The electric quadrupole contribution to the circular birefringence of nonmagnetic anisotropie chiral media: A circular waveguide experiment

dc.contributor.authorTheron I.P.
dc.contributor.authorCloete J.H.
dc.date.accessioned2011-05-15T16:01:46Z
dc.date.available2011-05-15T16:01:46Z
dc.date.issued1996
dc.description.abstractConstitutive relations which include electric quadrupole terms, in addition to electric and magnetic dipole terms, are used to describe the "optical activity," in particular the circular birefringence, of an an Isotropie chiral medium which is nonmagnetic. The resulting permittivity and chirality tensors are then used to predict the rotation of the polarization plane of a linearly polarized wave propagating in a circular waveguide filled with the medium. The numerical predictions were tested by measurements between 2.4 and 4 GHz on a 2 m long artificial crystal in a circular waveguide and it was found that the rotation of the polarization was within 13% of the predicted value - good agreement after considering the possible sources of error. It is thus established that the effect of electric quadrupoles must be included when modeling the optical activity of anisotropic chiral media in the long wavelength regime. The anisotropic chiral media which are dealt with here can be classified according to the crystallographic point groups to which they belong, and they may therefore also be considered to be artificial crystals. © 1996 IEEE.
dc.description.versionArticle
dc.identifier.citationIEEE Transactions on Microwave Theory and Techniques
dc.identifier.citation44
dc.identifier.citation8
dc.identifier.issn189480
dc.identifier.urihttp://hdl.handle.net/10019.1/12146
dc.subjectAnisotropy
dc.subjectBirefringence
dc.subjectComputer simulation
dc.subjectCrystals
dc.subjectElectromagnetic wave polarization
dc.subjectElectromagnetic wave transmission
dc.subjectPermittivity
dc.subjectTensors
dc.subjectCircular birefringence
dc.subjectElectric quadrupole contribution
dc.subjectNonmagnetic anisotropic chiral media
dc.subjectOptical activity
dc.subjectCircular waveguides
dc.titleThe electric quadrupole contribution to the circular birefringence of nonmagnetic anisotropie chiral media: A circular waveguide experiment
dc.typeArticle
Files