Evaluation of genetic manipulation strategies on d-lactate production by Escherichia coli

dc.contributor.authorZhou L.
dc.contributor.authorZuo Z.-R.
dc.contributor.authorChen X.-Z.
dc.contributor.authorNiu D.-D.
dc.contributor.authorTian K.-M.
dc.contributor.authorPrior B.A.
dc.contributor.authorShen W.
dc.contributor.authorShi G.-Y.
dc.contributor.authorSingh S.
dc.contributor.authorWang Z.-X.
dc.date.accessioned2011-05-25T08:49:47Z
dc.date.available2011-05-25T08:49:47Z
dc.date.issued2011
dc.description.abstractIn order to rationally manipulate the cellular metabolism of Escherichia coli for d-lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding d-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l d-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of d-lactate production are among the highest reported and the results have revealed which genetic manipulations improved d-lactate production by E. coli. © 2010 Springer Science+Business Media, LLC.
dc.description.versionArticle
dc.identifier.citationCurrent Microbiology
dc.identifier.citation62
dc.identifier.citation3
dc.identifier.citation981
dc.identifier.citation989
dc.identifier.issn3438651
dc.identifier.other10.1007/s00284-010-9817-9
dc.identifier.urihttp://hdl.handle.net/10019.1/14688
dc.titleEvaluation of genetic manipulation strategies on d-lactate production by Escherichia coli
dc.typeArticle
Files