dc.contributor.advisor | Le Roux, N. J. | en_ZA |
dc.contributor.advisor | Coetzer, R. L. J. | en_ZA |
dc.contributor.author | Rossouw, Ruan Francois | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science. | en_ZA |
dc.date.accessioned | 2015-12-14T07:42:53Z | |
dc.date.available | 2015-12-14T07:42:53Z | |
dc.date.issued | 2015-12 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/97869 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2015. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: In this study, the development of an innovative fully integrated process monitoring
methodology is presented for a complex chemical facility, originating at
the coal feed from different mines up to the processing of the coal to produce
raw gas at the gasification plant. The methodology developed is real-time,
visual, detect deviations from expected performance across the whole value
chain, and also provide for the integration and standardisation of data from a
number of different data sources and formats.
Real time coal quality analyses from an XRF analyser are summarised and
integrated with various data sources from the Coal Supply Facility to provide
information on the coal quality of each mine. In addition, simulation models
are developed to generate information on the coal quality of each heap and the
quality of the reclaimed coal sent to gasification.
A real-time multivariate process monitoring approach for the Coal Gasification
Facility is presented. This includes a novel approach utilising Generalised
Orthogonal Procrustes Analysis to find the optimal units and time period to
employ as a reference set. Principal Component Analysis (PCA) and Canonical
Variate Analysis (CVA) theory and biplots are evaluated and extended for
the real-time monitoring of the plant.
A new approach to process deviation monitoring on many variables is presented
based on the confidence ( ) value at a specified T2-value. This methodology
is proposed as a general data driven performance index as it is objective,
and very little prior knowledge of the system is required.
A new multivariate gasifier performance index (GPI) is developed, which
integrates subject matter knowledge with a data driven approach for real time
performance monitoring. Various software modules are developed which were
required for the implementation of the real time multivariate process monitoring
methodology, which is made operational and distributed to the clients
on an interactive web interface. The methodology has been trademarked by
Sasol as the MSPEM™ Technology Package. Following the success of the
developed methodology, the MSPEM™ package has been rolled out to many
more business units within the Sasol Group.
In conclusion, this study presents the development and implementation
of the MSPEM™ application for a real-time, integrated and standardised
approach to multivariate process monitoring of the Sasol Synfuels Coal Value
Chain and Gasification Facility. In summary, the following novel developments
were introduced:
• The application of distance measures other than Euclidean measures are
introduced for space filling designs for computer experiments in mixture
variables.
• An approach utilising Generalised Orthogonal Procrustes Analysis to
specify the optimal units and time period to employ as a reference set is
developed.
• An approach to process deviation monitoring on many variables is presented
based on the confidence ( ) value at a specified T2-value.
• An integrated approach to a reactor performance index is developed and
illustrated.
• A comprehensive software infrastructure is developed and implemented | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: In hierdie studie word die ontwikkeling van ’n innoverende en ten volle geïntegreerde
proses moniteringsmetodologie vir ’n komplekse chemiese fasiliteit
aangebied. Die metodologie is ontwikkel vir die monitering van die steenkool
kwaliteite vanaf die verskillende myne tot en met die verwerking van die
steenkool om rou gas te produseer by die steenkool vergassingsaanleg, asook
die intydse monitering van die gasproduksie en effektiwiteit van die aanleg. Die
ontwikkelde metode is intyds, visueel, spoor afwykings van verwagte verrigting
oor die hele waarde ketting op, en maak ook voorsiening vir die integrasie en
standaardisering van data afkomstig van verskillende bronne en formate.
Intydse steenkool kwaliteitsmetings met ’n XRF analiseerder word opgesom
en geïntegreer met verskeie bestaande data bronne uit die steenkoolfasiliteit
om inligting oor die gehalte van steenkool vanaf elke myn te voorsien. Daarbenewens
is simulasie modelle ontwikkel om inligting oor die kwaliteit van elke
steenkool bergingshoop sowel as die kwaliteit van die herwonne steenkool na
vergassing te verskaf.
’n Intydse meerveranderlike proses moniteringsmetodologie vir die steenkool
vergassingsfasiliteit word aangebied. Dit sluit in ’n nuwe benadering om
die optimale reaktors en tydperk te vind wat gebruik kan word as die verwysingsdatastel.
Veralgemeende Ortogonale Procrustes Analise (GOPA) is
hiervoor gebruik en aangepas. Hoofkomponent-analise (PCA) en Kanoniese
Veranderlike Analise (CVA) teorie, tesame met bistippings, word geëvalueer
en uitgebrei vir die intydse monitering van die produksieaanleg.
’n Nuwe benadering tot die monitering van die gelyktydige proses afwykings
van ’n groot aantal veranderlikes word aangebied, gebaseer op die vertrouenskoëffisiënt
( ) vir ’n bepaalde T2-waarde. Hierdie metodologie word voorgestel
as ’n algemene data-gedrewe verrigtingsindeks aangesien dit objektief is, en
baie min historiese kennis van die stelsel word vereis.
’n Nuwe meerveranderlike verrigtingsindeks (GPI) vir die vergassers is
ontwikkel, wat kennis van die proses integreer met ’n data-gedrewe benadering
vir die intydse monitering van verrigting. Verskeie sagteware modules
is ontwikkel vir die implementering van die intydse meerveranderlike prosesmoniteringsmetodologie,
wat operasioneel gemaak en beskikbaar gestel is aan
die kliënte met behulp van ’n interaktiewe webkoppelvlak. Die metodologie
is gehandelsmerk deur Sasol as die MSPEM™ Tegnologie Pakket. Na aanleiding
van die sukses van die ontwikkelde metodologie, is die MSPEM™ pakket
uitgerol na baie meer produksie aanlegte in Sasol.
Ten slotte, hierdie studie bied die ontwikkeling en implementering van die
MSPEM™ pakket aan vir ’n intydse, geïntegreerde en gestandaardiseerde benadering
tot meerveranderlike proses monitering van die Sasol Synfuels Steenkool
Waardeketting en die Steenkool Vergassingsfasiliteit. Verder is die volgende
nuwe ontwikkelings bekendgestel:
• Die toepassing van afstandsmetings anders as Euklidiese afstand om die
eksperimentele ruimte te vul in rekenaareksperimente.
• ’n Benadering is ontwikkel om die optimale reaktors en tydperk te vind
wat gebruik kan word as ’n verwysingsdatastel vir intydse monitering,
deur gebruik te maak van Veralgemeende Ortogonale Procrustes Analise
(GOPA).
• ’n Benadering gebaseer op die vertrouenskoëffisiënt ( ) vir ’n bepaalde
T2-waarde is ontwikkel vir die monitering van die gelyktydige proses
afwykings van ’n groot aantal veranderlikes.
• ’n Geïntegreerde benadering is ontwikkel vir die verkryging van ’n reaktor
verrigtingsindeks en is kommersieël toegepas en geïllustreer. | af_ZA |
dc.format.extent | 408 pages : illustrations | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.subject | Process control -- Statistical methods | en_ZA |
dc.subject | Multivariate analysis | en_ZA |
dc.subject | Petroleum chemicals industry | en_ZA |
dc.subject | UCTD | en_ZA |
dc.subject | Chemical process control -- Statistical methods | en_ZA |
dc.title | Multivariate statistical process evaluation and monitoring for complex chemical processes | en_ZA |
dc.type | Thesis | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |