ITEM VIEW

Automatic Prediction of Comment Quality

dc.contributor.advisorVan der Merwe, Brinken_ZA
dc.contributor.advisorKroon, Steveen_ZA
dc.contributor.advisorCleophas, Loeken_ZA
dc.contributor.authorBrand, Dirk Johannesen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Department of Mathematical Sciences (Computer Science)en_ZA
dc.date.accessioned2016-03-09T15:05:34Z
dc.date.available2016-03-09T15:05:34Z
dc.date.issued2016-03
dc.identifier.urihttp://hdl.handle.net/10019.1/98818
dc.descriptionThesis (MSc)--Stellenbosch University, 2016en_ZA
dc.description.abstractENGLISH ABSTRACT : The problem of identifying and assessing the quality of short texts (e.g. comments, reviews or web searches) has been intensively studied. There are great bene ts to being able to analyse short texts. As an example, advertisers might be interested in the sentiment of product reviews on e-commerce sites to more e ciently pair marketing material to content. Analysing short texts is a di cult problem, because traditional machine learning models generally perform better on data sets with larger samples, which often translates to more features. More data allow for better estimation of parameters for these models. Short texts generally do not have much content, but still carry high variability in that they may still consist of a large corpus of words. This thesis investigates various methods for feature extraction for short texts in the context of online user comments. These methods include the leading manual feature extraction techniques for short texts, N-gram models and techniques based on word embeddings. The e ect of using di erent kernels for a support vector classi er is also investigated. The investigation is centred around two data sets, one provided by News24 and the other extracted from Slashdot.org. It was found that N-gram models performed relatively well, mostly outperforming manual feature extraction techniques.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : Om die kwaliteit van kort tekste (bv. internet kommentaar, soektogte of resensies) te identi seer en te analiseer, is 'n probleem wat al redelik sorgvuldig in die navorsing bestudeer is. Daar is baie te baat by die vermo ë om die kwaliteit van aanlyn teks te analiseer. Byvoorbeeld, aanlyn winkels mag moontlik geinteresseerd wees in die sentiment van die verbruikers wat produkresensies gee oor hul produkte, aangesien dit kan help om meer akkurate bemarkings materiaal vir produkte te genereer. Analise van kort tekste is 'n uitdagende probleem, want tradisionele masjienleer algoritmes vaar gewoonlik beter op datastelle met meer kernmerke as wat kort tekste kan bied. Ryker datastelle laat toe vir meer akkurate skatting van model parameters. Hierdie tesis bestudeer verskeie metodes vir kenmerkkonstruksie van kort tekste in die konteks van aanlyn kommentaar. Die metodes sluit die voorstaande handgemaakde kenmerkkonstruksie tegnieke vir kort tekste, N-gram modelle en woordinbeddinge in. Die e ek van verskillende kernmetodes vir klassi kasie modelle word ook bestudeer. Die studie is gefokus rondom twee datastelle waarvan een deur News24 voorsien is en die ander vanaf Slashdot. org bekom is. Ons het gevind that N-gram modelle meestal beter presteer as die handgemaakde kenmerkkonstruksie tegnieke.af_ZA
dc.format.extentix, 116 pages : illustrations (chiefly colour)en_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.subjectNews media -- Short texten_ZA
dc.subjectWebiste -- Short texten_ZA
dc.subjectN-gramsen_ZA
dc.subjectComputational probabilityen_ZA
dc.subjectOnline user commentsen_ZA
dc.subjectComputational linguisticsen_ZA
dc.subjectWord embeddingen_ZA
dc.subjectUCTDen_ZA
dc.titleAutomatic Prediction of Comment Qualityen_ZA
dc.typeThesisen_ZA
dc.rights.holderStellenbosch Universityen_ZA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW