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ABSTRACT 
Micropollutants are emerging contaminants that have received considerable attention in recent 

years due to environmental concerns. Diclofenac is a nonsteroidal anti-inflammatory drug that 

is commonly detected in South African surface waters and has been shown to be persistent and 

harmful to the environment. Biofilms, which are composed of sessile, mixed microbial 

communities, play a key role in wastewater treatment and functioning of natural ecosystems. 

There is, however, a poor understanding of biofilm-micropollutant interactions in this context. 

Biofilm structure is a useful indicator of the effect of micropollutant exposure on a biofilm and 

its activity. Recently, individual-based models have been developed that can simulate biofilm 

structure from first principles and show potential as a tool to provide mechanistic understanding 

of these interactions. The aim of the project was to develop and validate an individual-based 

model capable of describing biofilm structural development of a sample, as well as reproducing 

observed effects of diclofenac exposure on biofilm structure. A further aim was to investigate 

the feasibility of observed biofilm structure for validation of the biofilm model.  

Lumped biokinetic parameters of an environmental sample were estimated using batch 

respirometric methods and regression of model parameters. Heterotrophic growth was found to 

dominate in the sampled culture. The estimated parameters were thus used to calibrate lumped 

heterotrophic growth in the biofilm model. Mixed-species biofilms were cultivated in flow cells 

under control conditions and exposed to diclofenac at 0.1 and 10 mg.L-1. Confocal laser 

scanning microscopy was used to examine morphological changes in biofilm structure over 

time. Biofilm structural parameters were derived from microscopy data and compared to the 

simulation output. Observed structure of biofilms were successfully used to validate the 

proposed biofilm model. Experimental results indicated a dose-dependent response to 

diclofenac. Diclofenac at 10 mg.L-1 significantly inhibited biofilm growth over the exposure 

period compared to a control. Exposure at 0.1 mg.L-1 resulted in an increase in biofilm growth 

after 24 h. The biofilm model successfully reproduced observed trends in structure at  

10 mg.L-1 and 0.1 mg.L-1. More work is required to elucidate the complex microbial 

interactions of diclofenac in the µg.L-1 range. This study showed that an individual-based model 

can reproduce in vitro biofilm structure development based on emergent structural parameters. 

Individual-based models coupled with comparative experimental methods show potential as a 

tool for investigating biofilm interactions and improving model development. However, areas 

of improvement were identified including model parameter uncertainties, limitations in the 

biofilm model, and reproducibility in experimental methods. 
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ABSTRAK 
Mikrobesoedelstowwe is opkomende kontaminante wat aansienlike aandag gekry het in die 

laaste jare as gevolg van bekommernisse oor die omgewing. Diclofenac is ’n nie-steroïedale 

anti-inflammatoriese geneesmiddel wat algemeen in Suid-Afrikaanse oppervlakwater 

waargeneem word en is bewys om volhoudend en beskadigend vir die omgewing te wees. 

Biofilms, wat bestaan uit sessiel, gemengde mikrobiese gemeenskappe, speel ’n belangrike rol 

in afvalwaterbehandeling en funksionering van natuurlike ekosisteme. Daar is egter gebrekkige 

insig oor biofilm-mikrobesoedelstof-interaksies in hierdie konteks. Biofilmstruktuur is ’n 

nuttige indikator van die effek van mikrobesoedelstof blootstelling op ’n biofilm en sy 

aktiwiteit. Onlangs is individu-gebaseerde modelle ontwikkel wat biofilmstruktuur kan 

simuleer vanuit eerste beginsels en wys potensiaal as ’n hulpmiddel om meganistiese insig in 

hierdie interaksies te verskaf. Die doel van hierdie projek was om ’n individu-gebaseerde model 

te ontwikkel geskik om die biofilm  strukturele ontwikkeling van ’n steekproef te beskryf, sowel 

as om waargenome gevolge van diclofenac-blootstelling op biofilmstrukture te reproduseer. ’n 

Verdere doel was om die uitvoerbaarheid van waargenome biofilmstrukture vir die validering 

van die biofilmmodel te ondersoek. 

Gekonsentreerde biokinetiese parameters van ’n omgewingsproefsteek is beraam deur lot 

respirometriese metodes en regressie van modelparameters te gebruik. Dis gevind dat 

heterotrofiese groei in die proefsteekkultuur domineer. Die beraamde parameters is dus gebruik 

om gekonsentreerde heterotrofiese groei in die biofilmmodel te kalibreer. Gemengde-spesies-

biofilm is gekweek in vloeiselle onder gekontroleerde toestande en blootgestel aan diclofenac 

by 0.1 en 10 mg.L- 1. Konfokale-laserskanderingmikroskopie is gebruik om morfologiese 

veranderinge in biofilmstrukture oor tyd te ondersoek. Biofilm strukturele parameters is afgelei 

uit mikroskopie data en vergelyk met die simulasie uitsette. Die waargenome struktuur van 

biofilms het  die voorgestelde biofilmmodel suksesvol gevalideer. Eksperimentele resultate het 

’n dosis-afhanklike respons op diclofenac aangedui. Diclofenac by 10 mg.L-1 het biofilm groei 

aansienlik onderdruk oor die periode van blootstelling in vergelyking met ’n kontrole. 

Blootstelling by 0.1 mg.L-1 het na ’n verhoging van biofilmgroei gelei na 24 uur. Die 

biofilmmodel het waargenome neigings in struktuur by 10 mg.L-1 en 0.1 mg.L-1 suksesvol 

gereproduseer. Meer werk word benodig om die komplekse mikrobiese interaksies van 

diclofenac in die µg.L-1 bestek te verklaar. Hierdie studie het gewys dat ’n individu-gebaseerde 

model in vitro biofilmstruktuurontwikkeling, gebaseer op opkomende strukturele parameters, 

kan reproduseer. Individu-gebaseerde modelle wat gepaard gaan met vergelykende 
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eksperimentele metodes, wys potensiaal as ’n hulpmiddel om biofilminteraksies te ondersoek 

en om model ontwikkeling te verbeter. Areas van verbetering is egter geïdentifiseer, insluitend 

model parameter onsekerhede, beperkinge op die biofilmmodel, en herhaalbaarheid in 

eksperimentele metodes.     
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CHAPTER 1: INTRODUCTION 
Micropollutants (MPs) are emerging contaminants found to persist globally in surface waters 

and have received considerable attention in recent years. Although detected at relatively low 

levels, many are not efficiently removed during wastewater treatment which creates health risks 

and compromises the safe reuse of water resources (Petrie et al., 2015). With an ever-growing 

human population, increasing dependency on pharmaceuticals, and the recent drought in South 

Africa, the mass load of MPs in receiving water bodies is expected to rise. This poses a major 

challenge to existing wastewater treatment plants (WWTPs) and is a growing concern for the 

environment. Diclofenac (DCF) is a non-steroidal anti-inflammatory drug (NSAID) that has 

been shown to be persistent and bioactive, and is commonly detected in South African surface 

waters (Archer et al., 2017a). DCF has been added to the first watch list of the European Union 

Water Framework Directive tasked with identifying compounds with suspected risk to the 

aquatic environment (EU, 2015). Studies indicate that DCF has a range of harmful effects on 

the environment, is not easily biodegradable, and has the potential to bioaccumulate 

(Bonnefille et al., 2018). Moreover, the antimicrobial nature of DCF poses a threat to microbial 

diversity and functioning in both natural and engineered environments (Lawrence et al., 2012). 

Despite numerous reviews concerning the presence of MPs in WWTPs, the microbiological 

basis of MP exposure in water bodies is not completely understood.  

Microbial biofilms are ubiquitous in the environment and contribute significantly to the 

functioning of natural ecosystems as well as engineered settings such as WWTPs. Thus, they 

represent ideal indicators of environmental change and toxicity. A biofilm is defined as a 

surface-attached microbial community embedded within a self-produced extracellular 

polymeric substance (EPS) (Costerton et al., 1995). Today, biofilms are generally well 

characterised, yet further investigations are still required to fully understand and take advantage 

of the complexity of these systems. Biofilms within WWTPs come into contact with a myriad 

of MPs, yet our current understanding of biofilm-MP interactions in this context is poor. What 

is the fate of MPs that come into contact with biofilms? And what impact, if any, does MP 

exposure have on biofilm activity and structure?  

Structure, in a morphological sense, is an important factor to consider when studying microbial 

biofilms. The development of biofilm structure, which can vary from uniform to complex 

architectures, is affected by many internal and external factors, and can influence the activity 

of the biofilm itself. Therefore, changes in biofilm structure is a useful indicator of the effect 

of MPs on a biofilm and its activity. Investigating biofilm structure and biofilm-MP 
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interactions experimentally is laborious and difficult to comprehend given the vast number of 

processes and variables involved. Mathematical modelling can, however, integrate numerous 

processes in a highly controlled manner, making it a useful tool for testing hypotheses about 

biofilm-MP interactions. 

Mathematical models have been used since the 1970s to improve our understanding of 

microbial biofilms. Since then, the field has progressed to a point where one can confidently 

model highly detailed, three-dimensional (3D) descriptions of biofilm structure and ecology 

(Wanner et al., 2006). Various modelling frameworks have been developed to describe 

biofilms, with individual-based models (IbMs) showing great potential in capturing the 

structural complexity of microbial biofilms. A leading implementation of IbMs in the context 

of microbiology is iDynoMiCS (Lardon et al., 2011). The defining feature of IbMs is that they 

treat biomass components as individual physical entities that act independently according to 

rule-based behaviour. As a result, biofilm structure is an emergent property resulting from 

interactions at the individual scale. This represents the closest attempt at modelling biofilm 

dynamics from first principles and, currently, appears to be the best approach for simulating 

biofilm structural development. To take full advantage of the predictive power of IbMs, an 

improved integration of mathematical models and experimental methods is required. 

Advances in confocal microscopy have allowed for the detailed, in situ, 3D analysis of biofilm 

structure development over time. Quantitative descriptors of various aspects of biofilm 

structure can also be derived from confocal datasets. IbM output can be analysed in a similar 

manner since biofilm growth is simulated in a 3D space. It follows that observed biofilm 

structure be used for the validation of biofilm IbMs. This idea was introduced by Xavier et al. 

(2004), but no further research has been conducted on this topic. The feasibility of this approach 

will be investigated, optimised, and extended to capture the effect of pollutant exposure on 

emergent biofilm structure. 

In the present study, the effect of a commonly detected MP, diclofenac, on the structure and 

development of a mixed-species biofilm community was examined in a flow cell system. A 

high concentration of 10 mg.L-1 and an environmentally relevant concentration of 0.1 mg.L-1 

was tested. Furthermore, an IbM was developed and validated in order to simulate biofilm 

structure development and the impact of DCF exposure. Essentially, this model was used as a 

tool for testing hypotheses on biofilm-MP interactions. The proposed project also investigated 

the feasibility of the use of observed biofilm structure for the validation of an IbM. 
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 CHAPTER 2: LITERATURE REVIEW 
2.1 Bacterial biofilms 

Mathematical modelling of biofilms is a widely accepted tool in fundamental biofilm research 

and in engineering applications. A validated model can be used to make predictions of the 

dynamics of a biofilm system under conditions not yet explored experimentally or those that 

are difficult to measure directly (Hellweger et al., 2016). Building a mathematical model of a 

biofilm is a test of the conceptual understanding of the fundamental biological and 

physicochemical mechanisms governing biofilm dynamics, and can often expose gaps in the 

knowledge and inform the design of further experiments. Before delving deeper into biofilm 

modelling, it is necessary to understand the biology that the model is representing. 

2.1.1 What is a biofilm? 
Bacteria may exist in the familiar free-floating, planktonic state or as part of dense microbial 

communities called biofilms (Donlan, 2002). The latter is in fact the dominant mode of 

microbial existence, with the planktonic fraction constituting less than 0.1% of aquatic 

microbial life (Costerton et al., 1995). Biofilms are ubiquitous in the environment, occurring 

at solid-liquid or even air-liquid interfaces where conditions support microbial growth. A 

biofilm is defined as a spatially organised, surface-attached microbial community embedded 

within a self-produced EPS, or extracellular matrix (Costerton et al., 1995). The EPS is mainly 

polysaccharide in nature, but may also contain extracellular DNA, proteins, glycoproteins, and 

glycolipids that contribute to the structural integrity and three-dimensional architecture of the 

biofilm matrix (Costerton et al., 1995, Sutherland, 2001, Donlan, 2002). The EPS mediates 

strong attachment to various surfaces, including biological tissues, tooth surfaces, medical 

devices, natural aquatic systems, and water pipes (Donlan, 2002). This mode of growth confers 

a competitive advantage to the resident bacteria over their planktonic counterparts, allowing 

access to nutrients in areas with high fluid flow and harsh environmental conditions, as well as 

providing protection against external predation and antimicrobial treatment (Costerton et al., 

1995).  

Biofilm complexity can vary dramatically; those grown in the laboratory are usually 

monocultures, whereas natural biofilms are usually made up of a consortium of diverse 

bacterial species, including archaea and eukaryotes. As a result, biofilm functional diversity 

varies as well. Biofilms play an ecologically important role in the environment and human 

society, most notably in the nitrogen cycle and bioremediation of wastewater. During the 
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biological treatment stage of water and wastewater, biofilms are key for nutrient and chemical 

oxygen demand (COD) removal during aerobic and anaerobic processes. On the other hand, 

biofilms also cause major health and economic problems for society. The biofilm matrix 

confers an intrinsic phenotypic tolerance to antimicrobial agents, making biofilm-associated 

infections particularly difficult to treat. It has been reported that the minimum inhibitory 

concentration (MIC) of antimicrobials required to treat biofilms can be up to 1000-fold higher 

than their planktonic counterparts (Høiby et al., 2010). Biofilms are often responsible for 

chronic, and sometimes fatal, bacterial infections such as tuberculosis and urinary tract 

infections. Moreover, the biofouling and corrosion of water pipes, shipping equipment and 

membrane systems leads to huge economic losses worldwide (Schultz et al., 2011). Because 

of the major impact of microbial biofilms on human society, research interest in biofilm 

formation and control is increasing. 

2.1.2 Biofilm formation 
Biofilm formation is a multistage process (Figure 2.1). Initially, planktonic bacteria attach to a 

pre-conditioned surface. Bacterial contact with a surface triggers a transition to a sessile state 

which involves a change in the gene expression profile. Surface-attached cells begin to grow 

and produce the EPS matrix to form microcolonies.  

 
Figure 2.1. Stages of the biofilm lifecycle. Planktonic bacteria encounter a suitable surface and 
initiate reversible adhesion. Eventually, irreversible adhesion takes place, followed by the 
growth and formation of microcolonies. Finally, a mature biofilm develops and detachment 
events occur to seed new biofilms. Reprinted with permission (Copyright Centre for Biofilm 
Engineering, Montana State University-Bozeman). 

Bacteria within biofilms exhibit an altered phenotype and a gene transcription profile distinct 

from that of planktonic bacteria (Davies and Geesey, 1995, Becker et al., 2001). Cell-to-cell 

signalling, known as quorum sensing, facilitates bacterial community behaviour and is 
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involved in biofilm formation and other virulence factors. Quorum sensing allows bacteria to 

effect synchronised changes in population-wide gene expression based on perceived population 

density (Miller and Bassler, 2001).  

As the biofilm thickens and matures, it eventually reaches a pseudo-steady state where growth 

is balanced by loss through detachment and erosion. Detachment may occur due to mechanical 

stress induced by bulk liquid hydrodynamics, self-induced dispersal, as well as loss due to 

predation and viruses (Klapper and Dockery, 2010). When conditions become unfavourable, 

self-induced dispersal from the biofilm allows for the colonisation of surfaces elsewhere 

(Donlan, 2002). It should be noted that the stages of biofilm formation described above are not 

discrete, rather, the processes overlap. For example, detachment, whether self-induced or 

otherwise, has been shown to occur throughout biofilm development (Bester et al., 2009). As 

the biofilm increases in density and size, physical realities such as diffusion-reaction limitations 

begin to play an important role in biofilm structure, activity, and composition. 

2.1.3 Factors influencing biofilm structure 
Biofilm structure is dynamic and heterogeneous in nature, constantly changing in space and 

time as a result of external and internal factors. The structure of biofilms can vary from uniform 

monolayers to thick, complex architectures (Figure 2.2). The development of biofilm structure 

results from an interplay of physicochemical and biological factors, including mass transfer 

limitations, the hydrodynamics of the bulk liquid, as well as ecological interactions such as 

competition and cooperation (Klapper and Dockery, 2010). 

 
Figure 2.2. Illustration of biofilm structural heterogeneity. Biofilms can develop complex 
architectures such as water channels, mushroom-like microcolonies, and streamers. Reprinted 
with permission (Copyright Centre for Biofilm Engineering, Montana State University-
Bozeman). 
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Mass transfer is an important process in biofilms due to the diffusion-limiting EPS matrix 

(Klapper and Dockery, 2010). In the bulk liquid, and assuming dynamic conditions, advection 

is the predominant solute transport process, resulting in a relatively well-mixed system. 

However, high cellular density and the EPS matrix limits advective transport within biofilms 

(Stewart, 2003). Rather, molecular diffusion is the governing solute transport process within 

biofilms (Zhang and Bishop, 1994). Mass transfer within the biofilm is also affected by the 

properties and composition of the EPS, the diffusive and reactive properties of the solute, 

abiotic particles, the density and spatial organisation of microbial cells, and their metabolic 

activity (Stewart, 2003).  

Compared to a uniform biofilm surface, complex architectures such as water channels, voids 

and mushroom-like protrusions (Figure 2.2) have different mass transfer characteristics. These 

increase turbulence and provide more surface area for diffusion into the biofilm, and 

consequently, better access to bulk liquid nutrients (Costerton et al., 1995, Eberl et al., 2001). 

Bulk liquid can flow through these channels and between protrusions, increasing the diffusion 

of nutrients and oxygen into the biofilm and metabolites out of the biofilm (Donlan, 2002). 

Although water channels increase local mass transfer, diffusion is still limited towards the 

centre of cell clusters (Stewart, 2003). Pores and channels do not contribute to global mass 

transfer significantly, even at high flow rates. This is because high flow rates promote the 

formation of compact biofilms due to increased detachment forces, making the potential 

increase in mass transfer negligible (Van Loosdrecht et al., 2002). 

As the biofilm thickens, a concentration gradient is established due to diffusion limitations 

outlined above. In addition, microbial activity within biofilms alters the internal chemical 

environment by consuming substrate and producing metabolites, further accentuating the 

concentration gradient (Stewart and Franklin, 2008). As a result, different microenvironments 

develop that bacteria respond and adapt to, and a complex, spatially organised microbial 

community gradually develops. This generally leads to an outer aerobic and metabolically 

active layer, while inner layers become anaerobic, nutrient-deficient and growth-limiting 

(Stewart and Franklin, 2008). Bacteria at the surface of biofilms have better access to oxygen 

and nutrients which in turn results in relatively faster growth near the surface of the biofilm 

than the base biofilm. This explains the tendency of rapid outgrowth of biofilm protrusions 

reported in experimental studies (Costerton et al., 1995, Eberl et al., 2001, Ghanbari et al., 

2016) and reproduced by several modelling studies (Eberl et al., 2001, Dockery and Klapper, 

2002, Miller et al., 2012).  
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The development of chemical gradient-induced microenvironments results in the localisation 

of different functional groups throughout the biofilm, which explains the coexistence of 

metabolically diverse species often observed in natural biofilm systems (Stewart and Franklin, 

2008). Physiological cooperation between functionally different bacterial groups produces 

close spatial arrangements, such as those formed between ammonia and nitrite oxidisers in 

nitrifying biofilms (Picioreanu et al., 2000b). Thus, biofilm ecology and metabolism are 

influenced by substrate gradients, further enhancing structural heterogeneity. 

The hydrodynamics of the bulk liquid can be a major factor influencing biofilm structure as it 

dictates transport of nutrients as well as shear forces acting on the biofilm surface. To a large 

extent, biofilm formation and structure at steady-state depends on the balance between fluid 

shear rate (detachment) and substrate loading rate (growth rate) (Picioreanu et al., 2000b). 

Higher substrate loading rates promote thicker biofilms due to increased mass transfer and 

associated faster growth, while higher shear rates promote thinner, denser biofilms (Picioreanu 

et al., 2000b, Van Loosdrecht et al., 2002). Erosion and sloughing are the two main detachment 

processes. Erosion refers to the continuous detachment of single cells or small clusters, whereas 

sloughing is the more random, rapid, and often larger loss of biofilm (Donlan, 2002). Systems 

with higher shear forces, where detachment occurs mainly by erosion, tend to create thin, 

compact biofilms. Sloughing is predominant in systems with lower shear forces, leading to a 

more heterogeneous and porous biofilm (Van Loosdrecht et al., 2002, Xavier et al., 2005b). 

However, the reader is reminded that biofilm structure depends on the interplay between 

multiple factors; low shear forces does not necessarily always lead to a heterogeneous biofilm 

structure. Van Loosdrecht et al. (2002) demonstrated that faster growing biofilms can better 

balance detachment in systems with higher shear forces, leading to relatively thick biofilms. 

One should also consider the variations in the composition of the EPS matrix which could 

determine a biofilms resistance to sloughing.  

Detachment mechanisms have been successfully incorporated into multi-dimensional biofilm 

models which have been used to improve understanding of the effect of detachment on biofilm 

structure (Morgenroth and Wilderer, 2000, Van Loosdrecht et al., 2002, Xavier et al., 2005b). 

Based on experimental observation and the use of a cellular automaton (discussed in  

section 2.2.1), Van Loosdrecht et al. (2002) concluded that, along with substrate gradients, 

detachment processes play a significant role in biofilm structure as well. For example, the 

detachment of cell aggregates from the biofilm surface was found to be responsible for voids 

in the structure, leading to an irregular, porous biofilm (Figure 2.2).  

Stellenbosch University  https://scholar.sun.ac.za



8 

 

In summary, biofilm structure depends on the interplay between physical, chemical and 

biological processes. Spatial organisation is driven by the presence of chemical gradients 

resulting from biological activity and diffusion limitations. Biofilm structure is ultimately 

constrained by the balance between bulk liquid mechanical forces and microbial growth rates. 

Specific microbial processes influence structure dynamics as well, including biomass yield on 

the rate-determining substrate and EPS production (Van Loosdrecht et al., 2002). To simulate 

multidimensional biofilm structure, a mathematical model would need to simulate the interplay 

between the major physical, chemical and biological processes that occur at different spatial 

and temporal scales (Klapper and Dockery, 2010, Laspidou et al., 2010). 

2.1.4 Quantifying biofilm structure 
Confocal laser scanning microscopy (CLSM) has become a popular method for studying 

microbial biofilms and is particularly well suited for biofilm structure investigations. CLSM 

has the capability to provide high resolution 3D reconstructions of biofilms by capturing a 

series of optical sections in the same x-y plane along the z-axis (Lawrence et al., 1991). 

Combined with fluorescent probes, it allows for the direct, non-destructive, in situ  analysis of 

fully hydrated, living biofilms and can provide information on cell morphology and 

metabolism, as well as the physical structure and chemistry of the biofilm matrix (Costerton et 

al., 1995). Compared to alternative microscopic techniques, such as scanning electron or phase-

contrast microscopy, CLSM does not require harsh chemical fixation and has the beneficial 

feature of rejecting out-of-focus light, producing clear optical sections (Lawrence et al., 1991). 

Thus, biofilms can be analysed at specific depths and a 3D render of the biofilm can be 

reconstructed.  

A wide range of non-specific and specific fluorescent probes are available for CLSM analysis 

of biofilms, which offers a number of options for structural investigations. The non-specific 

nucleic acid stain, Syto9™ (a component of the LIVE/DEAD® BacLight™ kit), is widely used 

for general staining of the whole microbial population of single- and mixed-species biofilms. 

Specific probes are useful for differentiating between species or components of a biofilm. 

These include molecular probes commonly used in fluorescent in situ hybridisation (FISH) 

studies, and saccharide-specific fluorescent lectins that bind EPS components (Neu and 

Kuhlicke, 2017). However, there are certain limitations of this method to contend with, such 

as fluorophore bleaching and laser intensity attenuation in thick biofilms (Semechko et al., 

2018).  

Stellenbosch University  https://scholar.sun.ac.za



9 

 

Since biofilm formation is stochastic in nature, a direct, qualitative comparison between 

observed and predicted structure is unsuitable (Xavier et al., 2004). Therefore, quantitative 

parameters describing biofilm structure are derived from simulation and CLSM datasets for 

comparison, including mean thickness (L�f), biovolume (B), roughness coefficient (Rα), surface-

to-volume (s/v) ratio, and substratum coverage (cf) (Heydorn et al., 2000b). Quantification is 

based on image segmentation, where binary values are assigned to pixels with or without 

biomass over a given threshold value. Structural parameters have been used extensively for 

investigating the impact of antimicrobials and environmental conditions on biofilms as well as 

simulation output (Heydorn et al., 2000b, Paje et al., 2002, Xavier et al., 2004, Lawrence et 

al., 2007). COMSTAT, developed by Heydorn et al. (2000b) and improved by others 

(Vorregaard, 2008), is a well-known and freely accessible program used for quantitative 

biofilm analysis. Alternative image analysis programs have been developed such as ISA-3D 

(Yang et al., 2000) and PHLIP (Mueller et al., 2006). See Mueller et al. (2006) for a detailed 

comparison between image analysis software.  

Image analysis can be challenging and tedious for large datasets. Pre-processing steps are often 

required to remove background noise and irregularities. These steps often require manual 

inspection of image stacks to decide on suitable pre-processing steps and assigning threshold 

values for image segmentation. There has been a considerable effort to automate image 

analysis, with the primary benefit of eliminating user subjectivity (Xavier et al., 2001, Xavier 

et al., 2003, Merod et al., 2007, Yerly et al., 2007). Yet, challenges still remain, such as 

inconsistent CLSM formats and how to deal with artefacts, which has prevented the 

development of a gold standard within the biofilm research community.  

In recent years, multidimensional models of microbial biofilms have been developed that can 

simulate biofilm structure from the bottom up (Lardon et al., 2011). Mattei et al. (2018) 

recently called for improved validation of biofilm models which would require a better 

integration of modelling and experimental methods. Quantitative structural parameters derived 

from CLSM datasets show promise to be used for the validation of multidimensional biofilm 

models. Xavier et al. (2004) introduced this approach, however, no further research has been 

conducted on this topic.  

2.2 Biofilm models 
Formulated in the late 1970s, the first biofilm models described a one-dimensional (1D), 

steady-state, single-substrate biofilm with the assumption that biofilms developed as a uniform 
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layer (Rittmann and McCarty, 1980, Kissel et al., 1984). Soon after, time-dependent multi-

substrate and multi-species biofilm models were developed, capable of describing simple 

microbial interactions and basic biofilm structure (Wanner and Gujer, 1986, Dockery and 

Klapper, 2002). However, these 1D models did not simulate the complex, multidimensional 

structural characteristic of mature biofilms observed by new microscopic techniques. This 

drove the development of two-dimensional (2D) and 3D models capable of describing biofilm 

structural heterogeneity (Picioreanu et al., 1998a, Kreft et al., 2001, Xavier et al., 2005a, 

Alpkvist et al., 2006, Wanner et al., 2006), the work of Xavier and Picioreanu being 

particularly influential. These models require a high level of modelling expertise and are 

usually computationally expensive. But, often a high level of detail is not necessary, and a 

simplistic model is more appropriate for the question being asked. It is impractical, perhaps 

impossible, to incorporate all the processes occurring during biofilm development. 

Consequently, simplifying assumptions are usually made to reach an approximate solution 

within a reasonable timeframe. The choice of model complexity depends on the user’s 

modelling experience, the biofilm system, modelling objectives, and computing power 

available.  

The development of multidimensional biofilm models was driven by advances in experimental 

and microscopic techniques, molecular biology, numerical methods, as well as powerful 

computing hardware. Today, mathematical models can describe biofilm activity, geometry and 

ecology in great detail. Models have also been developed that can simulate cell-to-cell 

signalling, plasmid invasion, synthetic biology, and anaerobic digesters, among many other 

biofilm-based processes (Merkey et al., 2011, Fozard et al., 2012, Rudge et al., 2012).  

In order to simulate biofilm formation, the components that make up the biofilm must be 

represented mathematically. Typically, the computation domain is split into four 

compartments, each containing defined components (biomass and solutes) and processes 

(reaction-diffusion-advection kinetics) (Figure 2.3A). A mass transfer boundary layer (LL) 

usually separates the biofilm from the bulk liquid compartment (Figure 2.3B). This represents 

a hypothetical liquid layer above the biofilm that is known to resist mass transfer of dissolved 

components from the bulk liquid (Wanner et al., 2006). All processes acting in each 

compartment are represented by mass balance equations governing mass flow into and out of 

the system as well as production and consumption. The key processes include (i) biomass 

growth and decay, (ii) biomass division and spreading, (iii) substrate reactions and transport, 

(iv) biomass attachment and detachment, and (v) hydrodynamics (Picioreanu et al., 2004). This 
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modular approach of describing biofilm processes is advantageous and often necessary with 

increasing model complexity.  

      
Figure 2.3. A. Compartments typically defined in biofilm models. These include the bulk 
liquid, mass transfer boundary layer, biofilm, and substratum. B. Typical mass transfer 
boundary layer substrate conditions. Both figures redrawn from Wanner et al. (2006). 

Biofilm models are valuable tools for biofilm researchers, capable of integrating numerous 

experimental observations in a highly controlled environment. Their development tests our 

understanding of the underlying principles, and has the potential to inform the design of further 

experiments and make predictions.  

2.2.1 Types of biofilm models 
Mathematical biofilm models in literature vary from simple 1D steady-state models to more 

complex 2D/3D dynamic models. The IWA Task Group on Biofilm Modelling has produced 

an extensive review on biofilm models and their applications (Wanner et al., 2006). Models 

can be solved by analytical, pseudo-analytical, or numerical methods depending on the 

complexity of the model description. There are three broad categories of biofilm models that 

differ in the way particulate components (biomass) are represented (Figure 2.4).  

Early biofilm models represented biomass as a continuum with population-averaged behaviour 

described by ordinary and partial differential equations (Wanner and Gujer, 1986, Eberl et al., 

2001). Although 1D models provide a simple solution to diffusion-reactions problems, they 

fail to capture the structural complexity frequently observed in biofilms, such as water channels 

and protrusions (Figure 2.2), that can only be simulated by multidimensional models. Structure-

function dynamics are an important process in microbial biofilms that 1D models cannot 

account for. Moreover, microenvironments that develop within biofilms may cause localised 

microbial behaviour to differ from population-averaged behaviour (Stewart and Franklin, 2008, 

Hellweger and Bucci, 2009). 

A B 
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Figure 2.4. Three approaches for representing biomass in a biofilm model. Particulate 
components can be represented as: A. a continuum, B. as discrete grid-based elements, or  
C. as discrete particles. Redrawn from Wanner et al. (2006). 

The desire to describe and predict cellular-level differences led to the development of discrete, 

multidimensional models that attempt to simulate biofilm formation from first principles. 2D 

models are also limited since the effect of adjacent structures in the third dimension are not 

accounted for. Although 3D simulations are computationally expensive, they provide a more 

realistic representation of biofilm structure, especially when structure and microbial 

interactions (structure-function dynamics) are being considered. 

In discrete models, biomass growth kinetics are solved for each individual agent using ordinary 

differential equations, but biomass transport is governed by discrete particles and stochastic 

rule-based behaviour (Kreft et al., 2001). Although multidimensional continuum models have 

been developed for describing biofilm spatial heterogeneity (Alpkvist and Klapper, 2007b), the 

results are unrealistically linear. An advantage of discrete models is the fact that the biofilm-

scale dynamics and structure are an emergent property of the growth and interactions of 

discrete units at the individual scale. Moreover, they are capable of incorporating more 

complexity in terms of the physical interactions between cells. Thus, they are closer to 

modelling biofilms from first principles. The disadvantage of discrete models is that they are 

more computationally demanding. Unlike the continuum approach, which assumes a 

homogeneous biofilm composition, the discrete approach can capture different types of 

biomass components and are better suited for describing biofilm heterogeneity. There are two 

main types of discrete frameworks for modelling biofilm systems: cellular automata (CA) and 

individual-based modelling.  

Cellular automata (s. cellular automaton) are popular for modelling spatial biofilm dynamics 

due to it being a well-established technique in the modelling community (Picioreanu et al., 
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1998a, Picioreanu et al., 1998b, Noguera et al., 1999, Hermanowicz, 2001, Picioreanu et al., 

2001, Pizarro et al., 2001, Chang et al., 2003, Laspidou and Rittmann, 2004). Briefly, a CA is 

composed of a fine grid of cells, in which biomass can exist and grow to a pre-set maximum 

concentration. Distribution of biomass to neighbouring cells is governed by a set of global rules 

where biomass is transported to the nearest unoccupied grid cell (Figure 2.4B). An advantage 

of representing biomass by a grid is simplicity and computational efficiency, however, and 

contrary to reality, biomass transport can only occur along a finite number of directions 

(Wanner et al., 2006).  

IbMs, or agent-based models, describe biomass components as discrete, individual entities 

(agents) with position in space defined in continuous coordinates (Figure 2.4C) (Kreft et al., 

2001). Several IbMs have been developed for modelling biofilm systems (Kreft et al., 1998, 

Kreft et al., 2001, Picioreanu et al., 2004, Xavier et al., 2005a, Xavier et al., 2007, Lardon et 

al., 2011). IbMs are similar to CAs, except that agent movement is not restricted by a 

predefined grid – transport can occur in any direction and is carried out by minimising the 

overlap of adjacent particles. Individual agents undergo growth, division, and transport 

according to a set of rules. Each individual is unique and may differ in properties such as 

metabolic activity and biomass composition (Hellweger and Bucci, 2009). Although more 

computationally demanding than CAs, IbMs are closer to modelling biofilms from first 

principles by treating bacterial cells as the fundamental entities with adaptable behaviour. This 

allows individual variability to be incorporated into the model, accounting for single-cell 

observations and the stochastic behaviour of bacterial growth. IbMs are intrinsically better at 

reproducing adverse effects on emergent biofilm structure, making it an ideal framework for 

modelling biofilm-MP interactions. Xavier et al. (2004) was the first to compare predicted 

biofilm structure using an IbM to observed biofilms analysed using CLSM. It was found that 

the model was able to reproduce observed biofilm structure based on structural parameters. 

This combined experimental and modelling approach shows promise for investigating 

fundamental biofilm-MP interactions in the present study. 

The first IbMs described the EPS as initially bound to the bacterial agent and then excreted as 

a separate agent (Kreft and Wimpenny, 2001). An alternative approach represented the EPS as 

a continuum coupled with an IbM for microbial cells (Alpkvist et al., 2006). This was done to 

better represent the visco-elastic fluid nature of the EPS matrix (Klapper et al., 2002, Alpkvist 

and Klapper, 2007a). More advanced IbMs incorporated improved detachment processes and 

multicomponent agents (Picioreanu et al., 2004, Xavier et al., 2005a, Xavier et al., 2005b). 
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The latter introduced more variation of individuals by including components such as active and 

inert biomass, storage polymers, and other system-specific components which can each 

undergo specific conversions (Xavier et al., 2005a).  

For computational efficiency, IbMs usually decouple reaction-diffusion processes from 

biomass growth (Wanner et al., 2006). These processes occur within biofilms at very different 

time scales. For example, the characteristic time scale for biomass growth and detachment is 

typically in the order of 105 sec (~1 day), while mass transport and hydrodynamic processes 

are up to 10 orders of magnitude faster (Picioreanu et al., 2000a). Therefore, reaction-diffusion 

processes are typically solved at steady-state for each iteration. This approach is used in most 

biofilm models that simulate structure development and is not considered to compromise 

accuracy (Picioreanu et al., 2000a, Picioreanu et al., 2004, Xavier et al., 2005a, Alpkvist et al., 

2006, Wanner et al., 2006). 

Progress in developing IbMs as a research and engineering tool has been hindered due to the 

apparent lack of a standardised model and development protocol. To address this issue, Lardon 

et al. (2011) introduced iDynoMiCS (individual-based Dynamics of Microbial Communities 

Simulator) as a standardised modelling platform. iDynoMiCS is based on the foundation and 

consolidated knowledge of earlier models with various improvements. To date, several studies 

have been published using the iDynoMiCS platform (Merkey et al., 2011). A more recent 

development, the NUFEB IbM, is currently the most advanced iteration of IbMs that 

incorporates fluid flow dynamics and density-dependent adhesion between cells – capabilities 

that iDynoMiCS currently lacks (Jayathilake et al., 2017). However, this model is not yet well 

established, whereas iDynoMiCS is accompanied by tutorials, data processing protocols, and 

is relatively user-friendly. Thus, iDynoMiCS was used for the present study. 

2.3 Micropollutants 
Micropollutants are emerging contaminants that have received considerable attention in the 

past few years. MPs may enter surface waters from human, agricultural, and industrial sources 

as both active metabolites and in the unmetabolised form (Petrie et al., 2015, Archer et al., 

2017a). Detected MPs include a range of pharmaceuticals and personal care products, such as 

antibiotics, steroids, anti-inflammatories, beta-blockers, anti-depressants, and illicit drugs. 

Many MPs are not efficiently removed by WWTPs, which represents a continuous source of 

contamination of water bodies. Limited data is available on the occurrence and persistence of 

MPs in South African surface waters, but there is growing evidence of their presence and 

potential ecological impact (Agunbiade and Moodley, 2016, Archer et al., 2017a, Archer et al., 
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2017b). Due to the large variety of MP classes detected in wastewater, their bioaccumulation 

and consequent impact on the environment is potentially devastating. Although detected in low 

concentrations, the continuous release of bioactive and persistent MPs may lead to long-term 

effects on ecosystems due to bioaccumulation. The issue can be magnified in periods of 

drought, currently an issue in South Africa, where MPs reach higher concentrations during low 

flow periods. 

Based on a conventional environmental risk assessment, DCF was classified as an 

environmental risk at levels reported in South African WWTP effluent and river water (Archer 

et al., 2017a). However, establishing MPs as an environmental risk is complicated by the fact 

that, in nature, MPs are found in complex mixtures of varying concentrations, and the 

ecotoxicity of such mixtures may differ from that of individual MPs (Galus et al., 2013). 

Although studies involving mixtures of MPs are more ecologically relevant, investigations on 

individual compounds are valuable as they provide a fundamental understanding of their 

ecological interactions.  

2.3.1 Diclofenac 
Although complex mixtures of MPs are usually detected in WWTP effluent and river water, 

this case study focussed on the non-steroidal anti-inflammatory drug, DCF. DCF is among the 

most widely used therapeutics and is primarily used for the treatment of pain and inflammation. 

DCF, or 2-(2,6-dichloranilino) phenylacetic acid (Figure 2.5), acts to inhibit the activity of 

cyclooxygenase enzymes, thereby blocking the synthesis of prostaglandins which act to 

activate an inflammatory response (Dannhardt and Kiefer, 2001).  

 

Figure 2.5. Molecular structure of diclofenac. 

DCF is frequently detected in South African surface waters at levels ranging between  

0.3-15.6 µg.L-1 and in wastewater influent at 2.7-222 µg.L-1 (Agunbiade and Moodley, 2016, 

Archer et al., 2017a). DCF has also been reported to be highly persistent, with relatively low 

removal efficiencies. A recent study on MP occurrence in Gauteng, South Africa reported a 
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DCF removal efficiency of only 47% during wastewater treatment (Archer et al., 2017a) which 

is in the range of removal efficiencies reported elsewhere (Petrie et al., 2015, Jiang et al., 2017). 

There is growing evidence of the ecotoxicological impact of DCF on the environment at 

multiple trophic levels. DCF has been reported to modulate reproductive endocrine pathways 

in fish at levels as low as 1 µg.L-1 (Hong et al., 2007). DCF is often detected in surface waters 

above this level which poses a risk to receiving fish populations and potentially other vertebrate 

species (Archer et al., 2017a, Gröner et al., 2017). Furthermore, DCF treatment decreases 

thyroid hormone levels in human patients (Bishnoi et al., 1994). Although this occurred at 

prescription level doses, it indicates a potential health risk for humans and other larger 

vertebrates that come into contact with contaminated water. The persistence of DCF can lead 

to bioaccumulation and magnified effects up the food chain. In an extreme case, the 

consumption of DCF-treated livestock carcasses led to a catastrophic decline (>95%) in a 

particular vulture population that was unable to metabolise DCF (Oaks et al., 2004). A recent 

review has documented further detrimental effects of DCF in marine environments worldwide 

(Bonnefille et al., 2018). Although studies on the ecological impact of DCF are rising, the full 

extent of the potential damage is poorly understood. Toxicity studies have mainly focussed on 

eukaryotic organisms, but more research on the effects on prokaryotes are also required. 

2.3.2 Effect on microbial biofilms 
The majority of studies in literature focus on single-species evaluations of MP toxicity which 

has been suggested to be insufficient for accurate environmental risk assessments (Lawrence 

et al., 2012). Few studies have looked at the effects of MPs on real ecosystems, and even fewer 

on microbial biofilms. Therefore, in the present study, the effect of DCF exposure on a  

mixed-species environmental sample was evaluated.  

DCF has been found to exhibit broad-spectrum in vitro and in vivo antibacterial activity against 

a range of Gram-positive and Gram-negative bacteria (Annadurai et al., 1998, Dastidar et al., 

2000, Mazumdar et al., 2006, Dutta et al., 2007, Dutta et al., 2008, Mazumdar et al., 2009). In 

fact, DCF has been reported to improve bacterial killing when used in combination with 

antibiotics and has been suggested for augmenting the treatment of antimicrobial-resistant 

infections (Mazumdar et al., 2009). The MIC of DCF has been reported between  

5-100 mg.L-1 for Gram-positive bacteria and 5-500 mg.L-1 for Gram-negative bacteria 

(Dastidar et al., 2000, Mazumdar et al., 2009). It was also suggested that the antibacterial action 

of DCF was due to the inhibition of bacterial DNA synthesis, however, the mechanism of DNA 

synthesis inhibition was unclear (Dastidar et al., 2000). Subsequent studies demonstrated the 
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inhibition of thymidine precursor incorporation into DNA as well as moderate membrane 

damage of Listeria spp. when exposed to 200 mg.L-1 DCF (Dutta et al., 2007, Dutta et al., 

2008). There appears to be multiple modes of action exhibited by DCF which explains its 

broad-spectrum antimicrobial activity. 

Microbial biofilms are also susceptible to DCF exposure, although at much higher 

concentrations than planktonic MICs (Paje et al., 2002, Abbas et al., 2012, Reśliński et al., 

2015). Abbas et al. (2012) reported a minimum biofilm inhibitory concentration of  

3125 mg.L-1 DCF against Pseudomonas aeruginosa. Lower concentrations of DCF, between 

5-1000 µg.L-1, appear to be sub-inhibitory, but system-dependent (Paje et al., 2002, Lawrence 

et al., 2007, Lawrence et al., 2012, Reśliński et al., 2015). Besides inhibiting DNA synthesis, 

studies have indicated that DCF may limit biofilm adhesion to the substratum, reduce microbial 

carbon utilisation, as well as cause shifts in biodiversity (Lawrence et al., 2007, Lawrence et 

al., 2012, Reśliński et al., 2015). Paje et al. (2002) observed a 70% reduction in biofilm 

biomass after 4 weeks of exposure to 100 µg.L-1 DCF. Lawrence et al. (2012) reported a 

significant decrease in the algal and bacterial biomass, as well as biodiversity of mixed-species 

biofilms when exposed to 5 µg.L-1. Carbon utilisation of multiple compounds, particularly 

carbohydrates, was also significantly depressed. The impact of DCF exposure on microbial 

diversity and carbon source utilisation may be detrimental to WWTP performance.  

There is evidence that microbial biofilms can metabolise DCF, although acclimation and 

enrichment for DCF-degraders is usually required (Paje et al., 2002, Falas et al., 2013, Jewell 

et al., 2016). Paje et al. (2002) found that DCF removal efficiency increased from 20% to 97% 

after 10 weeks of acclimation. There is also the possibility that it can be used directly as a 

carbon source where biodegradation studies have reported cultures surviving on DCF as the 

sole carbon source (Bessa et al., 2017). This indicates that the presence of DCF at 

environmentally relevant concentrations could apply a selective pressure on microbial biofilms 

and consequently alter their overall activity. This may prove insightful for the enrichment of 

biofilm reactors designed for the removal of DCF. Biodegradation of DCF has been reported 

to result in a large range of transformation products involving several degradation pathways 

(Jewell et al., 2016). Toxicity tests usually stick to the parent compound, but the effect of 

metabolites of MPs on the environment should also be considered since they may exhibit higher 

toxicity than that of their parent compound, as has been shown for DCF (Diniz et al., 2015, 

Archer et al., 2017b).  
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The functional diversity of mixed-species biofilms makes them well suited for the remediation 

of wastewater containing a range of MPs. Biofilms are capable of removing MPs by sorption 

to the EPS and/or biodegradation through metabolic and/or co-metabolic pathways 

(Petropavlovskii and Sillanpää, 2013, Pomies et al., 2013). The initial interaction is likely 

governed by the physicochemical properties of the MP and the EPS. The bioavailability and 

sorption to the EPS depends on the hydraulic retention time, hydrophobicity, pH, temperature, 

and the octanol/water partition coefficient (Kow) of the compound (Petrie et al., 2015, Archer 

et al., 2017a). DCF has a log Kow of 4.51 and exhibits relatively weak partitioning into solid 

material which may contribute to its persistence (Petrie et al., 2015). The concentration of MPs 

within the biofilm EPS may facilitate biodegradation by increasing the residence time of the 

MP, or, if biodegradation does not occur, the EPS may serve as a reservoir for MPs which may 

be released in higher concentrations at a later stage. The interaction between MPs and biofilms 

in this context requires further investigation in order to better understand the fate of MPs and 

improve removal rates.  

The impact of biofilm-scale variations (e.g. biofilm structure) on biofilm activity and MP 

removal efficiency are poorly understood, but there is evidence that structure and species 

composition play an important role. Torresi et al. (2016) demonstrated the effect of biofilm 

thickness on the removal of 20 organic MPs in a moving bed biofilm reactor. Overall, thicker 

biofilms (500 µm) performed better with higher biotransformation rates than thinner biofilms. 

This was attributed to the higher biodiversity observed in thicker biofilms that results from 

microenvironments developing along diffusion gradients. However, a few MPs, including 

DCF, displayed better removal for thinner biofilms, which was associated with higher 

nitrification rates (Torresi et al., 2016). Changes in biofilm structure has consequences on 

biofilm activity. The effect that MPs have on the structure-function relationship of biofilms is 

a concern for the proper functioning of environmental as well as WWTP microbial 

communities. Biofilm structure, and its concomitant effect on biodiversity and activity, appears 

to be an important factor to consider for biofilm models simulating MP interactions. 
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2.4 Research aims and objectives 
The aim of the project was to develop an IbM capable of describing biofilm structural 

development of an environmental sample, as well as reproducing observed effects of  

DCF-treatment on biofilm structure. A further aim was to investigate the feasibility of the use 

of observed biofilm structure for the validation of an IbM. The following objectives were set 

to achieve these aims: 

1. Calibrate the IbM by determining biokinetic parameters (lumped) of environmental 

samples through respirometry and regression to a batch model; 

2. Define parameters and assumptions for the IbM to describe biofilm growth in a flow cell 

bioreactor; 

3. Validate the IbM by comparing structural parameters of simulation results to observed 

biofilms cultured under control conditions; 

4. Investigate the impact of DCF exposure at a low (0.1 mg.L-1) and a high concentration  

(10 mg.L-1) on the structure of mixed-species biofilms cultured in flow cells; 

5. Investigate whether the IbM incorporating a hypothesised DCF interaction can reproduce 

observed effects on biofilm structure at varying concentrations. 

2.5 Key questions 
1. What is the impact of DCF exposure at varying concentrations on observed biofilm 

structure? 

2. How viable is the use of observed biofilm structure for the validation of a biofilm IbM? 

3. Can an IbM reproduce and explain observed effects of DCF exposure on biofilm structure? 

2.6 Hypotheses 
It is hypothesised that DCF exposure at 10 mg.L-1 will exhibit a sub-inhibitory effect on biofilm 

growth. It is further hypothesised that the IbM can reproduce observed effects of DCF exposure 

on biofilm structure. 

 

For clarity, the methodology and results chapters are split in two. First, biokinetic parameter 

estimation is presented in Chapter 3, followed by the flow cell bioreactor and modelling 

sections in Chapter 4. 
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CHAPTER 3: PARAMETER ESTIMATION 
3.1 Materials and Methods 

3.1.1 Inoculum seed and cultivation 
Activated sludge (AS) was sampled from the return AS tank at the Athlone WWTP, Cape 

Town. On the day of collection, the AS was mixed well and allowed to stand for 15 min to 

allow large solids to settle. Freezer stocks were made by transferring 500 µL AS to an 

equivalent volume of 80% glycerol (40% final concentration). These were stored at -80°C until 

needed. 

A modified synthetic wastewater (SW) medium was used in the batch respirometry and flow 

cell bioreactor experiments (Osachoff et al., 2014). The chemical composition of this medium 

is listed in Table 3.1. The medium was made up in deionised water. The COD of this medium 

was approximately 300 mg.L-1, unless otherwise stated. For the flow cell reactor feed, a 

concentration of 1.2 mg.L-1 FeSO4∙7H2O was used to avoid blockages due to iron(III) 

phosphate precipitation. The pH of the autoclaved medium was approximately 9.1 which was 

adjusted to a pH of 7.5 for subsequent experiments. 

Table 3.1. Composition of modified synthetic waste water medium 

Synthetic waste water component 
Concentration 
(mg.L-1) 

Yeast extract 28 
Starch (C6H10O5)n 96 
Sodium acetate anhydrous (NaCH3COO) 300 
Monopotassium phosphate (KH2PO4) 22 
Sodium bicarbonate (NaHCO3) 155 
Ammonium chloride (NH4Cl) 52 
Ferrous sulphate heptahydrate (FeSO4∙7H2O) 12 
Magnesium chloride (MgCl2∙6H2O) 25 
Calcium chloride (CaCl2∙2H2O) 37 
Zinc sulphate (ZnSO4∙7H2O) 0.2 

To prepare the seed inoculum, a freezer stock was allowed to thaw at room temperature and 

then transferred aseptically to 100 mL SW medium and incubated overnight at 26°C on a rotary 

shaker. The culture was then sub-cultured in 250 mL SW medium for a further 24 h to 

acclimatise the culture to the SW medium.  
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3.1.2 Analytical procedures 
The oxygen uptake rate (OUR) was measured using an optical dissolved oxygen (DO) probe 

(Vernier) connected to a LabQuest Mini data logger (Vernier). Data was logged using the 

Logger Lite software (v1.9.4). An aliquot of culture was transferred to a 250 mL bottle and the 

DO probe inserted while taking care to exclude any air bubbles. The respirometer was sealed 

using a lid with a rubber O-ring and placed in a beaker containing water to maintain the 

temperature at 20°C. The culture was mixed using a magnetic stirrer. The DO was allowed to 

stabilise for 1 min before measurements were taken. The decrease in DO was measured for 

approximately 10 min.  

The soluble substrate concentration (SS) was estimated by multiplying the measured COD 

(COD Cell Test, Spectroquant®) filtered through a 0.45 µm cellulose acetate filter by the 

readily biodegradable fraction of COD, fB. The total suspended solids (TSS) was determined 

gravimetrically according to modified APHA methods (APHA, 1998). The culture was vacuum 

filtered through a 0.45 µm cellulose acetate filter and then dried at 60°C for 48 h. A desiccator 

was used to keep the filters dry at room temperature before weighing. A COD/dry mass 

conversion factor of 1.20 was used for recalculation of TSS mass concentration to COD units 

(Grady Jr et al., 1999, Trojanowicz et al., 2009). The active heterotroph concentration (XH) 

was estimated by multiplying the TSS by the active heterotroph fraction, fA,H. 

3.1.3 Determination of decay coefficient of heterotrophic biomass 
The value of decay coefficient (bH) was estimated experimentally using batch respirometry 

according to the method described in Trojanowicz et al. (2009) and Grady Jr et al. (1999). The 

principle of this method is the measurement of OUR change over time during prolonged 

biomass aeration without external substrate addition. The OUR is then a result of biomass 

endogenous respiration (decay) only and the change is directly proportional to bH (Grady Jr et 

al., 1999, Trojanowicz et al., 2009). 

Seed inoculum (250 ml) was transferred to 4 L SW medium in 5 L Erlenmeyer flasks and 

incubated for 24 h at 26°C to achieve an endogenous respiration state of heterotrophic bacteria 

(until all substrate depleted). An air pump was used to aerate the culture and magnetic stirrers 

for mixing. The culture was then moved to room temperature (20 ± 2°C) with continued 

aeration and mixing for a further 5 d. Initial reading of TSS, SS and OUR were taken to get 

XH,t0, SS,t0 and OURt0. The OUR and optical density (OD600 nm) was measured every 6-12 h. 

The value of bH was then determined as follows: 
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The change in XH and rate of oxygen utilisation (in COD units) is influenced by growth and 

decay processes, given by equations 1-2: 

 
dXH

dt
 = 𝜇𝜇max,H

SS

𝐾𝐾S+SS

SO
𝐾𝐾O+SO

XH − 𝑏𝑏H
𝐾𝐾b

𝐾𝐾b+ SS XH⁄ XH (1) 

 OUR = �
1 − YH

YH
� 𝜇𝜇max,H

SS

𝐾𝐾S+SS

SO
𝐾𝐾O+SO

XH + (1− fD)𝑏𝑏H
𝐾𝐾b

𝐾𝐾b+ SS XH⁄ XH (2) 

Biomass growth is governed by Monod kinetics with respect to substrates SS and SO. Biomass 

decay is governed by a switching function that depends on the ratio of SS and XH. The 

parameters are described in Table 3.3.  

In a batch reactor that receives no soluble substrate and is not limited by oxygen the only 

reaction will be decay. Thus, the change in XH and oxygen in the batch reactor can be simplified 

as eqns. 3-4: 

 dXH

dt
 = − bH∙XH (3) 

 OUR = (1 − fD)bH∙XH (4) 

Integrating eq. 4 over time t gives: 

 XH|t = XH,t0∙e
−bH∙t (5) 

Substituting eq. 5 into eq. 4 reveals the OUR in the batch reactor at any time t: 

 OUR|t = (1 − fD)bH∙XH,t0∙e
−bH∙t (6) 

Taking the natural logarithm of both sides of eq. 6 gives a linear expression (eq. 7) allowing 

the use of linear regression: 

 ln (OUR)|t = ln [ (0.8∙bH)∙XH,t0]− bH∙t (7) 

assuming fD = 0.2, which is the fraction of biomass leading to debris. An fD value of 0.2 was 

taken from literature as it does not vary significantly from system to system (Grady Jr et al., 

1999). Using linear regression, bH is the slope of the curve obtained by plotting ln(OUR) vs. 

aeration time. Three independent repeats were carried out in duplicate using different freezer 

stocks. The bH value was calculated for each dataset since the resultant value is dependent on 

the initial conditions (substrate and biomass concentration), which may vary between batch 

flasks. 
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3.1.4 Determination of the maximum specific growth rate, half-
saturation coefficient, and yield coefficient of heterotrophic 
bacteria by the respirometric method 

The principle of this method involves modelling an aerated batch reactor, comparing what is 

predicted to what is measured experimentally, and optimising the parameters of the model to 

minimise the squared error between the predictions and measurements. 

3.1.4.1   Batch reactor 
For maximum specific growth rate (µmax,H), half-saturation coefficient (KS), and yield 

coefficient (YH) determination, the aerated batch reactors were set up based on respirometric 

methods presented by Trojanowicz et al. (2009) and Almeida and Butler (2002). Seed inoculum 

(250 mL) was transferred to 4 L SW medium in a 5 L Erlenmeyer flask and incubated for  

8-10 h at room temperature (20 ± 2°C) with mixing (magnetic stirrer) and aeration (air pump). 

The starting conditions ensured a biomass loading rate (SS/XH) that is more than  

0.5 g COD/g biomass COD to allow the culture to grow at its maximum rate (Trojanowicz et 

al., 2009). The TSS (XH), COD (SS), and OUR were measured immediately and thereafter 

every 30-60 min until a sharp drop in OUR was observed. Two samples were collected for 

OUR measurements. To one of these, N-allylthiourea (ATU) (Merck) was added (final 

concentration of 11.6 mg.L-1) before OUR measurement to inhibit autotrophic nitrification 

(Robertson et al., 1989). OUR readings observed in the presence of ATU were not significantly 

lower than those without ATU. Thus, it was assumed that heterotrophs were responsible for 

the majority of growth for the duration of the experiment, which is reflected in the model set 

up (Table 3.2). This experiment was repeated three times using different freezer stocks. 

3.1.4.2   Batch reactor model and parameter fitting 
Substrate concentration (S), biomass growth (X), and oxygen consumption are 

stoichiometrically linked according to the following balanced COD equation for aerobic 

chemoheterotrophic growth:  

 S − (1 − 𝑌𝑌)O2 = 𝑌𝑌X (8) 

where Y is the biomass yield. This allows for the use of respirometry to generate data for curve 

fitting. The model equations and parameters are presented in Table 3.2 and Table 3.3, 

respectively. Table 3.2 summarises the stoichiometry and rate expressions for heterotrophic 

bacteria. The process rate column gives the rate expression for the respective processes 

governing heterotrophic growth and decay. The entries in the component columns are the 
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stoichiometric coefficients which are multiplied by their respective rate expression to give the 

appropriate rate of consumption or production of components for each process. The value of fB 

was estimated based on the inert fraction (SI) of ST remaining in batch reactors operated for 

over one week, i.e. fB = (ST – SI)/ST. The value of fA,H was assumed based on growth of the 

culture in the exponential phase where the majority of biomass is expected to be active. 

Table 3.2. Stoichiometric matrix describing the batch reactor 

Process 

Component 

Process rate Readily 
biodegradable 
substrate, SS 

Oxygen, 
SO 

Active 
heterotrophic 
biomass, XH 

Slowly 
biodegradable 
substrate, XS 

Heterotrophic 
growth −

1
𝑌𝑌H

 
1 − 𝑌𝑌H
𝑌𝑌H

 1  𝜇𝜇max,H
SS

𝐾𝐾S+SS

SO
𝐾𝐾O+SO

XH 

Heterotrophic 
decay 

 1 − 𝑓𝑓D –1 1 − 𝑓𝑓XI 𝑏𝑏H
𝐾𝐾b

𝐾𝐾b+ SS XH⁄ XH 

Hydrolysis 1   –1 𝑘𝑘H
XS XH⁄

𝐾𝐾X+ XS XH⁄ XH 

 

Table 3.3. Parameter values used for batch reactor model 

Parameters Description Value Units Reference 
µmax,H Maximum specific heterotrophic growth rate 0.3178 h-1 Fitted 1 
KS Half-saturation coefficient for organic substrate 1.23 mgCOD.L-1 Fitted 1 
YH Yield coefficient of heterotrophic biomass on 

substrate 
0.49 mgCOD. 

mgCOD
-1 

Fitted 1 

bH Decay coefficient for heterotrophic biomass 0.02 h-1 Experimental 
Kb Coefficient for switching function for decay 1.00 mgCOD.L-1 Henze et al. (1995) 
KX Half-saturation coefficient for hydrolysis of XS 0.10 mgCOD. 

mgCOD
-1 

Henze et al. (1995) 

kh Maximum specific hydrolysis rate 0.08 h-1 Henze et al. (1995) 
α Acclimation constant for heterotrophic biomass 0.40 - Fitted 1 
fXI Fraction of biomass yielding particulate 

products 
0.10 mgCOD. 

mgCOD
-1 

Henze et al. (1995) 

fB Fraction of readily biodegradable substrate 
(SS) in total soluble substrate (ST) 

0.90 - Specified 

fD Fraction of biomass leading to debris 0.20 - Trojanowicz et al. 
(2009) 

fA,H Fraction of active heterotrophic biomass 0.95 - Specified 
1 Mean parameter value 

The kinetic parameters µmax,H, KS and YH were estimated by minimizing the squared error 

between the solution of the differential equations and the experimental batch profiles for OUR, 
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SS and XH. The model was implemented in MATLAB with non-linear regression performed 

using the lsqnonlin (LSQ) function, which minimises the least squares problem of the form 

 LSQ(𝜃𝜃) = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑃𝑃𝑖𝑖(𝜃𝜃))2
𝑛𝑛

𝑖𝑖=1

 (9) 

where θ represents the unknown parameters (θ = µmax,H, KS, YH, α), yi is a vector of i 

measurements for each response variable n (OUR, SS and XH), and yPi is the corresponding 

model predictions that depend on the unknown biokinetic parameters. The trust-region-

reflective least-squares algorithm was used with the central finite differences method, and a 

function and step tolerance of 10-4.  

For the batch model eqns. 10-12 were solved simultaneously using the stiff ordinary differential 

equation algorithm in MATLAB, ode15s. The initial reactor measurements, SS,t0 and XH,t0, 

were used as the starting points for eq. 10 and 11, respectively. The predicted SS and XH profiles 

were then used to solve eq. 13 to generate the predicted OUR profile. 

 
dSS
dt

= −
1

YH
𝜇𝜇max,H

SS

𝐾𝐾S+SS
XH + 𝑘𝑘H

XS XH⁄
𝐾𝐾X+ XS XH⁄ XH (10) 

 
dXH

dt
 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝐻𝐻

SS

𝐾𝐾S+SS
XH − 𝑏𝑏H

𝐾𝐾b
𝐾𝐾b+ SS XH⁄ XH (11) 

 
dXS

dt
= (1 − 𝑓𝑓XI)𝑏𝑏H

𝐾𝐾b
𝐾𝐾b+ SS XH⁄ XH − 𝑘𝑘H

XS XH⁄
𝐾𝐾X+ XS XH⁄ XH (12) 

 OUR = �
1 − YH

YH
� 𝜇𝜇max,H

SS

𝐾𝐾S+SS
XH + (1− 𝑓𝑓D)𝑏𝑏HXH (13) 

Slowly biodegradable substrate concentration (XS) was included in the model which reduced 

the residual error. The XS value was assumed to be 1% of the initial SS for each dataset. 

It was noted that there was an initial acclimation/lag period based on the variable profiles. 

Fitting to data with an acclimation period would return inaccurate parameter estimates since 

the Monod equation is unable to model growth during the lag or acclimation phase. Therefore, 

an empirical equation from Checchi and Marsili-Libelli (2005) was adapted to mimic the effect 

of an increasing number of cells growing at their maximal rate as time progresses:  

 𝜇𝜇max,H
SS

𝐾𝐾S+SS
[XH,t − XH,t0 ∙ e−𝛼𝛼t] (14) 
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where α is the acclimation rate constant. Eq. 14 was used in place of the standard Monod 

equation for the batch model. This expression resulted in a better fit.  

The LSQ function required initial guesses as an input for each parameter value to be optimised. 

Varying the initial guesses (an input for LSQ) may lead to different optimised parameter values 

as different local minima are found. In order to find the global minimum, a for-loop was 

programmed to run LSQ iteratively using all possible combinations (27 in total) of parameter 

starting points listed in Table 3.4. These values were informed by literature sources of similar 

systems. The parameters were also restricted by boundary values to exclude biologically 

impossible values. This method was repeated for each dataset. Using goodness-of-fit statistics, 

the parameters resulting in the best fit for the three response variables (XH, SS, OUR) were 

chosen.  

Table 3.4. Initial guess combinations and boundary conditions used as inputs for the LSQ 
function 

Parameters µmax,H  KS YH α 

Initial Guesses 
0.25 1.00 0.45 0.20 
0.30 3.00 0.50 0.50 
0.35 5.00 0.55 0.80 

Bounds 
Lower 0.00 0.50 0.40 0.01 
Upper 1.00 10.0 0.70 1.00 

 
3.1.3 Parameter sensitivity analysis 

A parameter sensitivity analysis was conducted to evaluate the sensitivity of the response 

variables to changes in parameter values optimised by LSQ. One of the estimated model 

parameters were varied while holding the remaining parameters constant. Sensitivity of the 

variables was evaluated based on the effect on the resulting response variable profiles. Two 

standard deviations on either side of the best fit parameter mean were used to illustrate the 

sensitivity of the response variables using the starting conditions of run 1. 

3.1.4 Statistical analysis 
To assess the predictive accuracy of the batch model the root mean squared error (RMSE) and 

normalised RMSE (NRMSE) were calculated for the fit to each response variable: 

 RMSE = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑃𝑃𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (15) 
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RMSE is a measure of precision of the model fit to experimental data that aggregates residuals 

into a single measure of predictive power. NRMSE was calculated by normalising RMSE by 

the mean of the response variable measurements. For regression analysis, 95% confidence 

intervals (CIs) were calculated for estimated parameter values, and 95% prediction intervals 

(PIs) were calculated for response variables. For clarity, a CI is a measure of the precision of 

the estimated best fit value of a particular parameter. A PI is an estimate of the range that is 

likely to contain the response value of future observations, given what has already been 

observed. The 95% CI and 95% PI was calculated using the built in MATLAB functions 

nlparci and nlpredci, respectively. 

3.2 Results 

3.2.1 Decay coefficient 
OUR measurements from day 2 onwards were used for bH determination based on the SS and 

OD600 nm profiles (Figure 3.1). After approximately 2 d, SS was completely consumed, leaving 

only SI and slowly biodegradable substrate. The OD600 nm has also begun to decline indicating 

the culture has entered the death phase of microbial growth. The above confirms that the culture 

was in the decline phase. Here, all oxygen uptake was due to heterotrophic biomass decay. 

Data for all three independent repeats with duplicates are shown in Table A1. The mean value 

of bH was calculated to be 0.0206 ± 0.0019 h-1 with a coefficient of variation (CV) of 9.3%, 

indicating good repeatability.  

 
Figure 3.1. Example plot of A. decay coefficient determination and B. corresponding soluble 
substrate and optical density data of environmental sample cultured in a batch reactor. Shown 
is data from run 3A.  
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3.2.2 Maximum specific growth rate, half-saturation coefficient, and 
yield coefficient 

A respirogram indicating the difference in OUR measurements in the presence and absence of 

ATU is depicted in Figure 3.2. An example calculation of OUR is indicated in Figure A1. There 

was no decrease observed in the OUR profile for all three repeats when ATU was added to the 

respirometer. This indicated that autotrophic nitrification was negligible in the batch reactors 

for the duration of the experiment. Therefore, heterotrophic growth was assumed to be 

dominant in the reactor and the batch model for parameter fitting was set up accordingly  

(Table 3.2). A minor increase in OUR measurements was noted in the presence of ATU, which 

was unexpected, and explained later. The NATU dataset for OUR was used for parameter 

fitting. 

 
Figure 3.2. Example plot of A. respirogram and B. corresponding heterotrophic biomass and 
substrate concentration profiles of environmental sample cultured in batch. Shown is data from 
run 3. NATU: Non-ATU.  

Regression of the batch model to experimental response variables resulted in a good fit for runs 

2 and 3, with R2 values above 0.96 (Figure 3.3). The 95% PIs were tight and NRMSEs below 

11%, indicating good precision. The fit to run 1 was not as confident with relatively wider 95% 

PIs and a NRMSE of 43% for the OUR profile. Fitting statistics are shown in Table A3 and 

residual error plots are shown in Figure A2.  
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Figure 3.3. Non-linear regression of best fit parameter set to response variable profiles of three experimental repeats. Runs were conducted under 
the same conditions but varying initial concentrations of SS and XH. 95% prediction intervals are indicated.  
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The initial conditions (SS/XH) for each batch reactor were measured and found to vary  

(Table A2). Since the response variable profiles are dependent on the initial conditions of each 

batch reactor, the measurements for the experimental repeats were not averaged. Nonetheless, 

this does make parameter estimations more robust since estimations are made at different 

conditions. Therefore, non-linear regression was performed on each experimental dataset and 

the mean of the estimated parameters calculated (Table 3.5). The individual estimates for each 

run are reported in Table A4. The estimates for µmax,H and YH were reproducible for the three 

runs, both with a CV below 6%. The individual estimates were also confident, with narrow 95% 

CIs. 

At the point where OUR suddenly drops, the 95% PI widens in all three runs (Figure 3.3). It is 

around this point where the value of KS plays a significant role, controlling the slope of the 

sharp decline in OUR and SS, and the plateau in XH when SS becomes limiting. This indicated 

a high uncertainty in the estimation of KS, and is reflected by the wide 95% CI on the individual 

KS estimates (Table A4). The CV for the estimation of KS was relatively higher as well (29%). 

Table 3.5. Biokinetic parameter values estimated for three experimental repeats.   

 µmax,H 

(h-1) 
KS 

(mgCOD.L-1) 
YH 

(mgCOD.mgCOD
-1) 

Mean 0.3178 1.2344 0.4928 
SD 0.0166 0.3632 0.0151 
CV (%) 5.2 29 3.1 

 SD: Standard deviation. CV: Coefficient of variation. 

A parameter estimation response surface was created to evaluate parameter retrievability for 

µmax,H and KS, since these had the highest CVs of the estimated parameters (Figure 3.4). This 

also allowed an investigation into the uncertainty of KS. The surface was created by calculating 

the sum of squared errors (SSE) computed from a grid of µmax,H, KS pairs in the neighbourhood 

of the optimum.  
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Figure 3.4. Parameter estimation response surface with sum of squared error (SSE) for OUR 
profiles. Shown is the error resulting from regression of the batch model to three OUR datasets 
over a range of µmax,H and KS values. The best fit parameter values are indicated by the black 
dot. 

For all runs, the surface had a single, unidirectional valley with a slightly sloped valley floor as 

it approached a KS of 1 mg.L-1. The response surface for µmax,H and KS is characteristic for 

Monod-like batch models (Vanrolleghem et al., 1995). The µmax,H value was tightly constrained 

by steep walls over the range of KS values. In contrast, the error remains low over a range of KS 

values which explains the wide 95% PI at the sudden drop in OUR in Figure 3.3. Most 

optimisation runs converged at the global minimum observed for each dataset. Although 

undesirable local minima were also found at different initial guesses, these were rejected due 

to returning much higher residual errors. Thus, the estimated parameters were deemed as 

suitably retrievable using the proposed model. 

Comparisons of estimated biokinetic parameters with literature values are summarised in  

Table 3.6. Besides µmax,H and YH, estimates for the parameters KS and bH were within the 
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expected range of values. The estimated value for µmax,H was slightly higher than is common in 

literature for similar systems, but is expected for growth on rapidly hydrolysable substrate and 

at higher temperatures. Furthermore, the estimated value for YH is lower than usual for 

heterotrophic bacteria.  

Table 3.6. Literature kinetic parameters values at neutral pH and 20°C. 

Reference 

Kinetic parameter 

µmax,H 
(d-1) 

KS  
(mgCOD.L-1) 

YH  
(mgCOD.mgCOD

-1) 
bH 

(d-1) 

Almeida and Butler (2002) 1 6.3 - 0.57 - 
Henze et al. (1987) 2 3.0-6.0 3 20.0 0.67 0.2-0.62 
Henze et al. (1995) 2 3.0-6.0 3 - 0.63 0.2-0.4 
Kappeler and Gujer (1992) 2 1.0-8.0 2.5-4.0 - - 
Riefler et al. (1998) 4 5.28 0.99 - - 
Trojanowicz et al. (2009) 1,5 6.1 9.4 0.58 0.18 
Present study 7.63 1.23 0.49 0.49 

Parameters were reported as d-1 here for convenient comparison to literature values. 
1 Measured for suspended biomass 
2 Activate sludge 
3 Values for 10-20°C 
4 Curve fitting for OUR measurements on biofilm reactor  
5 Resuspended biofilm 

3.2.3 Parameter sensitivity analysis 
The sensitivity of response variables (XH, SS, OUR) to variations in the estimated parameters 

is shown in Figure 3.5. The response variables for the batch model are sensitive to changes in 

YH and µmax,H. Despite the uncertainty of the estimated KS value, the XH and SS profiles were 

not sensitive to variations around the mean, but the peak and slope of the sharp decline in the 

OUR profile was mildly sensitive. Note the effect of a decreasing acclimation rate which 

resulted in a longer acclimation period. 
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Figure 3.5. Sensitivity of response variable profiles to variations in estimated parameters using 
initial conditions from run 3. Parameters values, except the acclimation rate, were varied by 
two standard deviations around the mean of estimated parameters. 
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CHAPTER 4: FLOW CELL BIOREACTOR AND BIOFILM SIMULATIONS 
4.1 Materials and Methods  

4.1.1 Design and operation of bioreactor 
A continuous tubular reactor with in-line flow cells was designed and built with the 

intention to cultivate and monitor biofilm development (Figure 4.1). Biofilms were 

cultivated in Perspex flow cells (Wolfaardt et al., 1994). Each flow cell had four recessed 

flow chambers (31 x 4.0 x 2.2 mm) with holes for inlet and outlet tubing. Flow cells were 

covered with glass coverslips (50 x 24 mm, 0.13-0.17 mm thickness) and sealed with 

silicone adhesive to allow for visualisation of the biofilm using CLSM. Silicone tubing 

(Kimix) with an internal diameter of 1.6 mm was used for the influent and effluent lines. 

Tubing was connected using straight or T-piece plastic connectors (Cole Palmer, IL, USA). 

Two parallel reactors were set up: a control and treatment line as illustrated in Figure 4.1. 

Influent flasks were sealed with rubber stoppers fitted with 1 mL glass pipettes to allow for 

media uptake and venting with sterile air (0.2 µm, Millex-FG, hydrophobic PTFE,  

50 mm).  

 
Figure 4.1. Diagram of continuous flow cell bioreactor. A. Sterile air. B. Two parallel reactors 
for each condition was set up, except for the validation run where both reactors were operated 
under control conditions. C. Silicone tubing split with T-pieces. D. 12 channel peristaltic pump. 
E. Bubble traps. F. Flow cells. 

Treated Effluent 

Control Effluent Control 
(Synthetic wastewater) 

Treatment 
(+ Micropollutant) 

 

D E F 

B 

C 

A 
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Glass bubble traps were connected upstream of the flow cells to prevent bubbles passing 

through which would damage the biofilms. A 12-channel peristaltic pump (Watson Marlow 

205S) was used to maintain a flow rate of 10 mL.h-1 (1.6 rpm), leading to the displacement 

of the internal volume of each flow cell chamber every 40 seconds. This resulted in a 

dilution rate of 18 h-1 within the flow chambers. All flow cell experiments were conducted 

at room temperature (20 ± 2°C). 

4.1.2 Sterilisation of bioreactor 
The reactor was sterilised by running a 20% (v/v) NaOCl (bleach) solution through the 

entire system at 10 mL.h-1 for 1-3 h. The flow cell was rinsed overnight with sterile reverse 

osmosis water. Flasks containing 5 L sterile SW medium were connected to the inlet tubing 

aseptically and the water flushed out the system for 1 h. The flow was stopped and the 

tubing upstream of the flow cell was clamped before inoculation.  

4.1.3 Inoculation of flow cells 
The inoculum was prepared using the same procedure described for the respirometry 

experiments (Section 3.1.1). The optical density of the inoculum was adjusted immediately 

before inoculation to an OD600 nm of 0.1 using sterile 0.9% saline. The inoculum was 

injected slowly into the flow chamber through the tubing immediately upstream of the flow 

cell using a sterile 1 mL syringe and 26-gauge needle. The injection hole left by the needle 

was sealed with silicone glue. All flow chambers were inoculated with the same  

pre-culture. The flow cell was then inverted (cover slip facing down) for 1 h under stagnant 

conditions to allow the inoculum to adhere to the cover slip. Following this, the flow cell 

was inverted again, the clamps removed, and the flow resumed. 

4.1.4 Reactor optimisation   
Initially, overgrowth was noted within the flow cells including biofilm growth upstream of 

the flow cell which could potentially cause blockages. To prevent this, the COD of the 

medium was reduced to approximately 120 mg.L-1, the flow rate reduced from  

12.5 mL.h-1 to 10 mL.h-1, and the flow cells covered to prevent phototrophic growth. The 

pH was also reduced to 7.5 to bring it in line with that detected in raw wastewater. These 

changes resulted in manageable growth of the biofilm within the flow cells.  

It was found that some of the microcolonies within the biofilm lost their structural integrity 

before microscopic analysis. It was hypothesised that, during flow cell preparation for 

microscopy, the microcolonies would disperse due to the lack of influent substrate or a 
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change in flow conditions. This phenomenon is noted in literature for certain bacterial 

species (Hunt et al., 2004). Further work is needed to confirm this. To avoid this issue, 

paraformaldehyde (PFA), which acts to cross-link proteins within the biofilm, was used to 

fix the biofilm and strengthen structural integrity.  

4.1.5 Experimental runs 

4.1.5.1   Batch diclofenac screen 
Batch cultures were grown in the presence of DCF to screen for effects in microbial growth. 

Three parallel batch reactors (250 mL SW medium) were set up containing 0, 0.005, and  

5 mg.L-1 DCF, respectively. Each was inoculated with 1 mL of pre-culture and incubated 

at 26°C with shaking (150 rpm) for 32 h. The OD600 nm and colony forming units/mL 

(CFU/mL) was measured periodically. For CFU/mL measurements, agar plates were made 

using 10X concentrated SW medium with agar powder added. Serial dilutions of batch 

cultures were plated out in 10 µL spots in duplicate (100 µL total) and the CFU/mL 

calculated: 

 CFU mL⁄ =
number of colonies

volume plated × dilution factor
 (16) 

4.1.5.2   Validation 
The objective of this experiment was to monitor the initial development of biofilm structure 

in order to validate the iDynoMiCS model output. The reactor was set up as in Figure 4.1 

but without DCF exposure and operated for 4 d. Biofilm structure was monitored at 26.5, 

45.5, 70.5 and 94.5 h (T1, T2, T3, and T4). At each time point, a flow cell was sacrificed for 

microscopy. Due to limited lines on the peristaltic pump, T1 and T4 were operated with 

duplicate flow chambers while T2 and T3 were operated with 4 flow chambers. 

4.1.5.3   Diclofenac exposure 
The objective of this experiment was to monitor the impact of DCF exposure over time on 

3-day old biofilms compared to a control. Exposure at a low concentration of 0.1 mg.L-1 

and a high concentration of 10 mg.L-1 DCF was tested. The purpose was to produce two 

different scenarios for the iDynoMiCS model to replicate and to test for dose-dependency 

of DCF exposure. An environmentally relevant concentration of 0.1 mg.L-1 was chosen as 

this was approximately the midpoint of the range that DCF has been detected in wastewater 

influent in South Africa (Archer et al., 2017b). A higher concentration of 10 mg.L-1 was 

chosen as it was in the range that an inhibitory effect is reported in literature (Mazumdar 
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et al., 2009). This concentration was on the lower end of the planktonic MIC range reported 

in literature, therefore, a sub-inhibitory effect was expected against biofilms. 

The reactor was set up as in Figure 4.1 and inoculated according to the protocol outlined 

above (Section 4.1.3) for two independent runs – at the low and high DCF concentration. 

Biofilms were allowed to develop for 72 h under control conditions in all flow chambers. 

A concentrated DCF stock (5 g.L-1) was made up in HPLC-grade methanol and stored at 

4°C. Aliquots of the DCF stock were allowed to evaporate completely and then 

resuspended in sterile 0.9% saline. An appropriate amount was added aseptically to 5 L 

sterile SW medium to make up the relevant concentration in the influent. After 72 h of 

biofilm growth one of the influent flasks was then replaced with one containing DCF at the 

relevant concentration. 125 µg of DCF was evaporated for the 0.1 mg.L-1 run to account 

for any loss that may occur during resuspension and addition to the media. To avoid dilution 

of DCF in the bubble traps the tubing immediately upstream of the flow cell was clamped, 

disconnected aseptically, and the bubble traps drained. The bubble traps were then filled 

again with DCF-containing medium, reconnected to the flow cells, and the flow resumed. 

The influent flask and tubing upstream of the flow cells were covered with aluminium foil 

to prevent photodegradation of DCF.  

Biofilm structure was analysed on the control line immediately after connecting the DCF 

flask (T0). Biofilm structure was subsequently monitored at 12, 24, and 36 h (T1, T2, and 

T3) for both control and treatment lines. T3 did not include duplicate flow chambers due to 

limited channels on the peristaltic pump. Data was not available for T3 (36 h) for the  

0.1 mg.L-1 run due to bubble damage. 

4.1.6 Liquid chromatography – mass spectrometry 
For the 0.1 mg.L-1 run, the concentration of DCF in the effluent of the T2 line was 

monitored using liquid chromatography-mass spectrometry (LCMS) to determine if 

biodegradation occurred. The temporal stability of DCF in the influent was also monitored 

for the duration of the experiment to determine if abiotic degradation occurred. The 

nominal DCF concentration (C0) was measured immediately after addition to the influent 

flask. The influent was sampled periodically and subjected to LCMS analysis. Samples 

were collected every 4 h in 10 mL aliquots and kept on ice throughout. The samples were 

concentrated by solid phase extraction (SPE) using a hydrophilic-lipophilic balance (HLB) 

3cc (60 mg) extraction cartridge (Oasis®). 
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Prior to SPE, the HLB cartridge was connected to a vacuum manifold and conditioned with 

3 mL HPLC-grade methanol and 3 mL Millipore water, respectively, under gravity. Care 

was taken to prevent drying of the column after conditioning. The sample (10 mL) was 

filtered through a 0.22 µm cellulose-acetate syringe filter (to remove cellular material) and the 

filtrate drawn through the SPE column under -5 mmHg vacuum. Once the sample had passed 

through the column completely, it was allowed to dry under vacuum for 30 min. The columns 

were then sealed with parafilm, wrapped in foil, and stored in an airtight package at  

-20°C until submission for LCMS analysis. 

Prior to LCMS analysis, the SPE columns were thawed and the sample eluted under gravity 

using 4 mL HPLC-grade (99.9% purity) methanol into pyrolysed, borosilicate glass test tubes. 

The methanol in the eluate was allowed to evaporate completely by sparging with N2 gas. The 

dried sample was then resuspended in 1 mL HPLC-grade methanol (10X concentrated) and 

centrifuged at 14 000 rpm for 10 min to remove residual debris. The supernatant (450 µL) was 

pipetted into a pyrolysed borosilicate glass vial insert (Stargate Scientific) placed within a  

2 mL glass vial and sealed tightly. Samples were stored at 4°C and analysed the following day 

using an Acquity UPLC® Mass Spectrometer at the Central Analytic Facility (CAF), 

Stellenbosch University. A set of standard concentrations, from 1 to 400 ppb (µg.L-1), was used 

to set up the standard curve. 

4.1.7 Confocal microscopy of biofilms 

4.1.7.1   Preparation of flow cells for microscopy 
When biofilm structure needed to be analysed a flow cell was sacrificed and prepared for 

CLSM. The effluent tubes of the flow chambers were clamped and the relevant lines were 

disconnected from the peristaltic pump. The inlet tubes were cut so that at least 5 cm of 

inlet tube was left connected to the flow cell. A second peristaltic pump was placed on the 

effluent side of the flow cell, and after connecting the effluent tubes to the pump, the 

clamps were gently removed. Using a slow reverse flow, a drop of medium was allowed 

to form on the end of the inlet tubes (to prevent intake of air during the next step). The 

inlet tubes were then submerged in 4% (w/v) PFA fixative in a 50 mL beaker  

(Appendix B). The PFA was drawn into the flow channels at 10 mL.h-1 for 15 min. The 

flow was then stopped for 45 min to allow the fixative to work. The PFA was then flushed 

with 1X phosphate-buffered saline (PBS) for 15 min at the same flow rate (Tolker‐Nielsen 

and Sternberg, 2011). The influent tubes were clamped and 200 µL of a 2 µL.mL-1 working 

stock of Syto9™ (Invitrogen, Molecular Probes, USA) was injected slowly into the flow 
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chambers using a sterile 1 mL syringe and 26-gauge needle. The dye was allowed to bind to 

the biofilm in the dark for 30 min. The clamps were then removed, the line reconnected to the 

secondary pump, and flow resumed for 15 min to flush residual dye with sterile PBS. The 

influent tubes were then clamped again and the flow cell disconnected from the flow system, 

sealed with stoppers, and wrapped in foil. Syto9™ is a non-specific nucleic acid stain, with an 

excitation maxima of 480–500 nm.  

4.1.7.2   Image acquisition  
The biofilms were observed using a Carl Zeiss LSM 780 confocal microscope at the Central 

Analytic Facility (CAF), Stellenbosch University. Images were obtained with a LD  

Plan-Neofluar 40×/0.6 Korr M27 objective and excitation from a 488 nm Argon laser. Imaging 

conditions similar to Heydorn et al. (2000a) were used to minimise variations between 

experimental rounds and between flow channels. For all experiments, images were acquired at 

random positions within 5-10 mm from the inlet and in the middle two-thirds of the flow 

chamber. Seven image Z-stacks were obtained for each flow channel. Images were recorded 

with a scan area of 212.55 µm2 (XY). Biofilm image stacks were acquired with an interval of 

1.68 µm in the Z-direction, resulting in a voxel volume of 0.2964 µm3. The number of images 

in each Z-stack varied depending on the thickness of the biofilm. Additional capture conditions 

are listed below: 

• Image size (pixels): 512×512 

• Pixel size (XY): 0.42 µm 

• Pixel dwell: 2.55 µs 

• Detection wavelength: 502-672 nm 
• Pixel averaging: 2 

Orthogonal views of the biofilm were generated using the ZEN 2.3 software (Carl Zeiss 

Microscopy). 
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4.1.8 Biofilm model  

4.1.8.2   Model description 
Biofilm structure was simulated using the iDynoMiCS package which was adapted to represent 

the experimental system (Lardon et al., 2011). The model was made up of three classes of 

discrete particles – heterotrophs, autotrophs, and EPS – whose growth is linked to local 

substrate concentration and class-specific growth kinetics. For simplicity, heterotrophs and 

autotrophs are simulated with lumped parameters and generic particle properties sourced from 

literature. Heterotrophs act aerobically to oxidise organic donor substrate (as COD), to produce 

biomass and EPS, whereas autotrophs act as nitrifiers, oxidising ammonia directly to nitrate. 

For both species growth is governed by Monod kinetics for substrate utilisation while loss is 

governed by endogenous respiration and decay processes. All biomass could additionally be 

lost through physical detachment from the biofilm surface. Model parameters and the 

stoichiometry of all reactions are summarised in Table 4.1 and Table 4.2, respectively. Biofilm 

development proceeds iteratively, where, at each iteration, particles grow in size, consume 

substrate, divide at a critical cell size, and undergo shoving when in contact with neighbouring 

particles. 

While biomass is modelled discretely (Figure 4.2), solute concentrations (COD, O2, NH4, NO3) 

are determined by partial differential reaction-diffusion equations solved numerically to  

steady-state at each iteration using a multigrid algorithm (Lardon et al., 2011). Cyclic 

boundaries were implemented at the vertical borders and a zero-flux boundary at the bottom 

border of the computational domain. A mass transfer boundary layer was implemented as a 

moving upper boundary 48 µm above the biofilm surface. 

 
Figure 4.2. 2-Dimensional representation of computation domain of biofilm IbM. Particulate 
components (heterotrophs, autotrophs, EPS) are represented by agents while dissolved 
components (oxygen) are represented by a continuum. 
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4.1.8.2   Simulations 
Simulations were initialised using the input parameters in Table 4.3. The system was inoculated 

at t0 with 8 particles of heterotrophs and 4 particles of autotrophs, placed at random locations 

on the substratum surface. A ratio of 2:1 heterotrophs to autotrophs was chosen to represent the 

inoculum in which heterotrophs were identified to dominate. The estimated heterotrophic 

kinetic parameters were used to calibrate the biofilm model. Remaining parameters were 

sourced from literature. Biofilm structure was recorded every 0.5 h of simulated biofilm growth. 

Simulation iterations were governed by an adaptive timestep with a tmin of 0.05 h and a tmax of 

0.25 h. Simulations were performed using the Stellenbosch University High Performance 

Computing (HPC) cluster. Biofilm simulation images were rendered using POV-Ray™ 

3.7.0 (Persistence of Vision Pty. Ltd., Victoria, Australia). A sample protocol file for 

initiating an iDynoMiCS simulation is shown in Appendix E. 

The biofilm model, implemented in the iDynoMiCS platform, was validated against emergent 

structural parameters of an experimentally observed biofilm grown under control conditions. 

Validation simulations were run for 96 h under control conditions. Biofilm structural 

parameters were calculated for the model output and compared to the experimental dataset.  

For treatment runs, simulations were run for 72 h under control conditions, after which DCF 

was introduced into the bulk compartment at the relevant concentration and the simulation 

continued for a further 24 h (4 d total). Based on the experimental data, it was hypothesised that 

the dose-dependent effect of DCF on the biofilm can be described by a simple inhibition kinetic 

model and a Haldane kinetic model, shown in eq. 17 and 18, respectively. 

 𝜇𝜇 =
𝐾𝐾I,DCF

𝐾𝐾I,DCF+SDCF
 (17) 

 𝜇𝜇 = 𝜇𝜇DCF,H
SDCF

𝐾𝐾S,DCF+SDCF+
SDCF2

𝐾𝐾I,DCF

 (18) 

This kinetic was incorporated into aerobic heterotrophic growth as indicated in Table 4.2. The 

Haldane model (eq. 18) was incorporated to replicate the effect of an increase in growth with a 

decrease in DCF concentration. The value of KI,DCF was crudely estimated to be 5 mg.L-1 based 

on the low end of planktonic MICs in literature (Dastidar et al., 2000, Mazumdar et al., 2009). 

The value of KS,DCF was set to result in an increase in growth when exposed to 0.1 mg.L-1. The 

value of µDCF,H was set such that the peak of the DCF vs. µ response curve equals that value of 

µmax,H.  
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Table 4.1. Parameters used for biofilm model simulations 

Parameters Description Value Units Reference 
Reaction rate     
 Heterotrophs (H)     

µmax,H Max. specific growth rate  0.3178 h-1 Experimental 
µDCF,H Max. growth rate on DCF 0.3270 h-1 Specified 
KS,H Saturation constant for COD  1.23 mgCOD.L-1 Experimental 
KO,H Saturation constant for O2 0.2 mgO2.L-1 Wanner et al. (2006) 
KS,DCF Saturation constant for DCF 1×10-3 mgDCF.L-1 Specified 
KI,DCF Inhibition constant for DCF 5.0 mgDCF.L-1 Specified 
kH EPS hydrolysis rate 7.08×10-3 h-1 Ni et al. (2008) 
YH Biomass yield 0.4928 mgCOD.mgCOD

-1 Experimental 
YE EPS yield 0.20 mgCOD.mgCOD

-1 Lardon et al. (2011) 
bres,H Endogenous respiration rate 1.33×10-2 h-1 Wanner et al. (2006) 
bH Decay rate 2.06×10-2 h-1 Experimental 

 Autotrophs (A)     
µmax,A Max. specific growth rate 4.17×10-2 h-1 Rittmann et al. (2004) 
KN,A Saturation constant for NH4 1.5 mgN.L-1 Wanner et al. (2006) 
KO,A Saturation constant for O2 0.5 mgO2.L-1 Wanner et al. (2006) 
kH EPS hydrolysis rate 7.08×10-3 h-1 Ni et al. (2008) 
YA Biomass yield  0.24 mgCOD.mgN

-1 Rittmann et al. (2004) 
YE EPS yield 0.18 mgCOD.mgCOD

-1 Lardon et al. (2011) 
bres,A Endogenous respiration rate 5×10-3 h-1 Wanner et al. (2006) 
bA Decay rate 1.25×10-3 h-1 Wanner et al. (2006) 

Particulates      
ρX Density of biomass 200×103 mg.L-1 Xavier et al. (2005a) 
ρI Density of inert biomass 200×103 mg.L-1 Xavier et al. (2005a) 
ρEPS Density of EPS 33×103 mg.L-1 Xavier et al. (2005a) 

Mass transfer     
Df Biofilm diffusivity factor 0.8 - Lardon et al. (2011) 
DO2 Diffusivity of oxygen 4.76×10-3 m2.h-1 Lardon et al. (2011) 
DNH4 Diffusivity of ammonia 4.05×10-3 m2.h-1 Lardon et al. (2011) 
DNO3 Diffusivity of nitrate 4.05×10-3 m2.h-1 Lardon et al. (2011) 
DS Diffusivity of substrate 2.38×10-3 m2.h-1 Lardon et al. (2011) 
DDCF Diffusivity of diclofenac 5.95×10-3 m2.h-1 Estimated 1 
LL Mass transfer boundary 

layer thickness 
48 µm Alpkvist et al. (2006) 

kDet Erosion strength 1×10-3 fg.µm-4.h-1 Xavier et al. (2005a) 
Computation domain     

LX × LZ × LY System size 264 µm3 Specified 
NX × NZ × NY Number of grid elements 33 - Specified 
x × z × y Size of solute grid element 8 µm Specified 
i × j × k Size of agent grid element 4 µm Specified 
Lf,max Maximum biofilm thickness 400 µm Specified 
D Dilution rate 18 h-1 Calculated 
σR 

2 Specific area of flow cell 1474 m2.m-3 Calculated 
1 Estimated using general correlation for unassociated liquids equation from Wilke and Chang (1955).  
2 Describes the ratio between the carrier surface (substratum on which the biofilm grows) and the bulk compartment 

volume. 
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Table 4.2. Stoichiometric matrix and kinetic expressions used for the biofilm model 

1 The following kinetic equations were only implemented for treatment simulations. 
𝑗𝑗Hal = SDCF

𝐾𝐾S,DCF+SDCF+
SDCF
2

𝐾𝐾I,DCF

 ; 𝑗𝑗Inh = 𝐾𝐾I,DCF
𝐾𝐾I,DCF+SDCF

 

 

 

Reaction 
Soluble components  Particulate components 

Kinetic Expression 
SS SO SNH4 

+
 SNO3

-
  XH XA XEPS XI 

Aerobic heterotroph 
growth 1 −

1
𝑌𝑌H

 −
1 − 𝑌𝑌H
𝑌𝑌H

    𝑌𝑌H  𝑌𝑌E  μmax,H
SS

KS+SS

SO

KO+SO
𝑗𝑗InhXH + μDCF𝑗𝑗Hal

SO

KO+SO
XH 

Heterotroph 
endogenous respiration 

 –1    –1    𝑏𝑏res,H
SO

𝐾𝐾O+SO
XH 

Heterotroph decay      –1   1 𝑏𝑏HXH 

Autotroph growth  −
4.57− 𝑌𝑌A

𝑌𝑌A
 −

1
𝑌𝑌A

 
1
𝑌𝑌A

   𝑌𝑌A 𝑌𝑌E  𝜇𝜇max,H
SN

𝐾𝐾N+SN

SO
𝐾𝐾O+SO

XH 

Autotroph endogenous 
respiration 

 –1     –1   𝑏𝑏res,A
SO

𝐾𝐾O+SO
XH 

Autotroph decay       –1  1 𝑏𝑏AXA 

EPS decay 1       –1  𝐾𝐾HydXEPS 
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Table 4.3. Input parameters for biofilm simulations 

Inputs Description Value Units Reference 
Biomass components 1     
nX,H,t0 Initial number of heterotroph 

cells 
8 - Specified 

nX,A,t0 Initial number of autotroph cells 4 - Specified 
Solute components 2     
Sin,O2 Bulk concentration of O2 5 mgO2.L-1 Experimental 
Sin,COD Bulk concentration of COD 120 mgCOD.L-1 Experimental 
Sin,NH4 Bulk concentration of NH4 16 mgN.L-1 Experimental 
Sin,NO3 Bulk concentration of NO3 0 mgN.L-1 Specified 
Sin,DCF,low 3 Bulk concentration of DCF for  

0.1 mg L-1 run 
0.1 mgDCF.L-1 Experimental 

Sin,DCF,high 3 Bulk concentration of DCF for  
10 mg L-1 run 

10  mgDCF.L-1 Experimental 

1 The initial number of particles was adjusted such that the predicted and experimental parameter profiles matched. 
2 Solute concentrations were set the same for influent and initial state of bulk compartment. 
3 Only implemented for treatment simulations.  
 

4.1.9 Biofilm parameter calculations 
Before biofilm parameter calculations, the CLSM datasets were pre-processed to remove 

background noise (Figure 4.3). First, images below the substratum were removed from the 

image stack. To smooth the edges of the biofilm and reduce noise, CLSM datasets were 

processed through a 2D median filter with a 5-by-5 pixel neighbourhood. This was 

performed in MATLAB using the built-in function, medfilt2. This step was vital for 

accurate calculation of s/v ratio. Due to the relatively large interval between Z-stacks, the 

fluorescence emitted by biomass was stretched in the Z-direction resulting in an artificially 

high surface area. Of course, this issue can be avoided with a smaller Z-interval, but this 

would drastically increase image acquisition times to an unreasonable level considering 

the number of image stacks required per flow channel. Following this, thresholding of image 

stacks was performed manually. A fixed threshold value (pixel intensity) was determined by 

the user to exclude background noise. Finally, planktonic cells and background noise not 

removed by thresholding were removed using connected-volume filtration. This removed any 

biomass pixels which are not in some way connected to the substratum (Heydorn et al., 2000b).  
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B 

 

C 

 

D 

 
Figure 4.3. Confocal laser photomicrographs of biofilm depicting steps in processing 
CLSM image stacks prior to parameter calculations. A. Raw image. B. Median filtered.  
C. Thresholded. D. Binarised: white represents biomass, black represents background. All 
parameters were calculated for binary images, except for total biomass which utilised the 
range in pixel values in C. 

COMSTAT 1.2, implemented in MATLAB, was used to calculate biofilm structure parameters 

of each CLSM image stack (Heydorn et al., 2000b). Since the biofilm is simulated in a 3D 

domain, the output can be analysed in a similar manner to CLSM data, making comparative 

studies easier. The COMSTAT script and associated functions were modified to handle the 

simulation output for calculating biofilm parameters. 

The following biofilm structure parameter set was used for comparisons: 

• Average biofilm thickness, L�f is the mean of biofilm height above the substratum. 

• Substratum coverage, cf, is the fraction of substratum colonised by the biofilm. 

• Surface area-to-biovolume ratio, s/v, is the surface area of the biofilms surface divided by 

the biovolume. Biovolume (µm3) is defined as the sum of pixels containing biomass 

multiplied by the voxel size. This parameter indicates what fraction of the biofilm is 

exposed to bulk liquid nutrients, and can give insight into how the biofilm adapts to the 

environment. 

• Total biomass, B, is the sum of the mass of biofilm (in µg) per unit area of substratum. 

For simulation and experimental data, B was calculated using eq. 19 and 20, 

respectively. 

 𝐵𝐵sim = ���𝐶𝐶x,y,z ∙ Vvoxel 
66

𝑘𝑘=1

66

𝑗𝑗=1

66

𝑖𝑖=1

Asubstratum�  (19) 

 𝐵𝐵exp = ���𝐹𝐹�𝑔𝑔𝑔𝑔𝑖𝑖,𝑗𝑗,𝑘𝑘� ∙ 𝜌𝜌biomassVvoxel 
512

𝑘𝑘=1

512

𝑗𝑗=1

512

𝑖𝑖=1

Asubstratum�  (20) 
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where Cx,y,z is the concentration of biomass particles at coordinates x,y,z in the computation 

domain of the biofilm model, and gvi,j,k is the greyvalue of the voxel at entries i,j,k on the 3D 

matrix defined by the CLSM image stack. The function F converts greyvalues (gvi,j,k) from the 

[0,255] range to the [0,1] range (Xavier et al., 2004). Instead of calculating total biomass as 

biovolume per substratum area (µm3.µm-2), it was decided to utilise the greyscale pixel 

intensity range in the CLSM datasets to calculate a mass per unit area parameter (µg.µm-2). 

This provided a more accurate estimation of the biomass present in the biofilm. 

• Roughness coefficient, Rα , is a dimensionless measure of the variability in biofilm 

thickness, and is an indicator of biofilm heterogeneity (Heydorn et al., 2000b). Defined 

by eq. 21. 

 𝑅𝑅𝛼𝛼 =
1
𝑛𝑛
�

|𝐿𝐿f𝑖𝑖 − 𝐿𝐿�f|
𝐿𝐿�f

𝑛𝑛

𝑖𝑖=1

 (21) 

where n is the number of thickness measurements, Lfi is the ith individual thickness 

measurement, and 𝐿𝐿�f is the mean thickness. A higher value indicates an irregular surface 

whereas a value approaching zero represents a smooth, flat surface. 

4.1.10   Statistical analysis of biofilm parameters 
Statistical analysis of data was performed in GraphPad Prism®. LCMS data was analysed using 

two-way ANOVA with a P-value of 0.05. The Shapiro-Wilk test was used to check data sets 

for normality. Differences between biofilm parameter values for all data sets were calculated 

using an unpaired t-test (normal distribution) or Mann-Whitney test (non-normal distribution) 

with a P-value of 0.05, unless stated otherwise. Coefficients of determination (R2) were 

calculated for validation comparison. 

4.2 Results 

4.2.1 Validation 
Selected biofilm CLSM images are depicted in Figure 4.4. Following 26.5 h of incubation, 

individual cells have attached to the substratum and have divided to form the early stages 

of a microcolony. By 45.5 h, most of the substratum has been colonised and a few 

microcolonies have grown in size to form mounds. Here, one can see the variety of 

bacterial phenotypes forming part of the mixed-species biofilm.  
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Figure 4.4. Representative confocal laser photomicrographs of multispecies biofilm 
development at A. 26.5, B. 45.5, C. 70.5, and D. 94.5 hours of growth under control 
conditions. Shown is orthogonal view where central plots are top views while upper and 
right frames are vertical sections through the biofilm at positions indicated by the white 
triangles. Scale bars are also valid for upper and right frames.  

Following 70.5 h of growth, the biofilm has increased in thickness significantly. Here the 

majority of the biofilm was made up of cocci-shaped cells. Voids have begun to develop 

within the biofilm (indicated by the white circle). At 94.5 h, the biofilm has developed a 

complex structure with distinct microcolonies separated by a network of channels which 

were occupied by a loose mass of mainly rod-shaped bacteria (indicated by the white 

arrow). 

A B 

C D 
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Rendered images of the simulated biofilm are shown in Figure 4.5. Throughout the 

simulation, heterotrophs dominated in the biofilm. This corresponds well with batch 

culture observations. At 72 h, heterotrophs were localised near the surface of the biofilm 

where they have better access to oxygen. EPS formed a significant proportion of the 

biofilm. Similar to the experimental biofilm (Figure 4.4), the simulated biofilm has formed 

mound-like microcolonies at 48 h and has colonised most of the substratum at 72 h. 

  

  
Figure 4.5. Simulated biofilm at A. 24, B. 48, C. 72, and D. 96 hours of growth. Images 
are perspective projections of the 3D computational domain of the iDynoMiCS model. 
Blue particles represents lumped heterotrophs, green represents heterotroph EPS, red 
represents autotrophs, and yellow represents autotroph EPS.  

Comparison between biofilm parameters for experimental and simulated biofilm are 

depicted in Figure 4.6 and the corresponding scatter plots for each parameter indicating 

individual measurements are shown in Figure C1. Besides outliers, individual 

A B 

D C 
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measurements are reasonably well clustered for all structural parameters, though the 

variance increased at 70.5 and 94.5 h (Figure C1). Initial biofilm development in the flow 

cells was characterised by a lag period followed by an exponential increase in L�f and B at 

approximately 25 h. The biofilm surface is initially heterogeneous and trends towards a 

flatter surface as the biofilm matures. There was a rapid increase in horizontal spreading 

on the substratum after 26 h, which switched to a gradual linear increase to cover 80% of 

the surface after 94.5 h of growth (Figure 4.6D). 

The simulation output fits well to the general trend of experimental biofilm parameters, 

except for the s/v ratio (Figure 4.6). The fit was good for L�f and Rα. After around 60 h, L�f 

shifts from an exponential to a linear increase. This was due to the depletion of oxygen in 

the bulk liquid which led to oxygen-limited growth. As the s/v ratio decreased and the mean 

thickness increased, the base of the biofilm became oxygen-limited, leaving only cells near the 

surface growing at their maximum rate. For B, the fit was initially good but was subsequently 

overestimated. The s/v ratio was significantly underestimated (R2 not calculated) by the 

model, although it did follow the same downward trend (Figure 4.6E). The calculated 

surface area for CLSM datasets was significantly higher than for the simulation (data not 

shown), which contributed to the higher s/v ratio.  

As expected, preliminary 2D simulations ran using identical parameters did not replicate 

observed biofilm structure (data not shown), and thus, were not ideal for simulating biofilm 

structure. 

The effect of stochasticity on predicted structural parameters is shown in Figure D1. The 

profiles were not significantly affected by stochastic effects. The sensitivity of structural 

parameters to changes in simulation inoculation numbers and kDet, which had suspected 

uncertainty, are depicted in Figure D2 and Figure D3, respectively. All structural 

parameters were sensitive to changes in simulation inoculation numbers. An increase in 

inoculation numbers shifted the profile along the x-axis (time), but did not alter the shape 

of the profiles (Figure D2). The inoculation number was therefore adjusted so that the 

simulation profile matched the observed data. 

Changes in kDet drastically altered the profile of L�f and B, but did not significantly affect 

Rα and cf (Figure D3). An increase in kDet correlated with a decrease in biomass by limiting 

the thickness that the biofilm could reach.  

 

Stellenbosch University  https://scholar.sun.ac.za



50 

 

 
Figure 4.6. Comparison between experimental and simulated biofilm parameters for 
biofilms cultivated under control conditions. A. Mean thickness. B. Total biomass per 
substratum area. C. Roughness coefficient. D. Substratum coverage. E. Surface 
area/biovolume ratio. Experimental time points are at 26.5, 45.5, 70.5, and 94.5 h. Error 
bars indicate 1 standard deviation. 
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4.2.2 Diclofenac treatments 
The endpoint response of the batch culture to DCF exposure is shown in Figure 4.7. 

Although insignificant (P>0.05), when exposed to 5 µg.L-1, the CFU/mL increased relative 

to the control, whereas exposure to 5 mg.L-1 resulted in a decrease in CFU/mL. The 

majority of colonies plated out from the culture were a cream colour. A few motile bacteria 

were observed and one filamentous (fungal) colony. 

 
Figure 4.7. Response of batch culture following 32 h exposure to DCF at 0.005 and  
5 mg.L-1. There is no significant difference between control and treatments. 

Biofilms were cultivated for 72 h under control conditions after which DCF was introduced 

for a further 24 h. Selected CLSM images are depicted in Figure 4.8. In the control biofilm, 

the majority of the surface was colonised by regularly occurring mound-shaped 

microcolonies (Figure 4.8A). The vast majority of the biofilm was composed of cocci-

shaped cells. Treatment with 10 mg.L-1 DCF resulted in a comparatively lower surface 

colonisation and a more heterogeneous structure (Figure 4.8B). Treatment with  

0.1 mg.L-1 DCF resulted in a more heterogeneous structure as well, but the microcolonies 

appeared to be more densely colonised (Figure 4.8C). In Figure 4.8D, parts of the biofilm 

were colonised by relatively large spherical cells, presumed to be protists (white arrows). 

Subsequent references to these entities are speculative. Although observed in other parts 

of the biofilm, and in different flow cells, this was the highest concentration of protozoa 

found. Microcolonies were less defined and zones of clearance with EPS remaining can 

be observed as a result of protist grazing. There was also a lower bacterial abundance 

compared to biofilms not colonised by protists.  
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Figure 4.8. Representative confocal laser photomicrographs of multispecies biofilm 
structure after 4 d of growth. A. Control. B. Following 24 h exposure to 10 mg.L-1 DCF. 
C. Following 24 h exposure to 0.1 mg.L-1 DCF. D. Presumptive protists (white arrows) 
grazing on biofilm. Shown is orthogonal view where central plots are top views while 
upper and right frames are vertical sections through the biofilm at positions indicated by 
the white triangles. Scale bars are also valid for upper and right frames. 

Experimental structural parameters of biofilms exposed to DCF are shown in Figure 4.9 

and Figure 4.10. When biofilms were exposed to 10 mg.L-1 DCF, a significant decrease in 

L�f (-31%), B (-33%), and cf (-56%) was observed for all temporal measurements  

(Figure 4.9). The decrease following 24 h of exposure is indicated in parentheses. The 

decrease in cf can be clearly seen in the CLSM image as well (Figure 4.8B). Conversely, 

there was a significant increase in Rα (198%) and s/v ratio (71%) of the biofilm compared 

to the control. This is indicative of a more heterogeneous biofilm with a larger surface area 

A B 

C D 
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exposed to the bulk liquid. Overall, exposure at this concentration resulted in a thinner, 

less dense, and more disperse biofilm which suggests an inhibitory effect.  

 
Figure 4.9. Experimental structure parameters of biofilm exposed to 10 mg.L-1 diclofenac 
compared to control. A. Mean thickness. B. Total biomass per substratum area.  
C. Roughness coefficient. D. Substratum coverage. E. Surface area/biovolume ratio. The 
first control measurement was taken immediately after exposure of 72 h old biofilms to 
diclofenac. Each data point represents the average of the respective parameter. Error bars 
indicate 1 standard deviation. Data was shifted by 0.5 h to avoid overlap of error bars. 
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Figure 4.10. Experimental structure parameters of biofilm exposed to 0.1 mg.L-1 
diclofenac compared to control. A. Mean thickness. B. Total biomass per substratum area. 
C. Roughness coefficient. D. Substratum coverage. E. Surface area/biovolume ratio. The 
first control measurement was taken immediately after exposure of 72 h old biofilms to 
diclofenac. Each data point represents the average of the respective parameter. Error bars 
indicate 1 standard deviation. Data was shifted by 0.5 h to avoid overlap of error bars. 
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When exposed to a lower concentration of 0.1 mg.L-1, a significant increase in L�f (102%) 

and B (83%) compared to the control was observed at 24 h of DCF exposure (Figure 4.10). 

The L�f and B of the control biofilm remained static, but increased over time for the DCF-

treated biofilm. This indicated an overall increase of biofilm growth. Following 12 h of 

exposure, there was a slight, but not significant (P=0.0665), increase in L�f. A minor 

decrease in Rα (-25%) was observed at 24 h of exposure. No change was observed for cf 

and s/v ratio over the exposure period. The final measurement at 36 h was not available 

due to bubble damage. Although the simulation did not fit well to experimental s/v ratio in 

the validation experiment (Figure 4.6), it was still a useful parameter for assessing the 

biofilm’s response to DCF exposure. 

The concentration of DCF detected in the influent and effluent of a flow cell during the 

0.1 mg.L-1 run is shown in Figure 4.11. After the experiment was completed, additional 

influent measurements were taken to check for stability in the medium. Although DCF 

was added to the influent flask at a final concentration of 125 µg.L-1, it was detected in the 

influent at 84 µg.L-1. However, the results were not integrated against an internal standard, 

so loss of DCF during the extraction and elution procedures could not be accounted for. 

Therefore, only relative concentrations were addressed subsequently. DCF remained 

stable in the influent; there was no significant abiotic degradation over 5 d (Figure 4.11). 

There was no significant difference between influent and effluent over the treatment period 

(P>0.05). Although insignificant, the effluent concentration is slightly higher compared to 

the influent at 10 h and 24 h. 

 
Figure 4.11. Concentration of DCF in the influent and effluent of flow cells from the  
0.1 mg.L-1 treatment run. Indicated is the time elapsed from DCF exposure to 72 h old 
biofilms. There was no significant difference between and within influent and effluent 
measurements. 
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A direct comparison between predicted and observed structural parameters of biofilms 

exposed to 10 mg.L-1 and 0.1 mg.L-1 DCF is depicted in Figure 4.12 and 4.13, respectively. 

The predictions for L�f and cf did not match experimental observations directly for both 

treatments. The 10 mg.L-1 treatment prediction for B fits well to experimental observations, but 

was overestimated in the control (Figure 4.12B), as it was in the validation run (Figure 4.6B). 

The control prediction for Rα fits well, but was underestimated for the treatment simulation for 

10 mg.L-1. Overall, simulations at 0.1 mg.L-1 did not fit experimental observations well 

(Figure 4.13). Although the biofilm model did not match the experimental parameter 

profiles, the expected qualitative effect was reproduced.  

 
Figure 4.12. Experimental and simulated biofilm structural parameters for control and 
treatment at 10 mg.L-1 DCF. A. Mean thickness. B. Total biomass. C. Roughness 
coefficient. D. Substratum coverage. DCF was introduced at 72 h (indicated by dotted 
line). 
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Figure 4.13. Experimental and simulated biofilm structural parameters for control and 
treatment at 0.1 mg.L-1 DCF. A. Mean thickness. B. Total biomass. C. Roughness 
coefficient. D. Substratum coverage. DCF was introduced at 72 h (indicated by dotted 
line). 

DCF exposure experiments reached a lower steady-state L�f compared to the validation run 

(Figure 4.12-13). As a result, treatment simulations overestimated observed biofilm 

thickness. Therefore, instead of direct comparison, a pattern-oriented approach (Grimm et 

al., 2005) was adopted where fold changes between control and treatment runs were 

compared for simulation and experimental data at 24 of DCF exposure (Figure 4.14).  
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Figure 4.14. Fold change in structural parameters of biofilms after 24 h of exposure to  
A. 10 mg.L-1 and B. 0.1 mg.L-1 DCF. Exposure began after 72 h of biofilm growth under 
control conditions. The dotted line represents the control. 

The IbM reproduced the overall trend in experimental fold changes of structural 

parameters when exposed to 0.1 and 10 mg.L-1 DCF (Figure 4.14). At 10 mg.L-1 the match 

for L�f and B was good, whereas the effect on Rα and cf was underestimated by the model. 

As for 0.1 mg.L-1, the match for B and cf was good while L�f and Rα was under- and 

overestimated by the model, respectively. 
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CHAPTER 5: DISCUSSION 
The respirometric methods used for bH, µmax,H, KS, and YH determination, combined with COD 

(SS) and TSS (XH) data, proved to be suitable for biokinetic parameter estimation of an 

unknown environmental sample. The proposed simple batch model described the experimental 

system well. Simultaneous regression to three stoichiometrically linked response variables was 

a robust method of parameter estimation. The experimental methods used were relatively fast 

and simple, but OUR measurement suffered from a lack of automation, and consequently a low 

OUR measurement frequency. A reactor configuration used by Almeida and Butler (2002) 

facilitates automated OUR measurements, but this would require more probes than was 

available in the present study. Overall, the OUR, SS, and XH profiles (Figure 3.3) were typical 

for the SS/XH ratio used (Kappeler and Gujer, 1992, Trojanowicz et al., 2009).  

The lag phase observed in the response variable profiles (Figure 3.3) presented a problem for 

accurate parameter estimation. Typically, datasets are truncated to exclude data points within 

the lag phase, but doing so in the present study would have left too few data points for 

regression. The adoption of an acclimation term (Eq. 14) was an ideal solution to this problem 

as it mimicked early-stage acclimation while retaining the entire dataset for regression. Future 

studies can avoid a lag period by ensuring that reactors are inoculated with a culture in the 

exponential phase of growth. 

Since it was determined that heterotrophic growth was dominant in the batch reactors, with no 

sign of autotrophic nitrification (Figure 3.2), it was assumed that the estimated parameters from 

the NATU dataset were representative of heterotrophic growth only. Thus, the estimated 

parameters were used for the calibration of lumped heterotrophic growth in the biofilm model. 

The minor increase in OUR measured in the presence of ATU (Figure 3.2A) may seem 

insignificant, but there is evidence that some sulphur-reducing heterotrophs are capable of 

metabolising ATU and using it as an energy source (Robertson et al., 1989). This may explain 

the increase in OUR when ATU was added. This did not affect parameter estimation since the 

NATU dataset was used for this purpose. 

There was a relatively high level of uncertainty associated with the estimated KS value, with 

large parameter 95% CIs and a CV of 29% for the mean value (Table 3.5). However, KS values 

are typically difficult to determine with precision, given experimental variability and the nature 

of the Monod equation. Using a respirometric method on a biofilm reactor, Riefler et al. (1998) 

reported a similarly high CV of 33% and an almost identical response surface seen in suspended 
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growth models. Furthermore, the long valley in the parameter space with respect to KS  

(Figure 3.4), and associated larger confidence region, is characteristic for batch models based 

on Monod growth kinetics (Vanrolleghem et al., 1995). It was also shown that two standard 

deviations around the estimated mean of KS did not significantly affect the response variable 

profiles (Figure 3.5). Thus, a CV of 29% is adequate for this parameter. An increase in the 

frequency of OUR measurements during the sharp decline phase of the respirogram  

(Figure 3.2A) could improve the precision of KS determination. For future experiments, a 

consistent initial SS/XH ratio would make the decline phase in the respirogram more 

predictable. 

The biokinetic parameters of the sampled culture were determined from batch experiments 

under suspended growth conditions. This is the simplest and most common method of 

estimating kinetic parameters for microbial cultures and is commonly used for attached growth 

(biofilm) models (Riefler et al., 1998). However, concerns have been raised about the 

suitability of applying biokinetic parameters estimated from suspended growth systems to 

biofilm models. The IbM does take into account diffusion-reaction limitations and can thus 

simulate the gradient of metabolic activity observed in real biofilms, as well as individual agent 

responses to changes in their environment. However, reality is more nuanced than that. 

Microbial biofilms are known to exhibit an altered gene expression profile compared to 

suspended growth systems. For example, density-dependent cell-cell signalling can trigger the 

expression of genes that may redirect resources to producing alternative compounds, such as 

EPS components (Flemming and Wingender, 2010). Nevertheless, the biofilm model proved 

to be an ideal approximation of the real life system, but could certainly do with improvements, 

which is discussed later. 

Throughout the simulations, heterotrophs were dominant within the biofilms, with negligible 

autotrophic growth. This outcome was expected under the chosen nutrient conditions and is 

consistent with similar simulations in literature (Lardon et al., 2011, Jayathilake et al., 2017). 

The selection for heterotrophs in the biofilm model corresponds well with batch reactor 

observations, where heterotrophs were found to dominate as well based on respirometry. Thus, 

it was assumed that heterotrophs dominated in the flow cell biofilms as well, which were 

operated under the same conditions as the batch reactors. 

Observed biofilm structure, as revealed by CLSM, proved to be useful for IbM validation. The 

predicted structural parameters fit well to experimental observations for L�f, Rα, and cf  

(Figure 4.6). Although the fit is initially good for B, the IbM overestimated this parameter as 
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time proceeded (Figure 4.6B). This may be due to the estimated value of µmax,H which was 

higher than those usually reported for similar systems (Table 3.6). Biokinetic parameters were 

estimated under batch conditions that favoured fast-growing heterotrophs due to the high 

carbon/nitrogen ratio. The estimated biokinetic parameters are thus representative of fast-

growing heterotrophs and are an ideal approximation for a short term lumped biofilm model, 

but may not be ideal for simulating longer term scenarios. Biokinetic parameters should rather 

be estimated from mature, steady-state cultures.  

Xavier et al. (2004), using a similar IbM to iDynoMiCS, fit the parameters µmax and Kshov to 

observed biofilm structural profiles of a multispecies denitrifying consortium. This resulted in 

a much better fit to observed structural parameters. The fitted µmax parameter was estimated to 

be 0.25 h-1 for the first 22 h of growth, and in a separate experiment, µmax was 0.06 h-1 for the 

period of 24-40 h of growth (Xavier et al., 2004). Based on observed structural parameters, 

overall biofilm growth decreased over time, which was observed in the present study as well  

(Figure 4.6). Future studies should consider fitting uncertain kinetic parameters to experimental 

data.  

The biofilm model assumes that the system is well-mixed with an equal distribution of 

substrate in the bulk liquid. The flow cell is not a well-mixed system, however. Biofilm near 

the inlet receives a higher substrate concentration than biofilm downstream. The substrate 

concentration will gradually decrease from the inlet to outlet as a result of biological 

consumption. This gradient in biomass growth along the flow channel would be magnified as 

time progresses, resulting in relatively thicker biofilms near the inlet. Although efforts were 

made to reduce variation between and within flow channels (Heydorn et al., 2000a), a 

degree of stratification was still expected which may account for a proportion of the error 

observed in the calculated structural parameters. Unfortunately, a gradient in biofilm thickness 

could not be confirmed in this study since individual measurements were taken at random 

positions within the defined neighbourhood. But, this has been confirmed to occur in literature 

(Heydorn et al., 2000a). This is a more likely explanation for the overestimation of B by the 

simulation (Figure 4.6B). Perhaps the experimental parameter mean is pulled down by 

measurements captured away from the channel inlet where biomass density is likely lower. The 

measurement scatter plot (Figure C1) points towards a decrease in reproducibility at 70.5 h and 

94.5 h, but this may be indicative of a gradient in biofilm growth described above.  

Furthermore, the issue of stratification calls into question the suitability of the specific area 

parameter (σA) for this system. This parameter serves to scale up the activity of the biofilm 
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domain, which is a representative volume, to the full reactor scale, and assumes that the reactor 

is well-mixed (Lardon et al., 2011). Since it is known that a gradient of metabolic activity can 

develop along the length of the flow channel, applying a uniform σA may not be appropriate 

for simulating biofilm growth in flow systems. 

In contrast to B, the s/v ratio is significantly underestimated by the model (Figure 4.6E). 

Initially, the experimental s/v ratio was much higher (data not shown) than the values reported 

in Figure 4.6E (before median filtering). This was believed to be artificially high due to the 

observed stretching effect of fluorescent signals in the z-direction (seen in Figure 4.4) resulting 

in a large surface area. This effect could be mitigated by decreasing the Z-step between optical 

sections, but this would significantly increase image acquisition times. Therefore, a median 

filter was applied to all CLSM images to smooth the surface of the biofilm and bring the surface 

area in line with reality (Figure 4.3). This also had the benefit of reducing noise that would 

persist beyond thresholding. Following this, the higher s/v ratio for the experimental biofilm 

can be attributed to the observed voids and channels (Figure 4.4C & D) that cannot be 

reproduced by the IbM used in this study. The IbM is limited in this respect and this parameter 

was deemed unsuitable for validation of the biofilm model. But, it remained useful for 

experimental comparisons between DCF treatment and control. 

The processing of large CLSM datasets generated in this study was a tedious endeavour. 

Although many automated pre-processing and segmentation (threshold) algorithms have been 

developed in an attempt to make image processing objective and streamlined, there remains no 

consensus or gold standard. Even so, the method that one chooses to correct for inconsistencies 

introduces subjectivity, which makes comparisons to literature difficult. At present, manual 

inspection and processing performed by an experienced operator, although cumbersome for 

large data sets, remains the best procedure. Numerous issues may arise during image 

acquisition that can affect accurate biofilm parameter calculations, including light attenuation 

in thicker biofilms, un-level stacks, excessive noise, fluorophore bleaching, and out of focus 

images. These issues are the main cause for preventing full automation of image processing. 

Attempts have been made to correct for light attenuation (Yerly et al., 2007, Stanciu et al., 

2010, Semechko et al., 2018), but these methods increase the complexity and time needed for 

image processing. The best approach would be to reduce the need for complicated image 

processing methods by careful microscope set up.  

The interval between CLSM measurements (Figure 4.6) is relatively large due to the 

cumbersome nature of preparing the flow cells for microscopy. Moreover, the gap between 
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flow cell preparation and microscopic analysis (these occurred in different buildings) was not 

ideal. Pixel intensity variations could be introduced by fluorophore bleaching while 

waiting for image capture or by incomplete penetration of the laser in thicker biofilms. An 

ideal situation would be to have the flow cell reactor set up in the same room as the confocal 

microscope, so images can be captured more frequently and directly after flow cell preparation. 

A few parts of the biofilm were colonised by what appeared to be protists, based on their 

size and effect on the biofilm (Figure 4.8D). It was observed that protist grazing broke up 

microcolonies, reduced bacterial abundance, and left parts of the EPS without bacteria. 

Protists are broadly categorised as single-celled eukaryotes, many of which are known to 

‘graze’ on bacteria. Similarly, in literature, protist grazing has been shown to reduce the 

abundance of bacteria within biofilms and alter biofilm morphology, with obvious 

consequences on structural parameters (Lawrence and Snyder, 1998, Böhme et al., 2009). 

Future studies comparing biofilm structure using environmental samples should exercise 

caution since significant protist grazing could affect quantitative results. Either inspect for 

significant protist grazing or inhibit eukaryotic growth. In the present study, protist grazing 

was assumed to have a negligible effect on structural parameters since a minority of the 

observed biofilm was colonised by protists. 

A sensitivity analysis conducted on two parameters with suspected uncertainty, inoculation 

number and kDet, demonstrated significant effects on emergent biofilm structure (Figure D2-3). 

This finding raised doubts about the legitimacy of the validation results (Figure 4.6) when it 

comes to specifying the number of agents to initiate the simulation. The relation between 

experimental and model inoculation numbers should be improved. However, inoculation 

density in experimental set ups are extremely difficult to control. Xavier et al. (2004) evaded 

this issue by using the observed biomass distribution from CLSM data as a starting condition 

for the simulation. This is an ideal solution to the uncertainty of inoculation numbers 

experienced in the present study (Figure D2).  

The insensitivity of Rα and cf to model parameter uncertainties (kDet in this study) is in 

agreement with Muhammad and Eberl (2011) who reported a similar outcome when varying 

the flow regime (Reynolds number) of the bulk fluid. This insensitivity to environmental 

perturbations may explain the failure of the IbM to replicate observed fold changes of Rα and 

cf for DCF-treated biofilms (Figure 4.12). Experimental Rα and cf are, however, sensitive to 

environmental changes, and will remain useful for future comparative studies. 
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It was found that biofilm growth overall was inhibited by exposure to 10 mg.L-1 DCF 

(Figure 4.9). This result was expected and several studies have reported similar inhibition of 

microbial biofilms by DCF (Paje et al., 2002, Bandara et al., 2004, Lawrence et al., 2007, 

Reśliński et al., 2015). There are several possible explanations for the observed decrease in 

biofilm growth. DCF is a known antimicrobial agent, and has been reported to inhibit bacterial 

growth at the tested concentration (Dastidar et al., 2000, Mazumdar et al., 2009). There is also 

evidence that DCF exposure inhibits biofilm adhesion and formation on surfaces. Bandara et 

al. (2004) reported a significant decrease in DCF-treated (>600 mg.L-1) biofilm colonisation 

on contact lenses for P. aeruginosa, Staphylococcus sp., Streptococcus sp., and Haemophilus 

sp. At a much lower concentration of 1 mg.L-1, Reśliński et al. (2015) reported the inhibition 

of Escherichia coli and S. aureus biofilm formation on polypropylene mesh. Inhibition for both 

studies were based on reductions in sampled biofilm cell counts (CFU/mL), which was 

observed in the present study as well (Figure 4.7), although the difference from the control was 

insignificant.  

DCF has also been shown to inhibit quorum sensing and elastase production in P. aeruginosa 

(Ulusoy and Bosgelmez-Tinaz, 2013). Quorum sensing is known to regulate biofilm formation 

and the production of EPS components, and its inhibition has consequences on biofilm 

structure (Flemming and Wingender, 2010). Although DCF has only been shown to inhibit 

quorum sensing in P. aeruginosa thus far, this may be an explanation for the decrease in biofilm 

formation reported in the present study (Figure 4.9). Future work should identify the relative 

species abundance of the biofilm and changes thereof induced by DCF treatment. This is 

relevant since species composition is known to influence emergent biofilm structure 

(Picioreanu et al., 2000b). Possible methods include quantitative-PCR and metagenomics. A 

particularly useful approach is the combination of CLSM with species-specific probes  

(e.g. FISH probes) that can be used to track changes in the abundance and localisation of 

species within a biofilm. 

In contrast to multiple studies (Paje et al., 2002, Lawrence et al., 2012, Reśliński et al., 

2015), biofilm growth was observed to increase in flow cells compared to the control after 

24 h of DCF treatment at 100 µg.L-1 (Figure 4.10). In support of this finding, Lawrence et 

al. (2007) reported a significant increase in river biofilm community biomass (as µm3.µm-2), 

thickness, and bacterial phyla compared to a control when exposed to the same DCF 

concentration. Carbon source utilisation was also depressed when exposed to 100 µg.L-1 DCF 

in summer, but the opposite effect was observed in spring (Lawrence et al., 2007). The 
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change based on seasons can be explained by shifts in microbial community composition 

associated with changes in environmental conditions (Kaevska et al., 2016). In contrast to 

these findings, Lawrence et al. (2012) reported a decrease in the algal and bacterial biomass, 

thickness, as well as biodiversity of river biofilms when exposed to DCF at 5 µg.L-1. 

Furthermore, Paje et al. (2002) found that mature, 11-week-old river biofilms lost up to 70% 

of its biomass (measured as thickness) after 4 weeks of exposure to DCF at 100 µg.L-1. 

Acclimatised biofilms did not fare well either compared to control biofilms. When slides were 

inserted into the DCF-acclimatised reactor, the resultant biofilm was significantly thinner 

compared to the control after 3, 4, and 8 weeks of growth. For both cases, the CFU/ml and 

diversity of organisms isolated were significantly reduced compared to the control, with the 

former observed in the present study as well (Figure 4.7).  

Jiang et al. (2017) reported a significant increase in oxidative enzyme activity and EPS 

production of activated sludge when exposed to 5 µg.L-1 DCF. An increase in oxidative 

enzyme activity is an indication of a stress response induced to protect the cell from 

oxidative damage (Diniz et al., 2015). The EPS is known to protect resident bacteria within 

biofilms and its production is often induced in response to environmental stress  

(Delgado et al., 2010, Jiang et al., 2017). The apparent increase in biofilm growth observed in 

Figure 4.10 may have, in fact, been due to an upregulation of EPS production in response to 

oxidative stress induced by moderate DCF toxicity.  

The effect of DCF treatment in the µg.L-1 range on microbial communities is more 

complex than initially thought, with conflicting results in literature. A number of internal 

and external factors appear to be involved, such as species composition, history of the 

culture (including acclimation to the MP), and environmental conditions. In order to model 

these interactions, a better fundamental understanding of the effect of low concentration 

DCF treatment on microbial communities is required. The unknown species composition 

of the sample used in the present study is an added complication. Future work should make 

use of a more controlled system, such as a microbial consortium with a known 

composition. Future experiments should also evaluate the effect of biofilms grown with 

DCF as the sole carbon source. 

There was no significant biodegradation of DCF over the treatment period (Figure 4.11). 

Likewise, González et al. (2006) observed no biodegradation of DCF in a fixed-bed 

biofilm reactor inoculated with a WWTP community over a 24 d period, even after 

acclimation to the drug. However, the authors did find that removal efficiency increased 
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to 44-85% using a moving bed biofilm reactor with plastic carriers. Paje et al. (2002) 

demonstrated the difference in response of acclimatised vs. non-acclimatised river biofilms 

(grown in lab-scale microcosms) when exposed to 100 µg.L-1 DCF. The authors reported a 

significant increase in removal efficiency, from 20% to 97%, after 10 weeks of acclimation. 

The removal of DCF appears to depend on the presence of species capable of metabolising 

the drug and is linked with reactor configuration. Studies have indicated that nitrification, 

observed in thinner biofilms, is linked with higher DCF removal efficiency (Torresi et al., 

2016). Nitrification was not a dominant process in the biofilm reactor used in the present study 

which may explain the lack of DCF removal (Figure 4.11). Since the sampled culture was 

sourced from a WWTP, perhaps the culture was acclimated by chronic exposure to trace 

levels of DCF. This may be an explanation for the positive response to DCF exposure observed 

in Figure 4.10. Unfortunately, data on the levels of DCF received by Athlone WWTP was not 

available. However, DCF is almost ubiquitously detected in WWTP influent in South Africa, 

so previous exposure of the sampled culture is very likely (Agunbiade and Moodley, 2016, 

Archer et al., 2017a).  

DCF appeared to increase slightly in the effluent (Figure 4.11), though the difference is 

insignificant (P>0.05). González et al. (2006) reported a similar finding for a fixed-bed 

biofilm reactor. A negative mass balance is not an unrealistic scenario. This phenomenon, 

where effluent concentration is higher than in the influent, has been observed to occur 

during wastewater treatment for several MPs including DCF (Archer et al., 2017a). This 

is believed to occur due to back-transformation of metabolites into the parent compound, 

and/or from the release of accumulated MPs in bacterial aggregates (Archer et al., 2017a). 

The latter could be an explanation for the possible negative mass balance observed in the 

present study. It can also be assumed that sorption of DCF to biomass was minimal, which 

is in agreement with González et al. (2006). But, this should be confirmed experimentally 

since the amount of biomass within the flow cells is low and thus has a low sorption 

capacity. In hindsight, any biodegradation of DCF that may have occurred is likely not 

detectable given the short retention time and low biomass present in the system, as well as 

the persistent nature of the drug. 

Although the IbM reasonably reproduced observed structure during initial biofilm development 

in the validation run (Figure 4.6), the treatment experiments reached a lower steady-state 

biofilm thickness than predicted after 72 h (Figure 4.12-13). Furthermore, treatment 

simulations did not result in a direct match to experimental structural parameters. However, the 
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expected qualitative effect was reproduced. Biofilm growth is stochastic which can lead to 

differences in emergent structure between experimental repeats (Heydorn et al., 2000a). The 

stochastic growth of the mixed-species sample (with unknown composition) used in the present 

study could explain the differences observed in steady-state thickness between validation and 

treatment runs, though experimental error could not be ruled out. Because of this, a pattern-

oriented approach for comparisons between observed and predicted DCF-treated biofilms was 

adopted (Grimm et al., 2005). Here, fold changes from the control were used for comparisons 

between experimental and predicted biofilm parameters. This approach has been suggested for 

analysing stochastic and complex biological systems to reduce the effect of model parameter 

uncertainty (Grimm et al., 2005). This is particularly relevant for the IbM used in the present 

study which involved uncertain model parameters. 

The pattern-oriented approach adopted in this study proved to be ideal for comparing 

proportional effects on biofilm structural parameters when reproducibility was an issue 

(Figure 4.14). The incorporation of a simple inhibition equation (Eq. 17) successfully 

reproduced observed fold changes of L�f and B of biofilms exposed to DCF at 10 mg.L-1 

(Figure 4.14A). This finding confirms the hypothesis that DCF exhibits an antimicrobial 

effect at 10 mg.L-1. In this study, KI,DCF was estimated based on literature MICs. Future 

experiments should fit the KI,DCF parameter to the experimental data or perform separate 

determination experiments. The failure of the model to reproduce the proportion of fold 

changes for Rα and cf is not surprising given the structural complexity of experimental 

biofilms that the IbM cannot reproduce, such as voids and streamers (Figure 2.2). 

Moreover, predicted Rα and cf were found to be insensitive to environmental perturbations, 

as discussed earlier. This insensitivity potentially limits the use of these parameters for 

modelling studies investigating the impact of environmental changes. 

To reproduce the increase in biofilm growth observed at 0.1 mg.L-1 (Figure 4.10) a 

Haldane kinetic (Eq. 18) was implemented in the biofilm model. The model 

implementation was able to sufficiently describe the effect of 0.1 mg.L-1 DCF treatment 

on the biofilm (Figure 4.14B). The model replicated the fold change for B and cf reasonably 

well, whereas L�f and Rα was under- and over-estimated, respectively. Although the pattern-

oriented approach yields better comparative results here, the relation between multidimensional 

simulations and experiments needs to be improved. 

It was initially hypothesised that DCF at 0.1 mg.L-1 was utilised as a carbon or energy 

source, where a substrate addition, attributed to DCF, was added on top of the standard 
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influent concentration. This did not reproduce the increase in growth observed 

experimentally using the proposed model (shown in Figure C2). The model indicated that, 

at the measured COD concentration, the biofilm was substrate saturated, so the increase in 

growth of the biofilm could not be attributed to an increase in substrate availability. The 

model, however, lumps substrate into a single variable – as COD. This representation may 

be too simple for the system being modelled, where a complex medium and a mixed-

species culture was used. In this case, a multi-substrate model may be more appropriate to 

describe microbial carbon utilisation. Moreover, LCMS results indicated insignificant 

biodegradation of DCF, which opposes the hypothesis. However, as mentioned earlier, the 

amount of biomass present in the flow cells may have been too low for this to be detected. 

Overall, this implementation may have been flawed given the complexity of DCF-microbial 

interactions in the µg.L-1 range discussed earlier. 

The iDynoMiCS framework does not simulate the mechanical forces that fluid flow exhibits 

on the biofilm structure. In iDynoMiCS, detachment is implemented as a detachment rate 

function rather than a mechanistic approach. Recently, the NUFEB IbM has closed this gap 

and will prove useful in future studies where fluid flow is an important factor (Jayathilake et 

al., 2017). It is known that higher flow rates (shear forces) deform biofilms in the direction of 

flow, with consequences on biofilm structure (Picioreanu et al., 2001, Alpkvist and Klapper, 

2007a). However, the reactor in this study was run at a relatively slow flow rate, so the effect 

of shear forces on biofilm architecture were likely low.  

The IbM lacks the ability to simulate the ‘stickyness’ of EPS that hold biofilm aggregates 

together. The secretion of EPS components, and their local density, may mediate mechanical 

interactions between cells within a biofilm (Flemming and Wingender, 2010). Melaugh et al. 

(2018) recently investigated emergent effects of a local density-dependent cohesion 

mechanism in an IbM simulating Brownian suspensions. Simulations resulted in an emergent 

“phase separation” that has a striking similarity to the mounds and irregular channels with loose 

cells in-between observed in mature biofilms in the present study (Figure 4.4D). A mechanism 

that simulates polymer-mediated attraction between particles or “EPS adhesive force” has been 

incorporated into the recently developed NUFEB IbM (Jayathilake et al., 2017), which has 

great potential for use in future biofilm IbM studies, as mentioned earlier. 

Another criticism of the IbM is that they describe bacteria as hard, incompressible spheres, 

whereas in reality, bacterial cells are more plastic in nature, and are known to deform under 

external pressure (Laspidou et al., 2010). As for the EPS, it is known to behave more like a 
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viscous fluid than a rigid structure as represented in iDynoMiCS. Furthermore, iDynoMiCS 

does not simulate bacterial motility which is known to occur in some species and has been 

shown to influence biomass spreading and emergent biofilm structure (Picioreanu et al., 2007, 

Ghanbari et al., 2016).  

In iDynoMiCS, particle shape is limited to spheres. In reality, bacterial cells come in a range 

of shapes and sizes, but can be broadly categorized into cocci (spherical) and bacilli  

(rod-shaped). This may not be an issue for single-species biofilms with a known cell 

morphology, but environmental samples will inevitably contain a variety of cell morphologies. 

In the present study, both cocci- and rod-shaped bacteria were observed in the biofilm  

(Figure 4.4 & 4.8). Using an IbM, Smith et al. (2017) found that cell shape was an important 

factor determining cell positioning and survival within a biofilm. When both cocci- and  

rod-shaped cells were allowed to compete for space, rod-shaped cells tended to colonise and 

expand along the base of the biofilm whereas coccal cells dominated the upper surface and 

extended as mounds into the bulk liquid (Smith et al., 2017). Cell shape may therefore affect 

emergent biofilm structure in biofilms. The results are interesting and may explain the 

localisation of bacterial types observed in biofilms in the present study (Figure 4.8). In some 

confocal micrographs of mature biofilms, it was observed that cocci-shaped cells aggregated 

into defined microcolonies which were surrounded by less defined communities of rod-shaped 

cells occupying channels between these structures. Clearly, cell shape should be considered in 

future modelling studies. 

As more complexity is introduced to IbMs, simulations become more computationally intense. 

It is for this reason why many biofilm models disregard complexity in favour of reasonable 

computation times. Improvements to the limitations of iDynoMiCS outlined above should be 

paralleled with more efficient numerical methods. 
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CHAPTER 6: CONCLUSION 
Biokinetic parameters were estimated with good precision using the respirometric methods and 

the proposed conceptual batch model. The regression of a simple batch model to three sets of 

response variables proved to be a sufficiently robust and quick method of estimating lumped 

kinetic parameters of an unknown environmental sample. Precision could be improved with 

more frequent and automated OUR measurements. Heterotrophic growth was found to 

dominate autotrophs under the prevailing reactor conditions using respirometry and a 

nitrification inhibitor. This information was useful for informing the design of the biofilm 

model.  

Observed structure of mixed-species biofilms grown in flow cells was successfully used to 

validate the proposed biofilm model which satisfies the first aim set out in this project. In 

spite of the limitations of iDynoMiCS, structure prediction for initial biofilm development was 

precise for most structural parameters with the calibrated model, except for B which was 

overestimated. Variability in L�f and B was observed to increase over time which is a concern 

for longer term studies. The s/v ratio was shown to be unsuitable for simulated and experimental 

comparisons. Future studies should also consider fitting structural parameters to improve 

model calibration. 

DCF was found to have a dose-dependent effect on microbial biofilms. Using flow cell 

experiments and confocal microscopy, DCF exposure was found to inhibit biofilm growth at 

10 mg.L-1 based on a decrease in L�f, B, and cf. This finding was in agreement with literature 

and confirmed the proposed hypothesis that DCF will exhibit a sub-inhibitory effect at this 

concentration. Conversely, at 0.1 mg.L-1, biofilm growth increased following 24 h of exposure 

based on an increase in L�f and B, with inconsistent results in literature. In order to confidently 

model this interaction, further research is required to elucidate the fundamental interactions of 

DCF exposure in the µg.L-1 range on microbial communities. Overall, it was shown that 

experimental biofilm structural parameters are sufficiently sensitive to environmental changes.  

The second aim of this study, to reproduce observed effects of DCF-treatment on biofilm 

structure, was only partially met. The biofilm model was unable to directly match experimental 

results for the structural parameters at both 0.1 and 10 mg.L-1 DCF. The pattern-oriented 

approach adopted in this study proved to be useful for comparing proportional effects on 

biofilm structural parameters when reproducibility was an issue. Based on fold changes 

from a control, the IbM was capable of describing the observed antimicrobial effect of DCF 
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treatment at 10 mg.L-1 using the proposed inhibition kinetic. The proposed Haldane kinetic 

reasonably reproduced observed fold changes in structural parameters at 0.1 mg.L-1. Although 

experimental comparisons of biofilm structural parameters are common in literature, this 

was one of the only studies that have attempted to reproduce such observations using an 

IbM. The ability of the IbM to reproduce antimicrobial effects on emergent biofilm structure 

shows potential for investigating antibiotic treatment of biofilms and improving treatment 

strategies of biofilm-associated infections. 

The third aim set out in this study, to investigate the feasibility of the use of observed biofilm 

structure for the validation of an IbM, was met on the basis of investigations into experimental 

reproducibility and data processing, model parameter uncertainties, and limitations of the IbM. 

CLSM and digital image processing proved to be effective for analysing experimental 

biofilm structure for both qualitative and quantitative comparisons. However, 

reproducibility of biofilm growth within flow cells and a lack of standardised image 

processing protocols was found to be an issue. The IbM would be better suited for modelling 

systems with a known species composition to avoid the uncertainty introduced by an unknown 

sample composition. Future studies should exercise as much control over the experimental 

variables as possible. In order to take full advantage of the predictive capability of the biofilm 

model, an integrated development of models and experimental methods is required. In the effort 

to further integrate experimental and model data, a genomic aspect should also be considered 

for model validation, such as metagenomics or qPCR to quantify the relative species abundance 

of biofilms.  

The brief investigation into the sensitivity of emergent biofilm structure to model parameter 

uncertainties indicated that experimental techniques need to be improved, or new ones 

developed, to allow for more accurate model parameter determination. The insensitivity of 

predicted Rα and cf to changes in certain model parameters suggests they are not suitable for 

describing differences between simulated biofilms, which limits their use for experimental 

comparisons. Though, further investigations into the effect of other model parameters are 

required. A better correlation with reality is required for these parameters to improve the 

confidence of predictions made by the model. Future studies should be accompanied by a 

parameter sensitivity analysis to inform the interpretation of results and improve model 

development. 

This study demonstrated that structural parameters commonly used for experimental 

comparisons in literature can be derived from multidimensional biofilm simulations and 
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compared in a meaningful manner. Individual-based models coupled with comparative 

experimental methods show potential as a tool for investigating biofilm interactions and 

improving model development.  

IbMs show great promise in simulating biofilms from the ground-up, however, iDynoMiCS 

was limited with respect to two key aspects: the hydrodynamics of the bulk liquid, and polymer-

mediated attraction of the extracellular matrix. The standardised adoption of these features, 

along with more efficient numerical methods, would bring IbMs closer to simulating biofilm 

development from first principles. 
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CHAPTER 8: APPENDICES 
Appendix A: Supplementary information for Chapter 3 

 
Figure A1. Example calculation of OUR. Shown is the DO profile from a measurement in  
run 3. The slope of the DO profile gives the OUR. Only the slope above 1.5 mgO2.L-1 is 
considered to avoid anaerobic conditions. Here, OUR = 0.6723 mgO2.L-1min-1. 

 
Table A1. Results of determination of decay coefficient of heterotrophic biomass in batch 
reactors. Shown are the results for three independent repeats performed in duplicate. 

Assay ID bH (h-1) R2 
Run 1A 0.0173 0.75 
Run 1B 0.0207 0.67 
Run 2A 0.0230 0.81 
Run 2B 0.0190 0.54 
Run 3A 0.0211 0.97 
Run 3B 0.0222 0.92 
Mean 0.0206  
SD 0.0019  
CV (%) 9.3  

            SD: Standard deviation. CV: Coefficient of variation (SD/Mean).  

 

Table A2. Initial conditions for batch reactors used to estimate biokinetic parameters. 

Assay ID OURt0  
(mgO2.L-1h-1) 

SS,t0  
(mgCOD.L-1) 

XH,t0  
(mgCOD.L-1) 

SS/XH 

Run 1 1.54 223 16.8 13.3 
Run 2 3.76 213 28.0 7.60 
Run 3 2.82 261 30.0 8.70 
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Table A3. Fitting statistics resulting from parameter optimisation procedure. 

Assay ID Variable SSE R2 RMSE NRMSE (%) 
Run 1 
(n=9) 

XH 938 0.90 13.70 18.6 
SS 3726 0.88 27.30 20.5 
OUR 84 9 0.70 9.71 42.9 

Run 2 
(n=6) 

XH 226 0.97 7.53 8.96 
SS 649 0.97 12.75 10.5 
OUR 21.6 0.98 1.90 10.8 

Run 3 
(n=12) 

XH 421 0.96 8.38 10.6 
SS 919 0.98 12.38 6.71 
OUR 35 0.99 1.71 8.90 

 SSE: Sum of squared errors. RMSE: Root mean square error. NRMSE: Normalised-RMSE 

 

Figure A2. Residual error plots for nonlinear regression of batch model to response variables 
for three experimental repeats. 

 
Table A4. Biokinetic parameter values estimated for three experimental repeats.  For each run 
the 95% confidence intervals are indicated. 

Assay ID 
µmax,H  

(h-1) 
KS 

(mgCOD.L-1) 
YH 

(mgCOD.mgCOD
-1) 

Norm of 
Residuals 

Run 1 0.3101 ± 0.1362 1.0000 ± 19.410 0.4995 ± 0.1211 0.2303 
Run 2 0.3408 ± 0.0908 0.9558 ± 14.184 0.4719 ± 0.0493 0.0293 
Run 3 0.3024 ± 0.0491 1.7475 ± 4.5125 0.5071 ± 0.0388 0.0406 
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Appendix B: Paraformaldehyde fixative (4%) protocol 
In a glass beaker, 450 mL of 1X phosphate-buffered saline (PBS) was heated to 60°C using 

a hot plate with stirring. While stirring, 20 g of paraformaldehyde powder (Sigma-Aldrich) 

was added to the beaker and the temperature maintained at 60°C. The pH was raised slowly 

by adding 1N NaOH dropwise until the solution clears. The beaker was then removed from 

the heat, cooled, and 50 mL of 1X PBS was added resulting a final volume of 500 mL. 

The pH was adjusted to 7.2 using HCl. The solution was then filtered (3HW grade filter 

paper) and stored in aliquots at -20°C until needed. 
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Appendix C: Supplementary information for Chapter 4 

 
Figure C1. Biofilm parameter scatter plot measured for biofilms cultivated under control 
conditions. A. Mean thickness. B. Total biomass per substratum area. C. Roughness 
coefficient. D. Substratum coverage. E. Surface area/biovolume ratio. Individual points 
indicate each measurement, including outliers, from duplicate flow chambers over time 
points. The mean and standard deviation are indicated. 
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Figure C2. Experimental and simulated biofilm structural parameters for control and 
treatment at 0.1 mg.L-1 DCF. For the treatment simulation an increase in substrate (SS), 
attributed to DCF, was implemented. A. Mean thickness. B. Total biomass. C. Roughness 
coefficient. D. Substratum coverage. DCF was introduced at 72 h (indicated by dotted 
line).  

The bulk influent concentration for the treatment simulation was set to 153.4 mgCOD.L-1 (120 

+ 33.4 mgCOD.L-1). DCF contribution calculated based on DCF/COD conversion factor:  

0.1 mgDCF.L-1 = 33.4 mgCOD.L-1. 
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Appendix D: Sensitivity analysis of simulated structural parameters 

  

  
Figure D1. Sensitivity of structural parameters to stochastic effects. Four simulations were run 
using different seed values for the random number generator. 

 

  

  
Figure D2. Sensitivity of structural parameters to changes in simulation inoculation numbers. 
Simulations were initiated with the indicated number of particles. 
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Figure D3. Sensitivity of structural parameters to changes in the value of detachment 
coefficient (kDet). 
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Appendix E: Protocol file used to initiate iDynoMiCS simulations 
<?xml version="1.0" encoding="UTF-8"?> 
<!— 
####################################################################### 
iDynoMiCS: individual-based Dynamics of Microbial Communities Simulator 
####################################################################### 
 
Website: http://www.idynomics.org 
 
The entire simulation description is contained within the <idynomics> mark-up tags. 
--> 
 
<idynomics> 
 
<!--################################################################ 
  SIMULATOR SECTION 
#################################################################--> 

 
<simulator> 

<param name="quietMode">false</param> 
  <param name="restartPreviousRun">false</param> 
  <param name="randomSeed">42</param> 
  <param name="outputPeriod" unit="hour">0.5</param> 
  <param name="checkForReleaseUpdate">false</param> 
 
  <timeStep> 
   <param name="adaptive">true</param> 
   <param name="timeStepIni" unit="hour">0.5</param> 
   <param name="timeStepMin" unit="hour">0.025</param> 
   <param name="timeStepMax" unit="hour">0.25</param> 
   <param name="endOfSimulation" unit="day">4</param> 
  </timeStep> 
 
  <param name="attachment">onetime</param> 
  <param name="agentTimeStep" unit="hour">0.025</param> 

<param name="invComp">false</param>  
 </simulator> 
 
<!--##################################################################### 
  INPUT SECTION 
######################################################################--> 
  

<input> 
  <param name="useAgentFile">false</param> 
  <param name="inputAgentFileURL">agent_State(last).xml</param> 
  <param name="useBulkFile">false</param> 
  <param name="inputBulkFileURL">env_Sum(last).xml</param> 
 </input> 
 
<!--##################################################################### 
  SOLUTES AND BIOMASS TYPES SECTION 
######################################################################--> 
  

<solute domain="Biofilm" name="O2"> 
  <param name="diffusivity" unit="m2.day-1">2e-4</param> 
 </solute> 
 <solute domain="Biofilm" name="NH4"> 
  <param name="diffusivity" unit="m2.day-1">1.7e-4</param> 
 </solute> 
 <solute domain="Biofilm" name="NO3"> 
  <param name="diffusivity" unit="m2.day-1">1.7e-4</param> 
 </solute> 
 <solute domain="Biofilm" name="COD"> 
  <param name="diffusivity" unit="m2.day-1">1e-4</param> 
 </solute> 
  <solute domain="Biofilm" name="DCF"> 
  <param name="diffusivity" unit="m2.day-1">0.25e-4</param> 
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 </solute> 
 <solute domain="Biofilm" name="pressure"> 
  <param name="diffusivity" unit="m2.day-1">1</param> 
 </solute> 
 
 <particle name="biomass"> 
  <param name="density" unit="g.L-1">150</param> 
 </particle> 
 <particle name="inert"> 
  <param name="density" unit="g.L-1">150</param> 
 </particle> 
 <particle name="capsule"> 
  <param name="density" unit="g.L-1">30</param> 
 </particle> 
 
<!--##################################################################### 
  WORLD SECTION 
######################################################################--> 
  

<world> 
  <bulk name="Bulk"> 
   <param name="isConstant">false</param> 
   <param name="D" unit="h-1">18</param> 
 
   <solute name="O2"> 
    <param name="Sbulk" unit="g.L-1">5e-3</param> 
    <param name="Sin" unit="g.L-1">5e-3</param> 
    <param name="isConstant">false</param> 
   </solute> 
   <solute name="NH4"> 
    <param name="Sbulk" unit="g.L-1">16e-3</param> 
    <param name="Sin" unit="g.L-1">16e-3</param> 
   </solute>  
   <solute name="NO3"> 
    <param name="Sbulk" unit="g.L-1">0e-3</param> 
    <param name="Sin" unit="g.L-1">0e-3</param> 
   </solute> 
   <solute name="COD"> 
    <param name="Sbulk" unit="g.L-1">120e-3</param> 
    <param name="Sin" unit="g.L-1">120e-3</param> 
    <param name="Spulse" unit="g.L-1">0</param> 
    <param name="pulseRate" unit="h-1">0</param> 
   </solute> 
   <solute name="DCF"> 
    <param name="Sbulk" unit="g.L-1">0</param> 
    <param name="Sin" unit="g.L-1">0</param> 
   </solute> 
   <solute name="pressure"> 
    <param name="Sbulk" unit="g.L-1">0</param> 
    <param name="Sin" unit="g.L-1">0</param> 
   </solute> 
  </bulk> 
 
  <computationDomain name="Biofilm"> 
   <grid nDim="3" nI="33" nJ="33" nK="33"/> 
   <param name="resolution" unit="um">8</param> 
   <param name="boundaryLayer" unit="um">48</param> 
   <param name="biofilmDiffusivity">0.8</param> 
   <param name="specificArea" unit="m2.m-3">1474</param> 
 
   <boundaryCondition class="BoundaryZeroFlux" name="y0z"> 
    <shape class="Planar"> 
     <param name="pointIn" i="-1" j="0" k="0"/> 
     <param name="vectorOut" i="-1" j="0" k="0"/> 
    </shape> 
   </boundaryCondition> 
   <boundaryCondition class="BoundaryBulk" name="yNz"> 
    <param name="activeForSolute">yes</param> 
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    <param name="bulk">Bulk</param> 
    <shape class="Planar"> 
     <param name="pointIn" i="33" j="0" k="0"/> 
     <param name="vectorOut" i="1" j="0" k="0"/> 
    </shape> 
   </boundaryCondition> 
   <boundaryCondition class="BoundaryCyclic" name="x0z"> 
    <shape class="Planar"> 
     <param name="pointIn" i="0" j="-1" k="0"/> 
     <param name="vectorOut" i="0" j="-1" k="0"/> 
    </shape> 
    <shape class="Planar"> 
     <param name="pointIn" i="0" j="33" k="0"/> 
     <param name="vectorOut" i="0" j="1" k="0"/> 
    </shape> 
   </boundaryCondition> 
   <boundaryCondition class="BoundaryCyclic" name="x0y"> 
    <shape class="Planar"> 
     <param name="pointIn" i="0" j="0" k="-1"/> 
     <param name="vectorOut" i="0" j="0" k="-1"/> 
    </shape> 
    <shape class="Planar"> 
     <param name="pointIn" i="0" j="0" k="33"/> 
     <param name="vectorOut" i="0" j="0" k="1"/> 
    </shape> 
   </boundaryCondition> 
  </computationDomain> 
 </world> 
 
<!--##################################################################### 
  REACTION SECTION 
######################################################################--> 
  

<reaction catalyzedBy="biomass" class="ReactionFactor" 
name="GrowthAutotrophs"> 

  <param name="muMax" unit="hour-1">0.0417</param> 
  <kineticFactor class="MonodKinetic" solute="NH4"> 
   <param name="Ks" unit="g.L-1">1e-3</param> 
  </kineticFactor> 
  <kineticFactor class="MonodKinetic" solute="O2"> 
   <param name="Ks" unit="g.L-1">0.5e-3</param> 
  </kineticFactor> 
  <yield> 
   <param name="NH4" unit="g.g-1">-4.1667</param> 
   <param name="NO3" unit="g.g-1">4.1667</param> 
   <param name="O2" unit="g.g-1">-18.024</param> 
   <param name="biomass" unit="g.g-1">0.82</param> 
   <param name="capsule" unit="g.g-1">0.18</param> 
  </yield> 
 </reaction> 
 

<reaction catalyzedBy="biomass" class="ReactionFactor" 
name="MaintenanceAutotrophs"> 

  <param name="muMax" unit="hour-1">0.005</param> 
  <kineticFactor class="MonodKinetic" solute="O2"> 
   <param name="Ks" unit="g.L-1">0.5e-3</param> 
  </kineticFactor> 
  <yield> 
   <param name="biomass" unit="g.g-1">-1</param> 
   <param name="O2" unit="g.g-1">-1</param> 
  </yield> 
 </reaction> 
 

<reaction catalyzedBy="biomass" class="ReactionFactor" 
name="InactivationAutotrophs"> 

  <param name="muMax" unit="hour-1">0.00125</param> 
  <kineticFactor class="FirstOrderKinetic"/> 
  <yield> 
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   <param name="biomass" unit="g.g-1">-1</param> 
   <param name="inert" unit="g.g-1">1</param> 
  </yield> 
 </reaction> 
 
<reaction catalyzedBy="biomass" class="ReactionFactor" name="GrowthHeterotrophs"> 
  <param name="muMax" unit="hour-1">0.3178</param> 
  <kineticFactor class="MonodKinetic" solute="COD"> 
   <param name="Ks" unit="g.L-1">4e-3</param> 
  </kineticFactor> 
  <kineticFactor class="MonodKinetic" solute="O2"> 
   <param name="Ks" unit="g.L-1">0.2e-3</param> 
  </kineticFactor> 
  <yield> 
   <param name="COD" unit="g.g-1">-2.029</param> 
   <param name="O2" unit="g.g-1">-1.029</param> 
   <param name="biomass" unit="g.g-1">0.49</param> 
   <param name="capsule" unit="g.g-1">0.2</param> 
  </yield> 
 </reaction> 
 
 <reaction catalyzedBy="biomass" class="ReactionFactor" 
name="GrowthHeterotrophsDCF"> 
  <param name="muMax" unit="hour-1">0.327</param> 
  <kineticFactor class="MonodKinetic" solute="O2"> 
   <param name="Ks" unit="g.L-1">0.2e-3</param> 
  </kineticFactor> 
  <kineticFactor class="HaldaneKinetic" solute="DCF"> 
   <param name="Ks" unit="g.L-1">0.001e-3</param> 
    <param name="Ki" unit="g.L-1">5e-3</param> 
  </kineticFactor> 
  <yield> 
   <param name="O2" unit="g.g-1">-1.029</param> 
   <param name="DCF" unit="g.g-1">-1</param> 
   <param name="biomass" unit="g.g-1">0.49</param> 
   <param name="capsule" unit="g.g-1">0.2</param> 
  </yield> 
 </reaction> 
 

<reaction catalyzedBy="biomass" class="ReactionFactor" 
name="MaintenanceHeterotrophs"> 

  <param name="muMax" unit="hour-1">0.01333</param> 
  <kineticFactor class="MonodKinetic" solute="O2"> 
   <param name="Ks" unit="g.L-1">0.2e-3</param> 
  </kineticFactor> 
  <yield> 
   <param name="biomass" unit="g.g-1">-1</param> 
   <param name="O2" unit="g.g-1">-1</param> 
  </yield> 
 </reaction> 
 

<reaction catalyzedBy="biomass" class="ReactionFactor" 
name="InactivationHeterotrophs"> 

  <param name="muMax" unit="hour-1">0.02058</param> 
  <kineticFactor class="FirstOrderKinetic"/> 
  <yield> 
   <param name="biomass" unit="g.g-1">-1</param> 
   <param name="inert" unit="g.g-1">1</param> 
  </yield> 
 </reaction> 
 

<reaction catalyzedBy="capsule" class="ReactionFactor" name="HydrolysisEPS"> 
  <param name="muMax" unit="hour-1">0.007083</param> 
  <kineticFactor class="FirstOrderKinetic"/> 
  <yield> 
   <param name="capsule" unit="g.g-1">-1</param> 
   <param name="COD" unit="g.g-1">1</param> 
  </yield> 
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 </reaction> 
 
<!--##################################################################### 
  SOLVER SECTION 
######################################################################--> 
  

<solver class="Solver_multigrid" name="solutes" domain="Biofilm"> 
  <param name="active">true</param> 
  <param name="preStep">150</param> 
  <param name="postStep">150</param> 
  <param name="coarseStep">1500</param> 
  <param name="nCycles">5</param> 
 
  <reaction name="GrowthHeterotrophs"/> 
  <reaction name="GrowthHeterotrophsDCF"/> 
  <reaction name="MaintenanceHeterotrophs"/> 
  <reaction name="GrowthAutotrophs"/> 
  <reaction name="MaintenanceAutotrophs"/> 
  <reaction name="HydrolysisEPS"/> 
 </solver> 
 <solver class="Solver_pressure" name="pressure" domain="Biofilm"> 
  <param name="active">true</param> 
 </solver> 
 
<!--##################################################################### 
  AGENT GRID SECTION 
######################################################################--> 
  

<agentGrid> 
  <param name="computationDomain">Biofilm</param> 
  <param name="resolution" unit="um">4</param> 
 
  <detachment class="DS_Biomass"> 
   <param name="kDet" unit="fg.um-4.hour-1">1e-3</param> 
   <param name="maxTh" unit="um">400</param> 
  </detachment> 
  <param name="sloughDetachedBiomass">true</param> 
  <param name="shovingMaxNodes">2e6</param> 
  <param name="shovingFraction">0.025</param> 
  <param name="shovingMaxIter">250</param> 
  <param name="shovingMutual">true</param> 
 </agentGrid> 
 
<!--##################################################################### 
  SPECIES SECTION 
######################################################################--> 
  

<species class="ParticulateEPS" name="AutotrophEPS"> 
  <particle name="capsule"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <param name="color">yellow</param> 
  <param name="computationDomain">Biofilm</param> 
  <param name="divRadius" unit="um">2</param> 
  <param name="divRadiusCV">0.0</param> 
  <param name="deathRadius" unit="um">0.1</param> 
  <param name="deathRadiusCV">0.0</param> 
  <param name="babyMassFrac">0.5</param> 
  <param name="babyMassFracCV">0.0</param> 
  <param name="shoveFactor" unit="um">1.0</param> 
  <param name="shoveLimit" unit="um">0.0</param> 
 
  <reaction name="HydrolysisEPS" status="active"/> 
 </species> 
 
 <species class="ParticulateEPS" name="HeterotrophEPS"> 
  <particle name="capsule"> 
   <param name="mass" unit="fg">0</param> 
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  </particle> 
  <param name="color">green</param> 
  <param name="computationDomain">Biofilm</param> 
  <param name="divRadius" unit="um">2</param> 
  <param name="divRadiusCV">0.0</param> 
  <param name="deathRadius" unit="um">0.1</param> 
  <param name="deathRadiusCV">0.0</param> 
  <param name="babyMassFrac">0.5</param> 
  <param name="babyMassFracCV">0.0</param> 
  <param name="shoveFactor" unit="um">1.0</param> 
  <param name="shoveLimit" unit="um">0.0</param> 
 
  <reaction name="HydrolysisEPS" status="active"/> 
 </species> 
 
 <species class="Bacterium" name="Autotrophs"> 
  <particle name="biomass"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <particle name="inert"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <particle name="capsule" class="AutotrophEPS"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <param name="color">red</param> 
  <param name="computationDomain">Biofilm</param> 
  <param name="divRadius" unit="um">2</param> 
  <param name="divRadiusCV">0.1</param> 
  <param name="deathRadius" unit="um">0.2</param> 
  <param name="deathRadiusCV">0.1</param> 
  <param name="babyMassFrac">0.5</param> 
  <param name="babyMassFracCV">0.1</param> 
  <param name="shoveFactor" unit="um">1.15</param> 
  <param name="shoveLimit" unit="um">0.0</param> 
  <param name="epsMax">0.1</param> 
     
  <reaction name="GrowthAutotrophs" status="active"/> 
  <reaction name="MaintenanceAutotrophs" status="active"/> 
  <reaction name="InactivationAutotrophs" status="active"/> 
 
  <initArea number="4"> 
   <param name="birthday" unit="hour">0</param> 
   <coordinates x="0" y="0" z="0"/> 
   <coordinates x="1" y="264" z="264"/> 
  </initArea> 
 </species> 
 
 <species class="BactEPS" name="Heterotrophs"> 
  <particle name="biomass"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <particle name="inert"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <particle name="capsule" class="HeterotrophEPS"> 
   <param name="mass" unit="fg">0</param> 
  </particle> 
  <param name="color">blue</param> 
  <param name="computationDomain">Biofilm</param> 
  <param name="divRadius" unit="um">2</param> 
  <param name="divRadiusCV">0.1</param> 
  <param name="deathRadius" unit="um">0.2</param> 
  <param name="deathRadiusCV">0.1</param> 
  <param name="babyMassFrac">0.5</param> 
  <param name="babyMassFracCV">0.1</param> 
  <param name="shoveFactor" unit="um">1.15</param> 
  <param name="shoveLimit" unit="um">0.0</param> 
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  <param name="kHyd" unit="hr-1">0.007083</param> 
 
  <reaction name="GrowthHeterotrophs" status="active"/> 

<reaction name="GrowthHeterotrophsDCF" status="active"/> 
  <reaction name="MaintenanceHeterotrophs" status="active"/> 
  <reaction name="InactivationHeterotrophs" status="active"/> 
 
  <initArea number="8"> 
   <param name="birthday" unit="hour">0</param> 
   <coordinates x="0" y="0" z="0"/> 
   <coordinates x="1" y="264" z="264"/> 
  </initArea> 

</species> 
</idynomics> 
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