Development and analysis of a solar-powered atmospheric water generator

Date
2022-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: A calculation model for an off-grid solar-powered atmospheric water generator is developed. An assessment of historical, current and future water scarcity indicators across the world proved that alternative water resources are required. The atmospheric water generator produces an average of 90 litres per day which is enough water to sustain six people, the average amount of people per household in water-scarce areas. Atmospheric water generators can use either refrigeration systems or desiccants to extract water from the air. However, the atmospheric water generator in this project uses a vapour compression refrigeration cycle to condense water from the atmosphere. Air is drawn into the atmospheric water generator with a fan and passes through a staggered fin-tube evaporator where water is condensed. The cold air at the evaporator exit is directed to the condenser and used as the cooling medium, increasing the COP of the system. Flownex and Matlab are used to develop the calculation model for the atmospheric water generator. Matlab sends the calculated parameters to Flownex where the simulations are performed. The simulation results indicate that the atmospheric water generator can operate between 4°C and 36°C if the absolute humidity remains above 0.0055 kgwater/kgair. The atmospheric water generator produces the most water at high temperatures and humidity levels and the least amount of water at low temperatures and low humidity levels. However, the atmospheric water generator effectiveness is the highest at low or average temperatures and high humidity levels. The specific power consumption is 0.4437 kWh/litre at 17°C and 80% humidity and 0.6367 kWh/litre at 35°C and 95% humidity. The atmospheric water generator presented an average specific power consumption of 0.7423 kWh/litre in Stellenbosch over a year. The maximum water generation rate is achieved in January (112.1 litre/day) and the minimum in July (72.89 litre/day). The average power consumption of 2.805 kW over a year was determined and used to calculate the required size of the solar energy system. The solar energy system requires enough battery storage to operate for at least two days without sufficient sunlight and a PV array large enough to supply sufficient power to the system during the shortest month of the year. A battery storage unit of 168.305 kWh and a PV array with a peak power output of 28.8 kW is required. The average price of water from the atmospheric water generator is R3.66/litre; the price is based on the solar energy system’s Levelized cost of energy and a life expectancy of 19 years.
AFRIKAANS OPSOMMING: ‘n Wiskundige model vir ‘n sonkrag aangedrewe atmosferiese water opwekker is ontwikkel. ‘n Assessering van histories, huidige and toekomstige water skaarsheid inidkators het bewys dat daar na alternatiewe vars water bronne gekyk moet word. Die atmosferiese water opweker moet 90 liter ‘n dag voorsien wat genoeg is vir ses mense, die gemiddelde hoeveelhed mense per huishouding in water skaars areas. ‘n Atmosferiese water opwekker kan ‘n verkoeling stelsel of droogmiddels gebruik om water uit die atmosfeer te trek. Egter, die atmosferiese water opwekker in die projek gebruik ‘n dampkompressie verkoelingsiklus om water uit die atmosfeer te kondenseer. Lug word deur ‘n waaier in die atmosferiese water opwekker getrek en deur ‘n verdamper gestoot waar water gekondenseer word. Die koue lug wat uit die verdamper kom word gelei na ‘n kondensor en gebruik as die verkoellings middel, dit verhoog die prestasiekoëffisiënt van die sisteem. Flownex en Matlab word gebruik om die wiskundige model te bou. Matlab stuur die berekende waardes na Flownex waar die simulasies uitgevoer word. Die simulasie resultate dui aan dat die atmosferies water opwekker kan funksioneer tusssen 4°C and 36°C as die absoluut humiditeit bo 0.0055 kgwater/kglug bly. Die atmosferiese water opwekker produseer die meest water by hoë temperature en humiditeit vlakke en die minste by lae temperature en humiditeit vlakke. Die atmosferiese water opwekker is egter meer effektief by lae en gemiddelde temperature met hoë humiditeit vlakke. Die spesifieke krag verbruik is 0.4437 kWh/liter by 17°C and 80% humiditeit en 0.6367 kWh/liter by 35°C en 95% humiditeit. Die atmosferiese water opwekker het ‘n gemiddeld van 0.7423 kWh/liter vertoon oor ‘n jaar in Stellenbosch. Die maksimum water is geproduseer in Januarie (112.1 liter/dag) en die minimum in Julie (72.89 liter/dag) met ‘n gemiddelde krag verbruik van 2.803 kWh. Die gemiddeld krag verbruik is gebruik om te bepaal hoe groot die son krag sisteem moet wees. Die sonkrag sisteem benodig genoeg battery spasie om die atmosferiese water opwekker aan die gang te hou vir ten minste twee dae met onvoldoende son, en son panele om die batterye met genoeg krag te vorrsien tydens die kortste maand van die jaar. Die sonkrag stelsel kort battery stoor spasie van 168.305 kWh en genoeg son panele om 28.8 kW te voorsien . Die sisteem wek water op teen n gemiddelde prys van R 3.66 per liter; die prys is gebaseer op die son krag stelsel se gelykgemaakte koste van energie en ‘n lewensverwagting van 19 jaar.
Description
Thesis (MEng)--Stellenbosch University, 2022.
Keywords
Atmospheric water generator, Flownex, Vapour-compression refrigeration, Solar energy, UCTD
Citation