Deformation dependence of the isovector giant dipole resonance : the neodymium isotopic chain revisited

Donaldson, L. M. ; Bertulani, C. A. ; Carter, J. ; Nesterenko, V. O. ; Von Neumann-Cosel, P. ; Neveling, R. ; Ponomarev, V. Yu ; Reinhard, P. G. ; Usman, I. T. ; Adsley, P. ; Brummer, J. W. ; Buthelezi, E. Z. ; Cooper, G. R. J. ; Fearick, R. W. ; Fortsch, S. V. ; Fujita, H. ; Fujita, Y. ; Jingo, M. ; Kleinig, W. ; Kureba, C. O. ; Kvasil, J. ; Latif, M. ; Li, K. C. W. ; Mira, J. P. ; Nemulodi, F. ; Papka, P. ; Pellegri, L. ; Pietralla, N. ; Richter, A. ; Sideras-Haddad, E. ; Smit, F. D. ; Steyn, G. F. ; Swartz, J. A. ; Tamii, A. (2018)

CITATION: Donaldson, L. M., et al. 2018. Deformation dependence of the isovector giant dipole resonance : theneodymium isotopic chain revisited. Physics Letters B, 776:133-138, doi:10.1016/j.physletb.2017.11.025.

The original publication is available at


Proton inelastic scattering experiments at energy Ep=200MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: