dc.contributor.advisor | Uys, Hermann | en_ZA |
dc.contributor.advisor | Rohwer, Erich G. | en_ZA |
dc.contributor.author | Smit, Andre Marius | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Science. Dept. of Physics. | en_ZA |
dc.date.accessioned | 2015-12-14T07:42:45Z | |
dc.date.available | 2015-12-14T07:42:45Z | |
dc.date.issued | 2015-12 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/97845 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2015. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: We present here a new generalized Time-Frequency-Represenation (TFR) for use
in describing ultra-fast laser pulses. The TFR is developed in terms of Fourier-
Hermite-Gauss (FHG) polynomials on a von Neumann TFR lattice, by expanding
the lattice in a third dimension, thus forming a lattice cube. The temporal and
spectral coefficients of the Hermite-Gauss (HG) clearly are inherently functionally
Fourier transform invariant. The enhanced numerical complexity of the FHG TFR
is greatly reduced by exploiting the translation property of Hermite polynomials
by means of Pascal matrices. Although the new FHG TFR represents an over
complete basis set, it can be reduced by a subset selection to a complete basis.
This method and the accompanying overlap integral is then developed and the
complex orthogonality and similarity of the temporal and spectral overlap integral
matrices is then analytically proved. Numerically the Pascal matrices are unstable. The new two correlation FHG TFR
lattice cubes present an improvement on the traditional TFRs in that they have
the advantage that it is unnecessary to compute the undesirable inverse overlap
matrix to reconstruct the signal, temporally and spectrally, i.e. they contain all
the information necessary to reconstruct the signal. It is then proven that it is
a digital requirement to double the original proposed bandwidths of the signal
inputs, here and also for the von Neumann TFR.
The Hermite-Gauss polynomials correspond to the number states {nk} of the
Glauber-Sudarshan coherent states in Fock space. A classical correspondence analogy
between Glauber-Sudarshan coherent states in Fock space and the temporal
FHG TFR is then considered under certain conditions and thus allows for a comparison
of the amplitudes between the two decompositions for each kkk = !k/c,
culminating in an optimization procedure to determine a “classical” coherent state
correlation TFR. Application simulation results of quantum coherent control of
IR ultra-short laser pulse interaction with octahedral molecules utilizing an optimal
genetic algorithm are presented. A representative shaped laser pulse is used
throughout to compare various TFRs. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Hier bied ons aan ’n nuwe veralgemende Tyd-Frekwensie-Voorstelling (TFV) vir
die gebruik in die beskrywing van ultra-vinnige laser pulse. Die TFV word ontwikkel
in terme van Fourier-Hermite-Gauss (FHG) polinome op ’n von Neumann
TFV diskrete rooster, deur die normale rooster uit te brei in ’n derde dimensie,
om ’n kubus rooster te vorm. Die temporale en spektrale koëffisiënte van die
Hermite-Gauss (HG) polinome is duidelik inherent funksioneel Fourier transform
invariant. Die verhoogde numeriese kompleksiteit van die FHG TFV word aansienlik
verminder deur die ontginning van die translasie eienskap van Hermitiese
polinome, deur gebruik te maak van Pascal matrikse. Hoewel die nuwe FHG TFV
’n oor volledige basis voorstel, kan dit deur ’n deelversameling selektief verminder
word tot ’n volledige basis. Hierdie metode en die gepaardgaande oorvleuelings
integrale word dan ontwikkel en die komplekse ortogonaliteit en similartieit van die
temporale en spektrale oorvleueling integrale matrikse word dan analities bewys.
Numeries is die Pascal matrikse onstabiel. Die nuwe twee korrelasie FHG TFR
kubus roosters bied ’n verbetering op die tradisionele TFV in dat hulle die voordeel
inhou dat dit onnodig is om die ongewenste omgekeerde oorvleuelings matriks te
bereken om die sein te herkonstrueer, temporaal en spektraal, d.w.s. dit bevat al
die nodige inligting om die sein te herkonstrueer. Daar word dan bewys dat dit
’n digitale vereiste is om die oorspronklike voorgestelde bandwydtes van die sein
insette te verdubbel, hier en ook vir die von Neumann TFV. Die Hermite-Gauss polinome stem ooreen met die aantal getal toestande {nk}
van die Glauber-Sudarshan koherente toestande in die Fock ruimte. ’n Analogie
tussen Glauber-Sudarshan koherente toestande in Fock ruimte en die temporale
FHG TFV word dan beskou onder sekere omstandighede om gevolglik ’n vergelyking
van die amplitudes tussen die twee ontbindings vir elke kkk = !k/c, wat
uiteindelik kulmineer in ’n optimalisering proses om ’n “klasieke” koherente toestand
korrelasie TFV te bepaal. Simulasie resultate van ’n toepassing van kwantum
koherente toestand beheer van IR ultra-kort laser pulse se interaksie met
oktahedriese molekules, deur gebruik te maak van ’n optimale genetiese algoritme,
word dan aangebied. ’n Verteenwoordigende gevormde laser puls word deurgaans
gebruik om verskeie TFVs te vergelyk. | af_ZA |
dc.format.extent | xi, 302 pages : colour illustrations | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.subject | Coherent control | en_ZA |
dc.subject | Time-series analysis | en_ZA |
dc.subject | Von Neumann representation | en_ZA |
dc.subject | Spatial light modulators | en_ZA |
dc.subject | Molecular vibrations | en_ZA |
dc.subject | Laser pulses, Ultrashort | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | Generalized time-frequency representations and their application to quantum control | en_ZA |
dc.type | Thesis | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |