Mechanistic studies of reversible addition-fragmentation chain transfer mediated polymerization

Date
2004-03
Authors
Calitz, Francois Malan
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: To comply with the ever growing demands for materials with better properties and complex architectures, polymer chemistry has resorted to the use of living free radical polymerization techniques. Despite the structural control some of these techniques offer, major disadvantages do exist. For example, most require ultra-pure reagents, hence only a small fraction of the monomers used in industry can be polymerized in this way. This rendered these new living techniques less advantageous from a commercial point of view. Recently, a revolutionary new living free radical process, namely the reversible addition-fragmentation chain transfer process, or RAFT process, was developed that combines the control over the polymer produced with the robustness and versatility of a free radical process. However, the RAFT process is not without its problems. In some dithioester mediated polymerizations, significant inhibition and rate retardation effects have been observed. Two main opposing opinions have been proposed in recent literature to explain these phenomena observed. The main point of difference between these two groups is the fate of the formed intermediate RAFT radicals, i.e., slow fragmentation of the formed intermediate radicals together with possible reversible intermediate RAFT radical termination, or fast fragmentation of the formed intermediate radicals together with possible irreversible intermediate RAFT radical termination. Between these opposing two groups, there is a difference of six orders of magnitude for the rate of fragmentation of the formed intermediate RAFT radicals. The work presented in this thesis is an attempt to clarify some of the mysteries, i.e., inhibition and rate retardation observed in some RAFT polymerizations. Experimental evidence to support or contradict the theories of the above mentioned two opposing groups was investigated. The concentration-time evolution of the intermediate radical concentration (cy), for styrene and butyl acrylate polymerizations mediated by cumyl dithiobenzoate (COB) at 70°C and 90 °C, was followed via in situ electron spin resonance spectroscopy (ESR). The concentration-time evolution profiles observed were ascribed to the formation of very short chains during the early stages of the reaction. It was also found that the RAFT process is not particularly sensitive to oxygen. The intermediate and propagating radical (cp) concentrations (and their ratio) for the cumyl dithiobenzoate mediated styrene polymerizations were examined by ESR spectroscopy and kinetics. The system showed strong chain length effects in kinetics, assuming all chains were of similar number average molar mass (Mn). However, unusual behavior with respect to existing mechanistic knowledge was observed in other aspects of the system. The central equilibrium "constant" (Keq) was found to be dependent on both temperature and initial reactant concentrations. The observed intermediate radical concentrations were not consistent with predictions based on existing literature models. It was also found that the time dependence of the intermediate radical concentration varies significantly with the type of RAFT agent used. Unexpectedly, intermediate radicals were detected at very long reaction times in the virtual absence of initiator, enhancing the belief of possible reversible termination reactions involving the intermediate radicals. An extra radical (nonpropagating or intermediate) species was observed (via ESR spectroscopy) to form during some reactions. Its concentration increased with time. The combination of data from several analytical techniques provided evidence for the formation of dead chains by the termination of intermediate radicals in the free radical polymerization of styrene, mediated by a cumyl dithiobenzoate RAFT agent, at 84°C. Experiments done focused on the early stages of the reactions, targeting very low final number average molar mass values, with high initiator concentrations. The formation of these terminated chains did not occur to a significant extent until a large fraction of the chains reached a degree of polymerization greater than unity. This corresponded to the occurrence of a maximum in intermediate radical concentration. In situ 1H nuclear magnetic resonance (NMR) and electron spin resonance spectroscopy was used to directly investigate the processes that occur during the early stages (typically the first few monomer addition steps) of an AIBN-initiated reversible addition fragmentation chain transfer polymerization of styrene, in the presence of a cyanoisopropyl dithiobenzoate and cumyl dithiobenzoate RAFT agent, at 70°C and 84 °C respectively. 1H NMR spectroscopy allowed the investigation of the change in concentration of important dithiobenzoate species as a function of time. Identification and concentrations of the radicals present in the system could be inferred from corresponding ESR spectroscopy data. An apparent "inhibition" effect was observed in both the cyanoisopropyl and cumyl dithiobenzoate mediated polymerizations. This effect could be reduced by increasing the reaction temperature to 84 °C. However, the use of cumyl dithiobenzoate as RAFT agent prolonged this effect. This apparent "inhibition" effect was attributed to selective fragmentation of the formed intermediate radicals during the early stages of the reaction, and to different propagation rate coefficients (kp) of the resulting (different) radicals. A change in the equilibrium coefficient for the systems investigated was ascribed to possible progressively decreasing addition and fragmentation rate coefficients of propagating and intermediate radicals formed during the reaction. The increase in intermediate radical concentration, and thus possible intermediate radical termination, was shown to also be a probable cause of the rate retardation observed in the RAFT mediated systems investigated. To conclude, probable causes of the observed inhibition and rate retardation in some dithiobenzoate mediated systems were investigated. It was found that intermediate RAFT radical termination does occurs, albeit reversibly or irreversibly. A maximum in the intermediate radical concentration, and thus possible intermediate radical termination, was seen to occur during the observed rate retardation. An apparent inhibition effect observed was ascribed to a possible change in termination kinetics, the formation of terminated intermediate radical products and a rapidly changing kp of the propagating radicals.
AFRIKAANSE OPSOMMING: Om te voldoen aan die ewig groeiende aanvraag vir materiale met beter eienskappe en komplekse samestellings, is in die polimeerchemie lewende vry-radikaal polimerisasietegnieke ontwikkel. Ten spyte van die feit dat party van die polimerisasie tegnieke die strukuur van die gevormende polimere kan beheer, bestaan daar tog nadele. Die meeste polimerisasie tegnieke benodig ultra suiwer reagense, dus kan net 'n klein fraksie van die monomere wat deur die industrie gebruik word op so 'n manier gepolimeriseer word. Dus, vanuit 'n komersieële oogpunt, is die nuwe lewende polimerisasietegnieke minder voordelig. Onlangs is 'n revolusionere nuwe lewende vry-radikaal polimerisasieproses, naamlike die RAFT-(eng. reversible addition-fragmentation chain transfer process) proses ontwikkel, wat die beheer oor die geproduseerde polimere, kombineer met die robuustheid en veelsydigheid van 'n vry-radikaalproses. Die RAFT proses is egter nie sonder probleme nie. Beduidende inhibisie en vertraging van die polimerisasie tempo is in sommige dithioester-bemiddelde polimerisasies opgemerk. Daar is hoofsaaklik twee opponerende opinies oor die redes vir die inhibisie en vertragings effekte. Die grootste verskil tussen die twee groepe lê in die lot van die gevormde intermediêre radikaal, m.a.w. stadige fragmentasie van die gevormende intermediêre radikale tesame met moontlike onveranderlike intermediêre radikaalterminasie, of vinnige fragmentasie tesame met moontlike omkeerbare intermediêre radikaalterminasie. Tussen die twee groepe, is daar 'n verskil van ses ordegrotes vir die groote van die tempo van fragmentasie van die gevormende intermediêre radikaal. Die werk wat in die tesis weergee word, is 'n poging om sommige van die geheime van die RAFT proses, m.a.w. inhibisie en vertraging van die polimerisasietempo, op te los. Die ondersoek was gerig op eksperimetele bewyse om die teorieë van die twee opponerede groepe of te bevestig of teen te spreek. Die konsentrasie tyd-verandering van die intermediêre radikaal konsentrasie vir stireen- en butielakrilaatpolimerisasie, bemiddeled deur CDB (eng cumyl dithiobenzoate) by 70 oe and 90 oe, is gevolg deur middel van in situ (lat. vir in die oorspronklike plek, m.a.w. binne-in die ESR masjien) elektronspin-resonans (ESR) spektroskopie. Die vorm van die konsentrasie tyd-profiele is toegeskryf aan die vorming van baie kort polimeerkettings gedurende die vroeë reaksietye. Dit is ook bepaal dat die RAFT-proses nie besonder sensitief was vir suurstof nie. Die intermediêre en die propagerende radikaalkonsentrasie (en hulle verhouding) vir die CDB bemiddelde stireen polimerisasies, is bepaal deur middel van elektronspin-resonans spektroskopie en die kinetika van die sisteem. Die kinetika van die sisteem toon 'n sterk afhanklikheid teenoor die lengte van die polimeerkettings, as aanvaar word dat al die kettings dieselfde numeriese gemiddelde molêre massa het. Des nieteenstaande, is egter onverwagte gedrag in ander aspekte van die sisteem opgemerk. Dit was ook gevind dat die sentrale ewewigs-"konstante" (Keq) afhanklik was van die temperatuur en die oorspronklike reaktant konsentrasie. Die bepaalde intermediêre radikaalkonsentrasie het verskil van voorspelde waardes gebaseer op literatuur modelle. Dit is ook gevind dat die intermediêre radikaalkonsentrasie afhanklik is van die tipe RAFT agent wat in die polimerisasie reaksies gebruik word. Intermediêre radikale is onverwags gevind na baie lang reaksietye, wanner verwag is dat die konsentrasie van die afsetter, en dus ook die intermediêre radikale, baie klein sou wees. Dit het die verwagting dat omkeerbare intermediêre radikaalterminasie kan plaasving, versterk. 'n Ekstra radikale spesie, wat gedurende die reaksie vorm en waarvan die konsentrasie groter word met tyd, is ook deur ESR-spektroskopie geidentifiseer. 'n Kombinasie van verskillende skeikundige tegnieke is gebruik om bewyse te kry vir die vorming van dooie kettings wat ontstaan deur middel van intermediêre radikale terminasiereaksies, in die vry-radikaalpolimerisasie van stireen, wat deur 'n CDB RAFT-agent bemiddeled word by 84°C. Eksperimente is gedoen om die reaksie tydens vroeë reaksietye te ondersoek. Baie hoë afsetter konsentrasies is ook gebruik, wat tot uiters lae numeriese gemiddelde molêre massas van die polimeerkettings gelei het. Beduidende konsentrasies van die dooie kettings is eers gevind nadat 'n graad van polimerisasie van groter as een bereik is. Dit het ooreengestem met 'n maksimum in die konsentrasie van die intermediêre radikale. In situ 1H kern magnetiese-resonans (KMR) en electronspin-resonans spektroskopie was gebruik om 'n RAFT proses, wat gedurende die vroeë reaksie tye (tipies gedurende die eerste paar monomeer toevoegingstappe) te bestudeer, wat deur AIBN (eng azo bis(isobutyronitrile)) afgeset word en bestaan uit stireen en CIDB (eng cyanoisopropyl dithiobenzoate) en CDB RAFT agente onderskeidelik, en by 70°C and 84 °C reageer. 1H KMRspektroskopie was gebruik om die veranderinge in die konsentrasie van die belangrike spesies te bepaal. Die identifikasie en konsentrasie van die radikale kon bepaal word deur middel van ESR data. 'n Skynbare 'inhibisie-effek' is waargeneem in die reaksies wat bemiddeled word deur CIDB en CDB. Die effek is verminder toe die reaksietemperatuur verhoog is na 84°C. Die gebruik van CDB as RAFT agent het egter die effek vergroot. Die skynbare 'inhibisie effek' was toegeskryf aan die selektiewe fragmentasie van die intermediêre radikale gedurende die vroeë reaksietye, en aan verskillende propagasie tempokoëffisiënte (kp) van die verskillende radikale. Die veranderlike sentrale ewewigskoëffisiënte is toegeskryf aan die toevoegings en fragmentasie tempokoëffisiënte van die propagerende en intermediêre radikale wat toenemend afneem. Die is ook getoon dat die toename in die konsentrasie van die intermediêre radikale en dus moontlike intermediêre radikale terminasie, 'n oorsaak kan wees van die vertraging van die polimerisasietempo in die RAFT-bemiddelde reaksies. Ter samevatting, die waarskynlike oorsake vir inhibisie en die polimerisasietempo vertraging opgemerk in sekere dithiobenzoaat-bemiddelde sisteme, is ondersoek. Dit was gevind dat intermediêre radikaalterminasie wel kan gebeur, of dit nou omkeerbaar of onveranderlik gebeur. 'n Maksimum in die konsentrasie van die intermediêre radikale, en dus moontlike intermediêre radikaalterminasie, het voorgekom tesame met 'n vertraging in die polimerisasietempo. Die skynbare inhibisie-effek wat opgemerk was kan toegeskryf word aan 'n moontlike verandering in die terminasie kinetika, die formasie van getermineerde intermediêre radikale en 'n vinnig veranderende propagasie tempokoëffisiënt.
Description
Thesis (PhD)--Stellenbosch University, 2004.
Keywords
Addition polymerization, Free radicals (Chemistry), Dissertations -- Polymer science, Theses -- Polymer science
Citation