Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae

dc.contributor.authorVolschenk H.
dc.contributor.authorViljoen-Bloom M.
dc.contributor.authorSubden R.E.
dc.contributor.authorVan Vuuren H.J.J.
dc.date.accessioned2011-05-15T16:05:34Z
dc.date.available2011-05-15T16:05:34Z
dc.date.issued2001
dc.description.abstractRecombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a malo-ethanolic fermentation. However, strains of Sz. pombe are not suitable for vinification due to the production of undesirable off-flavours. Heterologous expression of the Sz. pombe malate permease (mae1) and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain of S. cerevisiae that efficiently degraded up to 8 g/I L-malic acid in synthetic grape must and 6.75 g/I L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae1 and mae2 genes integrated in the genome efficiently degraded 5 g/I of L-malic acid in synthetic and Chenin Blanc grape musts. Furthermore, the malo-alcoholic strains produced higher levels of ethanol during fermentation, which is important for the production of distilled beverages. Copyright © 2001 John Wiley & Sons, Ltd.
dc.description.versionArticle
dc.identifier.citationYeast
dc.identifier.citation18
dc.identifier.citation10
dc.identifier.issn0749503X
dc.identifier.other10.1002/yea.743
dc.identifier.urihttp://hdl.handle.net/10019.1/13192
dc.subjectalcohol
dc.subjectmalic acid
dc.subjectmalic acid derivative
dc.subjectpermease
dc.subjecttartaric acid
dc.subjectacidity
dc.subjectarticle
dc.subjectbeverage
dc.subjectcold climate
dc.subjectconcentration response
dc.subjectcontrolled study
dc.subjectdegradation
dc.subjectdistillation
dc.subjectfermentation
dc.subjectflavor
dc.subjectgene expression
dc.subjectgenetic recombination
dc.subjectgenome
dc.subjectgrape
dc.subjectnonhuman
dc.subjectplasmid
dc.subjectpriority journal
dc.subjectprotein expression
dc.subjectSaccharomyces cerevisiae
dc.subjectSchizosaccharomyces pombe
dc.subjectstrain difference
dc.subjectwine
dc.subjectBacterial Proteins
dc.subjectEthanol
dc.subjectFermentation
dc.subjectGenetic Engineering
dc.subjectIndustrial Microbiology
dc.subjectMalate Dehydrogenase
dc.subjectMalates
dc.subjectMembrane Transport Proteins
dc.subjectOrganic Anion Transporters
dc.subjectRecombinant Proteins
dc.subjectRosales
dc.subjectSaccharomyces cerevisiae
dc.subjectSchizosaccharomyces
dc.subjectWine
dc.subjectSaccharomyces cerevisiae
dc.subjectSchizosaccharomyces pombe
dc.subjectVitaceae
dc.subjectVitis sp.
dc.titleMalo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae
dc.typeArticle
Files