4.2 External Model/Solver Interface

Although some solvers can be used as both �ne or coarse model solvers, they are
broken up based on their typical use-case. Details about the implementation
of each solver is given.

Validation and hard Limit must be placed on the inputs to ensure that they
are always obeyed. The optimisers can evaluate outside their given bounds to
try to work out gradient information. They will not suggest an optimal solution
outside of the range but the evaluation may still happen and this could cause
the solver to report an error. The output from the di�erent solves is caught
and redirected to log �les.

Each solver has to implement the speci�c repose types and give an error if
an unsupported type is encountered.

4.2.1 Coarse Model Evaluation - Low Fidelity Modelling

4.2.1.1 AWR-MWS

To interface with AWR-MWS a built in Matlab system actxserver is used
[32]. This is set up as follows
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awr = ac tx s e rv e r ( 'AWR.MWOffice ' ) ;
2

awr . invoke ( 'Open ' , [M. path ,M. name , ' . emp ' ] ) ;

Once there is a handle on the solver a subset of the standard API is available
[34]. For example accessing the global equations is done in the following way

eqns = pro j . GlobalDef in it ionDocuments . Item (1) . Equations ;

Some notes about using AWR-MWS in this way:

� Writing frequencies is very slow and can cause delays when using fre-
quency space-mapping.

� Not all items are available in the API using this method for example
accessing Item on some collections is not possible.

4.2.1.2 Matlab

Custom Matlab solvers can be build up. They need to handle a vector of
input and implicit parameters. The frequencies requested are is passed in and
the response is output.

4.2.2 Fine Model Evaluation - High Fidelity Modelling

4.2.2.1 FEKO

FEKO operated using Matlabsystem commands. The parameters are ad-
justed and a new mesh is built using

% Build parameter s t r i n g
2 parStr = [ ] ;
f o r nn = 1 :Nn

4 parStr = [ parStr , ' −#' ,M. params{nn} , '= ' , num2str ( x i (nn) ) ] ;
end

6 % Remesh the s t r u c tu r e with the new parameters
FEKOmesh = [ ' cadfeko_batch ' , [M. path ,M. name , ' . c fx ' ] , parStr ] ;

8 [ statusMesh , cmdoutMesh ] = system (FEKOmesh) ;

The solver is then run

1 FEKOrun = [ ' runfeko ' , [M. name , ' . c f x ' ] ] ;
[ statusRun , cmdoutRun ] = system (FEKOrun) ;
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S-parameter are the only results supported at this stage. The touchstone �le
export must be set when setting up the requesting in CADFEKO itself.

4.2.2.2 CST

CST also uses the built in Matlab system actxserver command.

1 c s t = ac tx s e rv e r ( 'CSTSTUDIO. Appl i ca t ion ' ) ;
p e r s i s t e n t mws

3 mws = invoke ( cst , ' OpenFile ' , [M. path ,M. name , ' . c s t ' ] ) ;

A persistent variable is used to ensure that instances of the application
are managed correctly.

Parameters are adjusted in the following way

% Update parameters
2 f o r nn = 1 :Nn
invoke (mws, ' StoreParameter ' ,M. params{nn} , x i (nn) ) ;

4 end
% invoke (mws, ' Rebuild ' ) ;

6 invoke (mws, ' RebuildOnParametricChange ' , true , t rue ) ;

Currently only S-parameters is implemented for CST.
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Analysis

In this chapter examples of how the space-mapping framework is applied to
di�erent example is examined. In each case an introduction to the example is
given and the methods used to construct and initialise the models, both �ne
and coarse. Graphs are generated from the �nal save points and output from
the space-mapping framework, see Section 3.6.7. Goals, coarse and �ne model
response as well as surrogate responses are shown on the graphs. Finally, the
results and the space-mapping technique chosen for the particular example are
evaluated.

To examine the use-cases for di�erent space-mapping techniques, a basic
stub example is presented, see Section 5.1. A greater than and a less than goal
are speci�ed on an S1,1 request type. FEKO is used as the high �delity model
and AWR-MWS is used as the coarse model. Di�erent coarse models are built
to highlight the usage of the space-mapping techniques. Input, implicit and
frequency space-mapping are all described in detail.

A microstrip double folded stub �lter example is presented in Section 5.2.
This example is taken from literature and requires three design parameters to
be optimised. Three goals are speci�ed for the S2,1 request of this bandstop
�lter. FEKO is used as the high-�delity solver. A single-layered in�nite
substrate is used with P.E.C. lines. A simple mesh convergence study is done
to ensure that the complexities of the model are su�ciently handled. An
AWR-MWS coarse model is used. Microstrip line, tee and bend components
are used with interlinked capacitor.

5.1 Electromagnetic Stub Examples

The same �ne model is used for the next three example to demonstrate the
di�erent ways that a problem can be solved using space-mapping. A microstrip
stub example is set up in FEKO as the high-�delity model, see Figure 5.1.
The lines are modelled as P.E.C. (perfect electric conductor) on an in�nite,
single layered substrate [36]. Microstrip ports are used for both the input and
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output ports with an impedance of 50 Ω. The design variable ls is the length
of the stub.

Input 50 Ω Output 50 Ω

ls

80mm

w

Figure 5.1: Stub microstrip �ne model example. The length of the stub ls
is the design parameter. The width of lines w are 5mm, and the length of
the feed line is 80mm. A height h of 1.5mm is used for the substrate with a
permittivity εr of 2.1.

A single S1,1 response request is used for model evaluation, see Section 3.5.5.6
for details on the di�erent response types. The response itself is treated as a
complex quantity and both the real and imaginary components come into play
with building an aligned surrogate, see Section 3.5.5.5 for details.

Goal criteria for an S-parameter request is typically expressed in decibels.
Two goals are speci�ed for this example:

� |S1,1 dB| < -20 dB over the frequency range 1.30GHz to 1.45GHz weight-
ing 1.0.

� |S1,1 dB| > -10 dB over the frequency range 1.60GHz to 2.00GHz weight-
ing 0.1.

The less-than goal is the more important of the two and given a weighting of
one while the greater-than weighting is reduced to 0.1. The goals are plotted
in Figure 5.2 where the cyan horizontal line represents the less-than criteria
and the magenta greater-than. Black represents the �ne model response and
the coarse model is shown in red. Section 3.6.1 details the di�erent goal types
and their combinations.

The coarse model is set up using an AWR-MWSmodel. The diagram
of this coarse is shown in Figure 5.3. Feed lines and the stub are modelled
using transmission lines with the same e�ective permittivity as the substrate
in the �ne model (εr = 2.1). The is not the most accurate approach both
i.t.o the transmission line and the permittivity choice, but they are still used
for this example for illustrative purposes. The coarse model response is o�set
from that of the �ne model and the di�erent alignment e�ects are employed
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Figure 5.2: A base plot showing the di�erence between the �ne FEKO and
coarse AWR-MWS model responses. A less- and greater-than goal are shown
but no alignment takes place.

to demonstrated how they are used. fminsearchcon is used as the optimiser
type for both the alignment phases and the main design space optimisation.

Figure 5.3: Base AWR-MWS coarse model equivalent to �ne model.

First o� an input space-mapping example is shown. Only the additive
getc term is used. The following example shows implicit space-mapping where
a capacitor is introduced between the end of the transmission line stub and
ground. Only an additive implicit space-mapping con�guration is used, getxp.
The �nal illustrative example used frequency space-mapping, getF. A copy of
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the coarse AWR-MWS model used for the input space-mapping example is
used here too.

5.1.1 Input Space-Mapping for Stub

The FEKO �ne model stub shown in Figure 5.1 is used for this example. An
AWR-MWS model, shown in Figure 5.4, is used at the low-�delity model.
50 Ω input and output ports are use for both the �ne and coarse models. The
length of the feed is speci�ed as lf = 80mm for the coarse model. This is the
same as in the �ne model. A single design variable ls is used. This is the length
of the stub in both models. The same permittivity is used for both the �ne
model substrate and in the transmission line. The coarse model transmission
line impedance is set to 50 Ω.

Figure 5.4: AWR-MWS coarse model for input space-mapping stub example.

If the less-than condition is met, the rest of the response less than 1.3GHz
is not important given the goal requirements. In the same way, if the �rst
part of the greater-than goal is met, then the rest is not important. The most
useful part of the graph for alignment is therefore between the start of the �rst
goal and the start of the second goal, i.e. from 1.3GHz to 1.6GHz. The errW
vector is therefore set to this range, see Section 3.5.5.5 for details of how this
option is used. Alignment within this speci�ed region is prioritised.

The �rst iteration is shown in Figure 5.5a. The coarse model response
R(1)
c is about 200MHz left of the �ne model response R

(1)
f . R

(1)
f starts o�

about 10 dB above the cyan less-than goal and only meets the greater-than
goal at about 1.9GHz. The aligned surrogate, shown in dashed green, is in
good agreement with the �ne model, within the speci�ed range. The dotted
blue line represents the optimised surrogate which is the previous surrogate
model evaluated at the new point. For the �rst iteration there is not a previous
surrogate and therefore this lies on top of the aligned surrogate response.
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(a) First iteration results of the input
space-mapping stub example.
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(b) Second iteration results of the input
space-mapping stub example.
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(c) Third and �nal iteration for the input
space-mapping stub example.
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(d) Plot showing the design parameter
iterations for an input space-mapping
stub example. The values are the actual
values and not normalised.

Figure 5.5: Plots showing responses, per iteration, for the stub example using
input space-mapping.

Figure 5.5d shows the iteration steps and the trust-region at each point.
These are the �ne model evaluation points. The initial input parameter is
set to ls = 67.5mm and remains at that point for the �rst iteration because
the startWithIterationZero �ag is set. This means that no optimisation
is carried out before the �rst iteration starts, see Section 3.3.4. The second
iteration lines up with the upper edge of the trust-region.

The response at the second iteration is shown in Figure 5.5b. An improve-
ment has been made to achieve the goals but from Figure 5.5d it can be seen
the trust-region limited the change. The aligned surrogate response R(2)

s once

again has good agreement with the �ne model R
(2)
f . The optimised surrogate
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is not exactly the same as the aligned surrogate suggesting that the �rst sur-
rogate model is accurate within this range. No trust-region radius change in
seen for iteration two (Figure 5.5d) which means that the η1 condition was
met but not η2, refer to Section 3.6.5.

Figure 5.5c shows the �nal iteration. The surrogate models still have good
agreement with the �ne model over the frequencies of interest. Both the less-
than and greater-than goals are satis�ed. In Figure 5.5d the �nal iteration is
well within the trust-region radius and has not reached a boundary. It can also
be seen that the trust-region radius has grown in the last iteration. Here the
η2 condition has been met and the radius is expanded. An optimal solution
has already been found and no further iterations are seen.

5.1.2 Implicit Space-Mapping for Stub

Once again, the FEKO �ne model in Figure 5.1 is used. The AWR-MWS
model, shown in Figure 5.6. A capacitor is place between the end of the stub
and ground to model edge e�ects. The capacitor is speci�ed in fF.

Figure 5.6: AWR-MWS coarse model for implicit space-mapping stub exam-
ple. Only the capacitor is used for alignment.
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(a) First iteration results of the implicit
space-mapping stub example.
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(b) Second iteration results of the im-
plicit space-mapping stub example.
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(c) Third iteration results of the implicit
space-mapping stub example.
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(d) Fourth and �nal iteration results of
the implicit space-mapping stub exam-
ple.
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Figure 5.7: Plots showing responses, per iteration, for the stub example using
implicit space-mapping.
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The same goal are used as speci�ed before. Only implicit space-mapping
getxp is used for this example. The permittivity of the substrate eps_r and the
length of the input/output coaxial line lf are also added as implicit parameters
to aid in the alignment process. Their limits are shown below

1 Mc. Iparams = { ' eps_r ' , ' l f ' , ' c ' } ;
Mc. xpmin = [ 1 . 0 , 70 , 0 . 1 ] ' ;

3 Mc. xpmax = [ 2 . 6 , 90 , 1 0 0 ] ' ;

The results of the �rst iteration is shown in Figure 5.7a. Good agreement
between the aligned surrogate and the �ne model responses is seen. Figure 5.7e
show the normalised parameter values for each iteration. The normalised val-
ues are shown this time because the implicit values are an order of magnitude
di�erent. The trust-region around the design parameters is shown and once
again it is seen within the middle of the design space. In iteration two the
trust-region expands which means there is a very good agreement between the
change in responses of the �ne and surrogate models in the �rst iteration. The
iteration is however limited by the trust-region.

Figure 5.7b and Figure 5.7c show the results of the second and third iter-
ation respectively. In both cases good progress is made reducing the design
space goal errors. The aligned and optimised surrogate models line up very
well with the �ne models within the speci�ed region 1.30GHz to 1.60GHz.
Figure 5.7c still shows an overlap on the less-than goal.

The overlap is reduced in the �nal iteration, see Figure 5.7d. Figure 5.7e
shows that the capacitor implicit variable goes down to the bottom it its lower
bound. This could show that the bounds are too small but in this case they
are su�cient.

5.1.3 Frequency Space-Mapping for Stub

A detailed, isolated example of frequency space-mapping is shown in Sec-
tion 2.2. Here this technique is applied to the microstrip stub �lter example.
Once again, the same �ne model is used, see Figure 5.1. The AWR-MWS
model from Section 5.1.1 is also reused here, see Figure 5.4.

Figure 5.8a shows the �rst iteration. The coarse model is successfully
aligned to the �ne model within the speci�ed 1.30GHz to 1.60GHz range.
The frequency space-mapping values are not shown on Figure 5.8d because
they are not directly linked to the design space. In the second iteration it
can be seen that once again the model is evaluated right at the edge of the
trust-region.

Figure 5.8b shows the response at iteration two. There is a very good
agreement between the �ne and surrogate models. The improvement matched
so well that the trust-region expands to almost �ll the design space, see Fig-
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(a) Response to frequency space-
mapping stub example, iteration one.
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(b) Response to frequency space-
mapping stub example, iteration two.
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(c) Third and �nal response for the fre-
quency space-mapping stub example.
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Figure 5.8: Plots showing responses, per iteration, for the stub example using
frequency space-mapping.

ure 5.8d. A step is then taken in the third and �nal iteration right to an
optimal solution. Figure 5.8c shows this result.
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5.2 Double Folded Stub

The double folded stub (DFS) �lter in as an example case used in a number of
space-mapping papers [3, 13, 18]. Figure 5.9 show a �ne model representation
of the DFS bandstop �lter. FEKO is used as the high �delity solver. A 5mil
substrate with relative permittivity 9.9. Microstrip lines for the �ne model are
modelled as P.E.C. on an in�nite, single layered substrate [36].

w1

w2

l1

l2

s

Input 50 Ω Output 50 Ω

Figure 5.9: Double folded stub microstrip �ne model example.

Three design variables are used. l1 is the length between the two stubs,
l2 is the width of the horizontal part of the arms and s is the height of the
vertical part of the arms. The width of the microstrip lines w1 and w2 are
�xed 4.8mil. The input and output ports are used at 50 Ω. Model evaluation
takes place from 5GHz to 20GHz.

Figure 5.10: AWR-MWS coarse double folded stub model.
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AWR-MWS is used for the low �delity model. It is shown in Figure 5.10.
Microstrip line, bend and tee components are used. The same line width used
in the �ne model are used here. The strip lengths are broken up into deltas
and four capacitors are distributed between the main line and the arms [3].
Capacitors are used to approximate coupling between the arms and each is
represented by an implicit variable cm. Arm lengths are broken up into

l2 = 4∆l , (5.1)

and the centre length
l1 = 2∆l + 2∆′l . (5.2)

l1 and l2 are still used as the design variables. s represents the height of the
microstrip between the centre line and the horizontal arm. An extra length is
l3 is introduced to the coarse model between the microstrip tees and the input
and output ports. This is introduced as an implicit variable to allow the phase
of the surrogate model response to change. The third �nal implicit variable
that is introduces is the relative permittivity of the substrate εr.

An extract of the input �le for the DFS is shown below to summarise the
initial values and the bounds used:

% l1 l 2 s
2 x i n i t = [ 66 .727 , 60 .228 , 9 . 5 9 2 ] ' ;
% cm l3 eps_r

4 xp i n i t = [ 44 . 5 , 30 . 0 , 9 . 9 ] ' ;

6 Mf . s o l v e r = 'FEKO' ;
Mf . params = { ' l 1 ' , ' l 2 ' , ' s ' } ;

8 Mf . ximin = [ 35 . 0 , 35 . 0 , 1 . 0 ] ' ;
Mf . ximax = [ 90 . 0 , 90 . 0 , 1 5 . 0 ] ' ;

10

Mc. s o l v e r = 'AWR' ;
12 Mc. params = { ' l 1 ' , ' l 2 ' , ' s ' } ;

Mc. ximin = Mf . ximin ;
14 Mc. ximax = Mf . ximax ;

Mc. Iparams = { 'cm ' , ' l 3 ' ' eps_r ' } ;
16 Mc. xpmin = [ 1 5 . 0 , 20 .0 08 .0 ] ' ;

Mc. xpmax = [ 9 0 . 0 , 40 .0 14 .0 ] ' ;

All lengths are given in mil and the capacitance is in fF.
This is a bandstop �lter therefore, the request type Rtype is set to S2,1.

There are three goals speci�ed this request and each are given dB. Therefore,
the goalResType is set to S2,1_dB. The goals are

� |S2,1| ≥ -3 dB for 5.0GHz ≤ f ≤ 9.5GHz,

� |S2,1| ≤ -30 dB for 12.0GHz ≤ f ≤ 14.0GHz, and

� |S2,1| ≥ -3 dB for 16.5GHz ≤ f ≤ 20GHz.
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The goal weighting of the last goal is dropped to 0.1 to give the other two
goals preference. This choice is discussed later in Section 5.2.2.

Before the results are presented, a meshing analysis/re�nement is con-
ducted to check that the FEKO �ne model is set up accurately without in-
troducing excessive solver runtime. After the meshing analysis, the results of
this approach is shown.

5.2.1 Mesh Analysis/Re�nement

Four sets of meshing options are tested using FEKO on the DFS �ne model
seen in Figure 5.9. A continuous interpolation frequency range is set and
the design parameters are set to the optimal model x ∗f found in [3]. That is
l1 = 78.964mil, l2 = 81.210mil and s = 7.901mil.

Figure 5.11: Meshing re�nements resulting from a FEKO mesh re�nement
and error estimation routine.

Four di�erent meshing con�gurations are used to determine mesh conver-
gence. The con�gurations are:

1. Standard.

2. Standard meshing with meshing re�nement.

3. Custom w1/3.
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(a) Double folded stub standard mesh-
ing.

(b) Double folded stub custom w1/3
meshing.

Figure 5.12: Visual comparison between standard and custom meshes.

4. Custom w1/3 with re�nement.

The meshing re�nement options are available when an error estimation request
is speci�ed and an initial run has taken place. The meshing zones are automat-
ically set up in the regions where errors may be present [36]. Figure 5.11 shows
the meshing re�nement zones over the model. The custom mesh size of w1/3
ensures that there at least three triangles along the width of the microstrip,
see Figure 5.12b. Using a standard mesh a single triangle is seen along the
width of the microstrip line, see Figure 5.12a.

The S-parameter results for these four runs are shown in Figure 5.13. The
dotted lines represent the response without meshing re�nement and solid lines
with the re�nement. Blue and green lines are the standard mesh while the
orange and red are custom mesh. There is very little di�erence between the
respective base meshes and their corresponding re�ned meshes. There is how-
ever a di�erence between the standard and the custom mesh.

A frequency shift from 13.976GHz to 14.160GHz is seen at the minimum
point, i.e. a shift of 0.184GHz or 1.2 % of the frequency space. The actual
value at this null is not relevant. The value at the local maximum is however
important.

The standard mesh has a value of -30.728 dB at the local maximum. -29.108 dB
is seen on the custom mesh with re�nement. These two responses are com-
pared because it is expected that the �nest mesh would give the best results
and the coarsest mesh would give the poorest results. This is only a 1.620 dB
di�erence. The di�erence in results are not signi�cant enough to justify the
extra runtime and the standard mesh is used for the base approach seen next
in Section 5.2.2.
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Figure 5.13: A FEKO �ne model mesh convergence comparison.

Other points to note from the exercise is to inspect the values at the goal
points.

� At 9.5GHz the response is meant to be greater-than -3 dB. In this case
a value of -1.858 dB is seen. The responses successfully meet the criteria.

� Within the range from 12.0GHz to 14.0GHz |S2,1| must be less-than
-30 dB. The end points are clear for all the responses. However, for
the custom mesh simulations the local maximum breaks the criteria by
0.728 dB.

� Finally, at 16.5GHz the response must be greater-than -3 dB. Here none
of the responses make the speci�cation. At -6 dB an extra 3 dB is re-
quired.
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With these criteria in mind it is expected that the optimisation routine may
struggle to meet the speci�cation because using the same results published do
not meet speci�cations.

5.2.2 Base Approach

To solve this problem a combination of additive input space-mapping getc

and additive implicit getxp is used. The wk option is set to zero meaning that
the number of �ne models used for alignment is restricted, see Section 3.5.5.5.
fminsearchcon is used as the local solver and no global optimisers are used.
Unlike the illustrative example, startWithIterationZero is not set. This
means that a local optimisation will be used before the �rst �ne model is
evaluated. No special alignment evaluation zones are set.

The �rst iteration is shown in Figure 5.14a. The coarse model is o�set from
the �ne model by about -3GHz and does not meet the second nor the third
goal speci�cation.

As mentioned before, the last goal weighting is dropped to 0.1. In this
�rst iteration of optimisation, the reduction in weight gives preference to the
other two goals. The second and last goals start with no successful �ne model
points, while the �rst one has only successful points. If all the goals are
equally weighted, the shift of the main nulls could either be to higher or lower
in frequency without a signi�cant di�erence in cost. The reduction on weight
of the last goal helps the correct step to be made.

An aligned surrogate model bridges the frequency di�erence and improves
on the form matching. It is not a perfect match but su�cient for optimisa-
tion. In Figure 5.14e the normalised design variable analysis is given for each
iteration. The normalised version is shown due to the di�erences between the
actual values of the design and implicit parameters. The design variables are
depicted by an x, square and circle. Implicit parameters are shown by triangles
in di�erent orientations, given in the order of de�nition. The design parame-
ters are roughly in the centre of the design space and their trust-regions are
shown using error-bars. After the initial optimisation, the implicit variables
drift to the top and bottom of the available space to achieve alignment. This
could signify that the bounds are too strict, but in this case the bounds are
valid and ensure that the does not degrade to evaluations that no longer make
sense.

In the second iteration the design variables move to the edge of the trust-
regions. Results of this iteration can be seen in Figure 5.14b. The �ne model
shifts to the left reducing the error for the less-than goal and the second greater-
than goal. The optimised surrogate is o�set down from the �ne model by about
1GHz. This is the surrogate from the �rst iteration evaluated at the new posi-
tion. This o�set reduced signi�cantly by the aligned surrogate generated using
the new �ne model data. There is good agreement between the aligned surro-
gate and the �ne model along the sides of the graph but there is a noticeable
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(a) Double folded stub, �rst iteration.
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(b) Double folded stub, iteration two.
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(c) Double folded stub, iteration three.
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(d) Double folded stub, �nal iteration.
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double folded stub example.

Figure 5.14: Double folded stub example using input and implicit space-
mapping.
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di�erence at the central local maximum. A drop of about 10 dB is seen. The
values at -30 dB are small but this discrepancy could lead to problems meeting
the less than speci�cation. A �nal observation to note for this step is that the
trust-region has remained the same.

Figure 5.14c shows the results of the third iteration. Once again, an im-
provement is seen in the �ne model results. The second greater-than goal is
almost met but the local maximum in the centre pushes above the -30 dB level.
Figure 5.14e shows that the values are no longer at the edge of the previous
trust-region and are moving around within the radius limits. The optimised
and aligned surrogates have a small deviation but it appears that they are
converging. With three design parameters and three implicit parameters it
is expected that another three �ne models are required to have enough �ne
model data cater for all the degrees of freedom.

The forth and �nal iteration is seen in Figure 5.14d. Here the optimised and
aligned surrogate meet the �rst greater-than and the less-than goals. There is
not much room along the edges of the goals but there is a gap of about 16 dB
between local maximum (between the nulls) and the less than goal. This extra
room in not however seen in the �ne model. It only just makes the -30 dB
speci�cation. The second greater-than goals sees a small overlap from both
the surrogate and �ne models.

Table 5.1: Optimal solution to double folded stu� �lter

Design Variable x ∗f [mil]

l1 81.662
l2 83.156
ls 7.6694

Although there is a marginal overlap for the third goal, this is considered a
successful solution to double folded stub problem. The combination of implicit
and input space-mapping allowed an accurate surrogate model to be built and
the problem two be solved with only four �ne model evaluations. The optimal
design parameters are listed in Table 5.1.
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Conclusion

6.1 Summary and Conclusions

An automated space-mapping framework is presented that can be con�gured
in various ways. Additive and multiplicative options are available for input,
output and implicit space-mapping techniques, as well as scaling and shifting
for the frequency space-mapping option. The user can specify multiple goals
across various solution request types. High �delity solvers such as FEKO
and CST are available, as well as low �delity solves such as AWR-MWS and
Matlab. The framework allows introducing new solver and supports various
levels of error validation. Multiple local and global optimisers are available
and are con�gurable by the user. The framework also allows new solvers to be
easily added through the use of Matlab problem de�nition structure. Results
are saved at each successful iteration and the system is able to pick up from
one of the previous save points with new options.

Implementation details and explanations of the framework are presented.
Relevant defaults and con�guration options are discussed for each stage of the
algorithm. Two separate and con�gurable optimisation stages are used. The
space-mapping optimiser is used for extracting the space-mapping parameters
that achieve the best alignment between the surrogate and �ne model results.
Constraints are required for this optimiser because the bounds on the design
variables must carry through to the surrogate model being built. An option to
normalise the space-mapping parameters is provided and allows the optimiser
to make �ne adjustments with any degree of freedom. The error function used
for the parameter extraction phase compares the di�erence in results of the
surrogate and �ne model responses. Complex-valued responses give the best
alignment results because phase is considered. Options for di�erent norms
are discussed for the parameter extraction error function (the L1 norm is the
default option). Multiple �ne model evaluations can be used to achieve an
aligned surrogate that is valid over a large portion of the parameter space.

The second optimiser uses the surrogate model to �nd an optimal solution

90

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSION 91

to the given device speci�cation. Available goals to be used for device speci-
�cation include less-than, greater-than, and bandwidth operations. These are
used to set an error/objective function for the design space optimiser. The
design space available to the optimiser is limited by a trust-region safeguard.
This ensures that the surrogate model is not evaluated in a region that does not
accurately represent the �ne model. When an optimal design space position is
proposed by the optimiser (a trial point), that point is also evaluated in �ne
model space. A trust-region evaluation phase then takes place. The change
in surrogate model response, between this trial point and the point before,
is compared against the �ne model response at the same two points. If the
changes do not match up, then the trial point is rejected and the trust-region
shrinks. This means that the bounds given to the optimiser are closer to the
previous point, where the �ne and surrogate models were aligned. If, however,
the change in responses match, then the evaluation concludes that a successful
trial step was made.

With the extra �ne model information, a new surrogate model is built.
This happens regardless of whether the trial point is accepted or not. In both
instances, more information is available for the parameter extraction process
to use. The framework allows for various di�erent con�gurations for the use
of the �ne models. One method is to use the same number of �ne model
evaluations as there are space-mapping parameters. If there are more �ne
models than this, the earlier ones are discarded. The user is provided with
options for changing this behaviour.

An illustrative microstrip stub example is presented for input, implicit
and frequency space-mapping. This example shows how to apply the di�erent
techniques to EM devices. The objective given for these examples is to optimise
the S1,1 response to conform to a less-than and greater-than goal. FEKO

is used as the high-�delity solver and AWR-MWS as the low-�delity one.
The �ne model uses an in�nite single-layered substrate with P.E.C. lines and
Transmission line are used in the coarse model. Each step is analysed and
details are given about how the trust-region operates.

Finally, a microstrip double folded stub �lter is demonstrated. The example
is taken from literature and pushed through the system. FEKO and AWR-
MWS are used once again. Three design variables are used in the example: the
horizontal spacing between the two arms, the horizontal lengths of the arms
themselves, as well as the height of the arms. The coarse model uses microstrip
lines, tees and bends. Capacitors are included as implicit variables to model
coupling. The permittivity of the substrate and the length of the input/output
feed are also included as implicit variables. Additive input and implicit space-
mapping techniques are used to solve this bandstop optimisation problem.
Three goals are speci�ed for the S2,1 response. The system allows a custom
weighting of the goals to be speci�ed which ensures that the �rst optimisation
step is in the correct direction. This shows that there is still room for further
improvements in robustness. With this adjustment a successful optimisation
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is observed with four �ne model evaluations.

6.2 Future Work

It is always useful to have additional solvers, optimisers and more response
types available to the user, but it is more important to ensure that when new
items are added correctly and ful�l API contracts that are exposed. Using an
object-oriented architecture using polymorphism can improve the extendibility
and maintainability of the framework. Interfaces for the solvers and the opti-
misers would force a clear and repeatable solution. Pairing this an API level
test suite or even unit-testing would improve the maintainability and ability
for developers to con�dently change internal workings.

Any type of testing would require example models that are very quick to
evaluate and can handle various di�erent con�gurations. A mathematical,
series resonant circuit incorporated into a Rosenbrock function would satisfy
such criteria. The mathematical mature allows for quick evaluations and the
Rosenbrock function testing as the dimensions of the system grow. Implicit
variables need to also be incorporated to ensure the entire system is evaluated.

A polymorphic, object-oriented approach also lends itself re-usability and
expandability of the space-mapping options. Currently, the framework does
not use any derivative information for alignment improvements. Although
derivative information is not available from �ne model evaluations, a Broyden
update approximation could be used.

In terms of validating the current work presented, the trust-region should
be compared against optimisation runs that do not have the option enabled
to see where improvements are made. Improvements could be made to how
the initial trust-region radius is calculated and allow automatic retries if the
system converges without meeting speci�cations.

An aspect that is not automated is that of which space-mapping options
to use. A wizard to guide a new user to which options to use for a particular
problem would help.

A further advancement would be to extend this system to handle intercon-
nected, multi-disciplinary systems. For example, linking thermal or mechanical
systems to the existing EM solution. The space-mapping paradigm is already
used through various engineering disciplines and the framework could support
this extension.
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