ITEM VIEW

Interpolatory refinable functions, subdivision and wavelets

dc.contributor.advisorDe Villiers, J. M.
dc.contributor.authorHunter, Karin M.en_ZA
dc.contributor.otherUniversity of Stellenbosch. Faculty of Science. Dept. of Mathematical Sciences.
dc.date.accessioned2007-01-19T09:59:05Zen_ZA
dc.date.accessioned2010-06-01T08:13:52Z
dc.date.available2007-01-19T09:59:05Zen_ZA
dc.date.available2010-06-01T08:13:52Z
dc.date.issued2005-03
dc.identifier.urihttp://hdl.handle.net/10019.1/1156
dc.descriptionThesis (DSc (Mathematical Sciences))--University of Stellenbosch, 2005.
dc.description.abstractSubdivision is an important iterative technique for the efficient generation of curves and surfaces in geometric modelling. The convergence of a subdivision scheme is closely connected to the existence of a corresponding refinable function. In turn, such a refinable function can be used in the multi-resolutional construction method for wavelets, which are applied in many areas of signal analysis.en_ZA
dc.format.extent1298785 bytesen_ZA
dc.format.mimetypeapplication/pdfen_ZA
dc.language.isoen
dc.publisherStellenbosch : University of Stellenbosch
dc.subjectInterpolation
dc.subjectWavelets (Mathematics)
dc.subjectFunctions
dc.subjectDissertations -- Mathematics
dc.subjectTheses -- Mathematics
dc.titleInterpolatory refinable functions, subdivision and waveletsen_ZA
dc.typeThesisen_ZA
dc.rights.holderUniversity of Stellenbosch


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW