dc.contributor.advisor | Kamper, M. J. | en_ZA |
dc.contributor.author | Van Wyk, Petrus Johannes Jacobus | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering. | en_ZA |
dc.date.accessioned | 2015-12-14T07:43:00Z | |
dc.date.available | 2015-12-14T07:43:00Z | |
dc.date.issued | 2015-12 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/97889 | |
dc.description | Thesis (MEng)--Stellenbosch University, 2015. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: In this study an alternative drive train topology for the slip-synchronous
permanent magnet generator (SS-PMG) is proposed. The SS-PMG was first
proposed in 2010 and is a direct drive, direct grid-connected wind generator,
consisting of two sections, a slip permanent magnet coupling (S-PMC) and
a permanent magnet synchronous generator (PMSG). These two machines
are mechanically connected via a common PM rotor. The PMSG section is
directly grid-connected, but this is only possible due to the damping effects of
the S-PMC on wind transients. Since the SS-PMG is a direct drive generator,
it operates at turbine speed.
In this thesis it is proposed that the SS-PMG be split into two separate
machines: a free standing S-PMC and a free standing PMSG. It is also proposed
that a gearbox be introduced, to allow greater flexibility in speed selection,
which allows the S-PMC and PMSG to operate in the medium speed range
(100 - 600 r/min) or at even higher speeds for small scale turbines.
All the components of the drive train are investigated. The turbine blade
characteristics are combined with the wind speed data of a proposed wind site to determine the drive train operating speed, as well as the S-PMC and
PMSG power ratings. The gearbox is investigated and laboratory tested to
determine its operating efficiency. A free standing S-PMC is not widely known
in literature, and thus the S-PMC is investigated in great detail. The S-PMC
is simulated and design optimised using finite element (FE) modelling, and a
2.2 kW prototype of the S-PMC is built and laboratory tested. The PMSG
is also simulated and design optimised using FE modelling, but a prototype
was not built. Finally the efficiency of the entire drive train is evaluated, by
combining measured, simulated and calculated data of the various drive train
components.
The gearbox achieves a high efficiency of up to 96% at rated loads. The
S-PMC performs better than expected, with the prototype producing 20%
more output torque than the S-PMC simulations at rated slip, due to superior
thermal characteristics of the open design. The proposed FE analysis method
for the S-PMC proves to accurately model the machine. The simulated PMSG
achieves a 93% efficiency at rated conditions and appears to be feasible for
direct grid-connected use. The entire drive train shows to have a good efficiency
of above 80% for most of its operating range. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: In hierdie studie word ’n alternatiewe aandrywingstelsel topologie vir die glipsinchroon
permanente magneet generator (SS-PMG) voorgestel. Die SS-PMG
is die eerste keer voorgestel in 2010 en is ’n direk aangedrewe, direk netwerk
gekoppelde wind generator, wat bestaan uit twee gedeeltes, ’n glip permanente
magneet koppeling (S-PMC) en ’n permanente magneet sinchroon generator
(PMSG). Hierdie twee masjiene word meganies verbind deur ’n gemeenskaplike
PM rotor. Die PMSG is direk netwerk gekoppel, maar dit is slegs moontlik weens
die dempingseffek van die S-PMC op wind oorgangsverskynsels. Aangesien die
SS-PMG ’n direk aangedrewe generator is, hardloop dit teen turbine spoed.
In hierdie tesis word dit voorgestel dat die SS-PMG verdeel word in twee
afsonderlike masjiene: ’n vrystaande S-PMC en ’n vrystaande PMSG. Dit word
ook voorgestel dat ’n ratkas bygevoeg word, om meer vryheid te gee met spoed
seleksie, wat die S-PMC en PMSG toelaat om te werk in die medium spoed reeks (100-600 r/min), of moontlik teen selfs ho¨er snelhede vir kleinskaalse
turbines.
Al die komponente van die aandryfstelsel word ondersoek. Die turbine lem
eienskappe word gekombineer met wind spoed data van ’n voorgestelde wind
plaas om die aandryfstelsel spoed te bepaal, sowel as om die S-PMC en PMSG
drywing groottes te bepaal. Die ratkas word ondersoek en in die laboratorium
getoets om sy bedryfseffektiwiteit te bepaal. ’n Vrystaande S-PMC is nie
wyd bekend in die literatuur nie, en dus word die S-PMC in groot detail
ondersoek. Die S-PMC word gesimuleer en ontwerp met behulp van eindige
element (FE) modellering, en ’n 2.2 kW prototipe van die S-PMC word gebou
en in die laboratorium getoets. Die PMSG word ook gesimuleer en ontwerp
met behulp van FE modellering, maar ’n prototipe was nie gebou. Ten slotte
word die effektiwiteit van die hele aandryfstelsel ge¨evalueer met ’n kombinasie
van gemete, gesimuleerde en berekende data van die verskillende aandryfstelsel
komponente.
Die ratkas bereik ’n ho¨e effektiwiteit van tot 96% by kenlas. Die S-PMC
presteer beter as te verwagte, met die prototipe wat teen kenglip 20% meer
wringkrag uitsit as die S-PMC simulasies, te danke aan beter termiese eienskappe
weens die oop ontwerp. Dit word bevind dat die voorgestelde FE analise
metode vir die S-PMC die masjien akkuraat modelleer. Die gesimuleerde
PMSG bereik ’n effektiwiteit van 93% teen kenwaardes en blyk om bruikbaar
te wees vir ’n direk netwerk gekoppelde toepassing. Dit word bevind dat die
hele aandryfstelsel ’n goeie effektiwiteit van bo 80% het vir die meerderheid
van sy reeks bedryfspunte. | af_ZA |
dc.format.extent | 105 pages : illustrations | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.subject | Slip permanent magnet coupling | en_ZA |
dc.subject | Slip-synchronous permanent magnet generator (SS-PMG) | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | Design and evaluation of medium speed geared direct grid connected wind generator drive train with specific focus on slip permanent magnet coupling | en_ZA |
dc.type | Thesis | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |