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Abstract: A compact high-power broadband absorptive filter is designed by cascading a slotted waveguide
harmonic pad with a wide stop-band reflective filter. Absorption is achieved by coupling a surface current
standing wave to absorptive external auxiliary waveguides through a cascade of transversal broad-wall
slots in rectangular waveguide.

Keywords: absorptive filter, waveguide filter, harmonic pad, waveguide slot array, high-power filter
1. Introduction

Absorptive microwave filters achieve out-of-band attenuation by partial absorption rather than reflection of
the signal, allowing for low input reflection coefficients at frequencies outside the pass-band. These filters
find application where reflection of spurious out-of-band signals, typically generated by non-linear circuit
elements, are unwanted, yet such signals must be prevented from reaching the output of the device. Typical
examples include the output of mixer circuits where the reflected spurious signals can be re-introduced into
the mixing process, or high-power transmitters where the reflected spurious signals can damage or de-
stabilize the output amplifiers [1] .A fundamental requirement of these filters is therefore the existence of a
second signal path through which only out-of-band signals are routed to internal or external absorbers
(instead of being reflected back to the source), to form a frequency selective absorber.

For low-power applications, a few classes of such absorptive filters have been proposed in literature. A
common approach is to load one port of a circulator or hybrid network with a frequency selective absorber
which reflects energy outside of the frequency band of absorption [2, 3]. Signals within the desired filter
pass-band are reflected from this network and routed to an output port via the circulator or hybrid network.
Another popular class of filter is based on structures which create dual phase path cancellation [4], with
approaches using digital spectrum shaping filters [5] also used. For applications requiring both a wide stop-
band and high power handling capability however, the most common solution by far is the leaky wall filter
[6, 7]. These filters attenuate an incident travelling wave in waveguide by coupling energy to an exterior
structure through a series of appropriate apertures, usually narrow slots. The exterior structure may either
be longitudinal auxiliary waveguides placed in parallel to the main guide [6] or individual waveguides for
each aperture [7]. In both cases, the pass-band cut-off is determined by the cut-off frequency of the
auxiliary waveguides, above which the energy from the main guide is coupled to the auxiliary guides and
dissipated inside absorptive loads terminating the guides. This approach is highly effective, and current



high-end commercial X-band absorptive filters achieve out-of-band attenuation levels of better than 40 dB
and out-of-band reflection coefficients of better than -7.5 dB over a frequency band covering three
harmonics, while able to handle continuous-wave power levels of up to 500W and peak power levels of up
to 5kW peak [8]. However, these filters suffer from two main drawbacks, i.e. that they are normally very
bulky, and that the design process allows for very little control over the shape of the pass-band reflection
response. Alternative approaches using cascades of high-power lossy resonators have been proposed [9,
10,11], but no general synthesis theory exists whereby these resonators can be utilized to design absorptive
filters.

If absorption is only required in specific frequency bands in the stop-band of the filter, as is the case with
the widely used harmonic filters at the outputs of transmitters, a particular approach using so-called
harmonic pads [12] is of interest. A harmonic pad is effectively any device that features frequency selective
absorption in a specific band and lossless transmission elsewhere. If such a device is inserted in front of a
standard lossless reflective filter as shown in Fig. 1, signals in the pass-band of the reflective filter are
passed with very little attenuation, while signals in the stop-band are reflected and selectively absorbed by
the harmonic pad. The combined system therefore only exhibits a low input reflection coefficient in the
filter pass-band and all bands in which absorption takes place, but as there is no requirement in this class of
applications for low reflection outside of these bands, such a solution fulfils the system requirements. In
addition, it has the significant advantage that the reflecting filter provides the stop-band attenuation for the
system, while the amount of power absorbed need only be sufficient to protect the output of the source
and/or prevent non-linear source behaviour due to the reflected power. Such an approach, but without
implementation, has been proposed by various authors [7,13,14]. Implementations using 0 dB couplers
over the signal bandwidth have been published [12], but these limit the filter transmission bandwidth to
that achievable by the coupler. The use of leaky wall filters as harmonic pads has been suggested [5], but
not developed in literature to date.
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Figure 1: Block diagram of cascaded harmonic pad and reflective filter. Solid lines show S,; and dotted
lines Sy;



This paper develops a high-power broadband absorptive filter by cascading a novel distributed harmonic
pad, consisting of a compact slotted waveguide structure, with a lossless reflective filter with a wide stop-
band, both in WR-90 waveguide. A non-uniform waffle-iron filter is used as reflective filter [1], although
any reflective filter can be used in principle. The slotted waveguide structure (similar to a slotted
waveguide antenna, but with varying slot lengths) is designed to absorb the standing wave created by the
reflective filter at a number of frequencies in the stop-band of the reflective filter, without affecting the
pass-band response of the system. Using this combination, an absorptive filter is realised without the use of
circulators, hybrid circuits or dual signal paths. In comparison to standard leaky-wave filters, which utilize
the systematic absorption of a travelling wave to create both out-of-band attenuation and absorption of any
reflected signals, the solution proposed here utilizes reflection from a standard filter to implement out-of-
band attenuation, and resonant absorbers, designed to cover the frequency bands of interest, to implement
partial absorption of the reflected signals. In this way, absorption levels comparable to that reported in
state-of-the-art leaky-wave filters can be achieved with a structure which is significantly more compact. As
example, a very compact harmonic pad is designed and tested at X-band. The pad measures only 33mm in
length, yet when combined with the reflective filter, yields a reflection coefficient of below -12.5 dB in the
stop band whilst attenuating the signal by better than 65dB. In all cases, circuit simulation is done using
AWR Microwave Office, and full-wave simulation using CST Microwave Studio.

2. Transversal broadwall slots in rectangular waveguide

For use as a harmonic pad, a single waveguide slot should extract as much of the reflected energy from the
main guide as possible over a specific frequency band, without affecting the pass-band transmission at
other frequencies. The ideal slot should also be orientated in such a way as to reduce the overall length of
the complete structure by as much as possible. To avoid excitation of higher order modes, slot
arrangements that preserve both E-plane and H-plane symmetry are preferred.

A topology that satisfies all the above conditions, is the transversal broadwall slot [15], which has been
shown to achieve coupling values of up to -6 dB, with a 3 dB bandwidth of 17% [16]. If a symmetric pair
of centred, non-inclined slots is placed as shown in Fig. 2, both E-plane and H-plane symmetries are
preserved. The width of the auxiliary guide can be reduced to increase the TEyq cut-off frequency of the
auxiliary guide to above the main guide frequency band. This creates a natural high-pass filtering effect
which inhibits energy flow to the auxiliary guide below this frequency. To absorb the power in the
auxiliary guide, the broadwall of this guide is lined with an absorptive sheet of thickness t, = 1 mm, and the
guide is terminated at both ends with matched absorbers.
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Figure 2: Transversal broadwall slot pair with auxiliary waveguides

The performance of such a slot pair is illustrated in Fig. 3, which shows the full-wave simulation results of
a single, isolated pair of slots of length | = 8 mm and width w = 1 mm, coupling a standard X-band
waveguide of wall thickness t = 1 mm to a reduced auxiliary guide of dimension 13x3mm through each
broadwall, with the auxiliary guides terminated at both ends with a perfect waveguide port. Defining
absorption as in equation (1),

A= J1=1511]% — S5 12 @)

it is clear that this configuration achieves a peak absorption of -3.69 dB over a 3 dB bandwidth of 16.5%
around 19.22 GHz, and a reflection coefficient of below -29 dB across the band 8.5 — 10.5 GHz. Parameter
studies show that in general, the slot length | determines the frequency of maximum coupling, while the
bandwidth is adjusted by varying slot width w and wall thickness t. Variation in peak absorption cannot be
achieved by rotating or moving the slot from the centre axis, since this would disrupt the E-plane symmetry
required to avoid the excitation of propagating even modes. However, for a fixed slot length, |Al,ax can be
adjusted by varying the auxiliary guide height b".
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Figure 3: Transmission, reflection and absorption of transversal broadwall slot pair,
(I=8mm,w=1mm,t=1mm,a=22.86 mm,b=10.16 mm,a =13 mm, b" =3 mm.)
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3. Circuit model

Single transversal coupling slots have been studied extensively in literature, with the original classical
models proposed by Oliner [17] expanded more recently using models based on full-wave electromagnetic
simulations [15]. In this paper, the simple model shown in Fig. 4 is proposed for a single symmetric pair of
slots such as depicted in Fig. 2. Here, the main guide is represented as a transmission line with
characteristic impedance Z,, the auxiliary guides as transmission lines of length 6; and characteristic
impedance Z;, terminated on both sides by a load Z;  and the reactive coupling as a transformer and
resonant circuit. To model coupling through both the floor and the roof of the main guide, one can either
use two coupled circuits in series, or one coupled circuit with all the impedances doubled, as shown in Fig.
4. The latter is possible as the impedance presented to the main guide simply doubles when using slots in
both broad walls.

Py Zo, 9 Zo, 9 P,

Figure 4: Circuit model of a single transversal broadwall slot pair.

This model is based on that of [15], but is reduced in complexity by the use of a single resonator, rather
than two coupled resonators connected by a finite length of transmission line. In this, it is assumed that the
thickness of the waveguide wall, which is modelled in [15] with a finite length transmission line, is
negligible at the frequencies of interest. To determine the equivalent circuit element values, the scattering
parameters of the physical structure are calculated through full-wave electromagnetic simulation, with P,
and P, terminated by ideal waveguide ports. The resonator parameters are related simply by the resonant
frequency

1

at which the phase values of S;; and S;; are equal. . At this frequency, L and C cancel, and the transformer
and terminated auxiliary guide can be represented by a single resistor of value R, which is related to the
transformer turns ration T by
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With port P, of both the physical structure and the equivalent circuit terminated in a matched load, and port
P; de-embedded to the centre of the symmetric coupling slots for both cases (i.e. by distance ¢ for the
equivalent circuit) the input impedance at port P; is purely resistive at resonance. At the resonant
frequency, the resistance R is then calculated from the simulated input reflection coefficient [['| = |Sy| as
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Though it is possible to calculate L or C from the slope of the input reflection coefficient against frequency
at resonance, or the wideband response of either Si; or S,;, both of these methods rely heavily on the
accuracy of a few data points in a full-wave simulation, and are complicated by the presence of the
embedding transmission line. A better broadband approximation is made by deriving the magnitude of the
input reflection coefficient of the equivalent circuit (as referred to the de-embedded input port in the main
guide) from circuit theory as
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The value of L (and C through equation (3)) is determined by obtaining simulated values of [I'] over a 25%
band around the resonant frequency, and minimising the RMS error between the full-wave simulated and
circuit simulated values of |I'|. Finally, a value for ¢ is found by equating the transmission phase response
of the full-wave simulated transmission line £S»: to that of the circuit model. To illustrate this method of
modelling, the full-wave S-parameters of the example structure in Fig. 2 (1=8,w=1,t=1,a=22.86,b=10.16,
a’=13, b"=3) are shown in Fig. 5, together with the S-parameters of the derived model (T = 2.20, L = 400
fH, C = 173 pF, ¢ = 0.28°). It is evident that good agreement between full-wave and circuit models is
achieved. Using two of these single-slot models separated by an ideal model of a section of TEj
waveguide, a combination of two of the same slots as in the previous example, cascaded with a spacing of
5 mm, is also modelled, with the results shown in Fig. 6. In both cases the frequency range is selected to
represent the second harmonic of an X-band signal, and good agreement in both broadband magnitude and
phase response is achieved.
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Figure 5: Performance of single resonator approximation of 8 mm transversal coupling slot pair
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Figure 6: Performance of cascaded coupled resonator circuit to model two slot pairs separated by 5 mm.

4. Synthesis example

The most applicable synthesis theories for cascaded absorptive resonators is that of Jaumann absorbers
[18], which relies on analytical expressions which grow exponentially more complex for higher network
orders, and is unable to accommodate arbitrary terminations. In the absence of a viable synthesis theory for
the more general case, circuit model optimisation must be used to synthesise the harmonic pad. Fig.7
shows the circuit model for a triple slot structure, including circuit simulation models of perfect TE;, mode
waveguides, cascaded with the S-parameters of a given reflective filter.
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Figure 7: Triple slot circuit model cascaded with the reflective filter.

The synthesis starts by setting the initial values of the resonant frequencies f; for all of the cascaded
resonators to the centre frequency of the absorbing band, designated f, . Initial values of a, b, 2" and b” are
based on the previously chosen values of the main and auxiliary waveguides, with initial values of L;, C;,
@i and T; derived from the previous comparison between circuit simulated and full-wave simulated
responses of a single slot. This necessitates prior full-wave simulation and circuit element value definition
of a single slot at the centre of the required absorbing band, as was done in Section 3. Slot spacings d;
(shown in Fig. 7) are chosen to place the slots at the standing wave pattern maxima at f, based on the
complex input reflection of the reflective filter at f, and the assumption that local maxima are formed every
Agol2, Where Aq is the guide wavelength at f,. The circuit is then cascaded with the S-parameters of the
given reflective filter and the values f; and d; are optimised to achieve a goal input reflection match over a
given band using a random localised optimisation algorithm. It should be noted that each optimization
update of f; (the slot resonant frequency), and the associated update of the relevant slot length, in actual fact
requires an update of all the equivalent circuit elements for that slot, which in turn requires one full-wave
simulation of the updated slot. For small changes in slot length, this step can be omitted, as the other
parameters are significantly less sensitive to slot length than f; . However, any large change requires a new
full-wave simulation. An alternative is to establish values of L, C, ¢ and T for a wide range of slot resonant
frequencies (and, therefore, a wide range of slot lengths I) before circuit optimisation, and apply these
changes periodically to the circuit model during optimisation using interpolation-based methods. The
synthesis is considered complete when the optimisation goals are achieved with values L;, C;, ¢; and T; that
match the final optimised resonant frequency of each slot. The resonant frequencies are then used to find
slot lengths I;, and used in conjunction with the values of d; to construct a full-wave model of the harmonic
pad. These dimensions can then be fine-tuned in full-wave simulation to establish a final manufacturing
model. Due to the accuracy of the model, in practice this tuning process results in dimensional changes of
less than 10% in any of the dimensions.

As example, the procedure outlined above was applied to design a harmonic pad for an X-band (8.5-10.5
GHz pass-band) filter of which the second harmonic band (17-21GHz) is to be absorbed and not reflected.
An input reflection match of -15 dB across the absorptive band was used as goal function for a five-slot
structure. The full-wave simulated S-parameter data of a reflective non-uniform waffle-iron filter was used
as termination of the circuit model, as shown in Fig. 7. This filter utilizes rectangular waveguide of
constant width, and constant height for each section, but non-uniform boss dimensions in order to reduce
size [1]. For the harmonic pad, a minimum slot spacing of d; > 2.4 mm was imposed in simulation, to allow
for manufacturing. The initial offset d; was constrained as d; > 7.9 mm, to allow for flange and an
absorptive end-load to the auxiliary guide. The auxiliary guide dimensions of 13 x 3 mm were retained, as



well as the 1 mm wall thickness and 1 mm slot width. This optimisation produces the circuit values and
dimensions shown in Table 1, with associated S-parameters in Fig. 10. The corresponding physical
structure is shown in Fig. 8, with dimensions listed in Table 2.

Table 1: Optimised circuit parameters and associated physical dimensions.

Slot # f[GHZz] L [fH] C [pF] T ¢ [deg] I [mm] d [mm]
1 22.49 260 193 2.39 -0.45 6.75 10.81
2 18.15 487 158 2.13 -0.44 8.45 3.87

3 20.35 351 174 2.23 -0.44 7.5 2.65

4 21.00 306 188 2.30 -0.44 7.25 3.86

5 22.11 286 181 2.35 -0.44 6.87 2.58

Table 2: Initial and manufactured dimensions

Dimension I, l, [ Iy ls d; d, ds ds ds
Initial [mm] 6.75 8.45 7.5 7.25 6.87 10.8 3.87 2.65 3.86 2.58
Tuned [mm] 6.42 8.45 7.5 7.23 6.87 10.2 3.75 2.42 3.60 2.65
Variation [%)] -4.89 0 0 -0.28 0 -5.64 -3.10 -8.68 -6.74 +2.71

The final dimensions were obtained after a short additional full-wave optimisation stage aimed at reducing
the reflection in the absorption band, during which no dimension had to be tuned by more than 10% of its
initial value. The full-wave analysis of the final structure is shown in Figures 9 and 10. It is clear that the
technique produces an absorptive filter with good matching in both pass-band and absorptive band.
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Figure 8: Final harmonic pad. Note the two end-loads to the auxiliary guide
made from Eccosorb™ HR and placed in E-plane bends.
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Figure 9: Manufactured harmonic pad (left) and applied to a reflective waffle-iron filter [1] (right).
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Figure 10: Measured and simulated reflection response.
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Figure 11: Measured and simulated transmission response, wideband.
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Figure 12: Measured and simulated transmission response, narrowband.

5. Peak power handling capability
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The peak power handling capability of the structure is determined by finding the maximum E-field strength
Emax, and comparing it to the breakdown E-field strength Eg. From simulation, the maximum E-field occurs
at resonance across the slot aperture. At 19 GHz, the simulation indicates Ea = 36996 V/m RMS for 1W
RMS incident power, which translates to a peak incident power Ppa 1.086 kW if value of Ep, = 12.1
kV/cm RMS is chosen to avoid sparking across the aperture of the slot. Away from slot resonance, the slot
exhibits maximum power handling capabilities comparable to the waveguide itself, since there is no
concentration of E-field in or around the slot.

6. Manufacturing and measured results

The harmonic pad was manufactured from Aluminium 6082 (Fig. 9), using Eccosorb™ FGM-40 as sheet
absorber lining the opposing broadwall in the auxiliary guide. The absorptive end-loads in the auxiliary
guides were implemented with Eccosorb™ HR in an E-plane bend, to make the load (and, consequently,
the pad itself) more compact. The harmonic pad has a total length of 33 mm, flanges included. The
harmonic pad was attached to an existing non-uniform waffle-iron filter, with the total measured S-
parameters shown in Figs. 10, 11 and 12. Calibration was performed over the bands 8 — 12 GHz and 16 -
22 GHz, to cover the transmission and absorption bands of interest. A full two-port coaxial calibration at
the coaxial-waveguide transitions was completed, followed by a TRL waveguide calibration for
respectively the two bands of interest. For the TRL calibrations, the Line-standards were implemented
using short sections of WR90 waveguide between the transitions. The complete absorptive filter exhibits
-18 dB input reflection across the 8.5-10.5GHz pass-band (Fig. 10), and -12.5 dB peak reflection in the
absorptive band. The combined structure exhibits insertion loss of more than 65dB in the absorptive band
(Fig. 11) but less than 0.5dB in the pass-band (Fig. 12). The discrepancies in simulated and measured
response are attributed to some discrepancy between the full-wave simulated S-parameter data of the
reflective filter (used to design the harmonic pad) and the manufactured S-parameter measurement data of
the the waffle-iron filter. Nevertheless, the results indicate good agreement between synthesised and
measured responses.

7. Conclusion
This paper presents an approach for the development of compact harmonic pads using transversal
broadwall slots in rectangular waveguide coupling to absorptive auxiliary guides. Good first-iteration
synthesis accuracy is achieved in a band 17 - 21 GHz, producing matching over a 20% bandwidth to below

-12.5 dB.
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