The variation and prediction of structural timber properties of standing Pinus patula trees using non-destructive methods

Date
2014-04
Authors
Wessels, Coenraad Brand
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Pinus patula is the most intensively planted conifer in the tropics and sub‐tropics. In South Africa Pinus patula plantations are the main saw‐log resource for structural lumber production. Improved intensive silvicultural practices and tree breeding have resulted in marked increases in the rate of growth. To reap the financial benefits of the faster growth, plantation managers are more and more inclined to reduce rotation ages, which inevitably results in the production of higher proportions of juvenile wood at final harvest, and lumber which often does not meet the minimum requirements for stiffness for structural lumber. Knowledge of the variation and the accurate prediction of the mechanical properties of the timber of standing trees can have various benefits for growers and processors of trees. It can be used for tree allocation to different processing facilities, for processing production planning, and to assist tree breeders to screen and select for superior breeding material. The objectives of this study were (1), to examine the within‐ and between‐tree variation in wood properties of young South African grown Pinus patula trees known to have important impacts on the suitability of sawn lumber for structural purposes and (2), to develop empirical prediction models for the flexural lumber properties from standing Pinus patula, based on variables that could be assessed non‐destructively from standing trees. Sample material was obtained from 170 trees (16‐20 years old) established in 17 compartments along the Mpumalanga escarpment of South Africa. A large number of variables which could be obtained non‐destructively from the trees while they were still standing, were measured. The trees were subsequently felled and two logs, 2.1 m in length, were extracted from each tree at two height positions. The 340 logs were processed into 1402 pieces of lumber for further measurements and destructive testing. Results showed that the mean modulus of elasticity measured on edge (MOEedge) was far below the limits set for structural grade softwood timber in South Africa. All the desirable properties for structural lumber improved with distance from the pith with the exception of the 5th percentile value for modulus of rupture (MOR), which was higher at the pith than for the boards processed adjacent to the pith. Boards processed from the lower part of the stem were superior in most of the important properties compared to those higher up in the stem. Separate multiple regression models for predicting the average dynamic MOE (MOEdyn) of individual boards, trees and compartments were developed. The models managed to explain 68%, 60% and 95% of the variation in MOEdyn respectively. The models developed for MOR explained 40% and 42% of variability at board and tree level respectively. At compartment level, 80% of the variation in the 5th percentile MOR value could be explained by the model. Sensitivity analyses showed that site index at base age of 10 years, acoustic time‐of‐flight, wood density and ring width were the most influential variables in the MOE models. The models indicated that tree slenderness during early growth seems to play a major role in determining the dynamic MOE and MOR of lumber. This is in agreement with Euler’s buckling theory and the bending stress theory. Microfibril angle (MFA) and density were measured on radial strips taken from a sub‐sample of trees with the Silviscan 3 technology. The mean microfibril angle per year ring in Pinus patula varied between 7o and 29o. In general MFA decreased with distance from the pith and height above ground level. A multiple regression model including microfibril angle, density and ring width explained 71% of the variation in the dynamic MOE of boards. Sensitivity analysis on the model showed that microfibril angle and density had roughly equal influences on predicting the MOEdyn of Pinus patula boards.
AFRIKAANSE OPSOMMING: Pinus patula is die mees aangeplante naaldhoutspesie in die tropiese en sub‐tropiese areas van die wêreld. Dit is die grootste bron van saagblokke vir die produksie van strukturele hout in SA. Intensiewe boskultuurpraktyke en boomteling het gelei tot ‘n merkbare verhoging in die groeitempo van die spesie. Plantasiebestuurders is gevolglik geneig om rotasie‐ouderdomme te verlaag, wat lei tot ‘n groter persentasie jeughout wat nie aan die minimum styfheidvereistes van strukturele hout voldoen nie. Kennis van die variasie en die akkurate voorspelling van die meganiese eienskappe van staande bome kan voordele inhou vir beide die verbouers en verwerkers van bome. Dit kan byvoorbeeld van hulp wees met die toewysing van bome aan verwerkingsfasiliteite, vir produksiebeplanning, en vir ondersteuning met die keuse van teelmateriaal vir boomtelers. Die doelwitte van hierdie studie was (1), om die binne– en tussenboomvariasie in die houteienskappe, wat ‘n bepalende invloed het op die geskiktheid van jong Suid Afrikaanse Pinus patula bome vir strukturele hout produksie, te ondersoek en (2), om empiriese modelle vir die voorspelling van die buigeienskappe van planke te ontwikkel, gebaseer op veranderlikes wat niedestruktief op staande Pinus patula bome ge‐evalueer is. Monsters vir die studie is verkry vanaf 170 bome (16‐20 jaar oud), geplant in 17 vakke op die Mpumalanga platorand van Suid Afrika. ‘n Groot aantal veranderlikes is nie‐destruktief gemeet op die staande bome waarna die bome gevel is en twee saagblokke, 2.1m in lengte, is op twee hoogte posisies uit elke boom verwyder. Die 340 blokke is verwerk tot 1402 planke vir verdere metings en destruktiewe toetse. Resultate het getoon dat die gemiddelde modulus van elastisiteit gemeet op die dwarskant (MOEedge) aansienlik laer was as wat vereis word vir strukturelegraad hout in Suid Afrika. Al die gewenste eienskappe het toegeneem met afstand vanaf die murg behalwe die 5de persentiel breekmodulus (MOR), wat hoër was vir murgplanke as vir aangrensende planke. Planke afkomstig van die laer dele van die stam het oor die algemeen beter eienskappe gehad as planke afkomstig van die hoër dele. Veelvuldige regressiemodelle kon 68%, 60% en 95% van die variasie in die gemiddelde dinamiese MOE (MOEdyn) op die vlak van onderskeidelik individuele planke, bome en vakke verklaar. Die modelle vir MOR kon 40% en 42% van die variasie op onderskeidelik plank‐ en boomvlak verklaar. Die model vir 5de persentiel MOR van vakke kon 80% van die variasie verklaar. ‘n Sensitiwiteitsanalise het aangetoon dat groeiplekindeks op ouderdom 10, akoestiese vlugtyd, digtheid en jaarringwydte die belangrikste veranderlikes was wat MOEdyn beïnvloed het. Die modelle het aangetoon dat die slankheid van bome tydens vroeë groei vermoedelik ‘n belangrike invloed op die MOEdyn en MOR van planke het. Dit is in ooreenstemming met Euler se knikteorie en die buigsterkteteorie. Die mikrofibrilhoek en digtheid van ‘n steekproef van die bome is gemeet met die Silviscan 3 apparaat. Die gemiddelde mikrofibrilhoek per jaarring het tussen 7 o en 29o varieer. Hierdie variasie was hoofsaaklik afhanklik van boomhoogte en aantal jaarringe vanaf die murg. ‘n Veelvuldige regressiemodel wat mikrofibrilhoek, digtheid en jaarringwydte insluit, kon 71% van die variasie in MOEdyn verklaar. ‘n Sensitiwiteitsanalise op die model het aangetoon dat mikrofibrilhoek en digtheid ongeveer ewe belangrik was wat betref hulle invloed op die voorspelde MOEdyn van Pinus patula planke.
Description
Thesis (PhD(For))--Stellenbosch University, 2014.
Keywords
Pinus patula, Dissertations -- Forest and wood science, Theses -- Forest and wood science, Wood -- Quality, Wood -- Testing, UCTD
Citation