The influence of interspecific competition and host preference on the phylogeography of two African ixodid tick species

Cangi, Nídia
Horak, Ivan G.
Apanaskevich, Dmitry A.
Matthee, Sonja
Das Neves, Luis C. B. G.
Estrada-Pena, Agustin
Matthee, Conrad A.
Journal Title
Journal ISSN
Volume Title
Public Library of Science -- PLoS
A comparative phylogeographic study on two economically important African tick species, Amblyomma hebraeum and Hyalomma rufipes was performed to test the influence of host specificity and host movement on dispersion. Pairwise AMOVA analyses of 277 mtDNA COI sequences supported significant population differentiation among the majority of sampling sites. The geographic mitochondrial structure was not supported by nuclear ITS-2 sequencing, probably attributed to a recent divergence. The three-host generalist, A. hebraeum, showed less mtDNA geographic structure, and a lower level of genetic diversity, while the more host-specific H. rufipes displayed higher levels of population differentiation and two distinct mtDNA assemblages (one predominantly confined to South Africa/Namibia and the other to Mozambique and East Africa). A zone of overlap is present in southern Mozambique. A mechanistic climate model suggests that climate alone cannot be responsible for the disruption in female gene flow. Our findings furthermore suggest that female gene dispersal of ticks is more dependent on the presence of juvenile hosts in the environment than on the ability of adult hosts to disperse across the landscape. Documented interspecific competition between the juvenile stages of H. rufipes and H. truncatum is implicated as a contributing factor towards disrupting gene flow between the two southern African H. rufipes genetic assemblages.
Publication of this article was funded by the Stellenbosch University Open Access Fund.
The original publication is available at
African tick species -- Phylogeography, Amblyomma hebraeum, Hyalomma rufipes
Cangi, N. et al. 2013. The Influence of Interspecific Competition and Host Preference on the Phylogeography of Two African Ixodid Tick Species. PLoS ONE, 8(10): e76930, doi:10.1371/journal.pone.0076930.