ITEM VIEW

Dispersal, dormancy, life history and breeding systems of southern African Asteraceae : risk-reducing strategies in unpredictable environments

dc.contributor.advisorAnderson, Bruceen_ZA
dc.contributor.advisorEllis, Allan Georgeen_ZA
dc.contributor.authorDe Waal, Carolien_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Botany and Zoology.en_ZA
dc.date.accessioned2015-05-20T09:27:05Z
dc.date.available2015-05-20T09:27:05Z
dc.date.issued2015-04en
dc.identifier.urihttp://hdl.handle.net/10019.1/96736
dc.descriptionThesis (PhD)--Stellenbosch University, 2015.en_ZA
dc.description.abstractENGLISH ABSTRACT: How organisms respond to unpredictable environments is a fundamental question in evolutionary ecology. For example, plants may reduce the risk of reproductive failure by spreading their reproductive effort in space (dispersal) or in time (dormancy, iteroparity). Similarly, different plant breeding systems, (for example the ability to autonomously self-fertilise) may reduce the risk of reproductive failure in environments where pollination in particular is unreliable. Each of these strategies may be affected by selective pressures exerted by heterogeneous abiotic and biotic environments (e.g. unreliable rainfall patterns or range edge habitats). However, there is little theoretical or empirical consensus on how these strategies are related. In Chapter 2, I explore the association between dispersal and breeding system traits and range edge proximity. I show that annual daisies from Namaqualand, South Africa, are characterised by two discreet syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal, regardless of range position. This chapter illustrates that selection on both breeding system and dispersal traits may act consistently across distribution ranges. Because co-flowering plants often share pollinators, their fecundity is likely affected by changes in pollinator visitation rates or the transfer of conspecific relative to heterospecific pollen. In Chapter 3 I experimentally investigate the effects of con- and heterospecific density and spatial distribution pattern on pollination and fecundity in annual Namaqualand daisies. I show that increasing conspecific density and aggregation enhanced fecundity through increased mate availability and reduced heterospecific interference, independent of pollinator visitation rates. Moreover, I demonstrate the benefits of autonomous selfing when mates are limited and the potential for interspecific pollen transfer is high. In Chapter 4, I examine relative investment in dispersal vs. dormancy in seed heteromorphic Dimorphotheca (Asteraceae) species in relation to life history, rainfall unpredictability and range edge proximity. I show annuals and perennials differ significantly in the relative investment in different dispersal strategies. However, my findings provide little support for theoretical predictions of bet-hedging strategies in unpredictable or range edge habitats. This chapter emphasises the role of local environmental factors on fruit set that may obscure expected patterns across broad climatic gradients. Because of different costs and benefits of dispersal in space and time, we may expect negative patterns of covariation among dispersal and dormancy as alternative risk-reducing strategies. In Chapter 5, I provide evidence for a trade-off between these traits across 27 wind- dispersed daisy species from South Africa. This trade-off did not depend on life history effects, but was inconsistent at different levels of biological organisation. I also show that the effects of life history on spatial and temporal dispersal were inconsistent. Taken together, my research illustrates the importance of simultaneously investigating different risk-reducing strategies, because associations among them are clearly complex and often contradict theoretical expectations. Moreover I show that the effects of life history and phylogenetic relatedness cannot be disregarded. My findings underscore the importance of dispersal in space and time as well as autonomous selfing as risk-reducing responses to unreliable environments.en_ZA
dc.format.extentxii, 166 pages : illustrations, mapsen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.subjectEvolutionary ecologyen_ZA
dc.subjectSouthern African Asteraceae -- Breeding systemsen_ZA
dc.subjectSouthern African Asteraceae -- Life historyen_ZA
dc.subjectUCTDen_ZA
dc.titleDispersal, dormancy, life history and breeding systems of southern African Asteraceae : risk-reducing strategies in unpredictable environmentsen_ZA
dc.typeThesisen_ZA
dc.rights.holderStellenbosch Universityen_ZA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW